diff --git a/-dE3T4oBgHgl3EQfrgpm/content/tmp_files/2301.04660v1.pdf.txt b/-dE3T4oBgHgl3EQfrgpm/content/tmp_files/2301.04660v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..4178abbe74ed5a2cc72127ea8d33040b78bd4aa3 --- /dev/null +++ b/-dE3T4oBgHgl3EQfrgpm/content/tmp_files/2301.04660v1.pdf.txt @@ -0,0 +1,1165 @@ +SciPost Physics +Submission +Anomalies, Representations, and Self-Supervision +Barry M. Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, Tilman Plehn +Institut für Theoretische Physik, Universität Heidelberg, Germany +January 13, 2023 +Abstract +We develop a self-supervised method for density-based anomaly detection using contrastive +learning, and test it using event-level anomaly data from CMS ADC2021. The Anomaly- +CLR technique is data-driven and uses augmentations of the background data to mimic +non-Standard-Model events in a model-agnostic way. It uses a permutation-invariant Trans- +former Encoder architecture to map the objects measured in a collider event to the represen- +tation space, where the data augmentations define a representation space which is sensitive +to potential anomalous features. An AutoEncoder trained on background representations +then computes anomaly scores for a variety of signals in the representation space. With +AnomalyCLR we find significant improvements on performance metrics for all signals when +compared to the raw data baseline. +Contents +1 +Introduction +2 +2 +Dataset +4 +3 +AnomalyCLR +5 +3.1 +Contrastive learning +5 +3.2 +CLR for anomaly detection +6 +4 +Application to event-level anomalies +8 +5 +Anomaly scores +10 +6 +Results +11 +6.1 +Comparison of methods +11 +6.2 +The effect of anomaly-augmentations +12 +6.3 +The effect of representation dimension +13 +7 +Summary & conclusions +14 +References +15 +1 +arXiv:2301.04660v1 [hep-ph] 11 Jan 2023 + +SciPost Physics +Submission +1 +Introduction +Model-agnostic new physics searches are one of the most interesting analysis prospects for the +LHC and other colliders. Over the past decade the LHC has searched for new physics based on +model-specific hypothesis testing. Despite these efforts there has been no strong evidence of new +physics found. It is possible that new physics does exist at the scales probed by the LHC, and has +not been uncovered due to the particular signal not being covered by previous analysis hypotheses. +The ATLAS and CMS collaborations have both implemented model-agnostic new physics searches +to deal with this [1, 2], however these methods suffer some drawbacks. For example scanning +high-dimensional parameter spaces can lead to large look-elsewhere effects, or methods can lack +the ability to make full use of the high-granularity low-level information collected in the experi- +ments. Recent progress in machine learning based high-energy physics tools are making significant +advances in solving many problems of such classical methods [3]. +The main machine learning tools to date for data-driven model-agnostic searches are based +either on density-related scores, or on classification scores using a background-dominated control +sample. The latter, typically known as CWoLa methods (Classification Without Labels) [4–6] have +been shown to be very successful in applications such as bump hunting [7–14] and semi-visible jet +searches [15], providing both anomaly scores and background estimates. However they run into +difficulty when the dimension of the input space or number of observables becomes large, and so +the question of whether or not they can be used on low level data is still uncertain. CWoLa tools +have already been adopted by the ATLAS collaboration [16]. +Density-based methods use machine learning to estimate the density in the phase space, and +then identify anomalies as those laying in the low density regions. These tools typically work +on high-dimensional inputs and so can be used on low-level data. The first density-based meth- +ods were the AutoEncoder studies [17, 18], where the network is optimised to compress and +reconstruct the kinematics of a jet or event. While this is not strictly density estimation, the +optimisation is highly aligned with learning a density, since regions of the phase space which +are most populated are those which should be reconstructed the best and thus have the low- +est anomaly score. There has been significant progress with the AutoEncoder tools and other +density-based anomaly detection methods in recent years [19–33], with studies covering inter- +pretability of AutoEncoders [34, 35], topic modelling [36, 37], null hypothesis tests for anomaly +detection [38], ABCD methods [39], the Normalised AutoEncoder (NAE) [40], and normalising +flow techniques [41–44]. For a comprehensive summary of many different anomaly detection +methods we refer the reader to the community challenge papers in Refs [45,46]. +One issue with the density-based approaches [44,47] is that the score is not invariant under +simple transformations in the phase space. This means that a simple re-mapping of the momenta +or coordinates fundamentally changes what the anomaly score is. This poses the question of how +to choose a representation of the data for use in density-based anomaly detection tasks. It is +also worth noting that despite the great progress that more sophisticated neural network archi- +tectures and the implementation of symmetries in networks has brought to supervised classifi- +cation [48–51], they have not yet led to the same progress in anomaly detection. In this work +we develop a new approach to density-based anomaly detection using self-supervision, which de- +fines the representation of the data in a model-agnostic way using the power of highly expressive +networks such as transformers or graph networks to boost anomaly detection performance. +Supervised machine learning methods use the idea of a truth-label to optimise the neural net- +2 + +SciPost Physics +Submission +works, usually to classify between data with different truth labels. Unsupervised methods are +those which do not require truth labels, instead optimising a network using a reconstruction loss +or a negative log likelihood, for example. Self-supervision on the other hand uses ‘pseudo-labels’, +labels generated from the data without knowledge of a truth label, to optimise the networks. In +contrastive learning [52], these labels correspond to a link between an original event and an aug- +mented event. We define the augmentation as some physical modification of the event kinematics. +Contrastive learning uses the pseudo-labels to devise an auxiliary task for the network optimisation +through the contrastive loss function. Now the network learns how to process high-dimensional +correlations in the data, and thus the representations learned by these networks can be very useful +for downstream tasks. We introduced the self-supervised JetCLR method in [53] and demonstrated +its ability to construct highly expressive representations for classification tasks. In [54] this same +technique was used to construct representations for CWoLa-based anomaly detection. In addition +to these works, other self-supervised / representation learning techniques have been applied in +particle physics [55,56] and in other scientific disciplines such as astrophysics [57–60]. In [53,54] +the augmentations corresponded to transformations of the event to which the underlying physics +should be invariant to rotations or translations, but also soft-collinear parton splittings. +We introduce AnomalyCLR, a new method based on the idea of ‘anomaly-augmentations’. +These anomaly-augmentations are modifications of the original event to which the underlying +physics is not invariant. In fact these augmentations are chosen to mimic very general features +that anomalous events might have, such as high multiplicity, large MET, or large pT. Despite choos- +ing explicitly the augmentations, the approach does not target any specific new physics model, and +we will see from the results that the approach is model agnostic. AnomalyCLR projects the kine- +matics of each event to a representation vector, which we then use to train an AutoEncoder and +define the anomaly scores. It enriches the representation space using known invariances in the +data, such as invariance to azimuthal rotations, and known generic features of anomalies. Self- +supervised anomaly detection methods have gained prominence in the machine learning literature +recently [61–64], and while the approaches are necessarily domain specific, we have drawn on +these methods. The anomaly score can be computed in different ways, and we opt for the Au- +toEncoder approach. So the workflow is as follows; train AnomalyCLR to obtain a representation +vector for each event in the dataset, then train an AutoEncoder on these representations to obtain +the anomaly scores. This is in contrast to the typical approach of training the AutoEncoder directly +on the raw kinematical data from the events. We test AnomalyCLR on the CMS Anomaly Detection +Challenge dataset [65], and, compared to the raw data baseline, we find significant improvements +on all signals. +In Section 2 we will discuss the dataset and the different backgrounds and signals. In Section 3 +we will then introduce the AnomalyCLR idea, first discussing contrastive learning and then how +this can be modified for use in anomaly detection. The specifics of the application to event-level +collider data such as the CMS ADC dataset is given in Section 4. The discussion on how we estimate +anomaly scores is given in Section 5, where the architecture and optimisation of the AutoEncoder +we use is discussed. The results are presented in Section 6, along with an analysis of how different +anomaly-augmentations and different representation dimensions affect the results. We conclude +in Section 7 with a discussion of the results and future directions. +3 + +SciPost Physics +Submission +2 +Dataset +To test the performance of the AnomalyCLR representations compared to raw data in an anomaly +detection task we use the CMS anomaly detection challenge dataset [65], which contains simu- +lated proton-proton collisions with a 13 TeV centre-of-mass energy. The events are selected to +have at least one e or µ with transverse momenta pT >23. The pseudo-rapidity (|η|) is required +to be <3 and <2.1 respectively for e and µ. Further, the events are allowed to have up to 10 jets +with pT > 15 GeV and |η| < 4, up to 4 muons pT > 3 GeV and |η| < 2.1, up to 4 electrons pT > 3 +GeV and |η|<3 and missing transverse energy (MET). The dataset is generated with Pythia 8.240 +generator [66] with a fast detector simulation using Delphes 3.3.2 [67] with the Phase-II CMS +detector card. The jets are reconstructed using anti-kt algorithm [68]. In the provided dataset +each event is formatted such that the first entry is assigned for MET, next eight are assigned for +electrons and muons respectively and, the final 10 entries are for jets. For each particle object +the data set contains information of pT, η, φ and particle id such that the shape of an event in +the data frame is [N,19,4] where N is the total number of events. Note that if an event has less +than the maximum allowed of a type of object, the remaining entries in that case are zero padded. +The background dataset consists of a number of Standard Model processes and to determine the +performance of the anomaly detection algorithm four light BSM scenarios are considered. +Backgrounds +For the SM background a collection of events are generated from production channels with at +least a single lepton in the final state. The fraction of events to be included in the SM for each +process is fixed by its trigger efficiency and the LO cross section. Thus, four leading processes are +considered: W and Z inclusive productions, QCD multijet contributions, and t¯t production. The +proportions between the four processes are given in [69] as: +pp → W ± + jets → ℓ±νℓ + jets +(59.2%) +pp → Z + jets → ℓ+ℓ− + jets +(6.7%) +pp → t¯t + jets +(0.3%) +pp → jets +(33.8%) . +(1) +with ℓ = e,µ,τ. The QCD multijet production is by far the largest production process at the +LHC. Although leptons in QCD multijet backgrounds are rarely present and mainly originate from +decays of unstable hadrons, the sheer volume of QCD multijet production makes it one of the +largest processes in the data stream for the challenge. +New physics signals +The signal datasets provided by the challenge consist of events simulated from the following signal +models: +• Leptoquark (LQ): A 80 GeV LQ decaying in to a b and τ. +• Neutral scalar boson A: A 50 GeV neutral scalar boson A. The production mechanism +pp → A+X → Z∗Z∗+X (with X is inclusive activity) followed by both Z∗ decaying into charged +leptons. +• Scalar boson h0: A scalar boson 60 GeV h0 with pp → h0 + X → τ+τ− + X production. +4 + +SciPost Physics +Submission +• A charged scalar h±: Charged scalar with 60 GeV mass and pp → h±+X → τν+X production. +The most distinguishing high-level features of these signals when compared with the background +processes are the electron, muon, and jet multiplicities and the pT and MET distributions † . +3 +AnomalyCLR +In this section we describe the AnomalyCLR method ‡. Contrastive learning of representations +(CLR) [52] is a technique used to construct highly-expressive representations of data for use in +downstream tasks, in our case this task is anomaly detection. It is self-supervised in that the +technique does not require any ‘truth’ labels for the training data. The advantage of this from the +collider physics perspective is that the technique could be run directly on experimental data rather +than on simulation. Due to the ability of deep learning methods to learn non-trivial correlations +in data that is not expected to be well-modelled by simulation, this is an important aspect of CLR +for anomaly detection. +3.1 +Contrastive learning +The basic idea is that some function f (·) (typically a neural network) is used to map from the data +space D to a representation space R, with the function being optimised to solve some auxiliary +task which does not require truth labels. This auxiliary task is framed as an optimisation problem +using ‘pseudo-labels’. In the anomaly detection scenario addressed in this work, the function that +performs the mapping from D to R is optimised only on background data. Given that the collider +events or objects such as jets typically consist of unordered sets of particles reconstructed by the +experiment, we opt for a permutation-invariant function to perform the mapping from D to R. +Specifically, we use a transformer encoder neural network, there are more details on this later in +the section. +The auxiliary task that our function is optimised to solve uses augmentations of the collider +data. In the traditional contrastive learning approach these augmentations are used to define two +types of pseudo-labels: +1. Positive-pair labels +These labels match each data point in the sample to an augmented version of itself. +2. Negative-pair labels +These labels match each data point in the sample to every other data point which is not itself +or an augmented/transformed version of itself. +The function f (·) is then trained to map from the raw data to the representation space such that +positive-pairs are close together in R and negative-pairs are far apart in R. These two optimi- +sation goals are referred to as alignment (of positive-pairs) and uniformity (of negative-pairs), +respectively. The augmentations are chosen to be modifications of the data that should leave the +underlying physics unchanged, for example a symmetry in the physical system or an augmentation +that could mimic a detector resolution effect. +†We note that since the publication of previous papers using this dataset, a bug fix in the simulation has resulted in +a new dataset, and so it is difficult to make direct comparisons between new and old results. +‡The code will be made available at https://github.com/bmdillon/AnomalyCLR. +5 + +SciPost Physics +Submission +Each data point is described by an array of data xi with the subscript labelling the specific data +point. We denote an augmentation of a data point as x′ +i, with the positive-pairs and negative-pairs +being defined as the sets {(xi, x′ +i)} and {(xi, x j)}∪{(xi, x′ +j)} for i ̸= j, respectively. The contrastive +loss function that the network is trained to minimise then is +LCLR = −log +es(zi,z′ +i)/τ +� +j̸=i∈batch +� +es(zi,zj)/τ + es(zi,z′ +j)/τ� , +(2) +where zi = f (xi) and z′ +i = f (x′ +i) are the outputs of the mapping function. The cosine similar- +ity measure s(·,·) is used to compare events and measure distances between them in the new +representation space, +s(zi,zj) = +zi · zj +|zi||zj| = cosθi j . +(3) +In this way, s(·,·) projects each vector zi to the surface of a unit hypersphere and computes the +cosine distance between each pair. As it stands, s(·,·) is not a proper distance metric, however we +could form one by taking di j = θi j/π as the distance between each event in the representation +space, although we do not explore this here. The numerator of the contrastive loss in Eq. (2) +accounts for the positive-pair and alignment, where distances between events and their augmented +counter-parts enter. While the denominator accounts for the negative-pairs and uniformity, where +distances between completely different events are accounted for. The degree to which we trade +off between the different tasks is determined by the temperature hyper-parameter τ in the loss +function. +3.2 +CLR for anomaly detection +While contrastive learning has been shown to be very useful in generating representations for +downstream classification tasks [53], there is a potential issue when using this approach for down- +stream anomaly detection tasks. For the classification task, for example in [53], the function f (·) +is optimised on data from both the background and signal classes, despite not using their truth- +labels explicitly in the optimisation. Through the contrastive learning this allows the function to +encode non-trivial features of both the background and signal data in the representations. When +using contrastive learning for a downstream anomaly detection task however, the function f (·) is +optimised on just the background data (or at least a significantly background-dominated dataset). +This means that the representation learned by the function f (·) will focus solely on features rele- +vant for the background data. This could mean that anomalous data is not out-of-distribution and +so may not lead to competitive performance in downstream anomaly detection tasks. This will +become evident when we look at the results in Section 6. To remedy this we introduce Anoma- +lyCLR, a modified approach to contrastive learning for anomaly detection in particle physics. At +the core of this approach is the introduction of ‘anomaly-augmentations’, such that we now have +two categories for augmentations: +1. Physical augmentations +These are augmentations of the data that we would like the mapping to be invariant to. +2. Anomaly-augmentations +These are unphysical augmentations of the data that are supposed to mimic potential anoma- +lies, we want the representations to be highly discriminative towards these augmentations. +6 + +SciPost Physics +Submission +We add a third pseudo-label: +3. Anomaly-pair labels +These labels match each data point in the sample to an anomaly-augmented version of itself. +The advantage of anomaly-augmentations is that we can increase the sensitivity of the anomaly +detection tools to anomalies using just the background data, potentially the data directly measured +at colliders. This keeps the approach in line with the original data-driven CLR idea. We can then +define the anomaly-augmented contrastive loss function as +LAnomCLR = −log +e[s(zi,z′ +i)−s(zi,z∗ +i )]/τ +� +j̸=i∈batch +� +es(zi,zj)/τ + es(zi,z′ +j)/τ� , +(4) +where we denote the representations of the anomaly-augmented events by z∗, and so the anomaly- +pair is defined as {(xi, x∗ +i )}. Note that the anomaly-augmentations only enter in the numerator +of Eq. (4), and without these the loss function becomes the regular contrastive loss function. +Introducing the anomaly-pairs we expose the network to data features that are outside of the +background distribution. The CLR portion of the loss function still optimises for alignment and +uniformity, however this uniformity is now disrupted by the anomaly-pair term. As a result the +background data will not be uniformly distributed in the representation space, with some regions +encoding features of the anomaly-augmented data. This means that anomalous data with features +similar to those generated by the anomaly-augmentations should be out-of-distribution in this +representation space. +We did some minor testing on alternative forms of this loss function, for example including +the anomaly-augmentations in the denominator of the loss function with the negative-pairs. How- +ever since the anomaly-augmentations compute distances between a data point and its augmented +counter-part, and not between other data points (i.e. i ̸= j), it is more intuitive to include this +term in the numerator. The denominator in Eq. (4) is used to encode features in the represen- +tation space that discriminate between the different data points used during training, which for +anomaly detection is the background data. This is not necessary for anomaly detection, and the +anomaly-pairs should provide the representations with all the discriminative power they need, +so we experimented with removing the denominator in Eq. (4) altogether, and found that this is +sufficient. In this case the loss function is written as +L+ +AnomCLR = −log e[s(zi,z′ +i)−s(zi,z∗ +i )]/τ = +s(zi,z∗ +i ) − s(zi,z′ +i) +τ +, +(5) +where the plus sign in L+ +AnomCLR indicates that only positive-pairs are used. This results in a much +less computationally expensive loss function, since we no longer need to compute pair-wise cor- +relations between each entry in a batch the complexity scales as Nbatch rather than N 2 +batch. We also +remove the dependence on τ in L+ +AnomCLR, since there is no longer a trade-off between positive- +and negative-pairs. We could of course introduce a term to control the trade-off between the +physical and anomaly-augmentation terms, but we do not explore that here. In our results we will +compare the performance of both loss functions. +7 + +SciPost Physics +Submission +4 +Application to event-level anomalies +The application of AnomalyCLR to different physical scenarios requires an understanding of the +data and the physics in order to construct the physical and anomaly-augmentations. For the event- +level dataset discussed in Section 2 we consider three physical augmentations the data: +1. Azimuthal rotations +The whole final state is rotated by an angle φ randomly sampled from [0,2π]. +2. η − φ smearing +The (η,φ) coordinate of every object in the event is resampled according from a Normal +distribution centred on the original coordinate and with a variance inversely proportional to +the pT, i.e. η′ ∼ N (η,σ(pT)) and φ′ ∼ N (φ,σ(pT)). +3. Energy smearing +The pT of every object in the event is re-sampled according to p′ +T ∼ N (pT, f (pT)) with f (pT) +determining the strength of the smearing. +These augmentations reflect both the symmetries in the data and the experimental resolution of +the detector. Detectors are imperfect, especially in measuring jet energies, and we encode this in +the representations of the data through the energy-smearing augmentation. Here we re-sample +the jet pT’s as p′ +T ∼ N (pT, f (pT)), where f (pT) = +� +0.052p2 +T + 1.502pT is the energy smearing +applied by Delphes (the pT’s are normalised by 1GeV). If not explicitly mentioned, we always +assume units of GeV for energy. For the anomaly-augmentation we consider some very simple +scenarios: +1. Multiplicity shift, x′ +i = m(xi) +For each event m(·) adds a random number of electrons, muons, and jets to the event. The +number is chosen randomly within the limits (ne,4− ne), (nµ,4− nµ), and (nj,10− nj) for +electrons, muons, and jet, respectively. The azimuthal angle and pseudo-rapidities are also +chosen randomly within the limits allowed, and the pT for each object is chosen as a random +fraction of the maximum pT in the event. Once the objects have been added, the MET of the +event is recalculated and updated. +2. Multiplicity shift, keeping MET and the total pT constant, , x′ +i = m(xi) +This is similar to the above augmentation, but now m(·) generates the extra objects by splitting +the existing objects and smearing the η−φ coordinates using the function used in the physical +augmentations above. +3. pT and MET shifts, x′ +i = spT (xi) +Here spT (·) shifts the pT’s in the event by the same random factor. We randomly choose whether +we shift just the MET, just the reconstructed object pT’s, or both. And we ensure that the the +trigger selection is not spoiled by these shifts. +With the physical augmentations we apply all of them simultaneously, whereas for the anomaly- +augmentations we apply just one augmentation to each event. The augmentation that is applied is +selected randomly and uniformly. We do not apply both a physical augmentation and an anomaly- +augmentation to the events in s(zi,z∗ +i ), since this would conflict with the optimisation goal of the +s(zi,z′ +i) term. It would also be possible to have an anomaly-augmentation that removes objects +from the event, however this effect is already captured by the augmentation that adds objects to +the event. Many of the events in the background have the minimal multiplicity allowed by the +applied cuts, so the effect of an anomaly-pair with a low multiplicity background event and the +same event augmented to have more objects is the exact same as the effect of an anomaly-pair +8 + +SciPost Physics +Submission +with a high-multiplicity background event augmented to have less objects. This is because of the +symmetry in the distance function s(zi,z∗ +i ). So the anomaly-augmentations here are as general +as can be, and do not target any specific new physics scenario, therefore the technique should be +model-agnostic. +Architecture and training +The collider event data being used has a well-defined structure: +• MET: one entry with (pT,η,φ) +• Electrons: four entries, each with (pT,η,φ) +• Muons: four entries, each with (pT,η,φ) +• Jets: ten entries, each with (pT,η,φ). +This amounts to a 19 × 3 array, with the electrons, muons, and jets being ordered by pT and hav- +ing zero-padded entries where there is less than the maximum allowed number of reconstructed +objects. The multiplicity is typically much less than the maximum allowed, so the data for a +single collider event can have many zeros. The transformer allows us to avoid this by having a +permutation-invariant and variable length input format. Because the data is now processed in +a permutation-invariant way, the information on which entry corresponds to which object (MET, +electron, muon, or jet) is lost. We reinstate this information by adding a one-hot encoded ID vec- +tor to (pT,η,φ), with a 1 indicating the correct ID. This means that each reconstructed object is +now represented by a 7D vector. Before passing the kinematic data to the transformer we do some +very minor preprocessing to make sure that the numbers the networks see are O(1). Specifically, +we divide all MET and pT values by the average pT of all objects (electrons, muons, jets) in the +background dataset, we do not shift the values to be centred on zero because the distribution is +highly peaked at zero and we want the preprocessed data to have the same sparsity as the original +data. We then divide all η and φ values by 4 and π, respectively. When training the AutoEncoder +networks discussed in the next section we use the same preprocessing of the data, this ensures +that any difference in the results can be attributed to AnomalyCLR. +The transformer starts by projecting each object to a larger vector whose dimension is deter- +mined by the embedding dimension. The embeddings for each object are then passed through the +transformer, with a feed-forward network between each transformer layer. The output from the +transformer has a dimension of (n× model dimension) with n being the number of objects in the +event. The last steps are to sum over the n vectors in this output, which enforces the permutation- +invariance, and to pass this vector through a fully-connected head network. The output of this +head network is what is passed to the loss function. For more details on the architecture we re- +fer the reader to [53], here we only list the hyper-parameters used in training the network in +Table 1. The representation used in the anomaly detection task is taken from the output of the +transformer network, before being passed through the head network. It is well documented in the +machine learning literature that these intermediate representations from self-supervised networks +generally contain more discriminating features, for example in [52]. +9 + +SciPost Physics +Submission +hyper-parameter +model (embedding) dimension 160 +feed-forward hidden dimension 160 +output dimension +160 +# self-attention heads +4 +# transformer layers (N) +4 +# layers +2 +dropout rate +0.1 +hyper-parameter +optimiser +Adam(β1=0.9, β2=0.999) +learning rate +5 × 10−5 +batch size +128 +# epochs +500 +Table 1: Default setup of the transformer-encoder network and the AnomalyCLR train- +ing, unless noted explicitly. +5 +Anomaly scores +The basic flow in an AutoEncoder involves two steps; (i) mapping high-dimensional input data +to a compressed latent space using a neural network called an encoder, and (ii) mapping the +compressed latent space representation to a reconstructed version of the input data using a neural +network called a decoder. We refer to the encoder network as e(·) and the decoder network as d(·). +With input data of dimension D, and a bottleneck of dimension B, the encoder maps e : �D → �B, +while the decoder maps d : �B → �D, with the AutoEncoder defined as h = e ◦ d : �D → �D. +Acting on a single input ⃗x, the AutoEncoder returns ⃗x′ = h(⃗x), and is optimised to minimise the +mean-squared-error (MSE) loss function between the input and reconstructed input, +L(⃗x,θ) = +� +⃗x − ⃗x′�2 , +(6) +where θ represents the learnable parameters of the AutoEncoder. In the limit where the AutoEn- +coder is able to reconstruct inputs perfectly, which is guaranteed to be possible when D = B, the +function hθ(·) is simply the identity. But with B < D the AutoEncoder may not be able to perfectly +reconstruct all features in the data, and therefore it should learn to reconstruct only the most +common or prominent features in the data. This means that events containing rare or anomalous +features should have a larger ‘reconstruction loss’, i.e. L(⃗x,θ), and this can then be used as the +anomaly score. +The encoder and decoder networks have 5 feed forward layers each with 256, 128, 64, 32, and +16 neurons, connected by a 5-dimensional bottleneck. The activation function between layers is +a LeakyReLU with default slope. The decoder is a mirrored version of the encoder. We don’t apply +regularization techniques during training. The training is performed using Adam optimiser with +learning rate 0.001 for 100 epochs, the batch size is 4096, and the number of SM events used is +106. Note that we have not optimised the AutoEncoder architecture, simply choosing the same +architecture used in [39]. Instead we have only ensured that they are trained to convergence and +that the training is stable. The AutoEncoder is trained on both the representations obtained from +contrastive learning and the raw data. In the case of the raw data we apply the same preprocessing +to the data as is applied to the data in the contrastive learning network. In this way we ensure +that any differences in the anomaly detection performance can be attributed to the contrastive +learning methods. +10 + +SciPost Physics +Submission +6 +Results +In this section we present some results using the different techniques discussed in the preceding +sections. The results here are three-fold; we first compare the different methods based on anomaly +detection performance, we then study the effects of the different anomaly-augmentations on the +AnomalyCLR performance, and lastly we look at the effect of the representation dimension on the +performance. +6.1 +Comparison of methods +We compare the methods using the ROC (Receiver Operating Characteristic) curves, the SI (Signif- +icance Improvement) curves, and the AUC (Area Under the ROC Curve). The baseline we compare +to is the AutoEncoder trained on raw kinematic data. We present results using the CLR method +without anomaly-augmentations (LCLR), and the CLR method with anomaly-augmentations (both +LAnomCLR and L+ +AnomCLR). So we have 4 methods in total to compare. For all results on the raw +data we have trained 5 AutoEncoder networks and taken the central value and the error estimation +from the mean and standard deviation of the results. For the CLR methods we also aggregate over +5 different runs, where in each run we train a different transformer network and a different Au- +toEncoder. The CLR representations have a dimension of 160 and where anomaly-augmentations +are used we have used them all as outlined in Section 4. In Fig. 1 we present AnomalyCLR results +using L+ +AnomCLR and see that it leads to significant improvements over the raw data representations, +not only in the AUC but also at all signal efficiencies. In the Significance Improvement (SI) curves +we also see large improvements, with the SI being between ∼ 3.5−4 for A → 4l and h+. We can see +from Table 2 that the L+ +AnomCLR loss function is clearly advantageous over LAnomCLR, beating it on +all signals with the exception of A → 4l, where LAnomCLR achieves better performance at εs =0.3. +A point of interest here is that the AutoEncoder on raw data outperforms the AutoEncoder on the +CLR representations in most cases. This is likely due to the fact that traditional CLR optimises +for uniformity, and since it is trained on background only, the mapping is not optimised to sepa- +rate SM-like background events from any event which may look different to that. The benefit of +Signal +AE-Raw +CLR +AnomCLR +AnomCLR+ +AUC +A +0.885(2) +0.880(7) +0.907(6) +0.909(3) +h0 +0.755(2) +0.740(5) +0.765(4) +0.776(2) +h+ +0.900(4) +0.87(1) +0.913(2) +0.930(1) +LQ +0.856(2) +0.841(9) +0.854(3) +0.880(1) +ε−1 +b (εs =0.3) +A +47(2) +80(22) +156(34) +139(20) +h0 +14.9(7) +11(1) +18(1) +23(1) +h+ +60(10) +28(6) +98(9) +171(7) +LQ +24.4(6) +18(2) +28(3) +39(1) +SI(εs =0.3) +A +2.05(5) +2.7(4) +3.7(4) +3.5(2) +h0 +1.16(3) +0.99(4) +1.26(4) +1.44(3) +h+ +2.3(2) +1.6(2) +3.0(1) +3.9(1) +LQ +1.48(2) +1.3(1) +1.6(1) +1.88(2) +Table 2: Comparison of the different CLR loss functions, with and without anomaly- +augmentations, and the AE trained on raw data. +11 + +SciPost Physics +Submission +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +ϵs +100 +101 +102 +103 +ϵ−1 +b +AE-Raw +A, AUC=0.885(2) +h0, AUC=0.755(2) +h+, AUC=0.900(4) +LQ, AUC=0.856(2) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +ϵs +100 +101 +102 +103 +ϵ−1 +b +AnomCLR+ +A, AUC:0.909(3) +h0, AUC:0.776(2) +h+, AUC:0.930(1) +LQ, AUC:0.880(1) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +ϵs +0.0 +1.0 +2.0 +3.0 +4.0 +5.0 +SI +AE-Raw +A +h0 +h+ +LQ +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +ϵs +0.0 +1.0 +2.0 +3.0 +4.0 +5.0 +SI +AnomCLR+ +A +h0 +h+ +LQ +Figure 1: Comparison between the AE on raw data and the AE on the CLR representa- +tions trained with the L+ +AnomCLR loss function. +anomaly-augmentations here is strikingly clear. +6.2 +The effect of anomaly-augmentations +We now want to study how the addition of the individual anomaly-augmentations affects the +anomaly detection performance. For this we use just L+ +AnomCLR , however we expect the results +with LAnomCLR to be similar. We use a representation dimension of 160 and obtain the error +estimate from just 2 runs due to the computational cost of the scan. +We can see from Fig. 2 that the affect of the augmentations together results in the best over- +all performance. One thing we noticed is that it can be difficult to determine from the affect of +individual augmentations, or subgroups of them, what the performance of all of them together +will be. For example, in most cases if we take just the m(x) augmentation, i.e. the multiplicity +augmentation that simply adds reconstructed objects, we see that it alone decreases performance +below baseline for three out of four signals. However when used in combination with the others +it increases the performance. This is most clear for the leptoquark signal, where all augmenta- +12 + +SciPost Physics +Submission +0.800 +0.850 +0.900 +A +AUC +0.700 +0.750 +h0 +0.800 +0.850 +0.900 +0.950 +h+ +m(x) +m(x) +spT(x) m(x)/m(x) +all +anomaly augmentations +0.750 +0.800 +0.850 +LQ +Figure 2: Results of a scan on the anomaly-augmentations used with the L+ +AnomCLR loss +function. The augmentations are defined in Section 4. The dashed lines here correspond +to the AutoEncoder on raw data baseline performance. +tions taken individually result in a performance which is at or below baseline, but when taken +together we get a significant boost in the AUC. We also see the interplay between the m(x) and +m(x) augmentations, since individually these augmentations do not seem to help much, but when +they are both applied in the same optimisation we see a reduced error and in most cases better +performance. When drawing conclusions here we should keep in mind that only two runs for each +combination have been used to compute the mean and error estimation. +6.3 +The effect of representation dimension +With CLR we can project our raw data from D to a representation of any dimension we like. +We would expect that the larger the representation dimension the more information that can be +encoded in the space. However we also expect that this would plateau or even peak at some point, +and this what we want to investigate here. For this we use just L+ +AnomCLR , however we expect the +results with LAnomCLR to be similar. Here we also obtain the error estimate from just 2 runs due +to the computational cost of the scan. +In Fig. 3 we see that increasing the representation dimension certainly improves the perfor- +mance of the anomaly detection, at least up until a certain point. The A, h0, and LQ signals +all appear to achieve peak performance somewhere between dimensions 120 and 200, while the +h+ signals performance increases right up until 400. There is no fundamental limitation related +to the representation size which we would expect to cause a degradation at larger dimensions, +however there are two points we should keep in mind here. The first is simple, these means and +variances are calculated with only two runs, so more runs might present a clearer picture. The +13 + +SciPost Physics +Submission +0.850 +0.875 +0.900 +0.925 +A +AUC +0.740 +0.760 +0.780 +h0 +0.900 +0.920 +0.940 +h+ +4 +8 +12 +20 +40 +80 +120 +160 +200 +300 +400 +500 +representation dimension +0.840 +0.860 +0.880 +LQ +Figure 3: Results of a scan on the representation dimension used with the L+ +AnomCLR loss +function. The dashed lines here correspond to the AutoEncoder on raw data baseline +performance. +second point is that we have not optimised the AutoEncoder architecture or hyper-parameters as +the representation size increases. While it is beyond the scope of this paper, it is possible that +an independent hyper-parameter optimisation for each representation dimension would improve +these results, particularly at larger dimensions. What these results show is that there is a clear +tendancy for the results to improve as we increase from dimensions of ∼ 4 to ∼ 100, as we would +naturally expect. +7 +Summary & conclusions +In this paper we have introduced AnomalyCLR§, a new method for density-based anomaly detec- +tion in high-energy physics. It makes use of anomalous augmentations of collider data to build a +representation space from which to construct anomaly scores with a range of methods, for exam- +ple using AutoEncoders. It is a self-supervised method, based on the contrastive learning idea. We +tested this method on the CMS ADC dataset, and compared to the raw data baselines we find large +improvements on all signals. At a fixed signal efficiency of 0.3 and a fixed representation dimen- +sion of 160 we find significance improvements for the different signals in the range of 14−70%, +and a decreased relative error on the significance improvement in each case. Allowing for varying +signal efficiencies and representation dimensions would improve these performance markers even +§The AnomalyCLR code, along with the event-level anomaly detection application, will be made available at +https://github.com/bmdillon/AnomalyCLR. +14 + +SciPost Physics +Submission +further. +Density-based anomaly detection, using AutoEncoders or normalising flows, suffer from the +ambiguity that a change in the ‘coordinate system’ or representation of the data results in a fun- +damental change in how the anomaly score is defined. This makes it difficult to choose a suitable +representation by hand, for example a simple re-mapping of pT’s along with some re-scaling of +numerical inputs. These simple choices are difficult to motivate from a physics perspective and +can drastically change the results of the anomaly detection. This change can be for better or for +worse, and typically depends on the signal models used to test the algorithm. +AnomalyCLR addresses this by constructing a representation of the data using self-supervised +contrastive learning with the addition of anomaly-augmented data. The anomaly-augmented data +is constructed from the background data through feature augmentation, designed to emulate a +generic anomaly. We have discussed in detail how we do this for the event-level anomalies in +the CMS ADC dataset, however this would of course be different in different physics cases. We +proposed a new loss function which we use to train a deep transformer-based neural network. This +network projects the events to a new representation, in which the anomaly-augmented events are +far from their original counterparts, while being close to events which are similar. The transformer +network then learns a highly discriminative representation of the events which is sensitive to +the presence of potential anomalies. We have seen that the choice of these augmentations is +quite model agnostic. This model-agnostic nature of the approach can be seen in how the results +improve across all four signals considered. +We have shown the effectiveness of self-supervision and the idea of anomaly-augmentations +in significantly enhancing anomaly detection performance in a model-agnostic way. This opens +the door to further studies, such as improving the density-estimation portion of the method with a +more sophisticated hyper-parameter optimisation of the AutoEncoders, using normalising flows, +or even using the Normalised AutoEncoder. More generally, the use of anomaly-augmented data +could be explored further in other anomaly detection approaches. +Acknowledgements +We would like to thank Jernej Kamenik and Ben Nachman for their helpful comments on the +manuscript. BMD acknowledges funding from the Alexander von Humboldt Foundation. LF, TM, +and TP are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) +under grant 396021762 – TRR 257: Particle Physics Phenomenology after the Higgs Discovery +and Germany’s Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRUCTURES Ex- +cellence Cluster). +References +[1] A general search for new phenomena with the ATLAS detector in pp collisions at �s = 8 +TeV, ATLAS-CONF-2014-006 (ATLAS-CONF-2014-006) (2014), https://cds.cern.ch/record/ +1666536. +[2] C. Collaboration, MUSiC, a Model Unspecific Search for New Physics, in pp Collisions at �s = 8 +TeV (2017). +15 + +SciPost Physics +Submission +[3] T. Plehn, A. Butter, B. Dillon and C. Krause, Modern Machine Learning for LHC Physicists +(2022), arXiv:2211.01421. +[4] E. M. Metodiev, B. Nachman and J. Thaler, Classification without labels: Learning from mixed +samples in high energy physics, +JHEP 10, 174 (2017), +doi:10.1007/JHEP10(2017)174, +arXiv:1708.02949. +[5] B. Nachman and D. Shih, Anomaly Detection with Density Estimation, Phys. Rev. D 101, +075042 (2020), doi:10.1103/PhysRevD.101.075042, arXiv:2001.04990. +[6] A. Hallin, J. Isaacson, G. Kasieczka, C. Krause, B. Nachman, T. Quadfasel, M. Schlaffer, +D. Shih and M. Sommerhalder, Classifying anomalies through outer density estimation, Phys- +ical Review D 106(5) (2022), +doi:10.1103/physrevd.106.055006, +https://doi.org/10. +1103%2Fphysrevd.106.055006. +[7] J. +H. +Collins, +K. +Howe +and +B. +Nachman, +Anomaly +Detection +for +Resonant +New Physics with Machine Learning, +Phys. Rev. Lett. 121(24), +241803 (2018), +doi:10.1103/PhysRevLett.121.241803, arXiv:1805.02664. +[8] J. H. Collins, K. Howe and B. Nachman, Extending the search for new resonances with ma- +chine learning, +Phys. Rev. D99(1), 014038 (2019), +doi:10.1103/PhysRevD.99.014038, +arXiv:1902.02634. +[9] A. Andreassen, B. Nachman and D. Shih, +Simulation Assisted Likelihood-free Anomaly +Detection, +Phys. Rev. D 101(9), 095004 (2020), +doi:10.1103/PhysRevD.101.095004, +arXiv:2001.05001. +[10] O. Amram and C. M. Suarez, Tag N’ Train: a technique to train improved classifiers on unlabeled +data, JHEP 01, 153 (2021), doi:10.1007/JHEP01(2021)153, arXiv:2002.12376. +[11] J. A. Raine, S. Klein, D. Sengupta and T. Golling, CURTAINs for your Sliding Window: Con- +structing Unobserved Regions by Transforming Adjacent Intervals (2022), arXiv:2203.09470. +[12] A. Hallin, G. Kasieczka, T. Quadfasel, D. Shih and M. Sommerhalder, Resonant anomaly +detection without background sculpting (2022), arXiv:2210.14924. +[13] M. F. Chen, B. Nachman and F. Sala, Resonant Anomaly Detection with Multiple Reference +Datasets (2022), arXiv:2212.10579. +[14] T. Golling, S. Klein, R. Mastandrea and B. Nachman, FETA: Flow-Enhanced Transportation +for Anomaly Detection (2022), arXiv:2212.11285. +[15] T. Finke, M. Krämer, M. Lipp and A. Mück, Boosting mono-jet searches with model-agnostic ma- +chine learning, JHEP 08, 015 (2022), doi:10.1007/JHEP08(2022)015, arXiv:2204.11889. +[16] G. Aad et al., +Dijet resonance search with weak supervision using �s += +13 TeV +pp collisions in the ATLAS detector, +Phys. Rev. Lett. 125(13), +131801 (2020), +doi:10.1103/PhysRevLett.125.131801, arXiv:2005.02983. +[17] T. Heimel, G. Kasieczka, T. Plehn and J. M. Thompson, QCD or What?, SciPost Phys. 6, 030 +(2019), doi:10.21468/SciPostPhys.6.3.030, arXiv:1808.08979. +16 + +SciPost Physics +Submission +[18] M. Farina, Y. Nakai and D. Shih, Searching for New Physics with Deep Autoencoders, Phys. +Rev. D 101, 075021 (2020), doi:10.1103/PhysRevD.101.075021, arXiv:1808.08992. +[19] A. Blance, M. Spannowsky and P. Waite, Adversarially-trained autoencoders for robust un- +supervised new physics searches, +JHEP 10, 047 (2019), +doi:10.1007/JHEP10(2019)047, +arXiv:1905.10384. +[20] T. S. Roy and A. H. Vijay, +A robust anomaly finder based on autoencoder (2019), +arXiv:1903.02032. +[21] T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette and T. Golling, Variational Autoencoders +for Anomalous Jet Tagging (2020), arXiv:2007.01850. +[22] A. A. Pol, V. Berger, G. Cerminara, C. Germain and M. Pierini, Anomaly Detection With Condi- +tional Variational Autoencoders, In Eighteenth International Conference on Machine Learning +and Applications (2020), arXiv:2010.05531. +[23] O. +Atkinson, +A. Bhardwaj, +C. Englert, +V. S. Ngairangbam and M. Spannowsky, +Anomaly detection with convolutional Graph Neural Networks, +JHEP 08, 080 (2021), +doi:10.1007/JHEP08(2021)080, arXiv:2105.07988. +[24] S. Tsan, R. Kansal, A. Aportela, D. Diaz, J. Duarte, S. Krishna, F. Mokhtar, J.-R. Vlimant and +M. Pierini, Particle Graph Autoencoders and Differentiable, Learned Energy Mover’s Distance, +In 35th Conference on Neural Information Processing Systems (2021), arXiv:2111.12849. +[25] V. S. Ngairangbam, M. Spannowsky and M. Takeuchi, +Anomaly detection in high- +energy physics using a quantum autoencoder, +Phys. Rev. D 105(9), 095004 (2022), +doi:10.1103/PhysRevD.105.095004, arXiv:2112.04958. +[26] B. Ostdiek, +Deep Set Auto Encoders for Anomaly Detection in Particle Physics (2021), +arXiv:2109.01695. +[27] J. Barron, D. Curtin, G. Kasieczka, T. Plehn and A. Spourdalakis, Unsupervised Hadronic SUEP +at the LHC, JHEP 12, 129 (2021), doi:10.1007/JHEP12(2021)129, arXiv:2107.12379. +[28] A. Kahn, J. Gonski, I. Ochoa, D. Williams and G. Brooijmans, Anomalous jet identification via +sequence modeling, JINST 16(08), P08012 (2021), doi:10.1088/1748-0221/16/08/P08012, +arXiv:2105.09274. +[29] K. Fraser, +S. Homiller, +R. K. Mishra, +B. Ostdiek and M. D. Schwartz, +Chal- +lenges for unsupervised anomaly detection in particle physics, +JHEP 03, 066 (2022), +doi:10.1007/JHEP03(2022)066, arXiv:2110.06948. +[30] F. Canelli, A. de Cosa, L. L. Pottier, J. Niedziela, K. Pedro and M. Pierini, +Autoencoders +for semivisible jet detection, +JHEP 02, 074 (2022), +doi:10.1007/JHEP02(2022)074, +arXiv:2112.02864. +[31] Z. Hao, R. Kansal, J. Duarte and N. Chernyavskaya, Lorentz Group Equivariant Autoencoders +(2022), arXiv:2212.07347. +[32] O. Atkinson, A. Bhardwaj, C. Englert, P. Konar, V. S. Ngairangbam and M. Spannowsky, IRC- +Safe Graph Autoencoder for Unsupervised Anomaly Detection, Front. Artif. Intell. 5, 943135 +(2022), doi:10.3389/frai.2022.943135, arXiv:2204.12231. +17 + +SciPost Physics +Submission +[33] L. Bradshaw, S. Chang and B. Ostdiek, +Creating simple, interpretable anomaly de- +tectors for new physics in jet substructure, +Phys. Rev. D 106(3), 035014 (2022), +doi:10.1103/PhysRevD.106.035014, arXiv:2203.01343. +[34] B. Bortolato, B. M. Dillon, J. F. Kamenik and A. Smolkoviˇc, Bump Hunting in Latent Space +(2021), arXiv:2103.06595. +[35] B. M. Dillon, T. Plehn, C. Sauer and P. Sorrenson, Better Latent Spaces for Better Autoencoders, +SciPost Phys. 11, 061 (2021), doi:10.21468/SciPostPhys.11.3.061, arXiv:2104.08291. +[36] B. M. Dillon, D. A. Faroughy and J. F. Kamenik, Uncovering latent jet substructure, Phys. Rev. +D 100, 056002 (2019), doi:10.1103/PhysRevD.100.056002, arXiv:1904.04200. +[37] B. M. Dillon, D. A. Faroughy, J. F. Kamenik and M. Szewc, Learning the latent structure of +collider events, JHEP 10, 206 (2020), doi:10.1007/JHEP10(2020)206, arXiv:2005.12319. +[38] J. F. Kamenik and M. Szewc, +Null Hypothesis Test for Anomaly Detection (2022), +arXiv:2210.02226. +[39] V. Mikuni, B. Nachman and D. Shih, Online-compatible unsupervised nonresonant anomaly +detection, +Phys. Rev. D 105(5), 055006 (2022), +doi:10.1103/PhysRevD.105.055006, +arXiv:2111.06417. +[40] B. M. Dillon, L. Favaro, T. Plehn, P. Sorrenson and M. Krämer, A Normalized Autoencoder for +LHC Triggers (2022), arXiv:2206.14225. +[41] S. E. Park, D. Rankin, S.-M. Udrescu, M. Yunus and P. Harris, Quasi Anomalous Knowledge: +Searching for new physics with embedded knowledge (2020), arXiv:2011.03550. +[42] P. Jawahar, T. Aarrestad, N. Chernyavskaya, M. Pierini, K. A. Wozniak, J. Ngadiuba, J. Duarte +and S. Tsan, Improving Variational Autoencoders for New Physics Detection at the LHC With +Normalizing Flows, Front. Big Data 5, 803685 (2022), doi:10.3389/fdata.2022.803685, +arXiv:2110.08508. +[43] S. Caron, L. Hendriks and R. Verheyen, Rare and Different: Anomaly Scores from a combi- +nation of likelihood and out-of-distribution models to detect new physics at the LHC, SciPost +Phys. 12(2), 077 (2022), doi:10.21468/SciPostPhys.12.2.077, arXiv:2106.10164. +[44] T. Buss, B. M. Dillon, T. Finke, M. Krämer, A. Morandini, A. Mück, I. Oleksiyuk and T. Plehn, +What’s Anomalous in LHC Jets? (2022), arXiv:2202.00686. +[45] G. Kasieczka et al., The LHC Olympics 2020: A Community Challenge for Anomaly Detection +in High Energy Physics (2021), arXiv:2101.08320. +[46] T. Aarrestad et al., The Dark Machines Anomaly Score Challenge: Benchmark Data and Model +Independent Event Classification for the Large Hadron Collider, +SciPost Phys. 12(1), 043 +(2022), doi:10.21468/SciPostPhys.12.1.043, arXiv:2105.14027. +[47] G. Kasieczka, R. Mastandrea, V. Mikuni, B. Nachman, M. Pettee and D. Shih, Anomaly Detec- +tion under Coordinate Transformations (2022), arXiv:2209.06225. +18 + +SciPost Physics +Submission +[48] G. Kasieczka, T. Plehn, A. Butter, K. Cranmer, D. Debnath, B. M. Dillon, M. Fairbairn, D. A. +Faroughy, W. Fedorko, C. Gay, L. Gouskos, J. F. Kamenik et al., The Machine Learning Land- +scape of Top Taggers, +SciPost Phys. 7, 014 (2019), +doi:10.21468/SciPostPhys.7.1.014, +arXiv:1902.09914. +[49] H. Qu and L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys. Rev. D 101, 056019 +(2020), doi:10.1103/PhysRevD.101.056019, arXiv:1902.08570. +[50] H. Qu, C. Li and S. Qian, Particle Transformer for Jet Tagging (2022), arXiv:2202.03772. +[51] A. Bogatskiy, T. Hoffman, D. W. Miller and J. T. Offermann, PELICAN: Permutation Equiv- +ariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics (2022), +arXiv:2211.00454. +[52] T. Chen, S. Kornblith, M. Norouzi and G. E. Hinton, A Simple Framework for Contrastive +Learning of Visual Representations, +Proceedings of the 37th International Conference on +Machine Learning, PMLR 119, 1597 (2020), https://proceedings.mlr.press/v119/chen20j. +html, arXiv:2002.05709. +[53] B. +M. +Dillon, +G. +Kasieczka, +H. +Olischlager, +T. +Plehn, +P. +Sorrenson +and +L. +Vo- +gel, +Symmetries, safety, and self-supervision, +SciPost Phys. 12(6), 188 (2022), +doi:10.21468/SciPostPhys.12.6.188, arXiv:2108.04253. +[54] B. M. Dillon, R. Mastandrea and B. Nachman, +Self-supervised anomaly detection for +new physics, +Phys. Rev. D 106(5), 056005 (2022), +doi:10.1103/PhysRevD.106.056005, +arXiv:2205.10380. +[55] R. Tombs and C. G. Lester, A method to challenge symmetries in data with self-supervised +learning, +JINST 17(08), P08024 (2022), +doi:10.1088/1748-0221/17/08/P08024, +arXiv:2111.05442. +[56] T. Cheng and A. Courville, Invariant representation driven neural classifier for anti-QCD jet +tagging, JHEP 10, 152 (2022), doi:10.1007/JHEP10(2022)152, arXiv:2201.07199. +[57] M. A. Hayat, P. Harrington, G. Stein, Z. Luki´c and M. Mustafa, Estimating Galactic Distances +From Images Using Self-supervised Representation Learning (2021), arXiv:2101.04293. +[58] G. Stein, J. Blaum, P. Harrington, T. Medan and Z. Lukic, Mining for Strong Gravitational +Lenses with Self-supervised Learning, Astrophys. J. 932(2), 107 (2022), doi:10.3847/1538- +4357/ac6d63, arXiv:2110.00023. +[59] G. Stein, P. Harrington, J. Blaum, T. Medan and Z. Lukic, Self-supervised similarity search for +large scientific datasets, In 35th Conference on Neural Information Processing Systems (2021), +arXiv:2110.13151. +[60] V. Bonjean, H. Tanimura, N. Aghanim, T. Bonnaire and M. Douspis, Self-supervised component +separation for the extragalactic submillimeter sky (2022), arXiv:2212.02847. +[61] J. Tack, S. Mo, J. Jeong and J. Shin, Csi: Novelty detection via contrastive learning on distri- +butionally shifted instances, doi:10.48550/ARXIV.2007.08176 (2020). +19 + +SciPost Physics +Submission +[62] V. Sehwag, M. Chiang and P. Mittal, Ssd: A unified framework for self-supervised outlier detec- +tion, doi:10.48550/ARXIV.2103.12051 (2021). +[63] T. +Reiss +and +Y. +Hoshen, +Mean-shifted +contrastive +loss +for +anomaly +detection, +doi:10.48550/ARXIV.2106.03844 (2021). +[64] H. Hojjati, T. K. K. Ho and N. Armanfard, Self-supervised anomaly detection: A survey and +outlook, doi:10.48550/ARXIV.2205.05173 (2022). +[65] E. Govorkova, E. Puljak, T. Aarrestad, M. Pierini, K. A. Wo´zniak and J. Ngadiuba, +LHC +physics dataset for unsupervised New Physics detection at 40 MHz, Sci. Data 9, 118 (2022), +doi:10.1038/s41597-022-01187-8, arXiv:2107.02157. +[66] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, +C. O. Rasmussen and P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys. Commun. +191, 159 (2015), doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012. +[67] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens and M. Selvaggi, +DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP +02, 057 (2014), doi:10.1007/JHEP02(2014)057, arXiv:1307.6346. +[68] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04, 063 +(2008), doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189. +[69] O. Cerri, T. Q. Nguyen, M. Pierini, M. Spiropulu and J.-R. Vlimant, +Variational Au- +toencoders for New Physics Mining at the Large Hadron Collider, +JHEP 05, 036 (2019), +doi:10.1007/JHEP05(2019)036, arXiv:1811.10276. +20 + diff --git a/-dE3T4oBgHgl3EQfrgpm/content/tmp_files/load_file.txt b/-dE3T4oBgHgl3EQfrgpm/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..9f0bc9e53dbf7ff34b5f4cfcbdad7d2e30478810 --- /dev/null +++ b/-dE3T4oBgHgl3EQfrgpm/content/tmp_files/load_file.txt @@ -0,0 +1,1057 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf,len=1056 +page_content='SciPost Physics Submission Anomalies, Representations, and Self-Supervision Barry M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, Tilman Plehn Institut für Theoretische Physik, Universität Heidelberg, Germany January 13, 2023 Abstract We develop a self-supervised method for density-based anomaly detection using contrastive learning, and test it using event-level anomaly data from CMS ADC2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The Anomaly- CLR technique is data-driven and uses augmentations of the background data to mimic non-Standard-Model events in a model-agnostic way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' It uses a permutation-invariant Trans- former Encoder architecture to map the objects measured in a collider event to the represen- tation space, where the data augmentations define a representation space which is sensitive to potential anomalous features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' An AutoEncoder trained on background representations then computes anomaly scores for a variety of signals in the representation space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' With AnomalyCLR we find significant improvements on performance metrics for all signals when compared to the raw data baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Contents 1 Introduction 2 2 Dataset 4 3 AnomalyCLR 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1 Contrastive learning 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2 CLR for anomaly detection 6 4 Application to event-level anomalies 8 5 Anomaly scores 10 6 Results 11 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1 Comparison of methods 11 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2 The effect of anomaly-augmentations 12 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3 The effect of representation dimension 13 7 Summary & conclusions 14 References 15 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='04660v1 [hep-ph] 11 Jan 2023 SciPost Physics Submission 1 Introduction Model-agnostic new physics searches are one of the most interesting analysis prospects for the LHC and other colliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Over the past decade the LHC has searched for new physics based on model-specific hypothesis testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Despite these efforts there has been no strong evidence of new physics found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' It is possible that new physics does exist at the scales probed by the LHC, and has not been uncovered due to the particular signal not being covered by previous analysis hypotheses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The ATLAS and CMS collaborations have both implemented model-agnostic new physics searches to deal with this [1, 2], however these methods suffer some drawbacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For example scanning high-dimensional parameter spaces can lead to large look-elsewhere effects, or methods can lack the ability to make full use of the high-granularity low-level information collected in the experi- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Recent progress in machine learning based high-energy physics tools are making significant advances in solving many problems of such classical methods [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The main machine learning tools to date for data-driven model-agnostic searches are based either on density-related scores, or on classification scores using a background-dominated control sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The latter, typically known as CWoLa methods (Classification Without Labels) [4–6] have been shown to be very successful in applications such as bump hunting [7–14] and semi-visible jet searches [15], providing both anomaly scores and background estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' However they run into difficulty when the dimension of the input space or number of observables becomes large, and so the question of whether or not they can be used on low level data is still uncertain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' CWoLa tools have already been adopted by the ATLAS collaboration [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Density-based methods use machine learning to estimate the density in the phase space, and then identify anomalies as those laying in the low density regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' These tools typically work on high-dimensional inputs and so can be used on low-level data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The first density-based meth- ods were the AutoEncoder studies [17, 18], where the network is optimised to compress and reconstruct the kinematics of a jet or event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' While this is not strictly density estimation, the optimisation is highly aligned with learning a density, since regions of the phase space which are most populated are those which should be reconstructed the best and thus have the low- est anomaly score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' There has been significant progress with the AutoEncoder tools and other density-based anomaly detection methods in recent years [19–33], with studies covering inter- pretability of AutoEncoders [34, 35], topic modelling [36, 37], null hypothesis tests for anomaly detection [38], ABCD methods [39], the Normalised AutoEncoder (NAE) [40], and normalising flow techniques [41–44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For a comprehensive summary of many different anomaly detection methods we refer the reader to the community challenge papers in Refs [45,46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' One issue with the density-based approaches [44,47] is that the score is not invariant under simple transformations in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This means that a simple re-mapping of the momenta or coordinates fundamentally changes what the anomaly score is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This poses the question of how to choose a representation of the data for use in density-based anomaly detection tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' It is also worth noting that despite the great progress that more sophisticated neural network archi- tectures and the implementation of symmetries in networks has brought to supervised classifi- cation [48–51], they have not yet led to the same progress in anomaly detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In this work we develop a new approach to density-based anomaly detection using self-supervision, which de- fines the representation of the data in a model-agnostic way using the power of highly expressive networks such as transformers or graph networks to boost anomaly detection performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Supervised machine learning methods use the idea of a truth-label to optimise the neural net- 2 SciPost Physics Submission works, usually to classify between data with different truth labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Unsupervised methods are those which do not require truth labels, instead optimising a network using a reconstruction loss or a negative log likelihood, for example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Self-supervision on the other hand uses ‘pseudo-labels’, labels generated from the data without knowledge of a truth label, to optimise the networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In contrastive learning [52], these labels correspond to a link between an original event and an aug- mented event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We define the augmentation as some physical modification of the event kinematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Contrastive learning uses the pseudo-labels to devise an auxiliary task for the network optimisation through the contrastive loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Now the network learns how to process high-dimensional correlations in the data, and thus the representations learned by these networks can be very useful for downstream tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We introduced the self-supervised JetCLR method in [53] and demonstrated its ability to construct highly expressive representations for classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In [54] this same technique was used to construct representations for CWoLa-based anomaly detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In addition to these works, other self-supervised / representation learning techniques have been applied in particle physics [55,56] and in other scientific disciplines such as astrophysics [57–60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In [53,54] the augmentations corresponded to transformations of the event to which the underlying physics should be invariant to rotations or translations, but also soft-collinear parton splittings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We introduce AnomalyCLR, a new method based on the idea of ‘anomaly-augmentations’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' These anomaly-augmentations are modifications of the original event to which the underlying physics is not invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In fact these augmentations are chosen to mimic very general features that anomalous events might have, such as high multiplicity, large MET, or large pT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Despite choos- ing explicitly the augmentations, the approach does not target any specific new physics model, and we will see from the results that the approach is model agnostic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' AnomalyCLR projects the kine- matics of each event to a representation vector, which we then use to train an AutoEncoder and define the anomaly scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' It enriches the representation space using known invariances in the data, such as invariance to azimuthal rotations, and known generic features of anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Self- supervised anomaly detection methods have gained prominence in the machine learning literature recently [61–64], and while the approaches are necessarily domain specific, we have drawn on these methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The anomaly score can be computed in different ways, and we opt for the Au- toEncoder approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' So the workflow is as follows;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' train AnomalyCLR to obtain a representation vector for each event in the dataset, then train an AutoEncoder on these representations to obtain the anomaly scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This is in contrast to the typical approach of training the AutoEncoder directly on the raw kinematical data from the events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We test AnomalyCLR on the CMS Anomaly Detection Challenge dataset [65], and, compared to the raw data baseline, we find significant improvements on all signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In Section 2 we will discuss the dataset and the different backgrounds and signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In Section 3 we will then introduce the AnomalyCLR idea, first discussing contrastive learning and then how this can be modified for use in anomaly detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The specifics of the application to event-level collider data such as the CMS ADC dataset is given in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The discussion on how we estimate anomaly scores is given in Section 5, where the architecture and optimisation of the AutoEncoder we use is discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The results are presented in Section 6, along with an analysis of how different anomaly-augmentations and different representation dimensions affect the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We conclude in Section 7 with a discussion of the results and future directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 3 SciPost Physics Submission 2 Dataset To test the performance of the AnomalyCLR representations compared to raw data in an anomaly detection task we use the CMS anomaly detection challenge dataset [65], which contains simu- lated proton-proton collisions with a 13 TeV centre-of-mass energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The events are selected to have at least one e or µ with transverse momenta pT >23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The pseudo-rapidity (|η|) is required to be <3 and <2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1 respectively for e and µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Further, the events are allowed to have up to 10 jets with pT > 15 GeV and |η| < 4, up to 4 muons pT > 3 GeV and |η| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1, up to 4 electrons pT > 3 GeV and |η|<3 and missing transverse energy (MET).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The dataset is generated with Pythia 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='240 generator [66] with a fast detector simulation using Delphes 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2 [67] with the Phase-II CMS detector card.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The jets are reconstructed using anti-kt algorithm [68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In the provided dataset each event is formatted such that the first entry is assigned for MET, next eight are assigned for electrons and muons respectively and, the final 10 entries are for jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For each particle object the data set contains information of pT, η, φ and particle id such that the shape of an event in the data frame is [N,19,4] where N is the total number of events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Note that if an event has less than the maximum allowed of a type of object, the remaining entries in that case are zero padded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The background dataset consists of a number of Standard Model processes and to determine the performance of the anomaly detection algorithm four light BSM scenarios are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Backgrounds For the SM background a collection of events are generated from production channels with at least a single lepton in the final state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The fraction of events to be included in the SM for each process is fixed by its trigger efficiency and the LO cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Thus, four leading processes are considered: W and Z inclusive productions, QCD multijet contributions, and t¯t production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The proportions between the four processes are given in [69] as: pp → W ± + jets → ℓ±νℓ + jets (59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2%) pp → Z + jets → ℓ+ℓ− + jets (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='7%) pp → t¯t + jets (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3%) pp → jets (33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='8%) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' (1) with ℓ = e,µ,τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The QCD multijet production is by far the largest production process at the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Although leptons in QCD multijet backgrounds are rarely present and mainly originate from decays of unstable hadrons, the sheer volume of QCD multijet production makes it one of the largest processes in the data stream for the challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' New physics signals The signal datasets provided by the challenge consist of events simulated from the following signal models: Leptoquark (LQ): A 80 GeV LQ decaying in to a b and τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Neutral scalar boson A: A 50 GeV neutral scalar boson A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The production mechanism pp → A+X → Z∗Z∗+X (with X is inclusive activity) followed by both Z∗ decaying into charged leptons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Scalar boson h0: A scalar boson 60 GeV h0 with pp → h0 + X → τ+τ− + X production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 4 SciPost Physics Submission A charged scalar h±: Charged scalar with 60 GeV mass and pp → h±+X → τν+X production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The most distinguishing high-level features of these signals when compared with the background processes are the electron, muon, and jet multiplicities and the pT and MET distributions † .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 3 AnomalyCLR In this section we describe the AnomalyCLR method ‡.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Contrastive learning of representations (CLR) [52] is a technique used to construct highly-expressive representations of data for use in downstream tasks, in our case this task is anomaly detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' It is self-supervised in that the technique does not require any ‘truth’ labels for the training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The advantage of this from the collider physics perspective is that the technique could be run directly on experimental data rather than on simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Due to the ability of deep learning methods to learn non-trivial correlations in data that is not expected to be well-modelled by simulation, this is an important aspect of CLR for anomaly detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1 Contrastive learning The basic idea is that some function f (·) (typically a neural network) is used to map from the data space D to a representation space R, with the function being optimised to solve some auxiliary task which does not require truth labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This auxiliary task is framed as an optimisation problem using ‘pseudo-labels’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In the anomaly detection scenario addressed in this work, the function that performs the mapping from D to R is optimised only on background data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Given that the collider events or objects such as jets typically consist of unordered sets of particles reconstructed by the experiment, we opt for a permutation-invariant function to perform the mapping from D to R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Specifically, we use a transformer encoder neural network, there are more details on this later in the section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The auxiliary task that our function is optimised to solve uses augmentations of the collider data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In the traditional contrastive learning approach these augmentations are used to define two types of pseudo-labels: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Positive-pair labels These labels match each data point in the sample to an augmented version of itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Negative-pair labels These labels match each data point in the sample to every other data point which is not itself or an augmented/transformed version of itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The function f (·) is then trained to map from the raw data to the representation space such that positive-pairs are close together in R and negative-pairs are far apart in R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' These two optimi- sation goals are referred to as alignment (of positive-pairs) and uniformity (of negative-pairs), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The augmentations are chosen to be modifications of the data that should leave the underlying physics unchanged, for example a symmetry in the physical system or an augmentation that could mimic a detector resolution effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' †We note that since the publication of previous papers using this dataset, a bug fix in the simulation has resulted in a new dataset, and so it is difficult to make direct comparisons between new and old results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' ‡The code will be made available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='com/bmdillon/AnomalyCLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 5 SciPost Physics Submission Each data point is described by an array of data xi with the subscript labelling the specific data point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We denote an augmentation of a data point as x′ i, with the positive-pairs and negative-pairs being defined as the sets {(xi, x′ i)} and {(xi, x j)}∪{(xi, x′ j)} for i ̸= j, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The contrastive loss function that the network is trained to minimise then is LCLR = −log es(zi,z′ i)/τ � j̸=i∈batch � es(zi,zj)/τ + es(zi,z′ j)/τ� , (2) where zi = f (xi) and z′ i = f (x′ i) are the outputs of the mapping function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The cosine similar- ity measure s(·,·) is used to compare events and measure distances between them in the new representation space, s(zi,zj) = zi · zj |zi||zj| = cosθi j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' (3) In this way, s(·,·) projects each vector zi to the surface of a unit hypersphere and computes the cosine distance between each pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' As it stands, s(·,·) is not a proper distance metric, however we could form one by taking di j = θi j/π as the distance between each event in the representation space, although we do not explore this here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The numerator of the contrastive loss in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' (2) accounts for the positive-pair and alignment, where distances between events and their augmented counter-parts enter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' While the denominator accounts for the negative-pairs and uniformity, where distances between completely different events are accounted for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The degree to which we trade off between the different tasks is determined by the temperature hyper-parameter τ in the loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2 CLR for anomaly detection While contrastive learning has been shown to be very useful in generating representations for downstream classification tasks [53], there is a potential issue when using this approach for down- stream anomaly detection tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For the classification task, for example in [53], the function f (·) is optimised on data from both the background and signal classes, despite not using their truth- labels explicitly in the optimisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Through the contrastive learning this allows the function to encode non-trivial features of both the background and signal data in the representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' When using contrastive learning for a downstream anomaly detection task however, the function f (·) is optimised on just the background data (or at least a significantly background-dominated dataset).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This means that the representation learned by the function f (·) will focus solely on features rele- vant for the background data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This could mean that anomalous data is not out-of-distribution and so may not lead to competitive performance in downstream anomaly detection tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This will become evident when we look at the results in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' To remedy this we introduce Anoma- lyCLR, a modified approach to contrastive learning for anomaly detection in particle physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' At the core of this approach is the introduction of ‘anomaly-augmentations’, such that we now have two categories for augmentations: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Physical augmentations These are augmentations of the data that we would like the mapping to be invariant to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Anomaly-augmentations These are unphysical augmentations of the data that are supposed to mimic potential anoma- lies, we want the representations to be highly discriminative towards these augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 6 SciPost Physics Submission We add a third pseudo-label: 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Anomaly-pair labels These labels match each data point in the sample to an anomaly-augmented version of itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The advantage of anomaly-augmentations is that we can increase the sensitivity of the anomaly detection tools to anomalies using just the background data, potentially the data directly measured at colliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This keeps the approach in line with the original data-driven CLR idea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We can then define the anomaly-augmented contrastive loss function as LAnomCLR = −log e[s(zi,z′ i)−s(zi,z∗ i )]/τ � j̸=i∈batch � es(zi,zj)/τ + es(zi,z′ j)/τ� , (4) where we denote the representations of the anomaly-augmented events by z∗, and so the anomaly- pair is defined as {(xi, x∗ i )}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Note that the anomaly-augmentations only enter in the numerator of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' (4), and without these the loss function becomes the regular contrastive loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Introducing the anomaly-pairs we expose the network to data features that are outside of the background distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The CLR portion of the loss function still optimises for alignment and uniformity, however this uniformity is now disrupted by the anomaly-pair term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' As a result the background data will not be uniformly distributed in the representation space, with some regions encoding features of the anomaly-augmented data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This means that anomalous data with features similar to those generated by the anomaly-augmentations should be out-of-distribution in this representation space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We did some minor testing on alternative forms of this loss function, for example including the anomaly-augmentations in the denominator of the loss function with the negative-pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' How- ever since the anomaly-augmentations compute distances between a data point and its augmented counter-part, and not between other data points (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' i ̸= j), it is more intuitive to include this term in the numerator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The denominator in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' (4) is used to encode features in the represen- tation space that discriminate between the different data points used during training, which for anomaly detection is the background data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This is not necessary for anomaly detection, and the anomaly-pairs should provide the representations with all the discriminative power they need, so we experimented with removing the denominator in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' (4) altogether, and found that this is sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In this case the loss function is written as L+ AnomCLR = −log e[s(zi,z′ i)−s(zi,z∗ i )]/τ = s(zi,z∗ i ) − s(zi,z′ i) τ , (5) where the plus sign in L+ AnomCLR indicates that only positive-pairs are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This results in a much less computationally expensive loss function, since we no longer need to compute pair-wise cor- relations between each entry in a batch the complexity scales as Nbatch rather than N 2 batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We also remove the dependence on τ in L+ AnomCLR, since there is no longer a trade-off between positive- and negative-pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We could of course introduce a term to control the trade-off between the physical and anomaly-augmentation terms, but we do not explore that here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In our results we will compare the performance of both loss functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 7 SciPost Physics Submission 4 Application to event-level anomalies The application of AnomalyCLR to different physical scenarios requires an understanding of the data and the physics in order to construct the physical and anomaly-augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For the event- level dataset discussed in Section 2 we consider three physical augmentations the data: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Azimuthal rotations The whole final state is rotated by an angle φ randomly sampled from [0,2π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' η − φ smearing The (η,φ) coordinate of every object in the event is resampled according from a Normal distribution centred on the original coordinate and with a variance inversely proportional to the pT, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' η′ ∼ N (η,σ(pT)) and φ′ ∼ N (φ,σ(pT)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Energy smearing The pT of every object in the event is re-sampled according to p′ T ∼ N (pT, f (pT)) with f (pT) determining the strength of the smearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' These augmentations reflect both the symmetries in the data and the experimental resolution of the detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Detectors are imperfect, especially in measuring jet energies, and we encode this in the representations of the data through the energy-smearing augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Here we re-sample the jet pT’s as p′ T ∼ N (pT, f (pT)), where f (pT) = � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='052p2 T + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='502pT is the energy smearing applied by Delphes (the pT’s are normalised by 1GeV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' If not explicitly mentioned, we always assume units of GeV for energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For the anomaly-augmentation we consider some very simple scenarios: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Multiplicity shift, x′ i = m(xi) For each event m(·) adds a random number of electrons, muons, and jets to the event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The number is chosen randomly within the limits (ne,4− ne), (nµ,4− nµ), and (nj,10− nj) for electrons, muons, and jet, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The azimuthal angle and pseudo-rapidities are also chosen randomly within the limits allowed, and the pT for each object is chosen as a random fraction of the maximum pT in the event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Once the objects have been added, the MET of the event is recalculated and updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Multiplicity shift, keeping MET and the total pT constant, , x′ i = m(xi) This is similar to the above augmentation, but now m(·) generates the extra objects by splitting the existing objects and smearing the η−φ coordinates using the function used in the physical augmentations above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' pT and MET shifts, x′ i = spT (xi) Here spT (·) shifts the pT’s in the event by the same random factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We randomly choose whether we shift just the MET, just the reconstructed object pT’s, or both.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' And we ensure that the the trigger selection is not spoiled by these shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' With the physical augmentations we apply all of them simultaneously, whereas for the anomaly- augmentations we apply just one augmentation to each event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The augmentation that is applied is selected randomly and uniformly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We do not apply both a physical augmentation and an anomaly- augmentation to the events in s(zi,z∗ i ), since this would conflict with the optimisation goal of the s(zi,z′ i) term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' It would also be possible to have an anomaly-augmentation that removes objects from the event, however this effect is already captured by the augmentation that adds objects to the event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Many of the events in the background have the minimal multiplicity allowed by the applied cuts, so the effect of an anomaly-pair with a low multiplicity background event and the same event augmented to have more objects is the exact same as the effect of an anomaly-pair 8 SciPost Physics Submission with a high-multiplicity background event augmented to have less objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This is because of the symmetry in the distance function s(zi,z∗ i ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' So the anomaly-augmentations here are as general as can be, and do not target any specific new physics scenario, therefore the technique should be model-agnostic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Architecture and training The collider event data being used has a well-defined structure: MET: one entry with (pT,η,φ) Electrons: four entries, each with (pT,η,φ) Muons: four entries, each with (pT,η,φ) Jets: ten entries, each with (pT,η,φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This amounts to a 19 × 3 array, with the electrons, muons, and jets being ordered by pT and hav- ing zero-padded entries where there is less than the maximum allowed number of reconstructed objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The multiplicity is typically much less than the maximum allowed, so the data for a single collider event can have many zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The transformer allows us to avoid this by having a permutation-invariant and variable length input format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Because the data is now processed in a permutation-invariant way, the information on which entry corresponds to which object (MET, electron, muon, or jet) is lost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We reinstate this information by adding a one-hot encoded ID vec- tor to (pT,η,φ), with a 1 indicating the correct ID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This means that each reconstructed object is now represented by a 7D vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Before passing the kinematic data to the transformer we do some very minor preprocessing to make sure that the numbers the networks see are O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Specifically, we divide all MET and pT values by the average pT of all objects (electrons, muons, jets) in the background dataset, we do not shift the values to be centred on zero because the distribution is highly peaked at zero and we want the preprocessed data to have the same sparsity as the original data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We then divide all η and φ values by 4 and π, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' When training the AutoEncoder networks discussed in the next section we use the same preprocessing of the data, this ensures that any difference in the results can be attributed to AnomalyCLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The transformer starts by projecting each object to a larger vector whose dimension is deter- mined by the embedding dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The embeddings for each object are then passed through the transformer, with a feed-forward network between each transformer layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The output from the transformer has a dimension of (n× model dimension) with n being the number of objects in the event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The last steps are to sum over the n vectors in this output, which enforces the permutation- invariance, and to pass this vector through a fully-connected head network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The output of this head network is what is passed to the loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For more details on the architecture we re- fer the reader to [53], here we only list the hyper-parameters used in training the network in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The representation used in the anomaly detection task is taken from the output of the transformer network, before being passed through the head network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' It is well documented in the machine learning literature that these intermediate representations from self-supervised networks generally contain more discriminating features, for example in [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 9 SciPost Physics Submission hyper-parameter model (embedding) dimension 160 feed-forward hidden dimension 160 output dimension 160 # self-attention heads 4 # transformer layers (N) 4 # layers 2 dropout rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1 hyper-parameter optimiser Adam(β1=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='9, β2=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='999) learning rate 5 × 10−5 batch size 128 # epochs 500 Table 1: Default setup of the transformer-encoder network and the AnomalyCLR train- ing, unless noted explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 5 Anomaly scores The basic flow in an AutoEncoder involves two steps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' (i) mapping high-dimensional input data to a compressed latent space using a neural network called an encoder, and (ii) mapping the compressed latent space representation to a reconstructed version of the input data using a neural network called a decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We refer to the encoder network as e(·) and the decoder network as d(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' With input data of dimension D, and a bottleneck of dimension B, the encoder maps e : �D → �B, while the decoder maps d : �B → �D, with the AutoEncoder defined as h = e ◦ d : �D → �D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Acting on a single input ⃗x, the AutoEncoder returns ⃗x′ = h(⃗x), and is optimised to minimise the mean-squared-error (MSE) loss function between the input and reconstructed input, L(⃗x,θ) = � ⃗x − ⃗x′�2 , (6) where θ represents the learnable parameters of the AutoEncoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In the limit where the AutoEn- coder is able to reconstruct inputs perfectly, which is guaranteed to be possible when D = B, the function hθ(·) is simply the identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' But with B < D the AutoEncoder may not be able to perfectly reconstruct all features in the data, and therefore it should learn to reconstruct only the most common or prominent features in the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This means that events containing rare or anomalous features should have a larger ‘reconstruction loss’, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' L(⃗x,θ), and this can then be used as the anomaly score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The encoder and decoder networks have 5 feed forward layers each with 256, 128, 64, 32, and 16 neurons, connected by a 5-dimensional bottleneck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The activation function between layers is a LeakyReLU with default slope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The decoder is a mirrored version of the encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We don’t apply regularization techniques during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The training is performed using Adam optimiser with learning rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='001 for 100 epochs, the batch size is 4096, and the number of SM events used is 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Note that we have not optimised the AutoEncoder architecture, simply choosing the same architecture used in [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Instead we have only ensured that they are trained to convergence and that the training is stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The AutoEncoder is trained on both the representations obtained from contrastive learning and the raw data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In the case of the raw data we apply the same preprocessing to the data as is applied to the data in the contrastive learning network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In this way we ensure that any differences in the anomaly detection performance can be attributed to the contrastive learning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 10 SciPost Physics Submission 6 Results In this section we present some results using the different techniques discussed in the preceding sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The results here are three-fold;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' we first compare the different methods based on anomaly detection performance, we then study the effects of the different anomaly-augmentations on the AnomalyCLR performance, and lastly we look at the effect of the representation dimension on the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1 Comparison of methods We compare the methods using the ROC (Receiver Operating Characteristic) curves, the SI (Signif- icance Improvement) curves, and the AUC (Area Under the ROC Curve).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The baseline we compare to is the AutoEncoder trained on raw kinematic data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We present results using the CLR method without anomaly-augmentations (LCLR), and the CLR method with anomaly-augmentations (both LAnomCLR and L+ AnomCLR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' So we have 4 methods in total to compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For all results on the raw data we have trained 5 AutoEncoder networks and taken the central value and the error estimation from the mean and standard deviation of the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For the CLR methods we also aggregate over 5 different runs, where in each run we train a different transformer network and a different Au- toEncoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The CLR representations have a dimension of 160 and where anomaly-augmentations are used we have used them all as outlined in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 1 we present AnomalyCLR results using L+ AnomCLR and see that it leads to significant improvements over the raw data representations, not only in the AUC but also at all signal efficiencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In the Significance Improvement (SI) curves we also see large improvements, with the SI being between ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='5−4 for A → 4l and h+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We can see from Table 2 that the L+ AnomCLR loss function is clearly advantageous over LAnomCLR, beating it on all signals with the exception of A → 4l, where LAnomCLR achieves better performance at εs =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' A point of interest here is that the AutoEncoder on raw data outperforms the AutoEncoder on the CLR representations in most cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This is likely due to the fact that traditional CLR optimises for uniformity, and since it is trained on background only, the mapping is not optimised to sepa- rate SM-like background events from any event which may look different to that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The benefit of Signal AE-Raw CLR AnomCLR AnomCLR+ AUC A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='885(2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='880(7) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='907(6) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='909(3) h0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='755(2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='740(5) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='765(4) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='776(2) h+ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='900(4) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='87(1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='913(2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='930(1) LQ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='856(2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='841(9) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='854(3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='880(1) ε−1 b (εs =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3) A 47(2) 80(22) 156(34) 139(20) h0 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='9(7) 11(1) 18(1) 23(1) h+ 60(10) 28(6) 98(9) 171(7) LQ 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='4(6) 18(2) 28(3) 39(1) SI(εs =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3) A 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='05(5) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='7(4) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='7(4) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='5(2) h0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='16(3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='99(4) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='26(4) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='44(3) h+ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3(2) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='6(2) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0(1) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='9(1) LQ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='48(2) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3(1) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='6(1) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='88(2) Table 2: Comparison of the different CLR loss functions, with and without anomaly- augmentations, and the AE trained on raw data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 11 SciPost Physics Submission 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 ϵs 100 101 102 103 ϵ−1 b AE-Raw A, AUC=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='885(2) h0, AUC=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='755(2) h+, AUC=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='900(4) LQ, AUC=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='856(2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 ϵs 100 101 102 103 ϵ−1 b AnomCLR+ A, AUC:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='909(3) h0, AUC:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='776(2) h+, AUC:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='930(1) LQ, AUC:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='880(1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 ϵs 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 SI AE-Raw A h0 h+ LQ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 ϵs 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='0 SI AnomCLR+ A h0 h+ LQ Figure 1: Comparison between the AE on raw data and the AE on the CLR representa- tions trained with the L+ AnomCLR loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' anomaly-augmentations here is strikingly clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2 The effect of anomaly-augmentations We now want to study how the addition of the individual anomaly-augmentations affects the anomaly detection performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For this we use just L+ AnomCLR , however we expect the results with LAnomCLR to be similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We use a representation dimension of 160 and obtain the error estimate from just 2 runs due to the computational cost of the scan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We can see from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 2 that the affect of the augmentations together results in the best over- all performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' One thing we noticed is that it can be difficult to determine from the affect of individual augmentations, or subgroups of them, what the performance of all of them together will be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For example, in most cases if we take just the m(x) augmentation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' the multiplicity augmentation that simply adds reconstructed objects, we see that it alone decreases performance below baseline for three out of four signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' However when used in combination with the others it increases the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This is most clear for the leptoquark signal, where all augmenta- 12 SciPost Physics Submission 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='900 A AUC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='750 h0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='950 h+ m(x) m(x) spT(x) m(x)/m(x) all anomaly augmentations 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='750 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='850 LQ Figure 2: Results of a scan on the anomaly-augmentations used with the L+ AnomCLR loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The augmentations are defined in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The dashed lines here correspond to the AutoEncoder on raw data baseline performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' tions taken individually result in a performance which is at or below baseline, but when taken together we get a significant boost in the AUC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We also see the interplay between the m(x) and m(x) augmentations, since individually these augmentations do not seem to help much, but when they are both applied in the same optimisation we see a reduced error and in most cases better performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' When drawing conclusions here we should keep in mind that only two runs for each combination have been used to compute the mean and error estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3 The effect of representation dimension With CLR we can project our raw data from D to a representation of any dimension we like.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We would expect that the larger the representation dimension the more information that can be encoded in the space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' However we also expect that this would plateau or even peak at some point, and this what we want to investigate here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' For this we use just L+ AnomCLR , however we expect the results with LAnomCLR to be similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Here we also obtain the error estimate from just 2 runs due to the computational cost of the scan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 3 we see that increasing the representation dimension certainly improves the perfor- mance of the anomaly detection, at least up until a certain point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The A, h0, and LQ signals all appear to achieve peak performance somewhere between dimensions 120 and 200, while the h+ signals performance increases right up until 400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' There is no fundamental limitation related to the representation size which we would expect to cause a degradation at larger dimensions, however there are two points we should keep in mind here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The first is simple, these means and variances are calculated with only two runs, so more runs might present a clearer picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The 13 SciPost Physics Submission 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='875 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='925 A AUC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='740 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='780 h0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='940 h+ 4 8 12 20 40 80 120 160 200 300 400 500 representation dimension 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='840 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='860 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='880 LQ Figure 3: Results of a scan on the representation dimension used with the L+ AnomCLR loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The dashed lines here correspond to the AutoEncoder on raw data baseline performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' second point is that we have not optimised the AutoEncoder architecture or hyper-parameters as the representation size increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' While it is beyond the scope of this paper, it is possible that an independent hyper-parameter optimisation for each representation dimension would improve these results, particularly at larger dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' What these results show is that there is a clear tendancy for the results to improve as we increase from dimensions of ∼ 4 to ∼ 100, as we would naturally expect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 7 Summary & conclusions In this paper we have introduced AnomalyCLR§, a new method for density-based anomaly detec- tion in high-energy physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' It makes use of anomalous augmentations of collider data to build a representation space from which to construct anomaly scores with a range of methods, for exam- ple using AutoEncoders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' It is a self-supervised method, based on the contrastive learning idea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We tested this method on the CMS ADC dataset, and compared to the raw data baselines we find large improvements on all signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' At a fixed signal efficiency of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3 and a fixed representation dimen- sion of 160 we find significance improvements for the different signals in the range of 14−70%, and a decreased relative error on the significance improvement in each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Allowing for varying signal efficiencies and representation dimensions would improve these performance markers even §The AnomalyCLR code, along with the event-level anomaly detection application, will be made available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='com/bmdillon/AnomalyCLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 14 SciPost Physics Submission further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Density-based anomaly detection, using AutoEncoders or normalising flows, suffer from the ambiguity that a change in the ‘coordinate system’ or representation of the data results in a fun- damental change in how the anomaly score is defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This makes it difficult to choose a suitable representation by hand, for example a simple re-mapping of pT’s along with some re-scaling of numerical inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' These simple choices are difficult to motivate from a physics perspective and can drastically change the results of the anomaly detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This change can be for better or for worse, and typically depends on the signal models used to test the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' AnomalyCLR addresses this by constructing a representation of the data using self-supervised contrastive learning with the addition of anomaly-augmented data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The anomaly-augmented data is constructed from the background data through feature augmentation, designed to emulate a generic anomaly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We have discussed in detail how we do this for the event-level anomalies in the CMS ADC dataset, however this would of course be different in different physics cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We proposed a new loss function which we use to train a deep transformer-based neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This network projects the events to a new representation, in which the anomaly-augmented events are far from their original counterparts, while being close to events which are similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' The transformer network then learns a highly discriminative representation of the events which is sensitive to the presence of potential anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We have seen that the choice of these augmentations is quite model agnostic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This model-agnostic nature of the approach can be seen in how the results improve across all four signals considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' We have shown the effectiveness of self-supervision and the idea of anomaly-augmentations in significantly enhancing anomaly detection performance in a model-agnostic way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' This opens the door to further studies, such as improving the density-estimation portion of the method with a more sophisticated hyper-parameter optimisation of the AutoEncoders, using normalising flows, or even using the Normalised AutoEncoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' More generally, the use of anomaly-augmented data could be explored further in other anomaly detection approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Acknowledgements We would like to thank Jernej Kamenik and Ben Nachman for their helpful comments on the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' BMD acknowledges funding from the Alexander von Humboldt Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' LF, TM, and TP are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant 396021762 – TRR 257: Particle Physics Phenomenology after the Higgs Discovery and Germany’s Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRUCTURES Ex- cellence Cluster).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' References [1] A general search for new phenomena with the ATLAS detector in pp collisions at �s = 8 TeV, ATLAS-CONF-2014-006 (ATLAS-CONF-2014-006) (2014), https://cds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='cern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='ch/record/ 1666536.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Collaboration, MUSiC, a Model Unspecific Search for New Physics, in pp Collisions at �s = 8 TeV (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 15 SciPost Physics Submission [3] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Plehn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Butter, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Dillon and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Krause, Modern Machine Learning for LHC Physicists (2022), arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='01421.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [4] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Metodiev, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nachman and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Thaler, Classification without labels: Learning from mixed samples in high energy physics, JHEP 10, 174 (2017), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP10(2017)174, arXiv:1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='02949.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [5] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nachman and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Shih, Anomaly Detection with Density Estimation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' D 101, 075042 (2020), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='075042, arXiv:2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='04990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Hallin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Isaacson, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kasieczka, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Krause, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nachman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Quadfasel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Schlaffer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Shih and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Sommerhalder, Classifying anomalies through outer density estimation, Phys- ical Review D 106(5) (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/physrevd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='055006, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 1103%2Fphysrevd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='055006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Collins, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Howe and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nachman, Anomaly Detection for Resonant New Physics with Machine Learning, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 121(24), 241803 (2018), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='241803, arXiv:1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='02664.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Collins, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Howe and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nachman, Extending the search for new resonances with ma- chine learning, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' D99(1), 014038 (2019), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='014038, arXiv:1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='02634.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Andreassen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nachman and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Shih, Simulation Assisted Likelihood-free Anomaly Detection, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' D 101(9), 095004 (2020), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='095004, arXiv:2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='05001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [10] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Amram and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Suarez, Tag N’ Train: a technique to train improved classifiers on unlabeled data, JHEP 01, 153 (2021), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP01(2021)153, arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='12376.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Raine, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Klein, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Sengupta and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Golling, CURTAINs for your Sliding Window: Con- structing Unobserved Regions by Transforming Adjacent Intervals (2022), arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='09470.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Hallin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kasieczka, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Quadfasel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Shih and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Sommerhalder, Resonant anomaly detection without background sculpting (2022), arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='14924.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nachman and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Sala, Resonant Anomaly Detection with Multiple Reference Datasets (2022), arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='10579.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [14] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Golling, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Klein, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mastandrea and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nachman, FETA: Flow-Enhanced Transportation for Anomaly Detection (2022), arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='11285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Finke, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Krämer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Lipp and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mück, Boosting mono-jet searches with model-agnostic ma- chine learning, JHEP 08, 015 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP08(2022)015, arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='11889.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [16] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Aad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=', Dijet resonance search with weak supervision using �s = 13 TeV pp collisions in the ATLAS detector, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 125(13), 131801 (2020), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='131801, arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='02983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [17] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Heimel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kasieczka, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Plehn and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Thompson, QCD or What?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=', SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 6, 030 (2019), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='21468/SciPostPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='030, arXiv:1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='08979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 16 SciPost Physics Submission [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Farina, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nakai and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Shih, Searching for New Physics with Deep Autoencoders, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' D 101, 075021 (2020), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='075021, arXiv:1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='08992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Blance, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Spannowsky and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Waite, Adversarially-trained autoencoders for robust un- supervised new physics searches, JHEP 10, 047 (2019), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP10(2019)047, arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='10384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [20] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Roy and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Vijay, A robust anomaly finder based on autoencoder (2019), arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='02032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [21] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Cheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Arguin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Leissner-Martin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Pilette and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Golling, Variational Autoencoders for Anomalous Jet Tagging (2020), arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='01850.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Pol, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Berger, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Cerminara, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Germain and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Pierini, Anomaly Detection With Condi- tional Variational Autoencoders, In Eighteenth International Conference on Machine Learning and Applications (2020), arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='05531.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [23] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Atkinson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Bhardwaj, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Englert, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ngairangbam and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Spannowsky, Anomaly detection with convolutional Graph Neural Networks, JHEP 08, 080 (2021), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP08(2021)080, arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='07988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Tsan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kansal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Aportela, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Diaz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Duarte, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Krishna, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mokhtar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Vlimant and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Pierini, Particle Graph Autoencoders and Differentiable, Learned Energy Mover’s Distance, In 35th Conference on Neural Information Processing Systems (2021), arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='12849.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [25] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ngairangbam, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Spannowsky and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Takeuchi, Anomaly detection in high- energy physics using a quantum autoencoder, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' D 105(9), 095004 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='095004, arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='04958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [26] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ostdiek, Deep Set Auto Encoders for Anomaly Detection in Particle Physics (2021), arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='01695.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Barron, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Curtin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kasieczka, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Plehn and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Spourdalakis, Unsupervised Hadronic SUEP at the LHC, JHEP 12, 129 (2021), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP12(2021)129, arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='12379.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kahn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Gonski, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ochoa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Williams and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Brooijmans, Anomalous jet identification via sequence modeling, JINST 16(08), P08012 (2021), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1088/1748-0221/16/08/P08012, arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='09274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [29] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Fraser, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Homiller, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mishra, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ostdiek and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Schwartz, Chal- lenges for unsupervised anomaly detection in particle physics, JHEP 03, 066 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP03(2022)066, arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='06948.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [30] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Canelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' de Cosa, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Pottier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Niedziela, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Pedro and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Pierini, Autoencoders for semivisible jet detection, JHEP 02, 074 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP02(2022)074, arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='02864.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [31] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Hao, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kansal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Duarte and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Chernyavskaya, Lorentz Group Equivariant Autoencoders (2022), arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='07347.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [32] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Atkinson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Bhardwaj, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Englert, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Konar, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ngairangbam and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Spannowsky, IRC- Safe Graph Autoencoder for Unsupervised Anomaly Detection, Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Artif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 5, 943135 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3389/frai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='943135, arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='12231.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 17 SciPost Physics Submission [33] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Bradshaw, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Chang and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ostdiek, Creating simple, interpretable anomaly de- tectors for new physics in jet substructure, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' D 106(3), 035014 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='035014, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='01343.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [34] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Bortolato, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Dillon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kamenik and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Smolkoviˇc, Bump Hunting in Latent Space (2021), arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='06595.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [35] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Dillon, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Plehn, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Sauer and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Sorrenson, Better Latent Spaces for Better Autoencoders, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 11, 061 (2021), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='21468/SciPostPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='061, arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='08291.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [36] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Dillon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Faroughy and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kamenik, Uncovering latent jet substructure, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' D 100, 056002 (2019), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='056002, arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='04200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [37] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Dillon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Faroughy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kamenik and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Szewc, Learning the latent structure of collider events, JHEP 10, 206 (2020), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP10(2020)206, arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='12319.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [38] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kamenik and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Szewc, Null Hypothesis Test for Anomaly Detection (2022), arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='02226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [39] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mikuni, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nachman and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Shih, Online-compatible unsupervised nonresonant anomaly detection, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' D 105(5), 055006 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='055006, arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='06417.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [40] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Dillon, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Favaro, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Plehn, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Sorrenson and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Krämer, A Normalized Autoencoder for LHC Triggers (2022), arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='14225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [41] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Park, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rankin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Udrescu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Yunus and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Harris, Quasi Anomalous Knowledge: Searching for new physics with embedded knowledge (2020), arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='03550.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [42] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Jawahar, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Aarrestad, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Chernyavskaya, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Pierini, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Wozniak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ngadiuba, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Duarte and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Tsan, Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows, Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Big Data 5, 803685 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3389/fdata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='803685, arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='08508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [43] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Caron, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Hendriks and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Verheyen, Rare and Different: Anomaly Scores from a combi- nation of likelihood and out-of-distribution models to detect new physics at the LHC, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 12(2), 077 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='21468/SciPostPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='077, arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='10164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [44] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Buss, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Dillon, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Finke, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Krämer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Morandini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mück, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Oleksiyuk and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Plehn, What’s Anomalous in LHC Jets?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' (2022), arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='00686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [45] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kasieczka et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=', The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics (2021), arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='08320.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [46] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Aarrestad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=', The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 12(1), 043 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='21468/SciPostPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='043, arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='14027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [47] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kasieczka, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mastandrea, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mikuni, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nachman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Pettee and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Shih, Anomaly Detec- tion under Coordinate Transformations (2022), arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='06225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 18 SciPost Physics Submission [48] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kasieczka, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Plehn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Butter, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Cranmer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Debnath, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Dillon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Fairbairn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Faroughy, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Fedorko, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Gay, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Gouskos, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kamenik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=', The Machine Learning Land- scape of Top Taggers, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 7, 014 (2019), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='21468/SciPostPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='014, arXiv:1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='09914.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [49] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Qu and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' D 101, 056019 (2020), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='056019, arXiv:1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='08570.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [50] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Qu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Li and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Qian, Particle Transformer for Jet Tagging (2022), arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='03772.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [51] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Bogatskiy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Hoffman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Miller and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Offermann, PELICAN: Permutation Equiv- ariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics (2022), arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='00454.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [52] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kornblith, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Norouzi and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Hinton, A Simple Framework for Contrastive Learning of Visual Representations, Proceedings of the 37th International Conference on Machine Learning, PMLR 119, 1597 (2020), https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='press/v119/chen20j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' html, arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='05709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [53] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Dillon, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Kasieczka, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Olischlager, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Plehn, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Sorrenson and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Vo- gel, Symmetries, safety, and self-supervision, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 12(6), 188 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='21468/SciPostPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='188, arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='04253.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [54] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Dillon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mastandrea and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nachman, Self-supervised anomaly detection for new physics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' D 106(5), 056005 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='056005, arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='10380.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [55] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Tombs and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Lester, A method to challenge symmetries in data with self-supervised learning, JINST 17(08), P08024 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1088/1748-0221/17/08/P08024, arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='05442.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [56] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Cheng and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Courville, Invariant representation driven neural classifier for anti-QCD jet tagging, JHEP 10, 152 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP10(2022)152, arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='07199.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [57] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Hayat, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Harrington, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Stein, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Luki´c and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mustafa, Estimating Galactic Distances From Images Using Self-supervised Representation Learning (2021), arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='04293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [58] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Stein, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Blaum, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Harrington, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Medan and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Lukic, Mining for Strong Gravitational Lenses with Self-supervised Learning, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 932(2), 107 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3847/1538- 4357/ac6d63, arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='00023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [59] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Stein, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Harrington, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Blaum, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Medan and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Lukic, Self-supervised similarity search for large scientific datasets, In 35th Conference on Neural Information Processing Systems (2021), arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='13151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [60] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Bonjean, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Tanimura, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Aghanim, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Bonnaire and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Douspis, Self-supervised component separation for the extragalactic submillimeter sky (2022), arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='02847.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [61] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Tack, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Jeong and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Shin, Csi: Novelty detection via contrastive learning on distri- butionally shifted instances, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='08176 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 19 SciPost Physics Submission [62] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Sehwag, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Chiang and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mittal, Ssd: A unified framework for self-supervised outlier detec- tion, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='12051 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [63] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Reiss and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Hoshen, Mean-shifted contrastive loss for anomaly detection, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='03844 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [64] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Hojjati, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ho and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Armanfard, Self-supervised anomaly detection: A survey and outlook, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='05173 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [65] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Govorkova, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Puljak, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Aarrestad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Pierini, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Wo´zniak and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ngadiuba, LHC physics dataset for unsupervised New Physics detection at 40 MHz, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Data 9, 118 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1038/s41597-022-01187-8, arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='02157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [66] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Sjöstrand, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ask, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Christiansen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Corke, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Desai, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Ilten, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mrenna, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Prestel, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Rasmussen and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Skands, An Introduction to PYTHIA 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 191, 159 (2015), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='cpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='024, arXiv:1410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='3012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [67] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' de Favereau, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Delaere, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Demin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Giammanco, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Lemaître, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Mertens and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Selvaggi, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02, 057 (2014), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP02(2014)057, arXiv:1307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='6346.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [68] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Cacciari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Salam and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Soyez, The anti-kt jet clustering algorithm, JHEP 04, 063 (2008), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1088/1126-6708/2008/04/063, arXiv:0802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' [69] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Cerri, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Nguyen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Pierini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Spiropulu and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' Vlimant, Variational Au- toencoders for New Physics Mining at the Large Hadron Collider, JHEP 05, 036 (2019), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='1007/JHEP05(2019)036, arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content='10276.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} +page_content=' 20' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfrgpm/content/2301.04660v1.pdf'} diff --git a/.gitattributes b/.gitattributes index 896b4f1636b2444c0457e951bccbd59ba8f6b93a..f8a9ce3d26f1796e86d4f467cee09c9eeb113e5d 100644 --- a/.gitattributes +++ b/.gitattributes @@ -2528,3 +2528,52 @@ y9E3T4oBgHgl3EQfmQpK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex atFQT4oBgHgl3EQfgDa2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text FtE3T4oBgHgl3EQftQtg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text Z9FJT4oBgHgl3EQf7y3s/content/2301.11680v1.pdf filter=lfs diff=lfs merge=lfs -text +x9E4T4oBgHgl3EQfYQwo/content/2301.05047v1.pdf filter=lfs diff=lfs merge=lfs -text +8tE4T4oBgHgl3EQf3A1I/content/2301.05302v1.pdf filter=lfs diff=lfs merge=lfs -text +VtE4T4oBgHgl3EQfMgzk/content/2301.04949v1.pdf filter=lfs diff=lfs merge=lfs -text +GtE1T4oBgHgl3EQf_QYB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +NdFLT4oBgHgl3EQfOC8n/content/2301.12022v1.pdf filter=lfs diff=lfs merge=lfs -text +gNFLT4oBgHgl3EQfYy_o/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +9dAyT4oBgHgl3EQfdPeW/content/2301.00299v1.pdf filter=lfs diff=lfs merge=lfs -text +atFQT4oBgHgl3EQfgDa2/content/2301.13342v1.pdf filter=lfs diff=lfs merge=lfs -text +sdFKT4oBgHgl3EQf1i6S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +GtE1T4oBgHgl3EQf_QYB/content/2301.03577v1.pdf filter=lfs diff=lfs merge=lfs -text +VtE4T4oBgHgl3EQfMgzk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +j9E0T4oBgHgl3EQf7QLf/content/2301.02775v1.pdf filter=lfs diff=lfs merge=lfs -text +pNFAT4oBgHgl3EQfeR0E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +idE3T4oBgHgl3EQf4wsK/content/2301.04774v1.pdf filter=lfs diff=lfs merge=lfs -text +_dA0T4oBgHgl3EQfPf96/content/2301.02176v1.pdf filter=lfs diff=lfs merge=lfs -text +jNE4T4oBgHgl3EQfTAww/content/2301.05003v1.pdf filter=lfs diff=lfs merge=lfs -text +_9AyT4oBgHgl3EQfRfam/content/2301.00068v1.pdf filter=lfs diff=lfs merge=lfs -text +_dAyT4oBgHgl3EQfdvdN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ytAzT4oBgHgl3EQfQvv4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +jNE4T4oBgHgl3EQfTAww/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +1dE0T4oBgHgl3EQf_wJK/content/2301.02830v1.pdf filter=lfs diff=lfs merge=lfs -text +XNAyT4oBgHgl3EQf9PpX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ytAzT4oBgHgl3EQfQvv4/content/2301.01206v1.pdf filter=lfs diff=lfs merge=lfs -text +9dAyT4oBgHgl3EQfdPeW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +_9AyT4oBgHgl3EQfRfam/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +A9AzT4oBgHgl3EQfv_5R/content/2301.01715v1.pdf filter=lfs diff=lfs merge=lfs -text +X9AyT4oBgHgl3EQfWfd0/content/2301.00164v1.pdf filter=lfs diff=lfs merge=lfs -text +sdFKT4oBgHgl3EQf1i6S/content/2301.11920v1.pdf filter=lfs diff=lfs merge=lfs -text +Z9FJT4oBgHgl3EQf7y3s/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +HtFIT4oBgHgl3EQfXys9/content/2301.11245v1.pdf filter=lfs diff=lfs merge=lfs -text +atAyT4oBgHgl3EQf9_py/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +1dE0T4oBgHgl3EQf_wJK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +TNE3T4oBgHgl3EQfzgsS/content/2301.04728v1.pdf filter=lfs diff=lfs merge=lfs -text +NdFLT4oBgHgl3EQfOC8n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +xtFQT4oBgHgl3EQfAjU_/content/2301.13223v1.pdf filter=lfs diff=lfs merge=lfs -text +X9AyT4oBgHgl3EQfWfd0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +F9AzT4oBgHgl3EQfi_2P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +TNE3T4oBgHgl3EQfzgsS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +idE3T4oBgHgl3EQf4wsK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +IdAzT4oBgHgl3EQfU_z6/content/2301.01278v1.pdf filter=lfs diff=lfs merge=lfs -text +A9AzT4oBgHgl3EQfv_5R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +qNFKT4oBgHgl3EQfzS7F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +EdE1T4oBgHgl3EQfWgTb/content/2301.03116v1.pdf filter=lfs diff=lfs merge=lfs -text +rtE0T4oBgHgl3EQfawAZ/content/2301.02338v1.pdf filter=lfs diff=lfs merge=lfs -text +YdE2T4oBgHgl3EQfEQZV/content/2301.03633v1.pdf filter=lfs diff=lfs merge=lfs -text +otFMT4oBgHgl3EQf7TEy/content/2301.12463v1.pdf filter=lfs diff=lfs merge=lfs -text +JdFAT4oBgHgl3EQfvB7v/content/2301.08674v1.pdf filter=lfs diff=lfs merge=lfs -text +6tE5T4oBgHgl3EQfPw5R/content/2301.05507v1.pdf filter=lfs diff=lfs merge=lfs -text +otFMT4oBgHgl3EQf7TEy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text diff --git a/0tE1T4oBgHgl3EQf4wXL/vector_store/index.pkl b/0tE1T4oBgHgl3EQf4wXL/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..fdeb3e6dd71a1b0743def734485cf22e0200c641 --- /dev/null +++ b/0tE1T4oBgHgl3EQf4wXL/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:10dbaf2aaaef8957c56f121e92a30e79a1b17f8b2738d9b6e64175e99545de7e +size 947504 diff --git a/19E1T4oBgHgl3EQflQTp/content/tmp_files/2301.03284v1.pdf.txt b/19E1T4oBgHgl3EQflQTp/content/tmp_files/2301.03284v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..30f78390320dad9837d30737f7110d2080a0bea5 --- /dev/null +++ b/19E1T4oBgHgl3EQflQTp/content/tmp_files/2301.03284v1.pdf.txt @@ -0,0 +1,665 @@ +On the accuracy of one-way approximate models +for nonlinear waves in soft solids +Harold Berjamin a +aSchool of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Republic of Ireland +Abstract +A simple strain-rate viscoelasticity model of isotropic soft solid is introduced. The constitutive equations account for +finite strain, incompressibility, material frame-indifference, nonlinear elasticity, and viscous dissipation. A nonlinear +viscous wave equation for the shear strain is obtained exactly, and a corresponding one-way Burgers-type equation +is derived by making standard approximations. Analysis of the travelling wave solutions shows that the two partial +differential equations produce distinct solutions, and that deviations are exacerbated when wave amplitudes are not +arbitrarily small. In the elastic limit, the one-way approximate wave equation can be linked to simple wave theory, +thus allowing direct error measurements. +1 +Introduction +In nonlinear acoustics, the Burgers equation is often viewed as the simplest model equation that includes nonlinear +wave propagation and diffusion effects (Witham, 1999). This partial differential equation in space and time can be +derived directly from the one-dimensional Navier–Stokes equation by dropping the pressure term, or as a special case +of the Westerwelt equation. Besides Burgers’ equation, other one-way wave equations have been derived to describe +wave propagation in fluids and solids at large amplitudes (Hamilton and Blackstock, 1998; Naugolnykh and Ostro- +vsky, 1998). Based on an appropriate scaling of the wave amplitude, such approximate partial differential equations +describe unidirectional wave motion for slowly-varying wave profiles of moderate amplitude. +One-way approximate wave equations have found applications in various areas of nonlinear acoustics. For in- +stance, works by Radostin et al. (2013) and Nazarov et al. (2017) describe compression wave propagation in solids with +bimodular elastic behaviour. Another example is the Zabolotskaya equation that describes unidirectional plane shear +wave propagation in soft solids such as gels and brain tissue (Zabolotskaya et al., 2004), see also Cormack and Hamil- +ton (2018). In these latter cases, the underlying three-dimensional constitutive theories were revisited by Destrade +et al. (2013) as well as Saccomandi and Vianello (2021) to enforce objectivity (i.e., invariance by change of observer), +leading to slight modifications of the equations of motion. +For these partial differential equations, not many analytical solutions are known. Nevertheless, it is sometimes +possible to derive exact stationary wave solutions that keep an invariant wave profile throughout the motion, which +occurs at a suitable constant speed. Those permanent waveforms result from the interaction between nonlinearity +and dispersion (here of dissipative nature), a common feature that they share with solitary waves. +One might wonder whether it is preferable to seek closed-form travelling wave solutions by using directly the +full equations of motion, or by using their one-way approximation. As a matter of fact, both approaches have been +considered separately in the above literature. The present study aims to provide evidence to advocate for a derivation +of travelling waves based on the complete equations of motion, thus supporting a remark by Jordan and Puri (2005) +in relation with the study by Catheline et al. (2003) — this remark led to the publication of an erratum that briefly +discusses the validity of a particular one-way wave equation (Catheline et al., 2005). +For this purpose, we consider the case of shear wave propagation in soft viscoelastic solids of strain rate type. We +derive the simplest three-dimensional constitutive theory that accounts for finite strain, incompressibility, material +frame-indifference, and viscous dissipation (Section 2). Then, this theory is applied to simple shear deformations, aka. +transverse plane waves (Section 3), including the reduction to a one-way model described by a Burgers-type equation +with cubic nonlinearity. Finally, we investigate the travelling wave solutions deduced from the full equations of motion +as well as from the reduced wave equation (Section 4). Results show non-negligible discrepancies introduced by the +reduction to unidirectional motion as soon as wave amplitudes are no longer infinitesimal. These comparisons are +reconsidered in the lossless elastic limit where connections between the one-way model and simple wave theory are +established (Section 5). +1 +arXiv:2301.03284v1 [cond-mat.soft] 9 Jan 2023 + +2 +Strain-rate model +2.1 +Basic equations +In what follows, we present the basic equations of Lagrangian dynamics for incompressible solids (Holzapfel, 2000). +We consider a homogeneous and isotropic solid continuum on which no external body force is applied. Its motion +in the Euclidean space is described by using an orthonormal Cartesian coordinate system (O,x, y,z). Thus, a particle +initially located at some position X of the reference configuration moves to a position x of the current configuration. +The deformation gradient is the second-order tensor defined as F = ∂x/∂X . Introducing the displacement field u = +x − X and the identity tensor I = [δi j ] whose components are represented by Kronecker’s delta, we therefore have +F = I +Gradu where Grad denotes the gradient operator with respect to the material coordinates X = (x, y,z). +In incompressible solids, isochoricity +J = detF ≡ 1 +(1) +is prescribed. Thus, the mass density ρ is constant in time. It follows also that ˙J = JF −⊺ : ˙F ≡ 0, where the dot de- +notes the material time derivative ∂/∂t and the colon indicates double contraction. Introducing the Eulerian velocity +gradient L = ˙FF −1, this condition can be rewritten as trL = 0. +Various strain tensors are defined as functions of F. Here, constitutive laws are expressed in terms of the Green– +Lagrange strain tensor E = 1 +2(F ⊺F − I), which is often a preferred choice in physical acoustics. We introduce also its +rate ˙E = F ⊺DF obtained by differentiation with respect to time, where D = 1 +2(L +L⊺) is the strain rate tensor. We note +that D is trace-free due to incompressibility (1). +The motion is governed by the conservation of linear momentum equation ρ ˙v = DivP, where v = ˙x is the velocity +field and ρ is the mass density. The equation of motion involves the Lagrangian divergence of the first Piola–Kirchhoff +stress tensor P = FS where S is the second Piola–Kirchhoff stress tensor. Those stress tensors are specified later on by +the provision of a constitutive law. +The present definitions are consistent with notations and conventions used in the monograph by Holzapfel (2000). +In particular, the divergence of the tensor P reads [DivP]i = Pi j,j componentwise, where indices after the coma de- +note spatial differentiation. In some other texts, a transposed definition of the divergence is used. Then, the equation +of motion involves the material divergence of the nominal stress tensor P⊺ instead of P. +2.2 +Generalities +In the present study, we consider deformable solids whose constitutive behaviour is described by the state vari- +ables S = {s,E}, where s is the specific entropy. The choice of variables S is coherent with the postulate of frame- +indifference of the internal energy (Holzapfel, 2000). In fact, a change of observer specified by a superimposed rigid- +body motion leaves S invariant, as well as the internal energy U. Note that the internal energy does not depend on +rates of strain. +The internal energy per unit volume U is a function of state to be specified. The thermodynamic temperature +is defined as the conjugate variable of s in the partial Legendre transform of U/ρ with respect to s (Berjamin et al., +2021). However, the explicit dependence of U with respect to s is usually omitted in the definition of a strain energy +density function W e such that U = W e(E). The strain energy W e is regarded as a scalar-valued isotropic function of +its arguments. Thus, its dependence with respect to E can be reduced to a dependence with respect to three scalar +invariants +I1 = tr(E), +I2 = tr(E2), +I3 = tr(E3). +(2) +They can be used directly, or other physically meaningful scalar quantities might be defined from them. +The first and second principles of thermodynamics yield the Clausius–Duhem inequality +D = (S −Se) : ˙E = Sv : ˙E ≥ 0, +(3) +where D is the dissipation, S = Se +Sv is the total second Piola–Kirchhoff stress, +Se = −pC −1 + ∂W e +∂E +(4) +denotes the elastic part, and Sv is a viscous contribution to be specified subsequently. The scalar p is an arbitrary +Lagrange multiplier for the incompressibility constraint (1), see Sec. 6.3 of Holzapfel (2000), and C = I +2E is the right +Cauchy–Green strain tensor F ⊺F. Therefore, no dissipation occurs in the elastic case S = Se where the viscous stress +tensor Sv is equal to zero. +According to the dissipation inequality (3), the viscous stress Sv is a function of state and evolution variables, e.g. +the set S ∪ { ˙E} which is a consistent choice to enforce frame-invariance (Antman, 1998; Ball, 2002). We introduce a +dissipation potential W v(E, ˙E) such that +Sv = ∂W v +∂ ˙E +(5) +2 + +defines the viscous stress (Maugin, 1999). In general, the dissipation potential is described by additional invariants +(Pioletti and Rakotomanana, 2000) +I4 = tr( ˙E), +I5 = tr( ˙E2), +I6 = tr( ˙E3), +I7 = tr( ˙EE), +I8 = tr( ˙EE2), +I9 = tr( ˙E2E), +I10 = tr( ˙E2E2). +(6) +In the present study, we consider Newtonian-type viscosity models whose dissipation potential is as simple as possi- +ble. +2.3 +Consequences of incompressibility +First, let us investigate the consequences of the incompressibility constraint (1). As noted in Jacob et al. (2007), the +invariants (2) of E are linked through +I1 = I2 − 4 +3 I3 − I 2 +1 +2I1I2 − 2 +3 I 3 +1 , +(7) +by virtue of incompressibility. This identity follows from the expression of the principal invariants of the unimodular +tensor C = I +2E in terms of the invariants Ik, see the Appendix of Destrade et al. (2010). Using the differential version +of the incompressibility constraint, the invariants (2)-(6) of E, ˙E satisfy the particular relationship +1 +2 I4 = I7 −2I8 +2I1I7 − +� +I1 − I2 + I 2 +1 +� +I4 +(8) +deduced from the identity trD = 0, see Appendix. +The relationship (7) means that the invariant I1 = tr(E) is no longer linear with respect to the components of the +strain tensor E; instead, Eq. (7) shows that it has terms of polynomial order two and three with respect to the strain. +Furthermore, due to the relationship (8), the invariant I4 = tr( ˙E) is still linear with respect to the components of the +strain-rate tensor ˙E. However, Eq. (8) shows that I4 is no longer invariant on the strain tensor E; instead, it has terms +of polynomial order one, two and three with respect to the Green–Lagrange strain. +2.4 +Constitutive assumptions +In weakly nonlinear elasticity, the strain energy density function is sought in the form of a polynomial of the invariants +Ik with constant coefficients. Similarly to Zabolotskaya et al. (2004), we assume that the internal energyU has a fourth- +order polynomial expression with respect to the components of the strain tensor E of the form +W e = µI2 + 1 +3 AI3 +DI 2 +2, +(9) +where µ ≥ 0 is the shear modulus (in Pa), and the coefficients A, D are higher-order elastic constants. +Now, let us propose an expression for the dissipation potential. To end up with a linear viscosity model similar to +that by Destrade et al. (2013), we assume that the dissipation potential is a second-order polynomial expansion of the +strain rate tensor ˙E, and a zeroth-order polynomial of E. This assumption amounts to selecting W v of second order +in (E, ˙E), and to ignore the terms proportional to ˙E that produce elastic stresses. Due to the relationships (7)-(8), we +therefore keep +W v = ηI5, +(10) +where η ≥ 0 is the shear viscosity (in Pa.s). In the above expression, the absence of bulk viscosity “ζ” is due to the +assumption on polynomial orders for the viscous part, and to the incompressibility property (8). Setting the bulk +viscosity ζ = 2 +3η in Destrade et al. (2013) yields the same expressions as above. +Computation of the tensor derivatives of the potentials (9)-(10) by means of the chain rule for W •(Ik,...) yields the +following elastic (4) and viscous stress contributions (5) +Se = −pC −1 +2(µ+2DI2)E + AE2, +Sv = 2η ˙E. +(11) +Thermodynamic consistency (3) is ensured provided that the dissipation D = 2W v is non-negative. In fact, the present +dissipation potential W v is a homogeneous function of degree two with respect to ˙E (Maugin, 1999). A sufficient +condition for the restriction D ≥ 0 to be always satisfied is that the viscosity η is non-negative. +3 + +3 +Plane shear waves +3.1 +Nonlinear viscous wave equation +Similarly to Destrade et al. (2013), we consider simple shear deformations described by the displacement field u = +[u,0,0]⊺ where u = u(z,t) denotes the particle displacement along the x-direction. Thus, the deformation gradient +tensor reads +F = +� +� +1 +0 +γ +0 +1 +0 +0 +0 +1 +� +�, +(12) +where γ = ∂u/∂z is the shear strain. The velocity field takes the form v = [v,0,0]⊺ where v = ∂u/∂t is the shear velocity. +In the equation of motion ρ ˙v = DivP, the relevant first Piola–Kirchhoff stress component P13 is deduced from +the expression of the elastic and viscous parts Pe +13 = µγ+Γγ3 and Pv +13 = η(1+2γ2) ˙γ, where only terms up to order γ3 +have been kept. The non-negative constant Γ = µ+ A/2+D is a parameter of nonlinearity (Zabolotskaya et al., 2004). +Hence, upon division by the shear modulus µ, the x-component of the equation of motion produces the nonlinear +wave equation +1 +c2 +∂2u +∂t2 = ∂2u +∂z2 + 2 +3β ∂ +∂z +�∂u +∂z +�3 ++τ ∂ +∂z +�� +1+2 +�∂u +∂z +�2� ∂2u +∂z∂t +� +, +(13) +describing transverse wave propagation along the z-direction, where we have introduced the notations +c = +� +µ +ρ , +β = 3 +2 +Γ +µ, +τ = η +µ. +(14) +Spatial differentiation of Eq. (13) allows to write a similar wave equation for the strain +1 +c2 +∂2γ +∂t2 = ∂2γ +∂z2 + 2 +3β ∂2 +∂z2 γ3 +τ ∂2 +∂z2 +�� +1+2γ2� ∂γ +∂t +� +, +(15) +which will be used later on. +According to the wave equations (13)-(15), shear waves of infinitesimal amplitude propagate at the shear wave +speed c = +� +µ/ρ in the absence of nonlinearity and viscosity (β = 0, τ = 0). Typically, this sound velocity equals +c ≈ 2 m/s in gels (Jacob et al., 2007), whereas β ≈ 10 and τ ≈ 0.12 ms at a loading frequency of 100 Hz. Here, we have +obtained the same wave equations than those derived in Destrade et al. (2013) for the particular bulk viscosity ζ = 2 +3η. +Note in passing the presence of a nonlinear viscous term which is absent in Zabolotskaya et al. (2004).1 +3.2 +Slow scale approximations +Similarly to Zabolotskaya et al. (2004) and Pucci et al. (2019), we proceed now to a reduction of the above wave equa- +tion (13) for one-way wave propagation with slowly varying profile. We present two approximations based either on a +slow space variable or a slow time variable. +Slow space +Let us follow the scaling procedure in Zabolotskaya et al. (2004). For this purpose, we introduce the +following scaling defined by the change of variables {˜z = ϵ2z, ˜t = t − z/c,u = ϵ ˜u}, where ϵ is a small parameter and +˜u = ˜u(˜z, ˜t). Furthermore, we assume that τ is of order ϵ2. Note that this set of assumptions corresponds to a slowly- +varying profile in space. +This Ansatz is then substituted in the equation of motion (13). At leading (cubic) order in ϵ, the motion of soft +viscous solids is governed by the scalar equation +ϵ3c ∂2 ˜u +∂˜z∂˜t = ϵ3 β +c2 +�∂ ˜u +∂˜t +�2 ∂2 ˜u +∂˜t2 +ϵτ +2 +∂3 ˜u +∂˜t3 . +(16) +Transforming back to the initial displacement u and physical coordinates (z,t) leads to a reduced wave equation +c ∂v +∂z + +� +1−βv2/c2� ∂v +∂t = τ +2 +∂2v +∂t2 , +(17) +for the velocity v = ∂u/∂t. +1The wave equation proposed by Catheline et al. (2003) and analysed by Jordan and Puri (2005) cannot be obtained rigorously from the equations +of motion unless time derivatives are (questionably) replaced by spatial derivatives. +4 + +Up to the choice of time variable used here (i.e., the physical time t instead of the retarded time ˜t), the partial +differential equation (17) is identical to the cubic Burgers-type equation of Zabolotskaya et al. (2004). However, the +underlying modelling assumptions are not equivalent, since the initial wave equation (13) includes the extra nonlinear +viscosity term 2τ∂(γ2 ˙γ)/∂z. This additional term is lost in the rescaling procedure given that it is of higher order in ϵ +than the leading-order viscous term τ∂ ˙γ/∂z. In the end, while the modelling efforts by Destrade et al. (2013) aimed +at enforcing objectivity lead to a slight modification of the wave equation (more precisely, the addition of a nonlinear +viscous term), they do not induce any modification of the transport equation (17). +Slow time +For later comparisons, let us derive a similar Burgers-type equation governing the evolution of the strain +instead of the velocity by following Pucci et al. (2019). To do so, we introduce the slow-time scaling based on the +change of variables {˜t = ϵ2t, ˜z = z −ct,u = ϵ ˜u} where ϵ is a small parameter. Proceeding in a similar fashion to above, +we end up with the nonlinear transport equation +∂γ +∂t +c +� +1+βγ2� ∂γ +∂z = τc2 +2 +∂2γ +∂z2 , +(18) +where γ = ∂u/∂z is the shear strain. Here too, after keeping leading order terms, we have transformed back to the +initial physical coordinates (z,t). Therefore, the above partial differential equation may be viewed as a one-way ap- +proximation of the wave equation (15). Their travelling wave solutions are compared in the next section. +4 +Travelling wave solutions +4.1 +Nonlinear viscous wave equation +Let us seek travelling wave solutions to the wave equation (15), i.e. specific smooth waveforms that propagate at a +constant velocity with a steady profile. In a similar fashion to Destrade et al. (2013), we first introduce the following +rescaled dimensionless variables and coordinates +g(¯z, ¯t) = +� +2 +3βγ(z,t), +¯t = t/τ, +¯z = z/(cτ), +(19) +in Eq. (15), such that +∂2g +∂¯t2 = ∂2g +∂¯z2 + ∂2 +∂¯z2 g 3 + ∂2 +∂¯z2 +�� +1+ 3 +β g 2 +� ∂g +∂¯t +� +. +(20) +Next, we seek travelling wave solutions of the form g = +� +ν2 −1G(ξ) where ξ = (ν2 − 1)(¯t − ¯z/ν) involves the dimen- +sionless wave velocity ν ≥ 1. Injecting this Ansatz in the above partial differential equation and integrating twice with +respect to ξ with vanishing integration constants yields a nonlinear differential equation for the strain: +G = G3 + +� +1+αG2� d +dξG, +(21) +where α = 3(ν2 −1)/β is a parameter. +From the above differential equation, one observes that travelling wave solutions to the wave equation (15) should +connect the equilibrium strains G = 0 and G = ±1 by following a smooth transition that depends on the parameter α. +Solutions read (Destrade et al., 2013) +ξ = −ln +� +1 +2G +�4 +3(1−G2) +� 1+α +2 +� +(22) +in implicit form, where we have enforced G(0) = 1/2 without loss of generality. Illustrations are provided later on. +4.2 +Slow time approximation +In a similar fashion, let us now seek travelling wave solutions to the reduced wave equation (18). Thus, we first perform +the substitutions (19) to get +∂g +∂¯t + ∂ +∂¯z +� +g + 1 +2 g 3 +� += 1 +2 +∂2g +∂¯z2 . +(23) +In order to obtain wave solutions that correspond to the same strain values at infinity as in Sec. 4.1, we introduce a +slightly different scaling. Indeed, let us inject the Ansatz g = +� +ν2 −1G(χ) with χ = (ν2 − 1)(ϑ¯t − ¯z) in Eq. (23), where +ϑ = 1+ 1 +2(ν2 −1) is the new dimensionless velocity (Fig. 1). Thus, we arrive at the differential equation +G = G3 + d +dχG +(24) +5 + +1 +1.2 +1.4 +1.6 +1.8 +1 +1.5 +2 +ν +ϑ +Figure 1: Scaled velocity ϑ = 1+ 1 +2(ν2 −1) for the ‘slow-time’ reduced model in terms of the scaled velocity ν for the full +wave equation. +of which the strain values 0 and 1 are steady states. Enforcing the initial value G = 1/2 at χ = 0 gives +G = +1 +� +1+3e−2χ , +(25) +which does not involve any extra parameter. One observes that this expression corresponds to the case α = 0 in +Eqs. (21)-(22). +Remark. One might proceed in a similar fashion with the Burgers-type equation (17) corresponding to the slow space +approximation. Similarly to (19), we perform the substitutions r(¯z, ¯t) = +� +2β/3v(z,t)/c in Eq. (17) to get +∂r +∂¯z + ∂ +∂¯t +� +r − 1 +2r 3 +� += 1 +2 +∂2r +∂¯t2 . +(26) +Next, we introduce r = +� +ν2 −1V (ψ) where ψ = (ν2 −1)(¯t − ¯z/κ) involves the dimensionless velocity κ defined by the +relationship κ−1 = 1− 1 +2(ν2 −1). This way, we obtain the same differential equation V = V 3 + d +dψV for the dimension- +less velocity V as previously for the strain (24). Therefore, within the scope of the present study, the slow time and +slow space approximations lead to related travelling wave solutions that describe the evolution of distinct kinematic +variables (strain and velocity, respectively). +4.3 +Comparison +Let us compare the solutions (22)-(25) obtained for the full wave equation (15) and the one-way model (18). First, one +observes that these travelling waves of same amplitude do not propagate at the same speed, as illustrated in Fig. 1. +Indeed, given the expression of ϑ, we can express the relative error E = ϑ/ν−1 on the scaled velocity as a function of +ν. To ensure that the latter remains less than 5% (respectively 1%), we obtain the requirement ν ≤ 1.3 (resp. ν ≤ 1.1) +marked by dotted lines in the figure. +Now, let us observe that for a unit kink covering the range 0 ≤ G ≤ 1, the corresponding shear strains satisfy +0 ≤ γ ≤ +� +α/2 +(27) +where α = 3(ν2 − 1)/β was introduced earlier on, see Eq. (19). In other words, the coefficient α in the differential +equation (21) is related to the maximum strain of travelling waves, and these bounds are valid for both models at hand +due to application of the rescaling procedure (19). Thus, restrictions of the wave speed ν can be expressed in terms of +the strain. To ensure that the velocity error E remains less than 5% (respectively 1%), we therefore require γ +� +β ≤ 1.0 +(resp. γ +� +β ≤ 0.56). Note that the parameter of nonlinearity can take such values as β ≈ 10 for gels (Jacob et al., 2007). +Therefore, the slow scale approximation has a very restricted validity for such a soft viscoelastic material. +This property is further illustrated in Fig. 2, where we have represented the evolution of the relative velocity ν−1 +(or ϑ−1) in terms of the maximum strain amplitude, both for the full wave equation and its one-way approximation. +According to the expression of α above, we have the relationship ϑ−1 = 1 +3β( +� +α/2)2 in the case of the one-way approx- +imate model, which produce lines of slope two in log-log coordinates (dashed lines in the figure). However, for the full +wave equation, this relationship between the wave speed ν and the strain amplitude is not satisfied. For fixed values +of the nonlinearity parameter β, differences between the one-way model and the full wave equation become visible +at large strains. +In Fig. 3, we display the evolution of the waveforms (22)-(25) in terms of the scaled coordinates ξ, χ. In the case +of the full wave equation (21), the parameter α takes the values {0,1.2,3}. It appears that the waveforms so-obtained +follow a drastically different evolution when parameters are modified. In particular, the wavefront deduced from +the full wave equation (solid lines) does not exhibit the same invariance and symmetry properties as the wavefront +deduced from the one-way model (dashed line). +6 + +10−1 +100 +10−3 +10−2 +10−1 +100 +β = 3 +β = 1 +Strain amplitude +Relative velocity +one-way +wave eq. +Figure 2: For the full wave equation (solid line) and the ‘slow-time’ reduced model (dashed line), we represent the +evolution of the relative velocity ν − 1 (respectively, ϑ − 1) in terms of the strain amplitude +� +α/2. The axes have a +logarithmic scale. +−2 +0 +2 +0 +0.5 +1 +α +ξ, χ +G +wave eq. +one-way +Figure 3: Steady waveforms deduced from Eqs. (22)-(25) for increasing values of the parameter 0 ≤ α ≤ 3 (arrow). +Evolution of the scaled shear strain G in terms of the related dimensionless coordinate ξ or χ. +7 + +5 +Simple waves +In the lossless case, exact one-way wave equations can be derived by using the method of Riemann invariants, see +for instance the introductory example by John (1976). Such particular wave solutions called simple waves keep one +Riemann invariant constant. In other words, the particle velocity v = R−−Q(γ) withQ(γ) = c +�γ +0 +� +1+2βg 2 dg depends +explicitly on the strain γ. The scalar R− is an arbitrary constant, for instance R− ≡ 0 in some specific boundary-value +problems (Berjamin and Chockalingam, 2022), which will be assumed satisfied from now on. Spatial differentiation +of the velocity then produces +∂γ +∂t +c +� +1+2βγ2 ∂γ +∂z = 0, +(28) +where we have used the equality of mixed partials ∂v/∂z = ∂γ/∂t. Obviously, the lossless one-way wave equation (18) +with τ = 0 is an approximation of (28) for 2βγ2 ≪ 1. +Let us analyse this requirement in a more quantitative manner. To ensure that the relative error on the advection +velocity E = +1+a +� +1+2a −1 for a = βγ2 remains less than 5% (respectively 1%), we obtain the requirement a ≤ 0.44 (resp. +a ≤ 0.16). Application of the square root leads to the restriction γ +� +β ≤ 0.66 (resp. γ +� +β ≤ 0.40) which is slightly more +constraining than in the case of viscoelastic travelling waves (Sec. 4.3). +Along a simple wave, computation of the partial derivative of the velocity v = R− −Q(γ) with respect to time pro- +duces +c ∂v +∂z + +� +1+2βγ2�−1/2 ∂v +∂t = 0, +(29) +where the strain γ = Q−1(−v) can be expressed formally as a function of the velocity, despite no analytical expression +of the inverse function Q−1 of Q is known in the present case. If |v| is small, then we can use the approximation +γ ≃ −v/c of the strain which follows from the asymptotic equivalence of Q ∼ cγ at small strains. Next, the (·)−1/2- +factor in Eq. (29) can be approximated by the polynomial expression 1−βγ2 as long as 2βγ2 ≪ 1. This way, we have +shown that the one-way wave equation (17) is an approximation of Eq. (29) obtained for R− = 0 and 2βv2/c2 ≪ 1 in +the elastic limit τ = 0. This observation is consistent with the discussions in Catheline et al. (2005). In summary, the +lossless ‘slow-space’ and ‘slow-time’ reductions (17)-(18) with τ = 0 are approximate governing equations for simple +waves with small values of βv2/c2 and of βγ2, respectively. +6 +Conclusion +For a specific strain-rate viscoelasticity theory of soft solids, we have shown that one-way approximate wave propaga- +tion models produce significantly different travelling wave solutions than the full equations of motion as soon as the +wave amplitude is not infinitesimal. Similar observations are reported in the literature in relation with shear shock +formation (Berjamin and Chockalingam, 2022). In the elastic limit, we have examined the validity of one-way approx- +imations in relation with simple wave theory, thus leading to dedicated criteria of validity involving small velocity and +strain amplitudes. We conclude that these approximations should be used with care given their limited accuracy, in +general. Nevertheless, they might remain useful for the interpretation of experimental results where their validity is +not always severely penalised (Catheline et al., 2003, 2005). +Acknowledgments +The author is grateful to Michel Destrade (Galway, Ireland) for support. This project has received funding from the +European Union’s Horizon 2020 research and innovation programme under grant agreement TBI-WAVES — H2020- +MSCA-IF-2020 project No. 101023950. +A +Consequence of incompressibility +This Appendix is devoted to the derivation of Eq. (8). We start with the Cayley–Hamilton identity for the right Cauchy– +Green tensor C = F ⊤F, which reads +C 3 −I C 2 +II C −III I = 0, +(30) +where I, II, III are the principal invariants of C. In the case of volume-preserving motions (1), the tensor C is uni- +modular, i.e. we have III = 1. Next, multiplication of (30) by C −1 ˙E on the right side, substitution of C = I + 2E and +computation of the trace entails the relationship +(I4 +4I7 +4I8)−(3+2I1)(I4 +2I7) ++(3+4I1 +2I 2 +1 −2I2)I4 = 0, +(31) +8 + +where we have used the incompressibility property trD = tr(C −1 ˙E) = 0, the definition of the invariants (2)-(6), and the +relationship between I, II and the invariants Ik used here (Destrade et al., 2010). Rearranging terms, we get the desired +identity (8). +References +S. S. Antman. +Physically unacceptable viscous stresses. +Z. angew. Math. Phys., +49(6):980–988, +1998. +doi:10.1007/s000330050134. +J. M. Ball. Some open problems in elasticity. In P. Newton, P. Holmes, and A. Weinstein, editors, Geometry, Mechanics, +and Dynamics, pages 3–59. Springer, New York, 2002. doi:10.1007/0-387-21791-6_1. +H. Berjamin and S. Chockalingam. Shear shock formation in incompressible viscoelastic solids. Wave Motion, 110: +102899, 2022. doi:10.1016/j.wavemoti.2022.102899. +H. Berjamin, M. Destrade, and W. J. Parnell. On the thermodynamic consistency of quasi-linear viscoelastic models +for soft solids. Mech. Res. Commun., 111:103648, 2021. doi:10.1016/j.mechrescom.2020.103648. +S. Catheline, J.-L. Gennisson, M. Tanter, and M. Fink. Observation of shock transverse waves in elastic media. Phys. +Rev. Lett., 91(16):164301, 2003. doi:10.1103/PhysRevLett.91.164301. +S. Catheline, J.-L. Gennisson, M. Tanter, and M. Fink. Erratum: Observation of shock transverse waves in elastic media +[Phys. Rev. Lett. 91, 164301 (2003)]. Phys. Rev. Lett., 95(13):139902, 2005. doi:10.1103/PhysRevLett.95.139902. +J. M. Cormack and M. F. Hamilton. Plane nonlinear shear waves in relaxing media. J. Acoust. Soc. Am., 143(2):1035– +1048, 2018. doi:10.1121/1.5023394. +M. Destrade, M. D. Gilchrist, and J. G. Murphy. Onset of nonlinearity in the elastic bending of blocks. J. Appl. Mech., +77(6), 2010. doi:10.1115/1.4001282. +M. Destrade, G. Saccomandi, and M. Vianello. Proper formulation of viscous dissipation for nonlinear waves in solids. +J. Acoust. Soc. Am., 133(3):1255–1259, 2013. doi:10.1121/1.4776178. +M. F. Hamilton and D. T. Blackstock, editors. Nonlinear Acoustics. Academic Press, 1998. +G. A. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons Ltd., Chich- +ester, 2000. +X. Jacob, S. Catheline, J.-L. Gennisson, C. Barrière, D. Royer, and M. Fink. Nonlinear shear wave interaction in soft +solids. J. Acoust. Soc. Am., 122(4):1917–1926, 2007. doi:10.1121/1.2775871. +F. John. Delayed singularity formation in solution of nonlinear wave equations in higher dimensions. Comm. Pure +Appl. Math., 29(6):649–682, 1976. doi:10.1002/cpa.3160290608. +P. M. Jordan and A. Puri. A note on traveling wave solutions for a class of nonlinear viscoelastic media. Phys. Lett. A, +335(2-3):150–156, 2005. doi:10.1016/j.physleta.2004.11.058. +G. A. Maugin. +The Thermomechanics of Nonlinear Irreversible Behaviors. +World Scientific Publishing, 1999. +doi:10.1142/3700. +K. Naugolnykh and L. Ostrovsky. Nonlinear Wave Processes in Acoustics. Cambridge University Press, 1998. +V. E. Nazarov, S. B. Kiyashko, and A. V. Radostin. Stationary waves in a bimodular rod of finite radius. Wave Motion, 75: +72–76, 2017. doi:10.1016/j.wavemoti.2017.09.003. +D. P. Pioletti and L. R. Rakotomanana. Non-linear viscoelastic laws for soft biological tissues. Eur. J. Mech. A-Solids, 19 +(5):749–759, 2000. doi:10.1016/S0997-7538(00)00202-3. +E. Pucci, G. Saccomandi, and L. Vergori. Linearly polarized waves of finite amplitude in pre-strained elastic materials. +Proc. R. Soc. A, 475(2226):20180891, 2019. doi:10.1098/rspa.2018.0891. +A. Radostin, V. Nazarov, and S. Kiyashko. Propagation of nonlinear acoustic waves in bimodular media with linear +dissipation. Wave Motion, 50(2):191–196, 2013. doi:10.1016/j.wavemoti.2012.08.005. +G. Saccomandi and M. S. Vianello. Shear waves in a nonlinear relaxing media: A three-dimensional perspective. J. +Acoust. Soc. Am., 149(3):1589–1595, 2021. doi:10.1121/10.0003605. +G. B. Witham. Linear and Nonlinear Waves. John Wiley & Sons, Inc., 1999. doi:10.1002/9781118032954. +E. A. Zabolotskaya, M. F. Hamilton, Y. A. Ilinskii, and G. D. Meegan. Modeling of nonlinear shear waves in soft solids. +J. Acoust. Soc. Am., 116(5):2807–2813, 2004. doi:10.1121/1.1802533. +9 + diff --git a/19E1T4oBgHgl3EQflQTp/content/tmp_files/load_file.txt b/19E1T4oBgHgl3EQflQTp/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..1aba2a2e5d142878c5b58e5b4c65f589508a0387 --- /dev/null +++ b/19E1T4oBgHgl3EQflQTp/content/tmp_files/load_file.txt @@ -0,0 +1,567 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf,len=566 +page_content='On the accuracy of one-way approximate models for nonlinear waves in soft solids Harold Berjamin a aSchool of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Republic of Ireland Abstract A simple strain-rate viscoelasticity model of isotropic soft solid is introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The constitutive equations account for finite strain, incompressibility, material frame-indifference, nonlinear elasticity, and viscous dissipation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A nonlinear viscous wave equation for the shear strain is obtained exactly, and a corresponding one-way Burgers-type equation is derived by making standard approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Analysis of the travelling wave solutions shows that the two partial differential equations produce distinct solutions, and that deviations are exacerbated when wave amplitudes are not arbitrarily small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In the elastic limit, the one-way approximate wave equation can be linked to simple wave theory, thus allowing direct error measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 1 Introduction In nonlinear acoustics, the Burgers equation is often viewed as the simplest model equation that includes nonlinear wave propagation and diffusion effects (Witham, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' This partial differential equation in space and time can be derived directly from the one-dimensional Navier–Stokes equation by dropping the pressure term, or as a special case of the Westerwelt equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Besides Burgers’ equation, other one-way wave equations have been derived to describe wave propagation in fluids and solids at large amplitudes (Hamilton and Blackstock, 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Naugolnykh and Ostro- vsky, 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Based on an appropriate scaling of the wave amplitude, such approximate partial differential equations describe unidirectional wave motion for slowly-varying wave profiles of moderate amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' One-way approximate wave equations have found applications in various areas of nonlinear acoustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' For in- stance, works by Radostin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2013) and Nazarov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2017) describe compression wave propagation in solids with bimodular elastic behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Another example is the Zabolotskaya equation that describes unidirectional plane shear wave propagation in soft solids such as gels and brain tissue (Zabolotskaya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 2004), see also Cormack and Hamil- ton (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In these latter cases, the underlying three-dimensional constitutive theories were revisited by Destrade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2013) as well as Saccomandi and Vianello (2021) to enforce objectivity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', invariance by change of observer), leading to slight modifications of the equations of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' For these partial differential equations, not many analytical solutions are known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Nevertheless, it is sometimes possible to derive exact stationary wave solutions that keep an invariant wave profile throughout the motion, which occurs at a suitable constant speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Those permanent waveforms result from the interaction between nonlinearity and dispersion (here of dissipative nature), a common feature that they share with solitary waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' One might wonder whether it is preferable to seek closed-form travelling wave solutions by using directly the full equations of motion, or by using their one-way approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' As a matter of fact, both approaches have been considered separately in the above literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The present study aims to provide evidence to advocate for a derivation of travelling waves based on the complete equations of motion, thus supporting a remark by Jordan and Puri (2005) in relation with the study by Catheline et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2003) — this remark led to the publication of an erratum that briefly discusses the validity of a particular one-way wave equation (Catheline et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' For this purpose, we consider the case of shear wave propagation in soft viscoelastic solids of strain rate type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' We derive the simplest three-dimensional constitutive theory that accounts for finite strain, incompressibility, material frame-indifference, and viscous dissipation (Section 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Then, this theory is applied to simple shear deformations, aka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' transverse plane waves (Section 3), including the reduction to a one-way model described by a Burgers-type equation with cubic nonlinearity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Finally, we investigate the travelling wave solutions deduced from the full equations of motion as well as from the reduced wave equation (Section 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Results show non-negligible discrepancies introduced by the reduction to unidirectional motion as soon as wave amplitudes are no longer infinitesimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' These comparisons are reconsidered in the lossless elastic limit where connections between the one-way model and simple wave theory are established (Section 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='03284v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='soft] 9 Jan 2023 2 Strain-rate model 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1 Basic equations In what follows, we present the basic equations of Lagrangian dynamics for incompressible solids (Holzapfel, 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' We consider a homogeneous and isotropic solid continuum on which no external body force is applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Its motion in the Euclidean space is described by using an orthonormal Cartesian coordinate system (O,x, y,z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Thus, a particle initially located at some position X of the reference configuration moves to a position x of the current configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The deformation gradient is the second-order tensor defined as F = ∂x/∂X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Introducing the displacement field u = x − X and the identity tensor I = [δi j ] whose components are represented by Kronecker’s delta, we therefore have F = I +Gradu where Grad denotes the gradient operator with respect to the material coordinates X = (x, y,z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In incompressible solids, isochoricity J = detF ≡ 1 (1) is prescribed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Thus, the mass density ρ is constant in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' It follows also that ˙J = JF −⊺ : ˙F ≡ 0, where the dot de- notes the material time derivative ∂/∂t and the colon indicates double contraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Introducing the Eulerian velocity gradient L = ˙FF −1, this condition can be rewritten as trL = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Various strain tensors are defined as functions of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Here, constitutive laws are expressed in terms of the Green– Lagrange strain tensor E = 1 2(F ⊺F − I), which is often a preferred choice in physical acoustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' We introduce also its rate ˙E = F ⊺DF obtained by differentiation with respect to time, where D = 1 2(L +L⊺) is the strain rate tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' We note that D is trace-free due to incompressibility (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The motion is governed by the conservation of linear momentum equation ρ ˙v = DivP, where v = ˙x is the velocity field and ρ is the mass density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The equation of motion involves the Lagrangian divergence of the first Piola–Kirchhoff stress tensor P = FS where S is the second Piola–Kirchhoff stress tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Those stress tensors are specified later on by the provision of a constitutive law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The present definitions are consistent with notations and conventions used in the monograph by Holzapfel (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In particular, the divergence of the tensor P reads [DivP]i = Pi j,j componentwise, where indices after the coma de- note spatial differentiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In some other texts, a transposed definition of the divergence is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Then, the equation of motion involves the material divergence of the nominal stress tensor P⊺ instead of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2 Generalities In the present study, we consider deformable solids whose constitutive behaviour is described by the state vari- ables S = {s,E}, where s is the specific entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The choice of variables S is coherent with the postulate of frame- indifference of the internal energy (Holzapfel, 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In fact, a change of observer specified by a superimposed rigid- body motion leaves S invariant, as well as the internal energy U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Note that the internal energy does not depend on rates of strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The internal energy per unit volume U is a function of state to be specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The thermodynamic temperature is defined as the conjugate variable of s in the partial Legendre transform of U/ρ with respect to s (Berjamin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' However, the explicit dependence of U with respect to s is usually omitted in the definition of a strain energy density function W e such that U = W e(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The strain energy W e is regarded as a scalar-valued isotropic function of its arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Thus, its dependence with respect to E can be reduced to a dependence with respect to three scalar invariants I1 = tr(E), I2 = tr(E2), I3 = tr(E3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2) They can be used directly, or other physically meaningful scalar quantities might be defined from them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The first and second principles of thermodynamics yield the Clausius–Duhem inequality D = (S −Se) : ˙E = Sv : ˙E ≥ 0, (3) where D is the dissipation, S = Se +Sv is the total second Piola–Kirchhoff stress, Se = −pC −1 + ∂W e ∂E (4) denotes the elastic part, and Sv is a viscous contribution to be specified subsequently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The scalar p is an arbitrary Lagrange multiplier for the incompressibility constraint (1), see Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='3 of Holzapfel (2000), and C = I +2E is the right Cauchy–Green strain tensor F ⊺F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Therefore, no dissipation occurs in the elastic case S = Se where the viscous stress tensor Sv is equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' According to the dissipation inequality (3), the viscous stress Sv is a function of state and evolution variables, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' the set S ∪ { ˙E} which is a consistent choice to enforce frame-invariance (Antman, 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Ball, 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' We introduce a dissipation potential W v(E, ˙E) such that Sv = ∂W v ∂ ˙E (5) 2 defines the viscous stress (Maugin, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In general, the dissipation potential is described by additional invariants (Pioletti and Rakotomanana, 2000) I4 = tr( ˙E), I5 = tr( ˙E2), I6 = tr( ˙E3), I7 = tr( ˙EE), I8 = tr( ˙EE2), I9 = tr( ˙E2E), I10 = tr( ˙E2E2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (6) In the present study, we consider Newtonian-type viscosity models whose dissipation potential is as simple as possi- ble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='3 Consequences of incompressibility First, let us investigate the consequences of the incompressibility constraint (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' As noted in Jacob et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2007), the invariants (2) of E are linked through I1 = I2 − 4 3 I3 − I 2 1 +2I1I2 − 2 3 I 3 1 , (7) by virtue of incompressibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' This identity follows from the expression of the principal invariants of the unimodular tensor C = I +2E in terms of the invariants Ik, see the Appendix of Destrade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Using the differential version of the incompressibility constraint, the invariants (2)-(6) of E, ˙E satisfy the particular relationship 1 2 I4 = I7 −2I8 +2I1I7 − � I1 − I2 + I 2 1 � I4 (8) deduced from the identity trD = 0, see Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The relationship (7) means that the invariant I1 = tr(E) is no longer linear with respect to the components of the strain tensor E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' instead, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (7) shows that it has terms of polynomial order two and three with respect to the strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Furthermore, due to the relationship (8), the invariant I4 = tr( ˙E) is still linear with respect to the components of the strain-rate tensor ˙E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' However, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (8) shows that I4 is no longer invariant on the strain tensor E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' instead, it has terms of polynomial order one, two and three with respect to the Green–Lagrange strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='4 Constitutive assumptions In weakly nonlinear elasticity, the strain energy density function is sought in the form of a polynomial of the invariants Ik with constant coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Similarly to Zabolotskaya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2004), we assume that the internal energyU has a fourth- order polynomial expression with respect to the components of the strain tensor E of the form W e = µI2 + 1 3 AI3 +DI 2 2, (9) where µ ≥ 0 is the shear modulus (in Pa), and the coefficients A, D are higher-order elastic constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Now, let us propose an expression for the dissipation potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' To end up with a linear viscosity model similar to that by Destrade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2013), we assume that the dissipation potential is a second-order polynomial expansion of the strain rate tensor ˙E, and a zeroth-order polynomial of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' This assumption amounts to selecting W v of second order in (E, ˙E), and to ignore the terms proportional to ˙E that produce elastic stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Due to the relationships (7)-(8), we therefore keep W v = ηI5, (10) where η ≥ 0 is the shear viscosity (in Pa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In the above expression, the absence of bulk viscosity “ζ” is due to the assumption on polynomial orders for the viscous part, and to the incompressibility property (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Setting the bulk viscosity ζ = 2 3η in Destrade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2013) yields the same expressions as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Computation of the tensor derivatives of the potentials (9)-(10) by means of the chain rule for W •(Ik,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=') yields the following elastic (4) and viscous stress contributions (5) Se = −pC −1 +2(µ+2DI2)E + AE2, Sv = 2η ˙E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (11) Thermodynamic consistency (3) is ensured provided that the dissipation D = 2W v is non-negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In fact, the present dissipation potential W v is a homogeneous function of degree two with respect to ˙E (Maugin, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A sufficient condition for the restriction D ≥ 0 to be always satisfied is that the viscosity η is non-negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 3 3 Plane shear waves 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1 Nonlinear viscous wave equation Similarly to Destrade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2013), we consider simple shear deformations described by the displacement field u = [u,0,0]⊺ where u = u(z,t) denotes the particle displacement along the x-direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Thus, the deformation gradient tensor reads F = � � 1 0 γ 0 1 0 0 0 1 � �, (12) where γ = ∂u/∂z is the shear strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The velocity field takes the form v = [v,0,0]⊺ where v = ∂u/∂t is the shear velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In the equation of motion ρ ˙v = DivP, the relevant first Piola–Kirchhoff stress component P13 is deduced from the expression of the elastic and viscous parts Pe 13 = µγ+Γγ3 and Pv 13 = η(1+2γ2) ˙γ, where only terms up to order γ3 have been kept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The non-negative constant Γ = µ+ A/2+D is a parameter of nonlinearity (Zabolotskaya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Hence, upon division by the shear modulus µ, the x-component of the equation of motion produces the nonlinear wave equation 1 c2 ∂2u ∂t2 = ∂2u ∂z2 + 2 3β ∂ ∂z �∂u ∂z �3 +τ ∂ ∂z �� 1+2 �∂u ∂z �2� ∂2u ∂z∂t � , (13) describing transverse wave propagation along the z-direction, where we have introduced the notations c = � µ ρ , β = 3 2 Γ µ, τ = η µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (14) Spatial differentiation of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (13) allows to write a similar wave equation for the strain 1 c2 ∂2γ ∂t2 = ∂2γ ∂z2 + 2 3β ∂2 ∂z2 γ3 +τ ∂2 ∂z2 �� 1+2γ2� ∂γ ∂t � , (15) which will be used later on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' According to the wave equations (13)-(15), shear waves of infinitesimal amplitude propagate at the shear wave speed c = � µ/ρ in the absence of nonlinearity and viscosity (β = 0, τ = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Typically, this sound velocity equals c ≈ 2 m/s in gels (Jacob et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 2007), whereas β ≈ 10 and τ ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='12 ms at a loading frequency of 100 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Here, we have obtained the same wave equations than those derived in Destrade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2013) for the particular bulk viscosity ζ = 2 3η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Note in passing the presence of a nonlinear viscous term which is absent in Zabolotskaya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2 Slow scale approximations Similarly to Zabolotskaya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2004) and Pucci et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2019), we proceed now to a reduction of the above wave equa- tion (13) for one-way wave propagation with slowly varying profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' We present two approximations based either on a slow space variable or a slow time variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Slow space Let us follow the scaling procedure in Zabolotskaya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' For this purpose, we introduce the following scaling defined by the change of variables {˜z = ϵ2z, ˜t = t − z/c,u = ϵ ˜u}, where ϵ is a small parameter and ˜u = ˜u(˜z, ˜t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Furthermore, we assume that τ is of order ϵ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Note that this set of assumptions corresponds to a slowly- varying profile in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' This Ansatz is then substituted in the equation of motion (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' At leading (cubic) order in ϵ, the motion of soft viscous solids is governed by the scalar equation ϵ3c ∂2 ˜u ∂˜z∂˜t = ϵ3 β c2 �∂ ˜u ∂˜t �2 ∂2 ˜u ∂˜t2 +ϵτ 2 ∂3 ˜u ∂˜t3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (16) Transforming back to the initial displacement u and physical coordinates (z,t) leads to a reduced wave equation c ∂v ∂z + � 1−βv2/c2� ∂v ∂t = τ 2 ∂2v ∂t2 , (17) for the velocity v = ∂u/∂t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 1The wave equation proposed by Catheline et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2003) and analysed by Jordan and Puri (2005) cannot be obtained rigorously from the equations of motion unless time derivatives are (questionably) replaced by spatial derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 4 Up to the choice of time variable used here (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', the physical time t instead of the retarded time ˜t), the partial differential equation (17) is identical to the cubic Burgers-type equation of Zabolotskaya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' However, the underlying modelling assumptions are not equivalent, since the initial wave equation (13) includes the extra nonlinear viscosity term 2τ∂(γ2 ˙γ)/∂z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' This additional term is lost in the rescaling procedure given that it is of higher order in ϵ than the leading-order viscous term τ∂ ˙γ/∂z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In the end, while the modelling efforts by Destrade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2013) aimed at enforcing objectivity lead to a slight modification of the wave equation (more precisely, the addition of a nonlinear viscous term), they do not induce any modification of the transport equation (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Slow time For later comparisons, let us derive a similar Burgers-type equation governing the evolution of the strain instead of the velocity by following Pucci et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' To do so, we introduce the slow-time scaling based on the change of variables {˜t = ϵ2t, ˜z = z −ct,u = ϵ ˜u} where ϵ is a small parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Proceeding in a similar fashion to above, we end up with the nonlinear transport equation ∂γ ∂t +c � 1+βγ2� ∂γ ∂z = τc2 2 ∂2γ ∂z2 , (18) where γ = ∂u/∂z is the shear strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Here too, after keeping leading order terms, we have transformed back to the initial physical coordinates (z,t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Therefore, the above partial differential equation may be viewed as a one-way ap- proximation of the wave equation (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Their travelling wave solutions are compared in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 4 Travelling wave solutions 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1 Nonlinear viscous wave equation Let us seek travelling wave solutions to the wave equation (15), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' specific smooth waveforms that propagate at a constant velocity with a steady profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In a similar fashion to Destrade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2013), we first introduce the following rescaled dimensionless variables and coordinates g(¯z, ¯t) = � 2 3βγ(z,t), ¯t = t/τ, ¯z = z/(cτ), (19) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (15), such that ∂2g ∂¯t2 = ∂2g ∂¯z2 + ∂2 ∂¯z2 g 3 + ∂2 ∂¯z2 �� 1+ 3 β g 2 � ∂g ∂¯t � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (20) Next, we seek travelling wave solutions of the form g = � ν2 −1G(ξ) where ξ = (ν2 − 1)(¯t − ¯z/ν) involves the dimen- sionless wave velocity ν ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Injecting this Ansatz in the above partial differential equation and integrating twice with respect to ξ with vanishing integration constants yields a nonlinear differential equation for the strain: G = G3 + � 1+αG2� d dξG, (21) where α = 3(ν2 −1)/β is a parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' From the above differential equation, one observes that travelling wave solutions to the wave equation (15) should connect the equilibrium strains G = 0 and G = ±1 by following a smooth transition that depends on the parameter α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Solutions read (Destrade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 2013) ξ = −ln � 1 2G �4 3(1−G2) � 1+α 2 � (22) in implicit form, where we have enforced G(0) = 1/2 without loss of generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Illustrations are provided later on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2 Slow time approximation In a similar fashion, let us now seek travelling wave solutions to the reduced wave equation (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Thus, we first perform the substitutions (19) to get ∂g ∂¯t + ∂ ∂¯z � g + 1 2 g 3 � = 1 2 ∂2g ∂¯z2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (23) In order to obtain wave solutions that correspond to the same strain values at infinity as in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1, we introduce a slightly different scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Indeed, let us inject the Ansatz g = � ν2 −1G(χ) with χ = (ν2 − 1)(ϑ¯t − ¯z) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (23), where ϑ = 1+ 1 2(ν2 −1) is the new dimensionless velocity (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Thus, we arrive at the differential equation G = G3 + d dχG (24) 5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='5 2 ν ϑ Figure 1: Scaled velocity ϑ = 1+ 1 2(ν2 −1) for the ‘slow-time’ reduced model in terms of the scaled velocity ν for the full wave equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' of which the strain values 0 and 1 are steady states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Enforcing the initial value G = 1/2 at χ = 0 gives G = 1 � 1+3e−2χ , (25) which does not involve any extra parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' One observes that this expression corresponds to the case α = 0 in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (21)-(22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' One might proceed in a similar fashion with the Burgers-type equation (17) corresponding to the slow space approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Similarly to (19), we perform the substitutions r(¯z, ¯t) = � 2β/3v(z,t)/c in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (17) to get ∂r ∂¯z + ∂ ∂¯t � r − 1 2r 3 � = 1 2 ∂2r ∂¯t2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (26) Next, we introduce r = � ν2 −1V (ψ) where ψ = (ν2 −1)(¯t − ¯z/κ) involves the dimensionless velocity κ defined by the relationship κ−1 = 1− 1 2(ν2 −1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' This way, we obtain the same differential equation V = V 3 + d dψV for the dimension- less velocity V as previously for the strain (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Therefore, within the scope of the present study, the slow time and slow space approximations lead to related travelling wave solutions that describe the evolution of distinct kinematic variables (strain and velocity, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='3 Comparison Let us compare the solutions (22)-(25) obtained for the full wave equation (15) and the one-way model (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' First, one observes that these travelling waves of same amplitude do not propagate at the same speed, as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Indeed, given the expression of ϑ, we can express the relative error E = ϑ/ν−1 on the scaled velocity as a function of ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' To ensure that the latter remains less than 5% (respectively 1%), we obtain the requirement ν ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='3 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' ν ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1) marked by dotted lines in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Now, let us observe that for a unit kink covering the range 0 ≤ G ≤ 1, the corresponding shear strains satisfy 0 ≤ γ ≤ � α/2 (27) where α = 3(ν2 − 1)/β was introduced earlier on, see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In other words, the coefficient α in the differential equation (21) is related to the maximum strain of travelling waves, and these bounds are valid for both models at hand due to application of the rescaling procedure (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Thus, restrictions of the wave speed ν can be expressed in terms of the strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' To ensure that the velocity error E remains less than 5% (respectively 1%), we therefore require γ � β ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='0 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' γ � β ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='56).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Note that the parameter of nonlinearity can take such values as β ≈ 10 for gels (Jacob et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Therefore, the slow scale approximation has a very restricted validity for such a soft viscoelastic material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' This property is further illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 2, where we have represented the evolution of the relative velocity ν−1 (or ϑ−1) in terms of the maximum strain amplitude, both for the full wave equation and its one-way approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' According to the expression of α above, we have the relationship ϑ−1 = 1 3β( � α/2)2 in the case of the one-way approx- imate model, which produce lines of slope two in log-log coordinates (dashed lines in the figure).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' However, for the full wave equation, this relationship between the wave speed ν and the strain amplitude is not satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' For fixed values of the nonlinearity parameter β, differences between the one-way model and the full wave equation become visible at large strains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 3, we display the evolution of the waveforms (22)-(25) in terms of the scaled coordinates ξ, χ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In the case of the full wave equation (21), the parameter α takes the values {0,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2,3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' It appears that the waveforms so-obtained follow a drastically different evolution when parameters are modified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In particular, the wavefront deduced from the full wave equation (solid lines) does not exhibit the same invariance and symmetry properties as the wavefront deduced from the one-way model (dashed line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 6 10−1 100 10−3 10−2 10−1 100 β = 3 β = 1 Strain amplitude Relative velocity one-way wave eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Figure 2: For the full wave equation (solid line) and the ‘slow-time’ reduced model (dashed line), we represent the evolution of the relative velocity ν − 1 (respectively, ϑ − 1) in terms of the strain amplitude � α/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The axes have a logarithmic scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' −2 0 2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='5 1 α ξ, χ G wave eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' one-way Figure 3: Steady waveforms deduced from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (22)-(25) for increasing values of the parameter 0 ≤ α ≤ 3 (arrow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Evolution of the scaled shear strain G in terms of the related dimensionless coordinate ξ or χ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 7 5 Simple waves In the lossless case, exact one-way wave equations can be derived by using the method of Riemann invariants, see for instance the introductory example by John (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Such particular wave solutions called simple waves keep one Riemann invariant constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In other words, the particle velocity v = R−−Q(γ) withQ(γ) = c �γ 0 � 1+2βg 2 dg depends explicitly on the strain γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The scalar R− is an arbitrary constant, for instance R− ≡ 0 in some specific boundary-value problems (Berjamin and Chockalingam, 2022), which will be assumed satisfied from now on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Spatial differentiation of the velocity then produces ∂γ ∂t +c � 1+2βγ2 ∂γ ∂z = 0, (28) where we have used the equality of mixed partials ∂v/∂z = ∂γ/∂t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Obviously, the lossless one-way wave equation (18) with τ = 0 is an approximation of (28) for 2βγ2 ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Let us analyse this requirement in a more quantitative manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' To ensure that the relative error on the advection velocity E = 1+a � 1+2a −1 for a = βγ2 remains less than 5% (respectively 1%), we obtain the requirement a ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='44 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' a ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Application of the square root leads to the restriction γ � β ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='66 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' γ � β ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='40) which is slightly more constraining than in the case of viscoelastic travelling waves (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Along a simple wave, computation of the partial derivative of the velocity v = R− −Q(γ) with respect to time pro- duces c ∂v ∂z + � 1+2βγ2�−1/2 ∂v ∂t = 0, (29) where the strain γ = Q−1(−v) can be expressed formally as a function of the velocity, despite no analytical expression of the inverse function Q−1 of Q is known in the present case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' If |v| is small, then we can use the approximation γ ≃ −v/c of the strain which follows from the asymptotic equivalence of Q ∼ cγ at small strains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Next, the (·)−1/2- factor in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (29) can be approximated by the polynomial expression 1−βγ2 as long as 2βγ2 ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' This way, we have shown that the one-way wave equation (17) is an approximation of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (29) obtained for R− = 0 and 2βv2/c2 ≪ 1 in the elastic limit τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' This observation is consistent with the discussions in Catheline et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In summary, the lossless ‘slow-space’ and ‘slow-time’ reductions (17)-(18) with τ = 0 are approximate governing equations for simple waves with small values of βv2/c2 and of βγ2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 6 Conclusion For a specific strain-rate viscoelasticity theory of soft solids, we have shown that one-way approximate wave propaga- tion models produce significantly different travelling wave solutions than the full equations of motion as soon as the wave amplitude is not infinitesimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Similar observations are reported in the literature in relation with shear shock formation (Berjamin and Chockalingam, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In the elastic limit, we have examined the validity of one-way approx- imations in relation with simple wave theory, thus leading to dedicated criteria of validity involving small velocity and strain amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' We conclude that these approximations should be used with care given their limited accuracy, in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Nevertheless, they might remain useful for the interpretation of experimental results where their validity is not always severely penalised (Catheline et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 2003, 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Acknowledgments The author is grateful to Michel Destrade (Galway, Ireland) for support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement TBI-WAVES — H2020- MSCA-IF-2020 project No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 101023950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A Consequence of incompressibility This Appendix is devoted to the derivation of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' We start with the Cayley–Hamilton identity for the right Cauchy– Green tensor C = F ⊤F, which reads C 3 −I C 2 +II C −III I = 0, (30) where I, II, III are the principal invariants of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In the case of volume-preserving motions (1), the tensor C is uni- modular, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' we have III = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Next, multiplication of (30) by C −1 ˙E on the right side, substitution of C = I + 2E and computation of the trace entails the relationship (I4 +4I7 +4I8)−(3+2I1)(I4 +2I7) +(3+4I1 +2I 2 1 −2I2)I4 = 0, (31) 8 where we have used the incompressibility property trD = tr(C −1 ˙E) = 0, the definition of the invariants (2)-(6), and the relationship between I, II and the invariants Ik used here (Destrade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Rearranging terms, we get the desired identity (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' References S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Antman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Physically unacceptable viscous stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 49(6):980–988, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1007/s000330050134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Some open problems in elasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' In P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Newton, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Holmes, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Weinstein, editors, Geometry, Mechanics, and Dynamics, pages 3–59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Springer, New York, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1007/0-387-21791-6_1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Berjamin and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Chockalingam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Shear shock formation in incompressible viscoelastic solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Wave Motion, 110: 102899, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='wavemoti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='102899.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Berjamin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Destrade, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Parnell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' On the thermodynamic consistency of quasi-linear viscoelastic models for soft solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 111:103648, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='mechrescom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='103648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Catheline, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Gennisson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Tanter, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Fink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Observation of shock transverse waves in elastic media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 91(16):164301, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='164301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Catheline, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Gennisson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Tanter, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Fink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Erratum: Observation of shock transverse waves in elastic media [Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 91, 164301 (2003)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 95(13):139902, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='139902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Cormack and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Hamilton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Plane nonlinear shear waves in relaxing media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Acoust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 143(2):1035– 1048, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1121/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='5023394.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Destrade, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Gilchrist, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Murphy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Onset of nonlinearity in the elastic bending of blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 77(6), 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1115/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='4001282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Destrade, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Saccomandi, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Vianello.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Proper formulation of viscous dissipation for nonlinear waves in solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Acoust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 133(3):1255–1259, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1121/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='4776178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Hamilton and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Blackstock, editors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Nonlinear Acoustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Academic Press, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Holzapfel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Nonlinear Solid Mechanics: A Continuum Approach for Engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' John Wiley & Sons Ltd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', Chich- ester, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Jacob, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Catheline, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Gennisson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Barrière, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Royer, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Fink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Nonlinear shear wave interaction in soft solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Acoust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 122(4):1917–1926, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1121/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2775871.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' John.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Delayed singularity formation in solution of nonlinear wave equations in higher dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 29(6):649–682, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1002/cpa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='3160290608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Jordan and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Puri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A note on traveling wave solutions for a class of nonlinear viscoelastic media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A, 335(2-3):150–156, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='physleta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='058.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Maugin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' The Thermomechanics of Nonlinear Irreversible Behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' World Scientific Publishing, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1142/3700.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Naugolnykh and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Ostrovsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Nonlinear Wave Processes in Acoustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Cambridge University Press, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Nazarov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Kiyashko, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Radostin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Stationary waves in a bimodular rod of finite radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Wave Motion, 75: 72–76, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='wavemoti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Pioletti and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Rakotomanana.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Non-linear viscoelastic laws for soft biological tissues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A-Solids, 19 (5):749–759, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1016/S0997-7538(00)00202-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Pucci, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Saccomandi, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Vergori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Linearly polarized waves of finite amplitude in pre-strained elastic materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A, 475(2226):20180891, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1098/rspa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='0891.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Radostin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Nazarov, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Kiyashko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Propagation of nonlinear acoustic waves in bimodular media with linear dissipation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Wave Motion, 50(2):191–196, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='wavemoti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Saccomandi and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Vianello.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Shear waves in a nonlinear relaxing media: A three-dimensional perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Acoust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 149(3):1589–1595, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1121/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='0003605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Witham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Linear and Nonlinear Waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' John Wiley & Sons, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1002/9781118032954.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Zabolotskaya, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Hamilton, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Ilinskii, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Meegan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Modeling of nonlinear shear waves in soft solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Acoust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=', 116(5):2807–2813, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1121/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content='1802533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} +page_content=' 9' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQflQTp/content/2301.03284v1.pdf'} diff --git a/1NFAT4oBgHgl3EQfCxwU/content/tmp_files/2301.08411v1.pdf.txt b/1NFAT4oBgHgl3EQfCxwU/content/tmp_files/2301.08411v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..0b80cd1a1ffb5e84d2c1016b6973a989fd81f102 --- /dev/null +++ b/1NFAT4oBgHgl3EQfCxwU/content/tmp_files/2301.08411v1.pdf.txt @@ -0,0 +1,2104 @@ +1 +Can Continuous Aperture MIMO Achieve Much +Better Performance than Discrete MIMO? +Zhongzhichao Wan, Jieao Zhu, and Linglong Dai, Fellow, IEEE +Abstract—The concept of continuous-aperture multiple- +input multiple-output (CAP-MIMO) technology has been +proposed recently, which aims at achieving high spectrum +density by deploying extremely dense antennas or even +continuous antennas in a given aperture. The fundamental +question of CAP-MIMO is whether it can achieve much +better performance than the traditional discrete MIMO +system. In this paper, to model the CAP-MIMO, we use self- +adjoint operators to depict the structural characteristics of +the continuous random electromagnetic fields from physical +laws. Then, we propose a non-asymptotic performance +comparison scheme between continuous and discrete MIMO +systems based on the analysis of mutual information. We +show the consistency of the proposed scheme by proving +that the mutual information between discretized transceivers +converges to that between continuous transceivers. Numeri- +cal analysis verifies the theoretical results, and suggests that +the mutual information obtained from the discrete MIMO +with widely adopted half-wavelength spaced antennas al- +most achieves the mutual information obtained from CAP- +MIMO. +Index Terms—Multiple-input multiple-output (MIMO), +Continuous-aperture MIMO (CAP-MIMO), mutual infor- +mation, random fields, Fredholm determinant. +I. INTRODUCTION +The spectrum efficiency of wireless communication +systems has been greatly improved from 3G to 5G +because of the use of multiple-input multiple-output +(MIMO) technology [1]–[3]. The MIMO systems utilize +multiple antennas to exploit the spatial multiplexing gain +[4], where the antennas are modeled as discrete points +in the continuous space. Along with the tendency of +increasing the number of antennas to achieve higher +spectrum efficiency, people are considering deploying +extremely dense antennas in a given aperture [5], [6]. +When the number of antennas in a given aperture tends to +infinity, the traditional MIMO systems with transceivers +composed of discrete point antennas are equivalent +to the MIMO systems with continuously controllable +transceivers. Therefore, the MIMO with extremely dense +All authors are with the Department of Electronic Engineer- +ing, Tsinghua University as well as Beijing National Research +Center +for +Information Science +and +Technology +(BNRist), Bei- +jing 100084, China (E-mails: {wzzc20, zja21}@mails.tsinghua.edu.cn; +daill@tsinghua.edu.cn). +This work was supported in part by the National Key Research +and Development Program of China (Grant No. 2020YFB1807201), in +part by the National Natural Science Foundation of China (Grant No. +62031019). +antennas is called continuous-aperture MIMO (CAP- +MIMO), and is also called holographic MIMO [7]–[9] +or large intelligent surface [5], [10] in the recent litera- +ture1. It has attracted increasing interest in the research +of MIMO technology. Recent works about CAP-MIMO +include pattern optimization [6], antenna design [11], +channel estimation [7], and so on. For CAP-MIMO, the +fundamental question is whether the CAP-MIMO system +can achieve much better performance than the traditional +discrete MIMO system. +A. Related works +The structure of CAP-MIMO has been defined in the +previous part but there are many structures for realizing +the discrete MIMO. Therefore, we need to choose which +structure of the discrete MIMO to compare with CAP- +MIMO. A representative structure of discrete MIMO +uses half-wavelength spaced antennas to compose the +transceivers [12]–[14], because half-wavelength sampling +of the electromagnetic field can reconstruct the original +field according to the sampling theorem. +There have been several works discussing the per- +formance comparison between CAP-MIMO and discrete +MIMO with half-wavelength spaced antennas. The perfor- +mance comparison is from the degrees of freedom (DoF) +perspective. Specifically, when discarding the evanescent +wave components, the Fourier transform of the received +field, which is in the wavenumber domain, is concentrated +in a circle or a segment. This concentration phenomenon +means that the field is bandlimited in the wavenumber +domain, thus it can be perfectly recovered from the half- +wavelength sampling points in the spatial domain [15] +according to the Nyquist sampling theorem [16]. The +above conclusion is based on the assumption that we can +observe the received field in the infinitely large spatial +domain. However, in practice, the destination where we +can observe the field is in a finitely large aperture. +For a rigorous analysis framework of the DoF in a +finitely large aperture, the prolate spheroidal wave func- +tion (PSWF) [17] is introduced to perform orthogonal +expansion on the electromagnetic field. Specifically, to +1The MIMO with extremely dense antennas can be accurately de- +scribed by the name CAP-MIMO, while holographic MIMO and large +intelligent surface do not focus on the continuity of the transceiver +apertures. Therefore, in the rest part of the paper, we will prefer using +the name CAP-MIMO rather than using other names like holographic +MIMO. +arXiv:2301.08411v1 [cs.IT] 20 Jan 2023 + +2 +reconstruct the wavenumber-bandlimited electromagnetic +field observed in a length-l spatial region, the PSWFs +were used as the basis based on the Slepian’s concentra- +tion problem [18]. Such an electromagnetic field can be +perfectly reconstructed from infinite number of PSWFs, +and approximately reconstructed from a finite number +of PSWFs. If the reconstruction error can be controlled +within a given threshold by using N0 PSWFs, the number +of DoFs of the field can be approximated by N0 [19]. +This analyzing scheme is strict for arbitrary l, but can +only provide the asymptotic result of the DoF, i.e., the +quantitative result of N0 can be obtained only when +the length l or the frequency tends to infinity. However, +the practical systems are with finitely large aperture and +finite frequency. The asymptotic result can not provide +quantitative number of DoFs for practical systems. There- +fore, a non-asymptotic performance comparison scheme +between CAP-MIMO and discrete MIMO is required for +the accurate performance comparison with finitely large +apertures. +B. Our contributions +To solve this problem, in this paper, we provide a non- +asymptotic performance comparison scheme between +CAP-MIMO and discrete MIMO, and we further prove +the rationality of the scheme2. Specifically, the contribu- +tions of this paper can be summarized as follows: +• We build models of CAP-MIMO and discrete MIMO +based on electromagnetic theory. For CAP-MIMO +with continuous transceivers, we model the structural +characteristics of the continuous random electro- +magnetic fields from physical laws by using self- +adjoint operators. Based on this model, we can +utilize the spectrum theory of operators to derive the +information that can be obtained from the received +field. The existing models of MIMO with discrete +transceivers are spatially discretized from the contin- +uous model. Moreover, signal-to-noise ratio (SNR) +control schemes are introduced to ensure the fairness +of the comparison between CAP-MIMO and discrete +MIMO. +• Then, before comparing the performance between +CAP-MIMO with continuous transceivers and tra- +ditional MIMO with discrete transceivers, we first +utilize the simplified model with continuous trans- +mitter and discrete receiver. Under this simplified +model, the transmitter is continuous, which is the +same as that in the CAP-MIMO system. By theo- +retically analyzing the mutual information that can +be obtained from the discrete receiver in this sim- +plified model, we can obtain some insights about +how the discretization of the receiver affects the +mutual information. Moreover, the theoretical proof +2Simulation +codes +will +be +provided +to +reproduce +the +re- +sults in this paper: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/ +publications.html. +of the convergence of the mutual information in the +simplified model can inspire the analysis of a more +practical scenario, i.e., the discrete transceivers. +• Finally, we extend the convergence proof from the +model with discrete receiver to the model with +discrete transceiver. We prove that the mutual in- +formation between the discrete transceivers con- +verges to the mutual information between continuous +transceivers when the number of antennas of the +discretized transceivers tends to infinity. Therefore, +the fairness of the performance comparison is guar- +anteed. Numerical results are provided to verify the +theoretical analysis. Moreover, it shows the near- +optimality of the half-wavelength sampling of the +transceivers in traditional discrete MIMO. +C. Organization and notation +Organization: The rest of our paper is organized as +follows. Section. II introduces the basic model of EIT and +proposes models with continuous or discrete transceivers. +The mutual information between the transceivers is also +derived. Section. III proves the convergence of the mutual +information between continuous transmitter and discrete +receiver when the number of discrete antennas increases. +Then, the convergence of the mutual information between +discrete transceivers is illustrated in Section IV. Finally, +we conclude the paper in Section V. +Notation: bold characters denote matrices and vectors; +j is the imaginary unit; E [x] denotes the mean of random +variable x; x∗ denotes the conjugation of a number or +a function x; XH denotes the conjugate transpose of +a vector or a matrix X; µ0 is the permeability of a +vacuum, Z0 is the free-space intrinsic impedance and +c is the speed of light in a vacuum; ∇ is the nabla +operator, and ∇× is the curl operator; |φ⟩ is the quantum +mechanical notation of a function φ, where the inner +product is denoted by ⟨ψ| φ⟩; det(·) denotes the matrix +determinant or the Fredholm determinant; tr(·) denotes +the trace of a matrix or an operator. Im denotes the m×m +identity matrix, 1 denotes the indentity operator, δ(x) +denotes the delta function, and 1i=j denotes the indicator +function; |x| denotes the modulus of a complex variable, +and ∥f(x)∥L∞(a,b) is the uniform norm of the function +f(x) over the interval [a, b]. C∞(K) denotes the set of +smooth functions supported on a compact set K. +II. MODELS OF CONTINUOUS AND DISCRETE +SYSTEMS +In this section, we introduce the models of contin- +uous and discrete systems for performance comparison +between CAP-MIMO and discrete MIMO. We control +the SNR at the receiver side to ensure the fairness of the +comparison. The information obtained from these models +is derived from operators and matrices. + +3 +A. Basic model of electromagnetic information theory +To model the transceivers and the channel, we follow +the approach of electromagnetic information theory (EIT). +The EIT is an interdisciplinary subject that integrates the +classical electromagnetic theory and information theory to +build an analysis framework for the ultimate performance +bound of wireless communication systems [20]. The anal- +ysis framework of EIT is based on spatially continuous +electromagnetic fields, which provides us the tool to +model and analyze the continuous transceivers. Then, for +the consistency, the model of discrete transceivers are +viewed as the discretization of the continuous model from +EIT. +The model of EIT is built on the vector wave equa- +tion [21] without boundary conditions, which is expressed +by +∇×∇×E (r)−κ2 +0E (r) = jωµ0J (r) = jκ0Z0J (r) , (1) +where κ0 = ω√µ0ε0 is the wavenumber, and Z0 = +µ0c = 120π [Ω] is the free-space intrinsic impedance. +We assume that the transceivers are confined in two +regions Vs and Vr, separately. The current density at the +source is J(s), where s ∈ R3 is the coordinate of the +source. The induced electric field at the destination is +E(r), where r ∈ R3 is the coordinate of the field observer. +To solve the linear partial differential equation (1), a +general theoretical approach is to introduce the dyadic +Green’s function G(r, s) ∈ C3×3. According to the +linearity of (1), the electric field E(r) can be expressed +by +E(r) = +� +Vs +G(r, s)J(s)ds, +r ∈ Vr. +(2) +By exploiting the symmetric properties of the free space, +the Green’s function in unbounded, homogeneous medi- +ums at a fixed frequency point is [22] +G(r, s) = jκ0Z0 +4π +� +I + ∇r∇H +r +κ2 +0 +� ejκ0∥r−s∥ +∥r − s∥ += jκ0Z0 +4π +ejκ0∥r−s∥ +∥r − s∥ +� +� +I − ˆpˆpH� ++ +j +2π ∥r − s∥ /λ +� +I − 3ˆpˆpH� +− +1 +(2π ∥r − s∥ /λ)2 +� +I − 3ˆpˆpH� +� +[Ω/m2], +(3) +where ˆp = +p +∥p∥ and p = r − s. +Since there are some non-ideal factors at the receiver +that corrupts the recieved field, we call them the noise +field N(r). The received electric field can be expressed +by Y(r) = E(r) + N(r). The above equations represent +the deterministic model in the electromagnetic theory. To +satisfy the demand of wireless communication, we need +to convey information through the electromagnetic field. +Specifically, the wireless communiation system encodes +the information in the current J(s), and decodes the +information from the noisy electric field Y(r). Due to +the randomness of the transmitted bit source, the electro- +magnetic fields are randomly excited by the transmitter +equipments before being radiated into the propagation +media. Therefore, the electromagnetic fields should be +modeled as random fields [23], which are random func- +tions with several arguments. We denote the autocorre- +lation function of the current and the electric field as +matrix-valued functions RJ(s, s +′) = E[J(s)JH(s +′)] and +RE(r, r +′) = E[E(r)EH(r +′)]. The relationship between +RJ and RE is determined by the Green’s function, which +is +RE(r, r′) = +� +Vs +� +Vs +G(r, s)RJ(s, s′)GH(r, s)dsds′. +(4) +Similar definitions of the autocorrelation functions for +the noise field and the noisy electric field are repre- +sented as RN(r, r +′) = E[N(r)NH(r +′)] and RY(r, r +′) = +E[Y(r)YH(r +′)]. +B. Continuous trasceivers +In this part, we will build the model of CAP-MIMO +with continuous transceivers based on the EIT model +in the above subsection, and then derive the mutual +information between the continuous transceivers. For sim- +plicity, in the rest part of the paper, we assume that the +transceivers are linear along the ˆz-direction. Moreover, +since the current J can only exist on the linear source +and we only observe the electric field on the linear +receiver, we express all the physical quantities in a +Cartesian coordinate system that satisfies s = (0, 0, s) and +r = (d, 0, r), where d is the distance between the parallel +source and destination line. This model corresponds to +single-polarized linear antennas. Through this simplifica- +tion scheme, we use J(s) and E(r) instead of J(s) and +E(r). The relationship between them can be expressed by +E(r) = +� l +0 G(r, s)J(s)ds, where G(r, s) is the upper left +element of the matrix G(r, s). We can derive G(r, s) as +G(r, s) =jZ0ej2π +√ +x2+d2/λ +2λ +√ +x2 + d2 +� +j +2π +√ +x2 + d2/λ +d2 − 2x2 +x2 + d2 ++ +d2 +x2 + d2 − +1 +(2π/λ)2(x2 + d2) +d2 − 2x2 +x2 + d2 +� +, +(5) +where x = r − s and λ = 2π/κ0 is the wavelength. +Here we consider the scenario with no channel state +information, which means that the signals on the source +are under equal power allocation. The second moments +(autocorrelation) of J are denoted by RJ(s, s′) = Pδ(s− +s′), s, s′ ∈ [0, l]. +Since the noiseless received field is uniquely deter- +mined by the source and the deterministic channel, the +autocorrelation function of the electric field is expressed + +4 +by the source autocorrelation RJ(s, s′) and the Green’s +function G(r, s), written as +RE(r, r′) = +� l +0 +� l +0 +G(r, s)RJ(s, s′)G∗(r′, s′)dsds′ += P +� l +0 +G(r, s)G∗(r′, s)ds. +(6) +The received field on the destination is Y (r) += +E(r) + N(r), where N(r) is the noise field at the +receiver. In this paper, we consider thermal noise model +E [N(r)N ∗(r′)] = +n0 +2 δ(r − r′). According to [24], we +can perform Mercer expansion on the electric field E(r) +to obtain a set of mutually independent random variables +ξk. The expansion can be written as E(r) = � +k ξkφk(r), +where E[ξkiξ∗ +kj] = λki1i=j and ⟨φki(r), φkj(r)⟩ = δkikj. +This expansion scheme has split the continuous field +into independent components. Since the white noise field +can be expanded under arbitrary orthogonal bases, the +continuous channel is also decomposed into independent +subchannels, which makes the mutual information of the +subchannels summable. +Next we will show that for the operator TE := φ(r) → +� l +0 KE(r, r′)φ(r′)dr′, where KE(r, r′) = RE(r, r′) = +P +� l +0 G(r, s)G∗(r′, s)ds, all of its eigenvalues are real +and nonnegative. Moreover, the sum of its eigenval- +ues �∞ +i=1 λi equals P +� l +0 +� l +0 G(r, s)G∗(r, s)drds. Notice +that TE can be decomposed to T ∗T, where T +:= +φ(r) → +√ +P +� l +0 G(r, s)φ(r)ds and T ∗ +:= φ(r) → +√ +P +� l +0 G∗(r, s)φ(r)ds. This decomposition means that +TE = T ∗ +E is a self-adjoint operator. We assume that λ +is an eigenvalue of TE and φ(r) is the corresponding +eigenfunction. Since +λ = λ⟨φ(r), φ(r)⟩ = ⟨T ∗ +Eφ(r), φ(r)⟩ += ⟨φ(r), TEφ(r)⟩ = λ∗, +(7) +we know that λ is real. From +λ = λ⟨φ(r), φ(r)⟩ = ⟨T ∗Tφ(r), φ(r)⟩ += ⟨Tφ(r), Tφ(r)⟩ ⩾ 0, +(8) +we know that λ is nonnegative. +From [25] we know that an integral operator on [a, b] +is a trace class operator if its kernel K(x, y) satisfies +K(x, y) and ∂yK(x, y) are continuous on [a, b]2. There- +fore TE is a trace class operator, which means that the +sum of its eigenvalues is finite and can be expressed +by [26] +tr(TE) = +� l +0 +KE(r, r)dr = P +� l +0 +� l +0 +G(r, s)G∗(r, s)drds. +(9) +Corollary 1. The non-negative values +λk +n0/2 represent +the SNR of the independent subchannels. The mutual +information between the noisy received field and the +current on the source can be expressed by +I0(J; Y ) = ++∞ +� +k=1 +log +� +1 + +λk +n0/2 +� +. +(10) +By introducing the Fredholm determinant which is the +determinant of operators, we can express (10) by +I0(J; Y ) = log det +� +1 + TE +n0/2 +� +, +(11) +where (TEφ)(r) := +� L +0 RE(r, r′)φ(r′)dr′ and λk are the +eigenvalues of TE. +Remark 1. Our analysis here is based on the sim- +plified model with uni-polarized linear antennas as the +transceiver. This simplification reduces the dimension of +the problem, where random fields degenerate to one- +dimensional random processes. For the more general +scenarios, such analyzing schemes are still effective. If +the random field is defined in a region X, we can expand +E(r) by E(r) = � +k ξkΦk(r) and its autocorrelation +function RE(r, r +′) by RE(r, r +′) = � +k λkΦk(r)ΦH +k (r +′) +[27]. The expansion satisfies that λk and Φk(r) are +eigenvalues and eigenfunctions of the integral equation +� +X RE(r, r +′)Φ(r +′)dr +′ = λkΦ(r). Similar expressions of +the mutual information in (10) and (11) can be derived. +C. Continuous transmitter and discrete receiver +Before building the model with discrete transceivers, +in this subsection, we will first build a simplfied model +with continuous transmitter and discrete receiver. The +simplfied model analyzed here can bring some insights +about the discretization of both transceivers and the +SNR control schemes. For the continuous transmitter, +we still use the length-l linear transmitter along the ˆz- +direction. For the discrete receiver, we build a model +with m point antennas on a segment parallel to the +linear transmitter in the destination region. The ith point +antenna is placed on ri ∈ [0, l]. The correlation matrices +of the received signals and received noise are denoted +by K +′ +E and K +′ +N. For the received signals, we assume +that it is the sampling of the continuous electric field +on the point ri, which means that K +′ +E = KE(ri, rj). +However, for the received noise on the antenna, it can +not directly be assumed as the point sampling of the +noise field, because of the delta function. To solve this +problem, we assume that K +′ +N = +n1 +2 Im is an identity +matrix, and control the signal-to-noise ratio (SNR) of this +model the same as that of the continuous model to ensure +the fairness of the comparison. The SNR at the receiver +of the continuous model is �∞ +i=1 +λi +n0/2, where λi is the +ith eigenvalue of the operator TE. From Lemma 1 we +know that �∞ +i=1 +λi +n0/2 = +P +n0/2 +� l +0 +� l +0 G(r, s)G∗(r, s)drds +is finite. The SNR at the receiver of the discrete model is +�m +i=1 +λ +′ +i +n1/2, where λ +′ +i is the ith eigenvalue of the matrix +K +′ +E. +The SNR control scheme is necessary because if we +do not control the SNR, the mutual information that can +be obtained from the discrete antennas in the receiver +may infinitely increase. Let us take a counter-example +where the power of received signal and received noise on + +5 +each point antenna remain unchanged when the number +of antennas in a given aperture increases. For dense +antennas we can assume that N received signals of the +antennas in a small aperture are nearly the same, while +the corresponding noises are independent according to +the model. Then, the SNR for the N antennas will +keep near-linearity increasing with N, since when we +perform combing of the N received signals we have +SNR = +E[(�N +i=1 Ei)(�N +i=1 E∗ +i )] +E[(�N +i=1 Ni)(�N +i=1 N ∗ +i )] ≈ N E[E1E∗ +1 ] +E[N1N ∗ +1 ]. Therefore +the mutual information that can be obtained from the +N antennas will keep near-logarithm increasing with N, +which corresponds to the simulation in [28]. +According to (9), the noise power in the discrete +receiver model can be controlled by +n1 = n0 +�m +i=1 KE(ri, ri) +� l +0 KE(r, r)dr +. +(12) +We denote the determinant of matrix K ∈ Cm×m by +det(Ki,j)m +i,j=1. Then we can express the mutual informa- +tion between the transceivers by +I1 = log +� +det(K +′ +N + K +′ +E) +det(K +′ +N) +� += logdet +� +1i=j + KE(ri, rj) +n1/2 +�m +i,j=1 +. +(13) +Remark 2. Here the SNR on each of the point antennas in +the discrete model changes with the density of point anten- +nas. Notice that L +m +�m +i=1 KE(ri, ri) is the approximation +of the integral +� l +0 KE(r, r)dr. When m approximates +infinity, n1 will approximate mn0 +2l . This phenomenon has +several annotations, including the increase of the noise +power on each point antenna, the reduction of antenna +efficiency, and the corollary of the discretization of EIT +continuous models. +From the perspective of noise power, we can explain it +by spatial sampling. For the point antenna arrays, more +antennas on a given aperture corresponds to a higher +sampling rate in the spatial domain and a wider lowpass +filter in the wavenumber domain. Since a wide lowpass +filter can receive more noise power from the white noise +field, the noise power should increase with the density of +the antennas. +From the perspective of antenna efficiency, the well- +known Hannan’s efficiency shows that for both transmit- +ting and receiving antennas, the antenna gain is propor- +tional to lxly for two-dimensional surface antennas [29]. +Therefore, for the linear model we considered, the an- +tenna gain will be inversely proportional to the sampling +number when the antennas are dense enough. +Besides these two annotations, another perspective is +viewing the model of discrete point antennas as the +discretization from the EIT continuous model. If we +consider m linear continuous antennas instead of point +antennas in the destination region. All the antennas are +connected head to tail to occupy the [0, l] position in the +space and detect the electric field by inner producting it +with its eigenmode. This model fulfills the requirement of +discretizing the continuous receiver to discrete receiving +antennas. The signal received by the ith antenna is +Yi = +� ai+1 +ai +Y (r)φ(r)dr, where [ai, ai+1] is the occupied +region of the ith antenna, and φ(r) is the eigenmode of the +antenna. If we assume φ(r) ≡ 1, the correlation matrix +of the received electric field can be expressed by +(KE)i,j = E +�� ai+1 +ai +� aj+1 +aj +E(r)E∗(r′)drdr′ +� += (ai+1 − ai)(aj+1 − aj)KE(ri, rj), +(14) +where ri ∈ [ai, ai+1] and rj ∈ [aj, aj+1] according to +the mean value theorem for integrals. For the noise field +on the destination, we have +(KN)i,j = E +�� ai+1 +ai +� aj+1 +aj +N(r)N ∗(r′)drdr′ +� += +� +(ai+1 − ai) n0 +2 +i = j +0 +i ̸= j . +(15) +Therefore, the SNR after the discretization will discreases +by ai+1 − ai, which is the case when the antennas are +dense enough. +After explaining the rationality of the SNR control +scheme, we will introduce the following lemma to show +the convergence of the noise power on each discrete point +antenna, which will be useful for the following proofs. +Lemma 1. When the number of antennas m in a given +aperture increases, the noise power on each antenna n1/2 +will approach +mn0 +2l . The difference between them is at +most inverse-proportional to m. +Proof: From (12) and the middle point quadrature +rule, we have +���� +l +mn1 − n0 +���� = n0 +��� +� l +0 KE(r, r)dr − l/m �m +i=1 KE(ri, ri) +��� +��� +� l +0 KE(r, r)dr +��� +⩽ +n0l3 ���K +′′ +E(r, r) +��� +L∞(0,l) +24m2 +��� +� l +0 KE(r, r)dr +��� +, +(16) +which completes the proof. +D. Discrete transceivers +The models discussed in the above subsections keep +the transmitter continuous and only perform discretization +on the receiver. However, the commonly used model +to depict wireless communication is the discrete MIMO +model, in which both the transceivers are modeled as +discrete point antennas. Therefore, in this section, we +will introduce a model which discretizes the transceivers +simultaneously, which is the extension of the model with +continuous transmitter and discrete receiver. Then, similar + +6 +d +Continuous +Transmitter +Continuous +Receiver +d +Discrete +Receiver +l +/ 2 + +l +d +Discrete +Receiver +l +/ 2 + +Discrete +Transmitter +Continuous +Transmitter +0I +1I +2I +Fig. 1. Comparison between the three models in this section with continuous transceivers and the model with discrete transceivers. +to the scheme in the above subsection, we will provide the +corresponding SNR control scheme to ensure the fairness +of the comparison. +Specifically, we build a model with m point antennas +on a length-l segment in the source region and m point +antennas on a length-l segment in the destination region. +Similar to the above subsection, we assume that the ith +point antenna is placed at si in the source region and ri +in the destination region. The correlation matrix of the +signals in the source region is set to be an identity matrix +K +′′ +J = PIm, which corresponds to the power allocation +scheme with no channel state information at the transmit- +ter. The channel gain from the ith antenna in the source +region and the jth antenna in the destination region can be +expressed by Hi,j = G(si, rj). The correlation matrix of +the received signal is denoted by K +′′ +E = HK +′′ +JHH. The +noise matrix is denoted by K +′′ +N = n2 +2 Im. Similar SNR +control on the receiver side is used, which is expressed +by +n2 = n0 +�m +i=1 +�m +j=1 G(ri, sj)G∗(ri, sj) +� l +0 +� l +0 G(r, s)G∗(r, s)drds +. +(17) +The mutual information between the transceivers is ex- +pressed as: +I2 = log +� +det(K +′′ +N + K +′′ +E) +det(K +′′ +N) +� += logdet +� +1i=j + +� +k G(ri, rk)G∗(rj, rk) +n2/2 +�m +i,j=1 +. +(18) +The comparison between the three models built in Sec- +tion. II-B, Section. II-C and in this subsection is shown +in Fig. 1. In the following two sections we will introduce +the intermediate quantity I +′ +0 and I +′′ +0 to theoretically prove +that I1 and I2 converge to I0. The flow chart of the proof +is shown in Fig. 2 +III. PERFORMANCE COMPARISON BETWEEN DISCRETE +AND CONTINUOUS RECEIVERS +In the above section we have proposed the mod- +els of continuous and discrete transceivers and derived +the corresponding mutual information. Before compar- +ing the performance between CAP-MIMO with contin- +uous transceivers and traditional MIMO with discrete +transceivers, we first utilize the simplified model with +continuous transmitter and discrete receiver in this sec- +tion. Under this simplified model, the transmitter is con- +tinuous, which is the same as that in the CAP-MIMO +system. The comparison is based on the convergence +analysis of the mutual information when the number +of antennas in the discrete receiver increases. Numer- +ical analysis is provided to verify the correctness of +the convergence analysis. The discussion about discrete +transceivers inspired by the analysis in this part will be +in the next section. +A. Convergence analysis of the mutual information +To compare the mutual information I0 and I1, we intro- +duce an intermediate quantity I +′ +0 = logdet +� +1 + mTE +ln1/2 +� +. +We can bound |I0 −I1| by |I0 −I +′ +0|+|I1 −I +′ +0|. According +to [30], I1 can be viewed as the approximation of I +′ +0 +using a numerical integral scheme. In our discussion the +point antennas in the destination region are evenly spaced, +which means that ai = (i−1)l/m and ri = (i−0.5)l/m. +To bound |I1 − I +′ +0|, we introduce the following lemma +from [30]: +Lemma 2. We define d(z) := det(1+zT) and dQ(z) := +det (1i=j + wjzK(ri, rj))m +i,j=1, where K is the kernel of +the operator T. The difference between d(z) and dQ(z) + +7 +0I +' +0I +1I +2I +'' +0I +Discretize the receiver +Discretize the transmitter +Discretize the transceivers +Lemma 1 +Lemma 2 +Lemma 3 +Lemma 4 +Lemma 5 +Theorem 1 +Theorem 2 +Fig. 2. Flow chart of the proof in this paper. +is +d(z) − dQ(z) = +∞ +� +n=1 +zn +n! +� +Qn +m(Kn) +− +� +[a,b]n Kn(x1, · · · , xn)dx1 · · · dxn +� +, +(19) +where Kn(x1, · · · , xn) += +det (K(xi, xj))n +i,j=1, and +Qn +m(f) = �m +j1=1,··· ,jn=1 +�n +i=1 wjif(rj1, · · · , rjn). +Lemma 2 provides a method to compare the difference +between a Fredholm determinant of operator and a clas- +sical determinant of matrix. In our model, the operator T +corresponds to the integral operator TE, z equals 2m +ln1 ,and +wj = l/m according to the equally spaced antennas. +Notice that Qn +m(f) is the numerical approximation of +the integral +� +[a,b]n Kn(x1, · · · , xn)dx1 · · · dxn, we need +to use numerical integral theory to estiamte the approxi- +mation error. For the model with equally spaced antennas, +this expression corresponds to a multivariate m-point +composite midpoint quadrature rule. +For the error bound of a m-point composite midpoint +quadrature [31], we have +�����Qm(f) − +� l +0 +f(x)dx +����� ⩽ +l3 +24m2 ∥f +′′∥L∞(0,l) +(20) +According to [32], the numerical approximation error +for multiple integrals in a n-dimensional unit cube can be +bounded by +����� +� +Gn +f − +� n +� +i=1 +� +Qi(f) +����� ⩽ E1 + +n +� +i=2 +i−1 +� +j=1 +WjEi, +(21) +where Qj(g) := � +j wi,jg(xi,j), Wi = � +j |wi,j| and +Ei ⩾ +���Qi(f; xi) − +� 1 +0 f(x1, · · · , xn)dxi +���. According to +the models in this paper, we have wi,j = l/m and Wi = l. +By simple variation of the integral band, we can bound the +approximation error of the multi-dimensional numerical +integral quadrature rule by +�����Qn +m(Kn) − +� +[0,l]n Kn(x1, · · · , xn)dx1 · · · dxn +����� +⩽ ni−1 +n +� +i=1 +Ei, +(22) +where +Ei = +�����Qi(Kn; xi) − +� l +0 +Kn(x1, · · · , xn)dxi +����� . +(23) +Therefore, we have +�����Qn +m(Kn) − +� +[0,l]n Kn(x1, · · · , xn)dx1 · · · dxn +����� +⩽ nln+2 +24m2 |Kn|2 +(24) +where |Kn|2 = max +i ∥ ∂2Kn +∂x2 +i ∥L∞((0,l)n). +Similar to [30, Lemma A.4], we can bound |Kn|k by +using the Hadamard’s inequality, which leads to +|Kn|k ⩽ 2knn/2 +� +� max +i+j⩽k +����� +∂i +x∂j +yK(x, y) +∂xi∂yj +����� +L∞((0,l)2) +� +� +n +. +(25) +Next we will show that +��� +∂i +x∂j +yK(x,y) +∂xi∂yj +��� is upper-bounded. +Since we have K(x, y) = +� l +0 G(x, s)G∗(y, s)ds, we +will first analyze the property of G(x, s). We decom- +pose G(x, s) as G1(x, s) + jG2(x, s), where G1, G2 ∈ +C∞([0, l]2). The smoothness of G1, G2 in their domains + +8 +is trivial since they are compositions of polynomial func- +tions, trigonometric functions and square root functions. +Consider the integral kernel K(x, y) expressed in terms +of G1, G2, i.e., +K(x, y) = +� l +0 +� +G1(x, s)G1(y, s) + G2(x, s)G2(y, s) +� +ds ++ j +� l +0 +� +G1(y, s)G2(x, s) − G1(x, s)G2(y, s) +� +ds. +(26) +Since G1(x, s) and G2(y, s) are smooth in [0, l]2, +we can conclude that f1(x, y) = G1(x, s)G1(y, s) + +G2(x, s)G2(y, s) and f2(x, y) = G1(y, s)G2(x, s) − +G1(x, s)G2(y, s) are smooth in the same domain. Since +compactly supported smooth functions attain their maxi- +mum or minimum values, the partial derivatives of K(·, ·) +are upper-bounded for any order i, j, i.e., +���� +∂i+jK(x, y) +∂xi∂yj +���� < ∞, +∀i, j. +(27) +Therefore, by substituting (24) and (25) into Lemma +2, we can bound the difference between the mutual +information I +′ +0 and I1 by the following lemma: +Lemma 3. The mutual information I1 converges to the +mutual information I +′ +0. The difference +���I1 − I +′ +0 +��� is at most +inverse-proportional to m2. +Proof: From (6) we know that for the operator +TE, the kernel function can be expressed by K(x, y) = +� L +0 g(x, s)g∗(y, s)ds. From (25) we have +|Kn|2 ⩽ 4nn/2An, +(28) +where A = max +��� ∂i+jK(x,y) +∂xi∂yj +��� +L∞((0,l)2) is a constant. +Therefore we have +|d(z) − dQ(z)| ⩽ +∞ +� +n=1 +zn +n! +nln+2 +24m2 max +i +���� +∂2Kn +∂x2 +���� +L∞((0,l)n) +⩽ +∞ +� +n=1 +zn +n! +nln+2 +6m2 nn/2An. +(29) +According to the Stirling’s approximation, we have n! ⩾ +nne−n√ +2πn, which leads to +|d(z) − dQ(z)| ⩽ +l2 +6m2 +∞ +� +n=1 +� n +2π +(Aezl)n +nn/2 +. +(30) +Since it is obvious that �∞ +n=1 +� n +2π +(Aezl)n +nn/2 +is convergent, +the difference between d(z) and dQ(z) is proportional to +m−2. For the difference between mutual information I1 +and I +′ +0, we have +|I1−I +′ +0| ⩽ +|d(z) − dQ(z)| +min(d(z), dQ(z)) < +l2 +6m2 +∞ +� +n=1 +� n +2π +(Aezl)n +nn/2 +, +(31) +where z = +m +ln1/2. From Lemma 1 we know that +l +mn1 ⩾ +n0 − +n0l3���K +′′ +E(r,r) +��� +L∞(0,l) +24m2| +� l +0 KE(r,r)dr| . Therefore, z is upperbounded, +which completes the proof of Lemma 3. +According to Lemma 1 and Lemma 3, we have +Theorem 1, which bounds the difference between I0 and +I1. +Theorem 1. The mutual information I1 that can be +obtained from the discrete receiver converges to the +mutual information I0 that can be obtained from the +continuous receiver when the number of points increases. +The convergence rate is at least inverse-proportional to +the square of the sampling number m. +Proof: Since the Fredholm determinant f(z) = +det(1 + zTE) is an analytic function, we have +|det(1 + zTE) − det(1 + z1TE)| += |z − z1| +���� +∂det(1 + xTE) +∂x +���� +x∈[min(z,z1),max(z,z1)] +. +(32) +In our assumption z += +2 +n0 +and z1 += +2m +ln1 . The +analycity of det(1 + zTE) implies that +∂det(1+xTE) +∂x +is also an anlytic function and is bounded on the +interval +[min(z, z1), max(z, z1)]. +We +denote +M += +max +x +��� ∂det(1+xTE) +∂x +���, where x ∈ [min(z, z1), max(z, z1)]. +From Lemma 1 we have +���� +l +mn1 − n0 +���� ⩽ +n0l3 ���K +′′ +E(r, r) +��� +L∞(0,l) +24m2 � l +0 KE(r, r)dr +. +(33) +Since n1/m → n0/l when m approximates infinity, we +denote the minimum value of n1/m by c. Therefore, +���det(1 + +2 +n0 TE) − det(1 + 2m +ln1 TE) +��� can be bounded by +����det(1 + 2 +n0 +TE) − det(1 + 2m +ln1 +TE) +���� +⩽ +Ml2 ���K +′′ +E(r, r) +��� +L∞(0,l) +12m2c +� l +0 KE(r, r)dr +. +(34) +Similar to the direvation of (31), we know that when m +increases, I +′ +0 will converge to I0. The convergence rate +is at least inverse-proportional to m2. From Lemma 3 +we know that +���I1 − I +′ +0 +��� is at most inverse-proportional to +m2. Since |I0 − I1| ⩽ +���I0 − I +′ +0 +��� + +���I1 − I +′ +0 +���, Theorem 1 +is proved. +Remark 3. Theorem 1 shows that the SNR control +scheme between the discrete and continuous models is +appropriate, since the limit of the mutual information of +the discrete model is proved to be that of the continu- +ous model. That is to say, our proposed model is self- +consistent. Therefore, we can use the proposed model +to compare the mutual information from the discrete +and continuous receivers. Our analysis is based on + +9 +0 +50 +100 +150 +0 +20 +40 +60 +80 +100 +120 +140 +160 +180 +continuous receiver +discrete receiver +5 10 15 20 +1.5 +2 +2.5 +3 +continuous receiver +discrete receiver +Fig. 3. The mutual information as a function of the sampling number. +The transmitter is kept continuous and the receiver is discretized. +RE(r, r′) = P +� l +0 G(r, s)G∗(r′, s)ds which corresponds +to the scenario when no CSI can be obtained at the +transmitter but not limited to this scenario. It can be eas- +ily extended to other shapes of autocorrelation functions +after power allocation at the transmitter, as long as the +analyticity of RE(r, r′) is guaranteed. +B. Numerical analysis about the mutual information +As proven in the above subsection, the mutual infor- +mation between the continuous transmitter and discrete +receiver converges to the mutual information between +continuous transceivers. Therefore, the model of the dis- +crete receiver can be viewed as the discretization of the +continuous receiver. In this subsection, we will use nu- +merical analysis to show the correctness of the theoretical +results. Moreover, we will show the near-optimality of the +discrete receiver with half-wavelength sampling. +We set the length l of the transceivers to 2 m. The trans- +mitter is kept continuous, while the receiver is discretized +to m point antennas. The wavelength of the electromag- +netic field is fixed to 0.04 m, which correpsonds to the fre- +quency of 7.5 GHz. The distance between the transceivers +varies from 10 m to 0.1 m. The simulation results are +shown in Fig. 3. From the simulation, we can observe +the convergence of the mutual information between the +continuous transmitter and the discrete receiver, which +verifies the theoretical analysis. For the three distances +between transceivers, the half-wavelength sampling al- +most achieves the supremum mutual information between +continuous transceivers. Therefore, half-wavelength sam- +pling of the receiver is suboptimal. Moreover, when the +distance between transceivers decreases, we can observe +that the mutual information converges slower. When the +distance equals 0.1 m, the half wavelength sampling is at +the critical state of convergence. If the distance is less +than 0.1 m, a performance gap between the model with +the continuous receiver and that with the discrete receiver +may be observed. This performance gap has theoretical +meaning but may not be useful because the distance will +be comparable to the wavelength in this scenario, where +the evanescent wave components will hold a dominant +position. +IV. COMPARISON BETWEEN CONTINUOUS AND +DISCRETE TRANSCEIVERS +In the above section we have compared the mutual +information between the models with continuous and +discrete receivers. For both models the transmitter is kept +continuous, which simplifies the analyzing procedure. In- +spired by the analysis in the above section, in this section +we will compare the mutual information between contin- +uous transceivers and that between discrete transceivers. +Numerical analysis is then provided to show the near- +optimality of the half-wavelength sampling scheme. +A. Convergence analysis of the mutual information +The analysis in this section focuses on the difference +between I0 and I2. It is an extension of the conver- +gence analysis in the above section. We define I +′′ +0 += +logdet +� +1 + m2TE +l2n2/2 +� +as an intermediate variable similar +to I +′ +0. First we will discuss the convergence of |I0 − I +′′ +0 | +in the following lemma: +Lemma 4. The mutual information I +′′ +0 converges to the +mutual information I0. The difference +���I0 − I +′′ +0 +��� is at most +inverse-proportional to m2. +Proof: From the SNR control scheme of discrete +transceivers (17) and the multivariate m-point composite +midpoint quadrature rule, we have +����n0 − l2 +m2 n2 +���� = +n0 +� l +0 K(r, r)dr +����� +� l +0 +� l +0 +g(r, r, z)dzdr +− l2 +m2 +m +� +i=1,j=1 +g(ri, ri, rj) +����� +⩽ +n0l4 +24m2 � l +0 K(r, r)dr +� ���� +∂2g(r, r, z) +∂r2 +���� +L∞((0,l)2) ++ +���� +∂2g(r, r, z) +∂z2 +���� +L∞((0,l)2) +� +, +(35) +where g(x, y, z) +:= +G(x, z)G∗(y, z), ri += +(i − +0.5)l/m. It is obvious that n2/m2 converges to n0/l2 +when m +→ +∞. We denote the minimum value +of n2/m2 by c. Then, according to (32), we know +that +���det(1 + +2 +n0 TE) − det(1 + 2m2 +l2n2 TE) +��� converges to 0 +when m → ∞. Therefore, |I0 − I +′′ +0 | converges to 0, and +the convergence rate is at least inversely proportional to +m2. + +10 +Then we will discuss the convergence of |I2 − I +′′ +0 | in +the following lemma: +Lemma 5. The difference +���I2 − I +′′ +0 +��� approaches 0 when +m approaches infinity. Moreover, it is at most inverse- +proportional to m2. +Proof: We denote the Fredholm determinant and +its discretization by d(z) = det(1 + zT) and dV (z) = +det (1i=j + wjz �m +k=1 wkG(ri, rk)G∗(rj, rk))m +i,j=1, +where K is the kernel of the operator T. To bound +the difference between d(z) and dV (z), we define +gn(x1, · · · , xn, s1, · · · , sn) as +gn(x1, · · · , xn, s1, · · · , sn) += det +� +� +g(x1, x1, s1) +· · · +g(x1, xn, s1) +· · · +g(xi, xj, si) +· · · +g(xn, x1, sn) +· · · +g(xn, xn, sn) +� +� . +(36) +From the definition of g(x, y, z), we know that +� l +0 g(xi, xj, si)dsi += +K(xi, xj). According +to the +property +of +determinants +that +det(ai,j)m +i,j=1 += +� +k1,··· ,km(−1)ka1,k1 · · · am,km, +where +k1 · · · km +is +the kth exchange of 1 · · · n, we can find that +Kn(x1, · · · , xn) = +� +[0,l]n gn(x1, · · · , xn, s1, · · · , sn) +ds1 · · · dsn. +(37) +If we define Cn +m(gn) by (38) we have (39). Here +wαi correspondes to the distance between antennas in +the source region and s correpsonds to the location +of the antennas in the source region. When further +considering +the +discretization +of +the +receiver +as +in (19), we should set xn +1 +to the location of the +antennas in the destination region, and add additional +weights w which equals the distance between antennas +in the destination region. Similar to the definition +of Qn +m in (19), we define V n +m(gn) by V n +m(gn) += +�m +j1,··· ,jn=1 +� +i wjiCn +m(gn(rj1, · · · , rjn, s1,α1, · · · , sn,αn)). +When sj,αi = rαi, we have +V n +m(gn) = +m +� +j1,··· ,jn=1 +m +� +α1,··· ,αn=1 +� n +� +i=1 +ji +� � n +� +i=1 +αi +� +gn(rj1, · · · , rjn, rα1, · · · , rαn) += +m +� +j1,··· ,j2n=1 +� 2n +� +i=1 +ji +� +gn(rj1, · · · , rj2n). +(40) +The difference between d(z) and dV (z) is +d(z) − dV (z) += +∞ +� +n=1 +zn +n! +� +V n +m(gn) − +� +[0,l]n Kn(x1, · · · , xn)dx1 · · · dxn +� += +∞ +� +n=1 +zn +n! +� +V n +m(gn) − +� +[0,l]2n gn(x1, · · · , x2n)dx1 · · · dx2n +� +(41) +Note that V n +m(gn) is the numerical discretization of the +function gn with 2n variables, we can bound V n +m(gn) − +� +[a,b]2n gn(x1, · · · , x2n)dx1 · · · dx2n by using the multi- +variate numerical integration error bound: +�����V n +m(gn) − +� +[0,l]2n gn(x1, · · · , x2n)dx1 · · · dx2n +����� +⩽ l2n−1 +2n +� +i=1 +Ei, +(42) +where +Ei = +�����Qi(gn; xi) − +� l +0 +gn(x1, · · · , x2n)dxi +����� . +(43) +According to the m-point composite midpoint quadrature +rule, we have +�����Qi(gn; xi) − +� l +0 +gn(x1, · · · , x2n)dxi +����� +⩽ +l3 +24m2 +���� +∂2gn +∂x2 +i +���� +L∞((0,l)2n) +, +(44) +From the Hadamard’s inequality [33], we can further +bound it by +�����V n +m(gn) − +� +[a,b]2n gn(x1, · · · , x2n)dx1 · · · dx2n +����� +⩽ 2nl2n+2 +24m2 max +j +����� +∂2gn +∂x2 +j +����� +L∞((0,l)2n) +⩽ 2nl2n+2 +24m2 max +� +�nn/2 +����� +∂2g(x, y, z) +∂z2 +���� +L∞((0,l)3) +�n +, +4nn/2 +� +� max +i+j⩽2 +����� +∂i +x∂j +yg(x, y, z) +∂xi∂yj +����� +L∞((0,l)3) +� +� +n � +� +⩽ l2n+2 +3m2 n(n+2)/2 +� +� max +i+j+k⩽2 +����� +∂i +x∂j +y∂k +z g(x, y, z) +∂xi∂yj∂zk +����� +L∞((0,l)3) +� +� +n +. +(45) +Similar to Lemma 3, we know that |I2 −I +′ +0| converges +to 0, and the error is at most inverse proportional to m2. +Therefore, we have Theorem 2: +Theorem 2. The mutual information I2 that can be +obtained from the discrete transceivers converges to the +mutual information I0 that can be obtained from the +continuous transceivers when the number of antennas in +the discrete transceivers increases. The difference |I0−I2| +is at least inverse-proportional to the square of the +sampling number m. +Remark +4. Similar to Remark +3 in Section. III, +the convergence analysis in this section is not lim- +ited to the scenario with equal power allocation. + +11 +Cn +m(gn) = det +� +� +� +α1 wα1g(x1, x1, s1,α1) +· · · +� +α1 wα1g(xn, xn, s1,α1) +· · · +� +αi wαig(xi, xj, si,αi) +· · · +� +αn wαng(xn, x1, sn,αn) +· · · +� +αn wαng(xn, xn, sn,αn), +� +� . +(38) +Cn +m(gn) = +� +k1···kn +(−1)k( +m +� +α1=1 +wα1g(x1, xk1, s1,α1)) · · · ( +m +� +αn=1 +wαng(xn, xkn, sn,αn)) += +� +k1···kn +� +(−1)k +m +� +α1,··· ,αn=1 +n +� +i=1 +wαig(xi, xki, si,αi) +� += +m +� +α1,··· ,αn=1 +�� n +� +i=1 +wαi +� � +k1···kn +(−1)k +n +� +i=1 +g(xi, xki, si,αi) +� += +m +� +α1,··· ,αn=1 +�� n +� +i=1 +wαi +� +gn(x1, · · · , xn, s1,α1, · · · , sn,αn) +� +. +(39) +0 +50 +100 +150 +0 +0.02 +0.04 +0.06 +0.08 +0.1 +0.12 +continuous transceiver +discrete receiver +discrete transceiver +10 +20 +0.1188 +0.119 +0.1192 +Fig. 4. The mutual information variation with different sampling num- +bers. The mutual information that correpsonds to the three models with +continuous and discrete transceivers is plotted. The distance between +the transceivers is large. +For arbitrary analytic function RJ(s, s′), the conver- +gence of |I0 − I2| can be obtained. Instead of dis- +cretizing +� +G(r, z)G∗(r′, z)dz to � +i G(r, ri)G(r′, ri), +we will discretize +�� +G(r, z)RJ(z, z′)G∗(r′, z′)dzdz′ to +� +i,j G(r, ri)RJ(ri, rj)G(r′, rj) in the extended sce- +narios +with +power +allocation +schemes. +Then, +in- +stead of g(x, y, z) we need a four-variable function +h(x, y, z, ω) := G(x, z)RJ(z, ω)G(y, ω) and the deriva- +tion procedure of the convergence has no essential differ- +ence with Theorem 2. +B. Numerical analysis about the mutual information +In this subsection, we will verify the correctness of +the convergence analysis in the above subsection by +simulations. The length l of the transceivers is fixed +to 2 m. We have plotted the mutual information of the +three models: continuous transceiver, continuous trans- +mitter and discrete receiver, and discrete transceiver. The +transceivers are both discretized to m point antennas. +The wavelength of the electromagnetic field is fixed to +0.04 m, which corresponds to the frequency of 7.5 GHz. +First we will show the scenarios when the distance be- +tween the transceivers is large. The distance between the +transceivers varies from 50 m to 200 m. The simulation +results are shown in Fig. 4. +From the simulation results we find that the mutual +information nearly keeps the same when the sampling +number increases. The reason for this phenomenon is that +the DoF of the channel is nearly inverse-proportional to +the distance between transceivers. For example, the DoF +when the distance equals 50 m can be approximated by +l2/(dλ) = 2, which means that when the sampling num- +ber is 5, the multiplexing gain is almost fully explored. +Therefore, for large distances between transceivers, the +dominant limitation is the channel DoF, which means that +the suboptimal performance can be achieved by sampling +sparser than half-wavelength. +Moreover, we have shown the variation of the mutual +information with the sampling number when the distance +between transceivers is small. In Fig. 5 the distance +between the transceiver is 0.1 m and 1 m. We can find that +when the distance decreases, the dense sampling of the +transceivers becomes important to fully explore the limit +of the mutual information. However, the half-wavelength +sampling of the transceivers still achieves suboptimal +performance, which means that denser sampling schemes +are not necessary. +V. CONCLUSION +In this paper, we proposed a comparison scheme be- +tween continuous and discrete MIMO systems which is + +12 +0 +50 +100 +150 +0 +20 +40 +60 +80 +100 +120 +140 +160 +180 +continuous transceiver +discrete receiver +discrete transceiver +Fig. 5. The mutual information as a function of the sampling number. +The mutual information values that correspond to the three models with +continuous and discrete transceivers are plotted. The distance between +the transceivers is small. +based on a precise non-asymptotic analysis framework. +Three information-theoretic models of the continuous +and discrete transceivers were built, with the first model +corresponds to the fully continuous electromagnetic infor- +mation theory model, and the third model corresponds to +the matrix-vector MIMO model. We proposed physically +consistent SNR control schemes to ensure the fairness of +the comparison, and proved that the mutual information +between discrete MIMO transceivers converges to that +of continuous electromagnetic transceivers. Numerical +results verified the theoretical analysis and showed the +near-optimality of the half-wavelength sampling scheme. +Further works can be done by extending the lin- +ear transceivers to rectangular or other two-dimensional +transceivers for generality. The analysis based on the +capacity after water-filling of the mutual information also +remains to be explored. +REFERENCES +[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. +Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas +Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014. +[2] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and +P. Popovski, “Five disruptive technology directions for 5G,” IEEE +Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014. +[3] J. G. Andrews, X. Zhang, G. D. Durgin, and A. K. Gupta, +“Are we approaching the fundamental limits of wireless network +densification?” IEEE Commun. Mag., vol. 54, no. 10, pp. 1558– +1896, Oct. 2016. +[4] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, +“An overview of massive MIMO: Benefits and challenges,” IEEE +J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. +2014. +[5] N. +Decarli +and +D. +Dardari, +“Communication +modes +with +large intelligent surfaces in the near field,” arXiv preprint +arXiv:2108.10569, Aug. 2021. +[6] Z. +Zhang +and +L. +Dai, +“Pattern-division +multiplexing +for +continuous-aperture mimo,” in Proc. 2022 IEEE International +Conference on Communications (ICC’22), May 2022, pp. 3287– +3292. +[7] +¨O. Demir, E. Bj¨ornson, and L. Sanguinetti, “Channel modeling and +channel estimation for holographic massive MIMO with planar +arrays,” IEEE Wireless Commun. Lett., Feb. 2022. +[8] A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Spatially-stationary +model for holographic MIMO small-scale fading,” IEEE J. Sel. +Areas Commun., vol. 38, no. 9, pp. 1964–1979, Sep. 2020. +[9] L. Sanguinetti, A. A. D’Amico, and M. Debbah, “Wavenumber- +division multiplexing in line-of-sight holographic MIMO com- +munications,” IEEE Trans. Wireless Commun., early access, Sep. +2022, doi: 10.1109/TWC.2022.3208961. +[10] J. Yuan, H. Q. Ngo, and M. Matthaiou, “Towards large intelligent +surface (LIS)-based communications,” IEEE Trans. Commun., +vol. 68, no. 10, pp. 6568–6582, Oct. 2020. +[11] O. Yurduseven, D. L. Marks, T. Fromenteze, and D. R. Smith, +“Dynamically reconfigurable holographic metasurface aperture for +a mills-cross monochromatic microwave camera,” Opt. Express, +vol. 26, no. 5, p. 5281–5291, Feb. 2018. +[12] Y. Sun, Z. Gao, H. Wang, B. Shim, G. Gui, G. Mao, and +F. Adachi, “Principal component analysis-based broadband hybrid +precoding for millimeter-wave massive MIMO systems,” IEEE +Trans. Wireless Commun., vol. 19, no. 10, pp. 6331–6346, Oct. +2020. +[13] H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani, +and Y. C. Eldar, “Beam focusing for near-field multi-user MIMO +communications,” IEEE Trans. Wireless Commun., vol. 21, no. 9, +pp. 7476–7490, Sep. 2022. +[14] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced +wireless network via joint active and passive beamforming,” IEEE +Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Aug. +2019. +[15] M. D. Migliore, “Near field antenna measurement sampling strate- +gies: From linear to nonlinear interpolation,” Electronics, vol. 7, +no. 10, p. 257, Sep. 2018. +[16] H. Landau, “Sampling, data transmission, and the Nyquist rate,” +Proc. IEEE, vol. 55, no. 10, pp. 1701–1706, Oct. 1967. +[17] D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, +Fourier analysis and uncertainty—I,” Bell System Techn. Journal, +vol. 40, no. 1, pp. 43–63, Jan. 1961. +[18] D. Slepian, “On bandwidth,” Proc. of the IEEE, vol. 64, no. 3, pp. +292–300, Mar. 1976. +[19] F. Massimo, Wave Theory of Information. +Cambridge, U.K.: +Cambridge Univ. Press, 2017. +[20] J. Zhu, Z. Wan, L. Dai, M. Debbah, and H. V. Poor, “Electromag- +netic information theory: Fundamentals, modeling, applications, +and open problems,” arXiv preprint arXiv:2212.02882, Dec. 2022. +[21] D. Dardari, “Communicating with large intelligent surfaces: Fun- +damental limits and models,” IEEE J. Sel. Areas Commun., vol. 38, +no. 11, pp. 2526–2537, Nov. 2020. +[22] A. S. Poon, R. W. Brodersen, and D. N. Tse, “Degrees of freedom +in multiple-antenna channels: A signal space approach,” IEEE +Trans. Inf. Theory, vol. 51, no. 2, pp. 523–536, Jan. 2005. +[23] A. M. Yaglom, “Some classes of random fields in n-dimensional +space, related to stationary random processes,” Theory of Proba- +bility & Its Applications, vol. 2, no. 3, pp. 273–320, Jul. 1957. +[24] Z. Wan, J. Zhu, Z. Zhang, L. Dai, and C.-B. Chae, “Mutual infor- +mation for electromagnetic information theory based on random +fields,” arXiv preprint arXiv:2111.00496, Sep. 2022. +[25] P. D. Lax, Functional analysis. John Wiley & Sons, 2002, vol. 55. +[26] I. Gohberg and M. G. Kre˘ın, Introduction to the theory of linear +nonselfadjoint operators. +American Mathematical Soc., 1978, +vol. 18. +[27] E. De Vito, V. Umanit`a, and S. Villa, “An extension of mercer +theorem to matrix-valued measurable kernels,” Applied and Com- +putational Harmonic Analysis, vol. 34, no. 3, pp. 339–351, May +2013. +[28] A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave +series expansion for holographic MIMO communications,” IEEE +Trans. Wireless Commun., vol. 21, no. 9, pp. 6890–6905, Mar. +2022. +[29] P. Hannan, “The element-gain paradox for a phased-array an- +tenna,” IEEE Trans. Antennas Propag., vol. 12, no. 4, pp. 423–433, +Jul. 1964. +[30] F. Bornemann, “On the numerical evaluation of Fredholm deter- +minants,” Mathematics of Computation, vol. 79, no. 270, pp. 871– +915, Sep. 2009. + +13 +[31] P. J. Davis and P. Rabinowitz, Methods of numerical integration. +Courier Corporation, 2007. +[32] S. Haber, “Numerical evaluation of multiple integrals,” SIAM +review, vol. 12, no. 4, pp. 481–526, 1970. +[33] C. D. Meyer, Matrix analysis and applied linear algebra. +Siam, +2000, vol. 71. + diff --git a/1NFAT4oBgHgl3EQfCxwU/content/tmp_files/load_file.txt b/1NFAT4oBgHgl3EQfCxwU/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..1931c106211eee4f7b00a4c79cc3c7356ce8cc62 --- /dev/null +++ b/1NFAT4oBgHgl3EQfCxwU/content/tmp_files/load_file.txt @@ -0,0 +1,759 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf,len=758 +page_content='1 Can Continuous Aperture MIMO Achieve Much Better Performance than Discrete MIMO?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Zhongzhichao Wan, Jieao Zhu, and Linglong Dai, Fellow, IEEE Abstract—The concept of continuous-aperture multiple- input multiple-output (CAP-MIMO) technology has been proposed recently, which aims at achieving high spectrum density by deploying extremely dense antennas or even continuous antennas in a given aperture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The fundamental question of CAP-MIMO is whether it can achieve much better performance than the traditional discrete MIMO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' In this paper, to model the CAP-MIMO, we use self- adjoint operators to depict the structural characteristics of the continuous random electromagnetic fields from physical laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Then, we propose a non-asymptotic performance comparison scheme between continuous and discrete MIMO systems based on the analysis of mutual information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We show the consistency of the proposed scheme by proving that the mutual information between discretized transceivers converges to that between continuous transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Numeri- cal analysis verifies the theoretical results, and suggests that the mutual information obtained from the discrete MIMO with widely adopted half-wavelength spaced antennas al- most achieves the mutual information obtained from CAP- MIMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Index Terms—Multiple-input multiple-output (MIMO), Continuous-aperture MIMO (CAP-MIMO), mutual infor- mation, random fields, Fredholm determinant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' INTRODUCTION The spectrum efficiency of wireless communication systems has been greatly improved from 3G to 5G because of the use of multiple-input multiple-output (MIMO) technology [1]–[3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The MIMO systems utilize multiple antennas to exploit the spatial multiplexing gain [4], where the antennas are modeled as discrete points in the continuous space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Along with the tendency of increasing the number of antennas to achieve higher spectrum efficiency, people are considering deploying extremely dense antennas in a given aperture [5], [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' When the number of antennas in a given aperture tends to infinity, the traditional MIMO systems with transceivers composed of discrete point antennas are equivalent to the MIMO systems with continuously controllable transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, the MIMO with extremely dense All authors are with the Department of Electronic Engineer- ing, Tsinghua University as well as Beijing National Research Center for Information Science and Technology (BNRist), Bei- jing 100084, China (E-mails: {wzzc20, zja21}@mails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' daill@tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' This work was supported in part by the National Key Research and Development Program of China (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2020YFB1807201), in part by the National Natural Science Foundation of China (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 62031019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' antennas is called continuous-aperture MIMO (CAP- MIMO), and is also called holographic MIMO [7]–[9] or large intelligent surface [5], [10] in the recent litera- ture1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' It has attracted increasing interest in the research of MIMO technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Recent works about CAP-MIMO include pattern optimization [6], antenna design [11], channel estimation [7], and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For CAP-MIMO, the fundamental question is whether the CAP-MIMO system can achieve much better performance than the traditional discrete MIMO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Related works The structure of CAP-MIMO has been defined in the previous part but there are many structures for realizing the discrete MIMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, we need to choose which structure of the discrete MIMO to compare with CAP- MIMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' A representative structure of discrete MIMO uses half-wavelength spaced antennas to compose the transceivers [12]–[14], because half-wavelength sampling of the electromagnetic field can reconstruct the original field according to the sampling theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' There have been several works discussing the per- formance comparison between CAP-MIMO and discrete MIMO with half-wavelength spaced antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The perfor- mance comparison is from the degrees of freedom (DoF) perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Specifically, when discarding the evanescent wave components, the Fourier transform of the received field, which is in the wavenumber domain, is concentrated in a circle or a segment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' This concentration phenomenon means that the field is bandlimited in the wavenumber domain, thus it can be perfectly recovered from the half- wavelength sampling points in the spatial domain [15] according to the Nyquist sampling theorem [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The above conclusion is based on the assumption that we can observe the received field in the infinitely large spatial domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' However, in practice, the destination where we can observe the field is in a finitely large aperture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For a rigorous analysis framework of the DoF in a finitely large aperture, the prolate spheroidal wave func- tion (PSWF) [17] is introduced to perform orthogonal expansion on the electromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Specifically, to 1The MIMO with extremely dense antennas can be accurately de- scribed by the name CAP-MIMO, while holographic MIMO and large intelligent surface do not focus on the continuity of the transceiver apertures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, in the rest part of the paper, we will prefer using the name CAP-MIMO rather than using other names like holographic MIMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='08411v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='IT] 20 Jan 2023 2 reconstruct the wavenumber-bandlimited electromagnetic field observed in a length-l spatial region, the PSWFs were used as the basis based on the Slepian’s concentra- tion problem [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Such an electromagnetic field can be perfectly reconstructed from infinite number of PSWFs, and approximately reconstructed from a finite number of PSWFs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' If the reconstruction error can be controlled within a given threshold by using N0 PSWFs, the number of DoFs of the field can be approximated by N0 [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' This analyzing scheme is strict for arbitrary l, but can only provide the asymptotic result of the DoF, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', the quantitative result of N0 can be obtained only when the length l or the frequency tends to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' However, the practical systems are with finitely large aperture and finite frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The asymptotic result can not provide quantitative number of DoFs for practical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' There- fore, a non-asymptotic performance comparison scheme between CAP-MIMO and discrete MIMO is required for the accurate performance comparison with finitely large apertures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Our contributions To solve this problem, in this paper, we provide a non- asymptotic performance comparison scheme between CAP-MIMO and discrete MIMO, and we further prove the rationality of the scheme2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Specifically, the contribu- tions of this paper can be summarized as follows: We build models of CAP-MIMO and discrete MIMO based on electromagnetic theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For CAP-MIMO with continuous transceivers, we model the structural characteristics of the continuous random electro- magnetic fields from physical laws by using self- adjoint operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Based on this model, we can utilize the spectrum theory of operators to derive the information that can be obtained from the received field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The existing models of MIMO with discrete transceivers are spatially discretized from the contin- uous model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Moreover, signal-to-noise ratio (SNR) control schemes are introduced to ensure the fairness of the comparison between CAP-MIMO and discrete MIMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Then, before comparing the performance between CAP-MIMO with continuous transceivers and tra- ditional MIMO with discrete transceivers, we first utilize the simplified model with continuous trans- mitter and discrete receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Under this simplified model, the transmitter is continuous, which is the same as that in the CAP-MIMO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' By theo- retically analyzing the mutual information that can be obtained from the discrete receiver in this sim- plified model, we can obtain some insights about how the discretization of the receiver affects the mutual information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Moreover, the theoretical proof 2Simulation codes will be provided to reproduce the re- sults in this paper: http://oa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='ee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='cn/dailinglong/publications/ publications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' of the convergence of the mutual information in the simplified model can inspire the analysis of a more practical scenario, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', the discrete transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Finally, we extend the convergence proof from the model with discrete receiver to the model with discrete transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We prove that the mutual in- formation between the discrete transceivers con- verges to the mutual information between continuous transceivers when the number of antennas of the discretized transceivers tends to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, the fairness of the performance comparison is guar- anteed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Numerical results are provided to verify the theoretical analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Moreover, it shows the near- optimality of the half-wavelength sampling of the transceivers in traditional discrete MIMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Organization and notation Organization: The rest of our paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' II introduces the basic model of EIT and proposes models with continuous or discrete transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The mutual information between the transceivers is also derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' III proves the convergence of the mutual information between continuous transmitter and discrete receiver when the number of discrete antennas increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Then, the convergence of the mutual information between discrete transceivers is illustrated in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Finally, we conclude the paper in Section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Notation: bold characters denote matrices and vectors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' j is the imaginary unit;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' E [x] denotes the mean of random variable x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' x∗ denotes the conjugation of a number or a function x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' XH denotes the conjugate transpose of a vector or a matrix X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' µ0 is the permeability of a vacuum, Z0 is the free-space intrinsic impedance and c is the speed of light in a vacuum;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' ∇ is the nabla operator, and ∇× is the curl operator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' |φ⟩ is the quantum mechanical notation of a function φ, where the inner product is denoted by ⟨ψ| φ⟩;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' det(·) denotes the matrix determinant or the Fredholm determinant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' tr(·) denotes the trace of a matrix or an operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Im denotes the m×m identity matrix, 1 denotes the indentity operator, δ(x) denotes the delta function, and 1i=j denotes the indicator function;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' |x| denotes the modulus of a complex variable, and ∥f(x)∥L∞(a,b) is the uniform norm of the function f(x) over the interval [a, b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' C∞(K) denotes the set of smooth functions supported on a compact set K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' MODELS OF CONTINUOUS AND DISCRETE SYSTEMS In this section, we introduce the models of contin- uous and discrete systems for performance comparison between CAP-MIMO and discrete MIMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We control the SNR at the receiver side to ensure the fairness of the comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The information obtained from these models is derived from operators and matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 3 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Basic model of electromagnetic information theory To model the transceivers and the channel, we follow the approach of electromagnetic information theory (EIT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The EIT is an interdisciplinary subject that integrates the classical electromagnetic theory and information theory to build an analysis framework for the ultimate performance bound of wireless communication systems [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The anal- ysis framework of EIT is based on spatially continuous electromagnetic fields, which provides us the tool to model and analyze the continuous transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Then, for the consistency, the model of discrete transceivers are viewed as the discretization of the continuous model from EIT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The model of EIT is built on the vector wave equa- tion [21] without boundary conditions, which is expressed by ∇×∇×E (r)−κ2 0E (r) = jωµ0J (r) = jκ0Z0J (r) , (1) where κ0 = ω√µ0ε0 is the wavenumber, and Z0 = µ0c = 120π [Ω] is the free-space intrinsic impedance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We assume that the transceivers are confined in two regions Vs and Vr, separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The current density at the source is J(s), where s ∈ R3 is the coordinate of the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The induced electric field at the destination is E(r), where r ∈ R3 is the coordinate of the field observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' To solve the linear partial differential equation (1), a general theoretical approach is to introduce the dyadic Green’s function G(r, s) ∈ C3×3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' According to the linearity of (1), the electric field E(r) can be expressed by E(r) = � Vs G(r, s)J(s)ds, r ∈ Vr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (2) By exploiting the symmetric properties of the free space, the Green’s function in unbounded, homogeneous medi- ums at a fixed frequency point is [22] G(r, s) = jκ0Z0 4π � I + ∇r∇H r κ2 0 � ejκ0∥r−s∥ ∥r − s∥ = jκ0Z0 4π ejκ0∥r−s∥ ∥r − s∥ � � I − ˆpˆpH� + j 2π ∥r − s∥ /λ � I − 3ˆpˆpH� − 1 (2π ∥r − s∥ /λ)2 � I − 3ˆpˆpH� � [Ω/m2], (3) where ˆp = p ∥p∥ and p = r − s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Since there are some non-ideal factors at the receiver that corrupts the recieved field, we call them the noise field N(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The received electric field can be expressed by Y(r) = E(r) + N(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The above equations represent the deterministic model in the electromagnetic theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' To satisfy the demand of wireless communication, we need to convey information through the electromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Specifically, the wireless communiation system encodes the information in the current J(s), and decodes the information from the noisy electric field Y(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Due to the randomness of the transmitted bit source, the electro- magnetic fields are randomly excited by the transmitter equipments before being radiated into the propagation media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, the electromagnetic fields should be modeled as random fields [23], which are random func- tions with several arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We denote the autocorre- lation function of the current and the electric field as matrix-valued functions RJ(s, s ′) = E[J(s)JH(s ′)] and RE(r, r ′) = E[E(r)EH(r ′)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The relationship between RJ and RE is determined by the Green’s function, which is RE(r, r′) = � Vs � Vs G(r, s)RJ(s, s′)GH(r, s)dsds′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (4) Similar definitions of the autocorrelation functions for the noise field and the noisy electric field are repre- sented as RN(r, r ′) = E[N(r)NH(r ′)] and RY(r, r ′) = E[Y(r)YH(r ′)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Continuous trasceivers In this part, we will build the model of CAP-MIMO with continuous transceivers based on the EIT model in the above subsection, and then derive the mutual information between the continuous transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For sim- plicity, in the rest part of the paper, we assume that the transceivers are linear along the ˆz-direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Moreover, since the current J can only exist on the linear source and we only observe the electric field on the linear receiver, we express all the physical quantities in a Cartesian coordinate system that satisfies s = (0, 0, s) and r = (d, 0, r), where d is the distance between the parallel source and destination line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' This model corresponds to single-polarized linear antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Through this simplifica- tion scheme, we use J(s) and E(r) instead of J(s) and E(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The relationship between them can be expressed by E(r) = � l 0 G(r, s)J(s)ds, where G(r, s) is the upper left element of the matrix G(r, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We can derive G(r, s) as G(r, s) =jZ0ej2π √ x2+d2/λ 2λ √ x2 + d2 � j 2π √ x2 + d2/λ d2 − 2x2 x2 + d2 + d2 x2 + d2 − 1 (2π/λ)2(x2 + d2) d2 − 2x2 x2 + d2 � , (5) where x = r − s and λ = 2π/κ0 is the wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Here we consider the scenario with no channel state information, which means that the signals on the source are under equal power allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The second moments (autocorrelation) of J are denoted by RJ(s, s′) = Pδ(s− s′), s, s′ ∈ [0, l].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Since the noiseless received field is uniquely deter- mined by the source and the deterministic channel, the autocorrelation function of the electric field is expressed 4 by the source autocorrelation RJ(s, s′) and the Green’s function G(r, s), written as RE(r, r′) = � l 0 � l 0 G(r, s)RJ(s, s′)G∗(r′, s′)dsds′ = P � l 0 G(r, s)G∗(r′, s)ds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (6) The received field on the destination is Y (r) = E(r) + N(r), where N(r) is the noise field at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' In this paper, we consider thermal noise model E [N(r)N ∗(r′)] = n0 2 δ(r − r′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' According to [24], we can perform Mercer expansion on the electric field E(r) to obtain a set of mutually independent random variables ξk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The expansion can be written as E(r) = � k ξkφk(r), where E[ξkiξ∗ kj] = λki1i=j and ⟨φki(r), φkj(r)⟩ = δkikj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' This expansion scheme has split the continuous field into independent components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Since the white noise field can be expanded under arbitrary orthogonal bases, the continuous channel is also decomposed into independent subchannels, which makes the mutual information of the subchannels summable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Next we will show that for the operator TE := φ(r) → � l 0 KE(r, r′)φ(r′)dr′, where KE(r, r′) = RE(r, r′) = P � l 0 G(r, s)G∗(r′, s)ds, all of its eigenvalues are real and nonnegative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Moreover, the sum of its eigenval- ues �∞ i=1 λi equals P � l 0 � l 0 G(r, s)G∗(r, s)drds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Notice that TE can be decomposed to T ∗T, where T := φ(r) → √ P � l 0 G(r, s)φ(r)ds and T ∗ := φ(r) → √ P � l 0 G∗(r, s)φ(r)ds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' This decomposition means that TE = T ∗ E is a self-adjoint operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We assume that λ is an eigenvalue of TE and φ(r) is the corresponding eigenfunction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Since λ = λ⟨φ(r), φ(r)⟩ = ⟨T ∗ Eφ(r), φ(r)⟩ = ⟨φ(r), TEφ(r)⟩ = λ∗, (7) we know that λ is real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' From λ = λ⟨φ(r), φ(r)⟩ = ⟨T ∗Tφ(r), φ(r)⟩ = ⟨Tφ(r), Tφ(r)⟩ ⩾ 0, (8) we know that λ is nonnegative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' From [25] we know that an integral operator on [a, b] is a trace class operator if its kernel K(x, y) satisfies K(x, y) and ∂yK(x, y) are continuous on [a, b]2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' There- fore TE is a trace class operator, which means that the sum of its eigenvalues is finite and can be expressed by [26] tr(TE) = � l 0 KE(r, r)dr = P � l 0 � l 0 G(r, s)G∗(r, s)drds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (9) Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The non-negative values λk n0/2 represent the SNR of the independent subchannels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The mutual information between the noisy received field and the current on the source can be expressed by I0(J;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Y ) = +∞ � k=1 log � 1 + λk n0/2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (10) By introducing the Fredholm determinant which is the determinant of operators, we can express (10) by I0(J;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Y ) = log det � 1 + TE n0/2 � , (11) where (TEφ)(r) := � L 0 RE(r, r′)φ(r′)dr′ and λk are the eigenvalues of TE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Our analysis here is based on the sim- plified model with uni-polarized linear antennas as the transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' This simplification reduces the dimension of the problem, where random fields degenerate to one- dimensional random processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For the more general scenarios, such analyzing schemes are still effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' If the random field is defined in a region X, we can expand E(r) by E(r) = � k ξkΦk(r) and its autocorrelation function RE(r, r ′) by RE(r, r ′) = � k λkΦk(r)ΦH k (r ′) [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The expansion satisfies that λk and Φk(r) are eigenvalues and eigenfunctions of the integral equation � X RE(r, r ′)Φ(r ′)dr ′ = λkΦ(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Similar expressions of the mutual information in (10) and (11) can be derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Continuous transmitter and discrete receiver Before building the model with discrete transceivers, in this subsection, we will first build a simplfied model with continuous transmitter and discrete receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The simplfied model analyzed here can bring some insights about the discretization of both transceivers and the SNR control schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For the continuous transmitter, we still use the length-l linear transmitter along the ˆz- direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For the discrete receiver, we build a model with m point antennas on a segment parallel to the linear transmitter in the destination region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The ith point antenna is placed on ri ∈ [0, l].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The correlation matrices of the received signals and received noise are denoted by K ′ E and K ′ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For the received signals, we assume that it is the sampling of the continuous electric field on the point ri, which means that K ′ E = KE(ri, rj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' However, for the received noise on the antenna, it can not directly be assumed as the point sampling of the noise field, because of the delta function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' To solve this problem, we assume that K ′ N = n1 2 Im is an identity matrix, and control the signal-to-noise ratio (SNR) of this model the same as that of the continuous model to ensure the fairness of the comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The SNR at the receiver of the continuous model is �∞ i=1 λi n0/2, where λi is the ith eigenvalue of the operator TE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' From Lemma 1 we know that �∞ i=1 λi n0/2 = P n0/2 � l 0 � l 0 G(r, s)G∗(r, s)drds is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The SNR at the receiver of the discrete model is �m i=1 λ ′ i n1/2, where λ ′ i is the ith eigenvalue of the matrix K ′ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The SNR control scheme is necessary because if we do not control the SNR, the mutual information that can be obtained from the discrete antennas in the receiver may infinitely increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Let us take a counter-example where the power of received signal and received noise on 5 each point antenna remain unchanged when the number of antennas in a given aperture increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For dense antennas we can assume that N received signals of the antennas in a small aperture are nearly the same, while the corresponding noises are independent according to the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Then, the SNR for the N antennas will keep near-linearity increasing with N, since when we perform combing of the N received signals we have SNR = E[(�N i=1 Ei)(�N i=1 E∗ i )] E[(�N i=1 Ni)(�N i=1 N ∗ i )] ≈ N E[E1E∗ 1 ] E[N1N ∗ 1 ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore the mutual information that can be obtained from the N antennas will keep near-logarithm increasing with N, which corresponds to the simulation in [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' According to (9), the noise power in the discrete receiver model can be controlled by n1 = n0 �m i=1 KE(ri, ri) � l 0 KE(r, r)dr .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (12) We denote the determinant of matrix K ∈ Cm×m by det(Ki,j)m i,j=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Then we can express the mutual informa- tion between the transceivers by I1 = log � det(K ′ N + K ′ E) det(K ′ N) � = logdet � 1i=j + KE(ri, rj) n1/2 �m i,j=1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (13) Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Here the SNR on each of the point antennas in the discrete model changes with the density of point anten- nas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Notice that L m �m i=1 KE(ri, ri) is the approximation of the integral � l 0 KE(r, r)dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' When m approximates infinity, n1 will approximate mn0 2l .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' This phenomenon has several annotations, including the increase of the noise power on each point antenna, the reduction of antenna efficiency, and the corollary of the discretization of EIT continuous models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' From the perspective of noise power, we can explain it by spatial sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For the point antenna arrays, more antennas on a given aperture corresponds to a higher sampling rate in the spatial domain and a wider lowpass filter in the wavenumber domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Since a wide lowpass filter can receive more noise power from the white noise field, the noise power should increase with the density of the antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' From the perspective of antenna efficiency, the well- known Hannan’s efficiency shows that for both transmit- ting and receiving antennas, the antenna gain is propor- tional to lxly for two-dimensional surface antennas [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, for the linear model we considered, the an- tenna gain will be inversely proportional to the sampling number when the antennas are dense enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Besides these two annotations, another perspective is viewing the model of discrete point antennas as the discretization from the EIT continuous model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' If we consider m linear continuous antennas instead of point antennas in the destination region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' All the antennas are connected head to tail to occupy the [0, l] position in the space and detect the electric field by inner producting it with its eigenmode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' This model fulfills the requirement of discretizing the continuous receiver to discrete receiving antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The signal received by the ith antenna is Yi = � ai+1 ai Y (r)φ(r)dr, where [ai, ai+1] is the occupied region of the ith antenna, and φ(r) is the eigenmode of the antenna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' If we assume φ(r) ≡ 1, the correlation matrix of the received electric field can be expressed by (KE)i,j = E �� ai+1 ai � aj+1 aj E(r)E∗(r′)drdr′ � = (ai+1 − ai)(aj+1 − aj)KE(ri, rj), (14) where ri ∈ [ai, ai+1] and rj ∈ [aj, aj+1] according to the mean value theorem for integrals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For the noise field on the destination, we have (KN)i,j = E �� ai+1 ai � aj+1 aj N(r)N ∗(r′)drdr′ � = � (ai+1 − ai) n0 2 i = j 0 i ̸= j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (15) Therefore, the SNR after the discretization will discreases by ai+1 − ai, which is the case when the antennas are dense enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' After explaining the rationality of the SNR control scheme, we will introduce the following lemma to show the convergence of the noise power on each discrete point antenna, which will be useful for the following proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' When the number of antennas m in a given aperture increases, the noise power on each antenna n1/2 will approach mn0 2l .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The difference between them is at most inverse-proportional to m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Proof: From (12) and the middle point quadrature rule, we have ���� l mn1 − n0 ���� = n0 ��� � l 0 KE(r, r)dr − l/m �m i=1 KE(ri, ri) ��� ��� � l 0 KE(r, r)dr ��� ⩽ n0l3 ���K ′′ E(r, r) ��� L∞(0,l) 24m2 ��� � l 0 KE(r, r)dr ��� , (16) which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Discrete transceivers The models discussed in the above subsections keep the transmitter continuous and only perform discretization on the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' However, the commonly used model to depict wireless communication is the discrete MIMO model, in which both the transceivers are modeled as discrete point antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, in this section, we will introduce a model which discretizes the transceivers simultaneously, which is the extension of the model with continuous transmitter and discrete receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Then, similar 6 d Continuous Transmitter Continuous Receiver d Discrete Receiver l / 2 \uf06c l d Discrete Receiver l / 2 \uf06c Discrete Transmitter Continuous Transmitter 0I 1I 2I Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Comparison between the three models in this section with continuous transceivers and the model with discrete transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' to the scheme in the above subsection, we will provide the corresponding SNR control scheme to ensure the fairness of the comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Specifically, we build a model with m point antennas on a length-l segment in the source region and m point antennas on a length-l segment in the destination region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Similar to the above subsection, we assume that the ith point antenna is placed at si in the source region and ri in the destination region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The correlation matrix of the signals in the source region is set to be an identity matrix K ′′ J = PIm, which corresponds to the power allocation scheme with no channel state information at the transmit- ter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The channel gain from the ith antenna in the source region and the jth antenna in the destination region can be expressed by Hi,j = G(si, rj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The correlation matrix of the received signal is denoted by K ′′ E = HK ′′ JHH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The noise matrix is denoted by K ′′ N = n2 2 Im.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Similar SNR control on the receiver side is used, which is expressed by n2 = n0 �m i=1 �m j=1 G(ri, sj)G∗(ri, sj) � l 0 � l 0 G(r, s)G∗(r, s)drds .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (17) The mutual information between the transceivers is ex- pressed as: I2 = log � det(K ′′ N + K ′′ E) det(K ′′ N) � = logdet � 1i=j + � k G(ri, rk)G∗(rj, rk) n2/2 �m i,j=1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (18) The comparison between the three models built in Sec- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' II-B, Section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' II-C and in this subsection is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' In the following two sections we will introduce the intermediate quantity I ′ 0 and I ′′ 0 to theoretically prove that I1 and I2 converge to I0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The flow chart of the proof is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' PERFORMANCE COMPARISON BETWEEN DISCRETE AND CONTINUOUS RECEIVERS In the above section we have proposed the mod- els of continuous and discrete transceivers and derived the corresponding mutual information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Before compar- ing the performance between CAP-MIMO with contin- uous transceivers and traditional MIMO with discrete transceivers, we first utilize the simplified model with continuous transmitter and discrete receiver in this sec- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Under this simplified model, the transmitter is con- tinuous, which is the same as that in the CAP-MIMO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The comparison is based on the convergence analysis of the mutual information when the number of antennas in the discrete receiver increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Numer- ical analysis is provided to verify the correctness of the convergence analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The discussion about discrete transceivers inspired by the analysis in this part will be in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Convergence analysis of the mutual information To compare the mutual information I0 and I1, we intro- duce an intermediate quantity I ′ 0 = logdet � 1 + mTE ln1/2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We can bound |I0 −I1| by |I0 −I ′ 0|+|I1 −I ′ 0|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' According to [30], I1 can be viewed as the approximation of I ′ 0 using a numerical integral scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' In our discussion the point antennas in the destination region are evenly spaced, which means that ai = (i−1)l/m and ri = (i−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='5)l/m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' To bound |I1 − I ′ 0|, we introduce the following lemma from [30]: Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We define d(z) := det(1+zT) and dQ(z) := det (1i=j + wjzK(ri, rj))m i,j=1, where K is the kernel of the operator T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=" The difference between d(z) and dQ(z) 7 0I ' 0I 1I 2I '' 0I Discretize the receiver Discretize the transmitter Discretize the transceivers Lemma 1 Lemma 2 Lemma 3 Lemma 4 Lemma 5 Theorem 1 Theorem 2 Fig." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Flow chart of the proof in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' is d(z) − dQ(z) = ∞ � n=1 zn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' � Qn m(Kn) − � [a,b]n Kn(x1, · · · , xn)dx1 · · · dxn � , (19) where Kn(x1, · · · , xn) = det (K(xi, xj))n i,j=1, and Qn m(f) = �m j1=1,··· ,jn=1 �n i=1 wjif(rj1, · · · , rjn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Lemma 2 provides a method to compare the difference between a Fredholm determinant of operator and a clas- sical determinant of matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' In our model, the operator T corresponds to the integral operator TE, z equals 2m ln1 ,and wj = l/m according to the equally spaced antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Notice that Qn m(f) is the numerical approximation of the integral � [a,b]n Kn(x1, · · · , xn)dx1 · · · dxn, we need to use numerical integral theory to estiamte the approxi- mation error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For the model with equally spaced antennas, this expression corresponds to a multivariate m-point composite midpoint quadrature rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For the error bound of a m-point composite midpoint quadrature [31], we have �����Qm(f) − � l 0 f(x)dx ����� ⩽ l3 24m2 ∥f ′′∥L∞(0,l) (20) According to [32], the numerical approximation error for multiple integrals in a n-dimensional unit cube can be bounded by ����� � Gn f − � n � i=1 � Qi(f) ����� ⩽ E1 + n � i=2 i−1 � j=1 WjEi, (21) where Qj(g) := � j wi,jg(xi,j), Wi = � j |wi,j| and Ei ⩾ ���Qi(f;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' xi) − � 1 0 f(x1, · · · , xn)dxi ���.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' According to the models in this paper, we have wi,j = l/m and Wi = l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' By simple variation of the integral band, we can bound the approximation error of the multi-dimensional numerical integral quadrature rule by �����Qn m(Kn) − � [0,l]n Kn(x1, · · · , xn)dx1 · · · dxn ����� ⩽ ni−1 n � i=1 Ei, (22) where Ei = �����Qi(Kn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' xi) − � l 0 Kn(x1, · · · , xn)dxi ����� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (23) Therefore, we have �����Qn m(Kn) − � [0,l]n Kn(x1, · · · , xn)dx1 · · · dxn ����� ⩽ nln+2 24m2 |Kn|2 (24) where |Kn|2 = max i ∥ ∂2Kn ∂x2 i ∥L∞((0,l)n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Similar to [30, Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='4], we can bound |Kn|k by using the Hadamard’s inequality, which leads to |Kn|k ⩽ 2knn/2 � � max i+j⩽k ����� ∂i x∂j yK(x, y) ∂xi∂yj ����� L∞((0,l)2) � � n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (25) Next we will show that ��� ∂i x∂j yK(x,y) ∂xi∂yj ��� is upper-bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Since we have K(x, y) = � l 0 G(x, s)G∗(y, s)ds, we will first analyze the property of G(x, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We decom- pose G(x, s) as G1(x, s) + jG2(x, s), where G1, G2 ∈ C∞([0, l]2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The smoothness of G1, G2 in their domains 8 is trivial since they are compositions of polynomial func- tions, trigonometric functions and square root functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Consider the integral kernel K(x, y) expressed in terms of G1, G2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', K(x, y) = � l 0 � G1(x, s)G1(y, s) + G2(x, s)G2(y, s) � ds + j � l 0 � G1(y, s)G2(x, s) − G1(x, s)G2(y, s) � ds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (26) Since G1(x, s) and G2(y, s) are smooth in [0, l]2, we can conclude that f1(x, y) = G1(x, s)G1(y, s) + G2(x, s)G2(y, s) and f2(x, y) = G1(y, s)G2(x, s) − G1(x, s)G2(y, s) are smooth in the same domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Since compactly supported smooth functions attain their maxi- mum or minimum values, the partial derivatives of K(·, ·) are upper-bounded for any order i, j, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', ���� ∂i+jK(x, y) ∂xi∂yj ���� < ∞, ∀i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (27) Therefore, by substituting (24) and (25) into Lemma 2, we can bound the difference between the mutual information I ′ 0 and I1 by the following lemma: Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The mutual information I1 converges to the mutual information I ′ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The difference ���I1 − I ′ 0 ��� is at most inverse-proportional to m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Proof: From (6) we know that for the operator TE, the kernel function can be expressed by K(x, y) = � L 0 g(x, s)g∗(y, s)ds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' From (25) we have |Kn|2 ⩽ 4nn/2An, (28) where A = max ��� ∂i+jK(x,y) ∂xi∂yj ��� L∞((0,l)2) is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore we have |d(z) − dQ(z)| ⩽ ∞ � n=1 zn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' nln+2 24m2 max i ���� ∂2Kn ∂x2 ���� L∞((0,l)n) ⩽ ∞ � n=1 zn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' nln+2 6m2 nn/2An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (29) According to the Stirling’s approximation, we have n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' ⩾ nne−n√ 2πn, which leads to |d(z) − dQ(z)| ⩽ l2 6m2 ∞ � n=1 � n 2π (Aezl)n nn/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (30) Since it is obvious that �∞ n=1 � n 2π (Aezl)n nn/2 is convergent, the difference between d(z) and dQ(z) is proportional to m−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For the difference between mutual information I1 and I ′ 0, we have |I1−I ′ 0| ⩽ |d(z) − dQ(z)| min(d(z), dQ(z)) < l2 6m2 ∞ � n=1 � n 2π (Aezl)n nn/2 , (31) where z = m ln1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' From Lemma 1 we know that l mn1 ⩾ n0 − n0l3���K ′′ E(r,r) ��� L∞(0,l) 24m2| � l 0 KE(r,r)dr| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, z is upperbounded, which completes the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' According to Lemma 1 and Lemma 3, we have Theorem 1, which bounds the difference between I0 and I1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The mutual information I1 that can be obtained from the discrete receiver converges to the mutual information I0 that can be obtained from the continuous receiver when the number of points increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The convergence rate is at least inverse-proportional to the square of the sampling number m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Proof: Since the Fredholm determinant f(z) = det(1 + zTE) is an analytic function, we have |det(1 + zTE) − det(1 + z1TE)| = |z − z1| ���� ∂det(1 + xTE) ∂x ���� x∈[min(z,z1),max(z,z1)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (32) In our assumption z = 2 n0 and z1 = 2m ln1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The analycity of det(1 + zTE) implies that ∂det(1+xTE) ∂x is also an anlytic function and is bounded on the interval [min(z, z1), max(z, z1)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We denote M = max x ��� ∂det(1+xTE) ∂x ���, where x ∈ [min(z, z1), max(z, z1)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' From Lemma 1 we have ���� l mn1 − n0 ���� ⩽ n0l3 ���K ′′ E(r, r) ��� L∞(0,l) 24m2 � l 0 KE(r, r)dr .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (33) Since n1/m → n0/l when m approximates infinity, we denote the minimum value of n1/m by c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, ���det(1 + 2 n0 TE) − det(1 + 2m ln1 TE) ��� can be bounded by ����det(1 + 2 n0 TE) − det(1 + 2m ln1 TE) ���� ⩽ Ml2 ���K ′′ E(r, r) ��� L∞(0,l) 12m2c � l 0 KE(r, r)dr .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (34) Similar to the direvation of (31), we know that when m increases, I ′ 0 will converge to I0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The convergence rate is at least inverse-proportional to m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' From Lemma 3 we know that ���I1 − I ′ 0 ��� is at most inverse-proportional to m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Since |I0 − I1| ⩽ ���I0 − I ′ 0 ��� + ���I1 − I ′ 0 ���, Theorem 1 is proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Theorem 1 shows that the SNR control scheme between the discrete and continuous models is appropriate, since the limit of the mutual information of the discrete model is proved to be that of the continu- ous model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' That is to say, our proposed model is self- consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, we can use the proposed model to compare the mutual information from the discrete and continuous receivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Our analysis is based on 9 0 50 100 150 0 20 40 60 80 100 120 140 160 180 continuous receiver discrete receiver 5 10 15 20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='5 3 continuous receiver discrete receiver Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The mutual information as a function of the sampling number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The transmitter is kept continuous and the receiver is discretized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' RE(r, r′) = P � l 0 G(r, s)G∗(r′, s)ds which corresponds to the scenario when no CSI can be obtained at the transmitter but not limited to this scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' It can be eas- ily extended to other shapes of autocorrelation functions after power allocation at the transmitter, as long as the analyticity of RE(r, r′) is guaranteed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Numerical analysis about the mutual information As proven in the above subsection, the mutual infor- mation between the continuous transmitter and discrete receiver converges to the mutual information between continuous transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, the model of the dis- crete receiver can be viewed as the discretization of the continuous receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' In this subsection, we will use nu- merical analysis to show the correctness of the theoretical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Moreover, we will show the near-optimality of the discrete receiver with half-wavelength sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We set the length l of the transceivers to 2 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The trans- mitter is kept continuous, while the receiver is discretized to m point antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The wavelength of the electromag- netic field is fixed to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='04 m, which correpsonds to the fre- quency of 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='5 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The distance between the transceivers varies from 10 m to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='1 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The simulation results are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' From the simulation, we can observe the convergence of the mutual information between the continuous transmitter and the discrete receiver, which verifies the theoretical analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For the three distances between transceivers, the half-wavelength sampling al- most achieves the supremum mutual information between continuous transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, half-wavelength sam- pling of the receiver is suboptimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Moreover, when the distance between transceivers decreases, we can observe that the mutual information converges slower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' When the distance equals 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='1 m, the half wavelength sampling is at the critical state of convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' If the distance is less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='1 m, a performance gap between the model with the continuous receiver and that with the discrete receiver may be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' This performance gap has theoretical meaning but may not be useful because the distance will be comparable to the wavelength in this scenario, where the evanescent wave components will hold a dominant position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' COMPARISON BETWEEN CONTINUOUS AND DISCRETE TRANSCEIVERS In the above section we have compared the mutual information between the models with continuous and discrete receivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For both models the transmitter is kept continuous, which simplifies the analyzing procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' In- spired by the analysis in the above section, in this section we will compare the mutual information between contin- uous transceivers and that between discrete transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Numerical analysis is then provided to show the near- optimality of the half-wavelength sampling scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Convergence analysis of the mutual information The analysis in this section focuses on the difference between I0 and I2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' It is an extension of the conver- gence analysis in the above section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We define I ′′ 0 = logdet � 1 + m2TE l2n2/2 � as an intermediate variable similar to I ′ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' First we will discuss the convergence of |I0 − I ′′ 0 | in the following lemma: Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The mutual information I ′′ 0 converges to the mutual information I0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The difference ���I0 − I ′′ 0 ��� is at most inverse-proportional to m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Proof: From the SNR control scheme of discrete transceivers (17) and the multivariate m-point composite midpoint quadrature rule, we have ����n0 − l2 m2 n2 ���� = n0 � l 0 K(r, r)dr ����� � l 0 � l 0 g(r, r, z)dzdr − l2 m2 m � i=1,j=1 g(ri, ri, rj) ����� ⩽ n0l4 24m2 � l 0 K(r, r)dr � ���� ∂2g(r, r, z) ∂r2 ���� L∞((0,l)2) + ���� ∂2g(r, r, z) ∂z2 ���� L∞((0,l)2) � , (35) where g(x, y, z) := G(x, z)G∗(y, z), ri = (i − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='5)l/m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' It is obvious that n2/m2 converges to n0/l2 when m → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We denote the minimum value of n2/m2 by c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Then, according to (32), we know that ���det(1 + 2 n0 TE) − det(1 + 2m2 l2n2 TE) ��� converges to 0 when m → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, |I0 − I ′′ 0 | converges to 0, and the convergence rate is at least inversely proportional to m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 10 Then we will discuss the convergence of |I2 − I ′′ 0 | in the following lemma: Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The difference ���I2 − I ′′ 0 ��� approaches 0 when m approaches infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Moreover, it is at most inverse- proportional to m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Proof: We denote the Fredholm determinant and its discretization by d(z) = det(1 + zT) and dV (z) = det (1i=j + wjz �m k=1 wkG(ri, rk)G∗(rj, rk))m i,j=1, where K is the kernel of the operator T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' To bound the difference between d(z) and dV (z), we define gn(x1, · · · , xn, s1, · · · , sn) as gn(x1, · · · , xn, s1, · · · , sn) = det � � g(x1, x1, s1) · · g(x1, xn, s1) · · g(xi, xj, si) · · g(xn, x1, sn) · · g(xn, xn, sn) � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (36) From the definition of g(x, y, z), we know that � l 0 g(xi, xj, si)dsi = K(xi, xj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' According to the property of determinants that det(ai,j)m i,j=1 = � k1,··· ,km(−1)ka1,k1 · · · am,km, where k1 · · · km is the kth exchange of 1 · · · n, we can find that Kn(x1, · · · , xn) = � [0,l]n gn(x1, · · · , xn, s1, · · · , sn) ds1 · · · dsn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (37) If we define Cn m(gn) by (38) we have (39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Here wαi correspondes to the distance between antennas in the source region and s correpsonds to the location of the antennas in the source region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' When further considering the discretization of the receiver as in (19), we should set xn 1 to the location of the antennas in the destination region, and add additional weights w which equals the distance between antennas in the destination region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Similar to the definition of Qn m in (19), we define V n m(gn) by V n m(gn) = �m j1,··· ,jn=1 � i wjiCn m(gn(rj1, · · · , rjn, s1,α1, · · · , sn,αn)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' When sj,αi = rαi, we have V n m(gn) = m � j1,··· ,jn=1 m � α1,··· ,αn=1 � n � i=1 ji � � n � i=1 αi � gn(rj1, · · · , rjn, rα1, · · · , rαn) = m � j1,··· ,j2n=1 � 2n � i=1 ji � gn(rj1, · · · , rj2n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (40) The difference between d(z) and dV (z) is d(z) − dV (z) = ∞ � n=1 zn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' � V n m(gn) − � [0,l]n Kn(x1, · · · , xn)dx1 · · · dxn � = ∞ � n=1 zn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' � V n m(gn) − � [0,l]2n gn(x1, · · · , x2n)dx1 · · · dx2n � (41) Note that V n m(gn) is the numerical discretization of the function gn with 2n variables, we can bound V n m(gn) − � [a,b]2n gn(x1, · · · , x2n)dx1 · · · dx2n by using the multi- variate numerical integration error bound: �����V n m(gn) − � [0,l]2n gn(x1, · · · , x2n)dx1 · · · dx2n ����� ⩽ l2n−1 2n � i=1 Ei, (42) where Ei = �����Qi(gn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' xi) − � l 0 gn(x1, · · · , x2n)dxi ����� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (43) According to the m-point composite midpoint quadrature rule, we have �����Qi(gn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' xi) − � l 0 gn(x1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' x2n)dxi ����� ⩽ l3 24m2 ���� ∂2gn ∂x2 i ���� L∞((0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='l)2n) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (44) From the Hadamard’s inequality [33],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' we can further bound it by �����V n m(gn) − � [a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='b]2n gn(x1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' x2n)dx1 · · · dx2n ����� ⩽ 2nl2n+2 24m2 max j ����� ∂2gn ∂x2 j ����� L∞((0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='l)2n) ⩽ 2nl2n+2 24m2 max � �nn/2 ����� ∂2g(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' z) ∂z2 ���� L∞((0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='l)3) �n ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 4nn/2 � � max i+j⩽2 ����� ∂i x∂j yg(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' z) ∂xi∂yj ����� L∞((0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='l)3) � � n � � ⩽ l2n+2 3m2 n(n+2)/2 � � max i+j+k⩽2 ����� ∂i x∂j y∂k z g(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' z) ∂xi∂yj∂zk ����� L∞((0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='l)3) � � n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (45) Similar to Lemma 3, we know that |I2 −I ′ 0| converges to 0, and the error is at most inverse proportional to m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, we have Theorem 2: Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The mutual information I2 that can be obtained from the discrete transceivers converges to the mutual information I0 that can be obtained from the continuous transceivers when the number of antennas in the discrete transceivers increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The difference |I0−I2| is at least inverse-proportional to the square of the sampling number m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Similar to Remark 3 in Section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' III, the convergence analysis in this section is not lim- ited to the scenario with equal power allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 11 Cn m(gn) = det � � � α1 wα1g(x1, x1, s1,α1) · · � α1 wα1g(xn, xn, s1,α1) · · � αi wαig(xi, xj, si,αi) · · � αn wαng(xn, x1, sn,αn) · · � αn wαng(xn, xn, sn,αn), � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (38) Cn m(gn) = � k1···kn (−1)k( m � α1=1 wα1g(x1, xk1, s1,α1)) · · · ( m � αn=1 wαng(xn, xkn, sn,αn)) = � k1···kn � (−1)k m � α1,··· ,αn=1 n � i=1 wαig(xi, xki, si,αi) � = m � α1,··· ,αn=1 �� n � i=1 wαi � � k1···kn (−1)k n � i=1 g(xi, xki, si,αi) � = m � α1,··· ,αn=1 �� n � i=1 wαi � gn(x1, · · · , xn, s1,α1, · · · , sn,αn) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' (39) 0 50 100 150 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='12 continuous transceiver discrete receiver discrete transceiver 10 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='1188 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='119 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='1192 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The mutual information variation with different sampling num- bers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The mutual information that correpsonds to the three models with continuous and discrete transceivers is plotted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The distance between the transceivers is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For arbitrary analytic function RJ(s, s′), the conver- gence of |I0 − I2| can be obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Instead of dis- cretizing � G(r, z)G∗(r′, z)dz to � i G(r, ri)G(r′, ri), we will discretize �� G(r, z)RJ(z, z′)G∗(r′, z′)dzdz′ to � i,j G(r, ri)RJ(ri, rj)G(r′, rj) in the extended sce- narios with power allocation schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Then, in- stead of g(x, y, z) we need a four-variable function h(x, y, z, ω) := G(x, z)RJ(z, ω)G(y, ω) and the deriva- tion procedure of the convergence has no essential differ- ence with Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Numerical analysis about the mutual information In this subsection, we will verify the correctness of the convergence analysis in the above subsection by simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The length l of the transceivers is fixed to 2 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We have plotted the mutual information of the three models: continuous transceiver, continuous trans- mitter and discrete receiver, and discrete transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The transceivers are both discretized to m point antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The wavelength of the electromagnetic field is fixed to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='04 m, which corresponds to the frequency of 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='5 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' First we will show the scenarios when the distance be- tween the transceivers is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The distance between the transceivers varies from 50 m to 200 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The simulation results are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' From the simulation results we find that the mutual information nearly keeps the same when the sampling number increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The reason for this phenomenon is that the DoF of the channel is nearly inverse-proportional to the distance between transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' For example, the DoF when the distance equals 50 m can be approximated by l2/(dλ) = 2, which means that when the sampling num- ber is 5, the multiplexing gain is almost fully explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Therefore, for large distances between transceivers, the dominant limitation is the channel DoF, which means that the suboptimal performance can be achieved by sampling sparser than half-wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Moreover, we have shown the variation of the mutual information with the sampling number when the distance between transceivers is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 5 the distance between the transceiver is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='1 m and 1 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We can find that when the distance decreases, the dense sampling of the transceivers becomes important to fully explore the limit of the mutual information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' However, the half-wavelength sampling of the transceivers still achieves suboptimal performance, which means that denser sampling schemes are not necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' CONCLUSION In this paper, we proposed a comparison scheme be- tween continuous and discrete MIMO systems which is 12 0 50 100 150 0 20 40 60 80 100 120 140 160 180 continuous transceiver discrete receiver discrete transceiver Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The mutual information as a function of the sampling number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The mutual information values that correspond to the three models with continuous and discrete transceivers are plotted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The distance between the transceivers is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' based on a precise non-asymptotic analysis framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Three information-theoretic models of the continuous and discrete transceivers were built, with the first model corresponds to the fully continuous electromagnetic infor- mation theory model, and the third model corresponds to the matrix-vector MIMO model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' We proposed physically consistent SNR control schemes to ensure the fairness of the comparison, and proved that the mutual information between discrete MIMO transceivers converges to that of continuous electromagnetic transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Numerical results verified the theoretical analysis and showed the near-optimality of the half-wavelength sampling scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Further works can be done by extending the lin- ear transceivers to rectangular or other two-dimensional transceivers for generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' The analysis based on the capacity after water-filling of the mutual information also remains to be explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' REFERENCES [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Andrews, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Buzzi, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Choi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Hanly, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Lozano, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Soong, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Zhang, “What will 5G be?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Areas Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 32, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1065–1082, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [2] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Boccardi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Heath, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Lozano, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Marzetta, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Popovski, “Five disruptive technology directions for 5G,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 52, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 74–80, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Andrews, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Zhang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Durgin, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Gupta, “Are we approaching the fundamental limits of wireless network densification?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 54, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1558– 1896, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [4] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Lu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Li, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Swindlehurst, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Ashikhmin, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Zhang, “An overview of massive MIMO: Benefits and challenges,” IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Topics Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 742–758, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [5] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Decarli and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Dardari, “Communication modes with large intelligent surfaces in the near field,” arXiv preprint arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='10569, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [6] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Zhang and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Dai, “Pattern-division multiplexing for continuous-aperture mimo,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2022 IEEE International Conference on Communications (ICC’22), May 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 3287– 3292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [7] ¨O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Demir, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Bj¨ornson, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Sanguinetti, “Channel modeling and channel estimation for holographic massive MIMO with planar arrays,” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Pizzo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Marzetta, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Sanguinetti, “Spatially-stationary model for holographic MIMO small-scale fading,” IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Areas Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 38, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1964–1979, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [9] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Sanguinetti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' D’Amico, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Debbah, “Wavenumber- division multiplexing in line-of-sight holographic MIMO com- munications,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', early access, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2022, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='1109/TWC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='3208961.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Yuan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Ngo, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Matthaiou, “Towards large intelligent surface (LIS)-based communications,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 68, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 6568–6582, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [11] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Yurduseven, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Marks, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Fromenteze, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Smith, “Dynamically reconfigurable holographic metasurface aperture for a mills-cross monochromatic microwave camera,” Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Express, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 5, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 5281–5291, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [12] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Sun, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Gao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Shim, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Gui, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Mao, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Adachi, “Principal component analysis-based broadband hybrid precoding for millimeter-wave massive MIMO systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 6331–6346, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Zhang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Shlezinger, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Guidi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Dardari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Imani, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Eldar, “Beam focusing for near-field multi-user MIMO communications,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 7476–7490, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [14] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Wu and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 5394–5409, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Migliore, “Near field antenna measurement sampling strate- gies: From linear to nonlinear interpolation,” Electronics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 10, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 257, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [16] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Landau, “Sampling, data transmission, and the Nyquist rate,” Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' IEEE, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 55, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1701–1706, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1967.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Slepian and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—I,” Bell System Techn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 43–63, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1961.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [18] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Slepian, “On bandwidth,” Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' of the IEEE, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 64, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 292–300, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [19] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Massimo, Wave Theory of Information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Cambridge, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=': Cambridge Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Press, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [20] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Wan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Dai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Debbah, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Poor, “Electromag- netic information theory: Fundamentals, modeling, applications, and open problems,” arXiv preprint arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='02882, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [21] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Dardari, “Communicating with large intelligent surfaces: Fun- damental limits and models,” IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Areas Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 38, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2526–2537, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Poon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Brodersen, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Tse, “Degrees of freedom in multiple-antenna channels: A signal space approach,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 51, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 523–536, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Yaglom, “Some classes of random fields in n-dimensional space, related to stationary random processes,” Theory of Proba- bility & Its Applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 273–320, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1957.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [24] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Wan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Dai, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Chae, “Mutual infor- mation for electromagnetic information theory based on random fields,” arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content='00496, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [25] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Lax, Functional analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' John Wiley & Sons, 2002, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [26] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Gohberg and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Kre˘ın, Introduction to the theory of linear nonselfadjoint operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' American Mathematical Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', 1978, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [27] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' De Vito, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Umanit`a, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Villa, “An extension of mercer theorem to matrix-valued measurable kernels,” Applied and Com- putational Harmonic Analysis, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 34, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 339–351, May 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Pizzo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Sanguinetti, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Marzetta, “Fourier plane-wave series expansion for holographic MIMO communications,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 6890–6905, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [29] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Hannan, “The element-gain paradox for a phased-array an- tenna,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Antennas Propag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 423–433, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 1964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [30] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Bornemann, “On the numerical evaluation of Fredholm deter- minants,” Mathematics of Computation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 79, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 270, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 871– 915, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 13 [31] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Davis and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Rabinowitz, Methods of numerical integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Courier Corporation, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [32] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Haber, “Numerical evaluation of multiple integrals,” SIAM review, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 481–526, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' [33] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Meyer, Matrix analysis and applied linear algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' Siam, 2000, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} +page_content=' 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfCxwU/content/2301.08411v1.pdf'} diff --git a/1dE0T4oBgHgl3EQf_wJK/content/2301.02830v1.pdf b/1dE0T4oBgHgl3EQf_wJK/content/2301.02830v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c53847ef8949b1f1c436a06426eadc5f6de39b9a --- /dev/null +++ b/1dE0T4oBgHgl3EQf_wJK/content/2301.02830v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e93c16ec62795ee2aa0f4d13a049f1a824636c85afee37b5d948a7a17c965cec +size 23363041 diff --git a/1dE0T4oBgHgl3EQf_wJK/vector_store/index.faiss b/1dE0T4oBgHgl3EQf_wJK/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..d9ece0b59b04f01a89257c6ac9dc819869241e31 --- /dev/null +++ b/1dE0T4oBgHgl3EQf_wJK/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8d960b3192e4b0f073a4c1b6d6b6fed9a1caf6293b1b688a220f7345ecc5827 +size 11010093 diff --git a/2tE1T4oBgHgl3EQfSAOy/content/tmp_files/2301.03061v1.pdf.txt b/2tE1T4oBgHgl3EQfSAOy/content/tmp_files/2301.03061v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..26b9804670c2dd0afbce4a3de07357bddd12257d --- /dev/null +++ b/2tE1T4oBgHgl3EQfSAOy/content/tmp_files/2301.03061v1.pdf.txt @@ -0,0 +1,3048 @@ +Quantum interference in the resonance fluorescence of a J = 1/2 − J′ = 1/2 +atomic system: Quantum beats, nonclassicality, and non-Gaussianity +H. M. Castro-Beltr´an,1, ∗ O. de los Santos-S´anchez,2 L. Guti´errez,3 and A. D. Alcantar-Vidal1 +1Centro de Investigaci´on en Ingenier´ıa y Ciencias Aplicadas and Instituto de Investigaci´on en Ciencias B´asicas y Aplicadas, +Universidad Aut´onoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos, M´exico +2Tecnologico de Monterrey, Escuela de Ingenier´ıa y Ciencias, +Ave. +Carlos Lazo 100, Santa Fe, Mexico City, Mexico, 01389 +3Instituto de Ciencias F´ısicas, Universidad Nacional Aut´onoma de M´exico, +62210 Cuernavaca, Morelos, M´exico +(Dated: January 10, 2023) +We study the resonance fluorescence of a system with angular momentum J = 1/2−J′ = 1/2 level +structure driven by a single, linearly polarized, monochromatic laser field. Quantum interference +among the two, antiparallel, π transitions leads to rich results. We develop the article around two +broad overlapping themes: (i) the observation of quantum beats in the intensity and the dipole- +dipole, intensity-intensity, and quadrature-intensity correlations, when the atom is subject to a +strong laser and large Zeeman splittings. The mean and modulation frequencies of the beats are +given by the average and difference, respectively, among two close generalized Rabi frequencies +related to a Mollow-like spectrum with two pairs of sidebands. +(ii) The nonclassical and non- +Gaussian properties of phase-dependent fluorescence for the cases of weak to moderate excitation +and in the regime of beats. The fluorescence in the beats regime is nonclassical, mainly from the +third-order dipole fluctuations, which reveal them to be also strongly non-Gaussian. For weak to +moderate driving laser and small detunings and Zeeman splittings the nonclassicality is an interplay +of second- (squeezing) and third-order dipole noise. +I. +INTRODUCTION +Recently, the properties of the resonance fluorescence +of a single atomic system with angular momentum transi- +tion J = 1/2−J′ = 1/2 driven by a monochromatic laser +have been the subject of great interest due to the possi- +bility of observing vacuum-induced coherence effects due +to interference among the two antiparallel π transitions, +emitting into the same frequency range of the electro- +magnetic vacuum. Here, the π transitions are incoher- +ently coupled, mediated by spontaneous emision in the σ +transitions and then excited by the laser. The antiparal- +lel dipoles of the transitions makes it realistic to observe +interference effects, while V and Λ three-level systems re- +quire additional preparation because the transitions are +perpendicular [1, 2]. Particular attention has been de- +voted to the spectrum [3–6], time-energy complementar- +ity [4, 5], Young’s interference [7], photon correlations +[8], frequency-resolved photon correlations [9], squeezing +[10], phase shifts [11], and cooperative effects in photon +correlations [12]. The case of additional laser excitation +of one of the σ transitions on the spectrum and squeezing +has been studied in [13–15]. +Quantum beats are among the more familiar mani- +festations of quantum interference. They appear in the +modulation of the decay by spontaneous emission of mul- +tilevel systems due to the energy difference among transi- +tions [2]. So far, few experiments of quantum interference +experiments have been performed on the J = 1/2 − J′ = +∗ hcastro@uaem.mx +1/2, in this case observing Young-type fringes [7]. Hence, +further experiments are desirable. Quantum beats in the +intensity are the result of the inability to tell the path +of a particular photon when observed by a broadband +detector. The beats can also occur in two-time correla- +tions. As a general rule, initial conditions should be a +superposition state. +In this paper we investigate theoretically effects of +quantum interference on the total intensity and two-time +correlations such as dipole-dipole (to calculate spectra), +intensity-intensity, intensity-amplitude correlations, and +variance of the light emitted into the π transitions of the +J = 1/2−J′ = 1/2 atomic system driven by a linearly po- +larized laser and a magnetic field to break the degeneracy. +While we put emphasis on the regime of observation of +quantum beats, the nonclassical and non-Gaussian prop- +erties of the fluorescence are also investigated. +After describing the main features of the model in +Section II, we discuss the basic dynamic and stationary +properties of the atomic expectation values in Section +III. Here, we analyze the previously overlooked time- +dependent behavior of the atomic populations. +Those +of the excited states, for instance, although equal in the +steady state, evolve with different Rabi frequencies and +amplitudes. This is at the root of the formation of beats +in the intensity and the correlations. In the regime of +strong laser and magnetic fields these beats are character- +ized by well-defined oscillations at the average frequency +among two generalized Rabi frequencies, modulated at +the difference of those frequencies. +To observe beats +in the intensity both ground state populations must be +nonzero initially, ideally equal [1]. Similarly, for the two- +time correlations, the vector of initial conditions must +arXiv:2301.03061v1 [quant-ph] 8 Jan 2023 + +2 +have at least two nonzero terms. +In Section IV we describe the scattered field intensity +and quadratures. Here, beats depend only on the inter- +ference of the two upper populations in the nondegener- +ate case, with both lower populations initially nonzero. +Cross terms of the oppposite π transitions represent in- +terference in the steady state intensity. Then, In Section +V, using the dressed states approach, we show that the +double sideband spectrum [5] stems from a dipole-dipole +correlation with beats, where the terms of addition of sin- +gle π transitions dominate over those of the cross terms. +In Section VI we study Brown-Twiss photon-photon +correlations [16, 17], extending the work of Ref.[8] to the +nondegenerate case. Besides the ubiquitous antibunching +effect, for weak to moderate laser drivings the interplay +of parameters, together with detuning and Zeeman split- +tings, can make for somewhat involved evolutions, e.g., +long decays due to optical pumping in the non-degenerate +case. Again, cross terms are minor contributors to the +full correlation in the beats regime. +Section VII is devoted to a study of phase-dependent +fluctuations by conditional homodyne detection (CHD) +[18, 19] in both the temporal and spectral domains. The +CHD method is characterized by amplitude-intensity cor- +relations (AIC), which are of third order in the field am- +plitude. When the atomic operators are decomposed into +a mean plus a noise operator the AIC is split into a +second-order term which would be a measure of squeezing +if the third-order one were negligible. But the latter is +not negligible outside the weak field regime of resonance +fluorescence, which make the fluctuations non-Gaussian +and also nonclassical by the violation of classical inequal- +ities [20]. We obtain the spectra of the total, second- and +third-order terms of the AIC. Narrow peaks in the spec- +tra reveal population trapping when detunings favour the +long term population or optical pumping of the ground +state of the more detuned transition, which in the time +domain show the above mentioned long decays. +The +third-order terms make up most of the beats and thus +they are non-Gaussian and nonclassical but not squeezed. +In Section VIII we consider squeezing by means of the +variance of fluctuations. As usual, squeezing in resonance +fluorescence is small and restricted to weak or moderate +Rabi frequencies. +Finally, in Section IX we provide a +discussion and conclusions, and two Appendices give de- +tails on solution methods, initial conditions, and optimal +appearance of beats. +II. +MODEL +The system, illustrated in Fig. 1, consists of a two-level +atom with transition J = 1/2 – J = 1/2 and states with +magnetic quantum number m = ±J, +|1⟩ = |J, −1/2⟩, +|2⟩ = |J, 1/2⟩, +|3⟩ = |J, −1/2⟩, +|4⟩ = |J, 1/2⟩. +(1) +The matrix elements are +FIG. 1. +Scheme of the J = 1/2 – J = 1/2 atomic system +interacting with a laser driving the |1⟩ − |3⟩ and |2⟩ − |4⟩ +transitions with Rabi frequency Ω and detuning ∆. +There +are spontaneous decay rates γ1, γ2 and γσ, vacuum-induced +coherence γ12, and Zeeman frequency splittings Bℓ and Bu. +d1 = ⟨1|ˆd|3⟩ = − 1 +√ +3Dez, +d2 = ⟨2|ˆd|4⟩ = −d1, +d3 = ⟨2|ˆd|3⟩ = +� +2 +3De−, +d4 = ⟨1|ˆd|4⟩ = d∗ +3, +(2) +where D is the reduced dipole matrix element. We choose +the field polarization basis {ez, e−, e+} (linear, left cir- +cular, right circular), where e± = ∓(ex ± iey)/2. +The π transitions, |1⟩ − |3⟩ and |2⟩ − |4⟩ (m = m′), are +coupled to linearly polarized light and have their dipole +moments antiparallel. On the other hand, the σ tran- +sitions, |1⟩ − |4⟩ and |2⟩ − |3⟩ (m ̸= m′), are coupled +to circularly polarized light. This configuration can be +found, for example, in 198Hg+ [3], and 40Ca+ [12]. +The level degeneracy is removed by the application of +a static magnetic field Bz along the z direction, the Zee- +man effect. +Note that the energy splittings gµBBz of +the upper (u) and lower (ℓ) levels are different due to +unequal Land´e g factors, gu and gℓ, respectively; µB is +Bohr’s magneton. The difference Zeeman splitting is +δ = (gu − gℓ)µBBz +¯h += gu − gℓ +gℓ +Bℓ, +(3) +where Bℓ = glµBBz/¯h. For 198Hg+ gu = 2/3 and gℓ = 2, +so ¯hδ = −(4/3)µBBz = −(2/3)¯hBℓ. +The atom is driven by a monochromatic laser of fre- +quency ωL, linearly polarized in the z direction, propa- +gating in the x direction, +EL(x, t) = E0ei(ωLt−kLx)ez + c.c., +(4) +thus driving only the π transitions. +The free atomic, H0, and interaction, V , parts of the +Hamiltonian are, respectively: +H0 = ¯hω13A11 + ¯h(ω24 + Bℓ)A22 + ¯hBℓA44, +(5) +V = ¯hΩ(A13 − A24)eiωLt + h.c. +(6) + +3 +where Ajk = |j⟩⟨k| are atomic operators, ω13 and ω24 = +ω13 + δ are the frequencies of the |1⟩ − |3⟩ and |2⟩ − |4⟩ +transitions, respectively, and Ω = E0D/ +√ +3 ¯h is the Rabi +frequency. The frequencies of the other transitions are +ω23 = ω13 − δ and ω14 = ω13 − Bℓ. Using the unitary +transformation +U = exp [(A11 + A22)iωLt], +(7) +the Hamiltonian in the frame rotating at the laser fre- +quency is +H = U †(H0 + V )U, += −¯h∆A11 − ¯h(∆ − δ)A22 + ¯hBℓ(A22 + A44) ++¯hΩ [(A13 − A24) + h.c.] , +(8) +where ∆ = ωL −ω13 is the detuning of the laser from the +|1⟩ − |3⟩ resonance transition, and ∆ − δ is the detuning +on the |2⟩ − |4⟩ transition. +The excited states decay either in the π transitions +emitting photons with linear polarization at rates γ1 = +γ2, or in the σ transitions emitting photons of circular +polarization at rate γσ. There is also a cross-coupling +of the excited states by the reservoir, responsible for the +quantum interference we wish to study. In general, the +decay rates are written as +γij = di · d∗ +j +|di||dj| +√γiγj, +i, j = 1, 2. +(9) +In particular, we have γii = γ1 = γ2 and γ13 = γ24 = γσ. +Also, given that d1 and d2 are antiparallel, γ12 = γ21 = +−√γ1γ2 = −γ1. +The total decay rate is +γ = γ1 + γσ = γ2 + γσ. +(10) +The decays for the π and σ transitions occur with the +branching fractions bπ and bσ [5], respectively, +γ1 = γ2 = bπγ, +bπ = 1/3, +(11a) +γσ = bσγ, +bσ = 2/3. +(11b) +III. +MASTER EQUATION +The dynamics of the atom-laser-reservoir system is de- +scribed by the master equation for the reduced atomic +density operator, ρ. In a frame rotating at the laser fre- +quency (˜ρ = UρU †) it is given by +˙˜ρ = − i +¯h[H, ˜ρ] + Lγ ˜ρ, +(12) +where −(i/¯h)[H, ˜ρ] describes the coherent atom-laser in- +teraction and Lγ ˜ρ describes the damping due to sponta- +neous emission [5, 21]. Defining +S− +1 = A31, +S− +2 = A42, +S− +3 = A32, +S− +4 = A41, +S+ +i = (S− +i )†, +(13) +the dissipative part is written as +Lγ ˜ρ = 1 +2 +2 +� +i,j=1 +γij +� +2S− +i ˜ρS+ +j − S+ +i S− +j ˜ρ − ˜ρS+ +i S− +j +� ++γσ +2 +4 +� +i=3 +� +2S− +i ˜ρS+ +i − S+ +i S− +i ˜ρ − ˜ρS+ +i S− +i +� +. (14) +We now define the Bloch vector of the system as +Q ≡ (A11, A12, A13, A14, A21, A22, A23, A24, +A31, A32, A33, A34, A41, A42, A43, A44)T . (15) +The equations for the expectation values of the atomic +operators, ⟨Ajk⟩ = ˜ρkj, are the so-called Bloch equations, +which we write as +d +dt⟨Q(t)⟩ = MB⟨Q(t)⟩, +(16) +where MB is a matrix of coeficients of the full master +equation, and the formal solution is +⟨Q(t)⟩ = eMBt⟨Q(0)⟩. +(17) +Since we are interested only in properties of the fluores- +cence emitted in the π transitions we use the simplifying +fact, already noticed in [8], that these Bloch equations +can be split into two decoupled homogeneous sets. Set 1 +contains the equations for the populations and the coher- +ences of the coherently driven π transitions; these are +⟨ ˙A11⟩ = −γ⟨A11⟩ + iΩ(⟨A31⟩ − ⟨A13⟩), +⟨ ˙A13⟩ = − +�γ +2 + i∆ +� +⟨A13⟩ − iΩ(⟨A11⟩ − ⟨A33⟩), +⟨ ˙A22⟩ = −γ⟨A22⟩ − iΩ(⟨A42⟩ − ⟨A24⟩), +⟨ ˙A24⟩ = − +�γ +2 + i(∆ − δ) +� +⟨A24⟩ + iΩ(⟨A22⟩ − ⟨A44⟩), +⟨ ˙A31⟩ = − +�γ +2 − i∆ +� +⟨A31⟩ + iΩ(⟨A11⟩ − ⟨A33⟩), +⟨ ˙A33⟩ = γ1⟨A11⟩ + γσ⟨A22⟩ − iΩ(⟨A31⟩ − ⟨A13⟩), +⟨ ˙A42⟩ = − +�γ +2 − i(∆ − δ) +� +⟨A42⟩ − iΩ(⟨A22⟩ − ⟨A44⟩), +⟨ ˙A44⟩ = γσ⟨A11⟩ + γ2⟨A22⟩ + iΩ(⟨A42⟩ − ⟨A24⟩). +(18) +with Bloch vector +R ≡ (A11, A13, A22, A24, A31, A33, A42, A44)T +(19) +and a corresponding matrix M, Eq. (A3). Equations (18) +do not depend on γ12, the vacuum-induced coupling of +the upper levels, but on the applied magnetic field only +through the difference of Zeeman splittings, δ. +The steady state solutions, for which we introduce the + +4 +0 +2 +4 +6 +8 +10 +12 +0 +0.2 +0.4 +0.6 +0.8 +1.0 +0 +2 +4 +6 +8 +10 +12 +0 +0.2 +0.4 +0.6 +0.8 +1.0 +0 +2 +4 +6 +8 +10 +12 +0 +0.2 +0.4 +0.6 +0.8 +1.0 +0 +2 +4 +6 +8 +10 +12 +0 +0.2 +0.4 +0.6 +0.8 +1.0 +γt +γt +(d) ∆ = −2γ, δ = −4γ +(b) ∆ = 2γ, δ = −2γ +( ) ∆ = −2γ, δ = −2γ +⟨A22 (t)⟩ +⟨A44 (t)⟩ +⟨A11 (t)⟩ +⟨A33 (t)⟩ +(a) ∆ = 0, δ = 0 +FIG. 2. +Time-dependent populations ⟨A11(t)⟩ (solid-black), +⟨A22(t)⟩ (dashed-red), ⟨A33(t)⟩ (dots-green), and ⟨A44(t)⟩ +(dashed-dots-blue), with the atom initially in state |3⟩. The +parameters are: Ω = γ and (a) ∆ = δ = 0; (b) ∆ = 2γ, +δ = −2γ; (c) ∆ = δ = −2γ; (d) ∆ = −2γ, δ = −4γ. +short notation αjk = ⟨Ajk⟩st, are +α11 = α22 = Ω2 +2D, +(20a) +α33 = Ω2 + γ2/4 + ∆2 +2D +, +(20b) +α44 = Ω2 + γ2/4 + (∆ − δ)2 +2D +, +(20c) +α13 = Ω(∆ + iγ/2) +2D +, +(20d) +α24 = Ω(δ − ∆ − iγ/2) +2D +, +(20e) +αkj = α∗ +jk. +where +D = 2Ω2 + γ2 + δ2 +4 ++ +� +∆ − δ +2 +�2 +. +(21) +Note also that in the degenerate system (δ = 0) α33 = +α44 and that α31 = −α42, where the minus sign arises +from the fact that the dipole moments d1 and d2 are +antiparallel. +Set 2 contains the equations for the coherences of the σ +transitions and those among both upper and both lower +levels, +R2 ≡ (A12, A14, A21, A23, A32, A34, A41, A43)T . (22) +The equations for their expected values do depend on Bℓ +and γ12. These coherences vanish because the σ tran- +sitions are driven incoherently (⟨{A14, A23, A32, A41}⟩), +i.e., by spontaneous emission, or because they are medi- +ated by those σ transitions (⟨{A12, A21, A34, A43}⟩). For +completeness, we write the steady state results: +α12 = α34 = α14 = α23 = 0, +αkj = α∗ +jk. +(23) +0 +1 +2 +3 +4 +5 +6 +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0 +1 +2 +3 +4 +5 +6 +0 +0.2 +0.4 +0.6 +0.8 +0 +1 +2 +3 +4 +5 +6 +0 +0.2 +0.4 +0.6 +0.8 +0 +1 +2 +3 +4 +5 +6 +0 +0.1 +0.2 +0.3 +0.4 +0.5 +α11 = α22 +α33 +α44 +(d) ∆ = −2γ, δ = −4γ +(b) ∆ = 2γ, δ = −2γ +(a) ∆ = 0, δ = 0 +( ) ∆ = −2γ, δ = −2γ +Ω/γ +Ω/γ +FIG. 3. +Steady-state populations as a function of Rabi +frequency: α11 = α22 (dashed-red), α33 (solid-black), and +α44 (dots-blue). All other parameters as in Fig. 2. +The properties of the fluorescence of the π transitions, +the subject matter of this article, do not depend on the +equations for Set 2. Only the second- and third-order +amplitude-intensity correlations and the dipole correla- +tion for the spectrum of the σ transitions would require +the full set of Bloch equations. +We gain valuable information on the nontrivial dynam- +ics of the atomic system from single-time expectation val- +ues, apparently ignored in the previous literature on the +system. In Fig. 2 we show the populations for several +particular cases, all with the atom initially in state |3⟩. +In the degenerate case, δ = 0, the upper populations +reach opposite phases by the end of the first Rabi cycle, +Fig. 2(a). This is understandable since the electron oc- +cupation of, say, state |1⟩ implies not to be in state |2⟩, +and viceversa. The same occurs for the lower popula- +tions. Next, we show three situations for the nondegen- +erate case with δ < 0 (as it is for 198Hg+). In Fig. 2(b) +the laser is slightly detuned above the |1⟩−|3⟩ transition, +but highly detuned from the |2⟩−|4⟩ transition; the oscil- +lations get out of phase and most of the population ends +up in state |4⟩ by optical pumping. In Fig. 2(c) the laser +is detuned below the |1⟩−|3⟩ transition, and the |2⟩−|4⟩ +transition is now on resonance with the laser; again, the +oscillations are out of phase but most of the population +ends up now in state |3⟩. In Fig. 2(d) we extend the pre- +vious case but with stronger applied magnetic field, thus +the non-degeneracy is more evident; the large detuning +on both transitions makes it recover the opposite phases +of the degenerate case. +In Fig. 3 we show the steady state populations as a +function of the Rabi frequency; the other parameters are +the same as in Fig. 2. For strong fields the populations +tend to be equal (1/4), but arrive at that limit at dif- +ferent rates; for instance, for large detunings on both +transitions, Fig. 3(d), it takes larger fields, as compared +to the degenerate case, Fig. 3(a). On the other hand, +for small detunings and weak-moderate fields, when one + +5 +transition is closer to resonance than the other, the lower +state of the more detuned transition is more populated, +as seen in Figs. 3 (b) and (c). +IV. +THE SCATTERED FIELD +In this Section we present the main dynamical and +stationary properties of the field scattered by the atom, +with emphasis on the π transitions. +A. +Single-Time and Stationary Properties +The positive-frequency part of the emitted field oper- +ator is [5, 21] +ˆE+(r, t) = ˆE+ +free(r, t) + ˆE+ +S (r, ˆt), +(24) +where ˆE+ +free(r, t) is the free-field part, which does not con- +tribute to normally ordered correlations, hence we omit +it in further calculations, and +ˆE+ +S (r, t) = −η +r +4 +� +i=1 +ω2 +i ˆr × (ˆr × di)S− +i (ˆt) +(25) +is the dipole source field operator in the far-field zone, +where ˆt = t−r/c is the retarded time and η = (4πϵ0c2)−1. +Since ωi ≫ δ, we may approximate the four transition as +a single one ω0 in Eq. (25, but cannot do so at the level +of decay rates, Rabi frequencies, and splittings. +Making ˆr = ey the direction of observation and using +Eq. (2) we have +ˆE+ +S (r, ˆt) = ˆE+ +π (r, ˆt) ez + ˆE+ +σ (r, ˆt) ex, +(26) +i.e., the fields scattered from the π and σ transitions are +polarized in the ez and ex directions, respectively, where +ˆE+ +π (r, ˆt) = fπ(r) +� +A31(ˆt) − A42(ˆt) +� +, +(27a) +ˆE+ +σ (r, ˆt) = fσ(r) +� +A32(ˆt) − A41(ˆt) +� +, +(27b) +are the positive-frequency source field operators of the π +and σ transitions, and +fπ(r) = −ηω2 +1D/ +√ +3r, +fσ(r) = +√ +2fπ(r), +(28) +are their geometric factors. +The intensity in the π transitions is given by +Iπ(r, ˆt) = ⟨ ˆE− +π (r, ˆt) · ˆE+ +π (r, ˆt)⟩ += f 2 +π(r)⟨A13(ˆt)A31(ˆt) + A24(ˆt)A42(ˆt)⟩ += f 2 +π(r)⟨A11(ˆt) + A22(ˆt)⟩, +(29a) +while in the steady state is +Ist +π = f 2 +π(r) [α11 + α22] = Ω2 +D . +(29b) +0 +2 +4 +6 +8 +10 +0 +0.05 +0.10 +0.15 +0.20 +0 +2 +4 +6 +8 +10 +0 +0.1 +0.2 +0.3 +0 +2 +4 +6 +8 +10 +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0 +2 +4 +6 +8 +10 +0 +0.1 +0.2 +0.3 +0.4 +0 +2 +4 +6 +8 +10 +0 +0.05 +0.10 +0.15 +0.20 +0.25 +0 +2 +4 +6 +8 +10 +0 +0.05 +0.10 +0.15 +0 +2 +4 +6 +8 +10 +0 +0.05 +0.10 +0.15 +0 +2 +4 +6 +8 +10 +0 +0.05 +0.10 +0.15 +0.20 +0.25 +Iπ (r, t) �f 2 +π (r) +Iπ (r, t) �f 2 +π (r) +⟨A11 (t)⟩ +⟨A22 (t)⟩ +⟨A11 (t)⟩ +⟨A22 (t)⟩ +⟨A11 (t)⟩ +⟨A22 (t)⟩ +⟨A11 (t)⟩ +⟨A22 (t)⟩ +γt +γt +γt +γt +γt +γt +(d) +(c) +(a) +(b) +FIG. 4. +Fluorescence intensity of the π transitions with equal +initial ground state populations, ⟨A33(0)⟩ = ⟨A44(0)⟩ = 1/2. +The other parameters are as in Fig. 2: Ω = γ and (a) ∆ = +δ = 0; (b) ∆ = 2γ, δ = −2γ; (c) ∆ = δ = −2γ; (d) ∆ = −2γ, +δ = −4γ. +The insets show the excited states populations: +⟨A11(t)⟩ (solid), ⟨A22(t)⟩ (dashed). +Adding the excited state populations with the atom +initially in the single state |3⟩ in Eq. 29a gives simply +Iπ(r, ˆt) = f 2 +π(r)⟨A11(ˆt)⟩, i.e., without the contribution +of ⟨A22(ˆt)⟩. More interesting is the case where the ini- +tial condition is ⟨A33(0)⟩ = ⟨A44(0)⟩ = 1/2, shown in +Fig. 4 (see the populations ⟨A11(t)⟩ and ⟨A22(t)⟩ in the +insets). The modulation in the intensity is reminiscent +of the quantum beats in the spontaneous decay in the V +three-level system [1, 2]. These beats are basically due +to the inability to tell from which of the π transitions +a photon comes from. This is the standard Young-type +interference [4, 5, 7]. The main requirement is that the +initial condition for both ground states are nonzero (see +Appendix B. +More interesting, though, is the case of strong resonant +laser and magnetic fields and the laser is detuned far from +the |2⟩ − |4⟩ resonance frequency, shown in Fig. 5. Due +to the laser detuning, the population ⟨A22(t)⟩ has larger +frequency and smaller amplitude than that of ⟨A11(t)⟩, as +seen in the insets. Remarkably well-defined wave-packets +or beats are observed due to the interference of the flu- +orescence of both π transitions with close Rabi frequen- +cies, with clear average and modulation frequencies (see +Fig. 5a). The beats get scrambled with larger frequency +and amplitude differences, Fig. 5b. +Save for the decay, these beats are more like the classic +textbook ones, described by a modulation and an average +frequency, unlike the beats from spontaneous emission or +weak resonance fluorescence from two or more closely sep- +arated levels. Henceforth, we reserve the moniker beats +to those due to strong applied fields. Further analyses of +the beats are given in the next Sections, as they show up + +6 +0 +2 +4 +6 +8 +10 +0 +0.2 +0.4 +0.6 +0 +2 +4 +6 +8 +10 +0 +0.2 +0.4 +0.6 +0.8 +0 +1 +2 +3 +4 +5 +0 +0.1 +0.2 +0.3 +0.4 +0 +1 +2 +3 +4 +5 +0 +0.1 +0.2 +0.3 +0.4 +Iπ (r, t) +� +f2 +π (r) +Iπ (r, t) +� +f2 +π (r) +⟨A22 (t)⟩ +⟨A11 (t)⟩ +⟨A22 (t)⟩ +⟨A11 (t)⟩ +γt +γt +γt +γt +(b) +(a) +FIG. 5. +Fluorescence intensity for Ω = 9γ, ∆ = 0, and (a) +δ = −8γ and (b) δ = −15γ. The insets show the excited state +populations ⟨A11⟩ (solid line) and ⟨A22⟩ (dotted line). The +initial conditions are ⟨A33(0)⟩ = ⟨A44(0)⟩ = 1/2, ⟨A11(0)⟩ = +⟨A22(0)⟩ = 0. +also in two-time correlations with particular features. +Similarly, for the σ transitions we have +Iσ(r, ˆt) = ⟨ ˆE− +σ (r, ˆt) · ˆE+ +σ (r, ˆt)⟩ += f 2 +σ(r)[⟨A23(ˆt)A32(ˆt) + A14(ˆt)A41(ˆt)⟩] += f 2 +σ(r)[⟨A11(ˆt) + A22(ˆt)⟩], +(30a) +Ist +σ = f 2 +σ(r) [α11 + α22] , +(30b) +also showing beats with intensity twice that of the π tran- +sitions given that f 2 +σ(r) = 2f 2 +π(r). +The field quadrature operator at any time is +ˆEπ,φ(r, ˆt) = 1 +2 +� +E− +π (r, ˆt)e−iφ + E+ +π (r, ˆt)eiφ� += fπ(r)(S1,φ − S2,φ), +(31) +where φ = 0, π/2 are the quadrature phases we consider, +and +S1,φ = 1 +2 +� +A13e−iφ + A31eiφ� +, +(32a) +S2,φ = 1 +2 +� +A24e−iφ + A42eiφ� +. +(32b) +The mean quadrature field is given by +⟨ ˆEπ,φ⟩st = fπ(r) +2 +� +(α13 − α24) e−iφ + (α31 − α42) eiφ� += fπ(r)Re +� +(α13 − α24) e−iφ� +(33) += fπ(r)Re +�Ω (∆ + (iγ − δ)/2) +D +e−iφ +� +, +B. +Intensity and Quadrature Fluctuations +Here we introduce the intensity and quadratures of the +field in terms of atomic fluctuation operators ∆Ajk = +Ajk − ⟨Ajk⟩st, such that +⟨AklAmn⟩ = αklαmn + ⟨∆Akl∆Amn⟩. +(34) +Only the π transitions have nonvanishing coherence +terms (α13, α24 ̸= 0). The fluorescence in the σ transi- +tions is fully incoherent (α14 = α23 = 0), so its intensity +is given by Eq. (30b). In the remainder of this section +we deal only with the π transition. The quadrature op- +erators are then written as +ˆEπ,φ(r, ˆt) = fπ(r)[απ,φ + ∆Sπ,φ(ˆt)], +(35a) +where +απ,φ = 1 +2(α31 − α42)eiφ + 1 +2(α13 − α24)e−iφ, +(35b) += Re +�Ω (∆ + (iγ − δ)/2) +D +e−iφ +� +, +∆Sπ,φ = 1 +2(∆A31 − ∆A42)eiφ + 1 +2(∆A13 − ∆24)e−iφ. +(35c) +From Eqs. (29b) and (34) we write the steady state +intensity in terms of products of dipole and dipole fluc- +tuation operator expectation values, +Ist +π (r) = f 2 +π(r) +� +Icoh +π,0 + Iinc +π,0 + Icoh +π,cross + Iinc +π,cross +� +,(36) +where +Icoh +π,0 = |⟨A13⟩st|2 + |⟨A24⟩st|2, +(37a) +Iinc +π,0 = ⟨∆A13∆A31⟩ + ⟨∆A24∆A42⟩, +(37b) +Icoh +π,cross = −⟨A13⟩st⟨A42⟩st − ⟨A24⟩st⟨A31⟩st += −2Re (⟨A13⟩st⟨A42⟩st) , +(37c) +Iinc +π,cross = −⟨∆A13∆A42⟩ − ⟨∆A24∆A31⟩ += −2Re (⟨∆A13∆A42⟩) . +(37d) +Superindices coh and inc stand, respectively, for the co- +herent (depending on mean dipoles) and incoherent (de- +pending on noise terms) parts of the emission. Subindex +0 stands for terms with the addition of single transition +products, giving the total intensity, while subindex cross +stands for terms with products of the two π transitions, +the steady state interference part of the intensity. +In + +7 +terms of atomic expectation values these intensities are: +Icoh +π,0 = |α13|2 + |α24|2 +(38a) += Ω2 +4D2 +�γ2 +2 + ∆2 + (δ − ∆)2 +� +, +Iinc +π,0 = α11 + α22 − |α13|2 − |α24|2 +(38b) += Ω2 +D2 +� +2Ω2 − γ2 +4 − ∆2 − δ2 +� +, +Icoh +π,cross = −2Re (α13α42) +(38c) += Ω2 +2D2 +�γ2 +4 + ∆(∆ − δ) +� +, +Iinc +π,cross = 2Re (α13α42) = −Icoh +π,cross, +(38d) +The sum of these terms is, of course, the total intensity, +Eq. (29a). As usual in resonance fluorescence, the coher- +ent and incoherent intensities are similar only in the weak +field regime, Ω ≤ γ. Here, in particular, the term Iinc +π,0 +(no interference) becomes much larger than the others +for strong driving. +C. +Degree of Interference - Coherent Part +In Ref. [5], a measure of the effect of interference in +the coherent part of the intensity was as +Icoh +π,0 + Icoh +π,cross = Icoh +π,0 (1 + C(δ)), +C(δ) = Icoh +π,cross +Icoh +π,0 += +γ2/4 + ∆(∆ − δ) +γ2/4 + δ2/4 + (∆ − δ/2)2 , (39) +independent +of +the +Rabi +frequency +and +shown +in +Fig. 6(a). +Some special cases are found analytically: +C(0) = 1, +δ = 0, +(40a) +C(δ0) = 0, +δ0 = ∆[1 + (γ/2∆)2], +(40b) +C(δmin) = +−1 +1 + γ2/2∆2 , +δmin = 2∆[1 + (γ/2∆)2], +(40c) +C(δ± +1/2) = 1/2, +δ± +1/2 = −∆ ± +� +3∆2 + (γ2/2). +(40d) +In the degenerate case, C(δ = 0) = 1 means perfect +constructive interference. That is because at δ = 0 both +π transitions (and both σ transitions) share the same +reservoir environment. Increasing δ the reservoir overlap +decreases, so is the interference. Negative values of C +indicate destructive interference; its minimum is given +by δmin. For large detunings, ∆2 ≫ γ2 we have +δ0 = ∆, +δmin = 2∆, +δ± +1/2 = −∆ ± +√ +3 |∆|. +(40e) +We have used the special cases δ = {0, δ0, δmin} as a +guide to obtain many of the figures in this paper. +-1.0 +-0.5 +0 +0.5 +1.0 +-20 +-10 +0 +10 +20 +0 +0.5 +1.0 +δ/γ +∆ = −5γ +K(δ) +C(δ) +∆ = −2γ +∆ = 0 +(a) +(b) +FIG. 6. +Relative weight of the interference terms C(δ) (a) +and K(δ) (b). In (b) Ω = γ/4. For 198Hg+, δ ≤ 0. +D. +Degree of Interference - Incoherent Part +Likewise, we define a measure, K(δ), of the effect of +interference in the intensity’s incoherent part, +Iinc +π,0 + Iinc +π,cross = Iinc +π,0(1 + K(δ)), +K(δ) = Iinc +π,cross +Iinc +π,0 += +γ2/4 + ∆(∆ − δ) +2 [γ2/4 + δ2 + ∆2 − 2Ω2]. (41) +Unlike C(δ), K(δ) also depends on the Rabi frequency +as Ω−2, since fluctuations increase with laser intensity. +Special cases are: +K(0) = +γ2/4 + ∆2 +2 [γ2/4 + ∆2 − 2Ω2], +δ = 0, +(42a) +K(δ) = 0, +δ = ∆ + γ2 +4∆ +or +Ω ≫ γ, ∆, δ. +(42b) +The behavior of K(δ) with ∆ is more subtle. It is ba- +sically required that ∆ ∼ Ω in order to preserve the +shape seen in Fig. 6(b), in which case the minima for +C(δ) and K(δ) are very similar. On-resonance, for ex- +ample, Ω should be no larger than 0.35γ. Also, we can +infer that the beats are little affected by the interference +term unless ∆ >∼ Ω ≫ γ. +V. +TWO-TIME DIPOLE CORRELATIONS AND +POWER SPECTRUM +The resonance fluorescence spectrum of the J = 1/2 → +J = 1/2 atomic system was first considered in [3] and +then very thoroughly in [4, 5]. Thus, here we only con- +sider basic definitions and issues related to the observa- +tion of beats. +The stationary Wiener-Khintchine power spectrum is +given by the Fourier transform of the field autocorrelation +function +Sπ(ω) = Re +� ∞ +0 +dτe−iωτ⟨ ˆE− +π (0) ˆE+ +π (τ)⟩, +(43) + +8 +0 +2 +4 +6 +8 +10 +0 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +-20 +-10 +0 +10 +20 +ω/γ +Sinc +π (ω) (arb. units) +γτ +� +∆E− +π (0) ∆E+ +π (τ) +� � +f2 +π (r) +FIG. 7. +Dipole correlation function ⟨∆ ˆE− +π (0)∆ ˆE+ +π (τ)⟩ for +Ω = 9γ, δ = −8γ, and ∆ = 0. The inset shows the corre- +sponding incoherent spectrum Sinc +π +(ω). +such that +� ∞ +−∞ Sπ(ω)dω = Ist +π . By writing the atomic +operators in Eq. (27a) as Ajk(t) = αjk + ∆Ajk(t), we +separate the spectrum in two parts: a coherent one, +Scoh +π +(ω) = Re +� ∞ +0 +e−iωτdτ +� +Icoh +π,0 + Icoh +π,cross +� += π +� +Icoh +π,0 + Icoh +π,cross +� +δ(ω) += πΩ2 +D2 +� +γ2 +4 + +� +∆ − δ +2 +�2� +δ(ω), +(44) +due to elastic scattering, where Icoh +π,0 and Icoh +π,cross are given +by Eqs. (38) (a) and (c), respectively; and an incoherent +part, +Sinc +π (ω) = Re +� ∞ +0 +dτe−iωτ⟨∆ ˆE− +π (0)∆ ˆE+ +π (τ)⟩, +specifically, +Sinc +π (ω) = Re +� ∞ +0 +dτe−iωτ [⟨∆A13(0)∆A31(τ)⟩ ++⟨∆A24(0)∆A42(τ)⟩ − ⟨∆A13(0)∆A42(τ)⟩ +−⟨∆A24(0)∆A31(τ)⟩] , +(45) +due to atomic fluctuations. An outline of the numerical +calculation is given in Appendix A. +The dipole correlation ⟨ ˆE− +π (0) ˆE+ +π (τ)⟩ and the incoher- +ent spectrum in the strong driving regime and strong +nondegeneracy (large δ) are shown in Fig. 7. The spec- +trum (inset) displays a central peak and two pairs of +Mollow-like-sidebands [22] with peaks at the Rabi side- +bands ±Ω1 and ±Ω2, while the correlation features de- +caying quantum beats due to the closeness of the Rabi +peaks. +As usual in the strong-field regime, the dressed system +approach allows to discern the origin of the peaks from +the transitions among the dressed states, to find their +positions [5], and thus find the frequencies of the beats. +The generalized Rabi frequencies are +Ω1 = E+ +1 − E− +1 = +� +4Ω2 + ∆2, +(46a) +Ω2 = E+ +2 − E− +2 = +� +4Ω2 + (δ − ∆)2, +(46b) +TABLE I. Eigenvalues of matrix M/γ and initial conditions +of the correlations in Eq. (45) for Ω = 9γ and ∆ = 0. +Eigenvalues +δ = −8γ +δ = −15γ +λ1 +−0.749386 + 0i +−0.836531 + 0i +λ2 +−0.583099 − 18.0094i +−0.583308 − 17.9981i +λ3 +−0.583099 + 18.0094i +−0.583308 + 17.9981i +λ4 +−0.569785 − 19.6808i +−0.5492 − 23.4257i +λ5 +−0.569785 + 19.6808i +−0.5492 + 23.4257i +λ6 +−0.5 + 0i +−0.5 + 0i +λ7 +−0.444846 + 0i +−0.398452 + 0i +λ8 +0 + 0i +0 + 0i +Init. cond. +⟨∆A13∆A31⟩ +0.20836 + 0i +0.14734 + 0i +⟨∆A24∆A42⟩ +0.174014 + 0i +0.086982 + 0i +⟨∆A13∆A42⟩ +0.000134 + 0.002146i +0.000067 + 0.002011i +⟨∆A24∆A31⟩ +0.000134 − 0.002146i +0.000067 − 0.002011i +where +E± +1 = −∆ +2 ± 1 +2 +� +4Ω2 + ∆2, +(47a) +E± +2 = Bℓ + δ − ∆ +2 +± 1 +2 +� +4Ω2 + (δ − ∆)2, +(47b) +are the eigenvalues of the Hamiltonian (8). Due to the +spontaneous decays these frequencies would have to be +corrected, but they are very good in the relevant strong +field limit. Indeed, we notice that Ω1 and Ω2 are very +close to the imaginary parts of the eigenvalues λ2,3 and +λ4,5, respectively, of matrix M, shown in Table I. +The beats are the result of the superposition of waves +at the frequencies Ω1 and Ω2 of the spectral sidebands, +with average frequency +Ωav = Ω2 + Ω1 +2 += +� +4Ω2 + (δ − ∆)2 + +√ +4Ω2 + ∆2 +2 +, +(48) +and beat or modulation frequency +Ωbeat = Ω2 − Ω1 +2 += +� +4Ω2 + (δ − ∆)2 − +√ +4Ω2 + ∆2 +2 +. +(49) +Now, we can identify the origin and modulation fre- +quency of the beats in the time-dependent intensity, +Eq. (29a), since the excited state populations ⟨A11(t)⟩ +and ⟨A22(t)⟩ oscillate at the generalized Rabi frequen- +cies Ω1 and Ω2, respectively, with initial conditions +given by a nonzero superposition of ground state pop- +ulations at t = 0. In the case of the dipole correlation +⟨ ˆE− +π (0) ˆE+ +π (τ)⟩, however, the initial conditions are given +by products of stationary atomic expectation values, +most of them the coherences α13, α24, which become very +small in the regime of beats. Thus, as seen in Table I, +the terms ⟨∆A13(0)∆A31(τ)⟩ and ⟨∆A24(0)∆A42(τ)⟩ are + +9 +0 +3 +6 +9 +12 +15 +0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +0 +3 +6 +9 +12 +15 +0 +0.5 +1.0 +1.5 +2.0 +2.5 +0 +3 +6 +9 +12 +15 +0 +0.5 +1.0 +1.5 +2.0 +2.5 +γτ +∆ = −2γ, δ = −4γ +∆ = −2γ, δ = −2γ +∆ = 2γ, +δ = −2γ +∆ = 0, +δ = 0 +( ) Ω = γ +(a) Ω = γ/4 +(b) Ω = γ/2 +g(2) +π (τ) +g(2) +π (τ) +g(2) +π (τ) +FIG. 8. +Photon correlations for (a) Ω = 0.25γ, (b) Ω = 0.5γ +and (c) Ω = γ. The pairs of values (∆, δ) are the same as +those in Fig. 2. +much larger than the cross terms ⟨∆A13(0)∆A42(τ)⟩ and +⟨∆A24(0)∆A31(τ)⟩, so the beats are basically due to the +interference of those dominant terms. +VI. +PHOTON-PHOTON CORRELATIONS +The standard method to investigate intensity fluctua- +tions of a light source uses Brown-Twiss photon-photon +correlations [16, 17]. The conditional character of this +type of measurement makes it nearly free of detector in- +efficiencies, unlike a single-detector measurement of the +photoelectron probability distribution. +In Ref. [8] the +correlations of two photons from the π transitions were +studied, albeit only for the degenerate case. In this paper +we extend it to the case of nondegenerate states. These +correlations are defined as +g(2) +π (τ) = +G(2) +π (τ) +G(2) +π (τ → ∞) +(50) +where, using Eq. (27a) for the field operators, +G(2) +π (τ) = ⟨ ˆE− +π (0) ˆE− +π (τ) ˆE+ +π (τ) ˆE+ +π (0)⟩ += f 4 +π(r)⟨[A13(0) − A24(0)][A11(τ) + A22(τ)] +×[A31(0) − A42(0)]⟩, +(51a) +and +G(2) +π (τ → ∞) = +� +Ist +π +�2 = f 4 +π(r) (α11 + α22)2 (51b) +is the normalization factor. G(2) +π (τ) can be further re- +duced, since ⟨A13Ajk(τ)A42(0)⟩ = ⟨A24Ajk(τ)A31(0)⟩ = +0, due to having vanishing initial conditions. +Figure 8 shows g(2) +π (τ) for moderate values of the Rabi +frequency (near saturation) and the same sets of detun- +ings ∆ and δ of Fig. 2. As usual in resonance fluores- +cence, the correlation shows antibunching, g(2) +π (0) = 0, +0 +2 +4 +6 +8 +10 +0 +0.5 +1.0 +1.5 +2.0 +0 +2 +4 +6 +8 +10 +0 +0.5 +1.0 +1.5 +2.0 +0 +2 +4 +6 +8 +10 +0 +0.5 +1.0 +1.5 +2.0 +0 +2 +4 +6 +8 +10 +0 +0.5 +1.0 +1.5 +2.0 +2.5 +g(2) +π (τ) +γτ +γτ +g(2) +π (τ) +(b) δ = −10γ +(d) δ = −15γ +( ) δ = −12γ +(a) δ = −8γ +FIG. 9. +Photon-photon correlations showing beats in the +strong field limit, Ω = 9γ, ∆ = 0, and large Zeeman splittings. +The horizontal line helps to see that the wave packet is slightly +rised. +that is, a single atom cannot emit two photons simultane- +ously. Unlike the two-level atom resonance fluorescence, +the correlation is not simply the normalized population +of the excited state, nor it is only the sum of the cor- +relations of each single π transition. Besides the terms +⟨A13(0)A11(τ)A31(0)⟩ and ⟨A24(0)A22(τ)A42(0)⟩, which +are also out of phase, as seen from the time-dependent +populations of their excited states (Fig. 2), there are six +cross terms in the full correlation. In the nondegenerate +case the multiple contributions cause in some cases quite +irregular evolution. For instance, as we will see in the +next Section, the slow decay of the correlation when the +laser drives the atom near saturation, but below the ω13 +resonance transition, is related to a very narrow peak in +the spectrum. +The case of strong driving and large nondegeneracy +is shown in Fig. 9, featuring quantum beats. There are +several effects resulting from the increase of the nonde- +generacy factor δ: (i) the larger number of visible wave +packets; (ii) both average and beat frequencies approach +one another, so the wave packets get shorter for larger +photon-pair intervals τ, containing very few of the fast +oscillations, as seen in Fig. 9(d); (iii) the wavepackets are +initially slightly lifted above the g(2)(τ) = 1 value. +VII. +QUADRATURE FLUCTUATIONS +Squeezing, the reduction of noise in one quadrature +below that of a coherent state at the expense of the +other, is the hallmark of phase-dependent fluctuations +of the electromagnetic field [cite]. It is usually measured +by balanced homodyne detection (BHD), but low quan- +tum detector efficiency degrade the weak squeezing pro- +duced in resonance fluorescence and cavity QED systems. +One alternative our group has used is conditional homo- +dyne detection (CHD) [18, 19], which correlates a quadra- +ture amplitude on the cue of an intensity measurement. +CHD measures a third-order amplitude-intensity corre- + +10 +lation (AIC) which, in the weak driving limit is reduced +to the second-order one and that allows for measuring +squeezing. Being a conditional measurement it is nearly +free of detector inefficiencies. +While the original goal of CHD was to measure the +weak squeezing in cavity QED [18, 19], it was soon re- +alized that nonzero third-order fluctuations of the am- +plitude provide clear evidence of non-Gaussian fluctua- +tions and higher-order field nonclassicality. In the present +work the fluctuations are mainly third-order ones, due to +near and above saturation excitation, and violate classi- +cal bounds. We thus explore the phase-dependent fluctu- +ations under conditions of quantum interference following +our recent work [20, 23, 24]. +A. +Amplitude-Intensity Correlations +In CHD a quadrature’s field Eφ is measured by BHD +on the cue of photon countings in a separate detector, +where φ = 0, π/2 is the phase of the local oscillator. This +is characterized by a correlation among the amplitude +and the intensity of the field, +hπ,φ(τ) = +Hπ,φ(τ) +Hπ,φ(τ → ∞), +(52) +where +Hπ,φ(τ) = ⟨: ˆE− +π (0) ˆE+ +π (0) ˆEπ,φ(τ) :⟩, +(53a) +the dots :: indicating time and normal operator orderings, +and +Hπ,φ(τ → ∞) = Ist +π ⟨Eπ,φ⟩st +(53b) += f 3 +π(r) [α11 + α22] Re +� +(α13 − α24) e−iφ� += f 3 +π(r) Ω3 +D2 Re +� +(∆ + (iγ − δ)/2) e−iφ� +is the normalization factor. +For the sake of concreteness, in this Section we limit +our discussion to the out-of-phase quadrature, φ = π/2, +which is the one that features squeezing when ωL = ω13, +that is ∆ = 0. We do consider, however, squeezing in the +in-phase quadrature φ = 0 in Sect. VIII on the variance. +In several atom-laser systems hπ,φ(τ) has been proven +to be time-asymmetric [20, 24]. This is not the case with +the J = 1/2 → J = 1/2 system so we limit the analysis +to positive intervals τ ≥ 0. +Omitting the geometrical +factor f 3 +π(r), which is later cancelled by normalization, +we have +Hπ,φ(τ) = ⟨ ˆE− +π (0) ˆEπ,φ(τ) ˆE+ +π (0)⟩ += Re +� +e−iφ⟨A13(0)[A13(τ) − A24(τ)]A31(0) ++A24(0)[A13(τ) − A24(τ)]A42(0)⟩} . +(54) +Note that Hπ,φ(0) = 0 meaning that, like antibunching +in g(2), the atom has to build a new photon wavepacket +after one has been emitted. +The AIC suggests nontrivial behavior when we take +dipole fluctuations into account, that is, when the atomic +operators are split into their mean plus noise, Ajk = +αjk + ∆Ajk; upon substitution in Eq. (54) we get +Hπ,φ(τ) = Ist +π ⟨Eπ,φ⟩st + H(2) +π,φ(τ) + H(3) +π,φ(τ), +(55) +or in normalized form as +hπ,φ(τ) = 1 + +H(2) +π,φ(τ) +Ist +π ⟨Eπ,φ⟩st ++ +H(3) +π,φ(τ) +Ist +π ⟨Eπ,φ⟩st +, +(56) +where +H(2) +π,φ(τ) = 2Re +� +⟨ ˆE+ +π ⟩st⟨∆ ˆE− +π (0)∆ ˆEπ,φ(τ)⟩ +� += Re +� +(α31 − α42) [⟨(∆A13(0) − ∆A24(0)) +� +∆A13(τ) − ∆A24(τ))⟩e−iφ ++⟨(∆A13(0) − ∆A24(0)) +� +∆A31(τ)⟩ − ∆A42(τ))⟩eiφ�� +, +(57) +H(3) +π,φ(τ) = ⟨∆ ˆE− +π (0)∆ ˆEπ,φ(τ)∆ ˆE+ +π (0)⟩ += Re +� +eiφ⟨[∆A13(0) − ∆A24(0)] [∆A31(τ) − ∆A42(τ)] [∆A31(0) − ∆A42(0)]⟩ +� +. +(58) +The initial conditions of the correlations are given in Ap- +pendix A. +From hπ,π/2(0) = 0 we can obtain analytically the ini- +tial values of the second- and third-order terms, +h(2) +π,π/2(0) = 1 − (2∆ − δ)2 + γ2 +2D +, +(59) +h(3) +π,π/2(0) = (2∆ − δ)2 + γ2 +2D +− 2, +(60) +where D is given by Eq. (21). + +11 +Being the AIC a function of odd-order in the field am- +plitude we rightly expect a richer landscape than that +of the intensity correlations, more so when one considers +quantum interference and the complex parameter space. +For instance, the correlation can take on not only nega- +tive values but break classical bounds [18, 19]: +0 ≤ hφ(τ) − 1 ≤ 1 , +(61a) +|h(2) +φ (τ) − 1| ≤ |h(2) +φ (0) − 1| ≤ 1 , +(61b) +where the second line is valid only for weak fields such +that h(3) +φ (τ) ∼ 0. These classical bounds are stronger cri- +teria for nonclassicality of the emitted field than squeezed +light measurements, the more familiar probing of phase- +dependent fluctuations. A detailed hierarchy of nonclas- +sicality measures for higher-order correlation functions is +presented in Refs. [25, 26]. In Ref. [20] an inequality was +obtained that considers the full hφ(τ) by calculating the +AIC for a field in a coherent state, +−1 ≤ hφ(τ) ≤ 1 . +(62) +For a meaningful violation of Poisson statistics, hφ(τ) +must be outside these bounds. +Also, hφ(τ) is a measure of non-Gaussian fluctuations, +here of third-order in the field fluctuations. Resonance +fluorescence is a particularly strong case of non-Gaussian +noise by being a highly nonlinear stationary nonequilib- +rium process [20, 23, 24, 27, 28], thanks also to its small +Hilbert space. This makes resonance fluorescence unsuit- +able to a quasiprobability distribution approach. +B. +Fluctuations Spectra +Since quadrature fluctuations, such as squeezing, are +often studied in the frequency domain we now define the +spectrum of the amplitude-intensity correlations: +Sπ,φ(ω) = 8γ1 +� ∞ +0 +dτ cos (ωτ) [hπ,φ(τ) − 1] +(63) +which, following Eqs. (52) and (55), can be decomposed +into terms of second- and third-order in the dipole fluc- +tuations +S(q) +π,φ(ω) = 8γ1 +� ∞ +0 +dτ cos (ωτ)h(q) +π,φ(τ), +(64) +where q = 2, 3, so that Sπ,φ(ω) = S(2) +π,φ(ω) + S(3) +π,φ(ω). +As mentioned above, the AIC was devised initially to +measure squeezing without the issue of imperfect detec- +tion efficiencies. Obviously, hπ,φ(τ) and Sπ,φ(ω) are not +measures of squeezing. They measure a third-order mo- +ment in the field’s amplitude, while squeezing is a second- +order one in its fluctuations. +The so-called spectrum +of squeezing is the one for q = 2, with the advantage +of the AIC of not depending on the efficiency of detec- +tion. Squeezing is signaled by frequency intervals where +0 +2 +4 +6 +8 +10 +12 +0 +2 +4 +6 +-10 +-5 +0 +5 +10 +0 +1 +2 +0 +2 +4 +6 +8 +10 +12 +0 +2 +4 +6 +-10 +-5 +0 +5 +10 +-1 +0 +1 +2 +0 +2 +4 +6 +8 +10 +12 +0 +2 +4 +6 +-10 +-5 +0 +5 +10 +-1 +0 +1 +2 +Sπ,π/2 (ω) +hπ,π/2 (τ) +(b) Ω = γ/2 +γτ +ω/γ +(a) Ω = γ/4 +(d) Ω = γ/4 +(e) Ω = γ/2 +(f +) Ω = γ +( ) Ω = γ +FIG. 10. +Amplitude-intensity correlations (left panel) and +spectra (right panel) for the φ = π/2 quadrature in the weak- +moderate field limit. Parameters and line styles are the same +as in Fig. 8: ∆ = δ = 0 (solid-black); ∆ = 2γ and δ = −2γ +(dots-red); ∆ = −2γ and δ = −2γ (dashed-green); ∆ = −2γ +and δ = −4γ (dot-dashed-blue). +S(2) +π,φ(ω) < 0. As a further note, the full incoherent spec- +trum, Eq. (45), can be obtained by adding the squeezing +spectra of both quadratures [29], +Sinc +π (ω) = +1 +8γ1 +� +S(2) +π,0(ω) + S(2) +π,π/2(ω) +� +. +(65) +C. +Results +We now show plots of the AICs and their spectra in +Figs. 10-12 for the φ = π/2 quadrature and the same sets +of detunings ∆, δ of Fig. 2, and weak to moderate Rabi +frequencies, γ/4 < Ω < γ. With the three parameters Ω, +∆, and δ, the landscape of effects is vast. +We first notice a few general features seen in hπ,π/2(τ), +Fig. 10. +With increasing Rabi frequencies, detunings, +and Zeeman splittings we observe the clear breakdown of +the classical inequalities besides the one at τ = 0. Cor- +respondingly, in the spectra, the extrema get displaced +and broadened. +Now, we want to single out the case +of nondegeneracy with small detuning on the |1⟩ − |3⟩ +transition but large on the |2⟩ − |4⟩ one, ∆ = −δ = 2γ +(green-dashed line). For weak field, Ω = γ/4, the AIC +does not have a regular evolution for short times but it +does decay very slowly, with a correponding very narrow +spectral peak. The slow decay is also clearly visible in the +photon correlation, Fig. 8a. As we mentioned in Sect. III +regarding Fig. 2b, state |4⟩ ends up with a large portion +of the steady state population due to optical pumping; +not quite a trapping state, so there is no electron shelv- +ing per se, as argued in [5]. This effect is washed out for +larger Rabi frequencies, which allow for faster recycling +of the populations. To a lesser degree, slow decay and +sharp peak occur for opposite signs of ∆ and δ. + +12 +0 +2 +4 +6 +8 +10 +-2 +-1 +0 +1 +2 +3 +4 +-10 -8 +-6 +-4 +-2 +0 +2 +4 +6 +8 +10 +-0.2 +0 +0.2 +0.4 +0.6 +0.8 +0 +2 +4 +6 +8 +10 +-2 +-1 +0 +1 +2 +3 +4 +-10 -8 +-6 +-4 +-2 +0 +2 +4 +6 +8 +10 +-0.2 +0 +0.2 +0.4 +0.6 +0.8 +0 +2 +4 +6 +8 +10 +-1 +0 +1 +2 +3 +-10 -8 +-6 +-4 +-2 +0 +2 +4 +6 +8 +10 +-0.5 +0 +0.5 +1.0 +(f +) Ω = γ +( ) Ω = γ +(b) Ω = γ/2 +(e) Ω = γ/2 +(a) Ω = γ/4 +(d) Ω = γ/4 +h(2) +π,π/2 (τ) +ω/γ +γτ +S(2) +π,π/2 (ω) +FIG. 11. +Second-order component of the AIC and spectra of +Fig. 10. +0 +2 +4 +6 +8 +10 +-1 +0 +1 +2 +-10 -8 -6 -4 -2 +0 +2 +4 +6 +8 +10 +0 +1 +2 +0 +2 +4 +6 +8 +10 +-1 +0 +1 +2 +-10 -8 -6 -4 -2 +0 +2 +4 +6 +8 +10 +-1 +0 +1 +2 +0 +2 +4 +6 +8 +10 +-1 +0 +1 +2 +3 +-10 -8 -6 -4 -2 +0 +2 +4 +6 +8 +10 +-2 +-1 +0 +1 +(f +) Ω = γ +( ) Ω = γ +(b) Ω = γ/2 +(e) Ω = γ/2 +(a) Ω = γ/4 +(d) Ω = γ/4 +h(3) +π,π/2 (τ) +ω/γ +γτ +S(3) +π,π/2 (ω) +FIG. 12. +Third-order component of the AIC and spectra of +Fig. 10. +The splitting of the AIC and spectra into components +of second and third order in the fluctuations, Figs. 11, 12, +helps to understand better the quadrature fluctuations. +For the second-order ones we have the squeezing spectra: +around ω = 0 for ∆ = 0 and small Rabi frequencies, +Ω < γ/4; and in sidebands for larger detunings, Rabi +frequencies and Zeeman splittings. In h(2) +π,π/2(τ) there is a +reduction in amplitudes and nonclassicality for increasing +Rabi frequencies except for the case of oppposite signs of +detuning and difference Zeeman splitting. Note that the +sharp spectral peak in the latter case takes up most of +the corresponding peak in Fig. 10. This is because both +π transitions are largely detuned from the laser, keeping +Ω small. +Increasing the laser strength the third-order effects +overcome the second-order ones. For instance, regarding +the size of the features. Also, a comparison of Figs. 11 +0 +2 +4 +6 +8 +10 +-10 +0 +10 +20 +-40 +-20 +0 +20 +40 +-10 +-5 +0 +5 +10 +0 +2 +4 +6 +8 +10 +-10 +0 +10 +20 +-40 +-20 +0 +20 +40 +-10 +-5 +0 +5 +10 +0 +2 +4 +6 +8 +10 +-10 +0 +10 +20 +-40 +-20 +0 +20 +40 +-10 +-5 +0 +5 +10 +0 +2 +4 +6 +8 +10 +-10 +0 +10 +20 +-40 +-20 +0 +20 +40 +-5 +0 +5 +hπ,π/2 (τ) +h +(2) +π,π/2 (τ) +h +(3) +π,π/2 (τ) +S +(3) +π,π/2 (τ) +S +(2) +π,π/2 (τ) +Sπ,π/2 (τ) +γτ +ω/γ +(b) +(f +) +( ) +(g) +(d) +(h) +(a) +(e) +FIG. 13. +AIC and spectra for Ω = 9γ, ∆ = 0, (a,e) δ = −8γ, +(b,f) δ = −10γ, (c,g) δ = −12γ, (d,h) δ = −15γ. Lines are: +full AIC and spectra (solid-black), second-order (dots-red), +and third-order (dashed-blue). +and 12 shows that h(3) +φ (τ) is mainly responsible for the +breakdown of the classical bounds when the driving field +is on or above saturation. +Moreover, we see that the +slow-decay–sharp-peak is mainly a third-order effect. +To close this Section, the AIC and spectra for very +strong fields and large Zeeman splittings, Ω, |δ| ≫ γ are +shown in Fig. 13. The AIC shows beats as in the photon +correlations. +Unlike those in g(2)(τ), these wavepack- +ets oscillate around h(τ) = 1. +Because the regime +is that of strong excitation the third-order component +clearly dominates, making the fluorescence notably non- +Gaussian, and clearly violates the classical inequalities. +The spectral peaks are localized around the Rabi frequen- +cies ±Ω1, ±Ω2. Studies of the spectrum of squeezing for +the J = 1/2 − J = 1/2 system were reported in [10]. +Those authors choose ±Ω1, ±Ω2 with a less strong laser +but large detuning and large Zeeman splittings, observ- +ing the double sidebands, but no mention or hint of beats +was made. +VIII. +VARIANCE +The variance is a measure of the total noise in a +quadrature; it is defined as +Vφ = ⟨: (∆Eφ)2 :⟩ = Re +� +e−iφ⟨∆ ˆE−∆ ˆEφ⟩st +� +, (66) + +13 +and is related to the spectrum of squeezing as +Vφ = +1 +4πγη +� ∞ +−∞ +dωS(2) +φ (ω). +(67) +where η is the detector efficiency. The maximum value +of Vφ is 1/4, obtained when there is very strong driving, +when almost all the emitted light is incoherent. Negative +values of the variance are a signature of squeezing but, +unlike the quadrature spectra, the squeezing is the total +one in the field, independent of frequency. +For the π transitions we have +Vπ,φ = f 2 +π(r) +2 +Re +� +−(α13 − α24)2e−2iφ ++(α11 + α22 − |α13 − α24|2) +� +, +(68) += f 2 +π(r) +2 +Ω2 +D +� +1 − [(2∆ − δ) cos φ + γ sin φ]2 +2D +� +. +(69) +For φ = π/2 and φ = 0 we have, respectively, +Vπ,π/2 = f 2 +π(r) +2 +Ω2 +D +� +1 − γ2 +2D +� +, +(70a) +Vπ,0 = f 2 +π(r) +2 +Ω2 +D +� +1 − (2∆ − δ)2 +2D +� +, +(70b) +where D is given by Eq. (21). +In Fig. 14 we plot the variances of the out-of-phase +φ = π/2 (left panel) and in-phase φ = 0 (right panel) +quadratures. The interplay of parameters is a complex +one, but we mostly use the ones of previous figures. For +φ = π/2 and ∆ = 0, as usual in resonance fluorescence +systems, squeezing is restricted to a small range of Rabi +frequencies, detunings, and Zeeman splittings. For φ = 0 +nonzero laser or Zeeman detunings are necessary to pro- +duce squeezing, with a strong dependence on their sign: +on-resonance (not shown) there is no squeezing, as for +a two-level atom; in Fig. 14(d) the laser is tuned be- +low that transition, ∆ = −2γ, and there is no squeezing +(positive variance) but the variance is reduced for large +δ; in Fig. 14(e) the laser is tuned above the transition, +∆ = −2γ, and there is squeezing for larger Rabi frequen- +cies. Large values of δ tend to reduce the variance, be it +positive or negative. +A. +Out-of-phase quadrature +We now discuss a complementary view of the variance. +For φ = π/2 we can identify the Rabi frequency interval +within which squeezing takes place, +0 < Ω < 1 +2 +� +γ2/2 − δ2/2 − 2(∆ − δ/2)2, +(71) +and the Rabi frequency for maximum squeezing is +˜Ωπ/2 = 1 +2 +� +γ4/2 − 2[(δ − ∆)2 + ∆2]2 +3γ2 + 2[(δ − ∆)2 + ∆2]2 . +(72) +0 +0.5 +1.0 +1.5 +2.0 +-0.05 +0 +0.05 +0.10 +0.15 +0.20 +0 +0.5 +1.0 +1.5 +2.0 +0 +0.04 +0.08 +0.12 +0.16 +0.20 +0.24 +0 +0.5 +1.0 +1.5 +2.0 +0 +0.04 +0.08 +0.12 +0.16 +0 +0.5 +1.0 +1.5 +2.0 +-0.02 +0 +0.02 +0.04 +-3 +-2 +-1 +0 +1 +2 +3 +-0.03 +-0.02 +-0.01 +0 +0.01 +-3 +-2 +-1 +0 +1 +2 +3 +-0.04 +0 +0.04 +0.08 +0.12 +0.16 +0.2 +Vπ,π/2/f2 +π(r) +Vπ,0/f2 +π(r) +Ω/γ +Ω/γ +Ω/γ +∆/γ +∆/γ +Ω/γ +( ) +(a) +(b) +(d) +(e) +(f +) +FIG. 14. +Variance of the quadratures of the fluorescence of +the π transitions: left panel for φ = π/2 and right panel for +φ = 0. (a,b,d,e) as a function of Rabi frequency and (c,f) +as a function of detuning. +In all cases δ = 0 is given by +a solid-black line, and δ = −0.5γ by a dashed-red line; the +dotted-blue line is δ = −2γ in (a,b,d,e) and δ = −γ in (c,f). +Additionally, (a) ∆ = 0, (b) ∆ = −2γ, (c) Ω = 0.2γ, (d) +∆ = 0, (e) ∆ = 2γ, (f) Ω = 0.8γ. +Thus, the variance at ˜Ωπ/2 is +V +(˜Ωπ/2) +π,π/2 (∆ = 0, δ) = f 2 +π(r) +16 +(γ4/2 − 2δ4)(δ2 − γ2) +γ2(γ2 + 2δ2)(δ2 + γ2), +(73a) +for ∆ = 0 and |δ/γ| < 1/ +√ +2; +V +(˜Ωπ/2) +π,π/2 (∆, δ = 0) = f 2 +π(r) +16 +(γ4/2 − 8∆4)(4∆2 − γ2) +γ2(γ2 + 4∆2)2 +, +(73b) +for δ = 0 and |∆/γ| < 1/ +√ +2; and the maximum total +squeezing is obtained at ∆ = δ = 0, +V +(˜Ωπ/2) +π,π/2 (0, 0) = −f 2 +π(r) +32 , +˜Ωπ/2 = +γ +2 +√ +6. +(73c) +For φ = π/2 squeezing is limited to elliptical regions +of weak driving and small detunings ∆ and δ: +2δ2 + 8Ω2 < γ2, +∆ = 0, +(74a) +4∆2 + 8Ω2 < γ2, +δ = 0. +(74b) +B. +In-phase quadrature +For φ = 0, squeezing is obtained in the Rabi frequency +interval, for δ = 0, +0 < Ω < +1 +√ +2 +� +∆2 − γ2/4, +|∆| > γ/2, +(75) + +14 +with maximum squeezing at the Rabi frequency +˜Ω0 = +1 +2 +√ +2 +� +16∆2 − γ2 +12∆2 + γ2 , +(76) +requiring finite detuning from both π transitions (∆ ̸= 0) +and stronger driving, Ω ∼ γ [see Fig. 14(d)-(f)]. +Thus, the variance at ˜Ω0 is +V (˜Ω0) +π,0 (δ) = −f 2 +π(r) +128 +4∆2 − γ2 +∆2(4∆2 + γ2), +|∆| ≥ γ/2. (77) +This expression gets the asymptotic value +lim +∆→∞ V (˜Ω0) +π,0 += −f 2 +π(r) +32 , +(78) +which is the same as that for the π/2 quadrature. The +region for squeezing obeys the relation +4∆2 − 8Ω2 < γ2. +(79) +So, to obtain squeezing in this quadrature it is necessary +to have detunings ∆ > γ/4 for any Rabi frequency. +IX. +DISCUSSION AND CONCLUSIONS +We have studied several properties of the resonance +fluorescence of the π transitions in a J = 1/2 − J = 1/2 +angular momentum atomic system driven by a linearly +polarized laser field and a magnetic field along the π tran- +sition to lift the level degeneracies. Interference among +the various transition amplitudes create a rich landscape +of effects. Most notable among our results is the observa- +tion of quantum beats when the atom is subject to large +laser and magnetic fields. In this regime, two close Rabi +frequencies interfere, giving rise to a well-defined modu- +lation of the fast oscillations. These Rabi frequencies are +the source of the two pairs of sidebands in the incoherent +part of the power spectrum [5] and in the squeezing spec- +trum [10]. We studied beats in the total intensity and +two-time functions such as the dipole-dipole, intensity- +intensity and intensity-amplitude correlations. +In the +beats’ regime the role of vacuum-induced coherence is +small because the upper levels are very separated due to +very large difference Zeeman splitting. +Before the beats we considered the previously over- +looked time-dependent populations and reviewed aspects +of the known stationary ones. The fact that the upper +state populations evolve out of phase should not be a +surprise. +This, and nonzero initial population of both +ground states (in contrast to nonzero populations of ex- +cited states for spontaneous emission), are major factors +in the interference among the terms in the intensity. Ex- +cept for very strong laser fields, the steady state popula- +tions depend strongly on the difference Zeeman splitting. +The AIC also permits to quantify the degree of non- +Gaussianity; the fluctuations of third-order in the field +quadrature amplitude due to strong atom-laser nonlin- +earity dominate over the second-order ones with strong +driving. +The beats are in the strongly non-Gaussian +regime. +The correlations show nonclassical features of the fluo- +rescence light such as antibunching, g(2)(0) = 0, and vio- +lation of classical inequalities in the amplitude-intensity +correlations, Eqs. (61 -62). We studied squeezing using +the variance, i. e., the total noise in a quadrature, as +well as using the second-order part of the spectrum. In +the regime of beats there is squeezing, near the effective +Rabi frequencies, but none in the total noise. +For a system with many parameters the interplay +among them is a complex one, making the interpretation +of results nontrivial. Thus, for most of our plots we chose +parameters in two groups: i) where they are relatively +small, Ω, ∆, δ ∼ γ, chosen to illustrate several degrees of +vacuum-induced coherence; and ii) where they are large, +Ω, ∆, δ ≫ γ, and quantum beats are revealed. Overall, +particular care must be taken regarding detunings. On +the one hand, large difference Zeeman splitting means +that the excited levels would be very separated and in- +teract with different frequency portions of the reservoir, +hence diminishing the vacuum-induced coherence. +On +the other, large laser-atom detunings, which might in- +crease the VIC, mean reduced fluorescence rates, which +may also be detrimental in measurements. The beats, +then, would be better observed if ∆ ≤ γ and δ of just +several γ in the strong field regime. +X. +ACKNOWLEDGMENTS. +The authors thank Dr. Ricardo Rom´an-Ancheyta and +Dr. Ir´an Ramos-Prieto for useful comments at an early +stage of the project. ADAV thanks CONACYT, Mexico, +for scholarship No. 804318. +ORCID +numbers: +H´ector +M. +Castro-Beltr´an +https://orcid.org/0000-0002-3400-7652, Octavio de los +Santos-S´anchez https://orcid.org/0000-0002-4316-0114, +Luis Guti´errez https://orcid.org/0000-0002-5144-4782, +Appendix A: Time-Dependent Matrix Solutions and +Spectra +The two-time photon correlations under study have +the general form ⟨W(τ)⟩ = ⟨O1(0)R(τ)O2(0)⟩, where +R is the Bloch vector and O1,2 are system operators. +The same applies to correlations of fluctuation operators +∆R, ∆O1,2. Using the quantum regression formula [30], +the correlations obey the equation +⟨ ˙W(τ)⟩ = M⟨W(τ)⟩, +(A1) +which has the formal solution +⟨W(τ)⟩ = eMτ⟨W(0)⟩, +(A2) +where M is given by + +15 +M = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +−γ +−iΩ +0 +0 +iΩ +0 +0 +0 +−iΩ − +� γ +2 + i∆ +� +0 +0 +0 +iΩ +0 +0 +0 +0 +−γ +iΩ +0 +0 +−iΩ +0 +0 +0 +iΩ +− +� γ +2 + i(∆ − δ) +� +0 +0 +0 +−iΩ +iΩ +0 +0 +0 +− +� γ +2 − i∆ +� +−iΩ +0 +0 +γ1 +iΩ +γσ +0 +−iΩ +0 +0 +0 +0 +0 +−iΩ +0 +0 +0 +− +� γ +2 − i(∆ − δ) +� +iΩ +γσ +0 +γ2 +−iΩ +0 +0 +iΩ +0 +� +� +� +� +� +� +� +� +� +� +� +� +� +� +. +(A3) +Also, spectra of stationary systems can be evaluated +more effectively using the above formal approach. +Be +g(τ) = ⟨W(τ)⟩. Then, a spectrum is calculated as +S(ω) ∝ +� ∞ +0 +cos ωτ g(τ) dτ = +� ∞ +0 +cos ωτ eMτg(0) dτ += Re +� ∞ +0 +e−(iω1−M)τg(0) dτ += Re +� +(iω1 − M)−1g(0) +� +, +(A4) +where 1 is the identity matrix. For example, the inco- +herent spectrum requires calculations of the type +Sinc(ω) = Re +� ∞ +0 +dτe−iωτeMτ⟨∆Aij(0)∆Akl(0)⟩st += Re +� +(M − iω1)−1⟨∆Aij(0)∆Akl(0)⟩st +� +. (A5) +For the initial conditions of the correlations we use the +following operator products and correlations in compact +form: +AklAmn = Aknδlm , +(A6a) +⟨AklAmn⟩ = αknδlm, +(A6b) +AijAklAmn = Ainδjkδlm, +(A6c) +⟨AijAklAmn⟩ = αinδjkδlm. +(A6d) +Hence, the relevant initial conditions are: +⟨A13R⟩ = (0, 0, 0, 0, α11, α13, 0, 0)T , +(A7a) +⟨A24R⟩ = (0, 0, 0, 0, 0, 0, α22, α24)T , +(A7b) +⟨A13RA31⟩ = (0, 0, 0, 0, 0, α11, 0, 0)T , +(A7c) +⟨A24RA42⟩ = (0, 0, 0, 0, 0, 0, 0, α22)T , +(A7d) +⟨A13RA42⟩ = ⟨A24RA31⟩ = 0, +(A7e) +where R = (A11, A13, A22, A24, A31, A33, A42, A44)T is +the Bloch vector. For correlations with fluctuation oper- +ator products, ∆Aij = Aij − αij, we have +⟨∆Akl∆Amn⟩ = αknδlm − αklαmn, +(A8) +⟨∆Aij∆Akl∆Amn⟩ = αinδlmδjk − αilαmnδjk +−αinαklδjm − αijαknδlm ++2αijαklαmn. +(A9) +Now, recalling that α12 = α14 = α23 = α34 = 0, we +write the detailed initial conditions of the correlations +(Set 1 of Bloch equations and quantum regression for- +mula): +⟨∆A13∆R⟩ = +� +−α13α11, −α2 +13, −α13α22, −α13α24, α11 − |α13|2, α13 − α13α33, −α13α42, −α13α44 +�T , +(A10a) +⟨∆A24∆R⟩ = +� +−α24α11, −α24α13, −α24α22, −α2 +24, −α24α31, −α24α33, α22 − |α24|2, α24 − α24α44 +�T , +(A10b) +⟨∆A13∆R∆A31⟩ = +� +2|α13|2α11 − α2 +11, 2|α13|2α13 − 2α11α13, +2|α13|2α22 − α11α22, 2|α13|2α24 − α11α24, +2|α13|2α31 − 2α11α31, 2|α13|2α33 + α11 − 2|α13|2 − α11α33, +2|α13|2α42 − 2α11α42, 2|α13|2α44 − α11α44 +�T . +(A10c) +⟨∆A24∆R∆A42⟩ = +� +2|α24|2α11 − α11α22, 2|α24|2α13 − α22α13, +2|α24|2α22 − α2 +22, 2|α24|2α24 − 2α22α24, +2|α24|2α31 − α22α31, 2|α24|2α33 − α22α33, +2|α24|2α42 − 2α22α42, 2|α24|2α44 + α22 − 2|α24|2 − α22α44 +�T . +(A10d) + +16 +⟨∆A13∆R∆A42⟩ = +� +2α13α11α42, 2α2 +13α42, 2α13α22α42, (2|α24|2 − α22)α13, +(2|α13|2 − α11)α42, (2α13α33 − α13)α42, 2α13α2 +42, (2α13α44 − α13)α42 +�T , +(A10e) +⟨∆A24∆R∆A31⟩ = +� +2α24α11α31, (2|α13|2 − α11)α24, 2α24α22α31, 2α2 +24α31, +2α24α2 +31, (2α24α33 − α24)α31, (2|α24|2 − α22)α31, (2α24α44 − α24)α31 +�T . +(A10f) +Appendix B: Condition for Optimal Appearance of +Beats in the Intensity +We consider a simplified, unitary, model to estimate +the optimal initial population of the ground states to +make well-formed beats. First, we diagonalize the Hamil- +tonian Eq. (8). The eigenvalues and eigenstates are +E± +1 = −∆ +2 ± 1 +2 +� +4Ω2 + ∆2, +(B1a) +E± +2 = Bℓ + δ − ∆ +2 +± 1 +2 +� +4Ω2 + (δ − ∆)2, +(B1b) +and +|u1⟩ = sin Θ1|1⟩ + cos Θ1|3⟩, +|u2⟩ = − cos Θ1|1⟩ + sin Θ1|3⟩, +|u3⟩ = sin Θ2|2⟩ + cos Θ2|4⟩, +|u4⟩ = − cos Θ2|2⟩ + sin Θ2|4⟩, +(B2) +respectively, where +sin Θ1 = +2Ω +�� +∆ + +√ +∆2 + 4Ω2�2 + 4Ω2 +, +cos Θ1 = +∆ + +√ +∆2 + 4Ω2 +�� +∆ + +√ +∆2 + 4Ω2�2 + 4Ω2 +, +sin Θ2 = +2Ω +�� +(δ − ∆) + +� +(δ − ∆)2 + 4Ω2 +�2 ++ 4Ω2 +, +cos Θ2 = +(δ − ∆) + +� +(δ − ∆)2 + 4Ω2 +�� +(δ − ∆) + +� +(δ − ∆)2 + 4Ω2 +�2 ++ 4Ω2 +. +(B3) +It is now straightforward to obtain the excited-state +populations. If the initial state of the system is ρ(0) = +⟨A33(0)⟩|3⟩⟨3| + ⟨A44(0)⟩|4⟩⟨4| we get +⟨A33(t)⟩ = 1 +2⟨A33(0)⟩ sin2 (2Θ1)(1 − cos (Ω1t)), (B4a) +⟨A44(t)⟩ = 1 +2⟨A44(0)⟩ sin2 (2Θ2)(1 − cos (Ω2t)), (B4b) +and the intensity of the field is +Iπ(r, t) +f 2π(r) = ⟨A33(0)⟩ sin2 (2Θ1) + A44(0)⟩ sin2 (2Θ2) +−⟨A33(0)⟩ sin2 (2Θ1) cos (Ω1t) +−⟨A44(0)⟩ sin2 (2Θ2) cos (Ω2t). +(B5) +A necessary condition for the beating behavior to oc- +cur is that the initial ground-state populations are both +nonvanishing in the nondegenerate case. Now, assuming +the relation +⟨A33(0)⟩ +⟨A44(0)⟩ = sin2 (2Θ2) +sin2 (2Θ1) +(B6) +is satisfied by chossing appropriate parameter values +(Ω, δ, ∆) for given values of initial ground state popu- +lations we would get +Iπ(r, t) = f 2 +π(r)⟨A33(0)⟩ sin2 (2Θ1) +× [1 − cos (Ωbeatt) cos (Ωavt)] , +(B7) +where Ωbeat = (Ω2 − Ω1)/2 and Ωav = (Ω2 + Ω1)/2. +[1] Z. Ficek and S. Swain, Phys. Rev. A 69, 023401 (2004). +[2] Z. Ficek and S. Swain, Quantum Interference and Co- +herence: Theory and Experiments (Springer, New York, +2005). +[3] D. Polder and M. F. H. Schuurmans, Phys. Rev. A 14, +1468 (1976). +[4] M. Kiffner, J. Evers, and C. H. Keitel, Phys. Rev. Lett. +96, 100403 (2006). +[5] M. Kiffner, J. Evers, and C. H. Keitel, Phys. Rev. A 73, +063814 (2006). +[6] M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, in +Progress in Optics, E. Wolf, ed. 55, 85 (2010). +[7] U. Eichmann, J. C. Bergquist, J. J. Bollinger, J. M. Gilli- +gan, W. M. Itano, D. J. Wineland, and M. G. Raizen, +Phys. Rev. Lett. 70, 2359 (1993). +[8] S. Das and G. S. Agarwal, Phys. Rev. A 77, 033850 +(2008). +[9] H.-B. Zhang, S.-P. Wu, and G.-X. Li, Phys. Rev. A 102, +053717 (2020). +[10] H.-T. Tan, H.-X. Xia, and G.-X. Li, J. Phys. B: At. Mol. + +17 +Opt. Phys., 42, 125502 (2009). +[11] M. Fischer, B. Srivathsan, L. Alber, M. Weber, M. Son- +derman, and G. Leuchs, Appl. Phys. B: Lasers and Op- +tics, 123, 48 (2017). +[12] S. Wolf, S. Richter, J. von Zanthier, and F. Schmidt- +Kaler, Phys. Rev. Lett. 124, 063603 (2020). +[13] M. Jakob and J. Bergou, Phys. Rev. A 60, 4179 (1999). +[14] H. B. Crispin and R. Arun, J. Phys. B: At. Mol. Opt. +Phys., 52, 075402 (2019). +[15] H. B. Crispin and R. Arun, J. Phys. B: At. Mol. Opt. +Phys., 53, 055402 (2020). +[16] R. Hanbury-Brown and R. Q. Twiss, Nature 177, 27 +(1956). +[17] R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963). +[18] H. J. Carmichael, H. M. Castro-Beltran, G. T. Foster, +and L. A. Orozco, Phys. Rev. Lett. 85, 1855 (2000). +[19] G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and +H. J. Carmichael, Phys. Rev. Lett. 85, 3149 (2000). +[20] L. Guti´errez, H. M. Castro-Beltr´an, R. Rom´an-Ancheyta, +and L. Horvath, J. Opt. Soc. Am. B 34, 2301 (2017). +[21] G. S. Agarwal, Quantum Statistical Theories of Sponta- +neous Emission and their Relation to Other Approaches +(Springer-Verlag, Berlin, 1974). +[22] B. R. Mollow, Phys. Rev. 188, 1969 (1969). +[23] H. M. Castro-Beltr´an, R. Rom´an-Ancheyta, and L. +Guti´errez, Phys. Rev. A 93, 033801 (2016). +[24] O. de los Santos-S´anchez and H. M. Castro-Beltr´an, J. +Phys. B: At. Mol. Opt. Phys. 54, 055002 (2021). +[25] E. V. Shchukin and W. Vogel, Phys. Rev. A 72, 043808 +(2005). +[26] E. V. Shchukin and W. Vogel, Phys. Rev. Lett. 96, +200403 (2006). +[27] Y.-X. Wang and A. A. Clerk, Phys. Rev. R 2, 033196 +(2020). +[28] Q. Xu, E. Greplova, B. Julsgaard, and K. Mølmer, Phys. +Scripta, 90, 128004 (2015). +[29] P. R. Rice and H. J. Carmichael, J. Opt. Soc. Am. B 5, +1661 (1988). +[30] H. J. Carmichael, Statistical Methods in Quantum Op- +tics 1: Master Equations and Fokker-Planck Equations +(Springer-Verlag, Berlin, 2002). + diff --git a/2tE1T4oBgHgl3EQfSAOy/content/tmp_files/load_file.txt b/2tE1T4oBgHgl3EQfSAOy/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..56716d872c8798d6effe2b36027ce7e36b4654f6 --- /dev/null +++ b/2tE1T4oBgHgl3EQfSAOy/content/tmp_files/load_file.txt @@ -0,0 +1,1037 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf,len=1036 +page_content='Quantum interference in the resonance fluorescence of a J = 1/2 − J′ = 1/2 atomic system: Quantum beats, nonclassicality, and non-Gaussianity H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Castro-Beltr´an,1, ∗ O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' de los Santos-S´anchez,2 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Guti´errez,3 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Alcantar-Vidal1 1Centro de Investigaci´on en Ingenier´ıa y Ciencias Aplicadas and Instituto de Investigaci´on en Ciencias B´asicas y Aplicadas, Universidad Aut´onoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos, M´exico 2Tecnologico de Monterrey, Escuela de Ingenier´ıa y Ciencias, Ave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Carlos Lazo 100, Santa Fe, Mexico City, Mexico, 01389 3Instituto de Ciencias F´ısicas, Universidad Nacional Aut´onoma de M´exico, 62210 Cuernavaca, Morelos, M´exico (Dated: January 10, 2023) We study the resonance fluorescence of a system with angular momentum J = 1/2−J′ = 1/2 level structure driven by a single, linearly polarized, monochromatic laser field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Quantum interference among the two, antiparallel, π transitions leads to rich results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' We develop the article around two broad overlapping themes: (i) the observation of quantum beats in the intensity and the dipole- dipole, intensity-intensity, and quadrature-intensity correlations, when the atom is subject to a strong laser and large Zeeman splittings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The mean and modulation frequencies of the beats are given by the average and difference, respectively, among two close generalized Rabi frequencies related to a Mollow-like spectrum with two pairs of sidebands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (ii) The nonclassical and non- Gaussian properties of phase-dependent fluorescence for the cases of weak to moderate excitation and in the regime of beats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The fluorescence in the beats regime is nonclassical, mainly from the third-order dipole fluctuations, which reveal them to be also strongly non-Gaussian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For weak to moderate driving laser and small detunings and Zeeman splittings the nonclassicality is an interplay of second- (squeezing) and third-order dipole noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' INTRODUCTION Recently, the properties of the resonance fluorescence of a single atomic system with angular momentum transi- tion J = 1/2−J′ = 1/2 driven by a monochromatic laser have been the subject of great interest due to the possi- bility of observing vacuum-induced coherence effects due to interference among the two antiparallel π transitions, emitting into the same frequency range of the electro- magnetic vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Here, the π transitions are incoher- ently coupled, mediated by spontaneous emision in the σ transitions and then excited by the laser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The antiparal- lel dipoles of the transitions makes it realistic to observe interference effects, while V and Λ three-level systems re- quire additional preparation because the transitions are perpendicular [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Particular attention has been de- voted to the spectrum [3–6], time-energy complementar- ity [4, 5], Young’s interference [7], photon correlations [8], frequency-resolved photon correlations [9], squeezing [10], phase shifts [11], and cooperative effects in photon correlations [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The case of additional laser excitation of one of the σ transitions on the spectrum and squeezing has been studied in [13–15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Quantum beats are among the more familiar mani- festations of quantum interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' They appear in the modulation of the decay by spontaneous emission of mul- tilevel systems due to the energy difference among transi- tions [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' So far, few experiments of quantum interference experiments have been performed on the J = 1/2 − J′ = ∗ hcastro@uaem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='mx 1/2, in this case observing Young-type fringes [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Hence, further experiments are desirable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Quantum beats in the intensity are the result of the inability to tell the path of a particular photon when observed by a broadband detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The beats can also occur in two-time correla- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' As a general rule, initial conditions should be a superposition state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In this paper we investigate theoretically effects of quantum interference on the total intensity and two-time correlations such as dipole-dipole (to calculate spectra), intensity-intensity, intensity-amplitude correlations, and variance of the light emitted into the π transitions of the J = 1/2−J′ = 1/2 atomic system driven by a linearly po- larized laser and a magnetic field to break the degeneracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' While we put emphasis on the regime of observation of quantum beats, the nonclassical and non-Gaussian prop- erties of the fluorescence are also investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' After describing the main features of the model in Section II, we discuss the basic dynamic and stationary properties of the atomic expectation values in Section III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Here, we analyze the previously overlooked time- dependent behavior of the atomic populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Those of the excited states, for instance, although equal in the steady state, evolve with different Rabi frequencies and amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' This is at the root of the formation of beats in the intensity and the correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In the regime of strong laser and magnetic fields these beats are character- ized by well-defined oscillations at the average frequency among two generalized Rabi frequencies, modulated at the difference of those frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' To observe beats in the intensity both ground state populations must be nonzero initially, ideally equal [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Similarly, for the two- time correlations, the vector of initial conditions must arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='03061v1 [quant-ph] 8 Jan 2023 2 have at least two nonzero terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In Section IV we describe the scattered field intensity and quadratures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Here, beats depend only on the inter- ference of the two upper populations in the nondegener- ate case, with both lower populations initially nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Cross terms of the oppposite π transitions represent in- terference in the steady state intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Then, In Section V, using the dressed states approach, we show that the double sideband spectrum [5] stems from a dipole-dipole correlation with beats, where the terms of addition of sin- gle π transitions dominate over those of the cross terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In Section VI we study Brown-Twiss photon-photon correlations [16, 17], extending the work of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [8] to the nondegenerate case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Besides the ubiquitous antibunching effect, for weak to moderate laser drivings the interplay of parameters, together with detuning and Zeeman split- tings, can make for somewhat involved evolutions, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=', long decays due to optical pumping in the non-degenerate case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Again, cross terms are minor contributors to the full correlation in the beats regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Section VII is devoted to a study of phase-dependent fluctuations by conditional homodyne detection (CHD) [18, 19] in both the temporal and spectral domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The CHD method is characterized by amplitude-intensity cor- relations (AIC), which are of third order in the field am- plitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' When the atomic operators are decomposed into a mean plus a noise operator the AIC is split into a second-order term which would be a measure of squeezing if the third-order one were negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' But the latter is not negligible outside the weak field regime of resonance fluorescence, which make the fluctuations non-Gaussian and also nonclassical by the violation of classical inequal- ities [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' We obtain the spectra of the total, second- and third-order terms of the AIC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Narrow peaks in the spec- tra reveal population trapping when detunings favour the long term population or optical pumping of the ground state of the more detuned transition, which in the time domain show the above mentioned long decays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The third-order terms make up most of the beats and thus they are non-Gaussian and nonclassical but not squeezed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In Section VIII we consider squeezing by means of the variance of fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' As usual, squeezing in resonance fluorescence is small and restricted to weak or moderate Rabi frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Finally, in Section IX we provide a discussion and conclusions, and two Appendices give de- tails on solution methods, initial conditions, and optimal appearance of beats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' MODEL The system, illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 1, consists of a two-level atom with transition J = 1/2 – J = 1/2 and states with magnetic quantum number m = ±J, |1⟩ = |J, −1/2⟩, |2⟩ = |J, 1/2⟩, |3⟩ = |J, −1/2⟩, |4⟩ = |J, 1/2⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (1) The matrix elements are FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Scheme of the J = 1/2 – J = 1/2 atomic system interacting with a laser driving the |1⟩ − |3⟩ and |2⟩ − |4⟩ transitions with Rabi frequency Ω and detuning ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' There are spontaneous decay rates γ1, γ2 and γσ, vacuum-induced coherence γ12, and Zeeman frequency splittings Bℓ and Bu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' d1 = ⟨1|ˆd|3⟩ = − 1 √ 3Dez, d2 = ⟨2|ˆd|4⟩ = −d1, d3 = ⟨2|ˆd|3⟩ = � 2 3De−, d4 = ⟨1|ˆd|4⟩ = d∗ 3, (2) where D is the reduced dipole matrix element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' We choose the field polarization basis {ez, e−, e+} (linear, left cir- cular, right circular), where e± = ∓(ex ± iey)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The π transitions, |1⟩ − |3⟩ and |2⟩ − |4⟩ (m = m′), are coupled to linearly polarized light and have their dipole moments antiparallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' On the other hand, the σ tran- sitions, |1⟩ − |4⟩ and |2⟩ − |3⟩ (m ̸= m′), are coupled to circularly polarized light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' This configuration can be found, for example, in 198Hg+ [3], and 40Ca+ [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The level degeneracy is removed by the application of a static magnetic field Bz along the z direction, the Zee- man effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Note that the energy splittings gµBBz of the upper (u) and lower (ℓ) levels are different due to unequal Land´e g factors, gu and gℓ, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' µB is Bohr’s magneton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The difference Zeeman splitting is δ = (gu − gℓ)µBBz ¯h = gu − gℓ gℓ Bℓ, (3) where Bℓ = glµBBz/¯h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For 198Hg+ gu = 2/3 and gℓ = 2, so ¯hδ = −(4/3)µBBz = −(2/3)¯hBℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The atom is driven by a monochromatic laser of fre- quency ωL, linearly polarized in the z direction, propa- gating in the x direction, EL(x, t) = E0ei(ωLt−kLx)ez + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=', (4) thus driving only the π transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The free atomic, H0, and interaction, V , parts of the Hamiltonian are, respectively: H0 = ¯hω13A11 + ¯h(ω24 + Bℓ)A22 + ¯hBℓA44, (5) V = ¯hΩ(A13 − A24)eiωLt + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (6) 3 where Ajk = |j⟩⟨k| are atomic operators, ω13 and ω24 = ω13 + δ are the frequencies of the |1⟩ − |3⟩ and |2⟩ − |4⟩ transitions, respectively, and Ω = E0D/ √ 3 ¯h is the Rabi frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The frequencies of the other transitions are ω23 = ω13 − δ and ω14 = ω13 − Bℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Using the unitary transformation U = exp [(A11 + A22)iωLt], (7) the Hamiltonian in the frame rotating at the laser fre- quency is H = U †(H0 + V )U, = −¯h∆A11 − ¯h(∆ − δ)A22 + ¯hBℓ(A22 + A44) +¯hΩ [(A13 − A24) + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='] , (8) where ∆ = ωL −ω13 is the detuning of the laser from the |1⟩ − |3⟩ resonance transition, and ∆ − δ is the detuning on the |2⟩ − |4⟩ transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The excited states decay either in the π transitions emitting photons with linear polarization at rates γ1 = γ2, or in the σ transitions emitting photons of circular polarization at rate γσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' There is also a cross-coupling of the excited states by the reservoir, responsible for the quantum interference we wish to study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In general, the decay rates are written as γij = di · d∗ j |di||dj| √γiγj, i, j = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (9) In particular, we have γii = γ1 = γ2 and γ13 = γ24 = γσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Also, given that d1 and d2 are antiparallel, γ12 = γ21 = −√γ1γ2 = −γ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The total decay rate is γ = γ1 + γσ = γ2 + γσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (10) The decays for the π and σ transitions occur with the branching fractions bπ and bσ [5], respectively, γ1 = γ2 = bπγ, bπ = 1/3, (11a) γσ = bσγ, bσ = 2/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (11b) III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' MASTER EQUATION The dynamics of the atom-laser-reservoir system is de- scribed by the master equation for the reduced atomic density operator, ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In a frame rotating at the laser fre- quency (˜ρ = UρU †) it is given by ˙˜ρ = − i ¯h[H, ˜ρ] + Lγ ˜ρ, (12) where −(i/¯h)[H, ˜ρ] describes the coherent atom-laser in- teraction and Lγ ˜ρ describes the damping due to sponta- neous emission [5, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Defining S− 1 = A31, S− 2 = A42, S− 3 = A32, S− 4 = A41, S+ i = (S− i )†, (13) the dissipative part is written as Lγ ˜ρ = 1 2 2 � i,j=1 γij � 2S− i ˜ρS+ j − S+ i S− j ˜ρ − ˜ρS+ i S− j � +γσ 2 4 � i=3 � 2S− i ˜ρS+ i − S+ i S− i ˜ρ − ˜ρS+ i S− i � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (14) We now define the Bloch vector of the system as Q ≡ (A11, A12, A13, A14, A21, A22, A23, A24, A31, A32, A33, A34, A41, A42, A43, A44)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (15) The equations for the expectation values of the atomic operators, ⟨Ajk⟩ = ˜ρkj, are the so-called Bloch equations, which we write as d dt⟨Q(t)⟩ = MB⟨Q(t)⟩, (16) where MB is a matrix of coeficients of the full master equation, and the formal solution is ⟨Q(t)⟩ = eMBt⟨Q(0)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (17) Since we are interested only in properties of the fluores- cence emitted in the π transitions we use the simplifying fact, already noticed in [8], that these Bloch equations can be split into two decoupled homogeneous sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Set 1 contains the equations for the populations and the coher- ences of the coherently driven π transitions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' these are ⟨ ˙A11⟩ = −γ⟨A11⟩ + iΩ(⟨A31⟩ − ⟨A13⟩), ⟨ ˙A13⟩ = − �γ 2 + i∆ � ⟨A13⟩ − iΩ(⟨A11⟩ − ⟨A33⟩), ⟨ ˙A22⟩ = −γ⟨A22⟩ − iΩ(⟨A42⟩ − ⟨A24⟩), ⟨ ˙A24⟩ = − �γ 2 + i(∆ − δ) � ⟨A24⟩ + iΩ(⟨A22⟩ − ⟨A44⟩), ⟨ ˙A31⟩ = − �γ 2 − i∆ � ⟨A31⟩ + iΩ(⟨A11⟩ − ⟨A33⟩), ⟨ ˙A33⟩ = γ1⟨A11⟩ + γσ⟨A22⟩ − iΩ(⟨A31⟩ − ⟨A13⟩), ⟨ ˙A42⟩ = − �γ 2 − i(∆ − δ) � ⟨A42⟩ − iΩ(⟨A22⟩ − ⟨A44⟩), ⟨ ˙A44⟩ = γσ⟨A11⟩ + γ2⟨A22⟩ + iΩ(⟨A42⟩ − ⟨A24⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (18) with Bloch vector R ≡ (A11, A13, A22, A24, A31, A33, A42, A44)T (19) and a corresponding matrix M, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Equations (18) do not depend on γ12, the vacuum-induced coupling of the upper levels, but on the applied magnetic field only through the difference of Zeeman splittings, δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The steady state solutions, for which we introduce the 4 0 2 4 6 8 10 12 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0 2 4 6 8 10 12 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0 2 4 6 8 10 12 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0 2 4 6 8 10 12 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 γt γt (d) ∆ = −2γ, δ = −4γ (b) ∆ = 2γ, δ = −2γ ( ) ∆ = −2γ, δ = −2γ ⟨A22 (t)⟩ ⟨A44 (t)⟩ ⟨A11 (t)⟩ ⟨A33 (t)⟩ (a) ∆ = 0, δ = 0 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Time-dependent populations ⟨A11(t)⟩ (solid-black), ⟨A22(t)⟩ (dashed-red), ⟨A33(t)⟩ (dots-green), and ⟨A44(t)⟩ (dashed-dots-blue), with the atom initially in state |3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The parameters are: Ω = γ and (a) ∆ = δ = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (b) ∆ = 2γ, δ = −2γ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (c) ∆ = δ = −2γ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (d) ∆ = −2γ, δ = −4γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' short notation αjk = ⟨Ajk⟩st, are α11 = α22 = Ω2 2D, (20a) α33 = Ω2 + γ2/4 + ∆2 2D , (20b) α44 = Ω2 + γ2/4 + (∆ − δ)2 2D , (20c) α13 = Ω(∆ + iγ/2) 2D , (20d) α24 = Ω(δ − ∆ − iγ/2) 2D , (20e) αkj = α∗ jk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' where D = 2Ω2 + γ2 + δ2 4 + � ∆ − δ 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (21) Note also that in the degenerate system (δ = 0) α33 = α44 and that α31 = −α42, where the minus sign arises from the fact that the dipole moments d1 and d2 are antiparallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Set 2 contains the equations for the coherences of the σ transitions and those among both upper and both lower levels, R2 ≡ (A12, A14, A21, A23, A32, A34, A41, A43)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (22) The equations for their expected values do depend on Bℓ and γ12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' These coherences vanish because the σ tran- sitions are driven incoherently (⟨{A14, A23, A32, A41}⟩), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=', by spontaneous emission, or because they are medi- ated by those σ transitions (⟨{A12, A21, A34, A43}⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For completeness, we write the steady state results: α12 = α34 = α14 = α23 = 0, αkj = α∗ jk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (23) 0 1 2 3 4 5 6 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 0 1 2 3 4 5 6 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='8 0 1 2 3 4 5 6 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='8 0 1 2 3 4 5 6 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 α11 = α22 α33 α44 (d) ∆ = −2γ, δ = −4γ (b) ∆ = 2γ, δ = −2γ (a) ∆ = 0, δ = 0 ( ) ∆ = −2γ, δ = −2γ Ω/γ Ω/γ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Steady-state populations as a function of Rabi frequency: α11 = α22 (dashed-red), α33 (solid-black), and α44 (dots-blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' All other parameters as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The properties of the fluorescence of the π transitions, the subject matter of this article, do not depend on the equations for Set 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Only the second- and third-order amplitude-intensity correlations and the dipole correla- tion for the spectrum of the σ transitions would require the full set of Bloch equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' We gain valuable information on the nontrivial dynam- ics of the atomic system from single-time expectation val- ues, apparently ignored in the previous literature on the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2 we show the populations for several particular cases, all with the atom initially in state |3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In the degenerate case, δ = 0, the upper populations reach opposite phases by the end of the first Rabi cycle, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' This is understandable since the electron oc- cupation of, say, state |1⟩ implies not to be in state |2⟩, and viceversa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The same occurs for the lower popula- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Next, we show three situations for the nondegen- erate case with δ < 0 (as it is for 198Hg+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2(b) the laser is slightly detuned above the |1⟩−|3⟩ transition, but highly detuned from the |2⟩−|4⟩ transition;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' the oscil- lations get out of phase and most of the population ends up in state |4⟩ by optical pumping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2(c) the laser is detuned below the |1⟩−|3⟩ transition, and the |2⟩−|4⟩ transition is now on resonance with the laser;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' again, the oscillations are out of phase but most of the population ends up now in state |3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2(d) we extend the pre- vious case but with stronger applied magnetic field, thus the non-degeneracy is more evident;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' the large detuning on both transitions makes it recover the opposite phases of the degenerate case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 3 we show the steady state populations as a function of the Rabi frequency;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' the other parameters are the same as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For strong fields the populations tend to be equal (1/4), but arrive at that limit at dif- ferent rates;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' for instance, for large detunings on both transitions, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 3(d), it takes larger fields, as compared to the degenerate case, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 3(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' On the other hand, for small detunings and weak-moderate fields, when one 5 transition is closer to resonance than the other, the lower state of the more detuned transition is more populated, as seen in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 3 (b) and (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' THE SCATTERED FIELD In this Section we present the main dynamical and stationary properties of the field scattered by the atom, with emphasis on the π transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Single-Time and Stationary Properties The positive-frequency part of the emitted field oper- ator is [5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 21] ˆE+(r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' t) = ˆE+ free(r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' t) + ˆE+ S (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' ˆt),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (24) where ˆE+ free(r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' t) is the free-field part,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' which does not con- tribute to normally ordered correlations,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' hence we omit it in further calculations,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' and ˆE+ S (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' t) = −η r 4 � i=1 ω2 i ˆr × (ˆr × di)S− i (ˆt) (25) is the dipole source field operator in the far-field zone,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' where ˆt = t−r/c is the retarded time and η = (4πϵ0c2)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Since ωi ≫ δ, we may approximate the four transition as a single one ω0 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (25, but cannot do so at the level of decay rates, Rabi frequencies, and splittings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Making ˆr = ey the direction of observation and using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (2) we have ˆE+ S (r, ˆt) = ˆE+ π (r, ˆt) ez + ˆE+ σ (r, ˆt) ex, (26) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=', the fields scattered from the π and σ transitions are polarized in the ez and ex directions, respectively, where ˆE+ π (r, ˆt) = fπ(r) � A31(ˆt) − A42(ˆt) � , (27a) ˆE+ σ (r, ˆt) = fσ(r) � A32(ˆt) − A41(ˆt) � , (27b) are the positive-frequency source field operators of the π and σ transitions, and fπ(r) = −ηω2 1D/ √ 3r, fσ(r) = √ 2fπ(r), (28) are their geometric factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The intensity in the π transitions is given by Iπ(r, ˆt) = ⟨ ˆE− π (r, ˆt) · ˆE+ π (r, ˆt)⟩ = f 2 π(r)⟨A13(ˆt)A31(ˆt) + A24(ˆt)A42(ˆt)⟩ = f 2 π(r)⟨A11(ˆt) + A22(ˆt)⟩, (29a) while in the steady state is Ist π = f 2 π(r) [α11 + α22] = Ω2 D .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (29b) 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='20 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='3 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='25 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='15 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='15 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='25 Iπ (r, t) �f 2 π (r) Iπ (r, t) �f 2 π (r) ⟨A11 (t)⟩ ⟨A22 (t)⟩ ⟨A11 (t)⟩ ⟨A22 (t)⟩ ⟨A11 (t)⟩ ⟨A22 (t)⟩ ⟨A11 (t)⟩ ⟨A22 (t)⟩ γt γt γt γt γt γt (d) (c) (a) (b) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Fluorescence intensity of the π transitions with equal initial ground state populations, ⟨A33(0)⟩ = ⟨A44(0)⟩ = 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The other parameters are as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2: Ω = γ and (a) ∆ = δ = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (b) ∆ = 2γ, δ = −2γ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (c) ∆ = δ = −2γ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (d) ∆ = −2γ, δ = −4γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The insets show the excited states populations: ⟨A11(t)⟩ (solid), ⟨A22(t)⟩ (dashed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Adding the excited state populations with the atom initially in the single state |3⟩ in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 29a gives simply Iπ(r, ˆt) = f 2 π(r)⟨A11(ˆt)⟩, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=', without the contribution of ⟨A22(ˆt)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' More interesting is the case where the ini- tial condition is ⟨A33(0)⟩ = ⟨A44(0)⟩ = 1/2, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 4 (see the populations ⟨A11(t)⟩ and ⟨A22(t)⟩ in the insets).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The modulation in the intensity is reminiscent of the quantum beats in the spontaneous decay in the V three-level system [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' These beats are basically due to the inability to tell from which of the π transitions a photon comes from.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' This is the standard Young-type interference [4, 5, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The main requirement is that the initial condition for both ground states are nonzero (see Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' More interesting, though, is the case of strong resonant laser and magnetic fields and the laser is detuned far from the |2⟩ − |4⟩ resonance frequency, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Due to the laser detuning, the population ⟨A22(t)⟩ has larger frequency and smaller amplitude than that of ⟨A11(t)⟩, as seen in the insets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Remarkably well-defined wave-packets or beats are observed due to the interference of the flu- orescence of both π transitions with close Rabi frequen- cies, with clear average and modulation frequencies (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 5a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The beats get scrambled with larger frequency and amplitude differences, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 5b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Save for the decay, these beats are more like the classic textbook ones, described by a modulation and an average frequency, unlike the beats from spontaneous emission or weak resonance fluorescence from two or more closely sep- arated levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Henceforth, we reserve the moniker beats to those due to strong applied fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Further analyses of the beats are given in the next Sections, as they show up 6 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='8 0 1 2 3 4 5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0 1 2 3 4 5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 Iπ (r, t) � f2 π (r) Iπ (r, t) � f2 π (r) ⟨A22 (t)⟩ ⟨A11 (t)⟩ ⟨A22 (t)⟩ ⟨A11 (t)⟩ γt γt γt γt (b) (a) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Fluorescence intensity for Ω = 9γ, ∆ = 0, and (a) δ = −8γ and (b) δ = −15γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The insets show the excited state populations ⟨A11⟩ (solid line) and ⟨A22⟩ (dotted line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The initial conditions are ⟨A33(0)⟩ = ⟨A44(0)⟩ = 1/2, ⟨A11(0)⟩ = ⟨A22(0)⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' also in two-time correlations with particular features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Similarly, for the σ transitions we have Iσ(r, ˆt) = ⟨ ˆE− σ (r, ˆt) · ˆE+ σ (r, ˆt)⟩ = f 2 σ(r)[⟨A23(ˆt)A32(ˆt) + A14(ˆt)A41(ˆt)⟩] = f 2 σ(r)[⟨A11(ˆt) + A22(ˆt)⟩], (30a) Ist σ = f 2 σ(r) [α11 + α22] , (30b) also showing beats with intensity twice that of the π tran- sitions given that f 2 σ(r) = 2f 2 π(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The field quadrature operator at any time is ˆEπ,φ(r, ˆt) = 1 2 � E− π (r, ˆt)e−iφ + E+ π (r, ˆt)eiφ� = fπ(r)(S1,φ − S2,φ), (31) where φ = 0, π/2 are the quadrature phases we consider, and S1,φ = 1 2 � A13e−iφ + A31eiφ� , (32a) S2,φ = 1 2 � A24e−iφ + A42eiφ� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (32b) The mean quadrature field is given by ⟨ ˆEπ,φ⟩st = fπ(r) 2 � (α13 − α24) e−iφ + (α31 − α42) eiφ� = fπ(r)Re � (α13 − α24) e−iφ� (33) = fπ(r)Re �Ω (∆ + (iγ − δ)/2) D e−iφ � , B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Intensity and Quadrature Fluctuations Here we introduce the intensity and quadratures of the field in terms of atomic fluctuation operators ∆Ajk = Ajk − ⟨Ajk⟩st, such that ⟨AklAmn⟩ = αklαmn + ⟨∆Akl∆Amn⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (34) Only the π transitions have nonvanishing coherence terms (α13, α24 ̸= 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The fluorescence in the σ transi- tions is fully incoherent (α14 = α23 = 0), so its intensity is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (30b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In the remainder of this section we deal only with the π transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The quadrature op- erators are then written as ˆEπ,φ(r, ˆt) = fπ(r)[απ,φ + ∆Sπ,φ(ˆt)], (35a) where απ,φ = 1 2(α31 − α42)eiφ + 1 2(α13 − α24)e−iφ, (35b) = Re �Ω (∆ + (iγ − δ)/2) D e−iφ � , ∆Sπ,φ = 1 2(∆A31 − ∆A42)eiφ + 1 2(∆A13 − ∆24)e−iφ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (35c) From Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (29b) and (34) we write the steady state intensity in terms of products of dipole and dipole fluc- tuation operator expectation values, Ist π (r) = f 2 π(r) � Icoh π,0 + Iinc π,0 + Icoh π,cross + Iinc π,cross � ,(36) where Icoh π,0 = |⟨A13⟩st|2 + |⟨A24⟩st|2, (37a) Iinc π,0 = ⟨∆A13∆A31⟩ + ⟨∆A24∆A42⟩, (37b) Icoh π,cross = −⟨A13⟩st⟨A42⟩st − ⟨A24⟩st⟨A31⟩st = −2Re (⟨A13⟩st⟨A42⟩st) , (37c) Iinc π,cross = −⟨∆A13∆A42⟩ − ⟨∆A24∆A31⟩ = −2Re (⟨∆A13∆A42⟩) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (37d) Superindices coh and inc stand, respectively, for the co- herent (depending on mean dipoles) and incoherent (de- pending on noise terms) parts of the emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Subindex 0 stands for terms with the addition of single transition products, giving the total intensity, while subindex cross stands for terms with products of the two π transitions, the steady state interference part of the intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In 7 terms of atomic expectation values these intensities are: Icoh π,0 = |α13|2 + |α24|2 (38a) = Ω2 4D2 �γ2 2 + ∆2 + (δ − ∆)2 � , Iinc π,0 = α11 + α22 − |α13|2 − |α24|2 (38b) = Ω2 D2 � 2Ω2 − γ2 4 − ∆2 − δ2 � , Icoh π,cross = −2Re (α13α42) (38c) = Ω2 2D2 �γ2 4 + ∆(∆ − δ) � , Iinc π,cross = 2Re (α13α42) = −Icoh π,cross, (38d) The sum of these terms is, of course, the total intensity, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (29a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' As usual in resonance fluorescence, the coher- ent and incoherent intensities are similar only in the weak field regime, Ω ≤ γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Here, in particular, the term Iinc π,0 (no interference) becomes much larger than the others for strong driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Degree of Interference - Coherent Part In Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [5], a measure of the effect of interference in the coherent part of the intensity was as Icoh π,0 + Icoh π,cross = Icoh π,0 (1 + C(δ)), C(δ) = Icoh π,cross Icoh π,0 = γ2/4 + ∆(∆ − δ) γ2/4 + δ2/4 + (∆ − δ/2)2 , (39) independent of the Rabi frequency and shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 6(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Some special cases are found analytically: C(0) = 1, δ = 0, (40a) C(δ0) = 0, δ0 = ∆[1 + (γ/2∆)2], (40b) C(δmin) = −1 1 + γ2/2∆2 , δmin = 2∆[1 + (γ/2∆)2], (40c) C(δ± 1/2) = 1/2, δ± 1/2 = −∆ ± � 3∆2 + (γ2/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (40d) In the degenerate case, C(δ = 0) = 1 means perfect constructive interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' That is because at δ = 0 both π transitions (and both σ transitions) share the same reservoir environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Increasing δ the reservoir overlap decreases, so is the interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Negative values of C indicate destructive interference;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' its minimum is given by δmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For large detunings, ∆2 ≫ γ2 we have δ0 = ∆, δmin = 2∆, δ± 1/2 = −∆ ± √ 3 |∆|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (40e) We have used the special cases δ = {0, δ0, δmin} as a guide to obtain many of the figures in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 20 10 0 10 20 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 δ/γ ∆ = −5γ K(δ) C(δ) ∆ = −2γ ∆ = 0 (a) (b) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Relative weight of the interference terms C(δ) (a) and K(δ) (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In (b) Ω = γ/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For 198Hg+, δ ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Degree of Interference - Incoherent Part Likewise, we define a measure, K(δ), of the effect of interference in the intensity’s incoherent part, Iinc π,0 + Iinc π,cross = Iinc π,0(1 + K(δ)), K(δ) = Iinc π,cross Iinc π,0 = γ2/4 + ∆(∆ − δ) 2 [γ2/4 + δ2 + ∆2 − 2Ω2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (41) Unlike C(δ), K(δ) also depends on the Rabi frequency as Ω−2, since fluctuations increase with laser intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Special cases are: K(0) = γ2/4 + ∆2 2 [γ2/4 + ∆2 − 2Ω2], δ = 0, (42a) K(δ) = 0, δ = ∆ + γ2 4∆ or Ω ≫ γ, ∆, δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (42b) The behavior of K(δ) with ∆ is more subtle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' It is ba- sically required that ∆ ∼ Ω in order to preserve the shape seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 6(b), in which case the minima for C(δ) and K(δ) are very similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' On-resonance, for ex- ample, Ω should be no larger than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='35γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Also, we can infer that the beats are little affected by the interference term unless ∆ >∼ Ω ≫ γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' TWO-TIME DIPOLE CORRELATIONS AND POWER SPECTRUM The resonance fluorescence spectrum of the J = 1/2 → J = 1/2 atomic system was first considered in [3] and then very thoroughly in [4, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Thus, here we only con- sider basic definitions and issues related to the observa- tion of beats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The stationary Wiener-Khintchine power spectrum is given by the Fourier transform of the field autocorrelation function Sπ(ω) = Re � ∞ 0 dτe−iωτ⟨ ˆE− π (0) ˆE+ π (τ)⟩, (43) 8 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='35 20 10 0 10 20 ω/γ Sinc π (ω) (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' units) γτ � ∆E− π (0) ∆E+ π (τ) � � f2 π (r) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Dipole correlation function ⟨∆ ˆE− π (0)∆ ˆE+ π (τ)⟩ for Ω = 9γ, δ = −8γ, and ∆ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The inset shows the corre- sponding incoherent spectrum Sinc π (ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' such that � ∞ −∞ Sπ(ω)dω = Ist π .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' By writing the atomic operators in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (27a) as Ajk(t) = αjk + ∆Ajk(t), we separate the spectrum in two parts: a coherent one, Scoh π (ω) = Re � ∞ 0 e−iωτdτ � Icoh π,0 + Icoh π,cross � = π � Icoh π,0 + Icoh π,cross � δ(ω) = πΩ2 D2 � γ2 4 + � ∆ − δ 2 �2� δ(ω), (44) due to elastic scattering, where Icoh π,0 and Icoh π,cross are given by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (38) (a) and (c), respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' and an incoherent part, Sinc π (ω) = Re � ∞ 0 dτe−iωτ⟨∆ ˆE− π (0)∆ ˆE+ π (τ)⟩, specifically, Sinc π (ω) = Re � ∞ 0 dτe−iωτ [⟨∆A13(0)∆A31(τ)⟩ +⟨∆A24(0)∆A42(τ)⟩ − ⟨∆A13(0)∆A42(τ)⟩ −⟨∆A24(0)∆A31(τ)⟩] , (45) due to atomic fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' An outline of the numerical calculation is given in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The dipole correlation ⟨ ˆE− π (0) ˆE+ π (τ)⟩ and the incoher- ent spectrum in the strong driving regime and strong nondegeneracy (large δ) are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The spec- trum (inset) displays a central peak and two pairs of Mollow-like-sidebands [22] with peaks at the Rabi side- bands ±Ω1 and ±Ω2, while the correlation features de- caying quantum beats due to the closeness of the Rabi peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' As usual in the strong-field regime, the dressed system approach allows to discern the origin of the peaks from the transitions among the dressed states, to find their positions [5], and thus find the frequencies of the beats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The generalized Rabi frequencies are Ω1 = E+ 1 − E− 1 = � 4Ω2 + ∆2, (46a) Ω2 = E+ 2 − E− 2 = � 4Ω2 + (δ − ∆)2, (46b) TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Eigenvalues of matrix M/γ and initial conditions of the correlations in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (45) for Ω = 9γ and ∆ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Eigenvalues δ = −8γ δ = −15γ λ1 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='749386 + 0i −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='836531 + 0i λ2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='583099 − 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0094i −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='583308 − 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='9981i λ3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='583099 + 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0094i −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='583308 + 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='9981i λ4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='569785 − 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6808i −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5492 − 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4257i λ5 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='569785 + 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6808i −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5492 + 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4257i λ6 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 + 0i −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 + 0i λ7 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='444846 + 0i −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='398452 + 0i λ8 0 + 0i 0 + 0i Init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' cond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' ⟨∆A13∆A31⟩ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='20836 + 0i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='14734 + 0i ⟨∆A24∆A42⟩ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='174014 + 0i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='086982 + 0i ⟨∆A13∆A42⟩ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='000134 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='002146i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='000067 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='002011i ⟨∆A24∆A31⟩ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='000134 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='002146i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='000067 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='002011i where E± 1 = −∆ 2 ± 1 2 � 4Ω2 + ∆2, (47a) E± 2 = Bℓ + δ − ∆ 2 ± 1 2 � 4Ω2 + (δ − ∆)2, (47b) are the eigenvalues of the Hamiltonian (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Due to the spontaneous decays these frequencies would have to be corrected, but they are very good in the relevant strong field limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Indeed, we notice that Ω1 and Ω2 are very close to the imaginary parts of the eigenvalues λ2,3 and λ4,5, respectively, of matrix M, shown in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The beats are the result of the superposition of waves at the frequencies Ω1 and Ω2 of the spectral sidebands, with average frequency Ωav = Ω2 + Ω1 2 = � 4Ω2 + (δ − ∆)2 + √ 4Ω2 + ∆2 2 , (48) and beat or modulation frequency Ωbeat = Ω2 − Ω1 2 = � 4Ω2 + (δ − ∆)2 − √ 4Ω2 + ∆2 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (49) Now, we can identify the origin and modulation fre- quency of the beats in the time-dependent intensity, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (29a), since the excited state populations ⟨A11(t)⟩ and ⟨A22(t)⟩ oscillate at the generalized Rabi frequen- cies Ω1 and Ω2, respectively, with initial conditions given by a nonzero superposition of ground state pop- ulations at t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In the case of the dipole correlation ⟨ ˆE− π (0) ˆE+ π (τ)⟩, however, the initial conditions are given by products of stationary atomic expectation values, most of them the coherences α13, α24, which become very small in the regime of beats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Thus, as seen in Table I, the terms ⟨∆A13(0)∆A31(τ)⟩ and ⟨∆A24(0)∆A42(τ)⟩ are 9 0 3 6 9 12 15 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0 3 6 9 12 15 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 0 3 6 9 12 15 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 γτ ∆ = −2γ, δ = −4γ ∆ = −2γ, δ = −2γ ∆ = 2γ, δ = −2γ ∆ = 0, δ = 0 ( ) Ω = γ (a) Ω = γ/4 (b) Ω = γ/2 g(2) π (τ) g(2) π (τ) g(2) π (τ) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Photon correlations for (a) Ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='25γ, (b) Ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5γ and (c) Ω = γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The pairs of values (∆, δ) are the same as those in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' much larger than the cross terms ⟨∆A13(0)∆A42(τ)⟩ and ⟨∆A24(0)∆A31(τ)⟩, so the beats are basically due to the interference of those dominant terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' PHOTON-PHOTON CORRELATIONS The standard method to investigate intensity fluctua- tions of a light source uses Brown-Twiss photon-photon correlations [16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The conditional character of this type of measurement makes it nearly free of detector in- efficiencies, unlike a single-detector measurement of the photoelectron probability distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [8] the correlations of two photons from the π transitions were studied, albeit only for the degenerate case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In this paper we extend it to the case of nondegenerate states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' These correlations are defined as g(2) π (τ) = G(2) π (τ) G(2) π (τ → ∞) (50) where, using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (27a) for the field operators, G(2) π (τ) = ⟨ ˆE− π (0) ˆE− π (τ) ˆE+ π (τ) ˆE+ π (0)⟩ = f 4 π(r)⟨[A13(0) − A24(0)][A11(τ) + A22(τ)] ×[A31(0) − A42(0)]⟩, (51a) and G(2) π (τ → ∞) = � Ist π �2 = f 4 π(r) (α11 + α22)2 (51b) is the normalization factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' G(2) π (τ) can be further re- duced, since ⟨A13Ajk(τ)A42(0)⟩ = ⟨A24Ajk(τ)A31(0)⟩ = 0, due to having vanishing initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Figure 8 shows g(2) π (τ) for moderate values of the Rabi frequency (near saturation) and the same sets of detun- ings ∆ and δ of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' As usual in resonance fluores- cence, the correlation shows antibunching, g(2) π (0) = 0, 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0 2 4 6 8 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 g(2) π (τ) γτ γτ g(2) π (τ) (b) δ = −10γ (d) δ = −15γ ( ) δ = −12γ (a) δ = −8γ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Photon-photon correlations showing beats in the strong field limit, Ω = 9γ, ∆ = 0, and large Zeeman splittings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The horizontal line helps to see that the wave packet is slightly rised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' that is, a single atom cannot emit two photons simultane- ously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Unlike the two-level atom resonance fluorescence, the correlation is not simply the normalized population of the excited state, nor it is only the sum of the cor- relations of each single π transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Besides the terms ⟨A13(0)A11(τ)A31(0)⟩ and ⟨A24(0)A22(τ)A42(0)⟩, which are also out of phase, as seen from the time-dependent populations of their excited states (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2), there are six cross terms in the full correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In the nondegenerate case the multiple contributions cause in some cases quite irregular evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For instance, as we will see in the next Section, the slow decay of the correlation when the laser drives the atom near saturation, but below the ω13 resonance transition, is related to a very narrow peak in the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The case of strong driving and large nondegeneracy is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 9, featuring quantum beats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' There are several effects resulting from the increase of the nonde- generacy factor δ: (i) the larger number of visible wave packets;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (ii) both average and beat frequencies approach one another, so the wave packets get shorter for larger photon-pair intervals τ, containing very few of the fast oscillations, as seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 9(d);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (iii) the wavepackets are initially slightly lifted above the g(2)(τ) = 1 value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' QUADRATURE FLUCTUATIONS Squeezing, the reduction of noise in one quadrature below that of a coherent state at the expense of the other, is the hallmark of phase-dependent fluctuations of the electromagnetic field [cite].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' It is usually measured by balanced homodyne detection (BHD), but low quan- tum detector efficiency degrade the weak squeezing pro- duced in resonance fluorescence and cavity QED systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' One alternative our group has used is conditional homo- dyne detection (CHD) [18, 19], which correlates a quadra- ture amplitude on the cue of an intensity measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' CHD measures a third-order amplitude-intensity corre- 10 lation (AIC) which, in the weak driving limit is reduced to the second-order one and that allows for measuring squeezing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Being a conditional measurement it is nearly free of detector inefficiencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' While the original goal of CHD was to measure the weak squeezing in cavity QED [18, 19], it was soon re- alized that nonzero third-order fluctuations of the am- plitude provide clear evidence of non-Gaussian fluctua- tions and higher-order field nonclassicality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In the present work the fluctuations are mainly third-order ones, due to near and above saturation excitation, and violate classi- cal bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' We thus explore the phase-dependent fluctu- ations under conditions of quantum interference following our recent work [20, 23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Amplitude-Intensity Correlations In CHD a quadrature’s field Eφ is measured by BHD on the cue of photon countings in a separate detector, where φ = 0, π/2 is the phase of the local oscillator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' This is characterized by a correlation among the amplitude and the intensity of the field, hπ,φ(τ) = Hπ,φ(τ) Hπ,φ(τ → ∞), (52) where Hπ,φ(τ) = ⟨: ˆE− π (0) ˆE+ π (0) ˆEπ,φ(τ) :⟩, (53a) the dots :: indicating time and normal operator orderings, and Hπ,φ(τ → ∞) = Ist π ⟨Eπ,φ⟩st (53b) = f 3 π(r) [α11 + α22] Re � (α13 − α24) e−iφ� = f 3 π(r) Ω3 D2 Re � (∆ + (iγ − δ)/2) e−iφ� is the normalization factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For the sake of concreteness, in this Section we limit our discussion to the out-of-phase quadrature, φ = π/2, which is the one that features squeezing when ωL = ω13, that is ∆ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' We do consider, however, squeezing in the in-phase quadrature φ = 0 in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' VIII on the variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In several atom-laser systems hπ,φ(τ) has been proven to be time-asymmetric [20, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' This is not the case with the J = 1/2 → J = 1/2 system so we limit the analysis to positive intervals τ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Omitting the geometrical factor f 3 π(r), which is later cancelled by normalization, we have Hπ,φ(τ) = ⟨ ˆE− π (0) ˆEπ,φ(τ) ˆE+ π (0)⟩ = Re � e−iφ⟨A13(0)[A13(τ) − A24(τ)]A31(0) +A24(0)[A13(τ) − A24(τ)]A42(0)⟩} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (54) Note that Hπ,φ(0) = 0 meaning that, like antibunching in g(2), the atom has to build a new photon wavepacket after one has been emitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The AIC suggests nontrivial behavior when we take dipole fluctuations into account, that is, when the atomic operators are split into their mean plus noise, Ajk = αjk + ∆Ajk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' upon substitution in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (54) we get Hπ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ(τ) = Ist π ⟨Eπ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ⟩st + H(2) π,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ(τ) + H(3) π,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ(τ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (55) or in normalized form as hπ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ(τ) = 1 + H(2) π,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ(τ) Ist π ⟨Eπ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ⟩st + H(3) π,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ(τ) Ist π ⟨Eπ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ⟩st ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (56) where H(2) π,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ(τ) = 2Re � ⟨ ˆE+ π ⟩st⟨∆ ˆE− π (0)∆ ˆEπ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ(τ)⟩ � = Re � (α31 − α42) [⟨(∆A13(0) − ∆A24(0)) � ∆A13(τ) − ∆A24(τ))⟩e−iφ +⟨(∆A13(0) − ∆A24(0)) � ∆A31(τ)⟩ − ∆A42(τ))⟩eiφ�� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (57) H(3) π,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ(τ) = ⟨∆ ˆE− π (0)∆ ˆEπ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='φ(τ)∆ ˆE+ π (0)⟩ = Re � eiφ⟨[∆A13(0) − ∆A24(0)] [∆A31(τ) − ∆A42(τ)] [∆A31(0) − ∆A42(0)]⟩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (58) The initial conditions of the correlations are given in Ap- pendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' From hπ,π/2(0) = 0 we can obtain analytically the ini- tial values of the second- and third-order terms, h(2) π,π/2(0) = 1 − (2∆ − δ)2 + γ2 2D , (59) h(3) π,π/2(0) = (2∆ − δ)2 + γ2 2D − 2, (60) where D is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 11 Being the AIC a function of odd-order in the field am- plitude we rightly expect a richer landscape than that of the intensity correlations, more so when one considers quantum interference and the complex parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For instance, the correlation can take on not only nega- tive values but break classical bounds [18, 19]: 0 ≤ hφ(τ) − 1 ≤ 1 , (61a) |h(2) φ (τ) − 1| ≤ |h(2) φ (0) − 1| ≤ 1 , (61b) where the second line is valid only for weak fields such that h(3) φ (τ) ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' These classical bounds are stronger cri- teria for nonclassicality of the emitted field than squeezed light measurements, the more familiar probing of phase- dependent fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A detailed hierarchy of nonclas- sicality measures for higher-order correlation functions is presented in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [25, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [20] an inequality was obtained that considers the full hφ(τ) by calculating the AIC for a field in a coherent state, −1 ≤ hφ(τ) ≤ 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (62) For a meaningful violation of Poisson statistics, hφ(τ) must be outside these bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Also, hφ(τ) is a measure of non-Gaussian fluctuations, here of third-order in the field fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Resonance fluorescence is a particularly strong case of non-Gaussian noise by being a highly nonlinear stationary nonequilib- rium process [20, 23, 24, 27, 28], thanks also to its small Hilbert space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' This makes resonance fluorescence unsuit- able to a quasiprobability distribution approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Fluctuations Spectra Since quadrature fluctuations, such as squeezing, are often studied in the frequency domain we now define the spectrum of the amplitude-intensity correlations: Sπ,φ(ω) = 8γ1 � ∞ 0 dτ cos (ωτ) [hπ,φ(τ) − 1] (63) which, following Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (52) and (55), can be decomposed into terms of second- and third-order in the dipole fluc- tuations S(q) π,φ(ω) = 8γ1 � ∞ 0 dτ cos (ωτ)h(q) π,φ(τ), (64) where q = 2, 3, so that Sπ,φ(ω) = S(2) π,φ(ω) + S(3) π,φ(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' As mentioned above, the AIC was devised initially to measure squeezing without the issue of imperfect detec- tion efficiencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Obviously, hπ,φ(τ) and Sπ,φ(ω) are not measures of squeezing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' They measure a third-order mo- ment in the field’s amplitude, while squeezing is a second- order one in its fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The so-called spectrum of squeezing is the one for q = 2, with the advantage of the AIC of not depending on the efficiency of detec- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Squeezing is signaled by frequency intervals where 0 2 4 6 8 10 12 0 2 4 6 10 5 0 5 10 0 1 2 0 2 4 6 8 10 12 0 2 4 6 10 5 0 5 10 1 0 1 2 0 2 4 6 8 10 12 0 2 4 6 10 5 0 5 10 1 0 1 2 Sπ,π/2 (ω) hπ,π/2 (τ) (b) Ω = γ/2 γτ ω/γ (a) Ω = γ/4 (d) Ω = γ/4 (e) Ω = γ/2 (f ) Ω = γ ( ) Ω = γ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Amplitude-intensity correlations (left panel) and spectra (right panel) for the φ = π/2 quadrature in the weak- moderate field limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Parameters and line styles are the same as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 8: ∆ = δ = 0 (solid-black);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' ∆ = 2γ and δ = −2γ (dots-red);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' ∆ = −2γ and δ = −2γ (dashed-green);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' ∆ = −2γ and δ = −4γ (dot-dashed-blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' S(2) π,φ(ω) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' As a further note, the full incoherent spec- trum, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (45), can be obtained by adding the squeezing spectra of both quadratures [29], Sinc π (ω) = 1 8γ1 � S(2) π,0(ω) + S(2) π,π/2(ω) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (65) C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Results We now show plots of the AICs and their spectra in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 10-12 for the φ = π/2 quadrature and the same sets of detunings ∆, δ of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2, and weak to moderate Rabi frequencies, γ/4 < Ω < γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' With the three parameters Ω, ∆, and δ, the landscape of effects is vast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' We first notice a few general features seen in hπ,π/2(τ), Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' With increasing Rabi frequencies, detunings, and Zeeman splittings we observe the clear breakdown of the classical inequalities besides the one at τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Cor- respondingly, in the spectra, the extrema get displaced and broadened.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Now, we want to single out the case of nondegeneracy with small detuning on the |1⟩ − |3⟩ transition but large on the |2⟩ − |4⟩ one, ∆ = −δ = 2γ (green-dashed line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For weak field, Ω = γ/4, the AIC does not have a regular evolution for short times but it does decay very slowly, with a correponding very narrow spectral peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The slow decay is also clearly visible in the photon correlation, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 8a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' As we mentioned in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' III regarding Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2b, state |4⟩ ends up with a large portion of the steady state population due to optical pumping;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' not quite a trapping state, so there is no electron shelv- ing per se, as argued in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' This effect is washed out for larger Rabi frequencies, which allow for faster recycling of the populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' To a lesser degree, slow decay and sharp peak occur for opposite signs of ∆ and δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 12 0 2 4 6 8 10 2 1 0 1 2 3 4 10 -8 6 4 2 0 2 4 6 8 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='8 0 2 4 6 8 10 2 1 0 1 2 3 4 10 -8 6 4 2 0 2 4 6 8 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='8 0 2 4 6 8 10 1 0 1 2 3 10 -8 6 4 2 0 2 4 6 8 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 (f ) Ω = γ ( ) Ω = γ (b) Ω = γ/2 (e) Ω = γ/2 (a) Ω = γ/4 (d) Ω = γ/4 h(2) π,π/2 (τ) ω/γ γτ S(2) π,π/2 (ω) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Second-order component of the AIC and spectra of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 0 2 4 6 8 10 1 0 1 2 10 -8 -6 -4 -2 0 2 4 6 8 10 0 1 2 0 2 4 6 8 10 1 0 1 2 10 -8 -6 -4 -2 0 2 4 6 8 10 1 0 1 2 0 2 4 6 8 10 1 0 1 2 3 10 -8 -6 -4 -2 0 2 4 6 8 10 2 1 0 1 (f ) Ω = γ ( ) Ω = γ (b) Ω = γ/2 (e) Ω = γ/2 (a) Ω = γ/4 (d) Ω = γ/4 h(3) π,π/2 (τ) ω/γ γτ S(3) π,π/2 (ω) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Third-order component of the AIC and spectra of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The splitting of the AIC and spectra into components of second and third order in the fluctuations, Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 11, 12, helps to understand better the quadrature fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For the second-order ones we have the squeezing spectra: around ω = 0 for ∆ = 0 and small Rabi frequencies, Ω < γ/4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' and in sidebands for larger detunings, Rabi frequencies and Zeeman splittings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In h(2) π,π/2(τ) there is a reduction in amplitudes and nonclassicality for increasing Rabi frequencies except for the case of oppposite signs of detuning and difference Zeeman splitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Note that the sharp spectral peak in the latter case takes up most of the corresponding peak in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' This is because both π transitions are largely detuned from the laser, keeping Ω small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Increasing the laser strength the third-order effects overcome the second-order ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For instance, regarding the size of the features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Also, a comparison of Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 11 0 2 4 6 8 10 10 0 10 20 40 20 0 20 40 10 5 0 5 10 0 2 4 6 8 10 10 0 10 20 40 20 0 20 40 10 5 0 5 10 0 2 4 6 8 10 10 0 10 20 40 20 0 20 40 10 5 0 5 10 0 2 4 6 8 10 10 0 10 20 40 20 0 20 40 5 0 5 hπ,π/2 (τ) h (2) π,π/2 (τ) h (3) π,π/2 (τ) S (3) π,π/2 (τ) S (2) π,π/2 (τ) Sπ,π/2 (τ) γτ ω/γ (b) (f ) ( ) (g) (d) (h) (a) (e) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' AIC and spectra for Ω = 9γ, ∆ = 0, (a,e) δ = −8γ, (b,f) δ = −10γ, (c,g) δ = −12γ, (d,h) δ = −15γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Lines are: full AIC and spectra (solid-black), second-order (dots-red), and third-order (dashed-blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' and 12 shows that h(3) φ (τ) is mainly responsible for the breakdown of the classical bounds when the driving field is on or above saturation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Moreover, we see that the slow-decay–sharp-peak is mainly a third-order effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' To close this Section, the AIC and spectra for very strong fields and large Zeeman splittings, Ω, |δ| ≫ γ are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The AIC shows beats as in the photon correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Unlike those in g(2)(τ), these wavepack- ets oscillate around h(τ) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Because the regime is that of strong excitation the third-order component clearly dominates, making the fluorescence notably non- Gaussian, and clearly violates the classical inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The spectral peaks are localized around the Rabi frequen- cies ±Ω1, ±Ω2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Studies of the spectrum of squeezing for the J = 1/2 − J = 1/2 system were reported in [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Those authors choose ±Ω1, ±Ω2 with a less strong laser but large detuning and large Zeeman splittings, observ- ing the double sidebands, but no mention or hint of beats was made.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' VARIANCE The variance is a measure of the total noise in a quadrature;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' it is defined as Vφ = ⟨: (∆Eφ)2 :⟩ = Re � e−iφ⟨∆ ˆE−∆ ˆEφ⟩st � , (66) 13 and is related to the spectrum of squeezing as Vφ = 1 4πγη � ∞ −∞ dωS(2) φ (ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (67) where η is the detector efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The maximum value of Vφ is 1/4, obtained when there is very strong driving, when almost all the emitted light is incoherent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Negative values of the variance are a signature of squeezing but, unlike the quadrature spectra, the squeezing is the total one in the field, independent of frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For the π transitions we have Vπ,φ = f 2 π(r) 2 Re � −(α13 − α24)2e−2iφ +(α11 + α22 − |α13 − α24|2) � , (68) = f 2 π(r) 2 Ω2 D � 1 − [(2∆ − δ) cos φ + γ sin φ]2 2D � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (69) For φ = π/2 and φ = 0 we have, respectively, Vπ,π/2 = f 2 π(r) 2 Ω2 D � 1 − γ2 2D � , (70a) Vπ,0 = f 2 π(r) 2 Ω2 D � 1 − (2∆ − δ)2 2D � , (70b) where D is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 14 we plot the variances of the out-of-phase φ = π/2 (left panel) and in-phase φ = 0 (right panel) quadratures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The interplay of parameters is a complex one, but we mostly use the ones of previous figures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For φ = π/2 and ∆ = 0, as usual in resonance fluorescence systems, squeezing is restricted to a small range of Rabi frequencies, detunings, and Zeeman splittings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For φ = 0 nonzero laser or Zeeman detunings are necessary to pro- duce squeezing, with a strong dependence on their sign: on-resonance (not shown) there is no squeezing, as for a two-level atom;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 14(d) the laser is tuned be- low that transition, ∆ = −2γ, and there is no squeezing (positive variance) but the variance is reduced for large δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 14(e) the laser is tuned above the transition, ∆ = −2γ, and there is squeezing for larger Rabi frequen- cies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Large values of δ tend to reduce the variance, be it positive or negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Out-of-phase quadrature We now discuss a complementary view of the variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For φ = π/2 we can identify the Rabi frequency interval within which squeezing takes place, 0 < Ω < 1 2 � γ2/2 − δ2/2 − 2(∆ − δ/2)2, (71) and the Rabi frequency for maximum squeezing is ˜Ωπ/2 = 1 2 � γ4/2 − 2[(δ − ∆)2 + ∆2]2 3γ2 + 2[(δ − ∆)2 + ∆2]2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (72) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='20 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='24 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='16 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='02 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='04 3 2 1 0 1 2 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='01 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='01 3 2 1 0 1 2 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='04 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2 Vπ,π/2/f2 π(r) Vπ,0/f2 π(r) Ω/γ Ω/γ Ω/γ ∆/γ ∆/γ Ω/γ ( ) (a) (b) (d) (e) (f ) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Variance of the quadratures of the fluorescence of the π transitions: left panel for φ = π/2 and right panel for φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (a,b,d,e) as a function of Rabi frequency and (c,f) as a function of detuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In all cases δ = 0 is given by a solid-black line, and δ = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='5γ by a dashed-red line;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' the dotted-blue line is δ = −2γ in (a,b,d,e) and δ = −γ in (c,f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Additionally, (a) ∆ = 0, (b) ∆ = −2γ, (c) Ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='2γ, (d) ∆ = 0, (e) ∆ = 2γ, (f) Ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='8γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Thus, the variance at ˜Ωπ/2 is V (˜Ωπ/2) π,π/2 (∆ = 0, δ) = f 2 π(r) 16 (γ4/2 − 2δ4)(δ2 − γ2) γ2(γ2 + 2δ2)(δ2 + γ2), (73a) for ∆ = 0 and |δ/γ| < 1/ √ 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' V (˜Ωπ/2) π,π/2 (∆, δ = 0) = f 2 π(r) 16 (γ4/2 − 8∆4)(4∆2 − γ2) γ2(γ2 + 4∆2)2 , (73b) for δ = 0 and |∆/γ| < 1/ √ 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' and the maximum total squeezing is obtained at ∆ = δ = 0, V (˜Ωπ/2) π,π/2 (0, 0) = −f 2 π(r) 32 , ˜Ωπ/2 = γ 2 √ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (73c) For φ = π/2 squeezing is limited to elliptical regions of weak driving and small detunings ∆ and δ: 2δ2 + 8Ω2 < γ2, ∆ = 0, (74a) 4∆2 + 8Ω2 < γ2, δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (74b) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In-phase quadrature For φ = 0, squeezing is obtained in the Rabi frequency interval, for δ = 0, 0 < Ω < 1 √ 2 � ∆2 − γ2/4, |∆| > γ/2, (75) 14 with maximum squeezing at the Rabi frequency ˜Ω0 = 1 2 √ 2 � 16∆2 − γ2 12∆2 + γ2 , (76) requiring finite detuning from both π transitions (∆ ̸= 0) and stronger driving, Ω ∼ γ [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 14(d)-(f)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Thus, the variance at ˜Ω0 is V (˜Ω0) π,0 (δ) = −f 2 π(r) 128 4∆2 − γ2 ∆2(4∆2 + γ2), |∆| ≥ γ/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (77) This expression gets the asymptotic value lim ∆→∞ V (˜Ω0) π,0 = −f 2 π(r) 32 , (78) which is the same as that for the π/2 quadrature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The region for squeezing obeys the relation 4∆2 − 8Ω2 < γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (79) So, to obtain squeezing in this quadrature it is necessary to have detunings ∆ > γ/4 for any Rabi frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' IX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' DISCUSSION AND CONCLUSIONS We have studied several properties of the resonance fluorescence of the π transitions in a J = 1/2 − J = 1/2 angular momentum atomic system driven by a linearly polarized laser field and a magnetic field along the π tran- sition to lift the level degeneracies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Interference among the various transition amplitudes create a rich landscape of effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Most notable among our results is the observa- tion of quantum beats when the atom is subject to large laser and magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In this regime, two close Rabi frequencies interfere, giving rise to a well-defined modu- lation of the fast oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' These Rabi frequencies are the source of the two pairs of sidebands in the incoherent part of the power spectrum [5] and in the squeezing spec- trum [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' We studied beats in the total intensity and two-time functions such as the dipole-dipole, intensity- intensity and intensity-amplitude correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In the beats’ regime the role of vacuum-induced coherence is small because the upper levels are very separated due to very large difference Zeeman splitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Before the beats we considered the previously over- looked time-dependent populations and reviewed aspects of the known stationary ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The fact that the upper state populations evolve out of phase should not be a surprise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' This, and nonzero initial population of both ground states (in contrast to nonzero populations of ex- cited states for spontaneous emission), are major factors in the interference among the terms in the intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Ex- cept for very strong laser fields, the steady state popula- tions depend strongly on the difference Zeeman splitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The AIC also permits to quantify the degree of non- Gaussianity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' the fluctuations of third-order in the field quadrature amplitude due to strong atom-laser nonlin- earity dominate over the second-order ones with strong driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The beats are in the strongly non-Gaussian regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The correlations show nonclassical features of the fluo- rescence light such as antibunching, g(2)(0) = 0, and vio- lation of classical inequalities in the amplitude-intensity correlations, Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (61 -62).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' We studied squeezing using the variance, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=', the total noise in a quadrature, as well as using the second-order part of the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' In the regime of beats there is squeezing, near the effective Rabi frequencies, but none in the total noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For a system with many parameters the interplay among them is a complex one, making the interpretation of results nontrivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Thus, for most of our plots we chose parameters in two groups: i) where they are relatively small, Ω, ∆, δ ∼ γ, chosen to illustrate several degrees of vacuum-induced coherence;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' and ii) where they are large, Ω, ∆, δ ≫ γ, and quantum beats are revealed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Overall, particular care must be taken regarding detunings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' On the one hand, large difference Zeeman splitting means that the excited levels would be very separated and in- teract with different frequency portions of the reservoir, hence diminishing the vacuum-induced coherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' On the other, large laser-atom detunings, which might in- crease the VIC, mean reduced fluorescence rates, which may also be detrimental in measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The beats, then, would be better observed if ∆ ≤ γ and δ of just several γ in the strong field regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' ACKNOWLEDGMENTS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The authors thank Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Ricardo Rom´an-Ancheyta and Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Ir´an Ramos-Prieto for useful comments at an early stage of the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' ADAV thanks CONACYT, Mexico, for scholarship No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 804318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' ORCID numbers: H´ector M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Castro-Beltr´an https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='org/0000-0002-3400-7652, Octavio de los Santos-S´anchez https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='org/0000-0002-4316-0114, Luis Guti´errez https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='org/0000-0002-5144-4782, Appendix A: Time-Dependent Matrix Solutions and Spectra The two-time photon correlations under study have the general form ⟨W(τ)⟩ = ⟨O1(0)R(τ)O2(0)⟩, where R is the Bloch vector and O1,2 are system operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The same applies to correlations of fluctuation operators ∆R, ∆O1,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Using the quantum regression formula [30],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' the correlations obey the equation ⟨ ˙W(τ)⟩ = M⟨W(τ)⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A1) which has the formal solution ⟨W(τ)⟩ = eMτ⟨W(0)⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A2) where M is given by 15 M = � � � � � � � � � � � � � � −γ −iΩ 0 0 iΩ 0 0 0 −iΩ − � γ 2 + i∆ � 0 0 0 iΩ 0 0 0 0 −γ iΩ 0 0 −iΩ 0 0 0 iΩ − � γ 2 + i(∆ − δ) � 0 0 0 −iΩ iΩ 0 0 0 − � γ 2 − i∆ � −iΩ 0 0 γ1 iΩ γσ 0 −iΩ 0 0 0 0 0 −iΩ 0 0 0 − � γ 2 − i(∆ − δ) � iΩ γσ 0 γ2 −iΩ 0 0 iΩ 0 � � � � � � � � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A3) Also, spectra of stationary systems can be evaluated more effectively using the above formal approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Be g(τ) = ⟨W(τ)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Then, a spectrum is calculated as S(ω) ∝ � ∞ 0 cos ωτ g(τ) dτ = � ∞ 0 cos ωτ eMτg(0) dτ = Re � ∞ 0 e−(iω1−M)τg(0) dτ = Re � (iω1 − M)−1g(0) � , (A4) where 1 is the identity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For example, the inco- herent spectrum requires calculations of the type Sinc(ω) = Re � ∞ 0 dτe−iωτeMτ⟨∆Aij(0)∆Akl(0)⟩st = Re � (M − iω1)−1⟨∆Aij(0)∆Akl(0)⟩st � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A5) For the initial conditions of the correlations we use the following operator products and correlations in compact form: AklAmn = Aknδlm , (A6a) ⟨AklAmn⟩ = αknδlm, (A6b) AijAklAmn = Ainδjkδlm, (A6c) ⟨AijAklAmn⟩ = αinδjkδlm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A6d) Hence, the relevant initial conditions are: ⟨A13R⟩ = (0, 0, 0, 0, α11, α13, 0, 0)T , (A7a) ⟨A24R⟩ = (0, 0, 0, 0, 0, 0, α22, α24)T , (A7b) ⟨A13RA31⟩ = (0, 0, 0, 0, 0, α11, 0, 0)T , (A7c) ⟨A24RA42⟩ = (0, 0, 0, 0, 0, 0, 0, α22)T , (A7d) ⟨A13RA42⟩ = ⟨A24RA31⟩ = 0, (A7e) where R = (A11, A13, A22, A24, A31, A33, A42, A44)T is the Bloch vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' For correlations with fluctuation oper- ator products, ∆Aij = Aij − αij, we have ⟨∆Akl∆Amn⟩ = αknδlm − αklαmn, (A8) ⟨∆Aij∆Akl∆Amn⟩ = αinδlmδjk − αilαmnδjk −αinαklδjm − αijαknδlm +2αijαklαmn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A9) Now,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' recalling that α12 = α14 = α23 = α34 = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' we write the detailed initial conditions of the correlations (Set 1 of Bloch equations and quantum regression for- mula): ⟨∆A13∆R⟩ = � −α13α11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' −α2 13,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' −α13α22,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' −α13α24,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' α11 − |α13|2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' α13 − α13α33,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' −α13α42,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' −α13α44 �T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A10a) ⟨∆A24∆R⟩ = � −α24α11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' −α24α13,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' −α24α22,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' −α2 24,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' −α24α31,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' −α24α33,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' α22 − |α24|2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' α24 − α24α44 �T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A10b) ⟨∆A13∆R∆A31⟩ = � 2|α13|2α11 − α2 11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2|α13|2α13 − 2α11α13,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2|α13|2α22 − α11α22,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2|α13|2α24 − α11α24,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2|α13|2α31 − 2α11α31,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2|α13|2α33 + α11 − 2|α13|2 − α11α33,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2|α13|2α42 − 2α11α42,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 2|α13|2α44 − α11α44 �T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A10c) ⟨∆A24∆R∆A42⟩ = � 2|α24|2α11 − α11α22, 2|α24|2α13 − α22α13, 2|α24|2α22 − α2 22, 2|α24|2α24 − 2α22α24, 2|α24|2α31 − α22α31, 2|α24|2α33 − α22α33, 2|α24|2α42 − 2α22α42, 2|α24|2α44 + α22 − 2|α24|2 − α22α44 �T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A10d) 16 ⟨∆A13∆R∆A42⟩ = � 2α13α11α42, 2α2 13α42, 2α13α22α42, (2|α24|2 − α22)α13, (2|α13|2 − α11)α42, (2α13α33 − α13)α42, 2α13α2 42, (2α13α44 − α13)α42 �T , (A10e) ⟨∆A24∆R∆A31⟩ = � 2α24α11α31, (2|α13|2 − α11)α24, 2α24α22α31, 2α2 24α31, 2α24α2 31, (2α24α33 − α24)α31, (2|α24|2 − α22)α31, (2α24α44 − α24)α31 �T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (A10f) Appendix B: Condition for Optimal Appearance of Beats in the Intensity We consider a simplified, unitary, model to estimate the optimal initial population of the ground states to make well-formed beats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' First, we diagonalize the Hamil- tonian Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' The eigenvalues and eigenstates are E± 1 = −∆ 2 ± 1 2 � 4Ω2 + ∆2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (B1a) E± 2 = Bℓ + δ − ∆ 2 ± 1 2 � 4Ω2 + (δ − ∆)2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (B1b) and |u1⟩ = sin Θ1|1⟩ + cos Θ1|3⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' |u2⟩ = − cos Θ1|1⟩ + sin Θ1|3⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' |u3⟩ = sin Θ2|2⟩ + cos Θ2|4⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' |u4⟩ = − cos Θ2|2⟩ + sin Θ2|4⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (B2) respectively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' where sin Θ1 = 2Ω �� ∆ + √ ∆2 + 4Ω2�2 + 4Ω2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' cos Θ1 = ∆ + √ ∆2 + 4Ω2 �� ∆ + √ ∆2 + 4Ω2�2 + 4Ω2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' sin Θ2 = 2Ω �� (δ − ∆) + � (δ − ∆)2 + 4Ω2 �2 + 4Ω2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' cos Θ2 = (δ − ∆) + � (δ − ∆)2 + 4Ω2 �� (δ − ∆) + � (δ − ∆)2 + 4Ω2 �2 + 4Ω2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (B3) It is now straightforward to obtain the excited-state populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' If the initial state of the system is ρ(0) = ⟨A33(0)⟩|3⟩⟨3| + ⟨A44(0)⟩|4⟩⟨4| we get ⟨A33(t)⟩ = 1 2⟨A33(0)⟩ sin2 (2Θ1)(1 − cos (Ω1t)), (B4a) ⟨A44(t)⟩ = 1 2⟨A44(0)⟩ sin2 (2Θ2)(1 − cos (Ω2t)), (B4b) and the intensity of the field is Iπ(r, t) f 2π(r) = ⟨A33(0)⟩ sin2 (2Θ1) + A44(0)⟩ sin2 (2Θ2) −⟨A33(0)⟩ sin2 (2Θ1) cos (Ω1t) −⟨A44(0)⟩ sin2 (2Θ2) cos (Ω2t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' (B5) A necessary condition for the beating behavior to oc- cur is that the initial ground-state populations are both nonvanishing in the nondegenerate case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Now, assuming the relation ⟨A33(0)⟩ ⟨A44(0)⟩ = sin2 (2Θ2) sin2 (2Θ1) (B6) is satisfied by chossing appropriate parameter values (Ω, δ, ∆) for given values of initial ground state popu- lations we would get Iπ(r, t) = f 2 π(r)⟨A33(0)⟩ sin2 (2Θ1) × [1 − cos (Ωbeatt) cos (Ωavt)] , (B7) where Ωbeat = (Ω2 − Ω1)/2 and Ωav = (Ω2 + Ω1)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [1] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Ficek and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Swain, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A 69, 023401 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [2] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Ficek and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Swain, Quantum Interference and Co- herence: Theory and Experiments (Springer, New York, 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [3] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Polder and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Schuurmans, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A 14, 1468 (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Kiffner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Evers, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Keitel, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 96, 100403 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Kiffner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Evers, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Keitel, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A 73, 063814 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Kiffner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Macovei, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Evers, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Keitel, in Progress in Optics, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Wolf, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 55, 85 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [7] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Eichmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Bergquist, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Bollinger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Gilli- gan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Itano, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Wineland, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Raizen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 70, 2359 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Das and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Agarwal, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A 77, 033850 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [9] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Wu, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Li, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A 102, 053717 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [10] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Tan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Xia, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' B: At.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 17 Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=', 42, 125502 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Fischer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Srivathsan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Alber, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Weber, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Son- derman, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Leuchs, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' B: Lasers and Op- tics, 123, 48 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Wolf, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Richter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' von Zanthier, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Schmidt- Kaler, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 124, 063603 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Jakob and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Bergou, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A 60, 4179 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [14] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Crispin and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Arun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' B: At.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=', 52, 075402 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [15] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Crispin and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Arun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' B: At.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=', 53, 055402 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Hanbury-Brown and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Twiss, Nature 177, 27 (1956).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Glauber, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 10, 84 (1963).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Carmichael, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Castro-Beltran, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Foster, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Orozco, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 85, 1855 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [19] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Foster, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Orozco, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Castro-Beltran, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Carmichael, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 85, 3149 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [20] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Guti´errez, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Castro-Beltr´an, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rom´an-Ancheyta, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Horvath, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' B 34, 2301 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [21] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Agarwal, Quantum Statistical Theories of Sponta- neous Emission and their Relation to Other Approaches (Springer-Verlag, Berlin, 1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [22] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Mollow, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 188, 1969 (1969).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [23] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Castro-Beltr´an, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rom´an-Ancheyta, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Guti´errez, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A 93, 033801 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [24] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' de los Santos-S´anchez and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Castro-Beltr´an, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' B: At.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 54, 055002 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [25] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Shchukin and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Vogel, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A 72, 043808 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [26] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Shchukin and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Vogel, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' 96, 200403 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [27] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Wang and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Clerk, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' R 2, 033196 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [28] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Xu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Greplova, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Julsgaard, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Mølmer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Scripta, 90, 128004 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [29] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Rice and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Carmichael, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' B 5, 1661 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' [30] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} +page_content=' Carmichael, Statistical Methods in Quantum Op- tics 1: Master Equations and Fokker-Planck Equations (Springer-Verlag, Berlin, 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf'} diff --git a/6tE5T4oBgHgl3EQfPw5R/content/2301.05507v1.pdf b/6tE5T4oBgHgl3EQfPw5R/content/2301.05507v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0a8ffc40d5c0a6087c5a8175489fce0e94cb4c0e --- /dev/null +++ b/6tE5T4oBgHgl3EQfPw5R/content/2301.05507v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:18fc7c042819e1ef57f8933c9bc460ba6e0486645bb86bdee1f1be4c2305ac53 +size 154062 diff --git a/6tE5T4oBgHgl3EQfPw5R/vector_store/index.pkl b/6tE5T4oBgHgl3EQfPw5R/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..41220506eb5ef0547b483ecafd62444bbad8b198 --- /dev/null +++ b/6tE5T4oBgHgl3EQfPw5R/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:87b16d5aede46f06d4ed15a933549fc16b19a2239968ffca532f2129d404183f +size 74346 diff --git a/8tE4T4oBgHgl3EQf3A1I/content/2301.05302v1.pdf b/8tE4T4oBgHgl3EQf3A1I/content/2301.05302v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..27520bed24b1198d7d5ba4c68ee59350705a6c2f --- /dev/null +++ b/8tE4T4oBgHgl3EQf3A1I/content/2301.05302v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:80cc757d9823a0cf10d2ba05ee6b92e9903518fe89b2a94ee75fe072c46eb8c0 +size 16728847 diff --git a/9NE4T4oBgHgl3EQf3Q1N/content/tmp_files/2301.05304v1.pdf.txt b/9NE4T4oBgHgl3EQf3Q1N/content/tmp_files/2301.05304v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..89c4515a6f2e80e9a0fe4c2e9e7c15ca9e9b3846 --- /dev/null +++ b/9NE4T4oBgHgl3EQf3Q1N/content/tmp_files/2301.05304v1.pdf.txt @@ -0,0 +1,2415 @@ +arXiv:2301.05304v1 [math.RT] 12 Jan 2023 +A characterization of the L2-range of the Poisson transforms on a class of +vector bundles over the quaternionic hyperbolic spaces +Abdelhamid Boussejra ∗Achraf Ouald Chaib† +Department of Mathematics, Faculty of Sciences +University Ibn Tofail, Kénitra, Morocco +Abstract +We study the L2-boundedness of the Poisson transforms associated to the homogeneous vector bundles +Sp(n, 1)×Sp(n)×Sp(1) Vτ over the quaternionic hyperbolic spaces Sp(n, 1)/Sp(n)× Sp(1) associated with irreducible +representations τ of Sp(n)×Sp(1) which are trivial on Sp(n). As a consequence, we describe the image of the section +space L2(Sp(n, 1)×Sp(n)×Sp(1) Vτ) under the generalized spectral projections associated to a family of eigensections +of the Casimir operator. +Keywords: Vector Poisson transform, Fourier restriction estimate, Strichartz conjecture. +1 +Introduction +Let G be a connected real semisimple noncompact Lie group with finite center, and K a maximal compact subgroup. +Then X = G/K is a Riemannian symmetric space of noncompact type. Let G = KAN be an Iwasawa decomposition +of G, and let M be the centralizer of A in K. We write g = κ(g)eH(g)n(g), for each g ∈ G according to G = KAN. +A central result in harmonic analysis (see [17]) asserts that all joint eigenfunctions F of the algebra D(X) of invariant +differential operators, are Poisson integrals +F(g) = Pλf(g) := +� +K +e(iλ+ρ)H(g−1k)f(k) dk, +of a hyperfunction f on K/M, for a generic λ ∈ a∗ +c (the complexification of a∗ the real dual of a). +Since then a characterization of the Lp-range of the Poisson transform was developed in several articles such as [3], +[5], [6], [7], [15], [20], [21], [22], [24], [25]. +The problem of characterizing the image of the Poisson transform Pλ of L2(K/M) with real and regular spectral +parameter λ is intimately related to Strichartz conjecture [[25], Conjecture 4.5] on the uniform L2-boundedness of +the generalized spectral projections associated with D(X). +To be more specific, consider the generalized spectral +projections Qλ defined initially for F ∈ C∞ +c (X) by +QλF(x) =| c(λ) |−2 Pλ(FF(λ, .)(x), +λ ∈ a∗, +(1.1) +where FF is the Helgason Fourier transform of F and c(λ) is the Harish-Chandra c-function. +Conjecture (Strichartz [[25], Conjecture 4.5]). There exists a positive constant C such that for any Fλ = QλF with +∗e-mail: boussejra.abdelhamid@uit.ac.ma +†e-mail:achraf.oualdchaib@uit.ac.ma +1 + +F ∈ L2(X) we have +C−1 ∥ F ∥2 +L2(X)≤ +sup +R>0,y∈X +� +a∗ ++ +1 +Rr +� +B(y,R) +| Fλ(x) |2 dx dλ ≤ C ∥ F ∥2 +L2(X), +(1.2) +and +∥ F ∥2 +L2(X)= γr lim +R→∞ +� +a∗ ++ +1 +Rr +� +B(y,R) +| Fλ(x) |2 dx dλ. +(1.3) +Conversely, if Fλ is any family of joint eigenfunctions for which the right hand side of (1.2) or (1.3) is finite, then there +exists F ∈ L2(X) such that Fλ = QλF for a.e. λ ∈ a∗ ++. +Here r = rank X, and B(y, R) denotes the open ball in X of radius R about y. The constant γr depends on the +normalizations of the measures dx and dλ. +The strichartz conjecture has been recently settled by Kaizuka, see [16]. Most of the proof consists in proving a +uniform estimate for the Poisson transform. More precisely, the following was proved by Kaizuka [[16], Theorem 3.3]: +Let F be a joint eigenfunction with eigenvalue corresponding to a real and regular spectral parameter λ . Then F is +the Poisson transform by Pλ of some f ∈ L2(K/M) if and only if +sup +R>1 +1 +Rr +� +B(0,R) +| F(x) |2 dx < ∞. +Moreover there exists a positive constant C independent of such λ, +C−1 | c(λ) |2∥ f ∥2 +L2(K/M)≤ sup +R>1 +1 +Rr +� +B(0,R) +| Pλf(x) |2 dx ≤ C | c(λ) |2∥ f ∥2 +L2(K/M) . +The generalization of these results to vector bundles setting has only just begin. In [8] we extend Kaizuka result to +homogeneous line bundles over non-compact complex Grassmann manifolds (See also [4]). +Our aim in this paper is to generalize theses results to a class of homogeneous vector bundles over the quaternionic +hyperbolic space G/K, where G is the symplectic group Sp(n, 1) with maximal compact subgroup K = Sp(n)×Sp(1). +To state our results in rough form, let us first introduce the class of the homogenous vector bundles that we consider +in this paper. Let τν be a unitary irreducible representation of Sp(1) realized on a (ν + 1)-dimensional Hilbert space +(V, (., .)ν). We extend τν to a representation of K by setting τν ≡ 1 on Sp(n). As usual the space of sections of the +homogeneous vector bundle G ×K V associated with τν will be identified with the space Γ(G, τν) of vector valued +functions F : G → Vν which are right K-covariant of type τν, i.e., +F(gk) = τν(k)−1F(g), +∀g ∈ G, +∀k ∈ K. +(1.4) +We denote by C∞(G, τν) and C∞ +c (G, τν) the elements of Γ(G, τν) that are respectively smooth, smooth with compact +support in G, and by L2(G, τν) the elements of Γ(G, τν) such that +∥ F ∥L2(G,τν)= +�� +G/K +∥ F(g) ∥2 +ν dgK +� 1 +2 +< ∞. +In above ∥ . ∥ν is the norm in Vν and ∥ F(gK) ∥ν=∥ F(g) ∥ν is well defined for F satisfying (1.4). +Let σν denote the restriction of τν to the group M ≃ Sp(n−1)×Sp(1). Over K/M we have the associated homogeneous +vector bundle K ×M Vν with L2-sections identified with L2(K, σν) the space of all functions f : K → Vν which are +M-covariant of type σν and satisfy +∥ f ∥2 +L2(K,σν)= +� +K +∥ f(k) ∥2 +ν dk < ∞, +2 + +where dk is the normalized Haar measure of K. +For λ ∈ C and f ∈ L2(K, σν), the Poisson transform Pν +λf is defined by +Pν +λf(g) = +� +K +e−(iλ+ρ)H(g−1k)τν(κ(g−1k))f(k) dk +Let Ω denote the Casimir element of the Lie algebra g of G, viewed as a differential operator acting on C∞(G, τ). +Then the image Pν +λ(L2(K, σν)) is a proper closed subspace of Eλ(G, τν) the space of all F ∈ C∞(G, τν) satisfying +Ω F = −(λ2 + ρ2 − ν(ν + 2))F. +For more details see section 2. +For λ ∈ R \ {0}, we define a weighted L2-space E2 +λ(G, τν) consisting of all F in Eλ(G, τν) that satisfy +∥ F ∥∗= sup +R>1 +� +1 +R +� +B(R) +∥F(g)∥2 +ν dgK +� 1 +2 +< ∞. +Our first main result is an image characterization of the Poisson transform Pν +λ of L2(K, σν) for λ ∈ R \ {0}. +Theorem 1.1. Let λ ∈ R\{0} and ν a nonnegative integer. +(i) There exists a positive constant Cν independent of λ such that for f ∈ L2(K, σν) we have +C−1 +ν |cν(λ)| ∥f∥L2(K,σν) ≤ ∥Pν +λf∥∗ ≤ Cν| | cν(λ) | ∥f∥L2(K,σν), +(1.5) +with +cν(λ) = 2ρ−iλ +Γ(ρ − 1)Γ(iλ) +Γ( iλ+ν+ρ +2 +)Γ( iλ+ρ−ν−2 +2 +) +. +Furthermore we have the following Plancherel type formula for the Poisson transform +lim +R→+∞ +1 +R +� +B(R) +∥Pν +λf(g)∥2 +ν dgK = 2 | cν(λ) |2 ∥f∥2 +L2(K,σν) . +(1.6) +ii) Pν +λ is a topological isomorphism from L2(K, σν) onto E2 +λ(G, τν). +This generalizes the result of Kaizuka [[16], (i) and (ii) in Theorem 3.3] which corresponds to τν trivial. +Consequence +For λ ∈ R we define the space +E∗ +λ(G, τν) = {F ∈ Eλ(G, τν) : M(F) < ∞}, +where +M(F) = lim sup +R→∞ +� +1 +R +� +B(R) +| F(g) |2 dgK +� 1 +2 +. +Then as an immediate consequence of Theorem 1.1 we obtain the following result which generalizes a conjecture of +W. Bray [10] which corresponds to τν trivial. +Corollary 1.1. If λ ∈ R \ {0} then E∗ +λ(G, τν), M) is a Banach space. +Remark 1.1. In the case of the trivial bundle (the scalar case) the conjecture of Bray was proved by Ionescu [15] for +all rank one symmetric spaces . It was generalized to Riemannian symmetric spaces of higher rank by Kaizuka, see +[16]. +3 + +Next, let us introduce our second main result on the L2-range of the generalized spectral projections. +For F ∈ C∞ +c (G, τν) the vector valued Helgason-Fourier transform FνF is given by (see [11]) +Fν F(λ, k) = +� +G +e(iλ−ρ)H(g−1k)τν(κ(g−1k)−1)F(g) dg +λ ∈ C, +Then the following inversion formula holds (see section 4) +F(g) = 1 +2π +� ∞ +0 +� +K +e−(iλ+ρ)H(g−1k)τν(κ(g−1k))FνF(λ, k) | cν(λ) |−2 dλ dk ++ +� +λj∈Dν +dν(λj) +� +K +e−(iλj+ρ)H(g−1k)τν(κ(g−1k))FνF(λj, k) dk. +(1.7) +In above dν(λ) = −iResµ=λ(cν(µ)cν(−µ))−1, λ ∈ Dν and Dν is a finite set in {λ ∈ C; ℑ(λ) > 0} which parametrizes +the τν-spherical functions arising from the discrete series of G. It is empty if ν ≤ ρ − 2. +The formula (1.7) gives rise to the decomposition of L2(G, τν) into a continuous part and a discrete part: +L2(G, τν) = L2 +cont(G, τν) ⊕ L2 +disc(G, τν) +Our aim here is to study the operator Qν +λ, λ ∈ R, defined for F ∈ L2 +cont(G, τν) ∩ C∞ +c (C, τν) by +Qν +λF(g) =| cν(λ) |−2 Pν +λ[Fν F(λ, .)](g), +(1.8) +More precisely, following Strichartz idea, we are interested in the following question: +Characterize those Fλ ∈ Eλ(G, τν) (λ ∈ (0, ∞)) for which there exists F ∈ L2 +cont(G, τν) such that Fλ = Qν +λF. +To do so, we introduce the space E2 ++(G, τν) consisting of all Vτν-valued measurable functions ψ on (0, ∞) × G such +that +(i) Ω ψ(λ, .) = −(λ2 + ρ2 − ν(ν + 2)) ψ(λ, .) a.e. λ ∈ (0, ∞) +(ii) ∥ ψ ∥+< ∞. +where +∥ ψ ∥2 ++= sup +R>1 +� ∞ +0 +1 +R +� +B(R) +∥ ψ(λ, g) ∥2 +ν dgK dλ. +The second main result we prove in this paper can be stated as follows +Theorem 1.2. +(i) There exists a positive constant C such that for F ∈ L2(G, τν) we have +C−1 ∥ F ∥L2(G,τν)≤∥ Qν +λF ∥+≤ C ∥ F ∥L2(G,τν) +(1.9) +Furthermore we have +lim +R→∞ +� ∞ +0 +1 +R +� +B(R) +∥ Qν +λF ∥2 +ν dgK dλ = 2 ∥ F ∥2 +L2(G,τν) +(1.10) +(ii) The linear map Qν +λ is a topological isomorphism from L2 +cont(G, τν) onto E2 ++(G, τν). +This extends Kaizuka result [ [16], (i) and (ii) in Theorem 3.6] on the Strichartz conjecture (see [25] Conjecture +4.5] to the class of vector bundles considered here. +Before giving the outline of the paper, let us mention that a number of authors have obtained an image characterization +for the Poisson transform Pλ (λ ∈ a∗ \ {0}) of L2-functions on K/M in the rank one case, see [[3], [5], [7], [15]]. +Nevertheless, the obtained characterization is weaker than the one conjectured by Strichartz. The approach taken in +4 + +the quoted papers is based on the theory of Calderon-Zygmund singular integrals (see also [21]). Using a different +approach based on the techniques used in the scattering theory, Kaizuka [16] settled the Strichartz conjecture on +Riemannian symmetric spaces of noncompact type, of arbitrary rank. +We now describe the contents of this paper. The proofs of our results are a generalisation of Kaizuka’s method [16]. In +section 2 we recall some basic facts on the quaternionc hyperbolic spaces and introduce the vector Poisson transforms. +In section 3, we define the Helgason-Fourier transform on the vector bundles G ×K Vν and give the inversion and +Plancherel Theorem. The proof of Theorem 1.2 follows from the Plancherel formula and Theorem 1.1. The main +ingredients in proving Theorem 1.1 are a Fourier restriction estimate for the vector valued Helgason-Fourier transform +(Proposition 4.1 in section 4) and an asymptotic formula for the vector Poisson transform in the framework of Agmon- +Hörmander spaces [2] (Theorem 5.1). The proof of Theorem 5.1 will be derived from the Key lemma of this paper +giving the asymptotic behaviour of the translate of the τν-spherical functions. Section 6 is devoted to the proof of our +main results. In section 7 we prove the Key Lemma. +2 +Preliminaries +2.1 +The quaternionic hyperbolic space +Let G = Sp(n, 1) be the group of all linear transformations of the right H-vector space Hn+1 which preserve the +quadratic form +n +� +j=1 +| uj |2 − | un+1 |2. Let K = Sp(n) × Sp(1) be the subgroup of G consisting of pairs (a, d) +of unitaries. +Then K is a maximal compact subgroup of G. +The quaternionic hyperbolic space is the rank one +symmetric space G/K of the noncompact type. It can be realized as the unit ball B(Hn) = {x ∈ Hn; | x |< 1}. +The group G acts on B(Hn) by the fractional linear mappings x �→ g.x = (ax + b)(cx + d)−1, if g = +� +a +b +c +d +� +, with +a ∈ Hn×n, b ∈ Hn×1, c ∈ H1×n and d ∈ H. +Denote by g the Lie algebra of G; g = k ⊕ p the Cartan decomposition of g, where p is a vector space of matrices of +the form +�� +0 +x +x∗ +0 +� +, x ∈ Hn +� +, and k = +�� +X +0 +0 +q +� +, X∗ + X = 0, q + q = 0 +� +, where X∗ is the conjugate transpose +of the matrix X and q ∈ H. +Let H = +� +0n +e1 +te1 +0 +� +∈ p with te1 = (1, 0, · · · , 0). Then a = R H is a Cartan subspace in p, and the corresponding +analytic subgroup A = {at = exp t H; t ∈ R}, where at = + + + +cht +0 +sht +0 +0n−1 +0 +sht +0 +cht + + + . With A determined we then have that +M = + + + + + +g = + + + +q +0 +0 +0 +m +0 +0 +0 +q + + + , m ∈ Sp(n − 1), | q |= 1 + + + + + +≃ Sp(n − 1) × Sp(1). +Let α ∈ a∗ be defined by α(H) = 1. Then a system Σ of restricted roots of the pair (g, a) is Σ = {±α, ±2α} if n ≥ 2 +and Σ = {±2α} if n = 1, with Weyl group W ≃ {±Id}. A positive subsystem of roots corresponding to the positive +Weyl chamber a+ ≃ (0, ∞) in a is Σ+ = {α, 2α} if n ≥ 2 and Σ+ = {2α} if n = 1. +Let n = gα + g2α be the direct sum of the positive root subspaces, with dim gα = 4(n − 1) and dim g2α = 3 and N the +corresponding analytic subgroup of G. Then the half sum of the positive restricted roots with multiplicities counted +ρ equals to (2n + 1)α, and shall be viewed as a real number ρ = 2n + 1 by the identification a∗ +c ≃ C via λα ↔ λ. +Let A+ = {at ∈ A; +t ≥ 0}. Then we have the Cartan decomposition G = KA+K, that is any g ∈ G can be written +g = k1(g) eA+(g) k2(g), +k1(g), k2(g) ∈ K and A+(g) ∈ a+. +5 + +If we write g ∈ G in (n + 1) × (n + 1) block notation as g = +� +a +b +c +d +� +. Then a straightforward computation gives +cosh A+(g) =| d | +and +H(g) = log | ce1 + d | . +(2.1) +We normalize the invariant measure dgK on G/K so that the following integral formula holds: for all h ∈ L1(G/K), +� +G/K +h(gK)dgK = +� +G +h(g.0)dg = +� +K +� ∞ +0 +h(k at)∆(t) dk dt, +(2.2) +where dt is the Lebesgue measure, ∆(t) = (2 sinh t)4n−1(2 cosh t)3, and dk is the Haar measure of K with +� +K +dk = 1. +2.2 +The vector Poisson transform +In this subsection we define the Poisson transform associated to the vector bundles G×KVν over Sp(n, 1)/Sp(n)×Sp(1) +and derive some results referring to [23], [27], and [28] for more informations on the subject. +Let σν denote the restriction of τν to M. For λ ∈ C we consider the representation σν,λ of P = MAN on Vν defined +by σν,λ(man) = aρ−iλσν(m). Then σν,λ defines a principal series representations of G on the Hilbert space +Hν,λ := {f : G → Vν | f(gman) = σ−1 +ν,λ(man)f(g) ∀man ∈ MAN, f|K ∈ L2}, +where G acts by the left regular representation. We shall denote by C−ω(G, σν,λ) the space of its hyperfunctions +vectors. By the Iwasawa decomposition, the restriction map from G to K gives an isomorphism from Hν,λ onto the +space L2(K, σν). This yields, the so-called compact picture of Hν,λ, with the group action given by +πσν,λ(g)f(k) = e(iλ−ρ)H(g−1k)f(κ(g−1k)). +By C−ω(K, σν) we denote the space of its hyperfunctions vectors. +A Poisson transform is the continuous, linear, G-equivariant map Pν +λ from C−ω(G, σν,λ) to C∞(G, τν) defined by +Pν +λ f(g) = +� +K +τν(k)f(gk) dk. +In the compact picture the Poisson transform is given by +Pν +λ f(g) = +� +K +e−(iλ+ρ)H(g−1k)τν(κ(g−1k)) f(k) dk. +Let D(G, τν) denote the algebra of left invariant differential operators on C∞(G, τν). Let Eν,λ(G) be the space of all +F ∈ C∞(G, τν) such that Ω F = −(λ2 + ρ2 − ν(ν + 2)) F. +Proposition 2.1. (i) D(G, τν) is the algebra generated by the Casimir operator Ω of g. +(ii) For λ ∈ C, ν ∈ N, the Poisson transform Pν +λ maps C−ω(G, σν,λ) to Eν,λ(G). +Proof. (i) Let U(a) be the universal enveloping algebra of the complexification of a. Since the restriction of τν to M +is irreducible, then D(G, τν) ≃ U(a)W . As a is one dimensional, then D(G, τν) ≃ C[s2], symmetric functions of one +variable . Thus D(G, τν) is generated by the Casimir element Ω of the Lie algebra g of G, viewed as a differential +operator acting on C∞(G, τν). +(ii) Since σν is irreducible, the image of Pν +λ consists of joint eigenfunctions with respect to the action of Ω. Moreover +Ω acts by the infinitesimal character of the the principal series representations πσν,λ. It follows from Proposition 8.22 +and Lemma 12.28 in [18], that +πσν,λ(Ω) = −(λ2 + ρ2 − c(σν))Id +on +C−ω(G, σν,λ), +(2.3) +where c(σν) is the Casimir value of σν given by c(σν) = ν(ν + 2). +6 + +Let Φν,λ be the τν-spherical function associated to σν. Then Φν,λ admits the following Eisenstein integral repre- +sentation (see [[11], Lemma 3.2]): +Φν,λ(g) = +� +K +e−(iλ+ρ)H(g−1k)τν(κ(g−1k)k−1) dk. +Note that Φν,λ lies in C∞(G, τν, τν) the space of smooth functions F : G → End(Vτν) satisfying +F(k1gk2) = τν(k−1 +2 )F(g)τν(k−1 +1 ), +the so called τν-radial functions. Being τν-radial, Φν,λ is completely determined by its restriction to A, by the Cartan +decomposition G = KAK. Moreover, since σν is irreducible, it follows that Φν,λ(at) ∈ EndM(Vν) ≃ CIdVν, ∀at ∈ A. +Therefore there exists ϕν : R → C such that Φν,λ(at) = ϕν(t).IdVν. We have +ϕν,λ(t) = +1 +ν + 1 +� +K +e−(iλ+ρ)H(g−1k)χν(κ(g−1k)k−1) dk, +(2.4) +where χν is the character of τν. +This so-called trace τν-spherical function has been computed explicitly in [12] using the radial part of the Casimir +operator Ω (see also [26] ). We have ϕν,λ(t) = (cosh t)νφ(ρ−2,ν+1) +λ +(t), where φ(ρ−2,ν+1) +λ +(t) is the Jacobi function (cf. +[19]) +φ(ρ−2,ν+1) +λ +(t) = 2F1(iλ + ρ + ν +2 +, −iλ + ρ + ν +2 +; ρ − 1; − sinh2 t). +We deduce from (A4) the asymptotic behaviour of ϕν,λ +ϕλ,ν(at) = e(iλ−ρ)t[cν(λ) + ◦(1)], as t → ∞ +if +ℑ(λ) < 0. +(2.5) +where +cν(λ) = +2ρ−iλΓ(ρ − 1)Γ(iλ) +Γ( iλ+ρ+ν +2 +)Γ( iλ+ρ−ν−2 +2 +) +. +(2.6) +For λ ∈ C the c-function of Harish-Chandra associated to τν is defined by +c(τν, λ) = +� +N +e−(iλ+ρ)H(n)τν(κ(n)) dn. +The integral converges for λ such that ℜ(iλ) > 0 and it has a meromorphic continuation to C. +In above dn is the Haar measure of N = θ(N), θ being the Cartan involution. +We may use formula (2.6) to give explicitly c(τν, λ). Indeed, one easily check that c(τν, λ) ∈ EndM(Vν) = CIdVν. +Then using the following result on the behaviour of Φν,λ(at) ([28], Proposition 2.4) +Φν,λ(at) = e(iλ−ρ)t(c(τν, λ) + ◦(1))as +t → ∞, +together with Φν,λ(at) = ϕν,λ(t).Id, we find then from (2.5) that c(τν, λ) = cν(λ)IdVν. +We end this section by recalling a result of Olbrich [23] on the range of the Poisson transform on vector bundles which +reads in our case as follows +Theorem 2.1. [23] Let ν ∈ N and λ ∈ C such that +(i) −2iλ /∈ N +(ii) iλ + ρ /∈ −2N − ν ∪ −2N + ν + 2. +Then the Poisson transform Pν +λ is a K-isomorphism from C−ω(K, σν) onto Eν,λ(G). +7 + +3 +The vector-valued Helgason-Fourier transfrorm +In this section we give the inversion and the Plancherel formulas for the Helgason-Fourier transform on the vector +bundle G ×K Vν. +According to [11] the vector-valued Helgason-Fourier transform of f ∈ C∞ +c (G, τν) is the Vν-valued function on C × K +defined by: +Fνf(λ, k) = +� +G +eλ,ν(k−1g) f(g)dg, +where eλ,ν is the vector valued function eλ,ν : G → End(Vν) given by +eλ,ν(g) = e(iλ−ρ)H(g−1)τ −1 +ν (κ(g−1)). +Notice that our sign on "λ" is the opposite of the one in [11]. +In order to state the next theorem, we introduce the finite set in {λ, ℑ(λ) ≥ 0} +Dν = {λj = i(ν − ρ + 2 − 2j), j = 0, 1, · · · , ν − ρ + 2 − 2j > 0}. +Note that Dν is empty if ν ≤ ρ − 2. It parametrizes the discrete series representation of G containing τν, see [12]. +Let +dν(λj) = 2−2(ρ−ν−1)(ν − ρ − 2j + 2)(ρ − 2 + j)!(ν − j)! +Γ2(ρ − 1)j!(ν − ρ − j + 2)! +, +λj ∈ Dν +For λj ∈ Dν, we define the operators Qν +j +L2(G, τν) → Eν,λj(G, τν) +F �→ dν(λj) Φν,λj ∗ F +We denote the image by A2 +j. We set +L2 +disc(G, τν) = +� +j; ν−ρ+2−2j>0 +A2 +j, +and denote by L2 +cont(G, τν) its orthocomplement. Let L2 +σν(R+ × K, | cν(λ) |−2 dλ dk) be the space of vector functions +φ : R+ × K → Vν satisfying +(i) For each fixed λ, φ(λ, km) = σν(m)−1φ(λ, k), ∀m ∈ M +(ii) +� +R+×K ∥ Fνφ(λ, k) ∥2 | cν(λ) |−2 dλ dk < ∞. +Theorem 3.1. (i) For F ∈ C∞ +c (G, τν) we have the following inversion and Plancherel formulas +F(g) = 1 +2π +� ∞ +0 +� +K +e∗ +λ,ν(k−1g)FνF(λ, k) | cν(λ) |−2 dλ dk + +� +λj∈Dν +dν(λj) +� +K +e∗ +λj,ν(k−1g)FνF(λj, k) dk, +(3.1) +� +G +∥ F(g) ∥2 +ν dgK = 1 +2π +� ∞ +0 +� +K +∥ FνF((λ, k) ∥2 +ν| cν(λ) |−2 dλ dk+ +� +λj∈Dν +dν(λj) +� +K +< FνF(λj, k), FνF(−λj, k) >ν dk +(3.2) +(ii) The Fourier transform Fν extends to an isometry from L2 +cont(G, τν) onto the space L2 +σν(R+ ×K, | cν(λ) |−2 dλ dk). +The first part of Theorem 3.1 can be easily deduced from the inversion and Plancherel formulas for the spherical +transform. +8 + +Let C∞ +c (G, τν, τν) denote the space of smooth compactly supported τν-radial functions. The spherical transform of +F ∈ C∞ +c (G, τν, τν) is the C-valued function HνF defined by: +HνF(λ) = +1 +ν + 1 +� +G +T r[Φν,λ(g−1)F(g))]dg, +λ ∈ C. +The inversion and the Plancherel formulas for the τ-spherical transform have been given explicitly in [12]. For the +convenience of the reader we give an elementary proof by using the Jacobi transform. +Theorem 3.2. For F ∈ C∞ +c (G, τν, τν) we have the following inversion and Plancherel formulas +F(g) = 1 +2π +� +∞ +0 +Φν,λ(g)HνF(λ) | cν(λ) |−2 dλ + +� +λj∈Dν +Φν,λj(g)Hνf(λj) dν(λj), +(3.3) +� +G +∥ F(g) ∥2 +HS dg = ν + 1 +2π +� +∞ +0 +| HνF((λ) |2| cν(λ) |−2 dλ + (ν + 1) +� +λj∈Dν +dν(λj) | HνF((λj) |2, +(3.4) +In above ∥ ∥HS stands for the Hilbert-Schmidt norm. +Proof. Let F ∈ C∞ +c (G, τν, τν) and let fν be its scalar component. +Using the integral formula (2.2), the identity +Φν,λ(at) = Φν,λ(a−t) = (cosh t)νφ(ρ−2,ν+1) +λ +(t) and the fact that ∆(t) = (2 cosh t)−2ν∆ρ−2,ν+1, we have +HνF(λ) = +� ∞ +0 +fν(t)(cosh t)νφ(ρ−2,ν+1) +λ +(t) ∆(t) dt += +� ∞ +0 +fν(t)(22 cosh t)−νφ(ρ−2,ν+1) +λ +(t) ∆ρ−2,ν+1(t) dt. +(3.5) +Thus the τν-spherical transform HνF may be written in terms of the Jacobi transform J α,β, with α = ρ − 2 and +β = ν + 1. Namely, we have +HνF(λ) = J ρ−2,ν+1[(22 cosh t)−νfν](λ). +We refer to (A5) in the Appendix for the definition of the Jacobi transform. +Now the theorem follows from the inversion and the Plancherel formulas for the Jacobi transform (A6), (A6’) and +(A7) in the Appendix. +For the proof of the surjectivity statement in Theorem 3.1 we shall need the following result +Proposition 3.1. Let F ∈ C∞ +c (G, τν) and Φ ∈ C∞(G, τν, τν). Then we have +Fν(F ∗ Φ)(λ, k) = HνΦ(λ)FνF(λ, k), +λ ∈ C, k ∈ K, +where the convolution is defined by +(Φ ∗ F)(g) = +� +G +Φν,λ(x−1g)F(x) dx. +Proof. Let Φ ∈ C∞(G, τν, τν), v ∈ Vν, and set Fv = Φ(. )v. Then we have the following relation between the Fourier +transform and the spherical transform +FνFv(λ, k) = HνΦ(λ)τ(k−1)v. +(3.6) +By definition +Fν(F ∗ Φ)(λ, k) = +� +G +� +G +eν +λ(k−1g)Φ(x−1g)F(x)dxdg += +� +G +dx +� +G +eν +λ(k−1xy)Φ(y)F(x)dy +9 + +Using the following cocycle relations for the Iwasawa function H(x) +H(xy) = H(xκ(y)) + H(y), +and +κ(xy) = κ(xκ(y)), +for all x, y ∈ G, we get the following identity +eν +λ(k−1xy) = e(iλ−ρ)H(x−1k)eν +λ(κ−1(x−1k)y), +from which we obtain +Fν(Φ ∗ F)(λ, k) = +� +G +e(iλ−ρ)H(x−1k) +�� +G +eλ,ν(κ−1(x−1k)y)Φ(y)F(x) dy +� +dx. +Next, put hv(y) = Φ(y)v, v ∈ Vτν. Then (3.6) implies +� +G +eλ,ν(κ−1(x−1k)y)Φ(y)F(x) dy = Fν(hF (x))(λ, κ−1(x−1k)) += H(Φ)(λ)τν(κ−1(x−1k))F(x), +from which we deduce +Fν(Φ ∗ F)(λ, k) = H(Φ)(λ) +� +G +e(iλ−ρ)H(x−1k)τν(κ−1(x−1k))F(x)dx, +and the proposition follows. +We now come to the proof of Theorem 3.1. +Proof. (i) We may follow the same method as in [11] to prove the inversion formula (3.1) and the Plancherel formula +(3.2) from Theorem 3.2. We give an outline of the proof. +Let F ∈ C∞ +c (G, τν) and consider the τν-radial function defined for any g ∈ G by +Fg,v(x).w = +� +K +< τν(k)w, v >ν F(gkx) dk, +v being a fixed vector in Vν. Then a straightforward calculation shows that +HνFg,v(λ) = +1 +ν + 1 < (Φν,λ ∗ F)(g), v >ν . +The inversion formula for the spherical transform together with T rFg,v(e) =< F(g), v >ν imply +F(g) = 1 +2π +� ∞ +0 +(Φν,λ ∗ F)(g) | cν(λ) |−2 dλ + +� +λj∈Dν +(Φν,λj ∗ F)(g)dν(λj). +To conclude use the following result for the translated spherical function ( see [11] Proposition 3.3) +Φν,λ(x−1y) = +� +K +e−(iλ+ρ)H(y−1k)e(iλ−rho)H(x−1k)τν(κ(y−1k))τν(κ−1(x−1k)) dk, +(3.7) +to get +(Φν,λ ∗ F)(g) = +� +K +e−(iλ+ρ)H(g−1k)τν(κ(g−1k))FνF(λ, k) dk, +10 + +and the inversion formula (3.1) follows. +The proof of the Plancherel formula (3.2) is essentially the same as in the scalar case, so we omit it. +Note that as a consequence of the Plancherel formula not involving the discrete series, we have +� +G +∥ F(g) ∥2 dgK = 1 +π +� ∞ +0 +� +K +∥ FνF(λ, k) ∥2 | cν(λ) |−2 dλ dk, +for every F ∈ L2 +cont(G, τν). +(ii) We prove the surjectivity statement. Suppose that there exists a function f in L2 +σν(R+ × K, | cν(λ) |−2 dλ dk) +such that +� ∞ +0 +� +K +< f(λ, k), FνF(λ, k) >| cν(λ) |−2 dλ dk = 0 +for all F ∈ C∞ +c (G, τν). Changing F into F ∗ Φ where Φ ∈ C∞(G, τν, τν) and using Proposition 3.1, we have +� ∞ +0 +� +K +< f(λ, k), FνF(λ, k) > Hνφ(λ) | cν(λ) |−2 dλ dk = 0 +By the Stone-Weierstrass theorem, the algebra {HνΦ, Φ ∈ C∞(G, τν, τν)} is dense in C∞ +e (R) the space of even +continuous functions on R vanishing at infinity. Therefore for every F ∈ C∞ +c (G, τν) there is a set EF of measure zero +in R such that +� +K +< f(λ, k), FνF(λ, k) > dk = 0 +for all λ not in EF . The rest of the proof is based on an adaptation of the arguments given in [14] Theorem 1.5, for +the scalar case, and the proof of Theorem 3.1 is completed. +4 +Fourier restriction estimate +The main result of this section is the following uniform continuity estimate for the Fourier-Helgason restriction operator. +Proposition 4.1. Let ν ∈ N. There exists a positive constant Cν such that for λ ∈ R\{0} and R > 1, we have +� � +K +∥FνF(λ, k)∥2 +νdk +�1/2 +≤ Cν|cν(λ)|R1/2 +� � +G/K +∥F(g)∥2 +ν dgK +�1/2 +, +(4.1) +for every F ∈ L2(G, τν) with suppF ⊂ B(R). +To prove this result we shall need estimates of the Harish-Chandra c-function. +To this end we introduce the +function bν(λ) defined on R by +bν(λ) = + + + +cν(λ) +if +ν−ρ+2 +2 +∈ Z+ +λ cν(λ) +if +ν−ρ+2 +2 +/∈ Z+ +Lemma 4.1. Assume ν > ρ − 2. +(i) The function bν(λ) has no zero in R. +(ii) There exists a positive constant C such that for λ ∈ R, we have +C−1(1 + λ2) +2ρ−4−ε(ν) +4 +≤| bν(λ) |−1≤ C(1 + λ2) +2ρ−4−ε(ν) +4 +, +(4.2) +11 + +with ε(ν) = ±1 according to ν−ρ+2 +2 +/∈ Z+ or ν−ρ+2 +2 +∈ Z+ +Proof. +(i) If ν−ρ+2 +2 +/∈ Z+, then bν(λ) = 2ρ+ν−iλΓ(ρ−1)Γ(iλ+1) +Γ( iλ+ρ+ν +2 +)Γ( iλ+ρ−ν−2 +2 +), and clearly bν(λ) has no zero on R. +If ν−ρ+2 +2 +∈ Z+ then bν(λ) a priori can have zero and pole at λ = 0. This is not the case, since +lim +λ→0 bν(λ) = (−1) +ν−ρ+2 +2 +2ρ+νΓ(ρ − 1)( ν−ρ+2 +2 +)! +Γ( ρ+ν +2 ) +. +(ii) To prove the estimate (4.2) we shall use the following property of the Γ-function +lim +|z|→∞ +Γ(z + a) +Γ(z) +z−a = 1, | arg(z) |< π − δ, +(4.3) +where a is any complex number, and log is the principal value of the logarithm and δ > 0. +Assume first that ν−ρ+2 +2 +/∈ Z+. Using the duplicata formula for the function gamma +Γ(2z) = 22z−2 +√π Γ(z)Γ(z + 1 +2), +we rewrite bν(λ) as +bν(λ) = 2ρ+ν−1 +√π +Γ( iλ+1 +2 +)Γ( iλ+2 +2 +) +Γ( iλ+ρ+ν +2 +)Γ( iλ+ρ−ν−2 +2 +) +. +It follows from (4.3) that for every λ ∈ R, we have +| bν(λ) |≤ C(1 + λ2)− 2ρ−5 +4 +and +| bν(λ) |−1≤ C(1 + λ2) +2ρ−5 +4 . +The proof for the case ν−ρ+2 +2 +∈ Z+ follows the same line as in the case ν−ρ+2 +2 +/∈ Z+, so we omit it. +This finishes the proof of the Lemma. +Let us recall from [1] an auxiliary lemma which will be useful for the proof of Proposition 4.1. +Let η be a positive Schwartz function on R whose Fourier transform has a compact support. For m ∈ R, set +ηm(x) = +� +R +η(t)(1 + |t − x|)m/2 dt. +Lemma 4.2. +i) ηm is a positive C∞-function with +C−1(1 + t2) +m +2 ≤ ηm(t) ≤ C(1 + t2) +m +2 , +(4.4) +for some positive constant C. +ii) The Fourier transform of ηm has a compact support. +In order to prove the Fourier restriction Theorem, we need to introduce the bundle valued Radon transform, see +[9] for more informations. +The Radon transform for F ∈ C∞ +c (G, τν) is defined by +RF(g) = eρH(g) +� +N +F(gn)dn. +12 + +We set RF(t, k) = RF(kat). Then, using the Iwaswa decomposition G = NAK, we may rewrite the Helgason-Fourier +transform as +FνF(λ, k) = FR(RF(·, k))(λ), +where +FRφ(λ) = +� +R +e−iλtφ(t) dt, +is the Euclidean Fourier transform of φ a Vν-valued smooth function with compact support in R. +We define on p the scalar product < X, Y >= 1 +2T r(XY ) and denote by | | the corresponding norm. It induces a distance +function d on G/K. By the Cartan decomposition G = K exp p, any g ∈ G may be written uniquely as g = k exp X, +so that d(0, gK) =| X |. Define the open ball centred at 0 and of radius R by B(R) = {gK ∈ G/K; +d(0, gK) < R}. +Lemma 4.3. Let F ∈ C∞ +0 (G, τν). If supp F ⊂ B(R), then supp RF ⊂ [−R, R] × K. +Proof. As (see [[13], page 476] +d(0, ketHnK) ≥| t |, +k ∈ K, n ∈ N, t ∈ R +it follows that supp RF ⊂ [−R, R] × K if supp F ⊂ B(R) +Proof of Proposition 4.1. It suffices to prove the estimate (4.1) for functions F ∈ C∞ +c (G, τν) supported in B(R). +It follows from the Plancherel formula (3.2) that +� +B(R) +∥ F(g) ∥2 +ν dgK ≥ +� +K +� +R +∥ FνF(λ, k) ∥2 +ν | cν(λ) |−2 dλ dk +Therefore it is sufficient to show +� +K +� +R +∥ FνF(λ, k) ∥2 +ν | cν(λ) |−2 dλ dk ≥ C | cν(λ) |−2 +R +� +R +∥ FνF(λ, k) ∥2 +ν dk, +(4.5) +fir some positive constant C. +By (4.2) we have | cν(λ) |−1≍ η 2ρ−3 +2 (λ). Therefore (4.5) is equivalent to +η 2ρ−3 +2 (λ) +R +� +K +∥ FνF(λ, k) ∥2 +ν dk ≤ +� +K +� +R +∥ FνF(λ, k) ∥2 +ν η 2ρ−3 +2 (λ)dλ dk +(4.6) +Let T be the tempered distribution on R defined by T := F−1 +R η 2ρ−3 +2 . By Lemma 4.2, T is compactly supported . Let +R0 > 1 such that supp T ⊂ [−R0, R0]. Then (4.6) is equivalent to +� +K +∥ FR(T ∗ RF(. , k))(λ) ∥2 +ν dk ≤ CR +� +K +� +R +FR(T ∗ RF(. , k))(λ) ∥2 +ν dλ dk, +(4.7) +where ∗ denotes the convolution on R. +From suppT ⊂ [−R0, R0] and Lemma 4.3, it follows that for any k ∈ K, supp (T ∗ RF(. , k)) ⊂ [−(R + R0), R + R0]. +Thus +� +K +∥ FR(T ∗ RF(. , k)(λ) ∥2 +ν dk ≤ 2(R + R0) +� +K +� +R +∥ (T ∗ RF(. k))(t) ∥2 +ν dt dk +Next use the Euclidean Plancherel formula to get (4.7), and the proof is finished. +As a consequence of Proposition 4.1, we obtain the uniform continuity estimate for the Poisson transform Pν +λ. +Corollary 4.1. Let ν ∈ N. There exists a positive constant Cν such that for λ ∈ R\{0}, we have +sup +R>1 +� +1 +R +� +B(R) +∥ Pν +λf(g) ∥2 +ν dgK +�1/2 +≤ Cν |cν(λ)| ∥ f ∥L2(K,σν) +(4.8) +for every f ∈ L2(K, σν). +13 + +Proof. Let F ∈ L2(G, τν) with supp F ⊂ B(R), and let f ∈ L2(K, σν). Since λ is real and τν is unitary, the Poisson +transform and the restriction Fourier transform are related by the following formula +� +B(R) +< Pν +λf(g), F(g) >ν dg = +� +K +< f(k), FνF(λ, k) >ν dk. +Thus +| +� +B(R) +< Pν +λf(g), F(g) >ν dg | ≤ ∥f∥L2(K,σν)( +� +K +∥ FνF(λ, k) ∥2 +ν dk) +1 +2 +≤ Cν|cν(λ)|R1/2 ∥ f ∥L2(K,τν)∥ F ∥L2(G,τν), +by the restriction Fourier theorem. Taking the supermum over all F with ∥ F ∥L2(G,τν)= 1, the corollary follows. +5 +Asymptotic expansion for the Poisson transform +In this section we give an asymptotic expansion for the Poisson transform. +We first start by establishing some +intermediate results. +Let L2 +λ(K, σν) denote the finite linear span of the functions +f g +λ,v : k �−→ f g +λ,v(k) = e(iλ−ρ)H(g−1k)τ −1 +ν (κ(g−1k))v, +g ∈ G, v ∈ Vν. +Lemma 5.1. For λ ∈ R \ {0}, ν ∈ N the space L2 +λ(K, σν) is a dense subspace of L2(K, σν). +Proof. As λ ∈ R \ {0}, the density is just a reformulation of the injectivity of the Poisson transform Pν,λ. +Lemma 5.2. Let λ ∈ R \ {0}, ν ∈ N. Then there exists a unique unitary isomorphism U ν +λ on L2(K, σν) such that : +U ν +λ f g +λ,v = f g +−λ,v, +g ∈ G. +Moreover, for f1, f2 ∈ L2(K, σν), we have Pν +λF1 = Pν +−λF2 if and only if U ν +λF1 = F2 ( i.e. U ν +λ = (Pν +−λ)−1 ◦ Pν +λ). +Proof. The proof is the same as in the scalar case so we omit it. +We now introduce the function space B∗(G, τν) on G, consisting of functions F in L2 +loc(G, τν) satisfying +∥ F ∥B∗(G,τν)= sup +j∈N +[2− j +2 +� +Aj +∥ F(g) ∥2 +ν dgK] < ∞, +where A0 = {g ∈ G; d(0, g.0) < 1} and Aj = {g ∈ G; 2j−1 ≤ d(0, g.0) < 2j}, for j ≥ 1. +One could easily show that ∥ F ∥B∗(G,τν)≤∥ F ∥∗≤ 2 ∥ F ∥B∗(G,τν). +We define an equivalent relation on B∗(G, τν). For F1, F2 ∈ B∗(G, τν) we write F1 ≃ F2 if +lim +R→+∞ +1 +R +� +B(R) +∥ F1(g) − F2(g) ∥2 +ν dg = 0. +Note that by using the polar decomposition we see that F1 ≃ F2 if +lim +R→+∞ +1 +R +� +K×[0,R] +∥ F1(ketH)) − F2(ketH)) ∥2 +ν ∆(t) dt dk = 0. +We now state the main result of this section +14 + +Theorem 5.1. Let ν ∈ N, λ ∈ R\{0}. For f ∈ L2(K, σν) we have the following asymptotic expansions for the Poisson +transform in B∗(G, τν) +Pλ,νf(x) ≃ τ −1 +ν (k2(x))[cν(λ)e(iλ−ρ)(A+(x)f(k1(x)) + cν(−λ)e(−iλ−ρ)(A+(x))U ν +λf(k1(x))], +(5.1) +where x = k1(x)eA+(x)k2(x). +Most of the proof of the above theorem consists in proving the following Key Lemma, giving the asymptotic ex- +pansion for the translates of the τν-spherical function. +KEY LEMMA. For λ ∈ R \ {0}, g ∈ G and v ∈ Vν, we have the following asymptotic expansion in B∗(G, τν) +Φν,λ(g−1x). v ≃ τ −1 +ν (k2(x)) +� +s∈{±1} +cν(sλ)e(isλ−ρ)A+(x)f g +sλ,v(k1(x)), +x = k1(x)eA+(x)k2(x). +Proof of Theorem 5.1. We first note that both side of (5.1) depend continuously on f ∈ L2(K, σν). This can +be proved in the same manner as in [8]. Therefore we only have to prove that the asymptotic expansion (5.1) holds +for f ∈ L2 +λ(K, σν). Let f = f g +λ,v. Then according to [[11], Proposition 3.3], we have +Pν +λf(x) = Φν,λ(g−1x)v. +The theorem follows from the Key lemma. +As a consequence of Theorem 5.1 we obtain the following result giving the behaviour of the Poisson integrals. +Proposition 5.1. +1. For any f ∈ L2(K, σν) we have the Plancherel-Poisson formula +lim +R→+∞ +1 +R +� +B(R) +∥ Pν +λf(g) ∥2 +ν dgK = 2 | cν(λ) |2 ∥ f ∥2 +L2(K,σν) +(5.2) +2. Let ν ∈ N. There exists a positive constant Cν such that for any λ ∈ R \ {0}, we have +C−1 +ν +| cν(λ) | ∥ f ∥L2(K,σν)≤∥ Pλ +ν f ∥∗≤ Cν | cν(λ) | ∥ f ∥L2(K,σν), +(5.3) +for every f ∈ L2(K, σν). +Proof. +1. We define for f ∈ L2(K, σν) +Sν +λf(x) := τ −1 +ν (k2(x))[cν(λ)e(iλ−ρ)(A+(x)f(k1(x)) + cν(−λ)e(−iλ−ρ)(A+(x))U ν +λf(k1(x))], +x = k1(x)eA+(x)k2(x). +By the unitarity of Uλ, we have +1 +R +� +B(R) +∥Sν +λf(g)∥2dgK = 2|cν(λ)|2∥f∥2 +L2(K,τν) +� +1 +R +� R +0 +e−2ρt∆(t)dt +� ++ 2|cν(λ)|2ℜ +� +< f, Uλf >L2(K,σν) +1 +R +� R +0 +e2(iλ−ρ)t∆(t)dt +� +. +From +lim +R→+∞ +1 +R +� R +0 +e−2ρt∆(t)dt = 1, and +lim +R→+∞ +1 +R +� R +0 +e2(iλ−ρ)t∆(t)dt = 0, we deduce that +lim +R→+∞ +1 +R +� +B(R) +∥ Sν +λf(g) ∥2 +ν dgK = 2 | cν(λ) |2∥ f ∥2 +L2(K,σν) . +(5.4) +15 + +Next write +1 +R +� +B(R) +∥ Pν +λf(g) ∥2 +ν dgK = 1 +R +� +B(R) +(∥ Sν +λf(g) ∥2 +ν + ∥ Pν +λf(g) − Sν +λf(g) ∥2 +ν ++ 2Re[< Pν +λf(g) − Sν +λf(g), Sν +λf(g) >])dgK. +The estimate (5.2) then follows from (5.4), Theorem 5.1 and the Schwarz inequality. +2. The right hand side of the estimate (5.3) has already been proved, see corollary 4.1. +The left hand side of the estimate (5.3) obviously follows from the estimate (5.2). This finishes the proof of the +proposition. +Remark 5.1. Let f1, f2 ∈ L2(K, σν). Then using the polarization identity as well as the estimate (5.2), we get +lim +R→+∞ +1 +R +� +B(R) +< Pν +λf1(g), Pν +λf2(g) >ν dgK = 2 | cν(λ) |2< f1, f2 >L2(K,σν) +(5.5) +6 +Proof of the main results +In this section we shall prove Theorem 1.1 on the L2-range of the vector Poisson transform and Theorem 1.2 charac- +terizing the image Qν +λ(L2(G, τν). +6.1 +The L2-range of the Poisson transform +We first recall some results of harmonic analysis on the homogeneous vector bundle K ×M Vν associated to the +representation σν of M. +Let �K be the unitary dual of K. For δ ∈ �K let Vδ denote a representation space of δ with dδ = dim Vδ. We denote by +�K(σν) the set of δ ∈ �K such that σν occurs in δ |M with multiplicity mδ > 0. +The decomposition of L2(K, σν) under K (the group K acts by left translations on this space) is given by the Frobenius +reciprocity law +L2(K, σν) = +� +δ∈� +K(σν) +Vδ ⊗ HomM(Vν, Vδ), +where v ⊗L, for v ∈ Vδ, L ∈ HomM(Vν, Vδ) is identified with the function (v ⊗L)(k) = L∗(δ(k−1)v), where L∗ denotes +the adjoint of L. +For each δ ∈ �K(σν) let (Lj)mδ +j=1 be an orthonormal basis of HomM(Vν, Vδ) with respect to the inner product +< L1, L2 >= +1 +ν + 1T r(L1L∗ +2). +Let {v1, · · · , vdδ} be an orhonormal basis of Vδ. Then +f δ +ij : k → +� +dδ +ν + 1L∗ +i δ(k−1)vj, +1 ≤ i ≤ mδ, +1 ≤ j ≤ dδ, +δ ∈ �K(σ) +form an orthonormal basis of L2(K, σν). +For f ∈ L2(K, σν) we have the Fourier series expansion f(k) = +� +δ∈� +K(σ) +mδ +� +i=1 +dδ +� +j=1 +aδ +ijf δ +ij(k) with +∥ f ∥2 +L2(K,σ)= +� +δ∈� +K(σ) +mδ +� +i=1 +dδ +� +j=1 +| aδ +ij |2 . +16 + +We define for δ ∈ �K(σ) and λ ∈ C, the generalized Eisenstein integral +ΦL +λ,δ(g) = +� +K +e−(iλ+ρ)H(g−1k)τν(κ(g−1k))L∗δ(k−1)dk, +L ∈ HomM(Vν, Vδ). +It is easy to see that ΦL +λ,δ satisfies the following identity +ΦL +λ,δ(k1gk2) = τν(k−1 +2 )ΦL +λ,δ(g)δ(k−1 +1 ), +k1, k2 ∈ K, g ∈ G. +We now prove an asymptotic estimate for the generalized Eisenstein integrals. +Proposition 6.1. Let ν ∈ N, λ ∈ R \ {0}. Then for δ ∈ �K(σν), T, S ∈ HomM(Vν, Vδ) we have +lim +R→+∞ +1 +R +� +B(R) +Tr +� +ΦT +λ,δ(g)∗ΦS +λ,δ(g) +� +dgK = 2 | cν(λ) |2 Tr(T S∗). +(6.1) +Proof. By definition we have +lim +R→+∞ +1 +R +� +B(R) +Tr +� +ΦT +λ,δ(g)∗ΦS +λ,δ(g) +� +dgK = +dδ +� +j=1 +lim +R→+∞ +1 +R +� +B(R) +< ΦS +λ,δ(g)vj, ΦT +λ,δ(g)vj >ν dgK +Noting that ΦT +λ,δ(g)vj is the Poisson transform of the function k �→ L∗δ(k−1)vj and using (5.5), we get +lim +R→+∞ +1 +R +� +B(R) +Tr +� +ΦT +λ,δ(g)∗ΦS +λ,δ(g) +� +dgK = 2 | cν(λ) |2 +dδ +� +j=1 +� +K +< S∗δ(k−1)vj, T ∗δ(k−1)vj >ν dk. +Hence Schur Lemma lead us to conclude that +lim +R→+∞ +1 +R +� +B(R) +Tr +� +ΦT +λ,δ(g)∗ΦS +λ,δ(g) +� +dgK = 2 | cν(λ) |2 Tr(T S∗), and +the proof is finished. +Remark 6.1. Noting that +T r( +� +ΦT +λ,δ(g)∗ΦS +λ,δ(g) +� += T r( +� +ΦT +λ,δ(a)∗ΦS +λ,δ(a) +� +, +g = k1 a k2, +it follows from (6.1) that +lim +R→+∞ +1 +R +� R +0 +T r +� +ΦT +λ,δ(at)∗ΦS +λ,δ(at) +� +∆(t)dt =| cν(λ) |2 Tr(T S∗). +(6.2) +Proof of Theorem 1.1. +(i) The estimate (5.3) implies that the Poisson transform Pλ,ν maps L2(K, σν) into Eλ(G, τν) and that the estimate +(1.5) holds. +(ii) We now prove that the Poisson transform maps L2(K, σν) onto E2 +λ(G, τν). Let F ∈ E2 +λ(G, τν). Since λ ∈ R \ {0}, +we know by Theorem 2.1 that there exists a hyperfunction f ∈ C−ω(K, σν) such that F = Pλ,νf. +Let f = +� +δ∈� +K(σ) +dδ +� +j=1 +mδ +� +i=1 +aδ +ijf δ +ij, be the Fourier series expansion of f. Then we have +F(g) = +� +δ∈� +K(σ) +� +dδ +ν + 1 +dδ +� +j=1 +mδ +� +i=1 +aδ +ijΦLi +λ,δ(g)vj +in +C∞(G, V ). +By the Schur relations, we have +� +K +< ΦLi +λ,δ(kat)vj, ΦLm +λ,δ′(kat)vn >ν dk = +� +0 +if δ ≁ δ′ +1 +dδ T r(ΦLm +λ,δ′ (at))∗ΦLi +λ,δ(at) < vj, vn > if +δ′ = δ +17 + +Therefore +� +K +∥ F(kat) ∥2 dk = +1 +ν + 1 +� +δ∈� +K(σ) +dδ +� +j=1 +� +1≤i,j≤mδ +aδ +ijaδ +mjT r[(ΦLm +λ,δ (at))∗ΦLi +λ,δ(at)] += +1 +ν + 1 +� +δ∈� +K(σ) +dδ +� +j=1 +T r + + +� +1≤i,m≤mδ +(aδ +mjΦLm +λ,δ (at))∗(aδ +ijΦLi +λ,δ(at) + + += +1 +ν + 1 +� +δ∈� +K(σ) +dδ +� +j=1 +∥ +mδ +� +i=1 +aδ +ijΦLi +λ,δ(at) ∥2 +HS, +Let Λ be a finite subset in �K(σ). Since ∥ F ∥∗< ∞, it follows that, for any R > 1 we have +∞ >∥ F ∥2 +∗≥ +1 +ν + 1 +� +δ∈Λ +dδ +� +j=1 +1 +R +� R +0 +∥ +mδ +� +i=1 +aδ +ijΦLi +λ,δ(at) ∥2 +HS ∆(t) dt +By (6.2) we have +lim +R→∞ +1 +R +� R +0 +∥ +mδ +� +i=1 +aδ +ijΦLi +λ,δ(at) ∥2 +HS ∆(t) dt = lim +R→∞ +� +1≤i,m≤mδ +aδ +ijaδ +mj +1 +R +� R +0 +T r[(ΦLm +λ,δ (at))∗ΦLi +λ,δ(at)] ∆(t)dt += 2 | cν(λ) |2 +� +1≤i,m≤mδ +aδ +ijaδ +mjT r(LiL∗ +m) += 2(ν + 1) | cν(λ) |2 +mδ +� +i=1 +| aδ +ij |2 . +Thus ∞ >∥ F ∥2 +∗≥| cν(λ) |2 � +δ∈Λ +dδ +� +j=1 +mδ +� +i=1 +| aδ +ij |2. Since Λ is arbitrary, it follows that +| cν(λ) |2 +� +δ∈� +K(σ) +dδ +� +j=1 +mδ +� +i=1 +| aδ +ij |2≤∥ F ∥2 +∗ . +This shows that f ∈ L2(K, σν) with | cν(λ) |∥ f ∥L2(K,σν)≤∥ Pν +λf ∥∗ and the proof of the theorem is completed. +6.2 +The L2-range of the generalized spectral projections +We now proceed to the poof of the second main result of this paper. +Proof of Theorem 1.2. +Let F ∈ L2 +c(G, τν) ∩ C∞(G, τν). It follows from the definition ( see (1.8)) that the operator Qν +λ may be written as +Qν +λF(g) =| cν(λ) |−2 Pν +λ(FνF(λ, .))(g). +(6.3) +Using Theorem 1.1 we deduce that +sup +R>1 +1 +R +� +B(R) +∥ Qν +λF(g) ∥2 +ν dgK ≤ Cν | cν(λ) |−2 +� +K +∥ FνF(λ, k) ∥2 +ν dk. +The above inequality and the Plancherel formula (3.4) imply +� ∞ +0 +(sup +R>1 +1 +R +� +B(R) +∥ Qν +λF(g) ∥2 +ν dgK) dλ ≤ Cν +� ∞ +0 +� +K +∥ FνF(λ, k) ∥2 +ν| cν(λ) |−2 dk dλ +≤ Cν ∥ F ∥2 +L2(G,τ) . +18 + +This prove the right hand side of the inequality (1.9). +From (6.3) and (1.6) we have +lim +R→∞ +1 +R +� +B(R) +∥ Qν +λF(g) ∥2 +ν dgK = 2 | cν(λ) |−2 +� +K +∥ FνF(λ, k) ∥2 +ν dk, +and since for all R > 1 +1 +R +� +B(R) +∥ Qν +λF(g) ∥2 dgK ≤ Cν | cν(λ) |−2 +� +K +∥ FνF(λ, k) ∥2 dk, +a.e. λ ∈ (0, ∞), +we may apply the Lebesgue’s dominated convergence theorem to get +lim +R→∞ +� ∞ +0 +� +1 +R +� +B(R) +∥ Qν +λF(g) ∥2 +ν dgK +� +dλ = 2 ∥ F ∥2 +L2(G,τν) . +It follows from the above equality that +C ∥ F ∥2 +L2(G,τν)≤ +� ∞ +0 +(sup +R>1 +� +B(R) +∥ Qν +λF(x) ∥2 dx) dλ. +This complete the proof of the inequality (1.9). +We now prove that Qν +λ maps L2 +c(G, τν) onto E2 +λ(G, τν). Let Fλ ∈ E2 +λ(G, τν). Then we have +sup +R>1 +1 +R +� +B(R) +∥ Fλ(g) ∥2 +ν dgK < ∞, +for a.e. +λ ∈ (0, ∞). +By Theorem 1.1, there exists fλ ∈ L2(K, σν) such that Fλ(g) =| cν(λ) |−2 Pν +λfλ(g) with +sup +R>1 +1 +R +� +B(R) +∥ Fλ(g) ∥2 +ν dgK ≥ C−1 +ν +| cν(λ) |−2 +� +K +∥ fλ(k) ∥2 dk +Integrating the both side of the above inequality over (0, ∞), we get +∞ >∥ Fλ ∥2 +∗≥ C−1 +ν +� ∞ +O +� +K +∥ fλ(k) ∥2 +ν | cν(λ) |−2 dk dλ. +It now follows from Theorem 3.1, that there exists F ∈ L2 +c(G, τν) such that FνF(λ, k) = fλ(k). +Henceforth Fλ(g) =| cν(λ) |−2 Pλ,ν(FνF(λ, .)(g). This finishes the proof of Theorem 1.2. +7 +Proof of the Key Lemma +In this section we prove the Key Lemma of this paper. To this end we need to establish some auxiliary results. We +first prove an asymptotic formula for the τν-spherical function. +Proposition 7.1. Let λ ∈ R \ {0}. For any v ∈ Vν we have +Φν,λ(g). v ≃ +� +s∈{±1} +cν(sλ)e(isλ−ρ)A+(g)τ −1 +ν (κ1(g)κ2(g)). v, +(7.1) +g = κ1(g)eA+(g)κ2(g) +Proof. Since ∆(t) ≤ e2ρ t, we get +1 +R +� +B(R) +∥ e(iλ−ρ)A+(g)τ −1 +ν (κ1(g)κ2(g)). v ∥2 dg = 1 +R ∥ v ∥2 +� R +0 +e−2ρ t∆(t)dt +≤∥ v ∥2 . +19 + +This shows that the right hand side of (7.1) belongs to B∗(G, τν). +Since λ ∈ R \ {0}, we may use the identity (A3) to write +ϕν,λ(t) − +� +s∈{±1} +cν(sλ)e(isλ−ρ)t = +� +s∈{±1} +cν(sλ) +� +(2 cosh t)νΨρ−2,ν+1 +sλ +(t) − e(isλ−ρ)t� += +� +s∈{±1} +cν(sλ)e(isλ−ρ)t � +(1 + e−2t)νe(ρ+ν−isλ)tΨρ−2,ν+1 +sλ +(t) − 1 +� +. +It follows from (A2’) that +ϕν,λ(t) − +� +s∈{±1} +cν(sλ)e(isλ−ρ)t = +� +s∈{±1} +cν(sλ)e(isλ−ρ)t � +(1 + e−2t)ν − 1) + e−2tEsλ(t) +� +, +where | Esλ(t) |≤ 2νC if t ≥ 1. Therefore +| ϕν,λ(t) − +� +s∈{±1} +cν(sλ)e(isλ−ρ)t |≤ Cν,λe−ρe−2t, +if t ≥ 1. This together with +| ϕν,λ(t) − +� +s∈{±1} +cν(sλ)e(isλ−ρ)t |≤ Cν,λe−ρt, +for t ∈ [0, 1], imply that +lim +R→∞ +1 +R +� +B(R) +∥ Φν,λ(g). v − +� +s∈{±1} +cν(sλ)e(isλ−ρ)A+(g)τ −1(κ1(g)κ2(g)). v ∥2 +ν dgK = +=∥ v ∥2 lim +R→∞ +1 +R +� R +0 +| ϕν,λ(t) − +� +s∈{±1} +cν(sλ)e(isλ−ρ)t |2 ∆(t) dt = 0, +and the proof is finished. +Lemma 7.1. Let g ∈ G, k ∈ K and t a non negative real number . Then we have +0 ≤ A+(g−1k exp(tH)) − H(g−1k exp(tH)) ≤ 1+ | g.0 | +1− | g.0 |e−2t, +(7.2) +Proof. Let g−1 = +� +a +b +c +d, +� +and k == +� +u +0 +O +v, +� +, where a, b, c and d are n×n, n×1, 1×n and 1×1 matrices respectively. +A direct computation yields +g−1k exp(tH) = +� +∗ +∗ ∗ +c1 +d1 +� +, +where c1 = c u +� +cosh t +0 +0 +In−1 +� +and d1 = sinh t cue1 + cosh t dv. +By (2.1) we have +eH(g−1k exp(tH)) = et | cue1 + dv |, +and +eA+(g−1k exp(tH)) =| sinh t cue1 + cosh t dv | +(| sinh t cue1 + cosh t dv |2 −1) +1 +2 . +20 + +From +eA+(g−1k exp(tH))−H(g−1k exp(tH)) = +e−t +| cue1 + dv |[| sinh t cue1 + cosh t dv | +(| sinh t cue1 + cosh t dv |2 −1) +1 +2 ], +together with +| sinh t cue1 + cosh t dv | +(| sinh t cue1 + cosh t dv |2 −1) +1 +2 ≤ 2 | sinh t cue1v−1 + cosh t d | +≤| cue1v−1 + d | et+ | d − cue1v−1 | e−t +we deduce that +e(A+(g−1k exp(tH))−H(g−1k exp(tH)) ≤ 1 + | d − cue1v−1 | +| cue1v−1 + d |e−2t. +Noting that (g.0)∗ = −(d−1c), and k.e1 = ue1v−1, we get +e(A+(g−1k exp(tH))−H(g−1k exp(tH)) ≤ 1 + | 1+ < g.0, k.e1 >| +| 1− < g.0, k.e1 >|e−2t +≤ 1 + 1+ | g.0 | +1− | g.0 |e−2t, +from which we deduce (7.2), and the proof of the lemma is finished. +Proof of the Key Lemma. Since B∗(G, τν) is G-invariant, we may apply Proposition 7.1 to get +Φν,λ(g−1x)v ≃ τ −1 +ν (κ1(g−1x)κ2(g−1x) +� +s∈{±} +cν(sλ)e(isλ−ρ)A+(g−1x)v. +Thus it suffices to show that +τ −1 +ν (κ1(g−1x)κ2(g−1x) +� +s∈{±} +cν(sλ)e(isλ−ρ)A+(g−1x)v ≃ τ −1 +ν (k2(x)) +� +s∈{±1} +cν(sλ)e(isλ−ρ)A+(x)f g +sλ,v(k1(x)), +(7.3) +Note that +τ −1 +ν [k1(g−1k1(x)eA+(x)k2(x))k2(g−1k1(x)eA+(x)k2(x))] = τ −1 +ν [k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))k2(x))], +x = k1(x)eA+(x)k2(x). +Henceforth (7.3) is equivalent to +τ −1 +ν [k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))] +� +s∈{±1} +cν(λ)e(isλ−ρ)A+(g−1k1(x)eA+(x)) v +≃ +� +s∈{±1} +cν(λ)e(isλ−ρ)A+(x)f g +sλ,v(k1(x)) +(7.4) +We write the left hand side of (7.4) as +� +s∈{±1} +cν(λ)e(isλ−ρ)A+(x)f g +sλ,v(k1(x)) + rg(x)v, +where +rg(x) =τ −1 +ν [k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))] +� +s∈{±1} +cν(λ)e(isλ−ρ)A+(g−1k1(x)eA+(x)) +− +� +s∈{±1} +cν(λ)e(isλ−ρ)[A+(x)+H(g−1k1(x))]τ −1 +ν (κ(g−1k1(x)), +x ∈ G +(7.5) +21 + +To finish the proof we show that for each g ∈ G, rg ≃ 0. +Noting that +H(g−1k1(x)eA+(x)) = H(g−1k1(x)) + A+(x), +we rewrite rg as +rg(x) = [τ −1 +ν (k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))) − τ−1 +ν (κ(g−1k1(x))] +� +s∈{±1} +cν(λ)e(isλ−ρ)H(g−1k1(x)eA+(x)) ++ τ −1 +ν (k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))) + + � +s∈{±1} +cν(λ)[e(isλ−ρ)A+(g−1k1(x)eA+(x))) − e(isλ−ρ)H((g−1k1(x)eA+(x))] + + +=: Ig(x) + Jg(x). +Using the following +Lemma 7.2. Let g = +� +a +b +c +d +� +∈ Sp(n, 1). Then we have +τν(κ1(g)κ2(g)) = τν( d +| d |) +(7.6) +τν(κ(g)) = τν( ce1 + d +| ce1 + d |) +(7.7) +lim +R→∞ τν(κ1(g exp(RH))κ2(g exp(RH))) = τν(κ(g)). +(7.8) +we easily see that Igv ≃ 0. +We have +Jg(x) =τ −1 +ν (k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x)))e(isλ−ρ)H(g−1k1(x)eA+(x)) +� +s∈{±1} +cν(λ) +� +e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 +� +As τν is unitary we have +1 +R +� +K×[0,R] +∥ Jg(ketH)v ∥2 +ν ∆(t)dt dk +≤∥ v ∥2 2 | cν(λ) |2 +R +� +K×[0,R] +e−2ρH(g−1ketH) | e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |2 +From +| e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |≤ C(| λ | +ρ) | A+(g−1k1(x)eA+(x)) − H(g−1k1(x)eA+(x) | +together with Lemma 7.2 we get +� +K×[0,R] +e−2ρH(g−1ketH) | e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |2 +≤ +� +C(| λ | +ρ)1+ | g.0 | +1− | g.0 | +�2 1 +R +� +K×[0,R] +e−2ρH(g−1k)e−2(ρ+2t)∆(t) dk dt. +22 + +As +� +K +e−2ρH(g−1k) dk = 1 and ∆(t) ≤ 2ρe2ρt we obtain +lim +R→∞ +1 +R +� +K×[0,R] +e−2ρH(g−1ketH) | e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |2= 0. +This shows that Jg ≃ 0. Therefore we have proved that for each g ∈ G, rg ≃ 0 as to be shown. +It remain to prove Lemma 7.2. +Proof of Lemma 7.2. If g = +� +a +b +c +d +� += +� +u1 +0 +0 +v1 +� +at +� +u2 +0 +0 +v2 +� +with respect to the Cartan decomposition G = +KAK. Then we easily see that d = cosh t v1v2 and (7.6) follows. Analogously if g = +� +a +b +c +d +� += +� +u +0 +0 +v +� +at n with +respect to the Iwasawa decomposition. Then from g.e1 = +� +ae1 + b +ce1 + d +� += et +� +u +v +� +we get et v = ce1 + d and (7.7) follows. +We have +g exp(RH) = +� +∗ +∗∗ +∗ ∗ ∗ +sinh Re1 + cosh Rd +� +Then (7.6) imply that τν(κ1(g)κ2(g)) = τν( tanh Rce1+d +|tanh Rce1+d|). Thus limR→∞ τν(κ1(g)κ2(g)) = τν( ce1+d +|ce1+d|). This finishes +the proof of Lemma 7.2, and the proof of the Key Lemma is completed. +8 +Appendix +In this section we collect some results on the Jacobi functions, referring to [19] for more details. +For α, β, λ ∈ C; α ̸= −1, −2, · · · and t ∈ R, the Jacobi function is defined by +φ(α,β) +λ +(t) = 2F1(iλ + ρα,β +2 +, −iλ + ρα,β +2 +; α + 1; − sinh2 t), +where 2F1 is the Gauss hypergeometric function and ρα,β = α + β + 1. +The Jacobi function φ(α,β) +λ +is the unique even smooth function on R which satisfy φ(α,β) +λ +(0) = 1 and the differential +equation +{ d2 +dt2 + [(2α + 1) coth t + (2β + 1) tanh t] d +dt + λ2 + ρ2 +α,β}φ(α,β) +λ +(t) = 0. +(A1) +For λ /∈ −iN another solution Ψα,β +λ +of (A1) such that +Ψα,β +λ +(t) = e(iλ−ρα,β)t(1 + ◦(1)), +as +t → ∞ +(A2) +is given by +Ψα,β +λ +(t) = (2 sinh t)iλ−ρα,β 2F1(ρα,β − iλ +2 +, β − α + 1 − iλ +2 +; 1 − iλ; − +1 +sinh2 t). +Moreover there exists a constant C > 0 such that for all λ ∈ R and all t ≥ 1 we have +Ψα,β +λ +(t) = e(iλ−ρα,β)t(1 + e−2tΘλ(t)), +with +| Θλ(t) |≤ C. +(A2’) +For λ /∈ iZ, we have +φ(α,β) +λ +(t) = +� +s=±1 +cα,β(sλ)Ψα,β +sλ (t) +(A3) +23 + +where +cα,β(λ) = 2ρα,β−iλ Γ(α + 1)Γ(iλ) +Γ( iλ+ρα,β +2 +)Γ( iλ+α−β+1 +2 +) +. +For ℜ(iλ) > 0, the asymptotic behaviour of φ(α,β) +λ +as t → ∞ is then given by +lim +t→∞ e(ρα,β−iλ)tφ(α,β) +λ +(t) = cα,β(λ). +(A4) +Let De(R) denote the space of even smooth function with compact support on R. For f ∈ De(R), the Fourier-Jacobi +transform J α,βf (λ ∈ C) is defined by +J α,βf(λ) = +� ∞ +0 +f(t)φ(α,β) +λ +(t)∆α,β(t) dt, +(A5) +where ∆α,β(t) = (2 sinh t)2α+1(2 cosh t)2β+1. +In the sequel, we assume that α > −1, β ∈ R. Then the meromorphic function cα,β(−λ)−1 has only simple poles for +ℑλ ≥ 0 which occur in the set +Dα,β = {λk = i(| β | −α − 1 − 2k); k = 0, 1, · · · , | β | −α − 1 − 2k > 0}. +(If | β |≤ α + 1, then Dα,β is empty). +The following inversion and Plancherel formulas for the Jacobi transform hold for every f ∈ De(R): +f(t) = 1 +2π +� ∞ +0 +(J α,βf)(λ) φ(α,β) +λ +(t) | cα,β(λ) |−2 dλ + +� +λk∈Dα,β +dk(J α,βf)(λk) φ(α,β) +λk +(t), +(A6) +� ∞ +0 +| f(t) |2 ∆(t) dt = 1 +2π +� ∞ +0 +| (J α,βf)(λ) |2 | cα,β(λ) |−2 dλ + +� +λk∈Dα,β +dk | (J α,βf)(λk) |2 +(A6’) +where dk = −i Resλ=λk(cα,β(λ)cα,β(−λ))−1, is given explicitly by +dk = (β − α − 2k − 1)2−2(α+β)Γ(α + k + 1)Γ(β − k) +Γ2(α + 1)Γ(β − α − k)k! +. +(A7) +References +[1] Anker,J. P.: A basis inequality for Scattering Theory for Riemannian Symmetric Spaces of the Noncompact Type. +Amer. J. Math. 113 (3), 391-398 (1991) +[2] A. Agmon, L. Hormander, Asymptotic properties of solutions of differential equations with simple characteristics, +J. Analyse Math, 30 (1976), 1-38. +[3] A. Boussejra, A. Intissar, Caractérisation des integrales de Poisson-Szego de L2(∂Bn) dans la boule de Bergman +Bn, n ≥ 2. C. R. Acad. Sci. 318 (1994). +[4] A. Boussejra, A. Intissar, L2-concrete Spectral Analysis of the Invariant Laplacian in the Unit Complex Ball. J. +Funct. Anal. 160 (1998), 115-140. +[5] A. Boussejra, H. Sami Characterization of the Lp-range of the Poisson transform in Hyperbolic spaces. J. Lie +Theory. 12 (2002), 1-14. +24 + +[6] A. Boussejra, Boundary behavior of Poisson integrals on Boundaries of Symmetric Spaces, J. Lie Theory. 21 +(2011), 243-261. +[7] A. Boussejra, N. Ourchane, Characterization of the Lp-range of the Poisson Transform On the Octonionic Plane. +J. Lie Theory. 28 (2018) 805-828. +[8] A. Boussejra, N. Imesmad, and A. Ouald Chaib, L2-Poisson integral representations of eigensections of invariant +differential operators on a homogeneous line bundle over the complex Grassmann manifold SU(r, r +b)/S(U(r)× +U(r + b)). Ann Glob Anal Geom 61, 399–426 (2022). +[9] T. P. Branson, G. Olafsson, and H. Schlichtkrull, A bundle-valued Radon transform with applications to invariant +wave equations, Quart. J. Math. Oxford (2) 45 (1994), 429-461. +[10] W. O. Bray, Aspects of harmonic analysis on real hyperbolic space. Fourier analysis (Orono, ME, 1992), Lecture +Notes in Pure and Appl. Math., vol. 157, Dekker, New York, 1994, pp. 77-102. +[11] R. Camporesi, The Helgason Fourier transform for homogeneous vector bundles over Riemannian symmetric +spaces, Pacific J. Math. 179 (1997) 263–300. +[12] G. van Djick, A. Pasquale, Harmonic Analysis on Vector bundles over Sp(1, n)/Sp(1) × Sp(n), L’Enseignement +Mathématique, t. 45 (1999), 219-252. +[13] S. Helgason, Groups and Geometric Analysis; Integral geometry, Invariant Differential operators and Spherical +Functions. Academic Press, New York 1984. +[14] S. Helgason, Groups and Geometric Analysis, volume 83 of Mathematical Surveys and Monographs. Amer. Math. +Soc., Providence, RI, 2000. +[15] A. D. Ionescu, On the Poisson transform on symmetric spaces of rank one, J. Funct. Anal. 174 (2000), no 2,513-523. +[16] K. Kaizuka, A characterization of the L2-range of the Poisson transform related to Strichartz conjecture on +symmetric spaces of noncompact type, Adv. Math. 303 (2016) 464-501. +[17] M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima, M. Tanaka, Eigenfunctions of invariant +differential operators on a symmetric space, Ann. of Math. (2) 111 (1980), no. 3, 589-608. +[18] A. W. Knapp, Representation Theory of Semisimple Groups. An overview based on Examples, Princeton Math. +Ser.36, Princeton Univ. Press, Princeton, NJ, 1986. +[19] T. H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey, R.A., Koorn- +winder, T.H., Schempp, N. (eds.), Special functions: Group theoretical aspects and applications. Dordrecht: +Reidel Publishing Company, 1984, pp. 1–85 +[20] P. Kumar, S. K. Ray, and R. P. Sarkar, Characterization of almost Lp-eigenfunctions of the Laplace-Beltrami +operator, Trans. Amer. Math. Soc. 366 (2014), 3191-3225. +[21] P. Kumar, Fourier restriction theorem and characterization on weak L2-eigenfunctions of the Laplace-Beltrami +operator, J. Funct. Anal. 266 (2014) 5584–5597. +[22] N. Lohoué and Th. Rychner, Some function spaces on symmetric spaces related to convolution operators, J. +Funct. Anal. 55 (1984), no. 2, 200-219. +25 + +[23] M. Olbrich, Die Poisson-transformation für homogene Vektorbündel. PhD thesis, Humboldt-Unversität zu Berlin, +1995. +[24] P. Sjögren, Characterization of Poisson integrals on symmaetric spaces, Math. Scand. 49(1981), no 2, 229-249. +[25] R S. Strichartz, Harmonic Analysis as Spectral Theory of Laplacians, J. Funct. Anal. 87 (1991) 51-148. +[26] R, Takahashi, Fonctions sphériques dans les groupes Sp(n, 1). In J. Faraut (ed.),Théorie du potentiel et analyse +harmonique, Lecture Notes in Mathematics 404. Springer Verlag, Berlin 218-238. +[27] H. van der Ven, Vector valued Poisson transforms on Riemannian symmetric spaces of rank one, J. Funct. Anal. +119 (1994), 358–400. +[28] A. Yang, Poisson transform on vector bundles, Trans. Amer. Math. Soc. 350 (1998), 857-887. +26 + diff --git a/9NE4T4oBgHgl3EQf3Q1N/content/tmp_files/load_file.txt b/9NE4T4oBgHgl3EQf3Q1N/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..4adec651f6a1014bd3ef401a7a901ac0f4561a3a --- /dev/null +++ b/9NE4T4oBgHgl3EQf3Q1N/content/tmp_files/load_file.txt @@ -0,0 +1,842 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf,len=841 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='05304v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='RT] 12 Jan 2023 A characterization of the L2-range of the Poisson transforms on a class of vector bundles over the quaternionic hyperbolic spaces Abdelhamid Boussejra ∗Achraf Ouald Chaib† Department of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Faculty of Sciences University Ibn Tofail,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Kénitra,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Morocco Abstract We study the L2-boundedness of the Poisson transforms associated to the homogeneous vector bundles Sp(n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 1)×Sp(n)×Sp(1) Vτ over the quaternionic hyperbolic spaces Sp(n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 1)/Sp(n)× Sp(1) associated with irreducible representations τ of Sp(n)×Sp(1) which are trivial on Sp(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' As a consequence, we describe the image of the section space L2(Sp(n, 1)×Sp(n)×Sp(1) Vτ) under the generalized spectral projections associated to a family of eigensections of the Casimir operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Keywords: Vector Poisson transform, Fourier restriction estimate, Strichartz conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 1 Introduction Let G be a connected real semisimple noncompact Lie group with finite center, and K a maximal compact subgroup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then X = G/K is a Riemannian symmetric space of noncompact type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let G = KAN be an Iwasawa decomposition of G, and let M be the centralizer of A in K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We write g = κ(g)eH(g)n(g), for each g ∈ G according to G = KAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' A central result in harmonic analysis (see [17]) asserts that all joint eigenfunctions F of the algebra D(X) of invariant differential operators, are Poisson integrals F(g) = Pλf(g) := � K e(iλ+ρ)H(g−1k)f(k) dk, of a hyperfunction f on K/M, for a generic λ ∈ a∗ c (the complexification of a∗ the real dual of a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Since then a characterization of the Lp-range of the Poisson transform was developed in several articles such as [3], [5], [6], [7], [15], [20], [21], [22], [24], [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The problem of characterizing the image of the Poisson transform Pλ of L2(K/M) with real and regular spectral parameter λ is intimately related to Strichartz conjecture [[25], Conjecture 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5] on the uniform L2-boundedness of the generalized spectral projections associated with D(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' To be more specific, consider the generalized spectral projections Qλ defined initially for F ∈ C∞ c (X) by QλF(x) =| c(λ) |−2 Pλ(FF(λ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' )(x), λ ∈ a∗, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) where FF is the Helgason Fourier transform of F and c(λ) is the Harish-Chandra c-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Conjecture (Strichartz [[25], Conjecture 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' There exists a positive constant C such that for any Fλ = QλF with ∗e-mail: boussejra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='abdelhamid@uit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='ma †e-mail:achraf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='oualdchaib@uit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='ma 1 F ∈ L2(X) we have C−1 ∥ F ∥2 L2(X)≤ sup R>0,y∈X � a∗ + 1 Rr � B(y,R) | Fλ(x) |2 dx dλ ≤ C ∥ F ∥2 L2(X), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) and ∥ F ∥2 L2(X)= γr lim R→∞ � a∗ + 1 Rr � B(y,R) | Fλ(x) |2 dx dλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) Conversely, if Fλ is any family of joint eigenfunctions for which the right hand side of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) or (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) is finite, then there exists F ∈ L2(X) such that Fλ = QλF for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' λ ∈ a∗ +.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Here r = rank X, and B(y, R) denotes the open ball in X of radius R about y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The constant γr depends on the normalizations of the measures dx and dλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The strichartz conjecture has been recently settled by Kaizuka, see [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Most of the proof consists in proving a uniform estimate for the Poisson transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' More precisely, the following was proved by Kaizuka [[16], Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3]: Let F be a joint eigenfunction with eigenvalue corresponding to a real and regular spectral parameter λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then F is the Poisson transform by Pλ of some f ∈ L2(K/M) if and only if sup R>1 1 Rr � B(0,R) | F(x) |2 dx < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Moreover there exists a positive constant C independent of such λ, C−1 | c(λ) |2∥ f ∥2 L2(K/M)≤ sup R>1 1 Rr � B(0,R) | Pλf(x) |2 dx ≤ C | c(λ) |2∥ f ∥2 L2(K/M) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The generalization of these results to vector bundles setting has only just begin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In [8] we extend Kaizuka result to homogeneous line bundles over non-compact complex Grassmann manifolds (See also [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Our aim in this paper is to generalize theses results to a class of homogeneous vector bundles over the quaternionic hyperbolic space G/K, where G is the symplectic group Sp(n, 1) with maximal compact subgroup K = Sp(n)×Sp(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' To state our results in rough form, let us first introduce the class of the homogenous vector bundles that we consider in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let τν be a unitary irreducible representation of Sp(1) realized on a (ν + 1)-dimensional Hilbert space (V, (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' )ν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We extend τν to a representation of K by setting τν ≡ 1 on Sp(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' As usual the space of sections of the homogeneous vector bundle G ×K V associated with τν will be identified with the space Γ(G, τν) of vector valued functions F : G → Vν which are right K-covariant of type τν, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=', F(gk) = τν(k)−1F(g), ∀g ∈ G, ∀k ∈ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='4) We denote by C∞(G, τν) and C∞ c (G, τν) the elements of Γ(G, τν) that are respectively smooth, smooth with compact support in G, and by L2(G, τν) the elements of Γ(G, τν) such that ∥ F ∥L2(G,τν)= �� G/K ∥ F(g) ∥2 ν dgK � 1 2 < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In above ∥ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' ∥ν is the norm in Vν and ∥ F(gK) ∥ν=∥ F(g) ∥ν is well defined for F satisfying (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let σν denote the restriction of τν to the group M ≃ Sp(n−1)×Sp(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Over K/M we have the associated homogeneous vector bundle K ×M Vν with L2-sections identified with L2(K, σν) the space of all functions f : K → Vν which are M-covariant of type σν and satisfy ∥ f ∥2 L2(K,σν)= � K ∥ f(k) ∥2 ν dk < ∞, 2 where dk is the normalized Haar measure of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For λ ∈ C and f ∈ L2(K, σν), the Poisson transform Pν λf is defined by Pν λf(g) = � K e−(iλ+ρ)H(g−1k)τν(κ(g−1k))f(k) dk Let Ω denote the Casimir element of the Lie algebra g of G, viewed as a differential operator acting on C∞(G, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then the image Pν λ(L2(K, σν)) is a proper closed subspace of Eλ(G, τν) the space of all F ∈ C∞(G, τν) satisfying Ω F = −(λ2 + ρ2 − ν(ν + 2))F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For more details see section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For λ ∈ R \\ {0}, we define a weighted L2-space E2 λ(G, τν) consisting of all F in Eλ(G, τν) that satisfy ∥ F ∥∗= sup R>1 � 1 R � B(R) ∥F(g)∥2 ν dgK � 1 2 < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Our first main result is an image characterization of the Poisson transform Pν λ of L2(K, σν) for λ ∈ R \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let λ ∈ R\\{0} and ν a nonnegative integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (i) There exists a positive constant Cν independent of λ such that for f ∈ L2(K, σν) we have C−1 ν |cν(λ)| ∥f∥L2(K,σν) ≤ ∥Pν λf∥∗ ≤ Cν| | cν(λ) | ∥f∥L2(K,σν), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5) with cν(λ) = 2ρ−iλ Γ(ρ − 1)Γ(iλ) Γ( iλ+ν+ρ 2 )Γ( iλ+ρ−ν−2 2 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Furthermore we have the following Plancherel type formula for the Poisson transform lim R→+∞ 1 R � B(R) ∥Pν λf(g)∥2 ν dgK = 2 | cν(λ) |2 ∥f∥2 L2(K,σν) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6) ii) Pν λ is a topological isomorphism from L2(K, σν) onto E2 λ(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This generalizes the result of Kaizuka [[16], (i) and (ii) in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3] which corresponds to τν trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Consequence For λ ∈ R we define the space E∗ λ(G, τν) = {F ∈ Eλ(G, τν) : M(F) < ∞}, where M(F) = lim sup R→∞ � 1 R � B(R) | F(g) |2 dgK � 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then as an immediate consequence of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 we obtain the following result which generalizes a conjecture of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Bray [10] which corresponds to τν trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' If λ ∈ R \\ {0} then E∗ λ(G, τν), M) is a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In the case of the trivial bundle (the scalar case) the conjecture of Bray was proved by Ionescu [15] for all rank one symmetric spaces .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It was generalized to Riemannian symmetric spaces of higher rank by Kaizuka, see [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 3 Next, let us introduce our second main result on the L2-range of the generalized spectral projections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For F ∈ C∞ c (G, τν) the vector valued Helgason-Fourier transform FνF is given by (see [11]) Fν F(λ, k) = � G e(iλ−ρ)H(g−1k)τν(κ(g−1k)−1)F(g) dg λ ∈ C, Then the following inversion formula holds (see section 4) F(g) = 1 2π � ∞ 0 � K e−(iλ+ρ)H(g−1k)τν(κ(g−1k))FνF(λ, k) | cν(λ) |−2 dλ dk + � λj∈Dν dν(λj) � K e−(iλj+ρ)H(g−1k)τν(κ(g−1k))FνF(λj, k) dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='7) In above dν(λ) = −iResµ=λ(cν(µ)cν(−µ))−1, λ ∈ Dν and Dν is a finite set in {λ ∈ C;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' ℑ(λ) > 0} which parametrizes the τν-spherical functions arising from the discrete series of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It is empty if ν ≤ ρ − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The formula (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='7) gives rise to the decomposition of L2(G, τν) into a continuous part and a discrete part: L2(G, τν) = L2 cont(G, τν) ⊕ L2 disc(G, τν) Our aim here is to study the operator Qν λ, λ ∈ R, defined for F ∈ L2 cont(G, τν) ∩ C∞ c (C, τν) by Qν λF(g) =| cν(λ) |−2 Pν λ[Fν F(λ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' )](g), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='8) More precisely, following Strichartz idea, we are interested in the following question: Characterize those Fλ ∈ Eλ(G, τν) (λ ∈ (0, ∞)) for which there exists F ∈ L2 cont(G, τν) such that Fλ = Qν λF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' To do so, we introduce the space E2 +(G, τν) consisting of all Vτν-valued measurable functions ψ on (0, ∞) × G such that (i) Ω ψ(λ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=') = −(λ2 + ρ2 − ν(ν + 2)) ψ(λ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=') a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' λ ∈ (0, ∞) (ii) ∥ ψ ∥+< ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' where ∥ ψ ∥2 += sup R>1 � ∞ 0 1 R � B(R) ∥ ψ(λ, g) ∥2 ν dgK dλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The second main result we prove in this paper can be stated as follows Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (i) There exists a positive constant C such that for F ∈ L2(G, τν) we have C−1 ∥ F ∥L2(G,τν)≤∥ Qν λF ∥+≤ C ∥ F ∥L2(G,τν) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='9) Furthermore we have lim R→∞ � ∞ 0 1 R � B(R) ∥ Qν λF ∥2 ν dgK dλ = 2 ∥ F ∥2 L2(G,τν) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='10) (ii) The linear map Qν λ is a topological isomorphism from L2 cont(G, τν) onto E2 +(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This extends Kaizuka result [ [16], (i) and (ii) in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6] on the Strichartz conjecture (see [25] Conjecture 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5] to the class of vector bundles considered here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Before giving the outline of the paper, let us mention that a number of authors have obtained an image characterization for the Poisson transform Pλ (λ ∈ a∗ \\ {0}) of L2-functions on K/M in the rank one case, see [[3], [5], [7], [15]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Nevertheless, the obtained characterization is weaker than the one conjectured by Strichartz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The approach taken in 4 the quoted papers is based on the theory of Calderon-Zygmund singular integrals (see also [21]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Using a different approach based on the techniques used in the scattering theory, Kaizuka [16] settled the Strichartz conjecture on Riemannian symmetric spaces of noncompact type, of arbitrary rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We now describe the contents of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The proofs of our results are a generalisation of Kaizuka’s method [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In section 2 we recall some basic facts on the quaternionc hyperbolic spaces and introduce the vector Poisson transforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In section 3, we define the Helgason-Fourier transform on the vector bundles G ×K Vν and give the inversion and Plancherel Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2 follows from the Plancherel formula and Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The main ingredients in proving Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 are a Fourier restriction estimate for the vector valued Helgason-Fourier transform (Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 in section 4) and an asymptotic formula for the vector Poisson transform in the framework of Agmon- Hörmander spaces [2] (Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 will be derived from the Key lemma of this paper giving the asymptotic behaviour of the translate of the τν-spherical functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Section 6 is devoted to the proof of our main results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In section 7 we prove the Key Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 2 Preliminaries 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 The quaternionic hyperbolic space Let G = Sp(n, 1) be the group of all linear transformations of the right H-vector space Hn+1 which preserve the quadratic form n � j=1 | uj |2 − | un+1 |2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let K = Sp(n) × Sp(1) be the subgroup of G consisting of pairs (a, d) of unitaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then K is a maximal compact subgroup of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The quaternionic hyperbolic space is the rank one symmetric space G/K of the noncompact type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It can be realized as the unit ball B(Hn) = {x ∈ Hn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' | x |< 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The group G acts on B(Hn) by the fractional linear mappings x �→ g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='x = (ax + b)(cx + d)−1, if g = � a b c d � , with a ∈ Hn×n, b ∈ Hn×1, c ∈ H1×n and d ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Denote by g the Lie algebra of G;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' g = k ⊕ p the Cartan decomposition of g, where p is a vector space of matrices of the form �� 0 x x∗ 0 � , x ∈ Hn � , and k = �� X 0 0 q � , X∗ + X = 0, q + q = 0 � , where X∗ is the conjugate transpose of the matrix X and q ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let H = � 0n e1 te1 0 � ∈ p with te1 = (1, 0, · · · , 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then a = R H is a Cartan subspace in p, and the corresponding analytic subgroup A = {at = exp t H;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' t ∈ R}, where at = \uf8eb \uf8ec \uf8ed cht 0 sht 0 0n−1 0 sht 0 cht \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' With A determined we then have that M = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 g = \uf8eb \uf8ec \uf8ed q 0 0 0 m 0 0 0 q \uf8f6 \uf8f7 \uf8f8 , m ∈ Sp(n − 1), | q |= 1 \uf8fc \uf8f4 \uf8fd \uf8f4 \uf8fe ≃ Sp(n − 1) × Sp(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let α ∈ a∗ be defined by α(H) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then a system Σ of restricted roots of the pair (g, a) is Σ = {±α, ±2α} if n ≥ 2 and Σ = {±2α} if n = 1, with Weyl group W ≃ {±Id}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' A positive subsystem of roots corresponding to the positive Weyl chamber a+ ≃ (0, ∞) in a is Σ+ = {α, 2α} if n ≥ 2 and Σ+ = {2α} if n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let n = gα + g2α be the direct sum of the positive root subspaces, with dim gα = 4(n − 1) and dim g2α = 3 and N the corresponding analytic subgroup of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then the half sum of the positive restricted roots with multiplicities counted ρ equals to (2n + 1)α, and shall be viewed as a real number ρ = 2n + 1 by the identification a∗ c ≃ C via λα ↔ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let A+ = {at ∈ A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' t ≥ 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then we have the Cartan decomposition G = KA+K, that is any g ∈ G can be written g = k1(g) eA+(g) k2(g), k1(g), k2(g) ∈ K and A+(g) ∈ a+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 5 If we write g ∈ G in (n + 1) × (n + 1) block notation as g = � a b c d � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then a straightforward computation gives cosh A+(g) =| d | and H(g) = log | ce1 + d | .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) We normalize the invariant measure dgK on G/K so that the following integral formula holds: for all h ∈ L1(G/K), � G/K h(gK)dgK = � G h(g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0)dg = � K � ∞ 0 h(k at)∆(t) dk dt, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) where dt is the Lebesgue measure, ∆(t) = (2 sinh t)4n−1(2 cosh t)3, and dk is the Haar measure of K with � K dk = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2 The vector Poisson transform In this subsection we define the Poisson transform associated to the vector bundles G×KVν over Sp(n, 1)/Sp(n)×Sp(1) and derive some results referring to [23], [27], and [28] for more informations on the subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let σν denote the restriction of τν to M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For λ ∈ C we consider the representation σν,λ of P = MAN on Vν defined by σν,λ(man) = aρ−iλσν(m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then σν,λ defines a principal series representations of G on the Hilbert space Hν,λ := {f : G → Vν | f(gman) = σ−1 ν,λ(man)f(g) ∀man ∈ MAN, f|K ∈ L2}, where G acts by the left regular representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We shall denote by C−ω(G, σν,λ) the space of its hyperfunctions vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' By the Iwasawa decomposition, the restriction map from G to K gives an isomorphism from Hν,λ onto the space L2(K, σν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This yields, the so-called compact picture of Hν,λ, with the group action given by πσν,λ(g)f(k) = e(iλ−ρ)H(g−1k)f(κ(g−1k)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' By C−ω(K, σν) we denote the space of its hyperfunctions vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' A Poisson transform is the continuous, linear, G-equivariant map Pν λ from C−ω(G, σν,λ) to C∞(G, τν) defined by Pν λ f(g) = � K τν(k)f(gk) dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In the compact picture the Poisson transform is given by Pν λ f(g) = � K e−(iλ+ρ)H(g−1k)τν(κ(g−1k)) f(k) dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let D(G, τν) denote the algebra of left invariant differential operators on C∞(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let Eν,λ(G) be the space of all F ∈ C∞(G, τν) such that Ω F = −(λ2 + ρ2 − ν(ν + 2)) F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (i) D(G, τν) is the algebra generated by the Casimir operator Ω of g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (ii) For λ ∈ C, ν ∈ N, the Poisson transform Pν λ maps C−ω(G, σν,λ) to Eν,λ(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (i) Let U(a) be the universal enveloping algebra of the complexification of a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Since the restriction of τν to M is irreducible, then D(G, τν) ≃ U(a)W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' As a is one dimensional, then D(G, τν) ≃ C[s2], symmetric functions of one variable .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Thus D(G, τν) is generated by the Casimir element Ω of the Lie algebra g of G, viewed as a differential operator acting on C∞(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (ii) Since σν is irreducible, the image of Pν λ consists of joint eigenfunctions with respect to the action of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Moreover Ω acts by the infinitesimal character of the the principal series representations πσν,λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It follows from Proposition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='22 and Lemma 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='28 in [18], that πσν,λ(Ω) = −(λ2 + ρ2 − c(σν))Id on C−ω(G, σν,λ), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) where c(σν) is the Casimir value of σν given by c(σν) = ν(ν + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 6 Let Φν,λ be the τν-spherical function associated to σν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then Φν,λ admits the following Eisenstein integral repre- sentation (see [[11], Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2]): Φν,λ(g) = � K e−(iλ+ρ)H(g−1k)τν(κ(g−1k)k−1) dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Note that Φν,λ lies in C∞(G, τν, τν) the space of smooth functions F : G → End(Vτν) satisfying F(k1gk2) = τν(k−1 2 )F(g)τν(k−1 1 ), the so called τν-radial functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Being τν-radial, Φν,λ is completely determined by its restriction to A, by the Cartan decomposition G = KAK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Moreover, since σν is irreducible, it follows that Φν,λ(at) ∈ EndM(Vν) ≃ CIdVν, ∀at ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Therefore there exists ϕν : R → C such that Φν,λ(at) = ϕν(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='IdVν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We have ϕν,λ(t) = 1 ν + 1 � K e−(iλ+ρ)H(g−1k)χν(κ(g−1k)k−1) dk, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='4) where χν is the character of τν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This so-called trace τν-spherical function has been computed explicitly in [12] using the radial part of the Casimir operator Ω (see also [26] ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We have ϕν,λ(t) = (cosh t)νφ(ρ−2,ν+1) λ (t), where φ(ρ−2,ν+1) λ (t) is the Jacobi function (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [19]) φ(ρ−2,ν+1) λ (t) = 2F1(iλ + ρ + ν 2 , −iλ + ρ + ν 2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' ρ − 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' − sinh2 t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We deduce from (A4) the asymptotic behaviour of ϕν,λ ϕλ,ν(at) = e(iλ−ρ)t[cν(λ) + ◦(1)], as t → ∞ if ℑ(λ) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5) where cν(λ) = 2ρ−iλΓ(ρ − 1)Γ(iλ) Γ( iλ+ρ+ν 2 )Γ( iλ+ρ−ν−2 2 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6) For λ ∈ C the c-function of Harish-Chandra associated to τν is defined by c(τν, λ) = � N e−(iλ+ρ)H(n)τν(κ(n)) dn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The integral converges for λ such that ℜ(iλ) > 0 and it has a meromorphic continuation to C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In above dn is the Haar measure of N = θ(N), θ being the Cartan involution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We may use formula (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6) to give explicitly c(τν, λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Indeed, one easily check that c(τν, λ) ∈ EndM(Vν) = CIdVν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then using the following result on the behaviour of Φν,λ(at) ([28], Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='4) Φν,λ(at) = e(iλ−ρ)t(c(τν, λ) + ◦(1))as t → ∞, together with Φν,λ(at) = ϕν,λ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='Id, we find then from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5) that c(τν, λ) = cν(λ)IdVν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We end this section by recalling a result of Olbrich [23] on the range of the Poisson transform on vector bundles which reads in our case as follows Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [23] Let ν ∈ N and λ ∈ C such that (i) −2iλ /∈ N (ii) iλ + ρ /∈ −2N − ν ∪ −2N + ν + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then the Poisson transform Pν λ is a K-isomorphism from C−ω(K, σν) onto Eν,λ(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 7 3 The vector-valued Helgason-Fourier transfrorm In this section we give the inversion and the Plancherel formulas for the Helgason-Fourier transform on the vector bundle G ×K Vν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' According to [11] the vector-valued Helgason-Fourier transform of f ∈ C∞ c (G, τν) is the Vν-valued function on C × K defined by: Fνf(λ, k) = � G eλ,ν(k−1g) f(g)dg, where eλ,ν is the vector valued function eλ,ν : G → End(Vν) given by eλ,ν(g) = e(iλ−ρ)H(g−1)τ −1 ν (κ(g−1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Notice that our sign on "λ" is the opposite of the one in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In order to state the next theorem, we introduce the finite set in {λ, ℑ(λ) ≥ 0} Dν = {λj = i(ν − ρ + 2 − 2j), j = 0, 1, · · · , ν − ρ + 2 − 2j > 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Note that Dν is empty if ν ≤ ρ − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It parametrizes the discrete series representation of G containing τν, see [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let dν(λj) = 2−2(ρ−ν−1)(ν − ρ − 2j + 2)(ρ − 2 + j)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (ν − j)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Γ2(ρ − 1)j!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (ν − ρ − j + 2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' , λj ∈ Dν For λj ∈ Dν, we define the operators Qν j L2(G, τν) → Eν,λj(G, τν) F �→ dν(λj) Φν,λj ∗ F We denote the image by A2 j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We set L2 disc(G, τν) = � j;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' ν−ρ+2−2j>0 A2 j, and denote by L2 cont(G, τν) its orthocomplement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let L2 σν(R+ × K, | cν(λ) |−2 dλ dk) be the space of vector functions φ : R+ × K → Vν satisfying (i) For each fixed λ, φ(λ, km) = σν(m)−1φ(λ, k), ∀m ∈ M (ii) � R+×K ∥ Fνφ(λ, k) ∥2 | cν(λ) |−2 dλ dk < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (i) For F ∈ C∞ c (G, τν) we have the following inversion and Plancherel formulas F(g) = 1 2π � ∞ 0 � K e∗ λ,ν(k−1g)FνF(λ, k) | cν(λ) |−2 dλ dk + � λj∈Dν dν(λj) � K e∗ λj,ν(k−1g)FνF(λj, k) dk, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) � G ∥ F(g) ∥2 ν dgK = 1 2π � ∞ 0 � K ∥ FνF((λ, k) ∥2 ν| cν(λ) |−2 dλ dk+ � λj∈Dν dν(λj) � K < FνF(λj, k), FνF(−λj, k) >ν dk (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) (ii) The Fourier transform Fν extends to an isometry from L2 cont(G, τν) onto the space L2 σν(R+ ×K, | cν(λ) |−2 dλ dk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The first part of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 can be easily deduced from the inversion and Plancherel formulas for the spherical transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 8 Let C∞ c (G, τν, τν) denote the space of smooth compactly supported τν-radial functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The spherical transform of F ∈ C∞ c (G, τν, τν) is the C-valued function HνF defined by: HνF(λ) = 1 ν + 1 � G T r[Φν,λ(g−1)F(g))]dg, λ ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The inversion and the Plancherel formulas for the τ-spherical transform have been given explicitly in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For the convenience of the reader we give an elementary proof by using the Jacobi transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For F ∈ C∞ c (G, τν, τν) we have the following inversion and Plancherel formulas F(g) = 1 2π � +∞ 0 Φν,λ(g)HνF(λ) | cν(λ) |−2 dλ + � λj∈Dν Φν,λj(g)Hνf(λj) dν(λj), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) � G ∥ F(g) ∥2 HS dg = ν + 1 2π � +∞ 0 | HνF((λ) |2| cν(λ) |−2 dλ + (ν + 1) � λj∈Dν dν(λj) | HνF((λj) |2, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='4) In above ∥ ∥HS stands for the Hilbert-Schmidt norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let F ∈ C∞ c (G, τν, τν) and let fν be its scalar component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Using the integral formula (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2), the identity Φν,λ(at) = Φν,λ(a−t) = (cosh t)νφ(ρ−2,ν+1) λ (t) and the fact that ∆(t) = (2 cosh t)−2ν∆ρ−2,ν+1, we have HνF(λ) = � ∞ 0 fν(t)(cosh t)νφ(ρ−2,ν+1) λ (t) ∆(t) dt = � ∞ 0 fν(t)(22 cosh t)−νφ(ρ−2,ν+1) λ (t) ∆ρ−2,ν+1(t) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5) Thus the τν-spherical transform HνF may be written in terms of the Jacobi transform J α,β, with α = ρ − 2 and β = ν + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Namely, we have HνF(λ) = J ρ−2,ν+1[(22 cosh t)−νfν](λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We refer to (A5) in the Appendix for the definition of the Jacobi transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Now the theorem follows from the inversion and the Plancherel formulas for the Jacobi transform (A6), (A6’) and (A7) in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For the proof of the surjectivity statement in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 we shall need the following result Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let F ∈ C∞ c (G, τν) and Φ ∈ C∞(G, τν, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then we have Fν(F ∗ Φ)(λ, k) = HνΦ(λ)FνF(λ, k), λ ∈ C, k ∈ K, where the convolution is defined by (Φ ∗ F)(g) = � G Φν,λ(x−1g)F(x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let Φ ∈ C∞(G, τν, τν), v ∈ Vν, and set Fv = Φ(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' )v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then we have the following relation between the Fourier transform and the spherical transform FνFv(λ, k) = HνΦ(λ)τ(k−1)v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6) By definition Fν(F ∗ Φ)(λ, k) = � G � G eν λ(k−1g)Φ(x−1g)F(x)dxdg = � G dx � G eν λ(k−1xy)Φ(y)F(x)dy 9 Using the following cocycle relations for the Iwasawa function H(x) H(xy) = H(xκ(y)) + H(y), and κ(xy) = κ(xκ(y)), for all x, y ∈ G, we get the following identity eν λ(k−1xy) = e(iλ−ρ)H(x−1k)eν λ(κ−1(x−1k)y), from which we obtain Fν(Φ ∗ F)(λ, k) = � G e(iλ−ρ)H(x−1k) �� G eλ,ν(κ−1(x−1k)y)Φ(y)F(x) dy � dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Next, put hv(y) = Φ(y)v, v ∈ Vτν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6) implies � G eλ,ν(κ−1(x−1k)y)Φ(y)F(x) dy = Fν(hF (x))(λ, κ−1(x−1k)) = H(Φ)(λ)τν(κ−1(x−1k))F(x), from which we deduce Fν(Φ ∗ F)(λ, k) = H(Φ)(λ) � G e(iλ−ρ)H(x−1k)τν(κ−1(x−1k))F(x)dx, and the proposition follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We now come to the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (i) We may follow the same method as in [11] to prove the inversion formula (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) and the Plancherel formula (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We give an outline of the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let F ∈ C∞ c (G, τν) and consider the τν-radial function defined for any g ∈ G by Fg,v(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='w = � K < τν(k)w, v >ν F(gkx) dk, v being a fixed vector in Vν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then a straightforward calculation shows that HνFg,v(λ) = 1 ν + 1 < (Φν,λ ∗ F)(g), v >ν .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The inversion formula for the spherical transform together with T rFg,v(e) =< F(g), v >ν imply F(g) = 1 2π � ∞ 0 (Φν,λ ∗ F)(g) | cν(λ) |−2 dλ + � λj∈Dν (Φν,λj ∗ F)(g)dν(λj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' To conclude use the following result for the translated spherical function ( see [11] Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) Φν,λ(x−1y) = � K e−(iλ+ρ)H(y−1k)e(iλ−rho)H(x−1k)τν(κ(y−1k))τν(κ−1(x−1k)) dk, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='7) to get (Φν,λ ∗ F)(g) = � K e−(iλ+ρ)H(g−1k)τν(κ(g−1k))FνF(λ, k) dk, 10 and the inversion formula (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The proof of the Plancherel formula (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) is essentially the same as in the scalar case, so we omit it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Note that as a consequence of the Plancherel formula not involving the discrete series, we have � G ∥ F(g) ∥2 dgK = 1 π � ∞ 0 � K ∥ FνF(λ, k) ∥2 | cν(λ) |−2 dλ dk, for every F ∈ L2 cont(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (ii) We prove the surjectivity statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Suppose that there exists a function f in L2 σν(R+ × K, | cν(λ) |−2 dλ dk) such that � ∞ 0 � K < f(λ, k), FνF(λ, k) >| cν(λ) |−2 dλ dk = 0 for all F ∈ C∞ c (G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Changing F into F ∗ Φ where Φ ∈ C∞(G, τν, τν) and using Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1, we have � ∞ 0 � K < f(λ, k), FνF(λ, k) > Hνφ(λ) | cν(λ) |−2 dλ dk = 0 By the Stone-Weierstrass theorem, the algebra {HνΦ, Φ ∈ C∞(G, τν, τν)} is dense in C∞ e (R) the space of even continuous functions on R vanishing at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Therefore for every F ∈ C∞ c (G, τν) there is a set EF of measure zero in R such that � K < f(λ, k), FνF(λ, k) > dk = 0 for all λ not in EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The rest of the proof is based on an adaptation of the arguments given in [14] Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5, for the scalar case, and the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 is completed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 4 Fourier restriction estimate The main result of this section is the following uniform continuity estimate for the Fourier-Helgason restriction operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let ν ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' There exists a positive constant Cν such that for λ ∈ R\\{0} and R > 1, we have � � K ∥FνF(λ, k)∥2 νdk �1/2 ≤ Cν|cν(λ)|R1/2 � � G/K ∥F(g)∥2 ν dgK �1/2 , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) for every F ∈ L2(G, τν) with suppF ⊂ B(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' To prove this result we shall need estimates of the Harish-Chandra c-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' To this end we introduce the function bν(λ) defined on R by bν(λ) = \uf8f1 \uf8f2 \uf8f3 cν(λ) if ν−ρ+2 2 ∈ Z+ λ cν(λ) if ν−ρ+2 2 /∈ Z+ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Assume ν > ρ − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (i) The function bν(λ) has no zero in R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (ii) There exists a positive constant C such that for λ ∈ R, we have C−1(1 + λ2) 2ρ−4−ε(ν) 4 ≤| bν(λ) |−1≤ C(1 + λ2) 2ρ−4−ε(ν) 4 , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) 11 with ε(ν) = ±1 according to ν−ρ+2 2 /∈ Z+ or ν−ρ+2 2 ∈ Z+ Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (i) If ν−ρ+2 2 /∈ Z+, then bν(λ) = 2ρ+ν−iλΓ(ρ−1)Γ(iλ+1) Γ( iλ+ρ+ν 2 )Γ( iλ+ρ−ν−2 2 ), and clearly bν(λ) has no zero on R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' If ν−ρ+2 2 ∈ Z+ then bν(λ) a priori can have zero and pole at λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This is not the case, since lim λ→0 bν(λ) = (−1) ν−ρ+2 2 2ρ+νΓ(ρ − 1)( ν−ρ+2 2 )!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Γ( ρ+ν 2 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (ii) To prove the estimate (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) we shall use the following property of the Γ-function lim |z|→∞ Γ(z + a) Γ(z) z−a = 1, | arg(z) |< π − δ, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) where a is any complex number, and log is the principal value of the logarithm and δ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Assume first that ν−ρ+2 2 /∈ Z+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Using the duplicata formula for the function gamma Γ(2z) = 22z−2 √π Γ(z)Γ(z + 1 2), we rewrite bν(λ) as bν(λ) = 2ρ+ν−1 √π Γ( iλ+1 2 )Γ( iλ+2 2 ) Γ( iλ+ρ+ν 2 )Γ( iλ+ρ−ν−2 2 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It follows from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) that for every λ ∈ R, we have | bν(λ) |≤ C(1 + λ2)− 2ρ−5 4 and | bν(λ) |−1≤ C(1 + λ2) 2ρ−5 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The proof for the case ν−ρ+2 2 ∈ Z+ follows the same line as in the case ν−ρ+2 2 /∈ Z+, so we omit it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This finishes the proof of the Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let us recall from [1] an auxiliary lemma which will be useful for the proof of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let η be a positive Schwartz function on R whose Fourier transform has a compact support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For m ∈ R, set ηm(x) = � R η(t)(1 + |t − x|)m/2 dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' i) ηm is a positive C∞-function with C−1(1 + t2) m 2 ≤ ηm(t) ≤ C(1 + t2) m 2 , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='4) for some positive constant C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' ii) The Fourier transform of ηm has a compact support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In order to prove the Fourier restriction Theorem, we need to introduce the bundle valued Radon transform, see [9] for more informations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The Radon transform for F ∈ C∞ c (G, τν) is defined by RF(g) = eρH(g) � N F(gn)dn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 12 We set RF(t, k) = RF(kat).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then, using the Iwaswa decomposition G = NAK, we may rewrite the Helgason-Fourier transform as FνF(λ, k) = FR(RF(·, k))(λ), where FRφ(λ) = � R e−iλtφ(t) dt, is the Euclidean Fourier transform of φ a Vν-valued smooth function with compact support in R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We define on p the scalar product < X, Y >= 1 2T r(XY ) and denote by | | the corresponding norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It induces a distance function d on G/K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' By the Cartan decomposition G = K exp p, any g ∈ G may be written uniquely as g = k exp X, so that d(0, gK) =| X |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Define the open ball centred at 0 and of radius R by B(R) = {gK ∈ G/K;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' d(0, gK) < R}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let F ∈ C∞ 0 (G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' If supp F ⊂ B(R), then supp RF ⊂ [−R, R] × K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' As (see [[13], page 476] d(0, ketHnK) ≥| t |, k ∈ K, n ∈ N, t ∈ R it follows that supp RF ⊂ [−R, R] × K if supp F ⊂ B(R) Proof of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It suffices to prove the estimate (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) for functions F ∈ C∞ c (G, τν) supported in B(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It follows from the Plancherel formula (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) that � B(R) ∥ F(g) ∥2 ν dgK ≥ � K � R ∥ FνF(λ, k) ∥2 ν | cν(λ) |−2 dλ dk Therefore it is sufficient to show � K � R ∥ FνF(λ, k) ∥2 ν | cν(λ) |−2 dλ dk ≥ C | cν(λ) |−2 R � R ∥ FνF(λ, k) ∥2 ν dk, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5) fir some positive constant C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' By (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) we have | cν(λ) |−1≍ η 2ρ−3 2 (λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Therefore (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5) is equivalent to η 2ρ−3 2 (λ) R � K ∥ FνF(λ, k) ∥2 ν dk ≤ � K � R ∥ FνF(λ, k) ∥2 ν η 2ρ−3 2 (λ)dλ dk (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6) Let T be the tempered distribution on R defined by T := F−1 R η 2ρ−3 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2, T is compactly supported .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let R0 > 1 such that supp T ⊂ [−R0, R0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6) is equivalent to � K ∥ FR(T ∗ RF(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' , k))(λ) ∥2 ν dk ≤ CR � K � R FR(T ∗ RF(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' , k))(λ) ∥2 ν dλ dk, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='7) where ∗ denotes the convolution on R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' From suppT ⊂ [−R0, R0] and Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3, it follows that for any k ∈ K, supp (T ∗ RF(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' , k)) ⊂ [−(R + R0), R + R0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Thus � K ∥ FR(T ∗ RF(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' , k)(λ) ∥2 ν dk ≤ 2(R + R0) � K � R ∥ (T ∗ RF(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' k))(t) ∥2 ν dt dk Next use the Euclidean Plancherel formula to get (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='7), and the proof is finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' As a consequence of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1, we obtain the uniform continuity estimate for the Poisson transform Pν λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let ν ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' There exists a positive constant Cν such that for λ ∈ R\\{0}, we have sup R>1 � 1 R � B(R) ∥ Pν λf(g) ∥2 ν dgK �1/2 ≤ Cν |cν(λ)| ∥ f ∥L2(K,σν) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='8) for every f ∈ L2(K, σν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 13 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let F ∈ L2(G, τν) with supp F ⊂ B(R), and let f ∈ L2(K, σν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Since λ is real and τν is unitary, the Poisson transform and the restriction Fourier transform are related by the following formula � B(R) < Pν λf(g), F(g) >ν dg = � K < f(k), FνF(λ, k) >ν dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Thus | � B(R) < Pν λf(g), F(g) >ν dg | ≤ ∥f∥L2(K,σν)( � K ∥ FνF(λ, k) ∥2 ν dk) 1 2 ≤ Cν|cν(λ)|R1/2 ∥ f ∥L2(K,τν)∥ F ∥L2(G,τν), by the restriction Fourier theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Taking the supermum over all F with ∥ F ∥L2(G,τν)= 1, the corollary follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 5 Asymptotic expansion for the Poisson transform In this section we give an asymptotic expansion for the Poisson transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We first start by establishing some intermediate results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let L2 λ(K, σν) denote the finite linear span of the functions f g λ,v : k �−→ f g λ,v(k) = e(iλ−ρ)H(g−1k)τ −1 ν (κ(g−1k))v, g ∈ G, v ∈ Vν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For λ ∈ R \\ {0}, ν ∈ N the space L2 λ(K, σν) is a dense subspace of L2(K, σν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' As λ ∈ R \\ {0}, the density is just a reformulation of the injectivity of the Poisson transform Pν,λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let λ ∈ R \\ {0}, ν ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then there exists a unique unitary isomorphism U ν λ on L2(K, σν) such that : U ν λ f g λ,v = f g −λ,v, g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Moreover, for f1, f2 ∈ L2(K, σν), we have Pν λF1 = Pν −λF2 if and only if U ν λF1 = F2 ( i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' U ν λ = (Pν −λ)−1 ◦ Pν λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The proof is the same as in the scalar case so we omit it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We now introduce the function space B∗(G, τν) on G, consisting of functions F in L2 loc(G, τν) satisfying ∥ F ∥B∗(G,τν)= sup j∈N [2− j 2 � Aj ∥ F(g) ∥2 ν dgK] < ∞, where A0 = {g ∈ G;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' d(0, g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0) < 1} and Aj = {g ∈ G;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 2j−1 ≤ d(0, g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0) < 2j}, for j ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' One could easily show that ∥ F ∥B∗(G,τν)≤∥ F ∥∗≤ 2 ∥ F ∥B∗(G,τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We define an equivalent relation on B∗(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For F1, F2 ∈ B∗(G, τν) we write F1 ≃ F2 if lim R→+∞ 1 R � B(R) ∥ F1(g) − F2(g) ∥2 ν dg = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Note that by using the polar decomposition we see that F1 ≃ F2 if lim R→+∞ 1 R � K×[0,R] ∥ F1(ketH)) − F2(ketH)) ∥2 ν ∆(t) dt dk = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We now state the main result of this section 14 Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let ν ∈ N, λ ∈ R\\{0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For f ∈ L2(K, σν) we have the following asymptotic expansions for the Poisson transform in B∗(G, τν) Pλ,νf(x) ≃ τ −1 ν (k2(x))[cν(λ)e(iλ−ρ)(A+(x)f(k1(x)) + cν(−λ)e(−iλ−ρ)(A+(x))U ν λf(k1(x))], (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) where x = k1(x)eA+(x)k2(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Most of the proof of the above theorem consists in proving the following Key Lemma, giving the asymptotic ex- pansion for the translates of the τν-spherical function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' KEY LEMMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For λ ∈ R \\ {0}, g ∈ G and v ∈ Vν, we have the following asymptotic expansion in B∗(G, τν) Φν,λ(g−1x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' v ≃ τ −1 ν (k2(x)) � s∈{±1} cν(sλ)e(isλ−ρ)A+(x)f g sλ,v(k1(x)), x = k1(x)eA+(x)k2(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We first note that both side of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) depend continuously on f ∈ L2(K, σν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This can be proved in the same manner as in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Therefore we only have to prove that the asymptotic expansion (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) holds for f ∈ L2 λ(K, σν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let f = f g λ,v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then according to [[11], Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3], we have Pν λf(x) = Φν,λ(g−1x)v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The theorem follows from the Key lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' As a consequence of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 we obtain the following result giving the behaviour of the Poisson integrals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For any f ∈ L2(K, σν) we have the Plancherel-Poisson formula lim R→+∞ 1 R � B(R) ∥ Pν λf(g) ∥2 ν dgK = 2 | cν(λ) |2 ∥ f ∥2 L2(K,σν) (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let ν ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' There exists a positive constant Cν such that for any λ ∈ R \\ {0}, we have C−1 ν | cν(λ) | ∥ f ∥L2(K,σν)≤∥ Pλ ν f ∥∗≤ Cν | cν(λ) | ∥ f ∥L2(K,σν), (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) for every f ∈ L2(K, σν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We define for f ∈ L2(K, σν) Sν λf(x) := τ −1 ν (k2(x))[cν(λ)e(iλ−ρ)(A+(x)f(k1(x)) + cν(−λ)e(−iλ−ρ)(A+(x))U ν λf(k1(x))], x = k1(x)eA+(x)k2(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' By the unitarity of Uλ, we have 1 R � B(R) ∥Sν λf(g)∥2dgK = 2|cν(λ)|2∥f∥2 L2(K,τν) � 1 R � R 0 e−2ρt∆(t)dt � + 2|cν(λ)|2ℜ � < f, Uλf >L2(K,σν) 1 R � R 0 e2(iλ−ρ)t∆(t)dt � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' From lim R→+∞ 1 R � R 0 e−2ρt∆(t)dt = 1, and lim R→+∞ 1 R � R 0 e2(iλ−ρ)t∆(t)dt = 0, we deduce that lim R→+∞ 1 R � B(R) ∥ Sν λf(g) ∥2 ν dgK = 2 | cν(λ) |2∥ f ∥2 L2(K,σν) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='4) 15 Next write 1 R � B(R) ∥ Pν λf(g) ∥2 ν dgK = 1 R � B(R) (∥ Sν λf(g) ∥2 ν + ∥ Pν λf(g) − Sν λf(g) ∥2 ν + 2Re[< Pν λf(g) − Sν λf(g), Sν λf(g) >])dgK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The estimate (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) then follows from (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='4), Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 and the Schwarz inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The right hand side of the estimate (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) has already been proved, see corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The left hand side of the estimate (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) obviously follows from the estimate (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This finishes the proof of the proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let f1, f2 ∈ L2(K, σν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then using the polarization identity as well as the estimate (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2), we get lim R→+∞ 1 R � B(R) < Pν λf1(g), Pν λf2(g) >ν dgK = 2 | cν(λ) |2< f1, f2 >L2(K,σν) (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5) 6 Proof of the main results In this section we shall prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 on the L2-range of the vector Poisson transform and Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2 charac- terizing the image Qν λ(L2(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 The L2-range of the Poisson transform We first recall some results of harmonic analysis on the homogeneous vector bundle K ×M Vν associated to the representation σν of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let �K be the unitary dual of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For δ ∈ �K let Vδ denote a representation space of δ with dδ = dim Vδ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We denote by �K(σν) the set of δ ∈ �K such that σν occurs in δ |M with multiplicity mδ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The decomposition of L2(K, σν) under K (the group K acts by left translations on this space) is given by the Frobenius reciprocity law L2(K, σν) = � δ∈� K(σν) Vδ ⊗ HomM(Vν, Vδ), where v ⊗L, for v ∈ Vδ, L ∈ HomM(Vν, Vδ) is identified with the function (v ⊗L)(k) = L∗(δ(k−1)v), where L∗ denotes the adjoint of L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For each δ ∈ �K(σν) let (Lj)mδ j=1 be an orthonormal basis of HomM(Vν, Vδ) with respect to the inner product < L1, L2 >= 1 ν + 1T r(L1L∗ 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let {v1, · · · , vdδ} be an orhonormal basis of Vδ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then f δ ij : k → � dδ ν + 1L∗ i δ(k−1)vj, 1 ≤ i ≤ mδ, 1 ≤ j ≤ dδ, δ ∈ �K(σ) form an orthonormal basis of L2(K, σν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For f ∈ L2(K, σν) we have the Fourier series expansion f(k) = � δ∈� K(σ) mδ � i=1 dδ � j=1 aδ ijf δ ij(k) with ∥ f ∥2 L2(K,σ)= � δ∈� K(σ) mδ � i=1 dδ � j=1 | aδ ij |2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 16 We define for δ ∈ �K(σ) and λ ∈ C, the generalized Eisenstein integral ΦL λ,δ(g) = � K e−(iλ+ρ)H(g−1k)τν(κ(g−1k))L∗δ(k−1)dk, L ∈ HomM(Vν, Vδ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It is easy to see that ΦL λ,δ satisfies the following identity ΦL λ,δ(k1gk2) = τν(k−1 2 )ΦL λ,δ(g)δ(k−1 1 ), k1, k2 ∈ K, g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We now prove an asymptotic estimate for the generalized Eisenstein integrals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let ν ∈ N, λ ∈ R \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then for δ ∈ �K(σν), T, S ∈ HomM(Vν, Vδ) we have lim R→+∞ 1 R � B(R) Tr � ΦT λ,δ(g)∗ΦS λ,δ(g) � dgK = 2 | cν(λ) |2 Tr(T S∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' By definition we have lim R→+∞ 1 R � B(R) Tr � ΦT λ,δ(g)∗ΦS λ,δ(g) � dgK = dδ � j=1 lim R→+∞ 1 R � B(R) < ΦS λ,δ(g)vj, ΦT λ,δ(g)vj >ν dgK Noting that ΦT λ,δ(g)vj is the Poisson transform of the function k �→ L∗δ(k−1)vj and using (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5), we get lim R→+∞ 1 R � B(R) Tr � ΦT λ,δ(g)∗ΦS λ,δ(g) � dgK = 2 | cν(λ) |2 dδ � j=1 � K < S∗δ(k−1)vj, T ∗δ(k−1)vj >ν dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Hence Schur Lemma lead us to conclude that lim R→+∞ 1 R � B(R) Tr � ΦT λ,δ(g)∗ΦS λ,δ(g) � dgK = 2 | cν(λ) |2 Tr(T S∗), and the proof is finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Noting that T r( � ΦT λ,δ(g)∗ΦS λ,δ(g) � = T r( � ΦT λ,δ(a)∗ΦS λ,δ(a) � , g = k1 a k2, it follows from (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) that lim R→+∞ 1 R � R 0 T r � ΦT λ,δ(at)∗ΦS λ,δ(at) � ∆(t)dt =| cν(λ) |2 Tr(T S∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (i) The estimate (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) implies that the Poisson transform Pλ,ν maps L2(K, σν) into Eλ(G, τν) and that the estimate (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (ii) We now prove that the Poisson transform maps L2(K, σν) onto E2 λ(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let F ∈ E2 λ(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Since λ ∈ R \\ {0}, we know by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 that there exists a hyperfunction f ∈ C−ω(K, σν) such that F = Pλ,νf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let f = � δ∈� K(σ) dδ � j=1 mδ � i=1 aδ ijf δ ij, be the Fourier series expansion of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then we have F(g) = � δ∈� K(σ) � dδ ν + 1 dδ � j=1 mδ � i=1 aδ ijΦLi λ,δ(g)vj in C∞(G, V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' By the Schur relations,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' we have � K < ΦLi λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='δ(kat)vj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' ΦLm λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='δ′(kat)vn >ν dk = � 0 if δ ≁ δ′ 1 dδ T r(ΦLm λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='δ′ (at))∗ΦLi λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='δ(at) < vj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' vn > if δ′ = δ 17 Therefore � K ∥ F(kat) ∥2 dk = 1 ν + 1 � δ∈� K(σ) dδ � j=1 � 1≤i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='j≤mδ aδ ijaδ mjT r[(ΦLm λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='δ (at))∗ΦLi λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='δ(at)] = 1 ν + 1 � δ∈� K(σ) dδ � j=1 T r \uf8ee \uf8f0 � 1≤i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='m≤mδ (aδ mjΦLm λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='δ (at))∗(aδ ijΦLi λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='δ(at) \uf8f9 \uf8fb = 1 ν + 1 � δ∈� K(σ) dδ � j=1 ∥ mδ � i=1 aδ ijΦLi λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='δ(at) ∥2 HS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let Λ be a finite subset in �K(σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Since ∥ F ∥∗< ∞, it follows that, for any R > 1 we have ∞ >∥ F ∥2 ∗≥ 1 ν + 1 � δ∈Λ dδ � j=1 1 R � R 0 ∥ mδ � i=1 aδ ijΦLi λ,δ(at) ∥2 HS ∆(t) dt By (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) we have lim R→∞ 1 R � R 0 ∥ mδ � i=1 aδ ijΦLi λ,δ(at) ∥2 HS ∆(t) dt = lim R→∞ � 1≤i,m≤mδ aδ ijaδ mj 1 R � R 0 T r[(ΦLm λ,δ (at))∗ΦLi λ,δ(at)] ∆(t)dt = 2 | cν(λ) |2 � 1≤i,m≤mδ aδ ijaδ mjT r(LiL∗ m) = 2(ν + 1) | cν(λ) |2 mδ � i=1 | aδ ij |2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Thus ∞ >∥ F ∥2 ∗≥| cν(λ) |2 � δ∈Λ dδ � j=1 mδ � i=1 | aδ ij |2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Since Λ is arbitrary, it follows that | cν(λ) |2 � δ∈� K(σ) dδ � j=1 mδ � i=1 | aδ ij |2≤∥ F ∥2 ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This shows that f ∈ L2(K, σν) with | cν(λ) |∥ f ∥L2(K,σν)≤∥ Pν λf ∥∗ and the proof of the theorem is completed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2 The L2-range of the generalized spectral projections We now proceed to the poof of the second main result of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let F ∈ L2 c(G, τν) ∩ C∞(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It follows from the definition ( see (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='8)) that the operator Qν λ may be written as Qν λF(g) =| cν(λ) |−2 Pν λ(FνF(λ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' ))(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) Using Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 we deduce that sup R>1 1 R � B(R) ∥ Qν λF(g) ∥2 ν dgK ≤ Cν | cν(λ) |−2 � K ∥ FνF(λ, k) ∥2 ν dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The above inequality and the Plancherel formula (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='4) imply � ∞ 0 (sup R>1 1 R � B(R) ∥ Qν λF(g) ∥2 ν dgK) dλ ≤ Cν � ∞ 0 � K ∥ FνF(λ, k) ∥2 ν| cν(λ) |−2 dk dλ ≤ Cν ∥ F ∥2 L2(G,τ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 18 This prove the right hand side of the inequality (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' From (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6) we have lim R→∞ 1 R � B(R) ∥ Qν λF(g) ∥2 ν dgK = 2 | cν(λ) |−2 � K ∥ FνF(λ, k) ∥2 ν dk, and since for all R > 1 1 R � B(R) ∥ Qν λF(g) ∥2 dgK ≤ Cν | cν(λ) |−2 � K ∥ FνF(λ, k) ∥2 dk, a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' λ ∈ (0, ∞), we may apply the Lebesgue’s dominated convergence theorem to get lim R→∞ � ∞ 0 � 1 R � B(R) ∥ Qν λF(g) ∥2 ν dgK � dλ = 2 ∥ F ∥2 L2(G,τν) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It follows from the above equality that C ∥ F ∥2 L2(G,τν)≤ � ∞ 0 (sup R>1 � B(R) ∥ Qν λF(x) ∥2 dx) dλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This complete the proof of the inequality (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We now prove that Qν λ maps L2 c(G, τν) onto E2 λ(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let Fλ ∈ E2 λ(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then we have sup R>1 1 R � B(R) ∥ Fλ(g) ∥2 ν dgK < ∞, for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' λ ∈ (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' By Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1, there exists fλ ∈ L2(K, σν) such that Fλ(g) =| cν(λ) |−2 Pν λfλ(g) with sup R>1 1 R � B(R) ∥ Fλ(g) ∥2 ν dgK ≥ C−1 ν | cν(λ) |−2 � K ∥ fλ(k) ∥2 dk Integrating the both side of the above inequality over (0, ∞), we get ∞ >∥ Fλ ∥2 ∗≥ C−1 ν � ∞ O � K ∥ fλ(k) ∥2 ν | cν(λ) |−2 dk dλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It now follows from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1, that there exists F ∈ L2 c(G, τν) such that FνF(λ, k) = fλ(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Henceforth Fλ(g) =| cν(λ) |−2 Pλ,ν(FνF(λ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' )(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This finishes the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 7 Proof of the Key Lemma In this section we prove the Key Lemma of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' To this end we need to establish some auxiliary results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We first prove an asymptotic formula for the τν-spherical function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let λ ∈ R \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For any v ∈ Vν we have Φν,λ(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' v ≃ � s∈{±1} cν(sλ)e(isλ−ρ)A+(g)τ −1 ν (κ1(g)κ2(g)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' v, (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) g = κ1(g)eA+(g)κ2(g) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Since ∆(t) ≤ e2ρ t, we get 1 R � B(R) ∥ e(iλ−ρ)A+(g)τ −1 ν (κ1(g)κ2(g)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' v ∥2 dg = 1 R ∥ v ∥2 � R 0 e−2ρ t∆(t)dt ≤∥ v ∥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 19 This shows that the right hand side of (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) belongs to B∗(G, τν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Since λ ∈ R \\ {0}, we may use the identity (A3) to write ϕν,λ(t) − � s∈{±1} cν(sλ)e(isλ−ρ)t = � s∈{±1} cν(sλ) � (2 cosh t)νΨρ−2,ν+1 sλ (t) − e(isλ−ρ)t� = � s∈{±1} cν(sλ)e(isλ−ρ)t � (1 + e−2t)νe(ρ+ν−isλ)tΨρ−2,ν+1 sλ (t) − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It follows from (A2’) that ϕν,λ(t) − � s∈{±1} cν(sλ)e(isλ−ρ)t = � s∈{±1} cν(sλ)e(isλ−ρ)t � (1 + e−2t)ν − 1) + e−2tEsλ(t) � , where | Esλ(t) |≤ 2νC if t ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Therefore | ϕν,λ(t) − � s∈{±1} cν(sλ)e(isλ−ρ)t |≤ Cν,λe−ρe−2t, if t ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This together with | ϕν,λ(t) − � s∈{±1} cν(sλ)e(isλ−ρ)t |≤ Cν,λe−ρt, for t ∈ [0, 1], imply that lim R→∞ 1 R � B(R) ∥ Φν,λ(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' v − � s∈{±1} cν(sλ)e(isλ−ρ)A+(g)τ −1(κ1(g)κ2(g)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' v ∥2 ν dgK = =∥ v ∥2 lim R→∞ 1 R � R 0 | ϕν,λ(t) − � s∈{±1} cν(sλ)e(isλ−ρ)t |2 ∆(t) dt = 0, and the proof is finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let g ∈ G, k ∈ K and t a non negative real number .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then we have 0 ≤ A+(g−1k exp(tH)) − H(g−1k exp(tH)) ≤ 1+ | g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0 | 1− | g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0 |e−2t, (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let g−1 = � a b c d, � and k == � u 0 O v, � , where a, b, c and d are n×n, n×1, 1×n and 1×1 matrices respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' A direct computation yields g−1k exp(tH) = � ∗ ∗ ∗ c1 d1 � , where c1 = c u � cosh t 0 0 In−1 � and d1 = sinh t cue1 + cosh t dv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' By (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1) we have eH(g−1k exp(tH)) = et | cue1 + dv |, and eA+(g−1k exp(tH)) =| sinh t cue1 + cosh t dv | +(| sinh t cue1 + cosh t dv |2 −1) 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 20 From eA+(g−1k exp(tH))−H(g−1k exp(tH)) = e−t | cue1 + dv |[| sinh t cue1 + cosh t dv | +(| sinh t cue1 + cosh t dv |2 −1) 1 2 ], together with | sinh t cue1 + cosh t dv | +(| sinh t cue1 + cosh t dv |2 −1) 1 2 ≤ 2 | sinh t cue1v−1 + cosh t d | ≤| cue1v−1 + d | et+ | d − cue1v−1 | e−t we deduce that e(A+(g−1k exp(tH))−H(g−1k exp(tH)) ≤ 1 + | d − cue1v−1 | | cue1v−1 + d |e−2t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Noting that (g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0)∗ = −(d−1c), and k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='e1 = ue1v−1, we get e(A+(g−1k exp(tH))−H(g−1k exp(tH)) ≤ 1 + | 1+ < g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0, k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='e1 >| | 1− < g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0, k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='e1 >|e−2t ≤ 1 + 1+ | g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0 | 1− | g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0 |e−2t, from which we deduce (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2), and the proof of the lemma is finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof of the Key Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Since B∗(G, τν) is G-invariant, we may apply Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='1 to get Φν,λ(g−1x)v ≃ τ −1 ν (κ1(g−1x)κ2(g−1x) � s∈{±} cν(sλ)e(isλ−ρ)A+(g−1x)v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Thus it suffices to show that τ −1 ν (κ1(g−1x)κ2(g−1x) � s∈{±} cν(sλ)e(isλ−ρ)A+(g−1x)v ≃ τ −1 ν (k2(x)) � s∈{±1} cν(sλ)e(isλ−ρ)A+(x)f g sλ,v(k1(x)), (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) Note that τ −1 ν [k1(g−1k1(x)eA+(x)k2(x))k2(g−1k1(x)eA+(x)k2(x))] = τ −1 ν [k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))k2(x))], x = k1(x)eA+(x)k2(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Henceforth (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='3) is equivalent to τ −1 ν [k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))] � s∈{±1} cν(λ)e(isλ−ρ)A+(g−1k1(x)eA+(x)) v ≃ � s∈{±1} cν(λ)e(isλ−ρ)A+(x)f g sλ,v(k1(x)) (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='4) We write the left hand side of (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='4) as � s∈{±1} cν(λ)e(isλ−ρ)A+(x)f g sλ,v(k1(x)) + rg(x)v, where rg(x) =τ −1 ν [k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))] � s∈{±1} cν(λ)e(isλ−ρ)A+(g−1k1(x)eA+(x)) − � s∈{±1} cν(λ)e(isλ−ρ)[A+(x)+H(g−1k1(x))]τ −1 ν (κ(g−1k1(x)), x ∈ G (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='5) 21 To finish the proof we show that for each g ∈ G, rg ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Noting that H(g−1k1(x)eA+(x)) = H(g−1k1(x)) + A+(x), we rewrite rg as rg(x) = [τ −1 ν (k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))) − τ−1 ν (κ(g−1k1(x))] � s∈{±1} cν(λ)e(isλ−ρ)H(g−1k1(x)eA+(x)) + τ −1 ν (k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))) \uf8eb \uf8ed � s∈{±1} cν(λ)[e(isλ−ρ)A+(g−1k1(x)eA+(x))) − e(isλ−ρ)H((g−1k1(x)eA+(x))] \uf8f6 \uf8f8 =: Ig(x) + Jg(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Using the following Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Let g = � a b c d � ∈ Sp(n, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then we have τν(κ1(g)κ2(g)) = τν( d | d |) (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6) τν(κ(g)) = τν( ce1 + d | ce1 + d |) (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='7) lim R→∞ τν(κ1(g exp(RH))κ2(g exp(RH))) = τν(κ(g)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='8) we easily see that Igv ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We have Jg(x) =τ −1 ν (k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x)))e(isλ−ρ)H(g−1k1(x)eA+(x)) � s∈{±1} cν(λ) � e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 � As τν is unitary we have 1 R � K×[0,R] ∥ Jg(ketH)v ∥2 ν ∆(t)dt dk ≤∥ v ∥2 2 | cν(λ) |2 R � K×[0,R] e−2ρH(g−1ketH) | e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |2 From | e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |≤ C(| λ | +ρ) | A+(g−1k1(x)eA+(x)) − H(g−1k1(x)eA+(x) | together with Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2 we get � K×[0,R] e−2ρH(g−1ketH) | e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |2 ≤ � C(| λ | +ρ)1+ | g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0 | 1− | g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='0 | �2 1 R � K×[0,R] e−2ρH(g−1k)e−2(ρ+2t)∆(t) dk dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 22 As � K e−2ρH(g−1k) dk = 1 and ∆(t) ≤ 2ρe2ρt we obtain lim R→∞ 1 R � K×[0,R] e−2ρH(g−1ketH) | e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |2= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This shows that Jg ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Therefore we have proved that for each g ∈ G, rg ≃ 0 as to be shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' It remain to prove Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Proof of Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' If g = � a b c d � = � u1 0 0 v1 � at � u2 0 0 v2 � with respect to the Cartan decomposition G = KAK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then we easily see that d = cosh t v1v2 and (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Analogously if g = � a b c d � = � u 0 0 v � at n with respect to the Iwasawa decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then from g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='e1 = � ae1 + b ce1 + d � = et � u v � we get et v = ce1 + d and (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='7) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' We have g exp(RH) = � ∗ ∗∗ ∗ ∗ ∗ sinh Re1 + cosh Rd � Then (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='6) imply that τν(κ1(g)κ2(g)) = τν( tanh Rce1+d |tanh Rce1+d|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Thus limR→∞ τν(κ1(g)κ2(g)) = τν( ce1+d |ce1+d|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' This finishes the proof of Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='2, and the proof of the Key Lemma is completed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 8 Appendix In this section we collect some results on the Jacobi functions, referring to [19] for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For α, β, λ ∈ C;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' α ̸= −1, −2, · · · and t ∈ R, the Jacobi function is defined by φ(α,β) λ (t) = 2F1(iλ + ρα,β 2 , −iλ + ρα,β 2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' α + 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' − sinh2 t), where 2F1 is the Gauss hypergeometric function and ρα,β = α + β + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The Jacobi function φ(α,β) λ is the unique even smooth function on R which satisfy φ(α,β) λ (0) = 1 and the differential equation { d2 dt2 + [(2α + 1) coth t + (2β + 1) tanh t] d dt + λ2 + ρ2 α,β}φ(α,β) λ (t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (A1) For λ /∈ −iN another solution Ψα,β λ of (A1) such that Ψα,β λ (t) = e(iλ−ρα,β)t(1 + ◦(1)), as t → ∞ (A2) is given by Ψα,β λ (t) = (2 sinh t)iλ−ρα,β 2F1(ρα,β − iλ 2 , β − α + 1 − iλ 2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 1 − iλ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' − 1 sinh2 t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Moreover there exists a constant C > 0 such that for all λ ∈ R and all t ≥ 1 we have Ψα,β λ (t) = e(iλ−ρα,β)t(1 + e−2tΘλ(t)), with | Θλ(t) |≤ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (A2’) For λ /∈ iZ, we have φ(α,β) λ (t) = � s=±1 cα,β(sλ)Ψα,β sλ (t) (A3) 23 where cα,β(λ) = 2ρα,β−iλ Γ(α + 1)Γ(iλ) Γ( iλ+ρα,β 2 )Γ( iλ+α−β+1 2 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For ℜ(iλ) > 0, the asymptotic behaviour of φ(α,β) λ as t → ∞ is then given by lim t→∞ e(ρα,β−iλ)tφ(α,β) λ (t) = cα,β(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (A4) Let De(R) denote the space of even smooth function with compact support on R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' For f ∈ De(R), the Fourier-Jacobi transform J α,βf (λ ∈ C) is defined by J α,βf(λ) = � ∞ 0 f(t)φ(α,β) λ (t)∆α,β(t) dt, (A5) where ∆α,β(t) = (2 sinh t)2α+1(2 cosh t)2β+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In the sequel, we assume that α > −1, β ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Then the meromorphic function cα,β(−λ)−1 has only simple poles for ℑλ ≥ 0 which occur in the set Dα,β = {λk = i(| β | −α − 1 − 2k);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' k = 0, 1, · · · , | β | −α − 1 − 2k > 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (If | β |≤ α + 1, then Dα,β is empty).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' The following inversion and Plancherel formulas for the Jacobi transform hold for every f ∈ De(R): f(t) = 1 2π � ∞ 0 (J α,βf)(λ) φ(α,β) λ (t) | cα,β(λ) |−2 dλ + � λk∈Dα,β dk(J α,βf)(λk) φ(α,β) λk (t), (A6) � ∞ 0 | f(t) |2 ∆(t) dt = 1 2π � ∞ 0 | (J α,βf)(λ) |2 | cα,β(λ) |−2 dλ + � λk∈Dα,β dk | (J α,βf)(λk) |2 (A6’) where dk = −i Resλ=λk(cα,β(λ)cα,β(−λ))−1, is given explicitly by dk = (β − α − 2k − 1)2−2(α+β)Γ(α + k + 1)Γ(β − k) Γ2(α + 1)Γ(β − α − k)k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (A7) References [1] Anker,J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=': A basis inequality for Scattering Theory for Riemannian Symmetric Spaces of the Noncompact Type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 113 (3), 391-398 (1991) [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Agmon, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Hormander, Asymptotic properties of solutions of differential equations with simple characteristics, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Analyse Math, 30 (1976), 1-38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Boussejra, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Intissar, Caractérisation des integrales de Poisson-Szego de L2(∂Bn) dans la boule de Bergman Bn, n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 318 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Boussejra, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Intissar, L2-concrete Spectral Analysis of the Invariant Laplacian in the Unit Complex Ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 160 (1998), 115-140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Boussejra, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Sami Characterization of the Lp-range of the Poisson transform in Hyperbolic spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Lie Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 12 (2002), 1-14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 24 [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Boussejra, Boundary behavior of Poisson integrals on Boundaries of Symmetric Spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Lie Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 21 (2011), 243-261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Boussejra, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Ourchane, Characterization of the Lp-range of the Poisson Transform On the Octonionic Plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Lie Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 28 (2018) 805-828.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Boussejra, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Imesmad, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Ouald Chaib, L2-Poisson integral representations of eigensections of invariant differential operators on a homogeneous line bundle over the complex Grassmann manifold SU(r, r +b)/S(U(r)× U(r + b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Ann Glob Anal Geom 61, 399–426 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [9] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Branson, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Olafsson, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Schlichtkrull, A bundle-valued Radon transform with applications to invariant wave equations, Quart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Oxford (2) 45 (1994), 429-461.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [10] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Bray, Aspects of harmonic analysis on real hyperbolic space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Fourier analysis (Orono, ME, 1992), Lecture Notes in Pure and Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 157, Dekker, New York, 1994, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 77-102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [11] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Camporesi, The Helgason Fourier transform for homogeneous vector bundles over Riemannian symmetric spaces, Pacific J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 179 (1997) 263–300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [12] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' van Djick, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Pasquale, Harmonic Analysis on Vector bundles over Sp(1, n)/Sp(1) × Sp(n), L’Enseignement Mathématique, t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 45 (1999), 219-252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Helgason, Groups and Geometric Analysis;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Integral geometry, Invariant Differential operators and Spherical Functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Academic Press, New York 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Helgason, Groups and Geometric Analysis, volume 83 of Mathematical Surveys and Monographs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=', Providence, RI, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Ionescu, On the Poisson transform on symmetric spaces of rank one, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 174 (2000), no 2,513-523.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [16] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Kaizuka, A characterization of the L2-range of the Poisson transform related to Strichartz conjecture on symmetric spaces of noncompact type, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 303 (2016) 464-501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [17] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Kashiwara, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Kowata, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Minemura, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Okamoto, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Oshima, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (2) 111 (1980), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 3, 589-608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Knapp, Representation Theory of Semisimple Groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' An overview based on Examples, Princeton Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='36, Princeton Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Press, Princeton, NJ, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [19] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In: Askey, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=', Koorn- winder, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=', Schempp, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' ), Special functions: Group theoretical aspects and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Dordrecht: Reidel Publishing Company, 1984, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 1–85 [20] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Kumar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Ray, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Sarkar, Characterization of almost Lp-eigenfunctions of the Laplace-Beltrami operator, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 366 (2014), 3191-3225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [21] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Kumar, Fourier restriction theorem and characterization on weak L2-eigenfunctions of the Laplace-Beltrami operator, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 266 (2014) 5584–5597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [22] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Lohoué and Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Rychner, Some function spaces on symmetric spaces related to convolution operators, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 55 (1984), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 2, 200-219.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 25 [23] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Olbrich, Die Poisson-transformation für homogene Vektorbündel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' PhD thesis, Humboldt-Unversität zu Berlin, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [24] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Sjögren, Characterization of Poisson integrals on symmaetric spaces, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Scand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 49(1981), no 2, 229-249.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [25] R S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Strichartz, Harmonic Analysis as Spectral Theory of Laplacians, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 87 (1991) 51-148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [26] R, Takahashi, Fonctions sphériques dans les groupes Sp(n, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' In J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Faraut (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' ),Théorie du potentiel et analyse harmonique, Lecture Notes in Mathematics 404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Springer Verlag, Berlin 218-238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [27] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' van der Ven, Vector valued Poisson transforms on Riemannian symmetric spaces of rank one, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 119 (1994), 358–400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Yang, Poisson transform on vector bundles, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 350 (1998), 857-887.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} +page_content=' 26' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf'} diff --git a/9dAyT4oBgHgl3EQfdPeW/content/2301.00299v1.pdf b/9dAyT4oBgHgl3EQfdPeW/content/2301.00299v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..e0bc5e3861bed4f68de89b2b19b82ba8e00d08d9 --- /dev/null +++ b/9dAyT4oBgHgl3EQfdPeW/content/2301.00299v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5d9d344411b84209f769536e243eccc2f8e15260d659ff4b7feb390783776ee0 +size 2019813 diff --git a/9dAyT4oBgHgl3EQfdPeW/vector_store/index.faiss b/9dAyT4oBgHgl3EQfdPeW/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..cc6aa30fc0c20f61d542d2e17294515ce825e290 --- /dev/null +++ b/9dAyT4oBgHgl3EQfdPeW/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a3941fbe1257c57c9e55aadd42a568e2c253742236113d10d772ec4bf54334a8 +size 3014701 diff --git a/A9AzT4oBgHgl3EQfv_5R/content/2301.01715v1.pdf b/A9AzT4oBgHgl3EQfv_5R/content/2301.01715v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..910eee051627de31b46d740a8864a447dad2b36c --- /dev/null +++ b/A9AzT4oBgHgl3EQfv_5R/content/2301.01715v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b8182638d5d7e925d82e53c3b35e7606670147e90e45f203387462176149d263 +size 1856310 diff --git a/A9AzT4oBgHgl3EQfv_5R/vector_store/index.faiss b/A9AzT4oBgHgl3EQfv_5R/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..a35566c815b1bcfb6e843e06e81eb76d0fc5f8d8 --- /dev/null +++ b/A9AzT4oBgHgl3EQfv_5R/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e418626cafc7c72992510d69d7ec7a5d44cf531391bc06f7ac21f49545ec9598 +size 2097197 diff --git a/A9AzT4oBgHgl3EQfv_5R/vector_store/index.pkl b/A9AzT4oBgHgl3EQfv_5R/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..4561a387d33c591bf5c20832983b9b9c783ae879 --- /dev/null +++ b/A9AzT4oBgHgl3EQfv_5R/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9d68f002bbdc73edd3dd14f04a207878fe866aca162a02b668385b3e2d94f048 +size 78789 diff --git a/AdE0T4oBgHgl3EQfxgLI/content/tmp_files/2301.02648v1.pdf.txt b/AdE0T4oBgHgl3EQfxgLI/content/tmp_files/2301.02648v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..ca51f5f10d93e58fb0765cfb7abf871d73348041 --- /dev/null +++ b/AdE0T4oBgHgl3EQfxgLI/content/tmp_files/2301.02648v1.pdf.txt @@ -0,0 +1,2950 @@ +Climate change heterogeneity: +A new quantitative approach +∗ +Mar´ıa Dolores Gadea Rivas † +University of Zaragoza +Jes´us Gonzalo ‡ +U. Carlos III de Madrid +July 10, 2022 +Abstract +Climate change is a non-uniform phenomenon. +This paper proposes a new +quantitative methodology to characterize, measure and test the existence of +climate change heterogeneity. It consists of three steps. First, we introduce a +new testable warming typology based on the evolution of the trend of the whole +temperature distribution and not only on the average. Second, we define the +concepts of warming acceleration and warming amplification in a testable for- +mat. And third, we introduce the new testable concept of warming dominance +to determine whether region A is suffering a worse warming process than region +B. Applying this three-step methodology, we find that Spain and the Globe ex- +perience a clear distributional warming process (beyond the standard average) +but of different types. In both cases, this process is accelerating over time and +asymmetrically amplified. Overall, warming in Spain dominates the Globe in +all the quantiles except the lower tail of the global temperature distribution +that corresponds to the Artic region. Our climate change heterogeneity results +open the door to the need for a non-uniform causal-effect climate analysis that +goes beyond the standard causality in mean as well as for a more efficient design +of the mitigation-adaptation policies. In particular, the heterogeneity we find +suggests that these policies should contain a common global component and a +clear local-regional element. Future climate agreements should take the whole +temperature distribution into account. +JEL classification: C31, C32, Q54 +Keywords: +Climate change; Climate heterogeneity; Global-Local Warming; +Functional stochastic processes; Distributional characteristics; Trends; Quan- +tiles; Temperature distributions. +∗The authors gratefully acknowledge the financial support from the Gobierno de Aragon and FEDER +funds (grant, LMP71-18), the Spanish Ministerio de Ciencia y Tecnolog´ıa, Agencia Espa˜nola de Investi- +gaci´on (AEI) and European Regional Development Fund (ERDF, EU) under grants PID2019-104960GB- +IOO, ECO2017-83255-C3-1-P (AEI/ERDF, EU) and ECO2016-81901-REDT, and Bank of Spain (ER grant +program). We thank Rodrigo Gonzalez Laiz for excellent research assistance. +† Department of Applied Economics, University of Zaragoza. Gran V´ıa, 4, 50005 Zaragoza (Spain). Tel: ++34 9767 61842, fax: +34 976 761840 and e-mail: lgadea@unizar.es +‡ Department of Economics, University Carlos III, Madrid 126 28903 Getafe (Spain). +Tel: +34 91 +6249853, fax: +34 91 6249329 and e-mail: jesus.gonzalo@uc3m.es (corresponding author) +1 +arXiv:2301.02648v1 [econ.EM] 6 Jan 2023 + +Climate change heterogeneity +2 +1 +Introduction +All the assessment reports (AR) published by the Intergovernmental Panel of Cli- +mate Change (IPCC) show that there is overwhelming scientific evidence of the +existence of global warming (GW). It is also well known that climate change (CC) +is a non-uniform phenomenon. What is not so clear is the degree of heterogeneity +across all the regions in our planet. In fact, an important part of the Sixth Assess- +ment Report (AR6) published by the IPCC in 2021-2022 is dedicated to this issue: +climate (warming) heterogeneity. This is reflected in the chapters studying regional +climate change. Our paper introduces a new quantitative methodology that builds +on that described in Gadea and Gonzalo 2020 (GG2020) to characterize, measure +and test the existence of such climate change heterogeneity (CCH). This is done in +three steps. First, we introduce a warming typology (W1, W2 and W3) based on +the trending behavior of the quantiles of the temperature distribution of a given ge- +ographical location. Second, we define in a testable format the concepts of warming +acceleration and warming amplification. These concepts help to characterize (more +ordinally than cardinally) the warming process of different regions. And third, we +propose the new concept of warming dominance (WD) to establish when region A +suffers a worse warming process than region B. +We have chosen Spain as a benchmark geographical location because, as the AR6 +report states “. . . Spain is fully included in the Mediterranean (MED) Reference +Region, but is one of the most climatically diverse countries in the world. . . ”. +This fact opens up the possibility of studying warming heterogeneity (WH) from +Spain to the Globe (outer heterogeneity, OWH) and also from Spain to some of its +regions represented by Madrid and Barcelona (inner heterogeneity, IWH). +The three steps rely on the results reported in GG2020, where the different +distributional characteristics (moments, quantiles, inter quantile range, etc.) of the +temperature distribution of a given geographical location are converted into time +series objects. By doing this, we can easily implement and test all the concepts +involved in the three steps. +A summary of the results is as follows. Spain and the Globe present a clear +warming process; but it evolves differently. Spain goes from a warming process where +lower and upper temperatures share the same trend behavior (IQR is maintained +constant over time, warming type W1) to one characterized by a larger increase in +the upper temperatures (IQR increases over time, warming type W3). In contrast, + +Climate change heterogeneity +3 +the Globe as a whole maintains a stable warming type process characterized by lower +temperatures that increase more than the upper ones (IQR decreases in time).1 In +our typology, this constitutes a case of warming type W2. Climate heterogeneity +can go further. +For instance, within Spain we find that Madrid is of type W3 +while the warming process of Barcelona is of type W1. This is in concordance with +the Madrid climate being considered a Continental Mediterranean climate while +Barcelona is more a pure Mediterranean one. +The proposed warming typology (W1, W2 and W3), although dynamic, is more +ordinal than cardinal. In this paper, the strength of a warming process is captured +in the second step by analyzing its acceleration and its amplification with respect +to a central tendency measure of the temperature distribution. Acceleration and +amplification contribute to the analysis of warming heterogeneity. The acceleration +in the Globe is present in all the quantiles above q30 while in Spain it already +becomes significant above the 10th quantile. We find an asymmetric behavior of +warming amplification; in Spain (in comparison with the Globe mean temperature) +this is present in the upper temperatures (above the 80th and 90th quantiles) while +in the Globe the opposite occurs (below the 20th and 30th quantiles). Within Spain, +Madrid and Barcelona also behave differently in terms of acceleration and amplifi- +cation. Overall, warming in Spain dominates that of the Globe in all the quantiles +except for the lower quantile q05, and between Madrid and Barcelona there is a par- +tial WD. Madrid WD Barcelona in the upper part of the distribution and Barcelona +WD Madrid in the lower one. +The existence of a clear heterogeneous warming process opens the door to the +need of a new non-uniform causal (effect) research. One that goes beyond the stan- +dard causality in mean analysis (see Tol, 2021). CCH also suggests that in order +for the mitigation-adaptation policies to be as efficient as possible they should be +designed following a type of common factor structure: a common global compo- +nent plus an idiosyncratic local element. +This goes in the line with the results +found in Brock and Xepapadeas (2017), D’Autume et al. (2016) and Peng et al. +(2021). Future climate agreements should clearly have this CCH into account. An +important by-product of our warming heterogeneity results is the increase that this +heterogeneity can generate in the public awareness of the GW process. A possible +explanation for that can be found in the behavioral economics work by Malmendier +1Similar results for Central England are found in GG2020 and for the US in Diebold and Rude- +bush, 2022. + +Climate change heterogeneity +4 +(2021), in the results of the European Social Survey analyzed in Nowakowski and +Oswald (2020) or in the psychology survey by Maiella et al. (2020). +The rest of the paper is organized as follows. Section 2 describes our basic climate +econometrics methodology. Section 3 presents a brief description of the temperature +data from Spain and the Globe. Section 4 addresses the application of our quantita- +tive methodology in the cross-sectional version (temperatures measured monthly by +stations in an annual interval) to Spain and (versus) the Globe. It also reports the +results of applying the methodology using a purely temporal dimension (local daily +temperature on an annual basis) for two representative stations in Spain (Madrid +and Barcelona, empirical details in the Appendix). Section 5 offers a comparison +and interpretation of the results. Finally, Section 6 concludes the paper. +2 +Climate Econometrics Methodology +In this section, we briefly summarize the novel econometric methodology introduced +in GG2020 to analyze Global and Local Warming processes. Following GG2020, +Warming is defined as an increasing trend in certain characteristics of the temper- +ature distribution. More precisely: +Definition 1. (Warming): +Warming is defined as the existence of an increas- +ing trend in some of the characteristics measuring the central tendency or position +(quantiles) of the temperature distribution. +An example is a deterministic trend with a polynomial function for certain val- +ues of the β parameters Ct = β0 + β1t + β2t2 + ... + βktk. +In GG2020 temperature is viewed as a functional stochastic process X = (Xt(ω), t ∈ +T), where T is an interval in R, defined in a probability space (Ω, ℑ, P). A conve- +nient example of an infinite-dimensional discrete-time process consists of associating +ξ = (ξn, n ∈ R+) with a sequence of random variables whose values are in an appro- +priate function space. This may be obtained by setting +Xt(n) = ξtN+n, 0 ≤ n ≤ N, t = 0, 1, 2, ..., T +(1) +so X = (Xt, t = 0, 1, 2, ..., T). If the sample paths of ξ are continuous, then we have +a sequence X0, X1, .... of random variables in the space C[0, N]. The choice of the +period or segment t will depend on the situation in hand. In our case, t will be the + +Climate change heterogeneity +5 +period of a year, and N represents cross-sectional units or higher-frequency time +series. +We may be interested in modeling the whole sequence of G functions, for instance +the sequence of state densities (f1(ω), f2(ω), ..., fT (ω) ) as in Chang et al. (2015, +2016) or only certain characteristics (Ct(w)) of these G functions, for instance, the +state mean, the state variance, the state quantile, etc. These characteristics can +be considered time series objects and, therefore, all the econometric tools already +developed in the time series literature can be applied to Ct(w). With this charac- +teristic approach we go from Ω to RT , as in a standard stochastic process, passing +through a G functional space: +Ω +(w) +X +−→ +G +Xt(w) +C−→ +R +Ct(w) +Going back to the convenient example and abusing notation, the stochastic struc- +ture can be summarized in the following array: +X10(w) = ξ0(w) +X11(w) = ξ1(w) +. . . +X1N(w) = ξN(w) +C1(w) +X20(w) = ξN+1(w) +X21(w) = ξN+2(w) +. . . +X2N(w) = ξ2N(w) +C2(w) +. +. +. +. +. +. +. . . +. . . +. . . +. +. +. +. +. +. +XT0(w) = ξ(T−1)N+1(w) +XT1(w) = ξ(T−1)N+2(w) +. . . +XTN(w) = ξTN(w) +CT (w) +(2) +The objective of this section is to provide a simple test to detect the existence of +a general unknown trend component in a given characteristic Ct of the temperature +process Xt. +To do this, we need to convert Definition 1 into a more practical +definition. +Definition 2. (Trend test): Let h(t) be an increasing function of t. A characteristic +Ct of a functional stochastic process Xt contains a trend if β ̸= 0 in the regression +Ct = α + βh(t) + ut, t = 1, ..., T. +(3) +The main problem of this definition is that the trend component in Ct as well +as the function h(t) are unknown. Therefore this definition can not be easily imple- +mented. If we assume that Ct does not have a trend component (it is I(0))2 and +2Our definition of an I(0) process follows Johansen (1995). A stochastic process Yt that satisfies +Yt − E(Yt) = +∞ +� +i=1 +Ψiεt−i is called I(0) if +∞ +� +i=1 +Ψ izi converges for |z| < 1 + δ, for some δ > 0 and +∞ +� +i=1 +Ψ +i ̸= 0, where the condition εt ∼ iid(0,σ2) with σ2 > 0 is understood. + +Climate change heterogeneity +6 +h(t) is linear, then we have the following well known result. +Proposition 1. Let Ct = I(0). In the regression +Ct = α + βt + ut +(4) +the OLS estimator +�β = +T� +t=1 +(Ct − C)(t − t) +T� +t=1 +(t − t)2 +(5) +satisfies +T 3/2 �β = Op(1) +(6) +and asymptotically (T → ∞) +tβ=0 is N(0, 1). +In order to analyze the behavior of the t-statistic tβ = 0, for a general trend +component in Ct, it is very convenient to use the concept of Summability (Berenguer- +Rico and Gonzalo, 2014) +Definition 3. (Order of Summability): +A trend h(t) is said to be summable of +order “δ” (S(δ)) if there exists a slowly varying function L(T),3 such that +ST = +1 +T 1+δ L(T) +T +� +t=1 +h(t) +(8) +is O(1), but not o(1). +Proposition 2. Let Ct = h(t) + I(0) such that h(t) is S(δ) with δ ≥ 0, and such +that the function g(t) = h(t)t is S(δ + 1). In the regression +Ct = α + βt + ut +(9) +the OLS �β estimator satisfies +T (1−δ) �β = Op(1). +(10) +Assuming that the function h(t)2 is S(1 + 2δ − γ) with 0 ≤ γ ≤ 1 + δ, then +3A positive Lebesgue measurable function, L, on (0, ∞) is slowly varying (in Karamata’s sense) +at ∞ if +L(λn) +L(n) → 1 (n → ∞) ∀λ > 0. +(7) +(See Embrechts et al., 1999, p. 564). + +Climate change heterogeneity +7 +tβ=0 = +� Op(T γ/2) for 0 ≤ γ ≤ 1 +Op(T 1/2) for 1 ≤ γ ≤ 1 + δ +(11) +Examples of how this proposition applies for different particular Data Generat- +ing Processes (DGP) can be found in GG. +A question of great empirical importance is how our trend test (TT) of Proposi- +tion 2 behaves when Ct = I(1) (accumulation of an I(0) process). Following Durlauf +and Phillips (1988), T 1/2 �β = Op(1); however, tβ=0 diverges as T→∞. Therefore, +our TT can detect the stochastic trend generated by an I(1) process. In fact, our +test will detect trends generated by any of the three standard persistent processes +considered in the literature (see Muller and Watson, 2008): (i) fractional or long- +memory models; (ii) near-unit-root AR models; and (iii) local-level models. Let +Ct = µ + zt, t = 1, ..., T. +(12) +In the first model, zt is a fractional process with 1/2 < d < 3/2. In the second +model, zt follows an AR, with its largest root close to unity, ρT = 1 − c/T. In the +third model, zt is decomposed into an I(1) and an I(0) component. Its simplest +format is zt = υt + ϵt with υt = υt−1 +ηt, where ϵt is ID(0, q ∗ σ2), ηt is ID(0, σ2), +σ2 > 0 and both disturbances are serially and mutually independent. Note that the +pure unit-root process is nested in all three models: d = 1, c = 0, and q = 0. +The long-run properties implied by each of these models can be characterized +using the stochastic properties of the partial sum process for zt. +The standard +assumptions considered in the macroeconomics or finance literature assume the ex- +istence of a “δ,” such that T −1/2+δ �T +t=1 zt −→ σ H(.), where “δ” is a model-specific +constant and H is a model-specific zero-mean Gaussian process with a given covari- +ance kernel k(r, s). Then, it is clear that the process Ct = µ + zt is summable (see +Berenguer-Rico and Gonzalo, 2014). This is the main reason why Proposition 3 +holds for these three persistent processes. +Proposition 3. Let Ct = µ + zt, t = 1, ..., T, with zt any of the following three +processes: (i) a fractional or long-memory model, with 1/2 < d < 3/2; (ii) a near- +unit-root AR model; or (iii) a local-level model. Furthermore, T −1/2+δ �T +t=1 zt −→ σ +H(.), where “δ” is a model-specific constant and H is a model-specific zero-mean +Gaussian process with a given covariance kernel k(r, s). Then, in the LS regression +Ct = α + βt + ut, + +Climate change heterogeneity +8 +the t-statistic diverges, +tβ=0 = Op(T 1/2). +After the development of the theoretical core, we are in a position to design +tools to approach the empirical strategy. The following subsection describes each of +them. +2.1 +Empirical tools: definitions and tests +From Propositions 2 and 3, Definition 2 can be simplified into the following testable +and practical definition. +Definition 4. (Practical definition 2): +A characteristic Ct of a functional stochas- +tic process Xt contains a trend if in the LS regression, +Ct = α + βt + ut, t = 1, ..., T, +(13) +β = 0 is rejected. +Several remarks are relevant with respect to this definition: (i) regression (13) +has to be understood as the linear LS approximation of an unknown trend function +h(t) (see White, 1980); (ii) the parameter β is the plim of �βols; (iii) if the regression +(13) is the true data-generating process, with ut ∼ I(0), then the OLS �β estimator +is asymptotically equivalent to the GLS estimator (see Grenander and Rosenblatt, +1957); (iv) in practice, in order to test β = 0, it is recommended to use a robust +HAC version of tβ=0 (see Busetti and Harvey, 2008); and (v) this test only detects +the existence of a trend but not the type of trend. +For all these reasons, in the empirical applications we implement Definition 4 +by estimating regression (13) using OLS and constructing a HAC version of tβ=0 +(Newey and West, 1987). +These linear trends can be common across characteristics indicating similar pat- +ters in the time evolution of these characteristics. +Definition 5. (Co-trending): A set of m distributional characteristics (C1t,C2t,...,Cmt) +do linearly co-trend if in the multivariate regression +� +� +C1t +... +Cmt +� +� = +� +� +α1 +... +αm +� +� + +� +� +β1 +... +βm +� +� t + +� +� +u1t +... +umt +� +� +(14) + +Climate change heterogeneity +9 +all the slopes are equal, β1 = β2 = ... = βm. 4 +This co-trending hypothesis can be tested by a standard Wald test. +When m = 2 an alternative linear co-trending test can be obtained from the +regression +Cit − Cjt = α + βt + ut +i ̸= j i, j = 1, ..., m by testing the null hypothesis of β = 0 vs β ̸= 0 using a simple +tβ=0 test. +Climate classification is a tool used to recognize, clarify and simplify the existent +climate heterogeneity in the Globe. It also helps us to better understand the Globe’s +climate and therefore to design more efficient global warming mitigation policies. +The prevalent climate typology is that proposed by K¨oppen (1900) and later on +modified in K¨oppen and Geiger (1930). It is an empirical classification that divides +the climate into five major types, which are represented by the capital letters A +(tropical zone), B (dry zone), C (temperate zone), D (continental zone), and E +(polar zone). Each of these climate types except for B is defined by temperature +criteria. More recent classifications can been found in the AR6 of the IPCC (2021, +2022) but all of them share the spirit of the original one of K¨oppen (1900). +The climate classification we propose in this section is also based on temperature +data and it has three simple distinctive characteristics: +• It considers the whole temperature distribution and not only the average +• It has a dynamic nature: it is based on the evolution of the trend of the +temperature quantiles (lower and upper). +• It can be easily tested +Definition 6. (Warming Typology): We define four types of warming processes: +• W0: There is no trend in any of the quantiles (No warming). +• W1: All the location distributional characteristics have the same positive trend +(dispersion does not contain a trend) +• W2: The Lower quantiles have a larger positive trend than the Upper quantiles +(dispersion has a negative trend) +• W3: The Upper quantiles have a larger positive trend than the Lower quantiles +(dispersion has a positive trend). +4This definition is slightly different from the one in Carrion-i-Silvestre and Kim (2019). + +Climate change heterogeneity +10 +Climate is understood, unlike weather, as a medium and long-term phenomenon +and, therefore, it is crucial to take trends into account. Notice that this typology +can be used to describe macroclimate as well as microclimate locations. +Most of the literature on Global or Local warming only considers the trend +behavior of the central part of the distribution (mean or median). By doing this, we +are losing very useful information that can be used to describe the whole warming +process. This information is considered in the other elements of the typology W1, +W2 and W3. This typology does not say anything about the intensity of the warming +process and its dynamic. Part of this intensity is captured in the following definitions +of warming acceleration and warming amplification. +Definition 7. (Warming Acceleration): +We say that there is warming acceler- +ation in a distributional temperature characteristic Ct between the time periods +t1 = (1, ..., s) and t2 = (s + 1, ..., T) if in the following two regressions: +Ct = α1 + β1t + ut, t = 1, ..., s, ..., T, +(15) +Ct = α2 + β2t + ut, t = s + 1, ..., T, +(16) +the second trend slope is larger than the first one: β2 > β1. +In practice, we implement this definition by testing in the previous system the +null hypothesis β2 = β1 against the alternative β2 > β1 An alternative warming +acceleration test can be formed by testing for a structural break at t = s. Neverthe- +less, we prefer the approach of Definition 7 because it matches closely the existent +narrative on warming acceleration in the climate literature. +Definition 8. (Warming Amplification with respect to the mean): +We say that +there is a warming amplification in distributional characteristic Ct with respect the +mean if in the following regression: +Ct = β0 + β1meant + ϵt +(17) +the mean slope is greater than one: β1 > 1. +When the mean, meant, and Ct come from the same distribution, we name this +“inner” warming amplification. Otherwise, the mean may come from an external +environment and, in that case, we call it “outer” warming amplification. +Both concepts, acceleration and amplification, introduce a quantitative dimen- +sion to the ordinarily defined classification. For example, the acceleration, which + +Climate change heterogeneity +11 +has a dynamic character, allows us to observe the transition from one type of cli- +mate to another. Amplification, on the other hand, makes it possible to compare +the magnitude of the trends that define each type of climate. It should be noted +that, although static in nature, it can be computed recursively at different points in +time. +In the previous definitions, we classify the warming process of different regions +which is crucial in the design of local mitigation and adaptation policies. But we, +also, need to compare the different climate change processes of two regions in order +to characterize climate heterogeneity independently of the type of warming they are +experimenting. For this purpose, we propose the following definition that shares the +spirit of the stochastic dominance concept used in the economic-finance literature. +Definition 9. (Warming Dominance (WD): We say that the temperature distri- +butions of Region A warming dominates (WD) the temperature distributions of +Region B if in the following regression +qτt(A) − qτt(B) = ατ + βτt + uτt, +(18) +βτ ≥ 0 for all 0 < τ < 1 and there is at least one value τ ∗ for which a strict +inequality holds. +It is also possible to have only partial (WD). For instance, in the lower or upper +quantiles. +3 +The data +3.1 +Spain +The measurement of meteorological information in Spain started in the eighteenth +century. However, it was not until the mid-nineteenth century that reliable and reg- +ular data became available. In Spain, there are four main sources of meteorological +information: the Resumen Anual, Bolet´ın Diario, Bolet´ın Mensual de Climatolog´ıa +and Calendario Meteorol´ogico. These were first published in 1866, 1893, 1940 and +1943, respectively. A detailed explanation of the different sources can be found in +Carreras and Tafunell (2006). +Currently, AEMET (Agencia Estatal de Meterolog´ıa) is the agency responsible +for storing, managing and providing meteorological data to the public. Some of the +historical publications, such as the Bolet´ın Diario and Calendario Meteorol´ogico can + +Climate change heterogeneity +12 +be found in digital format in their respective archives for whose use it is necessary +to use some kind of Optical Character Recognition (OCR) software.5 +In 2015, AEMET developed AEMET OpenData, an Application Programming +Interface (API REST) that allows the dissemination and reuse of Spanish meteoro- +logical and climatological information. To use it, the user needs to obtain an API +key to allow access to the application. Then, either through the GUI or through +a programming language such as Java or Python, the user can request data. More +information about the use of the API can be found on their webpage.6 +In this paper, we are concerned with Spanish daily station data, specifically +temperature data. Each station records the minimum, maximum and average tem- +perature as well as the amount of precipitation, measured as liters per square meter. +The data period ranges from 1920 to 2019. However, in 1920 there were only 13 +provinces (out of 52) who had stations available. It was not until 1965 that all the +52 provinces had at least one working station. Moreover, it is important to keep in +mind that the number of stations has increased substantially from only 14 stations in +1920 to more than 250 in 2019. With this information in mind, we select the longest +span of time that guarantees a wide sample of stations so that all the geographical +areas of peninsular Spain are represented. For this reason, we decided to work with +station data from 1950 to 2019. There are 30 stations whose geographical distri- +bution is displayed in the map in Figure 1. The original daily data are converted +into monthly data, so that we finally work with a total of 30x12 station-month units +corresponding to peninsular Spain and, consequently, we have 360 observations each +year with which to construct the annual distributional characteristics. +3.2 +The Globe +In the case of the Globe, we use the database of the Climate Research Unit (CRU) +that offers monthly and yearly data of land and sea temperatures in both hemi- +spheres from 1850 to the present, collected from different stations around the world.7 +Each station temperature is converted to an anomaly, taking 1961-1990 as the base +5http : //www.aemet.es/es/conocermas/recursosenlinea/calendarios?n = todos and https : +//repositorio.aemet.es/handle/20.500.11765/6290. +6https : //opendata.aemet.es/centrodedescargas/inicio. The use of AEMET data is regulated +in the following resolution https : //www.boe.es/boe/dias/2016/01/05/pdfs/BOE − A − 2016 − +111.pdf. +7We +use +CRUTEM +version +5.0.1.0, +which +can +be +downloaded +from +(https://crudata.uea.ac.uk/cru/data/temperature/). +A recent revision of the methodology +can be found in Jones et al. (2012). + +Climate change heterogeneity +13 +period, and each grid-box value, on a five-degree grid, is the mean of all the station +anomalies within that grid box. This database (in particular, the annual temper- +ature of the Northern Hemisphere) has become one of the most widely used to +illustrate GW from records of thermometer readings. These records form the blade +of the well-known “hockey stick” graph, frequently used by academics and other +institutions, such as, the IPCC. In this paper, we prefer to base our analysis on raw +station data, as in GG2020. +The database provides data from 1850 to nowadays, although due to the high +variability at the beginning of the period it is customary in the literature to begin +in 1880. In this work, we have selected the stations that are permanently present +in the period 1950-2019 according to the concept of the station-month unit. In this +way, the results are comparable with those obtained for Spain. Although there are +10,633 stations on record, the effective number fluctuates each year and there are +only 2,192 stations with data for all the years in the sample period, which yields +19,284 station-month units each year (see this geographical distribution in the map +in Figure 1).8 In summary, we analyze raw global data (stations instead of grids) +for the period 1950 to 2019, compute station-month units that remain all the time +and with these build the annual distributional characteristics. +4 +Empirical strategy +In this section we apply our three-step quantitative methodology to show the ex- +istent climate heterogeneity between Spain and the Globe as well as within Spain, +between Madrid and Barcelona. Because all our definitions are written in a test- +ing format, it is straightforward to empirically apply them. First, we test for the +existence of warming by testing the existence of a trend in a given distributional +characteristic. How common are the trends of the different characteristics (revealed +by a co-trending test) determine the warming typology. Second, the strength of +the warming process is tested by testing the hypothesis of warming acceleration +and warming amplification. And third, independently of the warming typology, we +determine how the warming process of Spain compares with that of the Globe as +a whole (we do the same for Madrid and Barcelona). This is done by testing for +warming dominance. +8In the CRU data there are 115 Spanish stations. However, after removing stations not present +for the whole 1880 to 2019 period, only Madrid-Retiro, Valladolid and Soria remain. Since 1950, +applying the same criteria, only 30 remain. + +Climate change heterogeneity +14 +(a) Spain. Selected stations, AEMET data 1950-2019 +(b) The Globe. Selected stations, CRU data 1950-2019 +Figure 1 +Geographical distribution of stations +The results are presented according to the following steps: first, we apply our +trend test (see Definition 4) to determine the existence of local or global warming +and test for any possible warming acceleration; second, we test different co-trending + +45 +18d:w 135°W 90 +45° +S +90Climate change heterogeneity +15 +hypotheses to determine the type of warming of each area; thirdly, we test the +warming amplification hypothesis for different quantiles with respect to the mean +(of Spain as well as of the Globe): H0 : β1 = 1 versus Ha : β1 > 1 in (17); and +finally, we compare the CC of different regions, for Spain and the Globe, and within +Spain, between Madrid and Barcelona, with our warming dominance test (see 18).9 +4.1 +Local warming: Spain +The cross-sectional analysis is approached under two assumptions. First, choosing a +sufficiently long and representative period of the geographical diversity of the Span- +ish Iberian Peninsula, 1950-2019. Second, we work with month-station units from +daily observations to construct the annual observations of the time series object from +the data supplied by the stations, following a methodology similar to that carried +out for the whole planet in GG2020.10 The study comprises the steps described in +the previous section. The density of the data and the evolution of characteristics +are displayed, respectively in Figures 2 and 3. +We find positive and significant trends in the mean, max, min and all the quan- +tiles. Therefore from definition 1, we conclude there exists a clear local warming +(see Table 1). +The recursive evolution for the periods 1950-2019 and 1970-2019 shows a clear +increase in the trends of the mean, some dispersion measures and higher quantiles +(see the last column of Table 1). More precisely, there is a significant trend acceler- +ation in most of the distributional characteristics except the lower quantiles (below +q20). These quantiles, q05 and q10, remain stable. +The co-trending tests for the full sample 1950-2019 show a similar evolution of +the trend for all the quantiles with a constant iqr (see Table 2). This indicates +that in this period the warming process of Spain can be considered a W1 type. +More recently, 1970-2019, the co-trending tests (see Table 3) indicate the upper +quantiles grow faster than the lower ones. This, together with a positive trend in +the dispersion measured by the iqr shows that Spain has evolved from a W1 to a +9Before testing for the presence of trends in the distributional characteristics of the data, we +test for the existence of unit roots. To do so, we use the well-known Augmented Dickey-Fuller test +(ADF; Dickey and Fuller, 1979), where the number of lags is selected in accordance with the SBIC +criterion. The results, available from the authors on request, show that the null hypothesis of a +unit root is rejected for all the characteristics considered. +10The results with daily averages are very similar. +The decision to work with monthly data +instead of daily in the cross-sectional approach has been based on its compatibility with the data +available for the Globe. + +Climate change heterogeneity +16 +W3 warming type process +Finally, no evidence of “inner” amplification during the period 1950-2019 is found +in the lower quantiles. Regarding the upper quantiles, we found both “inner” and +“outer” amplification in the second period, which supports the previous finding of +a transition from type W1 to type W3 (see Table 4). +Summing up, with our proposed tests for the evolution of the trend of the whole +temperature distribution, we conclude that Spain has evolved from a W1 type to a +much more dangerous W3 type. The results of acceleration and dynamic amplifi- +cation reinforce the finding of this transition to type W3. +Figure 2 +Spain annual temperature density calculated with monthly data across stations + +0.06 +0.05 +0.04 +0.03 - +0.02 - +0.01 ~ +0 +30.6096 +26.691 +22.7724 +18.8538 +14.9352 +11.0166 +7.09796 +3.17936 +1970 +-0.739249 +1960 +-4.65786 +1950 +temperature in degrees Celsius (month-station units)2010 +2000 +1990 +1980 +vears0.07Climate change heterogeneity +17 +Figure 3 +Characteristics of temperature data in Spain with stations selected since 1950 +(monthly data across stations, AEMET, 1950-2019) + +30 +15 +mean +max +13 +25 +1950 +1970 +1990 +2010 +1950 +1970 +1990 +2010 +0 +-6 +min +std +1950 +1970 +1990 +2010 +1950 +1970 +1990 +2010 +35 +range +30 +iqr +8 +25 +1950 +1970 +1990 +2010 +1950 +1970 +1990 +2010 +0.2 +2.5 +kurtosis +skewness +2 +0.2 +1950 +1970 +1990 +2010 +1950 +1970 +1990 +2010 +20 +10 +0 +1950 +1970 +1990 +2010 +q5 +q10 +q20 +q30 +q40 +q50 +q60 +q70 +q80 +q90 +q95Climate change heterogeneity +18 +Table 1 +Trend acceleration hypothesis (Spain monthly data across stations, AEMET, +1950-2019) +Trend test by periods +Acceleration test +names/periods +1950-2019 +1970-2019 +1950-2019, 1970-2019 +mean +0.0242 +0.0389 +3.0294 +(0.0000) +(0.0000) +(0.0015) +max +0.0312 +0.0526 +2.7871 +(0.0000) +(0.0000) +(0.0030) +min +0.0289 +0.0251 +-0.2557 +(0.0000) +(0.0654) +(0.6007) +std +0.0036 +0.0098 +1.7952 +(0.0518) +(0.0021) +(0.0374) +iqr +0.0051 +0.0158 +1.8197 +(0.1793) +(0.0028) +(0.0355) +rank +0.0023 +0.0276 +1.2705 +(0.8249) +(0.1127) +(0.1030) +kur +-0.0010 +-0.0018 +-0.9191 +(0.0203) +(0.0198) +(0.8202) +skw +0.0011 +-0.0002 +-1.5989 +(0.0271) +(0.7423) +(0.9439) +q5 +0.0227 +0.0206 +-0.2559 +(0.0000) +(0.0059) +(0.6008) +q10 +0.0200 +0.0203 +0.0406 +(0.0000) +(0.0077) +(0.4838) +q20 +0.0209 +0.0300 +1.4158 +(0.0000) +(0.0000) +(0.0796) +q30 +0.0221 +0.0333 +2.0100 +(0.0000) +(0.0000) +(0.0232) +q40 +0.0213 +0.0366 +2.4867 +(0.0000) +(0.0000) +(0.0071) +q50 +0.0211 +0.0404 +3.2496 +(0.0000) +(0.0000) +(0.0007) +q60 +0.0246 +0.0446 +3.1147 +(0.0000) +(0.0000) +(0.0011) +q70 +0.0273 +0.0478 +3.3143 +(0.0000) +(0.0000) +(0.0006) +q80 +0.0275 +0.0471 +2.6949 +(0.0000) +(0.0000) +(0.0040) +q90 +0.0321 +0.0548 +3.2441 +(0.0000) +(0.0000) +(0.0007) +q95 +0.0335 +0.0526 +3.3568 +(0.0000) +(0.0000) +(0.0005) +Note: +OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression: +Ct = α + βt + ut, for two +different time periods. For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, ..., s, ..., T, Ct = +α2 + β2t + ut, t = s + 1, ..., T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1. We show the value of +the t-statistic and its HAC p-value. +Table 2 +Co-trending analysis (Spain monthly data across stations, AEMET, 1950-2019) +Joint hypothesis tests +Wald test +p-value +All quantiles (q05, q10,...,q90, q95) +13.235 +0.211 +Lower quantiles (q05, q10, q20, q30) +0.310 +0.958 +Medium quantiles (q40, q50, q60) +0.438 +0.803 +Upper quantiles (q70, q80, q90, q95) +1.515 +0.679 +Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) +0.771 +0.993 +Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) +8.331 +0.215 +Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) +11.705 +0.111 +Spacing hypothesis +Trend-coeff. +p-value +q50-q05 +-0.002 +0.786 +q95-q50 +0.012 +0.000 +q95-q05 +0.011 +0.096 +q75-q25 (iqr) +0.005 +0.179 +Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the +Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics. +In the bottom panel, the TT is applied to the difference between two representative quantiles. + +Climate change heterogeneity +19 +Table 3 +Co-trending analysis (Spain monthly data across stations, AEMET, 1970-2019) +Joint hypothesis tests +Wald test +p-value +All quantiles (q05, q10,...,q90, q95) +38.879 +0.000 +Lower quantiles (q05, q10, q20, q30) +3.121 +0.373 +Medium quantiles (q40, q50, q60) +1.314 +0.518 +Upper quantiles (q70, q80, q90, q95) +1.719 +0.633 +Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) +12.771 +0.047 +Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) +10.675 +0.099 +Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) +37.892 +0.000 +Spacing hypothesis +Trend-coeff. +p-value +q50-q05 +0.020 +0.029 +q95-q50 +0.012 +0.050 +q55-q05 +0.032 +0.002 +q75-q25 (iqr) +0.016 +0.003 +Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the +Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics. +In the bottom panel, the TT is applied to the difference between two representative quantiles. +Table 4 +Amplification hypothesis (Spain monthly data, AEMET 1950-2019 +periods/variables +1950-2019 +1970-2019 +1950-2019 +1970-2019 +Inner +Outer +q05 +0.80 +0.56 +0.55 +0.39 +(0.866) +(0.998) +(0.990) +(0.996) +q10 +0.83 +0.65 +0.62 +0.52 +(0.899) +(0.994) +(0.992) +(0.986) +q20 +0.94 +0.90 +0.76 +0.81 +(0.816) +(0.890) +(0.993) +(0.899) +q30 +0.93 +0.91 +0.77 +0.87 +(0.935) +(0.929) +(0.997) +(0.834) +q40 +0.97 +1.03 +0.80 +0.97 +(0.744) +(0.318) +(0.978) +(0.566) +q50 +0.98 +1.10 +0.83 +1.12 +(0.612) +(0.067) +(0.944) +(0.212) +q60 +1.09 +1.15 +0.96 +1.23 +(0.103) +(0.051) +(0.619) +(0.056) +q70 +1.11 +1.16 +1.05 +1.30 +(0.040) +(0.006) +(0.350) +(0.028) +q80 +1.11 +1.14 +1.06 +1.29 +(0.083) +(0.071) +(0.325) +(0.060) +q90 +1.14 +1.16 +1.19 +1.45 +(0.101) +(0.118) +(0.078) +(0.007) +q95 +1.10 +1.09 +1.18 +1.36 +(0.089) +(0.191) +(0.051) +(0.008) +Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1 +in the regression: Cit = βi0 + βi1meant + ϵit. mean refers to the average of the Spanish Global +temperature distribution for the “inner” and “outer”cases, respectively. + +Climate change heterogeneity +20 +4.2 +Global warming: the Globe +In this section, we carry out a similar analysis to that described in the previous +subsection for Spain. Figures 4 and 5 show the time evolution of the Global temper- +ature densities and their different distributional characteristics from 1950 to 2019. +The data in both figures are obtained from stations that report data throughout the +sample period. +Table 5 shows a positive trend in the mean as well as in all the quantiles. This +indicates the clear existence of Global warming, more pronounced (larger trend) in +the lower part of the distribution (a negative trend in the dispersion measures). The +warming process suffers an acceleration in all the quantiles above q30. +From the co-trending analysis (see Tables 6 and 7) we can determine the type +of warming process characterizing the whole Globe. Table 6 indicates that in the +period 1950-2019 the Globe experimented a W2 warming type (the lower part of +the temperature distribution grows faster than the middle and upper part, implying +iqr and std have a negative trend). Similar results are maintained for the period +1970-2019 (in this case only the dispersion measure std has a negative trend). +The asymmetric amplification results shown in Table 8 reinforce the W2 typology +for the whole Globe: an increase of one degree in the global mean temperature +increases the lower quantiles by more than one degree. This does not occur with +the upper part of the distribution. Notice that this amplification goes beyond the +standard Artic amplification (q05) affecting also q10, q20 and q30. +Summing up, the results from our different proposed tests for the evolution of +the trend of the whole temperature distribution indicate that the Globe can be +cataloged as a undergoing type W2 warming process. +This warming type may +have more serious consequences for ice melting, sea level increases, permafrost, CO2 +migration, etc. than the other types. + +Climate change heterogeneity +21 +Figure 4 +Global annual temperature density calculated with monthly data across stations + +0.03 +0.025 +density +0.02 +0.015 +0.01 - +0.005 ~ +0 +33.369 +21.5248 +9.68063 +-2.16358 +-14.0078 +-25.852 +-37.6962 +-49.5404 +1970 +-61.3846 +1960 +-73.2288 +1950 +temperature in degrees Celsius (month-station units)2010 +2000 +1990 +1980 +vears0.04 +0.035Climate change heterogeneity +22 +Figure 5 +Characteristics of temperature data in the Globe (monthly data across stations, CRU, +1950-2019) + +12 +40 +11 +38 +10 +mean +max +1950196019701980199020002010 +1950196019701980 +199020002010 +13 +-44 +-46 +-48 +50 +-52 +std +11 +1950196019701980199020002010 +1950196019701980199020002010 +8 +90 +85 +16 +iqr +range +80 +19501960 1970198019902000 2010 +1950196019701980199020002010 +G +kur +-0.8 +W +-0.9 +skw +195019601970:1980199020002010 +195019601970198019902000:2010 +20 +10 +0 +10 +1950196019701980199020002010 +q5 +q10 +q20 +q30 +q40 +q50 +q60 +q70 +q80 +q90 +q95Climate change heterogeneity +23 +Table 5 +Trend acceleration hypothesis (CRU monthly data across stations, 1950-2019) +Trend test by periods +Acceleration test +names/periods +1950-2019 +1970-2019 +1950-2019, 1970-2019 +mean +0.0213 +0.0300 +2.2023 +(0.0000) +(0.0000) +(0.0147) +max +0.0361 +0.0523 +1.1217 +(0.0000) +(0.0001) +(0.1320) +min +0.0423 +-0.0109 +0.5016 +(0.0000) +(0.5867) +(0.3084) +std +-0.0070 +-0.0057 +0.1776 +(0.0000) +(0.0570) +(0.4296) +iqr +-0.0067 +-0.0043 +0.2454 +(0.0435) +(0.4183) +(0.4033) +rank +-0.0062 +0.0632 +0.2181 +(0.5876) +(0.0005) +(0.4138) +kur +-0.0010 +0.0001 +0.0445 +(0.5205) +(0.9566) +(0.4823) +skw +0.0006 +0.0003 +0.0301 +(0.0577) +(0.5726) +(0.4880) +q5 +0.0404 +0.0468 +0.7035 +(0.0000) +(0.0000) +(0.2415) +q10 +0.0305 +0.0406 +0.9273 +(0.0000) +(0.0001) +(0.1777) +q20 +0.0253 +0.0342 +1.0156 +(0.0000) +(0.0000) +(0.1558) +q30 +0.0215 +0.0280 +1.2056 +(0.0000) +(0.0000) +(0.1150) +q40 +0.0192 +0.0293 +1.9873 +(0.0000) +(0.0000) +(0.0245) +q50 +0.0179 +0.0268 +1.8614 +(0.0000) +(0.0000) +(0.0324) +q60 +0.0185 +0.0291 +2.1971 +(0.0000) +(0.0000) +(0.0149) +q70 +0.0185 +0.0288 +2.5770 +(0.0000) +(0.0000) +(0.0055) +q80 +0.0160 +0.0257 +2.2460 +(0.0000) +(0.0000) +(0.0132) +q90 +0.0146 +0.0243 +2.0848 +(0.0005) +(0.0000) +(0.0195) +q95 +0.0143 +0.0239 +1.7520 +(0.0001) +(0.0000) +(0.0410) +Note: +OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression: +Ct = α + βt + ut, for two +different time periods. For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, ..., s, ..., T, Ct = +α2 + β2t + ut, t = s + 1, ..., T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1. We show the value of +the t-statistic and its HAC p-value. +Table 6 +Co-trending analysis (CRU montly data, 1950-2019) +Joint hypothesis tests +Wald test +p-value +All quantiles (q05, q10,...,q90, q95) +25.143 +0.005 +Lower quantiles (q05, q10, q20, q30) +9.545 +0.023 +Medium quantiles (q40, q50, q60) +0.078 +0.962 +Upper quantiles (q70, q80, q90, q95) +1.099 +0.777 +Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) +17.691 +0.007 +Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) +2.041 +0.916 +Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) +24.683 +0.001 +Spacing hypothesis +Trend-coeff. +p-value +q50-q05 +-0.022 +0.000 +q95-q50 +-0.004 +0.193 +q95-q05 +-0.026 +0.000 +q75-q25 (iqr) +-0.007 +0.043 +Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the +Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics. +In the bottom panel, the TT is applied to the difference between two representative quantiles. + +Climate change heterogeneity +24 +Table 7 +Co-trending analysis (CRU montly data, 1970-2019) +Joint hypothesis tests +Wald test +p-value +All quantiles (q05, q10,...,q90, q95) +18.478 +0.047 +Lower quantiles (q05, q10, q20, q30) +5.523 +0.137 +Medium quantiles (q40, q50, q60) +0.569 +0.752 +Upper quantiles (q70, q80, q90, q95) +2.667 +0.446 +Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) +7.606 +0.268 +Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) +6.714 +0.348 +Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) +14.520 +0.043 +Spacing hypothesis +Trend-coeff. +p-value +q50-q05 +-0.020 +0.047 +q95-q50 +-0.003 +0.462 +q95-q05 +-0.023 +0.048 +q75-q25 (iqr) +-0.004 +0.418 +Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the +Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics. +In the bottom panel, the TT is applied to the difference between two representative quantiles. +Table 8 +Amplification hypotheses (CRU monthly data across stations, 1950-2019) +periods/variables +1950-2019 +1970-2019 +q05 +2.00 +1.83 +(0.000) +(0.000) +q10 +1.79 +1.73 +(0.000) +(0.001) +q20 +1.41 +1.37 +(0.000) +(0.000) +q30 +1.07 +1.00 +(0.089) +(0.502) +q40 +0.88 +0.91 +(0.999) +(0.973) +q50 +0.74 +0.81 +(1.000) +(0.997) +q60 +0.74 +0.85 +(0.999) +(0.973) +q70 +0.77 +0.85 +(1.000) +(0.988) +q80 +0.72 +0.78 +(1.000) +(1.000) +q90 +0.69 +0.70 +(1.000) +(1.000) +q95 +0.60 +0.64 +(1.000) +(1.000) +Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1 +in the regression: Cit = βi0 +βi1meant +ϵit. mean refers to the average of the Global temperature +distribution. + +Climate change heterogeneity +25 +4.3 +Micro-local warming: Madrid and Barcelona +The existence of warming heterogeneity implies that in order to design more ef- +ficient mitigation policies, they have to be developed at different levels: global, +country, region etc. How local we need to go will depend on the existing degree of +micro-warming heterogeneity. In this subsection, we go to the smallest level, cli- +mate station level . We analyze, within Spain, the warming process in two weather +stations corresponding to two cities: Madrid (Retiro station) and Barcelona (Fabra +station). +11 Obviously, the data provided by these stations is not cross-sectional +data but directly pure time series data. Our methodology can be easily applied to +higher frequency time series, in this case daily data, to compute the distributional +characteristics (see Figures A1 and A2)12. +The results are shown in the Appendix. These two stations, Madrid-Retiro and +Barcelona-Fabra clearly experience two different types of warming. +First, there +is evidence of micro-local warming, understood as the presence of significant and +positive trends, in all the important temperature distributional characteristics of +both stations. The acceleration phenomenon is also clearly detected, in other words, +the warming increases as time passes (see Tables A1 and A5). Secondly, from the +co-trending tests (Tables A2-A3 and A6-A7), it can be concluded that the warming +process of Madrid-Retiro is type W3 while for Barcelona-Fabra it is type W1. In +both cases the warming typology is stable through both sample periods (1950-2019 +and 1970-2019). Thirdly, as expected, Madrid-Retiro presents “inner” and “outer” +amplification for the upper quantiles, while Barcelona-Fabra does so only for the +center part of its temperature distribution (see Tables A4 and A8). +Summing up, even within Spain we find evidence of warming heterogeneity. +While Madrid (Continental Mediterranean climate) has a similar pattern as that +of peninsular Spain (1970-2019) W3, Barcelona (Mediterranean coastline climate) +maintains a W1 typology. Thus there are two different warming processes which +require mitigation policies at the country as well as the very local level. +11From Madrid and Barcelona there is data since 1920’s, nevertheless we began the study in 1950 +for consistency with the previous analysis of Spain and the Globe. +12See the application to Central England in GG2020 and in Gadea and Gonzalo (2022) to Madrid, +Zaragoza and Oxford. + +Climate change heterogeneity +26 +5 +Comparing results +The goal of this section is to show the existence of climate heterogeneity by com- +paring the results obtained from applying our three-step methodology to different +regions. These results are summarized in Table 10. It is clear that there is distribu- +tional warming in all the analyzed areas; but this warming follows different patterns +and sometimes the warming type is not even stable. In the case of Spain, it depends +on the period under consideration. Figure 6 captures graphically the different trend +behavior and intensity of the distributional characteristics by regions (Spain and the +Globe and Madrid and Barcelona).13 The graphical results in this figure coincide +with the results of the warming typology tests shown in Table 10. +The middle of Table 10 shows that warming acceleration is detected in all the +locations. This acceleration is more general in Spain than in the Globe (see also the +heatmap in Figure 7) and in Barcelona than in Madrid. Apart from these differences, +the acceleration shares certain similarities across regions. This is not the case for +the warming amplification that is clearly asymmetric. Spain suffers an amplification +in the upper quantiles while the Globe does so in the lower ones. Notice that the +latter amplification goes beyond the standard results found in the literature for the +Arctic region (q05). We detect amplification also for the regions corresponding to +the quantiles q10-q30. In the case of Madrid and Barcelona, Madrid suffers a wider +warming amplification than Barcelona. +The results of the first two steps of our methodology are obtained region by region +(Spain, the Globe, Madrid and Barcelona). It is the last step, via the warming +dominance test (see the numerical results in Table 9) where we compare directly +one region with another. Warming in Spain dominates that of the Globe in all the +quantiles except the lower q05.14 This would support the idea held in European +institutions and gathered in international reports on the greater intensity of climate +13The analysis of other characteristics such as the third and fourth order moments can contribute +to the temperature distributions. In the case of Spain, the kurtosis is always negative with a mean +value of -0.8 and a significant negative trend, which means that we are dealing with a platykurtic +distribution with tails less thick than Normal, a shape that is accelerating over time. However, it +is ot possible to draw conclusions about symmetry given its high variability over time. Conversely, +the temperature distribution in the Globe is clearly leptokurtic with an average kurtosis of 0.9 +and a negative but not significant trend. The global temperature observations are therefore more +concentrated around the mean and their tails are thicker than in a Normal distribution. +The +skewness is clearly negative although a decreasing and significant trend points to a reduction of the +negative skewness. +14A more detailed analysis of the warming process suffered in the Artic region can be found in +Gadea and Gonzalo (2021). + +Climate change heterogeneity +27 +change in the Iberian Peninsula. Warming in Madrid dominates that of Barcelona +in the upper quantiles, while the reverse is the case in the lower quantiles. This +latter result coincides with the idea that regions close to the sea have milder upper +temperatures. +Further research (beyond the scope of this paper) will go in the direction of +finding the possible causes behind the warming types W1, W2, and W3. Following +the literature, on diurnal temperature asymmetry (Diurnal Temperature Range = +DTR = Tmax − Tmin) we can suggest as possible causes for W2 the cloud coverage +(Karl et al. 1993) and the planetary boundary layer (see Davy et al. 2017). For +W3, the process of desertification (see Karl et al. 1993). +Summarizing, in this section we describe, measure and test the existence of +warming heterogeneity in different regions of the planet. It is important to note +that these extensive results can not be obtained by the standard analysis of the +average temperature. +Table 9 +Warming dominance +Spain-Globe +Madrid-Barcelona +Quantile +β +t-ratio +β +t-ratio +q05 +-0.018 +(-2.770) +-0.013 +(-3.730) +q10 +-0.010 +(-1.504) +-0.013 +(-4.215) +q20 +-0.004 +(-0.950) +-0.012 +(-2.988) +q30 +0.001 +(0.180) +-0.013 +(-4.164) +q40 +0.002 +(0.788) +-0.009 +(-2.909) +q50 +0.003 +(1.025) +-0.003 +(-0.701) +q60 +0.006 +(1.933) +-0.001 +(-0.219) +q70 +0.009 +(3.266) +0.006 +(1.252) +q80 +0.012 +(3.203) +0.016 +(3.331) +q90 +0.017 +(3.862) +0.010 +(1.869) +q95 +0.019 +(4.930) +0.014 +(1.993) +Note: The slopes (t-statistic) of the following regression +qτt(A) − qτt(B) = ατ + βτt + uτt +In the first column A=Spain, B=Globe and in the second A=Madrid, B=Barcelona. + +Climate change heterogeneity +28 +Table 10 +Summary of results +Cross analysis +Sample +Period +Type +Acceleration +Amplification +Dominance +Inner +Outer +Spain +1950-2019 +W1 +[mean, std, iqr, rank, +[q70, q80, q95] +[q90, q95] +[q60,..., q95] +q20,..., q95] +1970-2019 +W3 +[q50,..., q80] +[q60,..., q95] +The Globe +1950-2019 +W2 +[mean +[q05,..., q30] +[q05] +q40,..., q95] +1970-2019 +W2 +[q05,..., q20] +Time analysis +Sample +Period +Type +Acceleration +Amplification +Dominance +Madrid, Retiro Station +1950-2019 +W3 +[mean, std, rank, +[q50,..., q95] +[ q40,..., q95] +[q80,..., q95] +q40, ..., q95] +1970-2019 +W3 +[q50,..., q95] +[q40,..., q95] +Barcelona, Fabra Station +1950-2019 +W1 +[mean, +- +[q30,..., q90] +[q05,..., q40] +q20,..., q95] +1970-2019 +W1 +[q60, q70] +[q30,..., q70] +Note: For Spain and the Globe we build characteristics from station-months units. For Madrid and Barcelona we use daily +frequency time series. A significance level of 10% is considered for all tests and characteristics. + +Climate change heterogeneity +29 +-0.01 +0 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +mean +max +min +std +iqr +rank +kur +skw +q5 +q10 +q20 +q30 +q40 +q50 +q60 +q70 +q80 +q90 +q95 +Globe-montly-1950 +Spain-montly-1950 +-0.01 +0 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +mean +max +min +std +iqr +rank +kur +skw +q5 +q10 +q20 +q30 +q40 +q50 +q60 +q70 +q80 +q90 +q95 +Spain-montly-1950 +Madrid-daily-1950 +Barcelona-daily-1950 +Note: The bars represent the intensity of the trends found in each characteristic measured through +the value of the β-coefficient estimated in the regression Ct = α + βt + ut. +Figure 6 +Trend evolution of different temperature distributional characteristics + +Climate change heterogeneity +30 +1950-2019 +1955-2019 +1960-2019 +1965-2019 +1970-2019 +1975-2019 +1980-2019 +1985-2019 +1990-2019 +1995-2019 +2000-2019 +mean +max +min +std +iqr +rank +kur +skw +q5 +q10 +q20 +q30 +q40 +q50 +q60 +q70 +q80 +q90 +q95 +-0.08 +-0.06 +-0.04 +-0.02 + 0 + 0.02 + 0.04 + 0.06 + 0.08 + 0.1 +(a) Globe +Spain +1950-2019 +1955-2019 +1960-2019 +1965-2019 +1970-2019 +1975-2019 +1980-2019 +1985-2019 +1990-2019 +1995-2019 +2000-2019 +mean +max +min +std +iqr +rank +kur +skw +q5 +q10 +q20 +q30 +q40 +q50 +q60 +q70 +q80 +q90 +q95 +-0.08 +-0.06 +-0.04 +-0.02 + 0 + 0.02 + 0.04 + 0.06 + 0.08 + 0.1 +(b) Spain +Note: The color scale on the right side of the figure shows the intensity of the trend, based on the +value of the β-coefficient estimated in the regression Ct = α + βt + ut. +Figure 7 +Comparing heatmaps + +Climate change heterogeneity +31 +6 +Conclusions +The existence of Global Warming is very well documented in all the scientific reports +published by the IPCC. In the last one, the AR6 report (2022), special attention is +dedicated to climate change heterogeneity (regional climate). Our paper presents a +new quantitative methodology, based on the evolution of the trend of the whole tem- +perature distribution and not only on the average, to characterize, to measure and +to test the existence of such warming heterogeneity. It is found that the local warm- +ing experienced by Spain (one of most climatically diverse areas) is very different +from that of the Globe as a whole. In Spain, the upper-temperature quantiles tend +to increase more than the lower ones, while in the Globe just the opposite occurs. +In both cases the warming process is accelerating over time. Both regions suffer an +amplification effect of an asymmetric nature: there is warming amplification in the +lower quantiles of the Globe temperature (beyond the standard well-known results +of the Arctic zone) and in the upper ones of Spain. Overall, warming in Spain domi- +nates that of the Globe in all the quantiles except the lower q05. This places Spain in +a very difficult warming situation compared to the Globe. Such a situation requires +stronger mitigation-adaptation policies. For this reason, future climate agreements +should take into consideration the whole temperature distribution and not only the +average. +Any time a novel methodology is proposed, new research issues emerge for future +investigation. Among those which have been left out of this paper (some are part +of our current research agenda), three points stand out as important: +• There is a clear need for a new non-uniform causal-effect climate change anal- +ysis beyond the standard causality in mean. +• In order to improve efficiency, mitigation-adaptation policies should be de- +signed containing a common global component and an idiosyncratic regional +element. +• The relation between warming heterogeneity and public awareness of climate +change deserves to be analyzed. + +Climate change heterogeneity +32 +References +[1] Berenguer-Rico, V., Gonzalo, J., 2014. Summability of stochastic processes- A +generalization of integration and co-integration valid for non-linear processes. +Journal of Econometrics 178, 331-341. +[2] Brock, W., Xepapadeas, A. 2017. Climate change policy under polar amplifi- +cation. European Economic Review 94, 263-282. +[3] Busetti, F., Harvey, A., 2008. Testing for trend. Econometric 24, 72-87. +[4] Carreras, A., Tafunell Sambola, X., 2006. Estad´ısticas hist´oricas de Espa˜n a, +siglos XIX-XX, 2ª ed., Fundacion BBVA / BBVA Foundation. +[5] Carrion-i-Sivestre, J.L, Kim, D., 2019. Quasi-likelihood ratio tests for cointe- +gration, cobreaking, and cotrending. Econometric Reviews 38(8),881-898. +[6] Chang, Y., Kim, Ch.S., Miller, J.I., Park, J.Y., Park, S., 2015. Time series +analysis of global temperature distributions: identifying and estimating per- +sistent features in temperature anomalies. Working Paper 15-13, University of +Missouri. +[7] Chang, Y., Kim, Ch.S, Park, J.Y., 2016. Nonstationarity in time series of state +densities. Journal of Econometrics 192, 152-167. +[8] D’Autume, A., Schubert, K., 2016. Should the Carbon Price Be the Same in +All Countries? Journal of Public Economy Theory 18(5), 709-725. +[9] Davy, R., Esau, I., Chernokulsky, A., Outten, S., Zilitinkevich, S. 2017. Diurnal +asymmetry to the observed global warming. Int. J. Climatol., 37: 79-93. +[10] Diebold, F.X. Rudebusch, G.D., 2022. On the Evolution of U.S. Temperature +Dynamics, in A. Chudek, C. Hsiao and A Timmermann (eds.), Essays in Honor +of M. Hashem Pesaran (Advances in Econometrics, Volume 43), 9-28. Online +appendix here. Code here. Working paper at arXiv:1907.06303. +[11] Durlauf, S.N., Phillips, P.C.B., 1988. Trends versus random walks in time series +analysis. Econometrica 56, 1333-1354. +[12] Embrechts, P., Kl¨uppelberg, C., Mikosh, T., 1999. Modelling Extremal Events +for Insurance and Finance. Springer-Verlag, Berlin. + +Climate change heterogeneity +33 +[13] Gadea, M.D., Gonzalo, J., 2020. Trends in distributional characteristics: Exis- +tence of global warming. Journal of Econometrics 214, 153-174. +[14] Gadea, M.D., Gonzalo, J., 2021. Polar Warming. mimeo. +[15] Gadea, M.D., Gonzalo, J., 2022. A Tale of three cities: Climate heterogeneity. +SERIES 13(1-2) (Special Issue in honour of Juan Jos´e Dolado) 475-511. +[16] Grenander, U., Rosenblatt, M., 1957. Statistical Analysis of Stationary Time +Series. New York: Wiley. +[17] IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribu- +tion of Working Group I to the Sixth Assessment Report of the Intergov- +ernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pi- +rani, S.L. Connors, C. P´ean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. +Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, +T. Waterfield, O. Yelek¸ci, R. Yu, and B. Zhou (eds.)]. Cambridge Univer- +sity Press, Cambridge, United Kingdom and New York, NY, USA, In press, +doi:10.1017/9781009157896. +[18] IPCC, 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. +Contribution of Working Group II to the Sixth Assessment Report of the In- +tergovernmental Panel on Climate Change [H.-O. P¨ortner, D.C. Roberts, M. +Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegr´ıa, M. Craig, S. Langsdorf, +S. L¨oschke, V. M¨oller, A. Okem, B. Rama (eds.)]. Cambridge University Press. +In Press. +[19] IPCC, 2022. Climate Change 2022: Mitigation of Climate Change. Contribution +of Working Group III to the Sixth Assessment Report of the Intergovernmental +Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. +van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belka- +cemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University +Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926. +[20] Johansen, S., 1995. Likelihood-based Inference in Cointegrated Vector Autore- +gressive Models. Oxford: Oxford University Press. +[21] Jones, P.D., Lister, D.H., Osborn, T.J., Harpham, C., Salmon, M., Morice, +C.P., 2012. Hemispheric and large-scale land surface air temperature variations: + +Climate change heterogeneity +34 +an extensive revision and an update to 2010. Journal of Geophysical Research +117, 1-29. +[22] Karl T.R., Jones P.D., Knight R.W., Kukla G, Plummer N, Razuvaev V, Gallo +KP, Lindseay J, Charlson RJ, Peterson TC. 1993. A new perspective on recent +global warming: asymmetric trends of daily maximum and minimum temper- +ature. Bull. Am. Meteorol. Soc. 74, 1007–1023. +[23] K¨oppen, W. 1900. Versucheiner Klassifikation der Klimate, vorzugsweise nach +ihren Beziehungen zur Pflanzenwelt, Geographische Zeitschrift, 6, 657–679. +[24] K¨oppen, W., Geiger, R., 1930. Handbuch der Klimatologie. Gebrueder Born- +traeger, Berlin. +[25] Maiella, +R., +La Malva, +P, +Marchetti, +D., +Pomarico, +E., +Di +Crosta, +A., Palumbo, R., Cetara, L, Di Domenico, A., M.C. Verrocchio, 2020. +The Psychological Distance and Climate Change: +A Systematic Review +on the Mitigation and Adaptation Behaviors. Frontiers in Psychology 11, +https://doi.org/10.3389/fpsyg.2020.568899. +[26] Malmendier, U. 2021. Exposure, Experience, and Expertise: Why Personal +Histories Matter in Economics. Journal of the European Economic Association +19(6), 2857–2894. +[27] M¨ueller, U.K., Watson, M., 2008. Testing models of low-frequency variability. +Econometrica 76, 979-1016. +[28] Newey, W.K., West, K.D., 1987. A Simple positive semi-definite, hetereko- +dasticity and autocorrelation consistent covariance matrix. Econometrica 55, +703-708. +[29] Nowakowski, A., Oswald, A. J., 2020. Do Europeans Care about Climate +Change? An Illustration of the Importance of Data on Human Feelings, IZA +Discussion Papers 13660, Institute of Labor Economics (IZA). +[30] Peng, W., Iyer, G., Binsted, M. et al.,2021. The surprisingly inexpensive cost +of state-driven emission control strategies. Nat. Clim. Chang. 738–745. +[31] Tol, R. S. J., 2021. The distributional impact of climate change. Annals of the +New York. Academy of Sciences 1504 (1), 63-75. + +Climate change heterogeneity +35 +[32] White, H., 1980. Using least square to approximate unknown regression func- +tion. International Economic Review 21, 149–170. + +Climate change heterogeneity +36 +7 +Appendix: Climate change of Madrid and Barcelona +7.1 +Madrid-Retiro +Figure A1 +Characteristics of temperature data in Madrid-Retiro (AEMET daily data, 1950-2019) + +16 +32 +30 +mean +28 +max +1950 +1970 +1990 +2010 2019 +1950 +1970 +1990 +2010 2019 +5 +8 +wmw +min +std +5 +6 +1950 +1970 +1990 +2010 2019 +1950 +1970 +1990 +2010 2019 +15 +35 +rank +w +30 +10 +igr +25 +1950 +1970 +1990 +2010 2019 +1950 +1970 +1990 +2010 2019 +kur +0.4 +0.2 +1.5 +0 +1950 +1970 +1990 +2010 2019 +1950 +1970 +1990 +2010 2019 +30 +20 +10 +0 +1950 +1970 +1990 +2010 2019 +q5 +q10 +q20 +q30 +q40 +q50 +q60 +q70 +q80 +q90 +q95Climate change heterogeneity +37 +Table A1 +Trend acceleration hypothesis (Madrid, daily data, AEMET, 1950-2019) +Trend test by periods +Acceleration test +names/periods +1950-2019 +1970-2019 +1950-2019, 1970-2019 +mean +0.0326 +0.0447 +2.0972 +(0.0000) +(0.0000) +(0.0189) +max +0.0477 +0.0636 +1.2043 +(0.0000) +(0.0000) +(0.1153) +min +0.0362 +0.0087 +-1.5077 +(0.0011) +(0.5859) +(0.9330) +std +0.0112 +0.0197 +2.1160 +(0.0000) +(0.0000) +(0.0181) +iqr +0.0270 +0.0399 +1.1110 +(0.0000) +(0.0004) +(0.1343) +rank +0.0115 +0.0549 +2.0160 +(0.3666) +(0.0045) +(0.0229) +kur +-0.0016 +-0.0022 +-0.4449 +(0.0278) +(0.0660) +(0.6714) +skw +0.0012 +-0.0013 +-1.7769 +(0.1538) +(0.2695) +(0.9611) +q5 +0.0248 +0.0183 +-0.5712 +(0.0000) +(0.0774) +(0.7156) +q10 +0.0220 +0.0174 +-0.5815 +(0.0000) +(0.0162) +(0.7191) +q20 +0.0200 +0.0187 +-0.1777 +(0.0000) +(0.0099) +(0.5704) +q30 +0.0181 +0.0235 +0.6959 +(0.0000) +(0.0019) +(0.2438) +q40 +0.0236 +0.0362 +1.6625 +(0.0000) +(0.0000) +(0.0494) +q50 +0.0299 +0.0545 +2.8801 +(0.0000) +(0.0000) +(0.0023) +q60 +0.0334 +0.0604 +3.1655 +(0.0000) +(0.0000) +(0.0010) +q70 +0.0388 +0.0550 +1.7385 +(0.0000) +(0.0000) +(0.0422) +q80 +0.0519 +0.0712 +1.9750 +(0.0000) +(0.0000) +(0.0251) +q90 +0.0494 +0.0687 +1.7956 +(0.0000) +(0.0000) +(0.0374) +q95 +0.0527 +0.0710 +1.7839 +(0.0000) +(0.0000) +(0.0383) +Note: +OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression: +Ct = α + βt + ut, for two +different time periods. For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, ..., s, ..., T, Ct = +α2 + β2t + ut, t = s + 1, ..., T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1. We show the value of +the t-statistic and its HAC p-value. +Table A2 +Co-trending analysis (Madrid-Retiro daily data, AEMET 1950-2019) +Joint hypothesis tests +Wald test +p-value +All quantiles (q05, q10,...,q90, q95) +77.046 +0.000 +Lower quantiles (q05, q10, q20, q30) +1.360 +0.715 +Medium quantiles (q40, q50, q60) +2.036 +0.361 +Upper quantiles (q70, q80, q90, q95) +3.944 +0.268 +Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) +6.707 +0.349 +Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) +31.822 +0.000 +Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) +74.967 +0.000 +Spacing hypothesis +Trend-coeff. +p-value +q50-q05 +0.005 +0.505 +q95-q50 +0.023 +0.000 +q05-q95 +-0.028 +0.000 +q75-q25 (iqr) +0.027 +0.000 +Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the +Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics. +In the bottom panel, the TT is applied to the difference between two representative quantiles. + +Climate change heterogeneity +38 +Table A3 +Co-trending analysis (Madrid-Retiro daily data, AEMET, 1970-2019) +Joint hypothesis tests +Wald test +p-value +All quantiles (q05, q10,...,q90, q95) +81.371 +0.000 +Lower quantiles (q05, q10, q20, q30) +0.424 +0.935 +Medium quantiles (q40, q50, q60) +8.111 +0.017 +Upper quantiles (q70, q80, q90, q95) +3.214 +0.360 +Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) +45.687 +0.000 +Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) +18.851 +0.004 +Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) +71.094 +0.000 +Spacing hypothesis +Trend-coeff. +p-value +q50-q05 +0.036 +0.004 +q95-q50 +0.017 +0.051 +q05-q95 +-0.053 +0.000 +q75-q25 (iqr) +0.040 +0.000 +Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the +Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics. +In the bottom panel, the TT is applied to the difference between two representative quantiles. +Table A4 +Amplification hypothesis (Madrid daily data, AEMET 1950-2019) +periods/variables +1950-2019 +1970-2019 +1950-2019 +1970-2019 +Inner +Outer +q05 +0.66 +0.43 +0.83 +0.56 +(0.993) +(1.000) +(0.802) +(0.990) +q10 +0.58 +0.42 +0.73 +0.54 +(1.000) +(1.000) +(0.974) +(1.000) +q20 +0.66 +0.53 +0.81 +0.65 +(1.000) +(1.000) +(0.961) +(0.999) +q30 +0.72 +0.74 +0.94 +0.90 +(1.000) +(0.996) +(0.758) +(0.836) +q40 +0.90 +1.02 +1.15 +1.21 +(0.887) +(0.436) +(0.072) +(0.041) +q50 +1.08 +1.29 +1.38 +1.53 +(0.188) +(0.001) +(0.001) +(0.000) +q60 +1.14 +1.31 +1.44 +1.54 +(0.040) +(0.000) +(0.000) +(0.000) +q70 +1.22 +1.23 +1.46 +1.38 +(0.012) +(0.019) +(0.000) +(0.002) +q80 +1.45 +1.36 +1.70 +1.52 +(0.000) +(0.003) +(0.000) +(0.002) +q90 +1.31 +1.29 +1.48 +1.38 +(0.004) +(0.041) +(0.005) +(0.064) +q95 +1.31 +1.33 +1.46 +1.39 +(0.001) +(0.021) +(0.007) +(0.073) +Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1 +in the regression: Cit = βi0 + βi1meant + ϵit. mean refers to the average of the Madrid or Spanish +temperature distribution for the “inner” and “outer”cases, respectively. + +Climate change heterogeneity +39 +7.2 +Barcelona-Fabra +Figure A2 +Characteristics of temperature data in Barcelona-Fabra (AEMET daily data, +1950-2019) + +16 +30 +15 +14 +mean +25 +1950 +1970 +1990 +2010 2019 +1950 +1970 +1990 +2010 2019 +8 +5 +std +www +min +-5 +1950 +1970 +1990 +2010 2019 +1950 +1970 +1990 +2010 2019 +30 +25 +igr +20 +1950 +1970 +1990 +2010 2019 +1950 +1970 +1990 +2010 2019 +2.5 +kur +0.4 +skw +0.2 +M +0 +-0.2 +1950 +1970 +1990 +2010 2019 +1950 +1970 +1990 +2010 2019 +20 +10 +0 +1950 +1970 +1990 +2010 2019 +q5 +q10 +q20 +q30 +q40 +q50 +q60 +q70 +q80 +q90 +q95Climate change heterogeneity +40 +Table A5 +Trend acceleration hypothesis (Barcelona, daily data, AEMET, 1950-2019) +Trend test by periods +Acceleration test +names/periods +1950-2019 +1970-2019 +1950-2019, 1970-2019 +mean +0.0340 +0.0512 +3.2979 +(0.0000) +(0.0000) +(0.0006) +max +0.0394 +0.0531 +0.7280 +(0.0000) +(0.0038) +(0.2339) +min +0.0397 +0.0231 +-0.7411 +(0.0011) +(0.2654) +(0.7700) +std +0.0013 +0.0057 +0.9146 +(0.6185) +(0.1787) +(0.1810) +iqr +0.0042 +0.0113 +0.7351 +(0.4418) +(0.1892) +(0.2318) +rank +-0.0004 +0.0300 +0.9299 +(0.9806) +(0.3322) +(0.1770) +kur +-0.0013 +-0.0018 +-0.2693 +(0.1555) +(0.2075) +(0.6060) +skw +0.0011 +-0.0022 +-1.7869 +(0.2678) +(0.1942) +(0.9619) +q5 +0.0374 +0.0358 +-0.1381 +(0.0000) +(0.0015) +(0.5548) +q10 +0.0350 +0.0385 +0.4361 +(0.0000) +(0.0000) +(0.3317) +q20 +0.0317 +0.0439 +1.7009 +(0.0000) +(0.0000) +(0.0456) +q30 +0.0308 +0.0488 +2.4813 +(0.0000) +(0.0000) +(0.0072) +q40 +0.0324 +0.0537 +2.9244 +(0.0000) +(0.0000) +(0.0020) +q50 +0.0325 +0.0548 +2.7535 +(0.0000) +(0.0000) +(0.0034) +q60 +0.0344 +0.0636 +3.0915 +(0.0000) +(0.0000) +(0.0012) +q70 +0.0330 +0.0583 +2.9241 +(0.0000) +(0.0000) +(0.0020) +q80 +0.0357 +0.0551 +2.4081 +(0.0000) +(0.0000) +(0.0087) +q90 +0.0394 +0.0567 +2.0957 +(0.0000) +(0.0000) +(0.0190) +q95 +0.0390 +0.0525 +1.3435 +(0.0000) +(0.0000) +(0.0907) +Note: +OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression: +Ct = α + βt + ut, for two +different time periods. For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, ..., s, ..., T, Ct = +α2 + β2t + ut, t = s + 1, ..., T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1. We show the value of +the t-statistic and its HAC p-value. +Table A6 +Co-trending analysis (Barcelona-Fabra daily data, AEMET, 1950-2019) +Joint hypothesis tests +Wald test +p-value +All quantiles (q05, q10,...,q90, q95) +3.368 +0.971 +Lower quantiles (q05, q10, q20, q30) +1.036 +0.792 +Medium quantiles (q40, q50, q60) +0.073 +0.964 +Upper quantiles (q70, q80, q90, q95) +0.784 +0.853 +Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) +1.171 +0.978 +Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) +1.901 +0.929 +Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) +2.969 +0.888 +Spacing hypothesis +Trend-coeff. +p-value +q50-q05 +-0.005 +0.528 +q95-q50 +0.006 +0.233 +q05-q95 +-0.002 +0.856 +q75-q25 (iqr) +0.004 +0.442 +Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the +Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics. +In the bottom panel, the TT is applied to the difference between two representative quantiles. + +Climate change heterogeneity +41 +Table A7 +Co-trending analysis (Barcelona-Fabra daily data, AEMET, 1970-2019) +Joint hypothesis tests +Wald test +p-value +All quantiles (q05, q10,...,q90, q95) +13.165 +0.215 +Lower quantiles (q05, q10, q20, q30) +1.904 +0.593 +Medium quantiles (q40, q50, q60) +1.267 +0.531 +Upper quantiles (q70, q80, q90, q95) +0.384 +0.943 +Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) +10.103 +0.120 +Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) +1.642 +0.949 +Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) +9.693 +0.207 +Spacing hypothesis +Trend-coeff. +p-value +q50-q05 +0.019 +0.192 +q95-q50 +-0.002 +0.821 +q05-q95 +-0.017 +0.241 +q75-q25 (iqr) +0.011 +0.189 +Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the +Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics. +In the bottom panel, the TT is applied to the difference between two representative quantiles. +Table A8 +Amplification hypothesis (Barcelona daily data, AEMET 1950-2019) +periods/variables +1950-2019 +1970-2019 +1950-2019 +1970-2019 +Inner +Outer +q05 +0.99 +0.76 +1.19 +0.87 +(0.523) +(0.918) +(0.225) +(0.720) +q10 +0.90 +0.79 +1.10 +0.94 +(0.824) +(0.980) +(0.263) +(0.668) +q20 +0.89 +0.85 +1.09 +1.04 +(0.931) +(0.964) +(0.192) +(0.318) +q30 +0.96 +0.98 +1.22 +1.25 +(0.813) +(0.585) +(0.000) +(0.000) +q40 +0.99 +1.04 +1.27 +1.33 +(0.570) +(0.300) +(0.000) +(0.000) +q50 +1.01 +1.07 +1.27 +1.32 +(0.466) +(0.224) +(0.002) +(0.003) +q60 +1.09 +1.23 +1.29 +1.42 +(0.175) +(0.005) +(0.014) +(0.001) +q70 +1.09 +1.17 +1.26 +1.31 +(0.128) +(0.012) +(0.022) +(0.008) +q80 +1.06 +1.04 +1.22 +1.17 +(0.191) +(0.338) +(0.052) +(0.117) +q90 +1.09 +1.08 +1.22 +1.20 +(0.125) +(0.241) +(0.047) +(0.121) +q95 +1.06 +1.03 +1.16 +1.12 +(0.304) +(0.432) +(0.192) +(0.298) +Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1 in +the regression: Cit = βi0 + βi1meant + ϵit. mean refers to the average of the Barcelona or Spanish +temperature distribution for the “inner” and “outer”cases, respectively. + diff --git a/AdE0T4oBgHgl3EQfxgLI/content/tmp_files/load_file.txt b/AdE0T4oBgHgl3EQfxgLI/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..16eafba9d37829879252bea287b1e75974898ee6 --- /dev/null +++ b/AdE0T4oBgHgl3EQfxgLI/content/tmp_files/load_file.txt @@ -0,0 +1,1944 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf,len=1943 +page_content='Climate change heterogeneity: A new quantitative approach ∗ Mar´ıa Dolores Gadea Rivas † University of Zaragoza Jes´us Gonzalo ‡ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Carlos III de Madrid July 10, 2022 Abstract Climate change is a non-uniform phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This paper proposes a new quantitative methodology to characterize, measure and test the existence of climate change heterogeneity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It consists of three steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' First, we introduce a new testable warming typology based on the evolution of the trend of the whole temperature distribution and not only on the average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Second, we define the concepts of warming acceleration and warming amplification in a testable for- mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' And third, we introduce the new testable concept of warming dominance to determine whether region A is suffering a worse warming process than region B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Applying this three-step methodology, we find that Spain and the Globe ex- perience a clear distributional warming process (beyond the standard average) but of different types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In both cases, this process is accelerating over time and asymmetrically amplified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Overall, warming in Spain dominates the Globe in all the quantiles except the lower tail of the global temperature distribution that corresponds to the Artic region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Our climate change heterogeneity results open the door to the need for a non-uniform causal-effect climate analysis that goes beyond the standard causality in mean as well as for a more efficient design of the mitigation-adaptation policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In particular, the heterogeneity we find suggests that these policies should contain a common global component and a clear local-regional element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Future climate agreements should take the whole temperature distribution into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' JEL classification: C31, C32, Q54 Keywords: Climate change;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate heterogeneity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Global-Local Warming;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Functional stochastic processes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Distributional characteristics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Trends;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Quan- tiles;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Temperature distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' ∗The authors gratefully acknowledge the financial support from the Gobierno de Aragon and FEDER funds (grant, LMP71-18), the Spanish Ministerio de Ciencia y Tecnolog´ıa, Agencia Espa˜nola de Investi- gaci´on (AEI) and European Regional Development Fund (ERDF, EU) under grants PID2019-104960GB- IOO, ECO2017-83255-C3-1-P (AEI/ERDF, EU) and ECO2016-81901-REDT, and Bank of Spain (ER grant program).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' We thank Rodrigo Gonzalez Laiz for excellent research assistance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' † Department of Applied Economics, University of Zaragoza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Gran V´ıa, 4, 50005 Zaragoza (Spain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Tel: +34 9767 61842, fax: +34 976 761840 and e-mail: lgadea@unizar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='es ‡ Department of Economics, University Carlos III, Madrid 126 28903 Getafe (Spain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Tel: +34 91 6249853, fax: +34 91 6249329 and e-mail: jesus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='gonzalo@uc3m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='es (corresponding author) 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='02648v1 [econ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='EM] 6 Jan 2023 Climate change heterogeneity 2 1 Introduction All the assessment reports (AR) published by the Intergovernmental Panel of Cli- mate Change (IPCC) show that there is overwhelming scientific evidence of the existence of global warming (GW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It is also well known that climate change (CC) is a non-uniform phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' What is not so clear is the degree of heterogeneity across all the regions in our planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In fact, an important part of the Sixth Assess- ment Report (AR6) published by the IPCC in 2021-2022 is dedicated to this issue: climate (warming) heterogeneity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This is reflected in the chapters studying regional climate change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Our paper introduces a new quantitative methodology that builds on that described in Gadea and Gonzalo 2020 (GG2020) to characterize, measure and test the existence of such climate change heterogeneity (CCH).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This is done in three steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' First, we introduce a warming typology (W1, W2 and W3) based on the trending behavior of the quantiles of the temperature distribution of a given ge- ographical location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Second, we define in a testable format the concepts of warming acceleration and warming amplification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' These concepts help to characterize (more ordinally than cardinally) the warming process of different regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' And third, we propose the new concept of warming dominance (WD) to establish when region A suffers a worse warming process than region B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' We have chosen Spain as a benchmark geographical location because, as the AR6 report states “.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Spain is fully included in the Mediterranean (MED) Reference Region, but is one of the most climatically diverse countries in the world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' ”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This fact opens up the possibility of studying warming heterogeneity (WH) from Spain to the Globe (outer heterogeneity, OWH) and also from Spain to some of its regions represented by Madrid and Barcelona (inner heterogeneity, IWH).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The three steps rely on the results reported in GG2020, where the different distributional characteristics (moments, quantiles, inter quantile range, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=') of the temperature distribution of a given geographical location are converted into time series objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' By doing this, we can easily implement and test all the concepts involved in the three steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A summary of the results is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Spain and the Globe present a clear warming process;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' but it evolves differently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Spain goes from a warming process where lower and upper temperatures share the same trend behavior (IQR is maintained constant over time, warming type W1) to one characterized by a larger increase in the upper temperatures (IQR increases over time, warming type W3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In contrast, Climate change heterogeneity 3 the Globe as a whole maintains a stable warming type process characterized by lower temperatures that increase more than the upper ones (IQR decreases in time).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1 In our typology, this constitutes a case of warming type W2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate heterogeneity can go further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For instance, within Spain we find that Madrid is of type W3 while the warming process of Barcelona is of type W1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This is in concordance with the Madrid climate being considered a Continental Mediterranean climate while Barcelona is more a pure Mediterranean one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The proposed warming typology (W1, W2 and W3), although dynamic, is more ordinal than cardinal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In this paper, the strength of a warming process is captured in the second step by analyzing its acceleration and its amplification with respect to a central tendency measure of the temperature distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Acceleration and amplification contribute to the analysis of warming heterogeneity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The acceleration in the Globe is present in all the quantiles above q30 while in Spain it already becomes significant above the 10th quantile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' We find an asymmetric behavior of warming amplification;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' in Spain (in comparison with the Globe mean temperature) this is present in the upper temperatures (above the 80th and 90th quantiles) while in the Globe the opposite occurs (below the 20th and 30th quantiles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Within Spain, Madrid and Barcelona also behave differently in terms of acceleration and amplifi- cation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Overall, warming in Spain dominates that of the Globe in all the quantiles except for the lower quantile q05, and between Madrid and Barcelona there is a par- tial WD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Madrid WD Barcelona in the upper part of the distribution and Barcelona WD Madrid in the lower one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The existence of a clear heterogeneous warming process opens the door to the need of a new non-uniform causal (effect) research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' One that goes beyond the stan- dard causality in mean analysis (see Tol, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' CCH also suggests that in order for the mitigation-adaptation policies to be as efficient as possible they should be designed following a type of common factor structure: a common global compo- nent plus an idiosyncratic local element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This goes in the line with the results found in Brock and Xepapadeas (2017), D’Autume et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (2016) and Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Future climate agreements should clearly have this CCH into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' An important by-product of our warming heterogeneity results is the increase that this heterogeneity can generate in the public awareness of the GW process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A possible explanation for that can be found in the behavioral economics work by Malmendier 1Similar results for Central England are found in GG2020 and for the US in Diebold and Rude- bush, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 4 (2021), in the results of the European Social Survey analyzed in Nowakowski and Oswald (2020) or in the psychology survey by Maiella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The rest of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Section 2 describes our basic climate econometrics methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Section 3 presents a brief description of the temperature data from Spain and the Globe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Section 4 addresses the application of our quantita- tive methodology in the cross-sectional version (temperatures measured monthly by stations in an annual interval) to Spain and (versus) the Globe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It also reports the results of applying the methodology using a purely temporal dimension (local daily temperature on an annual basis) for two representative stations in Spain (Madrid and Barcelona, empirical details in the Appendix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Section 5 offers a comparison and interpretation of the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Finally, Section 6 concludes the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 2 Climate Econometrics Methodology In this section, we briefly summarize the novel econometric methodology introduced in GG2020 to analyze Global and Local Warming processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Following GG2020, Warming is defined as an increasing trend in certain characteristics of the temper- ature distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' More precisely: Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (Warming): Warming is defined as the existence of an increas- ing trend in some of the characteristics measuring the central tendency or position (quantiles) of the temperature distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' An example is a deterministic trend with a polynomial function for certain val- ues of the β parameters Ct = β0 + β1t + β2t2 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' + βktk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In GG2020 temperature is viewed as a functional stochastic process X = (Xt(ω), t ∈ T), where T is an interval in R, defined in a probability space (Ω, ℑ, P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A conve- nient example of an infinite-dimensional discrete-time process consists of associating ξ = (ξn, n ∈ R+) with a sequence of random variables whose values are in an appro- priate function space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This may be obtained by setting Xt(n) = ξtN+n, 0 ≤ n ≤ N, t = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T (1) so X = (Xt, t = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' If the sample paths of ξ are continuous, then we have a sequence X0, X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='. of random variables in the space C[0, N].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The choice of the period or segment t will depend on the situation in hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In our case, t will be the Climate change heterogeneity 5 period of a year, and N represents cross-sectional units or higher-frequency time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' We may be interested in modeling the whole sequence of G functions, for instance the sequence of state densities (f1(ω), f2(ω), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', fT (ω) ) as in Chang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (2015, 2016) or only certain characteristics (Ct(w)) of these G functions, for instance, the state mean, the state variance, the state quantile, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' These characteristics can be considered time series objects and, therefore, all the econometric tools already developed in the time series literature can be applied to Ct(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' With this charac- teristic approach we go from Ω to RT , as in a standard stochastic process, passing through a G functional space: Ω (w) X −→ G Xt(w) C−→ R Ct(w) Going back to the convenient example and abusing notation, the stochastic struc- ture can be summarized in the following array: X10(w) = ξ0(w) X11(w) = ξ1(w) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' X1N(w) = ξN(w) C1(w) X20(w) = ξN+1(w) X21(w) = ξN+2(w) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' X2N(w) = ξ2N(w) C2(w) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' XT0(w) = ξ(T−1)N+1(w) XT1(w) = ξ(T−1)N+2(w) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' XTN(w) = ξTN(w) CT (w) (2) The objective of this section is to provide a simple test to detect the existence of a general unknown trend component in a given characteristic Ct of the temperature process Xt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' To do this, we need to convert Definition 1 into a more practical definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (Trend test): Let h(t) be an increasing function of t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A characteristic Ct of a functional stochastic process Xt contains a trend if β ̸= 0 in the regression Ct = α + βh(t) + ut, t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (3) The main problem of this definition is that the trend component in Ct as well as the function h(t) are unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Therefore this definition can not be easily imple- mented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' If we assume that Ct does not have a trend component (it is I(0))2 and 2Our definition of an I(0) process follows Johansen (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A stochastic process Yt that satisfies Yt − E(Yt) = ∞ � i=1 Ψiεt−i is called I(0) if ∞ � i=1 Ψ izi converges for |z| < 1 + δ, for some δ > 0 and ∞ � i=1 Ψ i ̸= 0, where the condition εt ∼ iid(0,σ2) with σ2 > 0 is understood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 6 h(t) is linear, then we have the following well known result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Let Ct = I(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the regression Ct = α + βt + ut (4) the OLS estimator �β = T� t=1 (Ct − C)(t − t) T� t=1 (t − t)2 (5) satisfies T 3/2 �β = Op(1) (6) and asymptotically (T → ∞) tβ=0 is N(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In order to analyze the behavior of the t-statistic tβ = 0, for a general trend component in Ct, it is very convenient to use the concept of Summability (Berenguer- Rico and Gonzalo, 2014) Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (Order of Summability): A trend h(t) is said to be summable of order “δ” (S(δ)) if there exists a slowly varying function L(T),3 such that ST = 1 T 1+δ L(T) T � t=1 h(t) (8) is O(1), but not o(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Let Ct = h(t) + I(0) such that h(t) is S(δ) with δ ≥ 0, and such that the function g(t) = h(t)t is S(δ + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the regression Ct = α + βt + ut (9) the OLS �β estimator satisfies T (1−δ) �β = Op(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (10) Assuming that the function h(t)2 is S(1 + 2δ − γ) with 0 ≤ γ ≤ 1 + δ, then 3A positive Lebesgue measurable function, L, on (0, ∞) is slowly varying (in Karamata’s sense) at ∞ if L(λn) L(n) → 1 (n → ∞) ∀λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (7) (See Embrechts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 1999, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 564).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 7 tβ=0 = � Op(T γ/2) for 0 ≤ γ ≤ 1 Op(T 1/2) for 1 ≤ γ ≤ 1 + δ (11) Examples of how this proposition applies for different particular Data Generat- ing Processes (DGP) can be found in GG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A question of great empirical importance is how our trend test (TT) of Proposi- tion 2 behaves when Ct = I(1) (accumulation of an I(0) process).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Following Durlauf and Phillips (1988), T 1/2 �β = Op(1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' however, tβ=0 diverges as T→∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Therefore, our TT can detect the stochastic trend generated by an I(1) process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In fact, our test will detect trends generated by any of the three standard persistent processes considered in the literature (see Muller and Watson, 2008): (i) fractional or long- memory models;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (ii) near-unit-root AR models;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' and (iii) local-level models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Let Ct = µ + zt, t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (12) In the first model, zt is a fractional process with 1/2 < d < 3/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the second model, zt follows an AR, with its largest root close to unity, ρT = 1 − c/T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the third model, zt is decomposed into an I(1) and an I(0) component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Its simplest format is zt = υt + ϵt with υt = υt−1 +ηt, where ϵt is ID(0, q ∗ σ2), ηt is ID(0, σ2), σ2 > 0 and both disturbances are serially and mutually independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Note that the pure unit-root process is nested in all three models: d = 1, c = 0, and q = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The long-run properties implied by each of these models can be characterized using the stochastic properties of the partial sum process for zt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The standard assumptions considered in the macroeconomics or finance literature assume the ex- istence of a “δ,” such that T −1/2+δ �T t=1 zt −→ σ H(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' ), where “δ” is a model-specific constant and H is a model-specific zero-mean Gaussian process with a given covari- ance kernel k(r, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Then, it is clear that the process Ct = µ + zt is summable (see Berenguer-Rico and Gonzalo, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This is the main reason why Proposition 3 holds for these three persistent processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Let Ct = µ + zt, t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, with zt any of the following three processes: (i) a fractional or long-memory model, with 1/2 < d < 3/2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (ii) a near- unit-root AR model;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' or (iii) a local-level model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Furthermore, T −1/2+δ �T t=1 zt −→ σ H(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' ), where “δ” is a model-specific constant and H is a model-specific zero-mean Gaussian process with a given covariance kernel k(r, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Then, in the LS regression Ct = α + βt + ut, Climate change heterogeneity 8 the t-statistic diverges, tβ=0 = Op(T 1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' After the development of the theoretical core, we are in a position to design tools to approach the empirical strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The following subsection describes each of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1 Empirical tools: definitions and tests From Propositions 2 and 3, Definition 2 can be simplified into the following testable and practical definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (Practical definition 2): A characteristic Ct of a functional stochas- tic process Xt contains a trend if in the LS regression, Ct = α + βt + ut, t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, (13) β = 0 is rejected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Several remarks are relevant with respect to this definition: (i) regression (13) has to be understood as the linear LS approximation of an unknown trend function h(t) (see White, 1980);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (ii) the parameter β is the plim of �βols;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (iii) if the regression (13) is the true data-generating process, with ut ∼ I(0), then the OLS �β estimator is asymptotically equivalent to the GLS estimator (see Grenander and Rosenblatt, 1957);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (iv) in practice, in order to test β = 0, it is recommended to use a robust HAC version of tβ=0 (see Busetti and Harvey, 2008);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' and (v) this test only detects the existence of a trend but not the type of trend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For all these reasons, in the empirical applications we implement Definition 4 by estimating regression (13) using OLS and constructing a HAC version of tβ=0 (Newey and West, 1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' These linear trends can be common across characteristics indicating similar pat- ters in the time evolution of these characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (Co-trending): A set of m distributional characteristics (C1t,C2t,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=',Cmt) do linearly co-trend if in the multivariate regression � � C1t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Cmt � � = � � α1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' αm � � + � � β1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' βm � � t + � � u1t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' umt � � (14) Climate change heterogeneity 9 all the slopes are equal, β1 = β2 = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' = βm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 4 This co-trending hypothesis can be tested by a standard Wald test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' When m = 2 an alternative linear co-trending test can be obtained from the regression Cit − Cjt = α + βt + ut i ̸= j i, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', m by testing the null hypothesis of β = 0 vs β ̸= 0 using a simple tβ=0 test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate classification is a tool used to recognize, clarify and simplify the existent climate heterogeneity in the Globe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It also helps us to better understand the Globe’s climate and therefore to design more efficient global warming mitigation policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The prevalent climate typology is that proposed by K¨oppen (1900) and later on modified in K¨oppen and Geiger (1930).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It is an empirical classification that divides the climate into five major types, which are represented by the capital letters A (tropical zone), B (dry zone), C (temperate zone), D (continental zone), and E (polar zone).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Each of these climate types except for B is defined by temperature criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' More recent classifications can been found in the AR6 of the IPCC (2021, 2022) but all of them share the spirit of the original one of K¨oppen (1900).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The climate classification we propose in this section is also based on temperature data and it has three simple distinctive characteristics: It considers the whole temperature distribution and not only the average It has a dynamic nature: it is based on the evolution of the trend of the temperature quantiles (lower and upper).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It can be easily tested Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (Warming Typology): We define four types of warming processes: W0: There is no trend in any of the quantiles (No warming).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' W1: All the location distributional characteristics have the same positive trend (dispersion does not contain a trend) W2: The Lower quantiles have a larger positive trend than the Upper quantiles (dispersion has a negative trend) W3: The Upper quantiles have a larger positive trend than the Lower quantiles (dispersion has a positive trend).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 4This definition is slightly different from the one in Carrion-i-Silvestre and Kim (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 10 Climate is understood, unlike weather, as a medium and long-term phenomenon and, therefore, it is crucial to take trends into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Notice that this typology can be used to describe macroclimate as well as microclimate locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Most of the literature on Global or Local warming only considers the trend behavior of the central part of the distribution (mean or median).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' By doing this, we are losing very useful information that can be used to describe the whole warming process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This information is considered in the other elements of the typology W1, W2 and W3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This typology does not say anything about the intensity of the warming process and its dynamic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Part of this intensity is captured in the following definitions of warming acceleration and warming amplification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Definition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (Warming Acceleration): We say that there is warming acceler- ation in a distributional temperature characteristic Ct between the time periods t1 = (1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', s) and t2 = (s + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T) if in the following two regressions: Ct = α1 + β1t + ut, t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', s, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, (15) Ct = α2 + β2t + ut, t = s + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, (16) the second trend slope is larger than the first one: β2 > β1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In practice, we implement this definition by testing in the previous system the null hypothesis β2 = β1 against the alternative β2 > β1 An alternative warming acceleration test can be formed by testing for a structural break at t = s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Neverthe- less, we prefer the approach of Definition 7 because it matches closely the existent narrative on warming acceleration in the climate literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (Warming Amplification with respect to the mean): We say that there is a warming amplification in distributional characteristic Ct with respect the mean if in the following regression: Ct = β0 + β1meant + ϵt (17) the mean slope is greater than one: β1 > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' When the mean, meant, and Ct come from the same distribution, we name this “inner” warming amplification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Otherwise, the mean may come from an external environment and, in that case, we call it “outer” warming amplification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Both concepts, acceleration and amplification, introduce a quantitative dimen- sion to the ordinarily defined classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For example, the acceleration, which Climate change heterogeneity 11 has a dynamic character, allows us to observe the transition from one type of cli- mate to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Amplification, on the other hand, makes it possible to compare the magnitude of the trends that define each type of climate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It should be noted that, although static in nature, it can be computed recursively at different points in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the previous definitions, we classify the warming process of different regions which is crucial in the design of local mitigation and adaptation policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' But we, also, need to compare the different climate change processes of two regions in order to characterize climate heterogeneity independently of the type of warming they are experimenting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For this purpose, we propose the following definition that shares the spirit of the stochastic dominance concept used in the economic-finance literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (Warming Dominance (WD): We say that the temperature distri- butions of Region A warming dominates (WD) the temperature distributions of Region B if in the following regression qτt(A) − qτt(B) = ατ + βτt + uτt, (18) βτ ≥ 0 for all 0 < τ < 1 and there is at least one value τ ∗ for which a strict inequality holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It is also possible to have only partial (WD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For instance, in the lower or upper quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 3 The data 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1 Spain The measurement of meteorological information in Spain started in the eighteenth century.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' However, it was not until the mid-nineteenth century that reliable and reg- ular data became available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In Spain, there are four main sources of meteorological information: the Resumen Anual, Bolet´ın Diario, Bolet´ın Mensual de Climatolog´ıa and Calendario Meteorol´ogico.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' These were first published in 1866, 1893, 1940 and 1943, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A detailed explanation of the different sources can be found in Carreras and Tafunell (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Currently, AEMET (Agencia Estatal de Meterolog´ıa) is the agency responsible for storing, managing and providing meteorological data to the public.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Some of the historical publications, such as the Bolet´ın Diario and Calendario Meteorol´ogico can Climate change heterogeneity 12 be found in digital format in their respective archives for whose use it is necessary to use some kind of Optical Character Recognition (OCR) software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5 In 2015, AEMET developed AEMET OpenData, an Application Programming Interface (API REST) that allows the dissemination and reuse of Spanish meteoro- logical and climatological information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' To use it, the user needs to obtain an API key to allow access to the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Then, either through the GUI or through a programming language such as Java or Python, the user can request data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' More information about the use of the API can be found on their webpage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='6 In this paper, we are concerned with Spanish daily station data, specifically temperature data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Each station records the minimum, maximum and average tem- perature as well as the amount of precipitation, measured as liters per square meter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The data period ranges from 1920 to 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' However, in 1920 there were only 13 provinces (out of 52) who had stations available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It was not until 1965 that all the 52 provinces had at least one working station.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Moreover, it is important to keep in mind that the number of stations has increased substantially from only 14 stations in 1920 to more than 250 in 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' With this information in mind, we select the longest span of time that guarantees a wide sample of stations so that all the geographical areas of peninsular Spain are represented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For this reason, we decided to work with station data from 1950 to 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' There are 30 stations whose geographical distri- bution is displayed in the map in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The original daily data are converted into monthly data, so that we finally work with a total of 30x12 station-month units corresponding to peninsular Spain and, consequently, we have 360 observations each year with which to construct the annual distributional characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2 The Globe In the case of the Globe, we use the database of the Climate Research Unit (CRU) that offers monthly and yearly data of land and sea temperatures in both hemi- spheres from 1850 to the present, collected from different stations around the world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7 Each station temperature is converted to an anomaly, taking 1961-1990 as the base 5http : //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='aemet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='es/es/conocermas/recursosenlinea/calendarios?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='n = todos and https : //repositorio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='aemet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='es/handle/20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='11765/6290.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 6https : //opendata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='aemet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='es/centrodedescargas/inicio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The use of AEMET data is regulated in the following resolution https : //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='boe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='es/boe/dias/2016/01/05/pdfs/BOE − A − 2016 − 111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 7We use CRUTEM version 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0, which can be downloaded from (https://crudata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='uea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='uk/cru/data/temperature/).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A recent revision of the methodology can be found in Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 13 period, and each grid-box value, on a five-degree grid, is the mean of all the station anomalies within that grid box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This database (in particular, the annual temper- ature of the Northern Hemisphere) has become one of the most widely used to illustrate GW from records of thermometer readings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' These records form the blade of the well-known “hockey stick” graph, frequently used by academics and other institutions, such as, the IPCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In this paper, we prefer to base our analysis on raw station data, as in GG2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The database provides data from 1850 to nowadays, although due to the high variability at the beginning of the period it is customary in the literature to begin in 1880.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In this work, we have selected the stations that are permanently present in the period 1950-2019 according to the concept of the station-month unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In this way, the results are comparable with those obtained for Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Although there are 10,633 stations on record, the effective number fluctuates each year and there are only 2,192 stations with data for all the years in the sample period, which yields 19,284 station-month units each year (see this geographical distribution in the map in Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='8 In summary, we analyze raw global data (stations instead of grids) for the period 1950 to 2019, compute station-month units that remain all the time and with these build the annual distributional characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 4 Empirical strategy In this section we apply our three-step quantitative methodology to show the ex- istent climate heterogeneity between Spain and the Globe as well as within Spain, between Madrid and Barcelona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Because all our definitions are written in a test- ing format, it is straightforward to empirically apply them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' First, we test for the existence of warming by testing the existence of a trend in a given distributional characteristic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' How common are the trends of the different characteristics (revealed by a co-trending test) determine the warming typology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Second, the strength of the warming process is tested by testing the hypothesis of warming acceleration and warming amplification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' And third, independently of the warming typology, we determine how the warming process of Spain compares with that of the Globe as a whole (we do the same for Madrid and Barcelona).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This is done by testing for warming dominance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 8In the CRU data there are 115 Spanish stations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' However, after removing stations not present for the whole 1880 to 2019 period, only Madrid-Retiro, Valladolid and Soria remain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Since 1950, applying the same criteria, only 30 remain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 14 (a) Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Selected stations, AEMET data 1950-2019 (b) The Globe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Selected stations, CRU data 1950-2019 Figure 1 Geographical distribution of stations The results are presented according to the following steps: first, we apply our trend test (see Definition 4) to determine the existence of local or global warming and test for any possible warming acceleration;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' second, we test different co-trending 45 18d:w 135°W 90 45° S 90Climate change heterogeneity 15 hypotheses to determine the type of warming of each area;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' thirdly, we test the warming amplification hypothesis for different quantiles with respect to the mean (of Spain as well as of the Globe): H0 : β1 = 1 versus Ha : β1 > 1 in (17);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' and finally, we compare the CC of different regions, for Spain and the Globe, and within Spain, between Madrid and Barcelona, with our warming dominance test (see 18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1 Local warming: Spain The cross-sectional analysis is approached under two assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' First, choosing a sufficiently long and representative period of the geographical diversity of the Span- ish Iberian Peninsula, 1950-2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Second, we work with month-station units from daily observations to construct the annual observations of the time series object from the data supplied by the stations, following a methodology similar to that carried out for the whole planet in GG2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='10 The study comprises the steps described in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The density of the data and the evolution of characteristics are displayed, respectively in Figures 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' We find positive and significant trends in the mean, max, min and all the quan- tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Therefore from definition 1, we conclude there exists a clear local warming (see Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The recursive evolution for the periods 1950-2019 and 1970-2019 shows a clear increase in the trends of the mean, some dispersion measures and higher quantiles (see the last column of Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' More precisely, there is a significant trend acceler- ation in most of the distributional characteristics except the lower quantiles (below q20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' These quantiles, q05 and q10, remain stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The co-trending tests for the full sample 1950-2019 show a similar evolution of the trend for all the quantiles with a constant iqr (see Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This indicates that in this period the warming process of Spain can be considered a W1 type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' More recently, 1970-2019, the co-trending tests (see Table 3) indicate the upper quantiles grow faster than the lower ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This, together with a positive trend in the dispersion measured by the iqr shows that Spain has evolved from a W1 to a 9Before testing for the presence of trends in the distributional characteristics of the data, we test for the existence of unit roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' To do so, we use the well-known Augmented Dickey-Fuller test (ADF;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Dickey and Fuller, 1979), where the number of lags is selected in accordance with the SBIC criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The results, available from the authors on request, show that the null hypothesis of a unit root is rejected for all the characteristics considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 10The results with daily averages are very similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The decision to work with monthly data instead of daily in the cross-sectional approach has been based on its compatibility with the data available for the Globe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 16 W3 warming type process Finally, no evidence of “inner” amplification during the period 1950-2019 is found in the lower quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Regarding the upper quantiles, we found both “inner” and “outer” amplification in the second period, which supports the previous finding of a transition from type W1 to type W3 (see Table 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Summing up, with our proposed tests for the evolution of the trend of the whole temperature distribution, we conclude that Spain has evolved from a W1 type to a much more dangerous W3 type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The results of acceleration and dynamic amplifi- cation reinforce the finding of this transition to type W3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Figure 2 Spain annual temperature density calculated with monthly data across stations 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='03 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='02 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='01 ~ 0 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='6096 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='691 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7724 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='8538 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9352 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0166 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='09796 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='17936 1970 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='739249 1960 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='65786 1950 temperature in degrees Celsius (month-station units)2010 2000 1990 1980 vears0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='07Climate change heterogeneity 17 Figure 3 Characteristics of temperature data in Spain with stations selected since 1950 (monthly data across stations, AEMET, 1950-2019) 30 15 mean max 13 25 1950 1970 1990 2010 1950 1970 1990 2010 0 6 min std 1950 1970 1990 2010 1950 1970 1990 2010 35 range 30 iqr 8 25 1950 1970 1990 2010 1950 1970 1990 2010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5 kurtosis skewness 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2 1950 1970 1990 2010 1950 1970 1990 2010 20 10 0 1950 1970 1990 2010 q5 q10 q20 q30 q40 q50 q60 q70 q80 q90 q95Climate change heterogeneity 18 Table 1 Trend acceleration hypothesis (Spain monthly data across stations, AEMET, 1950-2019) Trend test by periods Acceleration test names/periods 1950-2019 1970-2019 1950-2019, 1970-2019 mean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0242 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0389 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0294 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0015) max 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0312 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0526 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7871 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0030) min 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0289 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0251 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2557 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0654) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='6007) std 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0098 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7952 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0518) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0021) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0374) iqr 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0051 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0158 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='8197 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1793) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0028) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0355) rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0276 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2705 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='8249) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1127) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1030) kur 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9191 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0203) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0198) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='8202) skw 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0002 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5989 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0271) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7423) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9439) q5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0227 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0206 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2559 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0059) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='6008) q10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0203 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0406 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0077) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4838) q20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0209 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0300 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4158 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0796) q30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0221 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0333 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0100 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0232) q40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0213 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0366 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4867 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0071) q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0211 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0404 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2496 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0007) q60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0246 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0446 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1147 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0011) q70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0273 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0478 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='3143 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0006) q80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0275 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0471 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='6949 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0040) q90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0321 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0548 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2441 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0007) q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0335 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0526 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='3568 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0005) Note: OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression: Ct = α + βt + ut, for two different time periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', s, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, Ct = α2 + β2t + ut, t = s + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' We show the value of the t-statistic and its HAC p-value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Table 2 Co-trending analysis (Spain monthly data across stations, AEMET, 1950-2019) Joint hypothesis tests Wald test p-value All quantiles (q05, q10,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=',q90, q95) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='235 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='211 Lower quantiles (q05, q10, q20, q30) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='310 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='958 Medium quantiles (q40, q50, q60) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='438 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='803 Upper quantiles (q70, q80, q90, q95) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='515 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='679 Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='771 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='993 Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='331 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='215 Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='705 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='111 Spacing hypothesis Trend-coeff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' p-value q50-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='786 q95-q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 q95-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='096 q75-q25 (iqr) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='179 Note: Annual distributional characteristics (quantiles) of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The top panel shows the Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the bottom panel, the TT is applied to the difference between two representative quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 19 Table 3 Co-trending analysis (Spain monthly data across stations, AEMET, 1970-2019) Joint hypothesis tests Wald test p-value All quantiles (q05, q10,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=',q90, q95) 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='879 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 Lower quantiles (q05, q10, q20, q30) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='121 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='373 Medium quantiles (q40, q50, q60) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='314 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='518 Upper quantiles (q70, q80, q90, q95) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='719 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='633 Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='771 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='047 Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='675 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='099 Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='892 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 Spacing hypothesis Trend-coeff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' p-value q50-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='029 q95-q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='050 q55-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='032 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='002 q75-q25 (iqr) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='003 Note: Annual distributional characteristics (quantiles) of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The top panel shows the Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the bottom panel, the TT is applied to the difference between two representative quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Table 4 Amplification hypothesis (Spain monthly data, AEMET 1950-2019 periods/variables 1950-2019 1970-2019 1950-2019 1970-2019 Inner Outer q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='39 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='866) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='998) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='990) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='996) q10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='52 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='899) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='994) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='992) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='986) q20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='81 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='816) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='890) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='993) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='899) q30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='91 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='87 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='935) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='929) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='997) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='834) q40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='97 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='97 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='744) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='318) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='978) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='566) q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='98 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='83 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='12 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='612) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='067) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='944) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='212) q60 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='09 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='96 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='23 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='103) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='051) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='619) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='056) q70 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='11 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='16 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='05 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='30 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='040) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='006) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='350) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='028) q80 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='11 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='06 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='29 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='083) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='071) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='325) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='060) q90 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='16 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='19 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='45 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='101) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='118) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='078) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='007) q95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='09 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='36 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='089) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='191) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='051) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='008) Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1 in the regression: Cit = βi0 + βi1meant + ϵit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' mean refers to the average of the Spanish Global temperature distribution for the “inner” and “outer”cases, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 20 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2 Global warming: the Globe In this section, we carry out a similar analysis to that described in the previous subsection for Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Figures 4 and 5 show the time evolution of the Global temper- ature densities and their different distributional characteristics from 1950 to 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The data in both figures are obtained from stations that report data throughout the sample period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Table 5 shows a positive trend in the mean as well as in all the quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This indicates the clear existence of Global warming, more pronounced (larger trend) in the lower part of the distribution (a negative trend in the dispersion measures).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The warming process suffers an acceleration in all the quantiles above q30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' From the co-trending analysis (see Tables 6 and 7) we can determine the type of warming process characterizing the whole Globe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Table 6 indicates that in the period 1950-2019 the Globe experimented a W2 warming type (the lower part of the temperature distribution grows faster than the middle and upper part, implying iqr and std have a negative trend).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Similar results are maintained for the period 1970-2019 (in this case only the dispersion measure std has a negative trend).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The asymmetric amplification results shown in Table 8 reinforce the W2 typology for the whole Globe: an increase of one degree in the global mean temperature increases the lower quantiles by more than one degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This does not occur with the upper part of the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Notice that this amplification goes beyond the standard Artic amplification (q05) affecting also q10, q20 and q30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Summing up, the results from our different proposed tests for the evolution of the trend of the whole temperature distribution indicate that the Globe can be cataloged as a undergoing type W2 warming process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This warming type may have more serious consequences for ice melting, sea level increases, permafrost, CO2 migration, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' than the other types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 21 Figure 4 Global annual temperature density calculated with monthly data across stations 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='025 density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='01 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='005 ~ 0 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='369 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5248 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='68063 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='16358 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0078 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='852 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='6962 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5404 1970 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='3846 1960 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2288 1950 temperature in degrees Celsius (month-station units)2010 2000 1990 1980 vears0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='035Climate change heterogeneity 22 Figure 5 Characteristics of temperature data in the Globe (monthly data across stations, CRU, 1950-2019) 12 40 11 38 10 mean max 1950196019701980199020002010 1950196019701980 199020002010 13 44 46 48 50 52 std 11 1950196019701980199020002010 1950196019701980199020002010 8 90 85 16 iqr range 80 19501960 1970198019902000 2010 1950196019701980199020002010 G kur 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='8 W 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9 skw 195019601970:1980199020002010 195019601970198019902000:2010 20 10 0 10 1950196019701980199020002010 q5 q10 q20 q30 q40 q50 q60 q70 q80 q90 q95Climate change heterogeneity 23 Table 5 Trend acceleration hypothesis (CRU monthly data across stations, 1950-2019) Trend test by periods Acceleration test names/periods 1950-2019 1970-2019 1950-2019, 1970-2019 mean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0213 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0300 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2023 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0147) max 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0361 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0523 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1217 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0001) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1320) min 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0423 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0109 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5016 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5867) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='3084) std 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0057 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1776 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0570) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4296) iqr 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0043 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2454 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0435) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4183) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4033) rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0062 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0632 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2181 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5876) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0005) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4138) kur 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0445 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5205) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9566) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4823) skw 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0301 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0577) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5726) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4880) q5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0404 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0468 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7035 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2415) q10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0305 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0406 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9273 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0001) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1777) q20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0253 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0342 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0156 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1558) q30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0215 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0280 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2056 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1150) q40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0192 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0293 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9873 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0245) q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0179 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0268 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='8614 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0324) q60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0185 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0291 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1971 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0149) q70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0185 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0288 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5770 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0055) q80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0160 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0257 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2460 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0132) q90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0146 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0243 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0848 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0005) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0195) q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0239 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7520 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0001) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0410) Note: OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression: Ct = α + βt + ut, for two different time periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', s, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, Ct = α2 + β2t + ut, t = s + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' We show the value of the t-statistic and its HAC p-value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Table 6 Co-trending analysis (CRU montly data, 1950-2019) Joint hypothesis tests Wald test p-value All quantiles (q05, q10,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=',q90, q95) 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='005 Lower quantiles (q05, q10, q20, q30) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='545 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='023 Medium quantiles (q40, q50, q60) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='078 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='962 Upper quantiles (q70, q80, q90, q95) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='099 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='777 Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='691 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='007 Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='041 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='916 Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='683 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='001 Spacing hypothesis Trend-coeff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' p-value q50-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='022 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 q95-q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='193 q95-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='026 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 q75-q25 (iqr) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='043 Note: Annual distributional characteristics (quantiles) of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The top panel shows the Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the bottom panel, the TT is applied to the difference between two representative quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 24 Table 7 Co-trending analysis (CRU montly data, 1970-2019) Joint hypothesis tests Wald test p-value All quantiles (q05, q10,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=',q90, q95) 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='478 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='047 Lower quantiles (q05, q10, q20, q30) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='523 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='137 Medium quantiles (q40, q50, q60) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='569 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='752 Upper quantiles (q70, q80, q90, q95) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='667 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='446 Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='606 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='268 Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='348 Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='520 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='043 Spacing hypothesis Trend-coeff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' p-value q50-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='047 q95-q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='462 q95-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='048 q75-q25 (iqr) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='418 Note: Annual distributional characteristics (quantiles) of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The top panel shows the Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the bottom panel, the TT is applied to the difference between two representative quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Table 8 Amplification hypotheses (CRU monthly data across stations, 1950-2019) periods/variables 1950-2019 1970-2019 q05 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='83 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) q10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='79 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='73 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='001) q20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='41 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='37 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) q30 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='07 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='00 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='089) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='502) q40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='91 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='999) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='973) q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='81 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='997) q60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='85 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='999) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='973) q70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='85 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='988) q80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='78 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) q90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='70 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='64 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1 in the regression: Cit = βi0 +βi1meant +ϵit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' mean refers to the average of the Global temperature distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 25 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='3 Micro-local warming: Madrid and Barcelona The existence of warming heterogeneity implies that in order to design more ef- ficient mitigation policies, they have to be developed at different levels: global, country, region etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' How local we need to go will depend on the existing degree of micro-warming heterogeneity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In this subsection, we go to the smallest level, cli- mate station level .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' We analyze, within Spain, the warming process in two weather stations corresponding to two cities: Madrid (Retiro station) and Barcelona (Fabra station).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 11 Obviously, the data provided by these stations is not cross-sectional data but directly pure time series data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Our methodology can be easily applied to higher frequency time series, in this case daily data, to compute the distributional characteristics (see Figures A1 and A2)12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The results are shown in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' These two stations, Madrid-Retiro and Barcelona-Fabra clearly experience two different types of warming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' First, there is evidence of micro-local warming, understood as the presence of significant and positive trends, in all the important temperature distributional characteristics of both stations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The acceleration phenomenon is also clearly detected, in other words, the warming increases as time passes (see Tables A1 and A5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Secondly, from the co-trending tests (Tables A2-A3 and A6-A7), it can be concluded that the warming process of Madrid-Retiro is type W3 while for Barcelona-Fabra it is type W1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In both cases the warming typology is stable through both sample periods (1950-2019 and 1970-2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Thirdly, as expected, Madrid-Retiro presents “inner” and “outer” amplification for the upper quantiles, while Barcelona-Fabra does so only for the center part of its temperature distribution (see Tables A4 and A8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Summing up, even within Spain we find evidence of warming heterogeneity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' While Madrid (Continental Mediterranean climate) has a similar pattern as that of peninsular Spain (1970-2019) W3, Barcelona (Mediterranean coastline climate) maintains a W1 typology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Thus there are two different warming processes which require mitigation policies at the country as well as the very local level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 11From Madrid and Barcelona there is data since 1920’s, nevertheless we began the study in 1950 for consistency with the previous analysis of Spain and the Globe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 12See the application to Central England in GG2020 and in Gadea and Gonzalo (2022) to Madrid, Zaragoza and Oxford.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 26 5 Comparing results The goal of this section is to show the existence of climate heterogeneity by com- paring the results obtained from applying our three-step methodology to different regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' These results are summarized in Table 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It is clear that there is distribu- tional warming in all the analyzed areas;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' but this warming follows different patterns and sometimes the warming type is not even stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the case of Spain, it depends on the period under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Figure 6 captures graphically the different trend behavior and intensity of the distributional characteristics by regions (Spain and the Globe and Madrid and Barcelona).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='13 The graphical results in this figure coincide with the results of the warming typology tests shown in Table 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The middle of Table 10 shows that warming acceleration is detected in all the locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This acceleration is more general in Spain than in the Globe (see also the heatmap in Figure 7) and in Barcelona than in Madrid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Apart from these differences, the acceleration shares certain similarities across regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This is not the case for the warming amplification that is clearly asymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Spain suffers an amplification in the upper quantiles while the Globe does so in the lower ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Notice that the latter amplification goes beyond the standard results found in the literature for the Arctic region (q05).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' We detect amplification also for the regions corresponding to the quantiles q10-q30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the case of Madrid and Barcelona, Madrid suffers a wider warming amplification than Barcelona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The results of the first two steps of our methodology are obtained region by region (Spain, the Globe, Madrid and Barcelona).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It is the last step, via the warming dominance test (see the numerical results in Table 9) where we compare directly one region with another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Warming in Spain dominates that of the Globe in all the quantiles except the lower q05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='14 This would support the idea held in European institutions and gathered in international reports on the greater intensity of climate 13The analysis of other characteristics such as the third and fourth order moments can contribute to the temperature distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the case of Spain, the kurtosis is always negative with a mean value of -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='8 and a significant negative trend, which means that we are dealing with a platykurtic distribution with tails less thick than Normal, a shape that is accelerating over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' However, it is ot possible to draw conclusions about symmetry given its high variability over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Conversely, the temperature distribution in the Globe is clearly leptokurtic with an average kurtosis of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9 and a negative but not significant trend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The global temperature observations are therefore more concentrated around the mean and their tails are thicker than in a Normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The skewness is clearly negative although a decreasing and significant trend points to a reduction of the negative skewness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 14A more detailed analysis of the warming process suffered in the Artic region can be found in Gadea and Gonzalo (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 27 change in the Iberian Peninsula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Warming in Madrid dominates that of Barcelona in the upper quantiles, while the reverse is the case in the lower quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This latter result coincides with the idea that regions close to the sea have milder upper temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Further research (beyond the scope of this paper) will go in the direction of finding the possible causes behind the warming types W1, W2, and W3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Following the literature, on diurnal temperature asymmetry (Diurnal Temperature Range = DTR = Tmax − Tmin) we can suggest as possible causes for W2 the cloud coverage (Karl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 1993) and the planetary boundary layer (see Davy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For W3, the process of desertification (see Karl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Summarizing, in this section we describe, measure and test the existence of warming heterogeneity in different regions of the planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It is important to note that these extensive results can not be obtained by the standard analysis of the average temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Table 9 Warming dominance Spain-Globe Madrid-Barcelona Quantile β t-ratio β t-ratio q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='018 (-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='770) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='013 (-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='730) q10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='010 (-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='504) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='013 (-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='215) q20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='004 (-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='950) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='012 (-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='988) q30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='001 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='180) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='013 (-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='164) q40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='002 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='788) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='009 (-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='909) q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='003 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='025) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='003 (-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='701) q60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='006 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='933) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='001 (-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='219) q70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='009 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='266) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='006 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='252) q80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='012 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='203) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='016 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='331) q90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='017 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='862) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='010 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='869) q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='019 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='930) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='014 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='993) Note: The slopes (t-statistic) of the following regression qτt(A) − qτt(B) = ατ + βτt + uτt In the first column A=Spain, B=Globe and in the second A=Madrid, B=Barcelona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 28 Table 10 Summary of results Cross analysis Sample Period Type Acceleration Amplification Dominance Inner Outer Spain 1950-2019 W1 [mean, std, iqr, rank, [q70, q80, q95] [q90, q95] [q60,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q95] q20,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q95] 1970-2019 W3 [q50,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q80] [q60,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q95] The Globe 1950-2019 W2 [mean [q05,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q30] [q05] q40,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q95] 1970-2019 W2 [q05,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q20] Time analysis Sample Period Type Acceleration Amplification Dominance Madrid, Retiro Station 1950-2019 W3 [mean, std, rank, [q50,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q95] [ q40,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q95] [q80,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q95] q40, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q95] 1970-2019 W3 [q50,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q95] [q40,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q95] Barcelona, Fabra Station 1950-2019 W1 [mean, [q30,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q90] [q05,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q40] q20,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q95] 1970-2019 W1 [q60, q70] [q30,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', q70] Note: For Spain and the Globe we build characteristics from station-months units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For Madrid and Barcelona we use daily frequency time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A significance level of 10% is considered for all tests and characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='01 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='06 mean max min std iqr rank kur skw q5 q10 q20 q30 q40 q50 q60 q70 q80 q90 q95 Globe-montly-1950 Spain-montly-1950 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='01 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='06 mean max min std iqr rank kur skw q5 q10 q20 q30 q40 q50 q60 q70 q80 q90 q95 Spain-montly-1950 Madrid-daily-1950 Barcelona-daily-1950 Note: The bars represent the intensity of the trends found in each characteristic measured through the value of the β-coefficient estimated in the regression Ct = α + βt + ut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Figure 6 Trend evolution of different temperature distributional characteristics Climate change heterogeneity 30 1950-2019 1955-2019 1960-2019 1965-2019 1970-2019 1975-2019 1980-2019 1985-2019 1990-2019 1995-2019 2000-2019 mean max min std iqr rank kur skw q5 q10 q20 q30 q40 q50 q60 q70 q80 q90 q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='02 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1 (a) Globe Spain 1950-2019 1955-2019 1960-2019 1965-2019 1970-2019 1975-2019 1980-2019 1985-2019 1990-2019 1995-2019 2000-2019 mean max min std iqr rank kur skw q5 q10 q20 q30 q40 q50 q60 q70 q80 q90 q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='02 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1 (b) Spain Note: The color scale on the right side of the figure shows the intensity of the trend, based on the value of the β-coefficient estimated in the regression Ct = α + βt + ut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Figure 7 Comparing heatmaps Climate change heterogeneity 31 6 Conclusions The existence of Global Warming is very well documented in all the scientific reports published by the IPCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the last one, the AR6 report (2022), special attention is dedicated to climate change heterogeneity (regional climate).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Our paper presents a new quantitative methodology, based on the evolution of the trend of the whole tem- perature distribution and not only on the average, to characterize, to measure and to test the existence of such warming heterogeneity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' It is found that the local warm- ing experienced by Spain (one of most climatically diverse areas) is very different from that of the Globe as a whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In Spain, the upper-temperature quantiles tend to increase more than the lower ones, while in the Globe just the opposite occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In both cases the warming process is accelerating over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Both regions suffer an amplification effect of an asymmetric nature: there is warming amplification in the lower quantiles of the Globe temperature (beyond the standard well-known results of the Arctic zone) and in the upper ones of Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Overall, warming in Spain domi- nates that of the Globe in all the quantiles except the lower q05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' This places Spain in a very difficult warming situation compared to the Globe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Such a situation requires stronger mitigation-adaptation policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For this reason, future climate agreements should take into consideration the whole temperature distribution and not only the average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Any time a novel methodology is proposed, new research issues emerge for future investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Among those which have been left out of this paper (some are part of our current research agenda), three points stand out as important: There is a clear need for a new non-uniform causal-effect climate change anal- ysis beyond the standard causality in mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In order to improve efficiency, mitigation-adaptation policies should be de- signed containing a common global component and an idiosyncratic regional element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The relation between warming heterogeneity and public awareness of climate change deserves to be analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 32 References [1] Berenguer-Rico, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Gonzalo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Summability of stochastic processes- A generalization of integration and co-integration valid for non-linear processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Journal of Econometrics 178, 331-341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [2] Brock, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Xepapadeas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change policy under polar amplifi- cation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' European Economic Review 94, 263-282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [3] Busetti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Harvey, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Testing for trend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Econometric 24, 72-87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [4] Carreras, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Tafunell Sambola, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Estad´ısticas hist´oricas de Espa˜n a, siglos XIX-XX, 2ª ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Fundacion BBVA / BBVA Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [5] Carrion-i-Sivestre, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='L, Kim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Quasi-likelihood ratio tests for cointe- gration, cobreaking, and cotrending.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Econometric Reviews 38(8),881-898.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [6] Chang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Kim, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Miller, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Park, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Time series analysis of global temperature distributions: identifying and estimating per- sistent features in temperature anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Working Paper 15-13, University of Missouri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [7] Chang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Kim, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='S, Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Nonstationarity in time series of state densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Journal of Econometrics 192, 152-167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [8] D’Autume, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Schubert, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Should the Carbon Price Be the Same in All Countries?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Journal of Public Economy Theory 18(5), 709-725.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [9] Davy, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Esau, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Chernokulsky, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Outten, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Zilitinkevich, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Diurnal asymmetry to the observed global warming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climatol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 37: 79-93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [10] Diebold, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Rudebusch, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' On the Evolution of U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Temperature Dynamics, in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Chudek, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Hsiao and A Timmermann (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' ), Essays in Honor of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Hashem Pesaran (Advances in Econometrics, Volume 43), 9-28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Online appendix here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Code here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Working paper at arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='06303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [11] Durlauf, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Phillips, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Trends versus random walks in time series analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Econometrica 56, 1333-1354.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [12] Embrechts, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Kl¨uppelberg, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Mikosh, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Modelling Extremal Events for Insurance and Finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Springer-Verlag, Berlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 33 [13] Gadea, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Gonzalo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Trends in distributional characteristics: Exis- tence of global warming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Journal of Econometrics 214, 153-174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [14] Gadea, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Gonzalo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Polar Warming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' mimeo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [15] Gadea, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Gonzalo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A Tale of three cities: Climate heterogeneity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' SERIES 13(1-2) (Special Issue in honour of Juan Jos´e Dolado) 475-511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [16] Grenander, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Rosenblatt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 1957.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Statistical Analysis of Stationary Time Series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' New York: Wiley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [17] IPCC, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate Change 2021: The Physical Science Basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Contribu- tion of Working Group I to the Sixth Assessment Report of the Intergov- ernmental Panel on Climate Change[Masson-Delmotte, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Zhai, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Pi- rani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Connors, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' P´ean, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Berger, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Caud, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Goldfarb, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Gomis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Huang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Leitzell, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Lonnoy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Matthews, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Maycock, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Waterfield, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Yelek¸ci, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Yu, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Zhou (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=')].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Cambridge Univer- sity Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1017/9781009157896.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [18] IPCC, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate Change 2022: Impacts, Adaptation, and Vulnerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Contribution of Working Group II to the Sixth Assessment Report of the In- tergovernmental Panel on Climate Change [H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='-O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' P¨ortner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Roberts, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Tignor, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Poloczanska, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Mintenbeck, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Alegr´ıa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Craig, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Langsdorf, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' L¨oschke, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' M¨oller, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Okem, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Rama (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=')].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Cambridge University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [19] IPCC, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate Change 2022: Mitigation of Climate Change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Shukla, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Skea, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Slade, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Al Khourdajie, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' van Diemen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' McCollum, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Pathak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Some, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Vyas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Fradera, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Belka- cemi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Hasija, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Lisboa, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Luz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Malley, (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=')].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Cambridge University Press, Cambridge, UK and New York, NY, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1017/9781009157926.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [20] Johansen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Likelihood-based Inference in Cointegrated Vector Autore- gressive Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Oxford: Oxford University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [21] Jones, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Lister, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Osborn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Harpham, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Salmon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Morice, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Hemispheric and large-scale land surface air temperature variations: Climate change heterogeneity 34 an extensive revision and an update to 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Journal of Geophysical Research 117, 1-29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [22] Karl T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Jones P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Knight R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Kukla G, Plummer N, Razuvaev V, Gallo KP, Lindseay J, Charlson RJ, Peterson TC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temper- ature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Meteorol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 74, 1007–1023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [23] K¨oppen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 1900.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Versucheiner Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt, Geographische Zeitschrift, 6, 657–679.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [24] K¨oppen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Geiger, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 1930.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Handbuch der Klimatologie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Gebrueder Born- traeger, Berlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [25] Maiella, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', La Malva, P, Marchetti, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Pomarico, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Di Crosta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Palumbo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Cetara, L, Di Domenico, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Verrocchio, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The Psychological Distance and Climate Change: A Systematic Review on the Mitigation and Adaptation Behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Frontiers in Psychology 11, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='3389/fpsyg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='568899.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [26] Malmendier, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Exposure, Experience, and Expertise: Why Personal Histories Matter in Economics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Journal of the European Economic Association 19(6), 2857–2894.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [27] M¨ueller, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Watson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Testing models of low-frequency variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Econometrica 76, 979-1016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [28] Newey, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', West, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' A Simple positive semi-definite, hetereko- dasticity and autocorrelation consistent covariance matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Econometrica 55, 703-708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [29] Nowakowski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Oswald, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Do Europeans Care about Climate Change?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' An Illustration of the Importance of Data on Human Feelings, IZA Discussion Papers 13660, Institute of Labor Economics (IZA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [30] Peng, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Iyer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', Binsted, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=',2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The surprisingly inexpensive cost of state-driven emission control strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Clim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Chang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' 738–745.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' [31] Tol, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The distributional impact of climate change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Annals of the New York.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Academy of Sciences 1504 (1), 63-75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 35 [32] White, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Using least square to approximate unknown regression func- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' International Economic Review 21, 149–170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 36 7 Appendix: Climate change of Madrid and Barcelona 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1 Madrid-Retiro Figure A1 Characteristics of temperature data in Madrid-Retiro (AEMET daily data, 1950-2019) 16 32 30 mean 28 max 1950 1970 1990 2010 2019 1950 1970 1990 2010 2019 5 8 wmw min std 5 6 1950 1970 1990 2010 2019 1950 1970 1990 2010 2019 15 35 rank w 30 10 igr 25 1950 1970 1990 2010 2019 1950 1970 1990 2010 2019 kur 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5 0 1950 1970 1990 2010 2019 1950 1970 1990 2010 2019 30 20 10 0 1950 1970 1990 2010 2019 q5 q10 q20 q30 q40 q50 q60 q70 q80 q90 q95Climate change heterogeneity 37 Table A1 Trend acceleration hypothesis (Madrid, daily data, AEMET, 1950-2019) Trend test by periods Acceleration test names/periods 1950-2019 1970-2019 1950-2019, 1970-2019 mean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0326 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0447 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0972 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0189) max 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0477 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0636 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2043 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1153) min 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0087 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5077 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0011) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5859) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9330) std 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0112 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0197 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1160 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0181) iqr 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0270 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0399 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1110 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0004) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1343) rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0115 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0549 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0160 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='3666) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0045) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0229) kur 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0022 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4449 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0278) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0660) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='6714) skw 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0013 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7769 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1538) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2695) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9611) q5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0248 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0183 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5712 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0774) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7156) q10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0220 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0174 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5815 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0162) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7191) q20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0187 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1777 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0099) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5704) q30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0181 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0235 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='6959 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0019) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2438) q40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0236 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0362 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='6625 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0494) q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0299 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0545 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='8801 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0023) q60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0334 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0604 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1655 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0010) q70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0388 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0550 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7385 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0422) q80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0519 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0712 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9750 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0251) q90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0494 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0687 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7956 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0374) q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0527 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0710 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7839 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0383) Note: OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression: Ct = α + βt + ut, for two different time periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', s, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, Ct = α2 + β2t + ut, t = s + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' We show the value of the t-statistic and its HAC p-value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Table A2 Co-trending analysis (Madrid-Retiro daily data, AEMET 1950-2019) Joint hypothesis tests Wald test p-value All quantiles (q05, q10,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=',q90, q95) 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='046 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 Lower quantiles (q05, q10, q20, q30) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='360 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='715 Medium quantiles (q40, q50, q60) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='361 Upper quantiles (q70, q80, q90, q95) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='944 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='268 Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='707 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='349 Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='967 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 Spacing hypothesis Trend-coeff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' p-value q50-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='505 q95-q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 q05-q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 q75-q25 (iqr) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='027 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 Note: Annual distributional characteristics (quantiles) of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The top panel shows the Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the bottom panel, the TT is applied to the difference between two representative quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 38 Table A3 Co-trending analysis (Madrid-Retiro daily data, AEMET, 1970-2019) Joint hypothesis tests Wald test p-value All quantiles (q05, q10,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=',q90, q95) 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='371 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 Lower quantiles (q05, q10, q20, q30) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='424 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='935 Medium quantiles (q40, q50, q60) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='111 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='017 Upper quantiles (q70, q80, q90, q95) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='214 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='360 Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='687 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='851 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='004 Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='094 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 Spacing hypothesis Trend-coeff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' p-value q50-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='004 q95-q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='051 q05-q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='053 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 q75-q25 (iqr) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000 Note: Annual distributional characteristics (quantiles) of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The top panel shows the Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the bottom panel, the TT is applied to the difference between two representative quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Table A4 Amplification hypothesis (Madrid daily data, AEMET 1950-2019) periods/variables 1950-2019 1970-2019 1950-2019 1970-2019 Inner Outer q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='56 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='993) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='802) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='990) q10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='54 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='974) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) q20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='65 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='961) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='999) q30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='90 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='996) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='758) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='836) q40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='90 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='21 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='887) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='436) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='072) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='041) q50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='08 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='29 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='38 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='53 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='188) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='001) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='001) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) q60 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='31 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='44 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='54 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='040) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) q70 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='22 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='23 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='46 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='38 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='012) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='019) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='002) q80 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='45 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='36 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='70 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='52 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='003) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='002) q90 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='31 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='29 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='48 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='38 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='004) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='041) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='005) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='064) q95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='31 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='33 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='46 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='39 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='001) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='021) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='007) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='073) Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1 in the regression: Cit = βi0 + βi1meant + ϵit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' mean refers to the average of the Madrid or Spanish temperature distribution for the “inner” and “outer”cases, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 39 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2 Barcelona-Fabra Figure A2 Characteristics of temperature data in Barcelona-Fabra (AEMET daily data, 1950-2019) 16 30 15 14 mean 25 1950 1970 1990 2010 2019 1950 1970 1990 2010 2019 8 5 std www min 5 1950 1970 1990 2010 2019 1950 1970 1990 2010 2019 30 25 igr 20 1950 1970 1990 2010 2019 1950 1970 1990 2010 2019 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5 kur 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4 skw 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2 M 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2 1950 1970 1990 2010 2019 1950 1970 1990 2010 2019 20 10 0 1950 1970 1990 2010 2019 q5 q10 q20 q30 q40 q50 q60 q70 q80 q90 q95Climate change heterogeneity 40 Table A5 Trend acceleration hypothesis (Barcelona, daily data, AEMET, 1950-2019) Trend test by periods Acceleration test names/periods 1950-2019 1970-2019 1950-2019, 1970-2019 mean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0340 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0512 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2979 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0006) max 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0394 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0531 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7280 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0038) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2339) min 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0397 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0231 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7411 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0011) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2654) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7700) std 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0013 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0057 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9146 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='6185) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1787) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1810) iqr 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0042 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0113 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7351 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4418) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1892) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2318) rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9299 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9806) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='3322) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1770) kur 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0013 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2693 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1555) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2075) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='6060) skw 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0022 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7869 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='2678) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1942) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9619) q5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0358 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='1381 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0015) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='5548) q10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0350 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0385 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4361 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='3317) q20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0317 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0439 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7009 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0456) q30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0308 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0488 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4813 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0072) q40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0324 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0537 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9244 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0020) q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0325 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0548 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='7535 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0034) q60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0344 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0636 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0915 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0012) q70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0330 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0583 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='9241 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0020) q80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0357 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0551 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='4081 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0087) q90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0394 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0567 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0957 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0190) q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0390 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0525 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='3435 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='0907) Note: OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression: Ct = α + βt + ut, for two different time periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', s, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, Ct = α2 + β2t + ut, t = s + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=', T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' We show the value of the t-statistic and its HAC p-value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Table A6 Co-trending analysis (Barcelona-Fabra daily data, AEMET, 1950-2019) Joint hypothesis tests Wald test p-value All quantiles (q05, q10,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=',q90, q95) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='368 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='971 Lower quantiles (q05, q10, q20, q30) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='792 Medium quantiles (q40, q50, q60) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='073 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='964 Upper quantiles (q70, q80, q90, q95) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='784 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='853 Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='171 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='978 Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='929 Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='969 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='888 Spacing hypothesis Trend-coeff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' p-value q50-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='528 q95-q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='233 q05-q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='856 q75-q25 (iqr) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='442 Note: Annual distributional characteristics (quantiles) of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The top panel shows the Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the bottom panel, the TT is applied to the difference between two representative quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Climate change heterogeneity 41 Table A7 Co-trending analysis (Barcelona-Fabra daily data, AEMET, 1970-2019) Joint hypothesis tests Wald test p-value All quantiles (q05, q10,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=',q90, q95) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='165 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='215 Lower quantiles (q05, q10, q20, q30) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='593 Medium quantiles (q40, q50, q60) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='267 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='531 Upper quantiles (q70, q80, q90, q95) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='384 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='943 Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='120 Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='642 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='949 Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 ) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='693 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='207 Spacing hypothesis Trend-coeff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' p-value q50-q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='192 q95-q50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='821 q05-q95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='241 q75-q25 (iqr) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='189 Note: Annual distributional characteristics (quantiles) of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' The top panel shows the Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' In the bottom panel, the TT is applied to the difference between two representative quantiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' Table A8 Amplification hypothesis (Barcelona daily data, AEMET 1950-2019) periods/variables 1950-2019 1970-2019 1950-2019 1970-2019 Inner Outer q05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='76 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='87 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='523) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='918) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='225) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='720) q10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='79 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='94 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='824) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='980) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='263) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='668) q20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='85 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='09 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='04 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='931) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='964) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='192) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='318) q30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='98 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='22 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='25 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='813) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='585) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) q40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='99 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='04 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='27 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='33 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='570) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='300) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='000) q50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='07 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='27 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='32 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='466) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='224) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='002) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='003) q60 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='09 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='23 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='29 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='42 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='175) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='005) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='014) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='001) q70 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='09 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='17 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='26 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='31 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='128) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='012) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='022) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='008) q80 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='06 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='04 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='22 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='17 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='191) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='338) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='052) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='117) q90 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='09 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='08 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='22 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='20 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='125) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='241) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='047) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='121) q95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='06 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='03 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='16 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='12 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='304) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='432) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='192) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content='298) Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1 in the regression: Cit = βi0 + βi1meant + ϵit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} +page_content=' mean refers to the average of the Barcelona or Spanish temperature distribution for the “inner” and “outer”cases, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfxgLI/content/2301.02648v1.pdf'} diff --git a/B9AzT4oBgHgl3EQfh_2U/content/tmp_files/2301.01493v1.pdf.txt b/B9AzT4oBgHgl3EQfh_2U/content/tmp_files/2301.01493v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..ca5ac05fad07888d8d8f31250882c26a4bd7d1b9 --- /dev/null +++ b/B9AzT4oBgHgl3EQfh_2U/content/tmp_files/2301.01493v1.pdf.txt @@ -0,0 +1,2628 @@ + +This is the ‘accepted manuscript’ version of our paper: + + + + +Therese Weissbach, Tobias Kluge, Stéphane Affolter, Markus +C. Leuenberger, Hubert Vonhof, Dana F.C. Riechelmann, Jens +Fohlmeister, Marie-Christin Juhl, Benedikt Hemmer, Yao Wu, +Sophie F. Warken, Martina Schmidt, Norbert Frank, Werner +Aeschbach, 2023, Constraints for precise and accurate fluid +inclusion stable isotope analysis using water-vapour saturated +CRDS techniques, Chemical Geology 617, 121268. +https://doi.org/10.1016/j.chemgeo.2022.121268 + + +Please contact the corresponding author, if you want to discuss +the content. + + + + + + + +© 2023. This manuscript version is made available under the +CC-BY-NC-ND 4.0 license +http://creativecommons.org/licenses/by-nc-nd/4.0/ + +Constraints for precise and accurate fluid inclusion stable isotope +analysis using water-vapour saturated CRDS techniques +Therese Weissbach1,2, Tobias Kluge1,2,3,4,*, Stéphane Affolter5, Markus C. Leuenberger6, Hubert +Vonhof7, Dana F.C. Riechelmann8, Jens Fohlmeister9, 10, Marie-Christin Juhl2, Benedikt Hemmer2, Yao +Wu2, Sophie F. Warken2,11, Martina Schmidt2, Norbert Frank2, Werner Aeschbach2, 3 +1Heidelberg Graduate School of Fundamental Physics, Heidelberg University, Im Neuenheimer Feld +226, 69120 Heidelberg, Germany +2Institute of Environmental Physics, Heidelberg University, Im Neuenheimer Feld 229, 69120 +Heidelberg, Germany +3Heidelberg Center for the Environment, Heidelberg University, Im Neuenheimer Feld 229, 69120 +Heidelberg, Germany +4now at: Institute of Applied Geosciences, Karlsruhe Institute of Technology, Adenauerring 20b, +76131 Karlsruhe, Germany +5Department of Environmental Sciences, University of Basel, Bernoullistrassse 30/32, 4056 Basel, +Switzerland +6Climate and Environmental Physics Division, Physics Institute and Oeschger Centre for Climate +Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland +7Climate Geochemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 +Mainz, Germany +8Institute for Geosciences, Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 21, +55128 Mainz, Germany +9Federal Office for Radiation Protection, Köpenicker Allee 120-130, 10318 Berlin, Germany +10GFZ German Research Centre for Geosciences, Section ‘Climate Dynamics and Landscape +Development’, Telegrafenberg, 14473 Potsdam, Germany +11Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, +Germany +*corresponding author: tobias.kluge@kit.edu + +Journal: Chemical Geology + +Highlights: + +Laser-based fluid inclusion analysis with water-vapour purged extraction enables high +precision (δ2H≤±1.5‰, δ18O ≤±0.5‰) + +Biasing effects (memory, adsorption, amount) in fluid inclusion isotope analysis are negligible +for ≥1 µl water/g calcite + +Isotopic interference is negligible for sample isotope ratios within 10‰(δ18O) and 50‰(δ2H) +of the water vapour background + +Reconstructed temperatures of a 20th century stalagmite trace the recent warming of 1 °C in +Central Europe + +Abstract + +Hydrogen (δ2H) and oxygen (δ18O) isotopes of water extracted from speleothem fluid +inclusions are important proxies used for paleoclimate reconstruction. In our study we use a cavity +ring-down laser spectroscopy system for analysis and modified the approach of Affolter et al. (2014) +for sample extraction. The method is based on crushing of small sub-gram speleothem samples in a +heated and continuously water-vapour purged extraction line. The following points were identified: + +Injection of reference water shows a precision (1σ) of 0.4-0.5 ‰ for δ18O values and 1.1-1.9 ‰ +for δ2H values for water amounts of 0.1-0.5 µl, which improves with increasing water amount to 0.1- +0.3 ‰ and 0.2-0.7 ‰, respectively, above 1 µl. The accuracy of measurements of water injections and +water-filled glass capillaries crushed in the system is better than 0.08 ‰ for δ18O and 0.3 ‰ for δ2H +values. The reproducibility (1σ) based on replicate analysis of speleothem fluid inclusion samples with +water amounts > 0.2 µl is 0.5 ‰ for δ18O and 1.2 ‰ for δ2H values, respectively. Isotopic differences +between the water vapour background of the extraction system and the fluid inclusions have no +significant impact on the measured fluid inclusion isotope values if they are within 10 ‰ for δ18O and +50 ‰ for δ2H values of the background. Tests of potential adsorption effects with inclusion free spar +calcite confirm that the isotope values are unaffected by adsorption for water contents of about 1 µl +(fluid inclusion) water per g of carbonate or above. +Fluid inclusion analysis on three different modern to late Holocene speleothems from caves in +northwest Germany resulted in δ18O and δ2H values that follow the relationship as defined by the +meteoric water line and that correspond to the local drip water. Yet, due to potential isotope exchange +reactions for oxygen atoms, hydrogen isotope measurements are preferentially to be used for +temperature reconstructions. We demonstrate this in a case study with a Romanian stalagmite, for +which we reconstruct the 20th century warming with an amplitude of approximately 1 °C, with a +precision for each data point of better than ±0.5 °C. + +Keywords: laser spectroscopy, water isotopes, cavity-ring-down measurement, speleothems, +paleoclimate, small samples + +1. Introduction +Speleothem fluid inclusions can provide direct insight into past climatic conditions as they are +a unique archive for the original drip water and the corresponding meteoric water (e.g., Griffiths et al., +2010; Affolter et al., 2014; Labuhn et al., 2015; Warken et al., 2022). Fluid inclusion water isotope ratios +(δ18O and δ2H values) are increasingly usedas proxies in hydrology and paleoclimate studies (e.g., +McGarry et al., 2004; Demény et al., 2017; Millo et al., 2017; Affolter et al., 2019; Wilcox et al., 2020; +Matthews et al., 2021). Two physically different measurement principles, laser spectroscopy (mainly +cavity ring-down spectroscopy - CRDS) and isotope ratio mass spectrometry (IRMS), allow determining +the isotopic composition of speleothem fluid inclusion water (CRDS: Arienzo et al., 2013; Affolter et +al., 2014; Uemura et al., 2016; Dassié et al., 2018; IRMS: Dennis et al., 2001; Vonhof et al., 2006; +Dublyansky and Spötl, 2009). Although CRDS and IRMS systems yield comparable results (de Graaf et +al., 2020) challenges remain for both methods regarding precise and reproducible analysis of small +water amounts. Often only a single measurement attempt is possible due to low growth rates of the +speleothems (often 10-100 µm/a) or intended high resolution. Water contents in natural speleothems +range from ~ 0 up to several 10 µl per g (McDermott et al., 2006). The necessary water sample amount +(depending on the setup 0.05-0.2 µl, e.g., Dublyanksy and Spötl, 2009; Uemura et al., 2016) limits the +temporal resolution and restricts analytical repetition. +Fluid inclusion water for isotope analysis is released either by crushing (e.g., Schwarcz et al., +1976; Dennis et al., 2001; Vonhof et al., 2006; Dublyansky and Spötl, 2009; Demény et al., 2013) or +thermal decrepitation (e.g., Yonge, 1982; McGarry et al., 2004; Verheyden et al., 2008). Thermal +decrepitation has the disadvantage that structurally-bound water with a very low δ2H value may be +released during extraction, resulting in large isotopic shifts of up to 30 ‰ in comparison to parent cave +drip water (Yonge, 1982; Matthews et al., 2000; McGarry et al., 2004; Verheyden et al., 2008). This +analytical artefact can be largely avoided by crushing the sample mechanically. For fluid inclusion +analysis using IRMS (Schwarcz et al., 1976; Harmon et al., 1978; 1979), water was extracted by crushing +the sample under vacuum conditions and then subsequently converted to water vapour followed by +conversion into directly measurable gases such as H2 for H isotopic analysis. Fluid inclusion δ18O values +were initially not measured but calculated from measured δ2H values via the relationship between +δ18O and δ2H values of the meteoric water line (e.g., Schwarcz et al., 1976). In recent extraction systems +the oxygen in fluid inclusion water is converted to CO gas during a high temperature reaction with +glassy carbon which is then used for analysis of δ18O values in an IRMS (e.g., Dublyansky and Spötl, +2009). The first combined method for oxygen and hydrogen measurements with an off-line crushing +method and dual-inlet IRMS was developed by Dennis et al. (2001). It achieved good precision of ± 0.4 +‰ for δ18O and ± 3 ‰ for δ2H values, but required a comparatively large sample with water amounts +of 1-3 μl (see also Matthews et al., 2000). A reduction in sample amount down to 0.1 μl, which + +corresponds to 0.1 g of calcite for samples that contain 1 µl of water per gram, was achieved by Vonhof +et al. (2006) by combining off-line preparation and continuous-flow mass spectrometry. This technique +enables a faster analysis of 0.1 - 0.2 μl sized samples with a precision of ± 0.5 ‰ for δ18O and ± 1.5 ‰ +for δ2H values (Vonhof et al., 2006; Dublyansky and Spötl, 2009; de Graaf et al., 2020). +Laser spectroscopy is less expensive and represents a reliable, precise and easy technique to +directly measure stable water isotopes (Brand et al., 2009; Gupta et al., 2009). The first application +using CRDS to measure fluid inclusions in speleothems was developed by Arienzo et al. (2013). They +used a CRDS analyser with a stainless-steel line heated to 115 °C that was constantly flushed with dry +nitrogen as a carrier gas. It achieved comparable precisions as the traditional IRMS technique, with ± +0.5 ‰ for δ18O and ± 2.0 ‰ for δ2H values. The development of another analysis system using off-axis +integrated cavity output spectroscopy (OA-ICOS) achieved similar precision (Czuppon et al., 2014). The +latest analytical systems are able to measure released water volumes in the nano-litre range (50 to +260 nl) with a precision of ± 0.3 ‰ for δ18O and ± 1.6 ‰ for δ2H values using the CRDS technique +(Uemura et al., 2016). +The above discussed fluid inclusion extraction lines of Arienzo et al. (2013), Czuppon et al. +(2014), and Uemura et al. (2016) are working with dry carrier gas and low water vapour concentrations +in the analyser cavity, which may influence the stable isotope measurements by adsorption and cause +memory effects. The measured isotopic signal needs to be corrected for, e.g., the isotopic dependence +on the water vapour concentration (Uemura et al., 2016) or the memory effect (e.g., van Geldern and +Barth, 2012). The memory effect in the analyser cavity is due to limitations during the removal of all +gas between two measurements preventing the full desorption of water molecules from the cavity +walls. A standard technique to deal with memory effects in liquid water analysis is the repeated +injection of the same water sample. The measured signal converges exponentially towards the actual +sample signal (e.g., van Geldern and Barth, 2012). However, multiple crushing steps on the same +sample are typically not feasible for fluid inclusion measurements of speleothems since the amount of +water of these samples is often too low to split it in several aliquots (sub-μl range). The adsorption +issue was addressed by Affolter et al. (2014) with an extraction line that is continuously purged with a +moist gas providing a water vapour background with constant and known δ18O and δ2H values. The +extraction line with a “wet” N2 gas allows reproducible and precise measurement of released fluid +inclusion water. The continuous heating of the system enables the instantaneous evaporation of the +water released from inclusions followed by spectroscopic analysis of the resulting mixture of +background and sample water vapour. The main advantage of the water-vapour flushing is that this +procedure avoids additional corrections of the measured water stable isotopes related to memory +effects. The achievable standard deviations of the measurements with this analytical system are +smaller than 0.4 ‰ for δ18O and 1.5 ‰ δ2H values, which is comparable with the traditional IRMS + +technique (Vonhof et al., 2006; Dublyansky and Spötl, 2009) and CRDS setups working with a dry carrier +gas (Arienzo et al., 2013; Czuppon et al., 2014). +One important application of isotope fluid inclusion studies is the reconstruction of +paleotemperatures using the oxygen isotope fractionation between water and calcite. The +temperature reconstruction was initially based on the measurement of fluid inclusion δ2H values from +which the fluid inclusion δ18O values were calculated using the δ2H-δ18O relationship of the global +meteoric water line (Craig, 1961). Combined with the δ18O value of the calcite, temperatures were +calculated from the oxygen isotope fractionation between the carbonate mineral and water. This +indirect approach achieved a reported precision of about ± 2 °C in the early studies of Schwarcz et al. +(1976). In the decades prior to 2010, direct temperature calculation from measured fluid inclusion δ18O +values has been rare due to severe challenges in its analysis with standard mass spectrometric +approaches. Therefore, mostly the indirect way of first converting measured δ2H values into fluid +inclusion water δ18O values was used (e.g., Matthews et al., 2000). More recent studies provided +comparable temperature precision based on inclusion water δ18O values: ± 1.3 °C (van Breukelen et +al., 2008), ± 0.9-2.1 °C (Meckler et al., 2015); ± 2.7 °C (Arienzo et al., 2015), and ± 0.6-3.1 °C (Uemura +et al., 2016). The uncertainty of the indirect paleotemperature reconstruction from δ2H variations in +speleothem fluid inclusions is similar: ± 1.5 °C (Zhang et al., 2008) and ± 0.9-2.5 °C (Meckler et al., +2015). More recently, a better precision has been achieved when using the rainfall δ2H/T relation in +mid-latitudes: ± 0.2-0.5 °C (Affolter et al., 2019). +In this study, we systematically assess the measurement method of stable water isotopes in +speleothem fluid inclusion analysis using CRDS, including in particular the effect of sample amount +(water amount per analysis), water adsorption on freshly crushed calcite surfaces, influence of the +isotope values of the water vapour background on the sample signal, as well as the external +reproducibility of speleothem fluid inclusion samples (using adjacent aliquots along growth layers). In +addition, we present a recent case study allowing to determine paleo-temperature trends in the 1°C +range. + +2. Methods and site description +2.1 Water extraction from fluid inclusions + +At the Institute of Environmental Physics (Heidelberg) water from speleothem fluid inclusions +is extracted within a system that is constantly purged by an artificially prepared moist gas, leading to +a water vapour background with known δ18O and δ2H values (Fig. 1). In the extraction line this stable +water vapour background is generated by mixing water of a known isotopic composition into a dry +nitrogen gas flow (300 ml/min). A peristaltic pump (Ismatec -REGLO Digital, Wertheim, Germany) +continuously supplies small amounts of water (1 μl/min) to the line through a T-injection port with a + +septum (Fig. 1 A). A constant temperature of 120 °C ensures a complete and immediate evaporation. +Instant water evaporation is induced in a fused silica capillary, which slightly touches the heated base +of the port. A two-litre mixing cavity placed after the T-injection port generates a stable water vapour +background and compensates fluctuations caused by the peristaltic pump cycles. The nitrogen flow is +controlled by a mass flow controller (Analyt MTC, model GFC-17, Müllheim, Germany) and creates a +constant overpressure of 0.5 bar. The flow rate is 40 ml/min into the CRDS analyser (L2130-i, Picarro, +Santa Clara, USA). The surplus gas stream is vented through a purge capillary before the crusher unit. +With this setup the water vapour concentration in the CRDS cavity ranges between 6000 and 8000 +ppmV, but the cavity can also be adjusted to higher or lower water vapour concentrations if needed. +We have chosen a range between 6000 and8000 ppmV to allow for the detection and analysis of small +fluid inclusion water amounts (sufficiently high ratio of water vapour from the sample relative to the +background) but also to provide a background water vapour concentration that prevents memory +effects. +The sample (speleothem fragment or glass capillary)is inserted in a copper tube (Fig. 1 B) which +is connected to the extraction and measurement system. Due to limitation of the copper tube with +respect to length and diameter, compact mineral pieces with rectangular dimensions of 6 mm x 6 mm +x 10-20 mm are preferred. The copper tube including the sample is purged for at least 30 min until +water vapour concentration and isotope values reach a constant signal. The stability of the water +vapour background is verified by monitoring the standard deviation of the water vapour concentration. +When the standard deviation of the water vapour concentration remained less than 20 ppmV for 30 +minutes, the speleothem sample is crushed by compressing the copper tube from the outside with a +hydraulic press at 200-300 bar. This compression in the heated system leads to the release and +immediate evaporation of inclusion water and a sudden pressure increase. This pressure increase +could cause gas flow not only towards the CRDS but also in direction of the purge capillary and may +provoke sample gas loss. Therefore, a reflux valve is installed between the 2l mixing cavity and the +crushing unit to prevent a backflow and loss of the sample. In general, a very good crushing efficiency +has been achieved with an average grain size of 37 μm after the crushing (Weißbach, 2020). A +reproducibility test related to the crushing procedure showed similar particle size distributions for five +different speleothem samples investigated with laser diffraction (Analysette-22 Micro Tec) after +crushing with the hydraulic system. +An injection port is situated next to the copper tube, allowing to mimic a water release from a +mineral sample and helps to evaluate and control accuracy and precision of the δ18O and δ2H values +from small (inclusion) water samples. An additional small mixing cavity (400 ml) directly after the +crushing unit prolongs the generated sample signal from an usually few seconds lasting peak to a well + +measurable signal with a duration of several minutes. After the mixing cavity the gas proceeds to the +L2130-i isotope and gas concentration analyser (Picarro). + +Figure 1: Fluid inclusion line for extraction and measurement of stable oxygen and hydrogen isotopes of fluid +inclusions in speleothems. Water with a known isotope composition is mixed into a nitrogen gas flow to create a +stable water vapour background (position A). The purge capillary reduces the background vapour flow from 280 +to 40 ml/min as required for the CRDS analyser (L2130-i, Picarro). The two mixing cavities provide a smoothing of +the background vapour signal and a dispersion of the measurement signal. The speleothem sample or the glass +capillary is placed in a copper tube and installed at position B inside the heated oven. In order to prevent the +backflow of the water vapour from the freshly crushed sample, a reflux valve is installed. The flow directions are +indicated as blue arrows. [black/white for figures in print, colour online] + +2.2 Analysis and data evaluation +The water vapour concentration and the δ18O and δ2H values are determined with the L2130-i +isotope and gas concentration analyser of Picarro. The L2130-i analyser is based on wavelength- +scanned CRDS in the spectral range from 7183.5 to 7184 cm-1 and uses a multi-pass cell that creates a + +N2 +tankgas +injection +glass +port +capillary +peristalticpump +CRDS +background +heatingtape +40 +water +ml/min +(120°C) +purge capillary +~280 +ml/min +refluxvalve +mixing cavity -21 +filter +injection +port +oven +mixingcavity-400ml +loadedcopper +(120C) +tubelong effective absorption path length of about 12 km (Aemisegger et al., 2012). A stable cavity +temperature of 80°C ± 0.002 °C is maintained). The cavity pressure is set to 66.66 hPa (50 Torr). The +water isotopologue lines pertaining to 18O and 2H are measured simultaneously over a 0.8 s interval. +In our setup the L2130i allows isotope measurements in the water vapour concentration range +between 1 000 and 50 000 ppmV. +In constant flow mode the actual measured signal is composed of a background signal and a peak +signal after crushing and must be integrated over a corresponding time interval (Fig. 2). The evaluation +routine follows the approach of Affolter et al. (2014) but was extended by the correction of a potential +level change in the water vapour background (Weißbach, 2020). The import of the data and the +evaluation was carried out with the assistance of the Python script IsoFluid (https: +//github.com/bhemmer/IsoFluid and http://doi.org/10.5281/zenodo.5911265). IsoFluid determines +the sample or calibration standard peak start and end based on a slope criterion that compares the +start and end slope with the background slope of the water vapour concentration in user-defined time +intervals. The sample isotope value (δ18Osample) is calculated by subtraction of the background signal +(index back) from the measured signal of the mixed gas signal (index mix) and follows the approach of +Affolter et al. (2014): +𝛿��𝑂������ = +∫ +𝛿��𝑂������(𝑡) ∗ 𝐻�𝑂������(𝑡) ∙ 𝑑𝑡 +�� +�� +∫ +𝐻�𝑂������(𝑡) +�� +�� +∙ 𝑑𝑡 += +∫ +𝛿��𝑂���(𝑡) ∗ 𝐻�𝑂���(𝑡) ∙ 𝑑𝑡 − ∫ +𝛿��𝑂����(𝑡) ∗ 𝐻�𝑂����(𝑡) ∙ 𝑑𝑡 +�� +�� +�� +�� +∫ +𝐻�𝑂���(𝑡) +�� +�� +∙ 𝑑𝑡 − ∫ +𝐻�𝑂����(𝑡) +�� +�� +∙ 𝑑𝑡 + + +(Eq.1) +H2O refers to the related water amount. The calculation for δ2H values is correspondent. +All uncertainties are reported at the 1σ level. + + +Figure 2: Water vapour signal in the CRDS before, during, and after speleothem sample crushing. Background +intervals (orange) are used to determine the value of the water background during a sample analysis (blue +shaded). [black/white for figures in print, colour online] + +2.3 Water vapour background calibration +For the calibration of the oxygen and hydrogen isotope signal of the water vapour background +five independently measured in-house reference waters were used (Table 1). Water from +Willersinnweiher water (WW) was not used for calibration but for precision and accuracy assessment. + +Table 1: In - house reference waters for isotopic calibration of the fluid inclusions CRDS system, Isotope +values were independently measured at the Institute of Environmental Physics (IUP) at Heidelberg +University. Uncertainties are given as 1σ errors. +Water type +Code +δ18O values +(‰ VSMOW) +δ2H values +(‰ VSMOW) +Artificially evaporated water +AE +3.8 ± 0.3 +-21.79 ± 1.8 +Ocean water +Kona +-0.05 ± 0.08 +0.5 ± 0.7 +Lake +Water +- +Willersinnweiher +(S. +Germany) +WW +-0.32 ± 0.11 +-18.8 ± 0.4 +De-ionized local tap water +VE +-8.57 ± 0.08 +-61.0 ± 0.7 +Alpine Water +VCL +-13.04 ± 0.08 +-98.3 ± 0.7 + +8500 +samplepeak +water vapour concentration [ppmV] +8000 +background interval +background interval +7500 +peak - +start +peak-end +linearregression +7000 +11:15 +11:30 +11:45 +12:00 +12:15 +12:30 +time [hour]Alpine Water - Colle Gniffeti ice core +CC +-15.13 ± 0.08 +-110.6 ± 0.7 +North Greenland water-surface snow +NG +-26.54 ± 0.08 +-212.1 ± 0.7 + + + + + +The isotope values of these five reference waters were determined independently with a Los +Gatos Research LGR1 analyser. These reference waters cover a range of −26.5 up to -0.05 ‰ in δ18O +values and −212.1 up to 0.5 ‰ in δ2H values (both VSMOW) (Table 1), which includes the relevant +range for speleothem samples. Five different isotope background values were realised by using the +corresponding reference water as supply, injected with the peristaltic pump into the system. Once a +sufficiently stable water vapour concentration was achieved in the preparation line (standard deviation +below 20 ppmV for 30 min) the isotope signal was averaged over 60 minutes, which results in a +standard deviation of 0.2 ‰ and 0.7 ‰ for the δ18O and δ2H background values, respectively. Figure 3 +shows the CRDS-measured isotope value against the reference value (Table 1). The value of the water +vapour background was constantly monitored via repeated measurements of the in-house reference +waters, and has remained constant over several years. + +Figure 3: The calibration of δ18O and δ2H values of the water vapour background results from a linear regression +(red lines). The calibration equation is y = (0.994 ± 0.007 · x + 2.30 ± 0.14) ‰ for δ18O values (R²=0.999) and y = +(0.980 ± 0.003 · x−7.77 ± 0.38) ‰ for δ2H values(R²=0.999). Both calibrations remained constant over several +years. Isotope data on the reference waters used for water vapour background calibration are given in Table 1. +The residuals from the linear regression indicate that calibrated values are within 0.08 ‰ (δ18O) and 0.35 ‰ +(δ2H) of the expected reference value. Furthermore, the residuals show a random distribution. Uncertainties on +the 1σ level in the calibration graphs are smaller than the symbol size. [black/white for figures in print, colour +online] + +residuals (%o) +0.08 +8180 +(0%) +0.30 +2H +0.04 +0.15 +S +8 +0.00 +dual +0.00 +-0.15 +-0.04 +0 +-0.08 +-0.30 +0 +-30 +-25 +-20 +-15 +-10 +-5 +0 +-250 +-200 +-150 +-100 +-50 +0 +50 +50 +0 +Kona +1:1 +(% VSMOW) +1:1 +(%。 VSMOW) +0 +-5 +Kona +VE +-10 +-50 +VCL +VE +-15 +CC +-100 +VCL +linearregression +pected +CC +-20 +-150 +exp +-25 +NG +linearregression +-200 +NG +-30 +-250 +-30 +-25 +-20 +-15 +-10 +-5 +0 +-250 +-200 +-150 +-100 +-50 +0 +50 +8180. +measured (%。 VSMOW)2.4 Water amount calibration +A precise water amount calibration is necessary for determining the exact amount of released +water from the crushed speleothem calcite. The released water amount is a major parameter for the +calculation of the fluid inclusion isotope value and is determined via water vapour signal integration +(see Eq.1). Isotope values could also be calculated with the time-integrated water vapour mixing ratio +alone, however, knowledge of the released water amounts is recommended for uncertainty +assessment (amount dependence) and for assessment of speleothem growth conditions (fluid +inclusion water yield). Typically, volume calibrations are carried out by injecting water in the μl range +with syringes (here: SGE 1BR-7RAX and 5BR-7RAX and Hamilton 70001KH and 75N), however, the +variability of the calculated water amount only using syringe injections is significant and can be as high +as 10 % (inset in Fig. 4, Weißbach, 2020). +Here we present a water amount calibration method with glass capillaries that follows the +approach of Kluge et al. (2008). The glass capillaries (borosilicate, Hirschmann) can be filled with 0.1- +5.0 μl water at varying isotopic composition. They can be closed airtight by melting both ends. The size +of the filled capillary can be adjusted to the size of the crushing cell down to a minimum length of +approximately 1 cm. The exact volume is determined by scanning the capillary with a high-resolution +office scanner and comparison with the pre-marked 1 μl labels on the capillary. The volume uncertainty +of the glass capillary water amount is ± 0.025 μl and was determined by five repetitions of the manual +evaluation of a scan. The accuracy is given by the uncertainty of the pre-marked 1 µl labels (± 0.003 +µl). Water-filled capillaries were analysed weekly to monitor the stability of the water amount +calibration (Fig. 4). The uncertainty of the water amount determination from the calibration is +approximately ± 0.02 µl at a water volume of 1 µl and ± 0.04 µl at 2.5 µl using the 1σ uncertainty of +the linear regression. In general, we rarely observed outliers in the water amount calibration when +using glass capillaries. + + +Figure 4: The time-integrated measured volume signal in ppmV*s as given by the Picarro analyser is plotted +against the water volume of the glass capillaries. The resulting linear regression y = (5.9 × 10−7 ·x−0.011) μl +(R²=0.999) is used to determine the released amount of water from speleothem samples. In total 45 capillaries +were measured for calibration spanning a water amount range from 0.2 up to 4.3 μl. The upper inset shows a +glass capillary filled with about 0.5 µl of water (in the middle of the capillary). The lower inset shows the +comparison of water injections with different syringes (blue and red symbols) and the glass capillaries (black +circles). The uncertainties are given on the 1σ level. [black/white for figures in print, colour online] + +2.5 Site and sample description +Hüttenbläserschacht Cave (Germany) +For direct comparison with rainwater δ18O values and measured drip water isotope values, we +selected a suite of modern and late Holocene samples from the Hüttenbläserschacht Cave, located +only a few 100 meters west of the well-monitored Bunker Cave in northwest Germany (e.g., +Riechelmann et al., 2011). Both caves are situated in the upper Middle Devonian limestone in Iserlohn +(Sauerland). Hüttenbläserschacht Cave hosts pool spar calcites that are expected to provide fluid +inclusion isotope values close to drip water as they grow under the water table of the pools. Pool spars +from this cave have already been investigated by Kluge et al. (2013) using clumped isotope ∆47 and +calcite δ18O values for calculation of the (drip) water δ18O value. Calcite was actively precipitating in +the pools (e.g., abundant calcite rafts) at the time of pool spar removal. 230Th-U disequilibrium dating + +8.0x106 +label +watercolumn +I area (ppmV*s) +6.0x106 +integrated signal +4.0x106 +3x106 +linearregression +oglass capillary +syringes +Hamilton +2x106 +SGE +2.0x106 +1x106 +0 +0.0 +0.5 +1.0 +1.5 +2.0 +0.0 +0 +1 +2 +3 +4 +5 +water volume capillary (μl)at Heidelberg Academy of Sciences provided radiometric ages of one pool spar and one raft sample of +0.05 ± 0.27 ka BP and 0.36 ± 0.12 ka BP, respectively (Supplemental material S1), corroborating the +assumption that the pool spars and rafts are modern age. +Cloşani Cave (Romania) +For the second case study we selected a 20th century stalagmite (Stam 4) from Cloşani Cave, +Romania (e.g., Constantin and Lauritzen, 1999). A monitoring program from 2010 to 2012 and 2015 +demonstrated a stable cave environment with an air temperature of 11.4 ± 0.5 °C and a relative +humidity close to 100 % (Warken et al., 2018). The isotopic composition of the drip water in direct +vicinity (1 m) of the former location of Stam 4 showed no seasonal cycle and was constant throughout +the monitoring. The mean dripwater δ18O value was −9.6 ± 0.2‰ and −66.3 ± 1.7‰ for δ2H values. +Stalagmite Stam 4 has a total length of 6 cm and an average growth rate of 510 μm per year, as +deduced from counting of layers related to annual cycles in the concentration of various elements +(Supplemental material S2). The speleothem grew actively until the removal in spring 2010 C.E. as drip +water was feeding the stalagmite. The recent growth of the stalagmite was further constrained by the +detection of the 20th century radiocarbon bomb spike, which was imprinted by the transport of the +atmospheric signal into the speleothem (see Supplemental material S3). Combined layer counting and +radiocarbon measurements suggest a growth period from 1910 to 2010 C.E. For the fluid inclusion +study, pieces were taken from the peripheral part of Stam 4 with a distance of approximately 1 to 1.5 +cm from the actual growth axis (see Supplementary Fig. S2). + +3. Results +3.1 Precision of isotope measurements +The precision of isotopic measurements (Fig. 5, Table 2) was quantified using the standard +deviation of repeated analyses of the reference waters injected via syringes (VE water; Table 1) and +independently cross-checked with water-filled glass capillaries using VE and WW reference waters. The +injected water amount using syringes) varied between 0.1 and 4.0 μl. +Using syringe injection method, a clear decrease of the standard deviation of these isotope +analyses with increasing water amount becomes apparent (Fig. 5, Table 2). The standard deviation +decreases strongest between 0.1 and 1 µL and reaches values between 0.1 and0.3 ‰ for δ18O and +between 0.2 and0.7 ‰ for δ2H values, for samples larger than 1 µl (Supplementary Table S4). For +smaller water amounts, i.e., of 0.5 µl and below, the isotope values of the injections show a +significantly larger scatter, leading to standard deviations between 0.4 and0.5 ‰ for δ18O and between + +1.1 and1.9 ‰for δ2H values. These uncertainties are based on an exponential fit of the standard +deviation against the water volume using repeated measurements at a given water volume (Fig. 5). +For the determination of the precision, reference water sealed in glass capillaries was crushed in +the fluid inclusion system. Consistent with the results from the water injections, the precision for +isotopic analyses of water released from crushing glass capillaries is between 0.07 and0.10 ‰ for δ18O +values and between 0.3 and0.4 ‰ for δ2H values, for water amounts above 0.5 µl. Smaller water +amounts resulted in a significant increase in the uncertainty and are expressed through a lower +precision (Table 2). + +Table 2: Measurement precision and accuracy in dependence of the water amount. The precision +(± 1σ) was determined from repeated injections of isotopically well-characterized water standards +using syringes. The accuracy (given at the 1σ level) was assessed by measurement of reference water +both from injections and by release from crushing of sealed glass capillaries and comparison with the +independently determined isotope values (Table 1). The error estimate for the accuracy assumes a +Gaussian distribution and includes the uncertainty of the expected value (VE water: ± 0.08 ‰ for δ18O, +± 0.7 ‰ for δ2H, WW water: ± 0.11 ‰ for δ18O, ± 0.4 ‰ for δ2H). n represents the number of analyses +in the investigated water volume range. The water isotope values are given relative to VSMOW. +Type +Reference +water +Water +volume (µl) +Precision (1σ) +δ18O value(‰) + +δ2H +value +(‰) +Accuracy (1σ) +δ18O +value +(‰) + + δ2H +value(‰) +n +Water +injection +VE + + + + + + + + +0.1 +0.54 +1.8 + + +6 + + +0.2 +0.34 +1.6 + + +6 + + +0.3 +0.49 +1.6 + + +6 + + +0.4 +0.53 +1.1 + + +6 + + +0.5 +0.58 +1.4 + + +6 + + +1 +0.17 +0.4 + + +16 + + +2 +0.21 +0.4 + + +11 + + +3 +0.16 +0.4 + + +11 + + +4 +0.10 +0.1 + + +9 + + +Mean all +0.35 +1.0 +0.09 ± 0.19 +0.3 ± 0.7 +77 + + +Mean < 1µl +0.50 +1.5 +0.12 ± 0.22 +0.3 ± 0.7 +30 + + +Mean ≥ 1µl +0.16 +0.3 +0.08 ± 0.12 +0.3 ± 0.7 +47 +Glass +capillary + + + + + + + + +WW +0.3-4.3 +0.42 +0.4 +0.10 ± 0.44 +0.1 ± 0.6 +16 + +WW +> 0.5 +0.07 +0.3 +-0.02 ± 0.13 +0.1 ± 0.5 +14 + +VE +0.3-4.1 +0.30 +1.3 +0.14 ± 0.31 +0.6 ± 1.5 +17 + +VE +> 0.5 +0.10 +0.4 +-0.03 ± 0.13 +0.1 ± 0.8 +9 + + + +Figure 5: Upper panels: precision (1σ) of the isotope measurements for varying amounts using the water injection +method. The red lines represent the least-square exponential fits to the data. The standard deviation decreases +with increasing water amount for both δ18O and δ2H values. . Lower panel: accuracy determination for varying +water amounts based on individual injections (open circles). The related mean values with their 1σ standard +deviation are shown as filled dots with error bars. The black horizontal lines represent the reference value for VE +- tap water (δ18O=- 8.57 ‰, δ2H =- 61.0 ‰) with its uncertainty band (grey shading, ± 0.08‰ for δ18O, ± 0.7 ‰ for +δ2H values). [black/white for figures in print, colour online] + + + + + +2.0 +0.6 +18 +1α standard deviation (%o) +0.5 +5 + standard deviation ( +0.4 +1.0 +0.3 +0.2 +0.5 +0.1 +0.0 +0.0 +0 +1 +2 +3 +4 +0 +1 +2 +3 +4 +water amount (μl) +water amount (μl) +-57 +singlevalue +8H [%。 VSMOW] +-58 +meanvaluewithstdv +8 +-60 +-61 +-62 +-63 +6180 [%VSMOW] +-8.0 +-8.5 +-9.0 +9.5 +singlevalue +meanvaluewithstdy +-10.0 +3 +1 +2 +4 +volume [u]3.2 Accuracy of isotope analysis of micro-litre water amounts +The accuracy of the water δ18O and δ2H values was assessed for reference waters (Table 1) by the +injection with syringes and by crushing glass capillaries. The injected water amounts covered the +typical range of water extracted from inclusions (Fig. 5). The glass capillaries were filled with reference +water with similar water amounts between 0.3 and 4.3 µl and were crushed in the copper tube with +the same hydraulic press as the stalagmite samples. +Considering the water isotope mean values of all measurements performed with the glass +capillaries, the δ18O value deviated from the expected reference values (Table 1) by 0.10 ± 0.44 ‰ for +WW water (n=16) and by 0.14 ± 0.31 ‰ for VE water (n=17) (Table 2). For δ2H values the deviation +from the reference value was 0.1 ± 0.6 ‰ for WW water (n=16) and 0.6 ± 1.50 ‰ for VE water (n=17). +Considering only those measurements with water amounts above 0.5 µl reduces the uncertainty. For +this selection, the δ18O value of both reference waters deviates on average from the expected +reference value by -0.02 ± 0.13 ‰ for WW water (n=14) and -0.03 ± 0.13 ‰ for VE water (n=9). For +δ2H values the deviation from the reference value was 0.1 ± 0.5 ‰ for WW water (n=14) and 0.1 ± 0.8 +‰ for VE water (n=9). +The accuracy as determined by crushing of water-filled glass capillaries is confirmed by the +injection-based data (Table 2). Overall, the δ18O value of the injected VE water deviated from the +expected value on average by 0.09 ± 0.19 ‰ (n=77), that of the δ2H value by 0.3 ± 0.7 ‰ (n=77). + +3.3 Adsorption and/or desorption on the calcite surface +Adsorption on a calcite surface and, in particular, on freshly crushed carbonate with a large surface +to volume ratio provides the possibility to alter the isotope values of the fluid inclusion water (Dennis +et al., 2001). Therefore, an artificial fluid inclusion system (speleothem analogue) as described by +Dennis et al. (2001) has been prepared to quantify the influence of adsorption on the measured +isotopic signal in our setup. We measured water vapour released from a water-filled glass capillary in +direct contact with inclusion-free Iceland spar carbonate. The compact Iceland spar pieces (0.45-0.81 +g) as well as the released water of the capillaries (1.4-3.7 µl water) represent a speleothem sample +with a water content of 2.2 up to 7.8 μl per g calcite. In total, we prepared and analysed five artificial +fluid inclusion - calcite systems in the range between 5.2 and7.8 µl/g and three at about 2.2 µl/g and +compared them to water-filled glass capillaries without additional calcite. The crushing of the compact +Iceland spar pieces provided fresh and fine-grained calcite for interaction and adsorption testing. The +measurements suggest that the adsorption of water molecules on the calcite surfaces does not affect +the measured isotopic signal in the investigated water/calcite ratio range (Fig. 6). Both measured +oxygen and hydrogen isotope values accurately match the expected value. With a standard deviation + +of ± 0.05 ‰ for δ18O and ± 0.22 ‰ for δ2H values (high water/calcite ratio, n=5) and ± 0.15 ‰ for δ18O +and ± 0.31 ‰ for δ2H values (low water/calcite ratio, n=3) in both adsorption tests, a good +reproducibility of the individual measurements was achieved. We observed that after crushing of +Iceland spar (0.25 g) 0.023 μl water was adsorbed on the crushed calcite from the moist carrier gas +(Supplementary Fig. S3), which corresponds to a ratio of approximately 0.1 μl water per g calcite. Thus, +for low water contents of < 0.1 µl per g calcite an influence of adsorption on the released water amount +and the isotopic values probably cannot be excluded. Therefore, we rejected all fluid inclusion samples +with water amounts below 0.1 µl based on this observation (see Weißbach, 2020). + +Figure 6: Isotopic values measured for the artificial inclusion calcite system, for which compact Iceland spar pieces +were crushed together with VE water - filled glass capillaries (triangles). Open circles indicate water - filled glass +capillaries (VE) without calcite addition, measured for comparison. An isotopic fractionation due to adsorption of +water molecules on the calcite surface is not detectable for the investigated water content range of 5.2-7.8 µl +water/g calcite (left side) and for 2.22±0.08 µl water/g calcite (right). Marginal differences in the isotope values +between left and right panel are within the expected variations in the reference water isotope values due to a +several year time lag between both experimental series. The uncertainties are displayed on the 1σ level. +[black/white for figures in print, colour online] + +3.4 Isotopic effect of the water vapour background + +5.2 - 7.8 μl/g +~2.2 μl/g +?H (% VSMOW) +-58 +144 +-60 +444 +D +-62 +(%。VSMOW) +8.0 +丰 +-8.4 +0-8.8 +-9.2 +water plus +only water +waterplus +only water +iceland spar +iceland sparThe potential influence of the isotope ratio of the water vapour background on that of the +measured sample could be relevant for speleothem samples whose isotopic composition strongly +differs from that of the water vapour background. For testing this potential effect, we injected our VE +water standard on four different water vapour backgrounds with different isotopic composition (Fig. +7). We used VE-water as injection fluid, because its isotopic composition is comparable to the majority +of fluid inclusion of speleothems from mid-latitudes. For each water vapour background 3.0 μl of VE +water were injected five times. For the background waters with the two most extreme isotope +compositions we additionally injected 1.0 µl of VE (n=6) to assess the robustness also for smaller water +amounts. . +If VE water is injected on VE background water vapour, the average isotope value corresponds to +the expected value within uncertainty. A deviation from the expected isotope value is notable for +injections on a different water vapour background. For example, VE injections on a negative water +vapour background (NG, δ18O = -26.54 ± 0.08 ‰, δ2H = -212.1 ± 0.7 ‰, Table 1) yield a deviation of ++0.40 ‰ for δ18O and +2.9 ‰ for δ2H values from the reference values. VE injections on a background, +which is based on lake water (WW) with higher isotope values compared to VE water, yield deviations +of -0.15 ‰ for δ18O and -0.3 ‰ for δ2H values. Tests with injected water amounts of 1 µl corroborate +the observed trend (Fig.7). The standard deviation of repeated water injections is independent from +the isotopic composition of the water vapour background. The effect of the isotopic difference +between the samples and the background water vapour exceeds the measurement uncertainty only +for differences larger than 10 ‰ (δ18O). ). This experiment highlights that it is not necessary to correct +samples when using background water with an isotope composition close to the paleoclimate samples. +For speleothem measurements we used VE water as background water. + +Figure 7: Deviation of the measured injection isotope value relative to the expected value. The deviation is related +to the difference between the isotope signal of the injection and that of the water vapour background. Single +injections are shown as open circles and the mean values as filled circles s. The green andblue lines indicate the +linear regression with all individual 3 µl measurements. An increasing deviation between the measured and +expected isotopic signal is observed for an increasing difference between injection isotope value and that of the + +0.8 +oxygen +hydrogen +D +3 μl +1 μl +0.6 +3 μl +1 μl +(0%) +singleinjections +O +singleinjections +-expected) ( +meanvaluewithuncertainty +expected)( +3 +mean value with uncertainty +0.4 +linearregression +Viation(measured +0.2 +1 +0.0 +-0.2 +devi +T: +VE +VE. +injections +injections +-0.4 +uo +on wWIAE +VE +cC +CC +NG +AE +ww +VE +NG +-10 +-5 +0 +5 +10 +15 +20 +-50 +50 +100 +150 +200 +deviation (injection-background signal)(%o) +deviation(injectionbackgroundsignal)(%o)water vapour background. The uncertainty of the expected value (black horizontal line) is shown as grey envelope. +Measurement uncertainties are given on the 1σ level. [black/white for figures in print, colour online] + +3.5 Case applications +Case example 1: Modern – late Holocene sinter samples +The two fluid inclusion replicates of each modern or late Holocene sample from +Hüttenbläserschacht Cave reproduce very well and are within uncertainty of each other (Table 3). +Related standard deviations of the mean (0.2 and 1.6 ‰ for δ18O and δ2H values, respectively) are +comparable (δ18O values) or slightly larger (δ2H values) than the measurement precision in this water +amount range (0.5-3.0 µl, Fig. 5). The mean fluid inclusion δ18O value of -7.6 ± 0.2 ‰ is identical to the +calculated drip-water value of Kluge et al. (2013) of -7.6 ± 0.3 ‰, independently confirming the former +finding. Drip water in Hüttenbläserschacht Cave was not monitored but should be close to the +neighbouring Bunker Cave and shares the same karst aquifer with comparable residence times of a +few years (e.g., Kluge et al., 2010). Fluid inclusion isotope values are close to the mean drip water +values from Bunker Cave of -7.9 ± 0.2 ‰ for δ18O and -53.3 ± 1.6 ‰ for δ2H values (Riechelmann et al., +2017). +Table 3: Measurement of fluid inclusions in three CaCO3 spar samples from Hüttenbläserschacht Cave +(Germany). Each sample was split in two to allow for a replication test. ‘Avg.’ refers to the average of the two +analyses. For comparison also the calculated pool water δ18O value of Kluge et al. (2013) is shown that uses an +independent temperature estimate and clumped isotope ∆47 for correction of kinetic isotope effects. The Bunker +Cave drip water is taken from Riechelmann et al. (2017). Uncertainties are given on the 1σ level. + +ID +Sample weight +(g) +Water +amount +(µl) +Water +content +(µl/g) +δ18O value + (‰ VSMOW) +δ2H value + (‰ VSMOW) +Pond A +A-1 +0.52 +0.24 +0.46 +-7.5 ± 0.5 +-53.2 ± 1.5 + +A-2 +0.52 +0.31 +0.60 +-7.9 ± 0.5 +-51.9 ± 1.5 + +Avg. +- +- +- +-7.7 +-52.5 +Pond B +B-1 +0.57 +0.43 +0.76 +-7.6 ± 0.5 +-49.7 ± 1.5 + +B-2 +0.65 +0.42 +0.64 +-7.8 ± 0.5 +-48.6 ± 1.5 + +Avg. +- +- +- +-7.7 +-49.1 +Pond C (little +pond) +C-1 +0.59 +1.78 +3.02 +-7.3 ± 0.3 +-51.1 ± 1.0 + +C-2 +0.45 +0.48 +1.08 +-7.7 ± 0.5 +-51.0 ± 1.5 + +Avg. + + + +-7.5 +-51.0 +Average all + + + + +-7.6 ± 0.2 +-50.9 ± 1.6 + +Reconstructed +after Kluge et al. +(2013) + + + + +-7.6 ± 0.3 + +Drip +water +Bunker Cave + + + + + + +range +2006- +2013 + + + + +-8.5 to -7.0 +-48 to -58 +mean +2006- +2013 + + + + +-7.9 ± 0.2 +-53.3 ± 1.6 + +Case example 2: Speleothem sample from the 20th century – Stam 4 from Cloşani Cave +Comparison with current drip water and reproducibility assessment +We sampled calcite pieces at the outer surface of the stalagmite for comparison with current drip +water. It can be assumed that recent calcite precipitated there and accordingly, recent drip water is +enclosed in the fluid inclusions. The water yields during crushing were between 0.49 and 1.38 µl/g with +a mean of 0.93 ± 0.28 µl/g (one sample was excluded due to a low water amount of 0.18 µl) +(Supplementary Table S3). The mean value of 13 fluid inclusion measurements of samples from the +outer stalagmite layer is δ18O = −9.5 ± 0.5 ‰ and δ2H = −64.6 ± 1.2 ‰ (Supplementary Table S3). These +values agree within uncertainty with the mean of the related drip site CL3 of δ18O = −9.6 ± 0.2 ‰ and +δ2H = −66.3 ± 1.7 ‰ (Fig. 8). The 13 individual measurements reproduce with a standard deviation of +0.5 ‰ and 1.2 ‰ for δ18O and δ2H values, respectively, which is slightly higher than the analytical +uncertainty based on the standard deviation of repeated syringe injection for water amounts between +0.5-and 1.7 µl (0.2-0.4 ‰ for δ18O values, 0.4-1.1 ‰ for δ2H values, Fig. 5). The standard deviation for +the 13 individual speleothem analyses is also comparable to that of other CRDS systems and similar +water amount ranges, such as of Arienzo et al. (2013) with ± 0.5/2.0 ‰ for δ18O/δ2H values and Affolter +et al. (2014) with ± 0.5/1.5 ‰ for δ18O/δ2H values . The precision of the Stam4 sample analysis also +compares well with traditional IRMS measurement techniques which achieve a precision of ± 0.5 ‰ +for δ18O and ± 2.0 ‰ for δ2H values for water amounts > 0.2 µL (Dublyansky and Spötl, 2009). + + + +Figure 8: Fluid inclusion water isotope ratios of samples from the outer stalagmite surface (light blue dots), with +corresponding mean value (dark blue). Drip water data from the same cave chamber where Stam 4 was removed +(light green triangles; drip site CL3) and its mean value (dark green) agree with the fluid inclusion results. Both drip +water and fluid inclusion data match the local meteoric water line (LMWL) of Cluj-Napoca of δ2H = 8.03 · δ18O + +11.29 ‰ (Cozma et al., 2017). The uncertainties are given on the 1σ level. [black/white for figures in print, colour +online] + +Fluid inclusion analysis of samples along the growth axis +We used the stalagmite pieces closest to the growth axis of Stam 4 for paleo-drip water and - +temperature reconstruction (Fig. S2). Where possible, the reproducibility of the individual +measurements was tested with a second set of fluid inclusion samples, extracted adjacent to the first +set of samples (Table 4). The second set had a larger distance from the growth axis than the first set. +The samples corresponding to the same growth period are grouped in levels, indicated by letters A-K +(Fig. 9). For sample level D, only the second sample is used because the first sample is close to the +applied water amount limit and contains only 0.18 μl. On average, the δ2H values of sample and +replicate are largely consistent (mean deviation: 0.1 ± 0.8 ‰). The same is observed for the inclusion +water δ18O value (mean deviation: 0.31 ± 0.51 ‰). In addition the water content of the different levels +appears characteristic. For level D and E with 5 replicates each, the water content varies only 0.1 µl/g +(excluding one sample each with low total water amount). For the other levels, a higher scatter has + +LMWL +FI-Stam4 +-60 +FImeanwithstdy +dripwater (CL3) +dripwatermeanwithstdv +-62- +8’H [% VSMOW] +-64 +-66 +-68 +-70- +-11.0 +-10.5 +-10.0 +-9.5 +-9.0 +-8.5 +8180 [%。 VSMOW]been observed, potentially due to a general heterogeneity of the speleothem inclusion distribution +(e.g., Muñoz-García et al., 2012). Generally, the water content was between 0.45 and 1.66 µl/g, +suggesting minimal or negligible influence of adsorption on the freshly crushed surface (Table 4). Fluid +inclusion δ18O values vary between -10.4 ‰ and -8.0 ‰ and, with one exception (level C), follow a +temporal trend towards higher values towards more recent times (Fig. 9, Table 4). + +Table 4: Measurement results of fluid inclusion samples of stalagmite Stam-4 from Cloşani +Cave (Romania). Several samples were cut from individual layers that reflect contemporaneously +grown carbonate and allow for replication tests. The fractionation factor 18α(CaCO3-H2O) between +water and CaCO3 was calculated based on the difference between the calcite δ18O values (averaged +over the edge length of the fluid inclusion sample of typically 5 mm) and the fluid inclusion water δ18O +values. The temperature T18O,cc was determined using the 18α(CaCO3-H2O) - T relationship proposed by +Kim and O’Neil (1997). TH is related to the relative temperature change calculated using the δ2H- +temperature relationship in rainfall (4.72‰/°C) and was referenced to top level K and the current cave +temperature. T18O, Fi refers to the temperature difference relative to sample level K with the modern +cave temperature as reference and was calculated using the δ18O-T relationship in rainfall (0.59‰/°C). +Samples in grey are not included in the interpretation and discussion as the water amount was 0.19 µl +or below. Samples closest to the growth axis (‘1’ closest, higher numbers are further away) were used +for temperature assessment based on the classical carbonate thermometer. Samples A1 and A2 were +the oldest samples and were excluded from the discussion as they belong to the stalagmite base with +unclear chronology. The age corresponds to the mean age of each sample level. Dft: distance from top. +ID +Dft +(mm) +Age +(year AD) +Sample +weight +(g) +Water +amount +(µl) +Water +content +(µl/g) +δ2H value + (‰ +VSMOW) +δ18O value +(‰ +VSMOW) +18α +(CaCO3- +H2O) (‰) +T18O,cc +(°C) +T18O,Fi (°C) +TH (°C) +A1 + +unknown +0.58 +0.30 +0.52 +-65.4 ± 1.5 +-9.5 ± 0.5 + + + + +A2 + + +0.49 +0.29 +0.59 +-59.7 ± 1.5 +-9.8 ± 0.5 + + + + +B1 +48.2 +1928 +0.42 +0.40 +0.95 +-64.1 ± 1.5 +-9.6 ± 0.5 +31.8 ± 0.5 +7.7 +± +2.2 +9.4 ± 0.2 +10.4 ± 0.5 +B2 + + +0.49 +0.37 +0.75 +-64.7 ± 1.5 +-9.6 ± 0.5 + + + + +B3 + + +0.53 +0.40 +0.76 +-64.8 ± 1.5 +-8.9 ± 0.5 + + + + +B4 + + +0.52 +0.29 +0.56 +-66.3 ± 1.5 +-9.1 ± 0.5 + + + + +B5 + + +0.42 +0.19 +0.45 +-68.5 ± 1.5 +-9.4 ± 0.5 + + + + +C1 +43.9 +1937 +0.49 +0.81 +1.66 +-57.6 ± 1.0 +-8.0 ± 0.3 +30.7 ± 0.5 +12.7 +± +2.3 +12.1 ± 0.1 +11.8 ± 0.4 +C2 + + +0.42 +0.51 +1.21 +-59.6 ± 1.0 +-8.5 ± 0.3 + + + + +C3 + + +0.54 +0.44 +0.81 +-60.4 ± 1.5 +-9.0 ± 0.5 + + + + +D1 + + +0.32 +0.18 +0.57 +-63.8 ± 1.5 +-8.5 ± 0.5 + + + + +D2 +39.0 +1944 +0.51 +0.42 +0.83 +-63.8 ± 1.5 +-10.0 ± 0.5 +32.6 ± 0.5 +4.3 +± +2.1 +8.7 ± 0.2 +10.5 ± 0.5 +D3 + + +0.56 +0.50 +0.89 +-63.7 ± 1.5 +-10.4 ± 0.5 + + + + + +D4 + + +0.55 +0.54 +0.98 +-64.0 ± 1.5 +-10.1 ± 0.5 + + + + +D5 + + +0.40 +0.35 +0.88 +-61.7 ± 1.5 +-9.0 ± 0.5 + + + + +E1 +34.5 +1952 +0.49 +0.38 +0.78 +-62.9 ± 1.5 +-10.3 ± 0.5 +32.7 ± 0.5 +3.5 +± +2.1 +8.2 ± 0.2 +10.7 ± 0.5 +E2 + + +0.58 +0.46 +0.78 +-62.5 ± 1.5 +-9.4 ± 0.5 + + + + +E3 + + +0.54 +0.44 +0.82 +-62.8 ± 1.5 +-10.4 ± 0.5 + + + + +E4 + + +0.53 +0.32 +0.60 +-63.1 ± 1.5 +-10.0 ± 0.5 + + + + +E5 + + +0.25 +0.14 +0.55 +-59.4 ± 1.5 +-9.0 ± 0.5 + + + + +F1 +30.1 +1960 +0.47 +0.35 +0.75 +-63.5 ± 1.5 +-9.6 ± 0.5 +31.9 ± 0.5 +7.0 +± +2.2 +9.4 ± 0.2 +10.5 ± 0.5 +F2 + + +0.58 +0.82 +1.4 +-63.2 ± 1.0 +-9.4 ± 0.3 + + + + +F3 + + +0.56 +0.87 +1.56 +-59.8 ± 1.0 +-8.3 ± 0.3 + + + + +G1 +26.2 +1968 +0.46 +0.40 +0.87 +-62.0 ± 1.5 +-9.0 ± 0.5 +31.3 ± 0.5 +9.7 +± +2.2 +10.4 ± 0.2 +10.9 ± 0.5 +G2 + + +0.50 +0.76 +1.53 +-61.8 ± 1.0 +-8.9 ± 0.3 + + + + +H1 +22.1 +1977 +0.40 +0.46 +1.16 +-61.6 ± 1.0 +-9.1 ± 0.3 +31.9 ± 0.5 +7.2 +± +2.2 +10.2 ± 0.1 +10.9 ± 0.4 +H2 + + +0.35 +0.46 +1.30 +-61.0 ± 1.0 +-8.8 ± 0.3 + + + + +I +17.8 +1990 +0.39 +0.28 +0.72 +-60.3 ± 1.5 +-9.3 ± 0.5 +32.0 ± 0.5 +6.8 +± +2.2 +9.9 ± 0.2 +11.2 ± 0.5 +J +10.9 +2004 +0.50 +0.43 +0.86 +-59.2 ± 1.5 +-8.7 ± 0.5 +31.3 ± 0.5 +9.9 +± +2.2 +10.9 ± 0.2 +11.4 ± 0.5 +K +3.9 +2008 +0.46 +0.43 +0.94 +-59.4 ± 1.5 +-8.4 ± 0.5 +30.7 ± 0.5 +12.3 +± +2.3 +11.4 ± 0.2 +11.4 ± 0.5 + +4. Discussion +4.1 Constraints for precise and accurate fluid inclusion isotope data +The presented setup allows for a good reproducibility with respect to isotope measurements +of pure water samples in the µl range, either injected via a syringe or by crushing of water-filled glass +capillaries in the copper tube (similar to speleothems samples; section 3.3). The achievable precision +is 0.4-0.5 ‰ for δ18O and 1.1-1.9 ‰ for δ2H analyses at extracted water amounts between 0.1 µl and +0.5 µl and decreases with increasing water amount to ± 0.1-0.3 ‰ for δ18O and ± 0.2-0.7 ‰ for δ2H +measurements at extracted water amounts >1 µl (Fig. 5). The improved precision with increasing water +amount is consistent with the observations of Dassié et al. (2018) who reported similar precision of +0.2-0.3 ‰ for δ18O and 0.6-2.6 ‰ for δ2H values for 0.2-1 µl as well as a strong increase of the +uncertainty at water amounts lower than 0.1 µL. Replicate analyses of calcite samples from the +outermost surface of a Romanian stalagmite corroborate the precision as determined by crushing of +water-filled glass capillaries and water injections. +Adsorption of water on freshly crushed surfaces appears negligible for water contents of about +1 µl water per g calcite or above Dennis et al. (2001) similarly observed a decreasing adsorption +influence at increasing H2O/CaCO3 ratios at room temperature. However, an adsorption effect could + +be relevant if the water content in the crushed samples approaches 0.1 µl/g or is below this value. We +therefore recommend to use the water content as one parameter to check the robustness of the +analysis and to carefully assess or conservatively reject samples with water contents below 0.1 µl/g. +We observed a small dependence of the measured isotope value on the water vapour +background (Fig. 7).. After injection of a certain water amount, the δ18O value of the (hypothetically) +well mixed water vapour consisting of background and injection water is an amount-weighted mixture +of both δ18O values. For background water with relatively depleted values such as North Greenland +Water (NG, -δ18O =-26.5 ‰ and δ2H = -212.1 ‰) this would mean that the δ18O value of the VE water +with δ18O = -8.57 ‰ and δ2H = -61.0 ‰ is higher than the mixed water. For example, if the background +to injection volume is 1.8:3.0, the isotopic composition of the mixture is expected to be δ18O = -15.3 +‰ and δ2H = -117.7 ‰.Given the short residence time of the water vapour in the mixing cavity before +the measurement in the CRDS, a full isotopic mixing is not reached. The kinetically slower molecules +containing an 18O atom remain preferentially in the gas stream compared to the faster molecules +containing only 16O atoms that preferentially take part in the mixing with the background water. Thus, +for this case example it is expected that the injection water isotopes are slightly higher relative to the +background and the mixed signal. Conversely, for a positive background as the WW water, the isotope +value of the VE injection is more negative relative to the isotope value of the hypothetical fully mixed +gas stream. Due to the kinetic behaviour of 18O, the injection stays more negative relative to the +expected value for this background. The adsorption effects and the influence of kinetic isotope +exchange are similar for the 1 µl and 3 µl injections (Fig. 7). + For water amounts in the µl range this dependence on the vapour background isotope value +is relevant if the isotopic composition of the fluid inclusions is significantly different from the +background (> 10 ‰ for δ18O and > 50 ‰ for δ2H). Otherwise, the potential effect of the isotopic +difference to the background water vapour is within the analytical uncertainty of water samples +between 0.1 and 1.0 µl. The maximum expected deviations are < 0.25 ‰ for δ18O and < 1.0 ‰ for δ2H +values, if the sample is within the 10 ‰ range of the water vapour background for δ18O and 50 ‰ for +δ2H values. For water amounts larger than 1 µl the acceptable deviation between sample and +background water isotope values reduces in relation to the higher measurement precision at higher +water amounts (Fig. 5). + +4.2 Paleotemperature calculation from Stam 4 using fluid inclusion isotopes +For calculation of the CaCO3-H2O isotope fractionation, we averaged the calcite δ18O values +which correspond to the growth period of the spatially larger fluid inclusion sample (Fig. S4). The +calculated fractionation factor 18α(CaCO3-H2O) between calcite and fluid inclusion water yields values +between 30.7 and 32.9 ‰. This range would correspond to temperatures between 3.5 ± 1.5 °C and + +12.5 ± 1.5 °C using the 18α(CaCO3-H2O)-T relationship of Kim and O’Neil (1997) (Table 4). The calculated +absolute temperatures deviate slightly from these values depending on the used 18α(CaCO3-H2O)-T +relationship (e.g., Démeny et al., 2010; Tremaine et al., 2011). However, relative differences between +the coldest and warmest periods and the trend in the data set is largely independent of the selected +fractionation-temperature relationship as most experimental and empirical studies yield similar +18α(CaCO3-H2O)-T slopes. Following an apparent change of 2.2 ‰ in 18α(CaCO3-H2O) a temperature +change of about 9°C would formally correspond to the growth period of the stalagmite. This +temperature difference is much larger compared to that observed at local meteorological stations with +maximum and minimum mean annual air temperature differing by approximately 3°C. This discrepancy +suggests that the temperature trend related to 18α(CaCO3-H2O) in the stalagmite has been enhanced, +e.g., by stronger isotopic disequilibrium. As the measured fluid inclusion water isotopes correspond to +the meteoric water line (Fig. S5), post-depositional and other significantly altering effects are unlikely +for the water-filled inclusions. However, mineral formation in speleothems often takes place in a non- +equilibrium regime (Deininger et al., 2021) and may also have influenced the calcite δ18O values of +Stam 4 due to a high growth rate and strong seasonal variations in prior calcite precipitation (PCP, +Warken et al., 2018).. We refrain from correcting the disequilibrium effect in calcite δ18O values due +to the related large and hardly quantifiable uncertainties and only focus on the fluid inclusion δ2H +values in the following. Note, that it may be possible in other cases to derive temperature variations +from the oxygen isotope fractionation between fluid and calcite if the degree of PCP is negligible or +constant and the length of drip interval has not changed significantly during growth. +Affolter et al. (2019) demonstrated that δ2H values and its temperature relationship in +rainwater of mid-latitudes can be used to deduce temperature changes throughout the Holocene. In +stalagmite Stam 4, a long-term trend towards higher δ2H values is observed from the oldest to +youngest fluid inclusion samples (Fig. 9). A significant increase for δ2H values of +4.8 ± 2.1 ‰ was +identified between sample level F and K and similarly between B and C (Fig. 9 C). This transfers into to +a temperature change of +1.0 ± 0.4 °C using the relationship between the isotopic composition of +precipitation and temperature for Central Europe of +0.59 ± 0.04 ‰/°C for oxygen and +4.72 ± +0.32‰/°C for hydrogen isotopes (Rozanski et al., 1992). Since stalagmite Stam 4 from Cloşani Cave +grew under continental climatic influence, the mean value for Central Europe seems to be the best +reference for the determination of the relative temperature change with the δ2H/T relationship. GNIP +(Global Network of Isotopes in Precipitation) stations and other weather stations in Hungary, Austria, +Slovakia and Poland with more than 10 years of isotope analysis show similar slopes of +3.9-5.4 ‰/°C +(Demény et al., 2021). Considering the observed range of the rainfall δ2H-temperature slopes in Central +and Eastern Europe by Gaussian error propagation, the uncertainty increases slightly to 0.5°C. + + With the confirmed recent growth of the stalagmite, the topmost stalagmite piece is assigned +to the year 2010 C.E.( year of stalagmite removal). Annual growth layers provide a possibility to assign +ages to all other sample depths (Supplementary Fig. S2). Temperature changes ΔT relative to the +reference level B is close to zero up to ca. 1960 C.E. (3 cm distance from top, level F), followed by an +increase of 1.0 ± 0.4 °C at the stalagmite top (Fig. 9F). The mean annual air temperature for the time +period from 1928 to 2008 C.E. at the meteorological station Drobeta/Turnu Severin, which is located +in the vicinity of the cave, shows a similar temperature increase of about 1 °C from 1980 until 2008 +C.E. (Fig. 9G). This is consistent with the general trend in Romania, which experienced a 0.8 °C increase +for the period of 1901-2012 C.E. (Ministry of Environment and Climate Change, 2013). The +temperature change determined from δ2H values in the fluid inclusions corresponds well to the trend +and magnitude measured in the mean annual air temperature of the region (Fig. 9). Directly +interpreting the fluid inclusion δ18O values using the rainfall δ18O-T relationship for Central Europe of ++0.59 ± 0.04 ‰/°C by Rozanski et al. (1992) also leads to a temperature increase, albeit with a higher +amplitude of 2.0 ± 1.1°C relative to level B, but within uncertainty consistent with the temperature +reconstruction using δ2H values (Table 4). + + + +growthaxis[cm] +5 +A +B +C +D +E +Base +level +A +B +c +D +E +F +G +H +K +a (% VSMOW) +T +-8 +B +II +-9 +-10 +-11°H (% VSMOW) +-60 +65 +(0%) +33 +D +32 +30 +(82H) (%) +E +reference +0 +TevelB +2 +reference13 +(C) +MAAT +11 +10 +1920 +1940 +1960 +1980 +2000 +yearFigure 9: A) Stam 4 with assignment of sample pieces based on visual correlation with the growth axis. Layers B to +K were used for temperature reconstruction. The small inset shows alternation of fluid inclusion-rich and inclusion- +poor layers. Winter layers yield very little inclusions, while summer layers include abundant air- and water-filled +inclusions. Width of the image is ca. 3 mm. B) Fluid inclusion δ18O values C) δ2H values D) Fractionation factor α +between calcite and inclusion water. E) Change in δ2H values relative to level B (lowest temperature). F) Inferred +temperature change relative to level B. A trend is visible for Δ(δ2H) as well as for ΔT from the stalagmite bottom +to the top. Using the δ2H/T relationship of 4.72 ± 0.32 ‰/T (Rozanski et al., 1992) a total increase of ΔT =1.0 ± 0.5 +°C is observed within the growth period of the investigated stalagmite. G) Mean annual air temperature (MAAT) +of the Drobeta/Turnu Severin station in the cave region (thin black line, Klein Tank et al., 2002) for the last 100 +years with a 10-year running mean (red line) . The 10 year-smoothing interval corresponds to the average age that +is covered by the fluid inclusion samples. The uncertainties are given on the 1σ level. [black/white for figures in +print, colour online] + +4.3 Paleotemperature reconstruction using fluid inclusions +Our study supports the conclusion of previous publications (e.g., Affolter et al., 2014; Uemura +et al., 2016; de Graaf et al., 2020) that an accurate and precise determination of the isotope +composition of micro-litre water amounts is possible. Our setup is able to produce small errors, which +are in the same range as the precision in the previous fluid inclusion isotope studies(Dublyansky and +Spötl,2009; Arienzo et al., 2013); Affolter et al., 2014),; Uemura et al. 2016; Dassié et al.,2018). In these +studies a precision of 0.3-0.5 ‰ for δ18O and 0.7-1.9 ‰ for δ2H values in the water amount range of +0.1-1.0 µl, and 0.1-0.3 ‰ for δ18O and 0.2-0.7 ‰ for δ2H values at water amounts > 1 µl was +demonstrated. The analytical precision determines the currently achievable temperature precision. +In principle, three possible ways of temperature calculation from fluid inclusion isotopes exist: +a) from the temperature-dependent oxygen isotope fractionation between calcite and fluid inclusion +water (e.g., Arienzo et al., 2015; Labuhn et al., 2015), b) indirectly via transfer of the fluid inclusion δ2H +value to the corresponding water δ18O value using the δ18O-δ2H relationship of the meteoric water line +and then using the oxygen isotope fractionation between carbonate and water for temperature +calculation (Zhang et al., 2008; Meckler et al., 2015), and c) from the hydrogen isotopes using a locally +valid δ2H-temperature relationship of the rainfall (e.g., Affolter et al., 2019). Of the three methods for +temperature reconstruction the first two (a and b) show the highest uncertainty of 0.6-3.1 °C (Van +Breukelen et al., 2008; Zhang et al., 2008; Arienzo et al., 2015; Meckler et al., 2015; Uemura et al., +2016). The highest achievable temperature precision in the case of the best analytical fluid inclusion +δ18O precision of 0.1-0.2 ‰ (and a calcite δ18O uncertainty <0.1 ‰) is 0.6-1.1 °C. Approaches a and b +are additionally affected by the potential influence of disequilibrium isotope fractionation during +carbonate mineral formation (e.g., Deininger et al., 2021), causing too high temperatures or an +unrealistically large temperature spread in case of significant changes of isotopic disequilibrium. + +Furthermore, diagenetic exchange between host calcite and fluid inclusion water could further alter +the water δ18O value (Demeny et al., 2016; Uemura et al., 2020). The precision of the temperature +reconstruction directly from fluid inclusion δ2H values depends critically on the value of the rainfall +δ2H/T relationship and the availability of well-defined rainfall δ2H/T functions at the study site. For the +Central European region a value of 4.72 ± 0.32 ‰/°C of Rozanski et al. (1992) can be used and can yield +a temperature precision of 0.2 °C for released water amounts of ~0.5 µl if the analytical precision is +~1.0 ‰ for δ2H measurements. The uncertainty of the rainfall δ2H/T function is negligible for our case +study but could be relevant in case of a reduced temperature dependence of the rainfall δ2H values. +At locations with a stronger temperature dependence of the rainfall δ2H value an even better precision +is possible, e.g., ± 0.13 °C for the average of Swiss stations, which show a slope of 7.44 ‰/°C (Rozanski +et al., 1992) and for the typical analytical uncertainty of our setup. + The temperature resolution of this method is slightly reduced at lower latitudes (e.g., ± 0.55 +°C at Hong Kong with a δ2H rainfall-temperature relationship of 2 ‰/°C; Rozanski et al., 1992). Note +that temperature estimates using fluid inclusion δ2H values and the rainfall δ2H/T relationship without +climatic reference points are relative, i.e., they record only temperature changes. With an anchor, e.g., +modern reference temperature and rainfall δ2H values, absolute temperatures can be also inferred +from fluid inclusion δ2H values. The application of the rainfall δ2H/T relationship for calculating +temperature changes from fluid inclusion δ2H values also requires the δ2H/T relationship to be +constrained for the past. Information on the rainfall isotope systematic and the δ2H/T relationship in +the past can be gained for example from groundwater studies (Darling, 2004) in combination with +noble gas temperatures (e.g., Kreuzer et al., 2009; Varsány et al., 2011, Túri et al., 2020). The +uncertainty of the δ2H/T relationship needs to be considered and likely decreases the achievable +precision for pre-Holocene speleothems as the uncertainty for the δ2H/T relationship increases when +applying the modern or Holocene relationship back in time. +Affolter et al. (2019) used the δ2H/T relationship for temperature reconstruction from fluid +inclusions throughout the Holocene and achieved a precision of 0.2-0.5 °C for a Swiss stalagmite. Our +analytical approach allows for the same temperature resolution and with measurements of stalagmite +Stam 4 from Romania confidently verified the recent 20th century warming. Both studies together +illustrate the potential of the inclusion-based methodology for tracing and reconstructing minor +temperature fluctuations of < 2 °C during the Holocene and, at sufficient temporal resolution (requiring +high stalagmite growth rates), also of sub-degree changes such as the recent anthropogenic warming +trend. + +5. Summary and conclusion + +Fluid inclusion isotope analysis using CRDS measurements after mechanical sample crushing +benefits from fluid extraction and measurement under a constant and controlled water vapour +background. The specific isotope and water volume calibration of the CRDS system remained valid for +several years. For assessing the fluid inclusion extraction and measurement performance we used +syringe injections and boro-silicate glass capillaries filled with reference water. We have shown that +out setup has no drift in the isotope values for smaller water amounts and that the memory effect for +this system is negligible when using an isotopically appropriate background water vapour. The water +vapour background should be chosen such that the isotope values of sample and background do not +deviate significantly (maximum 10 ‰ for δ18O and 50 ‰ for δ2H values). +Direct comparison of calcite powder-free and -filled extraction tubes proved that the adsorption of +water on the speleothem surface has no effect on the measured isotope signal if the water content is +larger than 1 µl water per g calcite. For samples with a water content below 0.1 µl/g calcite results +have to be checked as we observed a corresponding adsorption of the water vapour background on +freshly crushed calcite. Related to the above-mentioned constraints, the precision (1σ) of isotope +measurements for aliquots of water from speleothem fluid inclusions improves with increasing water +amount. It is 0.4-0.5 ‰ for δ18O and 1.1-1.9 ‰ for δ2H values for water samples between0.1 and0.5 +µl, which is comparable to other CRDS systems and IRMS techniques. This value was further confirmed +by replicated measurements of adjacent samples of the Romanian stalagmite Stam 4 (standard +deviation of 0.5 and 1.2 ‰ for δ18O andδ2H values). For water amounts larger than1 µl the precision +improves to 0.1-0.3 ‰ for δ18O and 0.2-0.7 ‰ for δ2H. +Analysis of fluid inclusions of recent pool spars from a German cave shows good agreement +between drip water and fluid inclusion isotope values. Similarly, the δ18O and δ2H values of a Romanian +stalagmite, grown during the 20th century, reflect the isotopic composition of the modern drip water +within uncertainty. In the same case study, we observed a T-trend from δ18O values, which is +inconsistent with local weather records, suggesting a major influence disequilibrium and kinetic effects +on the speleothem calcite δ18O signal of Stam 4. The isotopic disequilibrium causes a significant +overestimation of the temperature changes calculated from the oxygen isotope fractionation between +calcite and water (in our case 9 °C difference instead of ca. 1°C). In contrast, hydrogen isotopes are not +involved in calcite precipitation and therefore provide a relatively undisturbed link to the stable +isotopic composition of drip and rain water. Using the δ2H-temperature relationship in rainfall we +obtained a temperature increase for Cloşani Cave of +1.0 ± 0.5 °C between 1960 and 2010, which is in +excellent agreement with the local temperature record. Thus, applying the local rainfall δ2H-- +temperature relation on fluid inclusion δ2H variations appears to be a reliable method to determine +mean annual air temperatures for mid-latitude speleothems. The achieved precision furthermore +highlights the potential of fluid inclusion isotope studies in speleothems for high resolution + +paleoclimate reconstruction, given that the rainfall isotope relationship is significantly linked to +temperature and is available for the studied area and valid for past periods. + +Acknowledgements + +The project was funded by DFG Grant KL 2391/2-1 and supported by the Heidelberg +Graduate School for Physics in the context of grant GSC 129. We thank Sylvia Riechelmann and +Jasper Wassenburg for collection of Stam 4, Silviu Constantin and Mihai Terente for +monitoring, Christoph Spötl for drip water analysis at CL3, Regina Mertz-Kraus for LA-ICP-MS +element analysis and Sven Brömme for calcite δ18O and δ13C analysis on Stam 4. We thank the +editor Michael E. Böttcher and three anonymous reviewers for their very detailed comments +and suggestions that helped to improve the manuscript. +Data availability + +Data of this study are summarized in Tables 1-4 and Supplementary Table S1-S3. Raw +data related to Figs. 3-6 are given in the Appendix of Weißbach (2020), available at +https://doi.org/10.11588/heidok.00028559 +Competing interests statement + +The authors declare the absence of competing interests. + +References +Aemisegger, F., Sturm, P., Graf, P., Sodemann, H., Pfahl, S., Knohl, A., Wernli, H., 2012. Measuring +variations of 18O and 2H in atmospheric water vapour using two commercial laser-based +spectrometers: an instrument characterisation study, Atmospheric Measurement +Techniques, 5 (7), 1491–1511. +Affolter, S., Fleitmann, D., Leuenberger, M., 2014. New online method for water isotope analysis of +speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS). Clim. Past ,10, +1291-1304. +Affolter, S., Häuselmann, A., Fleitmann, D., Edwards, R. L., Cheng, H., Leuenberger, M., 2019. Central +Europe temperature constrained by speleothem fluid inclusion water isotopes over the past +14,000 years. Sci. Adv., 5., eaav 3809. DOI: 10.1126/sciadv.aav3809 +Arienzo, M. M., Swart, P. K., Vonhof, H.B., 2013. Measurement of 18O and 2H values of fluid inclusion +water in speleothems using cavity ring-down spectroscopy compared with isotope ratio mass +spectrometry. Rapid Commun. Mass Spec., 27, 2616–2624. +Arienzo, M. M., Swart, P. K. , Pourmand, A. , Broad, K., Clement, A. C., Murphy, L. N., Vonhof, H. B., +Kakuk, B., 2015. Bahamian speleothem reveals temperature decrease associated with +Heinrich stadials. Earth and Planetary Science Letters, 430, 377–386. +Brand, W. A., Geilmann, H., Crosson, E. R., Rella, C. W., 2009. Cavity ring-down spectroscopy versus +high-temperature conversion isotope ratio mass spectrometry; a case study on δ2H and δ18O +of pure water samples and alcohol/water mixtures. Rapid Commun. Mass Spectrom., 23, +1879-1884. +Constantin, S., & Lauritzen, S., 1999. Speleothem datings in SW Romania. Part 1: evidence for a +continuous speleothem growth in Peştera Cloşani during oxygen isotope stages 5–3 and its +paleoclimatic significance. Theor. Appl. Karstol.,11–12, 35-46. +Cozma, A. I., Baciu, C., Papp, D., Roşian, G., Pop, C.-I., 2017. Isotopic composition of precipitation in +western Transylvania (Romania) reflected by two local meteoric water lines. Carpathian J +Earth Environ Sci, 12, 357–364. +Craig, H., 1961. Isotopic variations in meteoric water. Science, 133, 1702-1703. +Czuppon, G., Ramsay, R. R., Ozgenc, I., Demeny, A., Gwalani, L. G., Rogers, K., Eves, A., Papp, L., +Palcsu, L., Berkesi, M., Downes, P.J., 2014. Stable (H, O, C) and noble-gas (He and Ar) isotopic +compositions from calcite and fluorite in the Speewah Dome, Kimberley Region, Western +Australia: implications for the conditions of crystallization and evidence for the influence of +crustal-mantle fluid mixing. Mineralogy and Petrology, 108, 759–775. +Darling, W. G., 2004. Hydrological factors in the interpretation of stable isotopic proxy data present +and past: a European perspective. Quat. Sci. Rev., 23, 743-770. + +Dassié, E. P., Genty, D., Noret, A., Mangenot, X., Massault, M., Lebas, N., Duhamel, M., Bonifacie, M., +Gasparrini, M., Minster, B., Michelot, J.-L., 2018. A newly designed analytical line to examine +fluid inclusion isotopic compositions in a variety of carbonate samples. Geochem. Geophys, +Geosys., 19, 1107-1122. +de Graaf, S., Vonhof, H. B., Levy, E. J., Markowska, M., Haug, G. H., 2021. Isotope ratio infrared +spectroscopy analysis of water samples without memory effects. Rapid Comm. Mass. Spec., +35:e9055. https://doi.org/10.1002/rcm.9055 +de Graaf, S., Vonhof, Weissbach T, Wassenburg, J., Levy, E., Kluge, T., Haug, G., 2020. A comparison +of isotope ratio mass spectrometry and cavity ring-down spectroscopy techniques for isotope +analysis of fluid inclusion water. Rapid Commun Mass Spectrom., 34, e8837. +https://doi.org/10.1002/rcm.8837 +Deininger, M., Hansen, M., Fohlmeister, J., Schröder-Ritzrau, A., Burstyn, Y., Scholz, D., 2021. Are +oxygen isotope fractionation factors between calcite and water derived from speleothems +systematically biased due to prior calcite precipitation (PCP)? Geochim. Cosmochim. Acta, +305, 212-227. +Demény, A., Czuppon, G., Siklósyk Z., Leél-Össy, S., Lin, K., Shen, C.-C., Gulyás, K., 2013. Mid-Holocene +climate conditions and moisture source variations based on stable H, C and O isotope +compositions of speleothems in Hungary. Quat. Int., 293, 150-156. +Demény, A. et al., 2017. Stable isotope compositions of speleothems from the last interglacial–spatial +patterns of climate fluctuations in Europe. Quat. Sci. Rev., 161, 68–80. +Demény, A., Rinyu, L., Kern, Z., Hatvania, I.G., Czuppon, G., Surányi, G., Leél-Össy, S., Shen, C.-C., +Koltai, G. , 2021. Paleotemperature reconstructions using speleothem fluid inclusions +analyses from Hungary. Chem. Geol., 563, 120051. +Dennis, P., Rowe, P., Atkinson, T., 2001. The recovery and isotopic measurement of water from fluid +inclusions in speleothems. Geochim. Cosmochim. Acta, 65, 871–884. +Dublyansky, Y. V., & Spötl, C., 2009. Hydrogen and oxygen isotopes of water from inclusions in +minerals: design of a new crushing system and on-line continuous-flow isotope ratio mass +spectrometric analysis. Rapid Commun. Mass Spec., 23, 2605–2613. +Fischer, H., et al., 2018. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and +beyond. Nature Geosci., 11, 474-485. +Griffiths, M.L., Drysdale, R.N., Vonhof, H.B., Gagan, M.K., Zhao, J.X., Ayliffe, L.K., Hantoro, W.S., +Hellstrom, J.C., Cartwright, I., Frisia, S., Suwargadi, B.W., 2010. Younger Dryas-Holocene +temperature and rainfall history of southern Indonesia from delta O-18 in speleothem calcite +and fluid inclusions. Earth Planet Sci. Lett. 295, 30-36. + +Gupta, P., Noone, D., Galewsky, J., Sweeney, C., Vaughn, B. H., 2009. Demonstration of high-precision +continuous measurements of water vapor isotopologues in laboratory and remote field +deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) +technology. Rapid Commun. Mass Spectrom., 23, 2534–2542. +Harmon, R. S., Schwarcz, H. P., Ford, D. C., 1978. Stable isotope geochemistry of speleothems and +cave waters from the Flint Ridge-Mammoth Cave system, Kentucky: Implications for +terrestrial climate change during the period 230,000 to 100,000 years BP. Geology, 86, 373– +384. +Harmon, R. S., Schwarcz, H. P., O’Neil, J. R., 1979. D/H ratios in speleothem fluid inclusions: a guide to +variations in the isotopic composition of meteoric precipitation? Earth Planet. Sci. Lett., 42, +254–266. +Kim, S.-T., & O’Neil, J. R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic +carbonates. Geochim. Cosmochim. Acta, 61, 3461–3475. +Klein Tank, A., et al., 2002. Daily dataset of 20th-century surface air temperature and precipitation +series for the European Climate Assessment. International Journal of Climatology: A Journal +of the Royal Meteorological Society, 22 (12), 1441–1453. +Kluge, T., Marx, T., Scholz, D., Niggemann, S., Mangini, A., Aeschbach-Hertig, W., 2008. A new tool for +palaeoclimate reconstruction: Noble gas temperatures from fluid inclusions in speleothems. +Earth Planet. Sci. Lett., 269, 407–414, 2008. +Kluge, T., Riechelmann, D.F.C., Wieser, M., Spötl, C., Sültenfuß, J., Schröder-Ritzrau, A., Niggemann, +S., Aeschbach-Hertig, W., 2010. Dating cave dripwater by tritium. J. Hydrol. 394, 396–406. +Kluge T., Affek H. P., Marx T., Aeschbach-Hertig W., Riechelmann, D. F. C., Scholz D., Riechelmann S., +Immenhauser A., Richter C., Fohlmeister J., Wackerbarth A., Mangini A. and Spötl C., 2013. +Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of +speleothems from Bunker Cave (Germany). Clim. Past 9, 377-391. +Kreuzer, A. M., von Rohden, C., Friedrich, R., Chen, Z., Shi, J., Hajdas, I., Kipfer, R., Aeschbach-Hertig, +W., 2009. A record of temperature and monsoon intensity over the past 40 kyr from +groundwater in the North China Plain. Chem. Geol., 259, 168-180. +Labuhn, I., Genty, D., Vonhof, H., Bourdin, C., Blamart, D., Douville, E., Ruan, J., Cheng, H., Edwards, +R. L., Pons-Branchu, E., Pierre, M., 2015. A high-resolution fluid inclusion δ18O record from a +stalagmite in SW France: modern calibration and comparison with multiple proxies. Quat. Sci. +Rev., 110, 152-165. +Matthews, A., Ayalon, A., Bar-Matthews, M., 2000. D/H ratios of fluid inclusions of Soreq cave (Israel) +speleothems as a guide to the Eastern Mediterranean Meteoric Line relationships in the last +120 ky. Chem. Geol., 166, 183–191. + +Matthews, A., Affek, H.P., Ayalon, A., Vonhof, H.B., Bar-Matthews, M., 2021. Eastern Mediterranean +climate change deduced from the Soreq Cave fluid inclusion stable isotopes and carbonate +clumped isotopes record of the last 160 ka. Quat. Sci. Rev., 272, 107223. +McDermott, F., Schwarcz, H., Rowe, P. J., 2006. Isotopes in speleothems, in: Isotopes in +palaeoenvironmental research, pp. 185–225, Springer. +McGarry, S., Bar-Matthews, M., Matthews, A., Vaks, A., Schilman, B., Ayalon, A., 2004. Constraints on +hydrological and paleotemperature variations in the Eastern Mediterranean region in the last +140ka given by the δD values of speleothem fluid inclusions. Quat. Sci. Rev., 23, 919-934. +http://dx.doi.org/10.1016/j.quascirev.2003.06.020. +Meckler, A. N., et al., 2015. Glacial–interglacial temperature change in the tropical West Pacific: A +comparison of stalagmite-based paleo-thermometers. Quaternary Science Reviews, 127, 90– +116. +Millo, C., Strikis, N. M., Vonhof, H. B., Deininger, M., da Cruz Jr, F. W., Wang, X., Cheng, H., Edwards, +R. L., 2017. Last glacial and Holocene stable isotope record of fossil dripwater from +subtropical Brazil based on analysis of fluid inclusions in stalagmites. Chemical Geology, 468, +84–96. +Ministry of Environment and Climate Change, 2013. Romania’s Sixth National Communication on +Climate Change and First Biennial Report. Climate Report, p. 44. +Muñoz-García, M.B., López-Arce, P., Fernáandez-Valle, M.E., Martín-Chivelet, J., Fort, R., 2012. +Porosity and hydric behavior of typical calcite microfabrics in stalagmites. Sed. Geol., 265- +266, 72-86. +Riechelmann, D. F. C., Schröder-Ritzrau, A., Scholz, D., Fohlmeister, J., Spötl, C., Richter, D. K., +Mangini, A., 2011. Monitoring Bunker Cave (NW Germany): A prerequisite to interpret +geochemical proxy data of speleothems from this site. Journal of Hydrology, 409, 682–695. +Riechelmann, S., Schröder-Ritzrau, A., Spötl, C., Riechelmann, D.F.C., Richter, D. K., Mangini, A. Frank, +N., Breitenbach, S.F.M., Immenhauser, A., 2017. Sensitivity of Bunker Cave to climatic +forcings highlighted through multi-annual monitoring of rain-, soil-, and dripwaters. Chem. +Geol. 449, 194-205. +Rozanski, K., Araguas-Araguas, L., Gonfiantini, R., 1992. Relation between long-term trends of +oxygen-18 isotope composition of precipitation and climate. Science, 258, 981–985. +Schwarcz, H. P., Harmon, R. S., Thompson, P., Ford, D.C., 1976. Stable isotope studies of fluid +inclusions in speleothems and their paleoclimatic significance. Geochim. Cosmochim. Acta, +40, 657–665. + +Tremaine, D. M., Froelich, P. N., Wang, Y., 2011. Speleothem calcite farmed in situ: Modern +calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave +system. Geochimica et Cosmochimica Acta, 75, 4929–4950. +Túri, M., Saadi, R., Marah, H., Temovski, M., Molnár, M., Palcsu, L., 2020. Paleotemperature +reconstruction using environmental isotopes and noble gases in groundwater in Morocco. +Hydrogeol. J., 28, 973-986. +Uemura, R., et al., 2016. Precise oxygen and hydrogen isotope determination in nanoliter quantities +of speleothem inclusion water by cavity ring-down spectroscopic techniques. Geochim. +Cosmochim. Acta, 172, 159–176. +Uemura, R., Kina, Y., Shen, C.-C., Omine, K., 2020. Experimental evaluation of oxygen isotopic +exchange between inclusion water and host calcite in speleothems. Clim. Past, 16, 17–27. +van Breukelen, M., Vonhof, H. B., Hellstrom, J., Wester, W., Kroon, D., 2008. Fossil dripwater in +stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth and +Planetary Science Letters, 275 (1-2), 54–60. +Van Geldern, R., Barth, J.A.C., 2012. Optimization of instrument setup and post-run corrections for +oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared +spectroscopy (IRIS). Limnol. Ocean. Methods, 10, 1024-1036. +https://doi.org/10.4319/lom.2012.10.1024 +Varsány, I., Palcsu, L., Kovács, L. O., 2011. Groundwater flow system as an archive of +palaeotemperature: Noble gas, radiocarbon, stable isotope and geochemical study in the +Pannonian Basin, Hungary. Appl. Geochem. 26, 91-104. +Verheyden, S., Genty, D., Cattani, O., van Breukelen, M.R., 2008. Water release patterns of heated +speleothem calcite and hydrogen isotope composition of fluid inclusions. Chem. Geol., 247, +266-81. +Vonhof, H. B., van Breukelen, M.R., Postma, O., Rowe, P. J., Atkinson, T.C., Kroon, D., 2006. A +continuous-flow crushing device for on-line 2H analysis of fluid inclusion water in +speleothems. Rapid Commun. Mass Spec., 20, 2553–2558. +Warken, S. F., et al., 2018. Reconstruction of late Holocene autumn/winter precipitation variability in +SW Romania from a high-resolution speleothem trace element record. Earth Planet. Sci. +Lett., 499, 122–133. +Warken, S. F., Weissbach, T., Kluge, T., Vonhof, H., Scholz, D., Vieten, R., Schmidt, M., Winter, A., + Frank, N., 2021. Last glacial millennial-scale hydro-climate and temperature changes in + +Puerto Rico constrained by speleothem fluid inclusion δ18O and δ2H values. Clim. Past, 18, +167-181., https://doi.org/10.5194/cp-18-167-2022, 2022. +Weißbach, T., 2020. Spectroscopic isotope ratio analysis on speleothem fluid inclusions - analytics and +paleoclimatic case studies. PhD thesis, Heidelberg University, 225p. +https://doi.org/10.11588/heidok.00028559 +Wilcox, P., Honiat, C., Trüssel, M., Edwards, R. L., Spötl, C., 2020. Exceptional warmth and climate +instability occurred in the European Alps during the Last Interglacial period. Commun. Earth +Environ., 1: 57, https://doi.org/10.1038/s43247-020-00063-w +Yonge, C. J., 1982. Stable isotope studies of water extracted from speleothems. PhD thesis, McMaster +University. +Zhang, R., Schwarcz, H.P., Ford, D.C., Schroeder, F.S., Beddows, P.A., 2008. An absolute +paleotemperature record from 10 to 6 Ka inferred from fluid inclusion D/H ratios of a +stalagmite from Vancouver Island, British Columbia, Canada. Geochim. Cosmochim. Ac., 72, +1014-1026. + +Supplementary Material +for +Constraints for precise and accurate fluid inclusion stable isotope +analysis using water-vapour saturated CRDS techniques +by +Therese Weissbach, Tobias Kluge, Stéphane Affolter, Markus C. Leuenberger, Hubert Vonhof, Dana +F.C. Riechelmann, Jens Fohlmeister, Marie-Christin Juhl, Benedikt Hemmer, Yao Wu, Sophie Warken, +Martina Schmidt, Norbert Frank, Werner Aeschbach + +S1) Hüttenbläserschacht Cave – sample dating +Table S1: Pieces of speleothem samples (pool spars and rafts) collected at Hüttenbläserschacht Cave +were dated using the Th-U disequilibrium method at the Heidelberg Academy of Sciences. The +analytical procedure followed the methods described in Fohlmeister et al. (2012). + +Sample +232Th +[ppb] +238U +[ppb] +230Th +[fg/g] +± +(234U/238U) +± +(230Th/238U) +± +Age +Age + + + + + + + + + +Corr. +uncor. + + + + + + + + + + + +Hinterm +Ballsaal +13.0 382.1 +58.8 6.7 +1.1407 0.0030 +0.0005 0.0011 +0.04±0.26 +0.90±0.08 +Kristall- +häutchen +3.1 321.9 +34.3 2.5 +1.2159 0.0053 +0.0040 0.0005 0.3557±0.13 0.5862±0.04 + +S2) Closani Cave and Stam 4 annual layer counting +Cloşani Cave is located on the southern slope of the Carpathians at an altitude of 433 m above sea +level and developed in massive limestones of Upper Jurassic-Aptian age (Constantin and Lauritzen, +1999). The cave is overlain by about 30 m of rock overburden. A monitoring programme showed +microclimatic stability for the cave interior with a mean air temperature of 11.4 ± 0.5 °C and a relative +humidity close to 100% for 2010-2012 and 2015 (Warken et al., 2018). The cave air pCO2 pattern +follows a strong seasonal cycle with high values in late summer (up to 8000 ppmV) and lower values +during winter (2000 ppmV). Water infiltration occurs predominantly during winter time (October - +March) where 75 to 100% of the meteoric precipitation is available for infiltration. Warken et al. (2018) +showed that calcite precipitation is favoured during winter time and reduced in summer, as a result of +seasonally varying CO2 concentrations in the cave air and related equilibrium DIC concentrations. The +water isotopic composition of the drip water in direct vicinity (1 m) of the former location of Stam 4 +shows no seasonal cycle and is constant with a mean value of −9.6 ± 0.2‰ for δ18O and −66.3 ± 1.7‰ +for δ2H. + +The relatively small and fast-grown stalagmite Stam 4 was collected from the “laboratory passage” in +the cave in 2010. It has a total length of 6 cm and an average growth rate of 510 μm per year, as +deduced from counting of elemental layers. Both summer and winter layers are clearly detectable in +the thin sections, whereas winter layers show a compact structure with a lower number of inclusions +and the milky-white porous summer layers contain abundant air- and water-filled inclusions. This +layering in Stam 4 was induced by the strongly changing pCO2 in the cave air, resulting in a seasonal +change in growth rate and corresponding seasonal cycles in Sr and Ba in the stalagmite calcite. Similar +seasonal Sr and Ba pattern have also been observed e.g., by Treble et al. (2003), Mattey et al. (2010), +and Warken et al. (2018). The visible annual layers in stalagmite Stam 4 are not as pronounced as the +annual cycles in the measured high-resolution Ba concentration. Ba concentration was measured with +a LA-ICP-MS (Agilent 7500 ce with Laser UP-213, Institute of Geosciences Mainz) at 4.3 µm resolution. +The minima of this record were counted five times. These five counted layer series were cross-dated +to each other. Layers have to be counted at minimum three times, layers only counted once or twice +were deleted from the time series. For each layer a mean value of layer thickness was calculated from +the five layer thickness series to a master chronology. This layer thickness chronology results in a +growth of Stam 4 from 1910 to 2010, the year of sampling under an active drip site. +S3) Radiocarbon dating +Four samples were drilled with a hand-held dental burr (1 mm). Calcite powder was acidified in vacuum +with HCl. The emerging CO2 was combusted to C with H2 and an iron catalyst at 575°C (Fohlmeister et +al., 2011). Measurements were performed with a MICADAS AMS system (Synal et al., 2007) in the +Klaus-Tschira laboratory Mannheim. The results for the four samples show a typical speleothem +radiocarbon bomb spike (Tab. S1, Fig. S1), constraining recent growth of the speleothem. +Table S2: Radiocarbon measurement results. Radiocarbon results and errors are expressed in fraction +modern (fm). +MAMS lab nr. +depth [mm] +14C [fm] +14C error [fm] +14709 0.5 +1.0416 +0.0029 +14710 18.7 +1.0730 +0.0029 +14711 39 +0.9265 +0.0025 +14712 55 +0.9133 +0.0024 + + + +Fig. S1: Radiocarbon measurements (black) over depth (bottom-axis), plotted to fit the atmospheric +radiocarbon anomaly (blue, top x-axis) in the mid to late 20th century. + + +Year [A.D.] +1900 +1920 +1940 +1960 +1980 +2000 +180 +180 +160. +160 +140- +140 +120 +120 +100 +100 +80 +80 +1900 +1920 +1940 +1960 +1980 +2000 +distancefromtop[mm]Additional figures + +Fig. S2: Age assignment of the fluid inclusion samples +A) Fluid inclusion sample pieces (labelled B to K) are shown on the left half of the stalagmite slab. The +red lines illustrate the assignment of the individual sample blocks to the growth axis. The visible +lamination was used as guideline for correlation. Sample A is related to the base and due to a disturbed +growth structure does not allow to assign any age. Due to the intrinsic uncertainties of this procedure +(for details see Weißbach, 2020) we associated age ranges to the individual fluid inclusion samples B +to K. +B) Age depth model with distance from top (dft) in cm. The chronology was established by layer +counting and additional 14C measurements (see S1 and S2). + + +2025 +B +2010- +1995- +2 +1980- +H +[C.E.] +GFED +1965- +3 +year +1950 +C +1935- +E5 +B +5 +growth axis +1920 +Base +1905- +5 +4 +3 +2 +1 +0 +dft[cm] +Fig. S3: Water vapour adsorption by the artificial fluid inclusion system. Water vapour concentration +during crushing of 0.25 g Iceland spar. The decrease of the water vapour concentration indicates an +adsorption of water molecules on the freshly crushed calcite. Using the water amount calibration, it +corresponds to about 0.023 µl of water adsorption. The reference water vapour background is marked +in orange with interpolated linear fit as dashed line. The small inset shows examples of compact and +inclusion-free pieces of Iceland spar. + + +6920+ +6900 +6880- +1 cm +6860 +water +background +6840 +water +background +6820 +iceland spar +6800- +crush +:35 +:40 +:45 +:50 +:55 +11:00 +:05 +:10 +time [hour] +Fig. S4: from top to bottom: relative temperature change derived from α(CaCO3-H2O) relative to +sample level B (orange dots); fractionation factor α(CaCO3-H2O) (grey squares); calcite δ18O values +(green triangles) corresponding to intervals with an edge length of 0.5 cm of the fluid inclusion sample +pieces, with smoothed higher-resolution data (green line); fluid inclusion δ18O (blue triangles). For a +better overview the depth (dft) errors of α(CaCO3-H2O) and the calculated temperature change are not +shown, but are the same as for the fluid inclusions δ18O. + + +level +B +C +D +E +F +G +K +6 +△(T) [K] +3 +0 +reference levelB +-3 +-6 +33.6 +32.9 +32.2 +31.5 +30.8 +30.1 +-7.5 +-8.0 +8180. +-8.5 +-8 +-9 +-10 +180 +-11 +5 +4 +3 +2 +0 +dft [cm] +Fig. S5: Samples B-K of stalagmite Stam 4 with replicates from the same growth phases (Table 4) +displayed relative to the meteoric water line. The aliquots closest to the growth axis of the stalagmite +are shown as red circles. + + + + + + + + + +-45 +closest to axis +-50 +replicates +8H (% VSMOW) +55 +60 +65 +-70 +-75 +-11 +-10 +-9 +-8 +-7 +9- +-5 +s180 (% VSMOW)Additional Tables +Table S3: Fluid inclusion data from the outermost layer of stalagmite Stam 4. The distance to the +growth axis increases with higher Roman numbers. Arabic numbers indicate replicates with similar +distance from the growth axis. Samples in grey are not included in the interpretation and discussion as +the water amount was below 0.2 µl. + +ID +Sample +weight (g) +Water +(µl) +Water content +(µl/g) +δ2H (‰ +VSMOW) +δ18O +(‰ VSMOW) +I-1 +0.69 +0.30 +0.52 +-65.4 ± 1.5 +-9.5 ± 0.5 +II-1 +0.61 +0.40 +0.95 +-64.1 ± 1.5 +-9.6 ± 0.5 +II-2 +0.30 +0.37 +0.75 +-64.7 ± 1.5 +-9.6 ± 0.5 +II-3 +0.37 +0.40 +0.76 +-64.8 ± 1.5 +-8.9 ± 0.5 +II-4 +0.38 +0.29 +0.56 +-68.5 ± 1.5 +-9.1 ± 0.5 +III-1 +0.38 +0.81 +1.66 +-59.6 ± 1.5 +-8.0 ± 0.5 +III-2 +0.40 +0.51 +1.21 +-60.4 ± 1.5 +-8.5 ± 0.5 +III-3 +0.44 +0.44 +0.81 +-63.8 ± 1.5 +-9.0 ± 0.5 +IV-1 +0.41 +0.18 +0.57 +-63.8 ± 1.5 +-8.5 ± 0.5 +IV-2 +0.47 +0.42 +0.83 +-63.7 ± 1.5 +-10.0 ± 0.5 +V-1 +0.23 +0.38 +0.78 +-62.5 ± 1.5 +-10.3 ± 0.5 +V-2 +0.58 +0.46 +0.78 +-62.8 ± 1.5 +-9.4 ± 0.5 +VI +0.47 +0.35 +0.75 +-63.2 ± 1.5 +-9.6 ± 0.5 +VII +0.46 +0.43 +0.94 +-65.4 ± 1.5 +-8.4 ± 0.5 + + + + + + + +Table S4: Precision of fluid inclusion δ18O and δ2H measurements, interpolated from repeated water +injections and crushing of water-filled glass capillaries. The values refer to an exponential fit to the +standard deviation at various water amounts (Fig.5). The precision at 0.02-0.1 µl are extrapolated using +the exponential fit. + +Water +amount +(µl) +Precision (1σ) +δ18O +(‰) + + δ2H + (‰) +0.02 +0.55 +2.08 +0.05 +0.54 +2.00 +0.08 +0.53 +1.92 +0.1 +0.53 +1.87 +0.2 +0.50 +1.65 +0.3 +0.47 +1.45 +0.4 +0.44 +1.28 +0.5 +0.42 +1.14 +0.6 +0.40 +1.01 +0.7 +0.37 +0.90 +0.8 +0.35 +0.81 +0.9 +0.34 +0.73 +1.0 +0.32 +0.66 +2.0 +0.20 +0.33 +3.0 +0.14 +0.26 +4.0 +0.11 +0.24 + + + + + + + +Additional references: +Fohlmeister, J., Kromer, B., Mangini, A., 2011. The influence of soil organic matter age spectrum on +the reconstruction of atmospheric 14C levels via stalagmites. Radiocarbon 53(1), 99–115. +Fohlmeister, J., Schröder-Ritzrau, A., Scholz, D., Spötl, C., Riechelmann, D. F. C., Mudelsee, M., +Wackerbarth, A., Gerdes, A., Riechelmann, S., Immenhauser, A., Richter, D. K., and Mangini, +A., 2012. Bunker Cave stalagmites: an archive for central European Holocene climate +variability. Clim. Past, 8, 1751–1764, doi:10.5194/cp-8-1751-2012. +Mattey, D. P., Fairchild, I.J., Atkinson, T. C., Latin, J.-P., Ainsworth, M., Durell, R., 2010. Seasonal +microclimate control of calcite fabrics, stable isotopes and trace elements in modern +speleothem from St Michaels Cave, Gibraltar. Geological Society, London, Special +Publications, 336, 323-344. +Synal , H.-A., Stocker, M., Suter, M., 2007. MICADAS: a new compact radiocarbon AMS system. Nucl. +Instr. Meth. Phys. Res. B, 259, 7-13. +Treble, P., Shelley, J.M.G., Chappell, J., 2003. Comparison of high resolution sub-annual records of +trace elements in a modern (1911–1992) speleothem with instrumental climate data from +southwest Australia. Earth Planet. Sci. Lett.216, 141–153. + + diff --git a/B9AzT4oBgHgl3EQfh_2U/content/tmp_files/load_file.txt b/B9AzT4oBgHgl3EQfh_2U/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..48a41c7c7b433e73ef9690ae4160d169948e4d45 --- /dev/null +++ b/B9AzT4oBgHgl3EQfh_2U/content/tmp_files/load_file.txt @@ -0,0 +1,2636 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf,len=2635 +page_content='This is the ‘accepted manuscript’ version of our paper: Therese Weissbach, Tobias Kluge, Stéphane Affolter, Markus C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Leuenberger, Hubert Vonhof, Dana F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Riechelmann, Jens Fohlmeister, Marie-Christin Juhl, Benedikt Hemmer, Yao Wu, Sophie F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Warken, Martina Schmidt, Norbert Frank, Werner Aeschbach, 2023, Constraints for precise and accurate fluid inclusion stable isotope analysis using water-vapour saturated CRDS techniques, Chemical Geology 617, 121268.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='chemgeo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='121268 Please contact the corresponding author, if you want to discuss the content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' © 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This manuscript version is made available under the CC-BY-NC-ND 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 license http://creativecommons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='org/licenses/by-nc-nd/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0/ Constraints for precise and accurate fluid inclusion stable isotope analysis using water-vapour saturated CRDS techniques Therese Weissbach1,2, Tobias Kluge1,2,3,4,*, Stéphane Affolter5, Markus C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Leuenberger6, Hubert Vonhof7, Dana F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Riechelmann8, Jens Fohlmeister9, 10, Marie-Christin Juhl2, Benedikt Hemmer2, Yao Wu2, Sophie F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Warken2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Martina Schmidt2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Norbert Frank2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Werner Aeschbach2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 3 1Heidelberg Graduate School of Fundamental Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Heidelberg University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Im Neuenheimer Feld 226,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 69120 Heidelberg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Germany 2Institute of Environmental Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Heidelberg University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Im Neuenheimer Feld 229,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 69120 Heidelberg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Germany 3Heidelberg Center for the Environment,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Heidelberg University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Im Neuenheimer Feld 229,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 69120 Heidelberg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Germany 4now at: Institute of Applied Geosciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Karlsruhe Institute of Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Adenauerring 20b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 76131 Karlsruhe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Germany 5Department of Environmental Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' University of Basel,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Bernoullistrassse 30/32,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 4056 Basel,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Switzerland 6Climate and Environmental Physics Division,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Physics Institute and Oeschger Centre for Climate Change Research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' University of Bern,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sidlerstrasse 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 3012 Bern,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Switzerland 7Climate Geochemistry Department,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Max Planck Institute for Chemistry,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Hahn-Meitner-Weg 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 55128 Mainz,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Germany 8Institute for Geosciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Johannes Gutenberg University Mainz,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Johann-Joachim-Becher-Weg 21,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 55128 Mainz,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Germany 9Federal Office for Radiation Protection,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Köpenicker Allee 120-130,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 10318 Berlin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Germany 10GFZ German Research Centre for Geosciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Section ‘Climate Dynamics and Landscape Development’,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Telegrafenberg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 14473 Potsdam,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Germany 11Institute of Earth Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Heidelberg University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Im Neuenheimer Feld 234,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 69120 Heidelberg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Germany *corresponding author: tobias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='kluge@kit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='edu Journal: Chemical Geology Highlights: \uf0b7 Laser-based fluid inclusion analysis with water-vapour purged extraction enables high precision (δ2H≤±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5‰, δ18O ≤±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5‰) \uf0b7 Biasing effects (memory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' adsorption,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' amount) in fluid inclusion isotope analysis are negligible for ≥1 µl water/g calcite \uf0b7 Isotopic interference is negligible for sample isotope ratios within 10‰(δ18O) and 50‰(δ2H) of the water vapour background \uf0b7 Reconstructed temperatures of a 20th century stalagmite trace the recent warming of 1 °C in Central Europe Abstract Hydrogen (δ2H) and oxygen (δ18O) isotopes of water extracted from speleothem fluid inclusions are important proxies used for paleoclimate reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In our study we use a cavity ring-down laser spectroscopy system for analysis and modified the approach of Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2014) for sample extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The method is based on crushing of small sub-gram speleothem samples in a heated and continuously water-vapour purged extraction line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The following points were identified: Injection of reference water shows a precision (1σ) of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for δ18O values and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ‰ for δ2H values for water amounts of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 µl, which improves with increasing water amount to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ‰ and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰, respectively, above 1 µl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The accuracy of measurements of water injections and water-filled glass capillaries crushed in the system is better than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 ‰ for δ18O and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ‰ for δ2H values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The reproducibility (1σ) based on replicate analysis of speleothem fluid inclusion samples with water amounts > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 µl is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for δ18O and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ‰ for δ2H values, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Isotopic differences between the water vapour background of the extraction system and the fluid inclusions have no significant impact on the measured fluid inclusion isotope values if they are within 10 ‰ for δ18O and 50 ‰ for δ2H values of the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Tests of potential adsorption effects with inclusion free spar calcite confirm that the isotope values are unaffected by adsorption for water contents of about 1 µl (fluid inclusion) water per g of carbonate or above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Fluid inclusion analysis on three different modern to late Holocene speleothems from caves in northwest Germany resulted in δ18O and δ2H values that follow the relationship as defined by the meteoric water line and that correspond to the local drip water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Yet, due to potential isotope exchange reactions for oxygen atoms, hydrogen isotope measurements are preferentially to be used for temperature reconstructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' We demonstrate this in a case study with a Romanian stalagmite, for which we reconstruct the 20th century warming with an amplitude of approximately 1 °C, with a precision for each data point of better than ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 °C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Keywords: laser spectroscopy, water isotopes, cavity-ring-down measurement, speleothems, paleoclimate, small samples 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Introduction Speleothem fluid inclusions can provide direct insight into past climatic conditions as they are a unique archive for the original drip water and the corresponding meteoric water (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Griffiths et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Labuhn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Warken et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Fluid inclusion water isotope ratios (δ18O and δ2H values) are increasingly usedas proxies in hydrology and paleoclimate studies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', McGarry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Demény et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Millo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Wilcox et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Matthews et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Two physically different measurement principles, laser spectroscopy (mainly cavity ring-down spectroscopy - CRDS) and isotope ratio mass spectrometry (IRMS), allow determining the isotopic composition of speleothem fluid inclusion water (CRDS: Arienzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Uemura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dassié et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' IRMS: Dennis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Vonhof et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dublyansky and Spötl, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Although CRDS and IRMS systems yield comparable results (de Graaf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2020) challenges remain for both methods regarding precise and reproducible analysis of small water amounts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Often only a single measurement attempt is possible due to low growth rates of the speleothems (often 10-100 µm/a) or intended high resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Water contents in natural speleothems range from ~ 0 up to several 10 µl per g (McDermott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The necessary water sample amount (depending on the setup 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='05-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 µl, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Dublyanksy and Spötl, 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Uemura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2016) limits the temporal resolution and restricts analytical repetition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Fluid inclusion water for isotope analysis is released either by crushing (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schwarcz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1976;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dennis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Vonhof et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dublyansky and Spötl, 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Demény et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2013) or thermal decrepitation (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Yonge, 1982;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' McGarry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Verheyden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Thermal decrepitation has the disadvantage that structurally-bound water with a very low δ2H value may be released during extraction, resulting in large isotopic shifts of up to 30 ‰ in comparison to parent cave drip water (Yonge, 1982;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Matthews et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' McGarry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Verheyden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This analytical artefact can be largely avoided by crushing the sample mechanically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For fluid inclusion analysis using IRMS (Schwarcz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1976;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Harmon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1978;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 1979), water was extracted by crushing the sample under vacuum conditions and then subsequently converted to water vapour followed by conversion into directly measurable gases such as H2 for H isotopic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Fluid inclusion δ18O values were initially not measured but calculated from measured δ2H values via the relationship between δ18O and δ2H values of the meteoric water line (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schwarcz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In recent extraction systems the oxygen in fluid inclusion water is converted to CO gas during a high temperature reaction with glassy carbon which is then used for analysis of δ18O values in an IRMS (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Dublyansky and Spötl, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The first combined method for oxygen and hydrogen measurements with an off-line crushing method and dual-inlet IRMS was developed by Dennis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' It achieved good precision of ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ‰ for δ18O and ± 3 ‰ for δ2H values, but required a comparatively large sample with water amounts of 1-3 μl (see also Matthews et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A reduction in sample amount down to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 μl, which corresponds to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 g of calcite for samples that contain 1 µl of water per gram, was achieved by Vonhof et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2006) by combining off-line preparation and continuous-flow mass spectrometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This technique enables a faster analysis of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 μl sized samples with a precision of ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for δ18O and ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for δ2H values (Vonhof et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dublyansky and Spötl, 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' de Graaf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Laser spectroscopy is less expensive and represents a reliable, precise and easy technique to directly measure stable water isotopes (Brand et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The first application using CRDS to measure fluid inclusions in speleothems was developed by Arienzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' They used a CRDS analyser with a stainless-steel line heated to 115 °C that was constantly flushed with dry nitrogen as a carrier gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' It achieved comparable precisions as the traditional IRMS technique, with ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for δ18O and ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ‰ for δ2H values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The development of another analysis system using off-axis integrated cavity output spectroscopy (OA-ICOS) achieved similar precision (Czuppon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The latest analytical systems are able to measure released water volumes in the nano-litre range (50 to 260 nl) with a precision of ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ‰ for δ18O and ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ‰ for δ2H values using the CRDS technique (Uemura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The above discussed fluid inclusion extraction lines of Arienzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2013), Czuppon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2014), and Uemura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2016) are working with dry carrier gas and low water vapour concentrations in the analyser cavity, which may influence the stable isotope measurements by adsorption and cause memory effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The measured isotopic signal needs to be corrected for, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', the isotopic dependence on the water vapour concentration (Uemura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2016) or the memory effect (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', van Geldern and Barth, 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The memory effect in the analyser cavity is due to limitations during the removal of all gas between two measurements preventing the full desorption of water molecules from the cavity walls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A standard technique to deal with memory effects in liquid water analysis is the repeated injection of the same water sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The measured signal converges exponentially towards the actual sample signal (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', van Geldern and Barth, 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' However, multiple crushing steps on the same sample are typically not feasible for fluid inclusion measurements of speleothems since the amount of water of these samples is often too low to split it in several aliquots (sub-μl range).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The adsorption issue was addressed by Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2014) with an extraction line that is continuously purged with a moist gas providing a water vapour background with constant and known δ18O and δ2H values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The extraction line with a “wet” N2 gas allows reproducible and precise measurement of released fluid inclusion water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The continuous heating of the system enables the instantaneous evaporation of the water released from inclusions followed by spectroscopic analysis of the resulting mixture of background and sample water vapour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The main advantage of the water-vapour flushing is that this procedure avoids additional corrections of the measured water stable isotopes related to memory effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The achievable standard deviations of the measurements with this analytical system are smaller than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ‰ for δ18O and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ δ2H values, which is comparable with the traditional IRMS technique (Vonhof et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dublyansky and Spötl, 2009) and CRDS setups working with a dry carrier gas (Arienzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Czuppon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' One important application of isotope fluid inclusion studies is the reconstruction of paleotemperatures using the oxygen isotope fractionation between water and calcite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The temperature reconstruction was initially based on the measurement of fluid inclusion δ2H values from which the fluid inclusion δ18O values were calculated using the δ2H-δ18O relationship of the global meteoric water line (Craig, 1961).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Combined with the δ18O value of the calcite, temperatures were calculated from the oxygen isotope fractionation between the carbonate mineral and water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This indirect approach achieved a reported precision of about ± 2 °C in the early studies of Schwarcz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In the decades prior to 2010, direct temperature calculation from measured fluid inclusion δ18O values has been rare due to severe challenges in its analysis with standard mass spectrometric approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Therefore, mostly the indirect way of first converting measured δ2H values into fluid inclusion water δ18O values was used (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Matthews et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' More recent studies provided comparable temperature precision based on inclusion water δ18O values: ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 °C (van Breukelen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2008), ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 °C (Meckler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 °C (Arienzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015), and ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 °C (Uemura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The uncertainty of the indirect paleotemperature reconstruction from δ2H variations in speleothem fluid inclusions is similar: ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 °C (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2008) and ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 °C (Meckler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' More recently, a better precision has been achieved when using the rainfall δ2H/T relation in mid-latitudes: ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 °C (Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In this study, we systematically assess the measurement method of stable water isotopes in speleothem fluid inclusion analysis using CRDS, including in particular the effect of sample amount (water amount per analysis), water adsorption on freshly crushed calcite surfaces, influence of the isotope values of the water vapour background on the sample signal, as well as the external reproducibility of speleothem fluid inclusion samples (using adjacent aliquots along growth layers).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In addition, we present a recent case study allowing to determine paleo-temperature trends in the 1°C range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Methods and site description 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 Water extraction from fluid inclusions At the Institute of Environmental Physics (Heidelberg) water from speleothem fluid inclusions is extracted within a system that is constantly purged by an artificially prepared moist gas, leading to a water vapour background with known δ18O and δ2H values (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In the extraction line this stable water vapour background is generated by mixing water of a known isotopic composition into a dry nitrogen gas flow (300 ml/min).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A peristaltic pump (Ismatec -REGLO Digital, Wertheim, Germany) continuously supplies small amounts of water (1 μl/min) to the line through a T-injection port with a septum (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 1 A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A constant temperature of 120 °C ensures a complete and immediate evaporation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Instant water evaporation is induced in a fused silica capillary, which slightly touches the heated base of the port.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A two-litre mixing cavity placed after the T-injection port generates a stable water vapour background and compensates fluctuations caused by the peristaltic pump cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The nitrogen flow is controlled by a mass flow controller (Analyt MTC, model GFC-17, Müllheim, Germany) and creates a constant overpressure of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The flow rate is 40 ml/min into the CRDS analyser (L2130-i, Picarro, Santa Clara, USA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The surplus gas stream is vented through a purge capillary before the crusher unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' With this setup the water vapour concentration in the CRDS cavity ranges between 6000 and 8000 ppmV, but the cavity can also be adjusted to higher or lower water vapour concentrations if needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' We have chosen a range between 6000 and8000 ppmV to allow for the detection and analysis of small fluid inclusion water amounts (sufficiently high ratio of water vapour from the sample relative to the background) but also to provide a background water vapour concentration that prevents memory effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The sample (speleothem fragment or glass capillary)is inserted in a copper tube (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 1 B) which is connected to the extraction and measurement system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Due to limitation of the copper tube with respect to length and diameter, compact mineral pieces with rectangular dimensions of 6 mm x 6 mm x 10-20 mm are preferred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The copper tube including the sample is purged for at least 30 min until water vapour concentration and isotope values reach a constant signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The stability of the water vapour background is verified by monitoring the standard deviation of the water vapour concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' When the standard deviation of the water vapour concentration remained less than 20 ppmV for 30 minutes, the speleothem sample is crushed by compressing the copper tube from the outside with a hydraulic press at 200-300 bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This compression in the heated system leads to the release and immediate evaporation of inclusion water and a sudden pressure increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This pressure increase could cause gas flow not only towards the CRDS but also in direction of the purge capillary and may provoke sample gas loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Therefore, a reflux valve is installed between the 2l mixing cavity and the crushing unit to prevent a backflow and loss of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In general, a very good crushing efficiency has been achieved with an average grain size of 37 μm after the crushing (Weißbach, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A reproducibility test related to the crushing procedure showed similar particle size distributions for five different speleothem samples investigated with laser diffraction (Analysette-22 Micro Tec) after crushing with the hydraulic system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' An injection port is situated next to the copper tube, allowing to mimic a water release from a mineral sample and helps to evaluate and control accuracy and precision of the δ18O and δ2H values from small (inclusion) water samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' An additional small mixing cavity (400 ml) directly after the crushing unit prolongs the generated sample signal from an usually few seconds lasting peak to a well measurable signal with a duration of several minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' After the mixing cavity the gas proceeds to the L2130-i isotope and gas concentration analyser (Picarro).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Figure 1: Fluid inclusion line for extraction and measurement of stable oxygen and hydrogen isotopes of fluid inclusions in speleothems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Water with a known isotope composition is mixed into a nitrogen gas flow to create a stable water vapour background (position A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The purge capillary reduces the background vapour flow from 280 to 40 ml/min as required for the CRDS analyser (L2130-i, Picarro).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The two mixing cavities provide a smoothing of the background vapour signal and a dispersion of the measurement signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The speleothem sample or the glass capillary is placed in a copper tube and installed at position B inside the heated oven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In order to prevent the backflow of the water vapour from the freshly crushed sample, a reflux valve is installed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The flow directions are indicated as blue arrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' [black/white for figures in print, colour online] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 Analysis and data evaluation The water vapour concentration and the δ18O and δ2H values are determined with the L2130-i isotope and gas concentration analyser of Picarro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The L2130-i analyser is based on wavelength- scanned CRDS in the spectral range from 7183.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 to 7184 cm-1 and uses a multi-pass cell that creates a N2 tankgas injection glass port capillary peristalticpump CRDS background heatingtape 40 water ml/min (120°C) purge capillary ~280 ml/min refluxvalve mixing cavity -21 filter injection port oven mixingcavity-400ml loadedcopper (120C) tubelong effective absorption path length of about 12 km (Aemisegger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A stable cavity temperature of 80°C ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='002 °C is maintained).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The cavity pressure is set to 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='66 hPa (50 Torr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The water isotopologue lines pertaining to 18O and 2H are measured simultaneously over a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 s interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In our setup the L2130i allows isotope measurements in the water vapour concentration range between 1 000 and 50 000 ppmV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In constant flow mode the actual measured signal is composed of a background signal and a peak signal after crushing and must be integrated over a corresponding time interval (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The evaluation routine follows the approach of Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2014) but was extended by the correction of a potential level change in the water vapour background (Weißbach, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The import of the data and the evaluation was carried out with the assistance of the Python script IsoFluid (https: //github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='com/bhemmer/IsoFluid and http://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5911265).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' IsoFluid determines the sample or calibration standard peak start and end based on a slope criterion that compares the start and end slope with the background slope of the water vapour concentration in user-defined time intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The sample isotope value (δ18Osample) is calculated by subtraction of the background signal (index back) from the measured signal of the mixed gas signal (index mix) and follows the approach of Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2014): 𝛿��𝑂������ = ∫ 𝛿��𝑂������(𝑡) ∗ 𝐻�𝑂������(𝑡) ∙ 𝑑𝑡 �� �� ∫ 𝐻�𝑂������(𝑡) �� �� ∙ 𝑑𝑡 = ∫ 𝛿��𝑂���(𝑡) ∗ 𝐻�𝑂���(𝑡) ∙ 𝑑𝑡 − ∫ 𝛿��𝑂����(𝑡) ∗ 𝐻�𝑂����(𝑡) ∙ 𝑑𝑡 �� �� �� �� ∫ 𝐻�𝑂���(𝑡) �� �� ∙ 𝑑𝑡 − ∫ 𝐻�𝑂����(𝑡) �� �� ∙ 𝑑𝑡 (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1) H2O refers to the related water amount.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The calculation for δ2H values is correspondent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' All uncertainties are reported at the 1σ level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Figure 2: Water vapour signal in the CRDS before, during, and after speleothem sample crushing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Background intervals (orange) are used to determine the value of the water background during a sample analysis (blue shaded).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' [black/white for figures in print, colour online] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 Water vapour background calibration For the calibration of the oxygen and hydrogen isotope signal of the water vapour background five independently measured in-house reference waters were used (Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Water from Willersinnweiher water (WW) was not used for calibration but for precision and accuracy assessment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Table 1: In - house reference waters for isotopic calibration of the fluid inclusions CRDS system, Isotope values were independently measured at the Institute of Environmental Physics (IUP) at Heidelberg University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Uncertainties are given as 1σ errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Water type Code δ18O values (‰ VSMOW) δ2H values (‰ VSMOW) Artificially evaporated water AE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 -21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='79 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 Ocean water Kona -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 Lake Water - Willersinnweiher (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Germany) WW -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='32 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='11 -18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 De-ionized local tap water VE -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='57 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 -61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 Alpine Water VCL -13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='04 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 -98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 8500 samplepeak water vapour concentration [ppmV] 8000 background interval background interval 7500 peak start peak end linearregression 7000 11:15 11:30 11:45 12:00 12:15 12:30 time [hour]Alpine Water Colle Gniffeti ice core CC 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='13 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 North Greenland water surface snow NG 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='54 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 The isotope values of these five reference waters were determined independently with a Los Gatos Research LGR1 analyser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' These reference waters cover a range of −26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 up to -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='05 ‰ in δ18O values and −212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ in δ2H values (both VSMOW) (Table 1), which includes the relevant range for speleothem samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Five different isotope background values were realised by using the corresponding reference water as supply, injected with the peristaltic pump into the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Once a sufficiently stable water vapour concentration was achieved in the preparation line (standard deviation below 20 ppmV for 30 min) the isotope signal was averaged over 60 minutes, which results in a standard deviation of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ‰ and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰ for the δ18O and δ2H background values, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Figure 3 shows the CRDS-measured isotope value against the reference value (Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The value of the water vapour background was constantly monitored via repeated measurements of the in-house reference waters, and has remained constant over several years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Figure 3: The calibration of δ18O and δ2H values of the water vapour background results from a linear regression (red lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The calibration equation is y = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='994 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='007 · x + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='30 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='14) ‰ for δ18O values (R²=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='999) and y = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='980 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='003 · x−7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='77 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='38) ‰ for δ2H values(R²=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Both calibrations remained constant over several years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Isotope data on the reference waters used for water vapour background calibration are given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The residuals from the linear regression indicate that calibrated values are within 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 ‰ (δ18O) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='35 ‰ (δ2H) of the expected reference value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Furthermore, the residuals show a random distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Uncertainties on the 1σ level in the calibration graphs are smaller than the symbol size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' [black/white for figures in print, colour online] residuals (%o) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 8180 (0%) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='30 2H 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='15 S 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='00 dual 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='00 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='15 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='04 0 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='30 0 -30 -25 -20 -15 -10 -5 0 -250 -200 -150 -100 -50 0 50 50 0 Kona 1:1 (% VSMOW) 1:1 (%。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' VSMOW) 0 -5 Kona VE -10 -50 VCL VE -15 CC -100 VCL linearregression pected CC -20 -150 exp -25 NG linearregression -200 NG -30 -250 -30 -25 -20 -15 -10 -5 0 -250 -200 -150 -100 -50 0 50 8180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' measured (%。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' VSMOW)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 Water amount calibration A precise water amount calibration is necessary for determining the exact amount of released water from the crushed speleothem calcite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The released water amount is a major parameter for the calculation of the fluid inclusion isotope value and is determined via water vapour signal integration (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Isotope values could also be calculated with the time-integrated water vapour mixing ratio alone, however, knowledge of the released water amounts is recommended for uncertainty assessment (amount dependence) and for assessment of speleothem growth conditions (fluid inclusion water yield).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Typically, volume calibrations are carried out by injecting water in the μl range with syringes (here: SGE 1BR-7RAX and 5BR-7RAX and Hamilton 70001KH and 75N), however, the variability of the calculated water amount only using syringe injections is significant and can be as high as 10 % (inset in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 4, Weißbach, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Here we present a water amount calibration method with glass capillaries that follows the approach of Kluge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The glass capillaries (borosilicate, Hirschmann) can be filled with 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1- 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 μl water at varying isotopic composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' They can be closed airtight by melting both ends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The size of the filled capillary can be adjusted to the size of the crushing cell down to a minimum length of approximately 1 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The exact volume is determined by scanning the capillary with a high-resolution office scanner and comparison with the pre-marked 1 μl labels on the capillary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The volume uncertainty of the glass capillary water amount is ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='025 μl and was determined by five repetitions of the manual evaluation of a scan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The accuracy is given by the uncertainty of the pre-marked 1 µl labels (± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='003 µl).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Water-filled capillaries were analysed weekly to monitor the stability of the water amount calibration (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The uncertainty of the water amount determination from the calibration is approximately ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='02 µl at a water volume of 1 µl and ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='04 µl at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 µl using the 1σ uncertainty of the linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In general, we rarely observed outliers in the water amount calibration when using glass capillaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Figure 4: The time-integrated measured volume signal in ppmV*s as given by the Picarro analyser is plotted against the water volume of the glass capillaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The resulting linear regression y = (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 × 10−7 ·x−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='011) μl (R²=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='999) is used to determine the released amount of water from speleothem samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In total 45 capillaries were measured for calibration spanning a water amount range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 up to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 μl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The upper inset shows a glass capillary filled with about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 µl of water (in the middle of the capillary).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The lower inset shows the comparison of water injections with different syringes (blue and red symbols) and the glass capillaries (black circles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The uncertainties are given on the 1σ level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' [black/white for figures in print, colour online] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 Site and sample description Hüttenbläserschacht Cave (Germany) For direct comparison with rainwater δ18O values and measured drip water isotope values, we selected a suite of modern and late Holocene samples from the Hüttenbläserschacht Cave, located only a few 100 meters west of the well-monitored Bunker Cave in northwest Germany (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Riechelmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Both caves are situated in the upper Middle Devonian limestone in Iserlohn (Sauerland).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Hüttenbläserschacht Cave hosts pool spar calcites that are expected to provide fluid inclusion isotope values close to drip water as they grow under the water table of the pools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Pool spars from this cave have already been investigated by Kluge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2013) using clumped isotope ∆47 and calcite δ18O values for calculation of the (drip) water δ18O value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Calcite was actively precipitating in the pools (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', abundant calcite rafts) at the time of pool spar removal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 230Th-U disequilibrium dating 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0x106 label watercolumn I area (ppmV*s) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0x106 integrated signal 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0x106 3x106 linearregression oglass capillary syringes Hamilton 2x106 SGE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0x106 1x106 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0 1 2 3 4 5 water volume capillary (μl)at Heidelberg Academy of Sciences provided radiometric ages of one pool spar and one raft sample of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='27 ka BP and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='36 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='12 ka BP, respectively (Supplemental material S1), corroborating the assumption that the pool spars and rafts are modern age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Cloşani Cave (Romania) For the second case study we selected a 20th century stalagmite (Stam 4) from Cloşani Cave, Romania (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Constantin and Lauritzen, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A monitoring program from 2010 to 2012 and 2015 demonstrated a stable cave environment with an air temperature of 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 °C and a relative humidity close to 100 % (Warken et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The isotopic composition of the drip water in direct vicinity (1 m) of the former location of Stam 4 showed no seasonal cycle and was constant throughout the monitoring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The mean dripwater δ18O value was −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2‰ and −66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7‰ for δ2H values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Stalagmite Stam 4 has a total length of 6 cm and an average growth rate of 510 μm per year, as deduced from counting of layers related to annual cycles in the concentration of various elements (Supplemental material S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The speleothem grew actively until the removal in spring 2010 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' as drip water was feeding the stalagmite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The recent growth of the stalagmite was further constrained by the detection of the 20th century radiocarbon bomb spike, which was imprinted by the transport of the atmospheric signal into the speleothem (see Supplemental material S3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Combined layer counting and radiocarbon measurements suggest a growth period from 1910 to 2010 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For the fluid inclusion study, pieces were taken from the peripheral part of Stam 4 with a distance of approximately 1 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 cm from the actual growth axis (see Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Results 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 Precision of isotope measurements The precision of isotopic measurements (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 5, Table 2) was quantified using the standard deviation of repeated analyses of the reference waters injected via syringes (VE water;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Table 1) and independently cross-checked with water-filled glass capillaries using VE and WW reference waters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The injected water amount using syringes) varied between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 μl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Using syringe injection method, a clear decrease of the standard deviation of these isotope analyses with increasing water amount becomes apparent (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 5, Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The standard deviation decreases strongest between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 and 1 µL and reaches values between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 and0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ‰ for δ18O and between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 and0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰ for δ2H values, for samples larger than 1 µl (Supplementary Table S4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For smaller water amounts, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 µl and below, the isotope values of the injections show a significantly larger scatter, leading to standard deviations between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 and0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for δ18O and between 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 and1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ‰for δ2H values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' These uncertainties are based on an exponential fit of the standard deviation against the water volume using repeated measurements at a given water volume (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For the determination of the precision, reference water sealed in glass capillaries was crushed in the fluid inclusion system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Consistent with the results from the water injections, the precision for isotopic analyses of water released from crushing glass capillaries is between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='07 and0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='10 ‰ for δ18O values and between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 and0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ‰ for δ2H values, for water amounts above 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 µl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Smaller water amounts resulted in a significant increase in the uncertainty and are expressed through a lower precision (Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Table 2: Measurement precision and accuracy in dependence of the water amount.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The precision (± 1σ) was determined from repeated injections of isotopically well-characterized water standards using syringes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The accuracy (given at the 1σ level) was assessed by measurement of reference water both from injections and by release from crushing of sealed glass capillaries and comparison with the independently determined isotope values (Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The error estimate for the accuracy assumes a Gaussian distribution and includes the uncertainty of the expected value (VE water: ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 ‰ for δ18O, ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰ for δ2H, WW water: ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='11 ‰ for δ18O, ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ‰ for δ2H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' n represents the number of analyses in the investigated water volume range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The water isotope values are given relative to VSMOW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Type Reference water Water volume (µl) Precision (1σ) δ18O value(‰) δ2H value (‰) Accuracy (1σ) δ18O value (‰) δ2H value(‰) n Water injection VE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='54 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='34 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='49 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='53 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='58 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 16 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 11 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 11 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 9 Mean all 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 77 Mean < 1µl 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='12 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 30 Mean ≥ 1µl 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 47 Glass capillary WW 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 16 WW > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='02 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 14 VE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='30 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='14 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 17 VE > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='03 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 9 Figure 5: Upper panels: precision (1σ) of the isotope measurements for varying amounts using the water injection method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The red lines represent the least-square exponential fits to the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The standard deviation decreases with increasing water amount for both δ18O and δ2H values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Lower panel: accuracy determination for varying water amounts based on individual injections (open circles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The related mean values with their 1σ standard deviation are shown as filled dots with error bars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The black horizontal lines represent the reference value for VE - tap water (δ18O=- 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='57 ‰, δ2H =- 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ‰) with its uncertainty band (grey shading, ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08‰ for δ18O, ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰ for δ2H values).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' [black/white for figures in print, colour online] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 18 1α standard deviation (%o) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 5 standard deviation ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0 1 2 3 4 0 1 2 3 4 water amount (μl) water amount (μl) -57 singlevalue 8H [%。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' VSMOW] -58 meanvaluewithstdv 8 -60 -61 -62 -63 6180 [%VSMOW] -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 singlevalue meanvaluewithstdy -10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 3 1 2 4 volume [u]3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 Accuracy of isotope analysis of micro-litre water amounts The accuracy of the water δ18O and δ2H values was assessed for reference waters (Table 1) by the injection with syringes and by crushing glass capillaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The injected water amounts covered the typical range of water extracted from inclusions (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The glass capillaries were filled with reference water with similar water amounts between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 µl and were crushed in the copper tube with the same hydraulic press as the stalagmite samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Considering the water isotope mean values of all measurements performed with the glass capillaries, the δ18O value deviated from the expected reference values (Table 1) by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='44 ‰ for WW water (n=16) and by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='14 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='31 ‰ for VE water (n=17) (Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For δ2H values the deviation from the reference value was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ‰ for WW water (n=16) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='50 ‰ for VE water (n=17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Considering only those measurements with water amounts above 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 µl reduces the uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For this selection, the δ18O value of both reference waters deviates on average from the expected reference value by -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='02 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='13 ‰ for WW water (n=14) and -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='03 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='13 ‰ for VE water (n=9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For δ2H values the deviation from the reference value was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for WW water (n=14) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ‰ for VE water (n=9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The accuracy as determined by crushing of water-filled glass capillaries is confirmed by the injection-based data (Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Overall, the δ18O value of the injected VE water deviated from the expected value on average by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='19 ‰ (n=77), that of the δ2H value by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰ (n=77).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 Adsorption and/or desorption on the calcite surface Adsorption on a calcite surface and, in particular, on freshly crushed carbonate with a large surface to volume ratio provides the possibility to alter the isotope values of the fluid inclusion water (Dennis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Therefore, an artificial fluid inclusion system (speleothem analogue) as described by Dennis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2001) has been prepared to quantify the influence of adsorption on the measured isotopic signal in our setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' We measured water vapour released from a water-filled glass capillary in direct contact with inclusion-free Iceland spar carbonate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The compact Iceland spar pieces (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='45-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='81 g) as well as the released water of the capillaries (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 µl water) represent a speleothem sample with a water content of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 up to 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 μl per g calcite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In total, we prepared and analysed five artificial fluid inclusion - calcite systems in the range between 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 and7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 µl/g and three at about 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 µl/g and compared them to water-filled glass capillaries without additional calcite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The crushing of the compact Iceland spar pieces provided fresh and fine-grained calcite for interaction and adsorption testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The measurements suggest that the adsorption of water molecules on the calcite surfaces does not affect the measured isotopic signal in the investigated water/calcite ratio range (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Both measured oxygen and hydrogen isotope values accurately match the expected value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' With a standard deviation of ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='05 ‰ for δ18O and ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='22 ‰ for δ2H values (high water/calcite ratio, n=5) and ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='15 ‰ for δ18O and ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='31 ‰ for δ2H values (low water/calcite ratio, n=3) in both adsorption tests, a good reproducibility of the individual measurements was achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' We observed that after crushing of Iceland spar (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='25 g) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='023 μl water was adsorbed on the crushed calcite from the moist carrier gas (Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S3), which corresponds to a ratio of approximately 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 μl water per g calcite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Thus, for low water contents of < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 µl per g calcite an influence of adsorption on the released water amount and the isotopic values probably cannot be excluded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Therefore, we rejected all fluid inclusion samples with water amounts below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 µl based on this observation (see Weißbach, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Figure 6: Isotopic values measured for the artificial inclusion calcite system, for which compact Iceland spar pieces were crushed together with VE water - filled glass capillaries (triangles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Open circles indicate water - filled glass capillaries (VE) without calcite addition, measured for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' An isotopic fractionation due to adsorption of water molecules on the calcite surface is not detectable for the investigated water content range of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 µl water/g calcite (left side) and for 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='22±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 µl water/g calcite (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Marginal differences in the isotope values between left and right panel are within the expected variations in the reference water isotope values due to a several year time lag between both experimental series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The uncertainties are displayed on the 1σ level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' [black/white for figures in print, colour online] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 Isotopic effect of the water vapour background 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 - 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 μl/g ~2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 μl/g ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='H (% VSMOW) -58 144 -60 444 D -62 (%。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='VSMOW) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 丰 -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 0-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 water plus only water waterplus only water iceland spar iceland sparThe potential influence of the isotope ratio of the water vapour background on that of the measured sample could be relevant for speleothem samples whose isotopic composition strongly differs from that of the water vapour background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For testing this potential effect, we injected our VE water standard on four different water vapour backgrounds with different isotopic composition (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' We used VE-water as injection fluid, because its isotopic composition is comparable to the majority of fluid inclusion of speleothems from mid-latitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For each water vapour background 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 μl of VE water were injected five times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For the background waters with the two most extreme isotope compositions we additionally injected 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 µl of VE (n=6) to assess the robustness also for smaller water amounts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' If VE water is injected on VE background water vapour, the average isotope value corresponds to the expected value within uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A deviation from the expected isotope value is notable for injections on a different water vapour background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For example, VE injections on a negative water vapour background (NG, δ18O = -26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='54 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 ‰, δ2H = -212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰, Table 1) yield a deviation of +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='40 ‰ for δ18O and +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ‰ for δ2H values from the reference values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' VE injections on a background, which is based on lake water (WW) with higher isotope values compared to VE water, yield deviations of -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='15 ‰ for δ18O and -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ‰ for δ2H values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Tests with injected water amounts of 1 µl corroborate the observed trend (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The standard deviation of repeated water injections is independent from the isotopic composition of the water vapour background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The effect of the isotopic difference between the samples and the background water vapour exceeds the measurement uncertainty only for differences larger than 10 ‰ (δ18O).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This experiment highlights that it is not necessary to correct samples when using background water with an isotope composition close to the paleoclimate samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For speleothem measurements we used VE water as background water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Figure 7: Deviation of the measured injection isotope value relative to the expected value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The deviation is related to the difference between the isotope signal of the injection and that of the water vapour background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Single injections are shown as open circles and the mean values as filled circles s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The green andblue lines indicate the linear regression with all individual 3 µl measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' An increasing deviation between the measured and expected isotopic signal is observed for an increasing difference between injection isotope value and that of the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 oxygen hydrogen D 3 μl 1 μl 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 3 μl 1 μl (0%) singleinjections O singleinjections -expected) ( meanvaluewithuncertainty expected)( 3 mean value with uncertainty 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 linearregression Viation(measured 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 devi T: VE VE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' injections injections -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 uo on wWIAE VE cC CC NG AE ww VE NG -10 -5 0 5 10 15 20 -50 50 100 150 200 deviation (injection-background signal)(%o) deviation(injectionbackgroundsignal)(%o)water vapour background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The uncertainty of the expected value (black horizontal line) is shown as grey envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Measurement uncertainties are given on the 1σ level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' [black/white for figures in print, colour online] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 Case applications Case example 1: Modern – late Holocene sinter samples The two fluid inclusion replicates of each modern or late Holocene sample from Hüttenbläserschacht Cave reproduce very well and are within uncertainty of each other (Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Related standard deviations of the mean (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ‰ for δ18O and δ2H values, respectively) are comparable (δ18O values) or slightly larger (δ2H values) than the measurement precision in this water amount range (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 µl, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The mean fluid inclusion δ18O value of -7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ‰ is identical to the calculated drip-water value of Kluge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2013) of -7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ‰, independently confirming the former finding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Drip water in Hüttenbläserschacht Cave was not monitored but should be close to the neighbouring Bunker Cave and shares the same karst aquifer with comparable residence times of a few years (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kluge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Fluid inclusion isotope values are close to the mean drip water values from Bunker Cave of -7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ‰ for δ18O and -53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ‰ for δ2H values (Riechelmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Table 3: Measurement of fluid inclusions in three CaCO3 spar samples from Hüttenbläserschacht Cave (Germany).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Each sample was split in two to allow for a replication test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' ‘Avg.’ refers to the average of the two analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For comparison also the calculated pool water δ18O value of Kluge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2013) is shown that uses an independent temperature estimate and clumped isotope ∆47 for correction of kinetic isotope effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The Bunker Cave drip water is taken from Riechelmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Uncertainties are given on the 1σ level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' ID Sample weight (g) Water amount (µl) Water content (µl/g) δ18O value (‰ VSMOW) δ2H value (‰ VSMOW) Pond A A-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='46 -7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 A 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='60 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 Pond B B 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='76 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 B 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='64 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 Pond C (little pond) C 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='59 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='78 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='02 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 C 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='48 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 Average all 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 Reconstructed after Kluge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2013) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 Drip water Bunker Cave range 2006 2013 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 to 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 48 to 58 mean 2006 2013 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 Case example 2: Speleothem sample from the 20th century – Stam 4 from Cloşani Cave Comparison with current drip water and reproducibility assessment We sampled calcite pieces at the outer surface of the stalagmite for comparison with current drip water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' It can be assumed that recent calcite precipitated there and accordingly, recent drip water is enclosed in the fluid inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The water yields during crushing were between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='49 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='38 µl/g with a mean of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='93 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='28 µl/g (one sample was excluded due to a low water amount of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='18 µl) (Supplementary Table S3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The mean value of 13 fluid inclusion measurements of samples from the outer stalagmite layer is δ18O = −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ and δ2H = −64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ‰ (Supplementary Table S3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' These values agree within uncertainty with the mean of the related drip site CL3 of δ18O = −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ‰ and δ2H = −66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰ (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The 13 individual measurements reproduce with a standard deviation of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ‰ for δ18O and δ2H values, respectively, which is slightly higher than the analytical uncertainty based on the standard deviation of repeated syringe injection for water amounts between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5-and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 µl (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ‰ for δ18O values, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ‰ for δ2H values, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The standard deviation for the 13 individual speleothem analyses is also comparable to that of other CRDS systems and similar water amount ranges, such as of Arienzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2013) with ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ‰ for δ18O/δ2H values and Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2014) with ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for δ18O/δ2H values .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The precision of the Stam4 sample analysis also compares well with traditional IRMS measurement techniques which achieve a precision of ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for δ18O and ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ‰ for δ2H values for water amounts > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 µL (Dublyansky and Spötl, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Figure 8: Fluid inclusion water isotope ratios of samples from the outer stalagmite surface (light blue dots), with corresponding mean value (dark blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Drip water data from the same cave chamber where Stam 4 was removed (light green triangles;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' drip site CL3) and its mean value (dark green) agree with the fluid inclusion results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Both drip water and fluid inclusion data match the local meteoric water line (LMWL) of Cluj-Napoca of δ2H = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='03 · δ18O + 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='29 ‰ (Cozma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The uncertainties are given on the 1σ level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' [black/white for figures in print, colour online] Fluid inclusion analysis of samples along the growth axis We used the stalagmite pieces closest to the growth axis of Stam 4 for paleo-drip water and - temperature reconstruction (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Where possible, the reproducibility of the individual measurements was tested with a second set of fluid inclusion samples, extracted adjacent to the first set of samples (Table 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The second set had a larger distance from the growth axis than the first set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The samples corresponding to the same growth period are grouped in levels, indicated by letters A-K (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For sample level D, only the second sample is used because the first sample is close to the applied water amount limit and contains only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='18 μl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' On average, the δ2H values of sample and replicate are largely consistent (mean deviation: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ‰).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The same is observed for the inclusion water δ18O value (mean deviation: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='31 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='51 ‰).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In addition the water content of the different levels appears characteristic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For level D and E with 5 replicates each, the water content varies only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 µl/g (excluding one sample each with low total water amount).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For the other levels, a higher scatter has LMWL FI-Stam4 -60 FImeanwithstdy dripwater (CL3) dripwatermeanwithstdv -62- 8’H [% VSMOW] -64 -66 -68 -70- -11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 -10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 8180 [%。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' VSMOW]been observed, potentially due to a general heterogeneity of the speleothem inclusion distribution (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Muñoz-García et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Generally, the water content was between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='45 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='66 µl/g, suggesting minimal or negligible influence of adsorption on the freshly crushed surface (Table 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Fluid inclusion δ18O values vary between -10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ‰ and -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ‰ and, with one exception (level C), follow a temporal trend towards higher values towards more recent times (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 9, Table 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Table 4: Measurement results of fluid inclusion samples of stalagmite Stam-4 from Cloşani Cave (Romania).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Several samples were cut from individual layers that reflect contemporaneously grown carbonate and allow for replication tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The fractionation factor 18α(CaCO3-H2O) between water and CaCO3 was calculated based on the difference between the calcite δ18O values (averaged over the edge length of the fluid inclusion sample of typically 5 mm) and the fluid inclusion water δ18O values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The temperature T18O,cc was determined using the 18α(CaCO3-H2O) - T relationship proposed by Kim and O’Neil (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' TH is related to the relative temperature change calculated using the δ2H- temperature relationship in rainfall (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='72‰/°C) and was referenced to top level K and the current cave temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' T18O, Fi refers to the temperature difference relative to sample level K with the modern cave temperature as reference and was calculated using the δ18O-T relationship in rainfall (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='59‰/°C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Samples in grey are not included in the interpretation and discussion as the water amount was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='19 µl or below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Samples closest to the growth axis (‘1’ closest, higher numbers are further away) were used for temperature assessment based on the classical carbonate thermometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Samples A1 and A2 were the oldest samples and were excluded from the discussion as they belong to the stalagmite base with unclear chronology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The age corresponds to the mean age of each sample level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dft: distance from top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' ID Dft (mm) Age (year AD) Sample weight (g) Water amount (µl) Water content (µl/g) δ2H value (‰ VSMOW) δ18O value (‰ VSMOW) 18α (CaCO3- H2O) (‰) T18O,cc (°C) T18O,Fi (°C) TH (°C) A1 unknown 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='52 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 A2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='59 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 B1 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 1928 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='95 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 B2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='37 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='75 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 B3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='76 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 B4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='56 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 B5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='45 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 C1 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 1937 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='81 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='66 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 C2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='51 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='21 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 C3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='81 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 D1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='57 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 D2 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 1944 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='51 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='83 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 D3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='89 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 D4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='98 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 D5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='88 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 E1 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 1952 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='78 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 E2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='78 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 E3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='82 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 E4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='60 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 E5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='55 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 F1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 1960 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='75 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 F2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='82 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 F3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='87 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='56 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 G1 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 1968 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='87 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 G2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='76 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='53 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 H1 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 1977 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='46 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='16 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 H2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='46 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='30 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 I 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 1990 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='39 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='72 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 J 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 2004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='86 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 K 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 2008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='94 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Discussion 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 Constraints for precise and accurate fluid inclusion isotope data The presented setup allows for a good reproducibility with respect to isotope measurements of pure water samples in the µl range, either injected via a syringe or by crushing of water-filled glass capillaries in the copper tube (similar to speleothems samples;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The achievable precision is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for δ18O and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ‰ for δ2H analyses at extracted water amounts between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 µl and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 µl and decreases with increasing water amount to ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ‰ for δ18O and ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰ for δ2H measurements at extracted water amounts >1 µl (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The improved precision with increasing water amount is consistent with the observations of Dassié et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2018) who reported similar precision of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ‰ for δ18O and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ‰ for δ2H values for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2-1 µl as well as a strong increase of the uncertainty at water amounts lower than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 µL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Replicate analyses of calcite samples from the outermost surface of a Romanian stalagmite corroborate the precision as determined by crushing of water-filled glass capillaries and water injections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Adsorption of water on freshly crushed surfaces appears negligible for water contents of about 1 µl water per g calcite or above Dennis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2001) similarly observed a decreasing adsorption influence at increasing H2O/CaCO3 ratios at room temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' However, an adsorption effect could be relevant if the water content in the crushed samples approaches 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 µl/g or is below this value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' We therefore recommend to use the water content as one parameter to check the robustness of the analysis and to carefully assess or conservatively reject samples with water contents below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 µl/g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' We observed a small dependence of the measured isotope value on the water vapour background (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='. After injection of a certain water amount, the δ18O value of the (hypothetically) well mixed water vapour consisting of background and injection water is an amount-weighted mixture of both δ18O values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For background water with relatively depleted values such as North Greenland Water (NG, -δ18O =-26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ and δ2H = -212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ‰) this would mean that the δ18O value of the VE water with δ18O = -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='57 ‰ and δ2H = -61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ‰ is higher than the mixed water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For example, if the background to injection volume is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8:3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0, the isotopic composition of the mixture is expected to be δ18O = -15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ‰ and δ2H = -117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='Given the short residence time of the water vapour in the mixing cavity before the measurement in the CRDS, a full isotopic mixing is not reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The kinetically slower molecules containing an 18O atom remain preferentially in the gas stream compared to the faster molecules containing only 16O atoms that preferentially take part in the mixing with the background water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Thus, for this case example it is expected that the injection water isotopes are slightly higher relative to the background and the mixed signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Conversely, for a positive background as the WW water, the isotope value of the VE injection is more negative relative to the isotope value of the hypothetical fully mixed gas stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Due to the kinetic behaviour of 18O, the injection stays more negative relative to the expected value for this background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The adsorption effects and the influence of kinetic isotope exchange are similar for the 1 µl and 3 µl injections (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For water amounts in the µl range this dependence on the vapour background isotope value is relevant if the isotopic composition of the fluid inclusions is significantly different from the background (> 10 ‰ for δ18O and > 50 ‰ for δ2H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Otherwise, the potential effect of the isotopic difference to the background water vapour is within the analytical uncertainty of water samples between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 µl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The maximum expected deviations are < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='25 ‰ for δ18O and < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ‰ for δ2H values, if the sample is within the 10 ‰ range of the water vapour background for δ18O and 50 ‰ for δ2H values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For water amounts larger than 1 µl the acceptable deviation between sample and background water isotope values reduces in relation to the higher measurement precision at higher water amounts (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 Paleotemperature calculation from Stam 4 using fluid inclusion isotopes For calculation of the CaCO3-H2O isotope fractionation, we averaged the calcite δ18O values which correspond to the growth period of the spatially larger fluid inclusion sample (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The calculated fractionation factor 18α(CaCO3-H2O) between calcite and fluid inclusion water yields values between 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 and 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ‰.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This range would correspond to temperatures between 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 °C and 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 °C using the 18α(CaCO3-H2O)-T relationship of Kim and O’Neil (1997) (Table 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The calculated absolute temperatures deviate slightly from these values depending on the used 18α(CaCO3-H2O)-T relationship (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Démeny et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Tremaine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' However, relative differences between the coldest and warmest periods and the trend in the data set is largely independent of the selected fractionation-temperature relationship as most experimental and empirical studies yield similar 18α(CaCO3-H2O)-T slopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Following an apparent change of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ‰ in 18α(CaCO3-H2O) a temperature change of about 9°C would formally correspond to the growth period of the stalagmite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This temperature difference is much larger compared to that observed at local meteorological stations with maximum and minimum mean annual air temperature differing by approximately 3°C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This discrepancy suggests that the temperature trend related to 18α(CaCO3-H2O) in the stalagmite has been enhanced, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', by stronger isotopic disequilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' As the measured fluid inclusion water isotopes correspond to the meteoric water line (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S5), post-depositional and other significantly altering effects are unlikely for the water-filled inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' However, mineral formation in speleothems often takes place in a non- equilibrium regime (Deininger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2021) and may also have influenced the calcite δ18O values of Stam 4 due to a high growth rate and strong seasonal variations in prior calcite precipitation (PCP, Warken et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='. We refrain from correcting the disequilibrium effect in calcite δ18O values due to the related large and hardly quantifiable uncertainties and only focus on the fluid inclusion δ2H values in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Note, that it may be possible in other cases to derive temperature variations from the oxygen isotope fractionation between fluid and calcite if the degree of PCP is negligible or constant and the length of drip interval has not changed significantly during growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2019) demonstrated that δ2H values and its temperature relationship in rainwater of mid-latitudes can be used to deduce temperature changes throughout the Holocene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In stalagmite Stam 4, a long-term trend towards higher δ2H values is observed from the oldest to youngest fluid inclusion samples (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A significant increase for δ2H values of +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ‰ was identified between sample level F and K and similarly between B and C (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 9 C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This transfers into to a temperature change of +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 °C using the relationship between the isotopic composition of precipitation and temperature for Central Europe of +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='59 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='04 ‰/°C for oxygen and +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='72 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='32‰/°C for hydrogen isotopes (Rozanski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Since stalagmite Stam 4 from Cloşani Cave grew under continental climatic influence, the mean value for Central Europe seems to be the best reference for the determination of the relative temperature change with the δ2H/T relationship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' GNIP (Global Network of Isotopes in Precipitation) stations and other weather stations in Hungary, Austria, Slovakia and Poland with more than 10 years of isotope analysis show similar slopes of +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ‰/°C (Demény et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Considering the observed range of the rainfall δ2H-temperature slopes in Central and Eastern Europe by Gaussian error propagation, the uncertainty increases slightly to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5°C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' With the confirmed recent growth of the stalagmite, the topmost stalagmite piece is assigned to the year 2010 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' ( year of stalagmite removal).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Annual growth layers provide a possibility to assign ages to all other sample depths (Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Temperature changes ΔT relative to the reference level B is close to zero up to ca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 1960 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (3 cm distance from top, level F), followed by an increase of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 °C at the stalagmite top (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 9F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The mean annual air temperature for the time period from 1928 to 2008 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' at the meteorological station Drobeta/Turnu Severin, which is located in the vicinity of the cave, shows a similar temperature increase of about 1 °C from 1980 until 2008 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 9G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This is consistent with the general trend in Romania, which experienced a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 °C increase for the period of 1901-2012 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (Ministry of Environment and Climate Change, 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The temperature change determined from δ2H values in the fluid inclusions corresponds well to the trend and magnitude measured in the mean annual air temperature of the region (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Directly interpreting the fluid inclusion δ18O values using the rainfall δ18O-T relationship for Central Europe of +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='59 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='04 ‰/°C by Rozanski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (1992) also leads to a temperature increase, albeit with a higher amplitude of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1°C relative to level B, but within uncertainty consistent with the temperature reconstruction using δ2H values (Table 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' growthaxis[cm] 5 A B C D E Base level A B c D E F G H K a (% VSMOW) T -8 B II -9 -10 -11°H (% VSMOW) -60 65 (0%) 33 D 32 30 (82H) (%) E reference 0 TevelB 2 reference13 (C) MAAT 11 10 1920 1940 1960 1980 2000 yearFigure 9: A) Stam 4 with assignment of sample pieces based on visual correlation with the growth axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Layers B to K were used for temperature reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The small inset shows alternation of fluid inclusion-rich and inclusion- poor layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Winter layers yield very little inclusions, while summer layers include abundant air- and water-filled inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Width of the image is ca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 3 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' B) Fluid inclusion δ18O values C) δ2H values D) Fractionation factor α between calcite and inclusion water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' E) Change in δ2H values relative to level B (lowest temperature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' F) Inferred temperature change relative to level B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A trend is visible for Δ(δ2H) as well as for ΔT from the stalagmite bottom to the top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Using the δ2H/T relationship of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='72 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='32 ‰/T (Rozanski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1992) a total increase of ΔT =1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 °C is observed within the growth period of the investigated stalagmite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' G) Mean annual air temperature (MAAT) of the Drobeta/Turnu Severin station in the cave region (thin black line, Klein Tank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2002) for the last 100 years with a 10-year running mean (red line) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The 10 year-smoothing interval corresponds to the average age that is covered by the fluid inclusion samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The uncertainties are given on the 1σ level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' [black/white for figures in print, colour online] 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 Paleotemperature reconstruction using fluid inclusions Our study supports the conclusion of previous publications (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Uemura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' de Graaf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2020) that an accurate and precise determination of the isotope composition of micro-litre water amounts is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Our setup is able to produce small errors, which are in the same range as the precision in the previous fluid inclusion isotope studies(Dublyansky and Spötl,2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Arienzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2013);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2014),;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Uemura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dassié et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=',2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In these studies a precision of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for δ18O and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ‰ for δ2H values in the water amount range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 µl, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ‰ for δ18O and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰ for δ2H values at water amounts > 1 µl was demonstrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The analytical precision determines the currently achievable temperature precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In principle, three possible ways of temperature calculation from fluid inclusion isotopes exist: a) from the temperature-dependent oxygen isotope fractionation between calcite and fluid inclusion water (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Arienzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Labuhn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015), b) indirectly via transfer of the fluid inclusion δ2H value to the corresponding water δ18O value using the δ18O-δ2H relationship of the meteoric water line and then using the oxygen isotope fractionation between carbonate and water for temperature calculation (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Meckler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015), and c) from the hydrogen isotopes using a locally valid δ2H-temperature relationship of the rainfall (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Of the three methods for temperature reconstruction the first two (a and b) show the highest uncertainty of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 °C (Van Breukelen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Arienzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Meckler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Uemura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The highest achievable temperature precision in the case of the best analytical fluid inclusion δ18O precision of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ‰ (and a calcite δ18O uncertainty <0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ‰) is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 °C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Approaches a and b are additionally affected by the potential influence of disequilibrium isotope fractionation during carbonate mineral formation (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Deininger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2021), causing too high temperatures or an unrealistically large temperature spread in case of significant changes of isotopic disequilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Furthermore, diagenetic exchange between host calcite and fluid inclusion water could further alter the water δ18O value (Demeny et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Uemura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The precision of the temperature reconstruction directly from fluid inclusion δ2H values depends critically on the value of the rainfall δ2H/T relationship and the availability of well-defined rainfall δ2H/T functions at the study site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For the Central European region a value of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='72 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='32 ‰/°C of Rozanski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (1992) can be used and can yield a temperature precision of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 °C for released water amounts of ~0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 µl if the analytical precision is ~1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ‰ for δ2H measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The uncertainty of the rainfall δ2H/T function is negligible for our case study but could be relevant in case of a reduced temperature dependence of the rainfall δ2H values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' At locations with a stronger temperature dependence of the rainfall δ2H value an even better precision is possible, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='13 °C for the average of Swiss stations, which show a slope of 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='44 ‰/°C (Rozanski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1992) and for the typical analytical uncertainty of our setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The temperature resolution of this method is slightly reduced at lower latitudes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='55 °C at Hong Kong with a δ2H rainfall-temperature relationship of 2 ‰/°C;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rozanski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Note that temperature estimates using fluid inclusion δ2H values and the rainfall δ2H/T relationship without climatic reference points are relative, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', they record only temperature changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' With an anchor, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', modern reference temperature and rainfall δ2H values, absolute temperatures can be also inferred from fluid inclusion δ2H values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The application of the rainfall δ2H/T relationship for calculating temperature changes from fluid inclusion δ2H values also requires the δ2H/T relationship to be constrained for the past.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Information on the rainfall isotope systematic and the δ2H/T relationship in the past can be gained for example from groundwater studies (Darling, 2004) in combination with noble gas temperatures (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kreuzer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Varsány et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2011, Túri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The uncertainty of the δ2H/T relationship needs to be considered and likely decreases the achievable precision for pre-Holocene speleothems as the uncertainty for the δ2H/T relationship increases when applying the modern or Holocene relationship back in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Affolter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2019) used the δ2H/T relationship for temperature reconstruction from fluid inclusions throughout the Holocene and achieved a precision of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 °C for a Swiss stalagmite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Our analytical approach allows for the same temperature resolution and with measurements of stalagmite Stam 4 from Romania confidently verified the recent 20th century warming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Both studies together illustrate the potential of the inclusion-based methodology for tracing and reconstructing minor temperature fluctuations of < 2 °C during the Holocene and, at sufficient temporal resolution (requiring high stalagmite growth rates), also of sub-degree changes such as the recent anthropogenic warming trend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Summary and conclusion Fluid inclusion isotope analysis using CRDS measurements after mechanical sample crushing benefits from fluid extraction and measurement under a constant and controlled water vapour background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The specific isotope and water volume calibration of the CRDS system remained valid for several years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For assessing the fluid inclusion extraction and measurement performance we used syringe injections and boro-silicate glass capillaries filled with reference water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' We have shown that out setup has no drift in the isotope values for smaller water amounts and that the memory effect for this system is negligible when using an isotopically appropriate background water vapour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The water vapour background should be chosen such that the isotope values of sample and background do not deviate significantly (maximum 10 ‰ for δ18O and 50 ‰ for δ2H values).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Direct comparison of calcite powder-free and -filled extraction tubes proved that the adsorption of water on the speleothem surface has no effect on the measured isotope signal if the water content is larger than 1 µl water per g calcite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For samples with a water content below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 µl/g calcite results have to be checked as we observed a corresponding adsorption of the water vapour background on freshly crushed calcite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Related to the above-mentioned constraints, the precision (1σ) of isotope measurements for aliquots of water from speleothem fluid inclusions improves with increasing water amount.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' It is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ‰ for δ18O and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ‰ for δ2H values for water samples between0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 and0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 µl, which is comparable to other CRDS systems and IRMS techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This value was further confirmed by replicated measurements of adjacent samples of the Romanian stalagmite Stam 4 (standard deviation of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ‰ for δ18O andδ2H values).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For water amounts larger than1 µl the precision improves to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ‰ for δ18O and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ‰ for δ2H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Analysis of fluid inclusions of recent pool spars from a German cave shows good agreement between drip water and fluid inclusion isotope values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Similarly, the δ18O and δ2H values of a Romanian stalagmite, grown during the 20th century, reflect the isotopic composition of the modern drip water within uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In the same case study, we observed a T-trend from δ18O values, which is inconsistent with local weather records, suggesting a major influence disequilibrium and kinetic effects on the speleothem calcite δ18O signal of Stam 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The isotopic disequilibrium causes a significant overestimation of the temperature changes calculated from the oxygen isotope fractionation between calcite and water (in our case 9 °C difference instead of ca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 1°C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' In contrast, hydrogen isotopes are not involved in calcite precipitation and therefore provide a relatively undisturbed link to the stable isotopic composition of drip and rain water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Using the δ2H-temperature relationship in rainfall we obtained a temperature increase for Cloşani Cave of +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 °C between 1960 and 2010, which is in excellent agreement with the local temperature record.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Thus, applying the local rainfall δ2H-- temperature relation on fluid inclusion δ2H variations appears to be a reliable method to determine mean annual air temperatures for mid-latitude speleothems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The achieved precision furthermore highlights the potential of fluid inclusion isotope studies in speleothems for high resolution paleoclimate reconstruction, given that the rainfall isotope relationship is significantly linked to temperature and is available for the studied area and valid for past periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Acknowledgements The project was funded by DFG Grant KL 2391/2-1 and supported by the Heidelberg Graduate School for Physics in the context of grant GSC 129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' We thank Sylvia Riechelmann and Jasper Wassenburg for collection of Stam 4, Silviu Constantin and Mihai Terente for monitoring, Christoph Spötl for drip water analysis at CL3, Regina Mertz-Kraus for LA-ICP-MS element analysis and Sven Brömme for calcite δ18O and δ13C analysis on Stam 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' We thank the editor Michael E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Böttcher and three anonymous reviewers for their very detailed comments and suggestions that helped to improve the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Data availability Data of this study are summarized in Tables 1-4 and Supplementary Table S1-S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Raw data related to Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 3-6 are given in the Appendix of Weißbach (2020), available at https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='11588/heidok.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='00028559 Competing interests statement The authors declare the absence of competing interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' References Aemisegger, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Sturm, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Graf, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Sodemann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Pfahl, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Knohl, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Wernli, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Measuring variations of 18O and 2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study, Atmospheric Measurement Techniques, 5 (7), 1491–1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Affolter, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Fleitmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Leuenberger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Clim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Past ,10, 1291-1304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Affolter, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Häuselmann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Fleitmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Edwards, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Cheng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Leuenberger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', eaav 3809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1126/sciadv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='aav3809 Arienzo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Swart, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vonhof, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Measurement of 18O and 2H values of fluid inclusion water in speleothems using cavity ring-down spectroscopy compared with isotope ratio mass spectrometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rapid Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Mass Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 27, 2616–2624.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Arienzo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Swart, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' , Pourmand, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' , Broad, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Clement, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Murphy, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vonhof, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kakuk, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Bahamian speleothem reveals temperature decrease associated with Heinrich stadials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Earth and Planetary Science Letters, 430, 377–386.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Brand, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Geilmann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Crosson, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Rella, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' a case study on δ2H and δ18O of pure water samples and alcohol/water mixtures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rapid Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Mass Spectrom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 23, 1879-1884.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Constantin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', & Lauritzen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Speleothem datings in SW Romania.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Part 1: evidence for a continuous speleothem growth in Peştera Cloşani during oxygen isotope stages 5–3 and its paleoclimatic significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Karstol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=',11–12, 35-46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Cozma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Baciu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Papp, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Roşian, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Pop, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='-I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Isotopic composition of precipitation in western Transylvania (Romania) reflected by two local meteoric water lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Carpathian J Earth Environ Sci, 12, 357–364.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Craig, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1961.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Isotopic variations in meteoric water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Science, 133, 1702-1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Czuppon, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Ramsay, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Ozgenc, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Demeny, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Gwalani, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Rogers, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Eves, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Papp, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Palcsu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Berkesi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Downes, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Stable (H, O, C) and noble-gas (He and Ar) isotopic compositions from calcite and fluorite in the Speewah Dome, Kimberley Region, Western Australia: implications for the conditions of crystallization and evidence for the influence of crustal-mantle fluid mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Mineralogy and Petrology, 108, 759–775.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Darling, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Quat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 23, 743-770.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dassié, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Genty, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Noret, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Mangenot, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Massault, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Lebas, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Duhamel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Bonifacie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Gasparrini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Minster, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Michelot, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A newly designed analytical line to examine fluid inclusion isotopic compositions in a variety of carbonate samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geochem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geophys, Geosys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 19, 1107-1122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' de Graaf, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vonhof, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Levy, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Markowska, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Haug, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Isotope ratio infrared spectroscopy analysis of water samples without memory effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rapid Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 35:e9055.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1002/rcm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9055 de Graaf, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vonhof, Weissbach T, Wassenburg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Levy, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kluge, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Haug, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A comparison of isotope ratio mass spectrometry and cavity ring-down spectroscopy techniques for isotope analysis of fluid inclusion water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rapid Commun Mass Spectrom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 34, e8837.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1002/rcm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8837 Deininger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Hansen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Fohlmeister, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schröder-Ritzrau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Burstyn, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Scholz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Are oxygen isotope fractionation factors between calcite and water derived from speleothems systematically biased due to prior calcite precipitation (PCP)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Cosmochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Acta, 305, 212-227.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Demény, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Czuppon, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Siklósyk Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Leél-Össy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Lin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Shen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Gulyás, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Mid-Holocene climate conditions and moisture source variations based on stable H, C and O isotope compositions of speleothems in Hungary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Quat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 293, 150-156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Demény, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Stable isotope compositions of speleothems from the last interglacial–spatial patterns of climate fluctuations in Europe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Quat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 161, 68–80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Demény, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Rinyu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kern, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Hatvania, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Czuppon, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Surányi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Leél-Össy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Shen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Koltai, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' , 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Paleotemperature reconstructions using speleothem fluid inclusions analyses from Hungary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 563, 120051.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dennis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Rowe, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Atkinson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The recovery and isotopic measurement of water from fluid inclusions in speleothems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Cosmochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Acta, 65, 871–884.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dublyansky, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', & Spötl, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Hydrogen and oxygen isotopes of water from inclusions in minerals: design of a new crushing system and on-line continuous-flow isotope ratio mass spectrometric analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rapid Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Mass Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 23, 2605–2613.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Fischer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Nature Geosci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 11, 474-485.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Griffiths, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Drysdale, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vonhof, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Gagan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Ayliffe, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Hantoro, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Hellstrom, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Cartwright, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Frisia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Suwargadi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Younger Dryas-Holocene temperature and rainfall history of southern Indonesia from delta O-18 in speleothem calcite and fluid inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Earth Planet Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 295, 30-36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Gupta, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Noone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Galewsky, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Sweeney, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vaughn, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rapid Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Mass Spectrom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 23, 2534–2542.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Harmon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schwarcz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Ford, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Stable isotope geochemistry of speleothems and cave waters from the Flint Ridge-Mammoth Cave system, Kentucky: Implications for terrestrial climate change during the period 230,000 to 100,000 years BP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geology, 86, 373– 384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Harmon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schwarcz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', O’Neil, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' D/H ratios in speleothem fluid inclusions: a guide to variations in the isotopic composition of meteoric precipitation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Earth Planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 42, 254–266.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', & O’Neil, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Cosmochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Acta, 61, 3461–3475.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Klein Tank, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' International Journal of Climatology: A Journal of the Royal Meteorological Society, 22 (12), 1441–1453.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Kluge, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Marx, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Scholz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Niggemann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Mangini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Aeschbach-Hertig, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A new tool for palaeoclimate reconstruction: Noble gas temperatures from fluid inclusions in speleothems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Earth Planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 269, 407–414, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Kluge, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Riechelmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Wieser, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Spötl, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Sültenfuß, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schröder-Ritzrau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Niggemann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Aeschbach-Hertig, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Dating cave dripwater by tritium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Hydrol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 394, 396–406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Kluge T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Affek H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Marx T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Aeschbach-Hertig W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Riechelmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Scholz D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Riechelmann S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Immenhauser A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Richter C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Fohlmeister J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Wackerbarth A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Mangini A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' and Spötl C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Clim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Past 9, 377-391.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Kreuzer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', von Rohden, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Friedrich, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Shi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Hajdas, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kipfer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Aeschbach-Hertig, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 259, 168-180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Labuhn, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Genty, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vonhof, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Bourdin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Blamart, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Douville, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Ruan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Cheng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Edwards, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Pons-Branchu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Pierre, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A high-resolution fluid inclusion δ18O record from a stalagmite in SW France: modern calibration and comparison with multiple proxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Quat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 110, 152-165.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Matthews, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Ayalon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Bar-Matthews, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' D/H ratios of fluid inclusions of Soreq cave (Israel) speleothems as a guide to the Eastern Mediterranean Meteoric Line relationships in the last 120 ky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 166, 183–191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Matthews, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Affek, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Ayalon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vonhof, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Bar-Matthews, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Eastern Mediterranean climate change deduced from the Soreq Cave fluid inclusion stable isotopes and carbonate clumped isotopes record of the last 160 ka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Quat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 272, 107223.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' McDermott, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schwarcz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Rowe, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Isotopes in speleothems, in: Isotopes in palaeoenvironmental research, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 185–225, Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' McGarry, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Bar-Matthews, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Matthews, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vaks, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schilman, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Ayalon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Constraints on hydrological and paleotemperature variations in the Eastern Mediterranean region in the last 140ka given by the δD values of speleothem fluid inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Quat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 23, 919-934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='quascirev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Meckler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Glacial–interglacial temperature change in the tropical West Pacific: A comparison of stalagmite-based paleo-thermometers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Quaternary Science Reviews, 127, 90– 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Millo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Strikis, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vonhof, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Deininger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', da Cruz Jr, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Cheng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Edwards, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Last glacial and Holocene stable isotope record of fossil dripwater from subtropical Brazil based on analysis of fluid inclusions in stalagmites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Chemical Geology, 468, 84–96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Ministry of Environment and Climate Change, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Romania’s Sixth National Communication on Climate Change and First Biennial Report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Climate Report, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Muñoz-García, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', López-Arce, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Fernáandez-Valle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Martín-Chivelet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Fort, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Porosity and hydric behavior of typical calcite microfabrics in stalagmites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 265- 266, 72-86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Riechelmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schröder-Ritzrau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Scholz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Fohlmeister, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Spötl, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Richter, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Mangini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Journal of Hydrology, 409, 682–695.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Riechelmann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schröder-Ritzrau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Spötl, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Riechelmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Richter, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Mangini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Frank, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Breitenbach, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Immenhauser, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sensitivity of Bunker Cave to climatic forcings highlighted through multi-annual monitoring of rain-, soil-, and dripwaters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 449, 194-205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rozanski, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Araguas-Araguas, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Gonfiantini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Science, 258, 981–985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Schwarcz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Harmon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Thompson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Ford, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Stable isotope studies of fluid inclusions in speleothems and their paleoclimatic significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Cosmochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Acta, 40, 657–665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Tremaine, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Froelich, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geochimica et Cosmochimica Acta, 75, 4929–4950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Túri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Saadi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Marah, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Temovski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Molnár, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Palcsu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Paleotemperature reconstruction using environmental isotopes and noble gases in groundwater in Morocco.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Hydrogeol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 28, 973-986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Uemura, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Precise oxygen and hydrogen isotope determination in nanoliter quantities of speleothem inclusion water by cavity ring-down spectroscopic techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Cosmochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Acta, 172, 159–176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Uemura, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kina, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Shen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Omine, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Experimental evaluation of oxygen isotopic exchange between inclusion water and host calcite in speleothems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Clim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Past, 16, 17–27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' van Breukelen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vonhof, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Hellstrom, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Wester, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kroon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Earth and Planetary Science Letters, 275 (1-2), 54–60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Van Geldern, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Barth, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Limnol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Ocean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Methods, 10, 1024-1036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4319/lom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1024 Varsány, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Palcsu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kovács, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Groundwater flow system as an archive of palaeotemperature: Noble gas, radiocarbon, stable isotope and geochemical study in the Pannonian Basin, Hungary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geochem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 26, 91-104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Verheyden, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Genty, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Cattani, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', van Breukelen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Water release patterns of heated speleothem calcite and hydrogen isotope composition of fluid inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 247, 266-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Vonhof, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', van Breukelen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Postma, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Rowe, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Atkinson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kroon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A continuous-flow crushing device for on-line 2H analysis of fluid inclusion water in speleothems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Rapid Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Mass Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 20, 2553–2558.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Warken, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Reconstruction of late Holocene autumn/winter precipitation variability in SW Romania from a high-resolution speleothem trace element record.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Earth Planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 499, 122–133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Warken, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Weissbach, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kluge, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vonhof, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Scholz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Vieten, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schmidt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Winter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Frank, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Last glacial millennial-scale hydro-climate and temperature changes in Puerto Rico constrained by speleothem fluid inclusion δ18O and δ2H values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Clim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Past, 18, 167-181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5194/cp-18-167-2022, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Weißbach, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Spectroscopic isotope ratio analysis on speleothem fluid inclusions - analytics and paleoclimatic case studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' PhD thesis, Heidelberg University, 225p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='11588/heidok.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='00028559 Wilcox, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Honiat, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Trüssel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Edwards, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Spötl, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Exceptional warmth and climate instability occurred in the European Alps during the Last Interglacial period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Earth Environ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1: 57, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1038/s43247-020-00063-w Yonge, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Stable isotope studies of water extracted from speleothems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' PhD thesis, McMaster University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Zhang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schwarcz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Ford, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schroeder, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Beddows, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' An absolute paleotemperature record from 10 to 6 Ka inferred from fluid inclusion D/H ratios of a stalagmite from Vancouver Island, British Columbia, Canada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Cosmochim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 72, 1014-1026.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Supplementary Material for Constraints for precise and accurate fluid inclusion stable isotope analysis using water-vapour saturated CRDS techniques by Therese Weissbach, Tobias Kluge, Stéphane Affolter, Markus C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Leuenberger, Hubert Vonhof, Dana F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Riechelmann, Jens Fohlmeister, Marie-Christin Juhl, Benedikt Hemmer, Yao Wu, Sophie Warken, Martina Schmidt, Norbert Frank, Werner Aeschbach S1) Hüttenbläserschacht Cave – sample dating Table S1: Pieces of speleothem samples (pool spars and rafts) collected at Hüttenbläserschacht Cave were dated using the Th-U disequilibrium method at the Heidelberg Academy of Sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The analytical procedure followed the methods described in Fohlmeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sample 232Th [ppb] 238U [ppb] 230Th [fg/g] ± (234U/238U) ± (230Th/238U) ± Age Age Corr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' uncor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Hinterm Ballsaal 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 382.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1407 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='04±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='90±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 Kristall häutchen 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 321.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2159 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0053 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3557±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5862±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='04 S2) Closani Cave and Stam 4 annual layer counting Cloşani Cave is located on the southern slope of the Carpathians at an altitude of 433 m above sea level and developed in massive limestones of Upper Jurassic-Aptian age (Constantin and Lauritzen, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The cave is overlain by about 30 m of rock overburden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' A monitoring programme showed microclimatic stability for the cave interior with a mean air temperature of 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 °C and a relative humidity close to 100% for 2010-2012 and 2015 (Warken et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The cave air pCO2 pattern follows a strong seasonal cycle with high values in late summer (up to 8000 ppmV) and lower values during winter (2000 ppmV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Water infiltration occurs predominantly during winter time (October - March) where 75 to 100% of the meteoric precipitation is available for infiltration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Warken et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2018) showed that calcite precipitation is favoured during winter time and reduced in summer, as a result of seasonally varying CO2 concentrations in the cave air and related equilibrium DIC concentrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The water isotopic composition of the drip water in direct vicinity (1 m) of the former location of Stam 4 shows no seasonal cycle and is constant with a mean value of −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2‰ for δ18O and −66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7‰ for δ2H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The relatively small and fast-grown stalagmite Stam 4 was collected from the “laboratory passage” in the cave in 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' It has a total length of 6 cm and an average growth rate of 510 μm per year, as deduced from counting of elemental layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Both summer and winter layers are clearly detectable in the thin sections, whereas winter layers show a compact structure with a lower number of inclusions and the milky-white porous summer layers contain abundant air- and water-filled inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This layering in Stam 4 was induced by the strongly changing pCO2 in the cave air, resulting in a seasonal change in growth rate and corresponding seasonal cycles in Sr and Ba in the stalagmite calcite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Similar seasonal Sr and Ba pattern have also been observed e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', by Treble et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2003), Mattey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2010), and Warken et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The visible annual layers in stalagmite Stam 4 are not as pronounced as the annual cycles in the measured high-resolution Ba concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Ba concentration was measured with a LA-ICP-MS (Agilent 7500 ce with Laser UP-213, Institute of Geosciences Mainz) at 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 µm resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The minima of this record were counted five times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' These five counted layer series were cross-dated to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Layers have to be counted at minimum three times, layers only counted once or twice were deleted from the time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For each layer a mean value of layer thickness was calculated from the five layer thickness series to a master chronology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' This layer thickness chronology results in a growth of Stam 4 from 1910 to 2010, the year of sampling under an active drip site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S3) Radiocarbon dating Four samples were drilled with a hand-held dental burr (1 mm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Calcite powder was acidified in vacuum with HCl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The emerging CO2 was combusted to C with H2 and an iron catalyst at 575°C (Fohlmeister et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Measurements were performed with a MICADAS AMS system (Synal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2007) in the Klaus-Tschira laboratory Mannheim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The results for the four samples show a typical speleothem radiocarbon bomb spike (Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S1, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S1), constraining recent growth of the speleothem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Table S2: Radiocarbon measurement results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Radiocarbon results and errors are expressed in fraction modern (fm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' MAMS lab nr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' depth [mm] 14C [fm] 14C error [fm] 14709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0416 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0029 14710 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0730 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0029 14711 39 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9265 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0025 14712 55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9133 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0024 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S1: Radiocarbon measurements (black) over depth (bottom-axis), plotted to fit the atmospheric radiocarbon anomaly (blue, top x-axis) in the mid to late 20th century.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Year [A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='] 1900 1920 1940 1960 1980 2000 180 180 160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 160 140 140 120 120 100 100 80 80 1900 1920 1940 1960 1980 2000 distancefromtop[mm]Additional figures Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S2: Age assignment of the fluid inclusion samples A) Fluid inclusion sample pieces (labelled B to K) are shown on the left half of the stalagmite slab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The red lines illustrate the assignment of the individual sample blocks to the growth axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The visible lamination was used as guideline for correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sample A is related to the base and due to a disturbed growth structure does not allow to assign any age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Due to the intrinsic uncertainties of this procedure (for details see Weißbach, 2020) we associated age ranges to the individual fluid inclusion samples B to K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' B) Age depth model with distance from top (dft) in cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The chronology was established by layer counting and additional 14C measurements (see S1 and S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 2025 B 2010- 1995- 2 1980- H [C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='] GFED 1965- 3 year 1950 C 1935- E5 B 5 growth axis 1920 Base 1905- 5 4 3 2 1 0 dft[cm] Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S3: Water vapour adsorption by the artificial fluid inclusion system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Water vapour concentration during crushing of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='25 g Iceland spar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The decrease of the water vapour concentration indicates an adsorption of water molecules on the freshly crushed calcite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Using the water amount calibration, it corresponds to about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='023 µl of water adsorption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The reference water vapour background is marked in orange with interpolated linear fit as dashed line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The small inset shows examples of compact and inclusion-free pieces of Iceland spar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 6920+ 6900 6880- 1 cm 6860 water background 6840 water background 6820 iceland spar 6800- crush :35 :40 :45 :50 :55 11:00 :05 :10 time [hour] Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S4: from top to bottom: relative temperature change derived from α(CaCO3-H2O) relative to sample level B (orange dots);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' fractionation factor α(CaCO3-H2O) (grey squares);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' calcite δ18O values (green triangles) corresponding to intervals with an edge length of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 cm of the fluid inclusion sample pieces, with smoothed higher-resolution data (green line);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' fluid inclusion δ18O (blue triangles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' For a better overview the depth (dft) errors of α(CaCO3-H2O) and the calculated temperature change are not shown, but are the same as for the fluid inclusions δ18O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' level B C D E F G K 6 △(T) [K] 3 0 reference levelB -3 -6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 -7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 8180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -8 -9 -10 180 -11 5 4 3 2 0 dft [cm] Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' S5: Samples B-K of stalagmite Stam 4 with replicates from the same growth phases (Table 4) displayed relative to the meteoric water line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The aliquots closest to the growth axis of the stalagmite are shown as red circles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' 45 closest to axis 50 replicates 8H (% VSMOW) 55 60 65 70 75 11 10 9 8 7 9 5 s180 (% VSMOW)Additional Tables Table S3: Fluid inclusion data from the outermost layer of stalagmite Stam 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The distance to the growth axis increases with higher Roman numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Arabic numbers indicate replicates with similar distance from the growth axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Samples in grey are not included in the interpretation and discussion as the water amount was below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 µl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' ID Sample weight (g) Water (µl) Water content (µl/g) δ2H (‰ VSMOW) δ18O (‰ VSMOW) I-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='52 -65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 II-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='95 -64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 II-2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='37 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='75 -64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 II-3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='37 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='76 -64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 II-4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='56 -68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 III-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='81 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='66 -59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 III-2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='51 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='21 -60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 III-3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='81 -63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 IV-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='41 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='57 -63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 IV-2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='83 -63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 V-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='78 -62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 V-2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='78 -62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 VI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='75 -63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 VII 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='94 -65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 Table S4: Precision of fluid inclusion δ18O and δ2H measurements, interpolated from repeated water injections and crushing of water-filled glass capillaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The values refer to an exponential fit to the standard deviation at various water amounts (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The precision at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='02-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 µl are extrapolated using the exponential fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Water amount (µl) Precision (1σ) δ18O (‰) δ2H (‰) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='55 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='54 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='53 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='53 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='47 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='44 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='42 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='40 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='37 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='73 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='66 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='33 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='26 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='24 Additional references: Fohlmeister, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Kromer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Mangini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' The influence of soil organic matter age spectrum on the reconstruction of atmospheric 14C levels via stalagmites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Radiocarbon 53(1), 99–115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Fohlmeister, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Schröder-Ritzrau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Scholz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Spötl, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Riechelmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Mudelsee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Wackerbarth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Gerdes, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Riechelmann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Immenhauser, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Richter, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', and Mangini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Bunker Cave stalagmites: an archive for central European Holocene climate variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Clim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Past, 8, 1751–1764, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='5194/cp-8-1751-2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Mattey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Fairchild, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Atkinson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Latin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Ainsworth, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Durell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Geological Society, London, Special Publications, 336, 323-344.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Synal , H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Stocker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Suter, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' MICADAS: a new compact radiocarbon AMS system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Instr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' B, 259, 7-13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Treble, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Shelley, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', Chappell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=', 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Earth Planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} +page_content='216, 141–153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9AzT4oBgHgl3EQfh_2U/content/2301.01493v1.pdf'} diff --git a/CdFRT4oBgHgl3EQfwDjC/content/tmp_files/2301.13637v1.pdf.txt b/CdFRT4oBgHgl3EQfwDjC/content/tmp_files/2301.13637v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..88d195bc1a6fe5178ef814291bab0e18967c0943 --- /dev/null +++ b/CdFRT4oBgHgl3EQfwDjC/content/tmp_files/2301.13637v1.pdf.txt @@ -0,0 +1,1335 @@ +Tricking AI chips into Simulating the Human Brain: +A Detailed Performance Analysis +Lennart P. L. Landsmeer∗ +Quantum & Computer +Engineering Department +Delft University of Technology +Delft, The Netherlands +Dept. of Neuroscience +Erasmus Medical Center +Rotterdam, The Netherlands +ORCID 0000-0003-0010-7249 +Max C.W. Engelen∗ +Dept. of Neuroscience +Erasmus Medical Center +Rotterdam, The Netherlands +& +Maxeler IoT Labs +Delft, Netherlands +ORCID 0000-0002-5762-1276 +Rene Miedema +Quantum & Computer +Engineering Department +Delft University of Technology +Delft, The Netherlands +& +Dept. of Neuroscience +Erasmus Medical Center +Rotterdam, The Netherlands +ORCID 0000-0002-0447-1083 +Christos Strydis +Quantum & Computer +Engineering Department +Delft University of Technology +Delft, The Netherlands +& +Dept. of Neuroscience +Erasmus Medical Center +Rotterdam, The Netherlands +ORCID 0000-0002-0935-9322 +Abstract—Challenging the Nvidia monopoly, dedicated AI- +accelerator chips have begun emerging for tackling the compu- +tational challenge that the inference and, especially, the training +of modern deep neural networks (DNNs) poses to modern +computers. The field has been ridden with studies assessing +the performance of these contestants across various DNN model +types. However, AI-experts are aware of the limitations of current +DNNs and have been working towards the fourth AI wave +which will, arguably, rely on more biologically inspired models, +predominantly on spiking neural networks (SNNs). At the same +time, GPUs have been heavily used for simulating such models +in the field of computational neuroscience, yet AI-chips have not +been tested on such workloads. The current paper aims at filling +this important gap by evaluating multiple, cutting-edge AI-chips +(Graphcore IPU, GroqChip, Nvidia GPU with Tensor Cores and +Google TPU) on simulating a highly biologically detailed model of +a brain region, the inferior olive (IO). This IO application stress- +tests the different AI-platforms for highlighting architectural +tradeoffs by varying its compute density, memory requirements +and floating-point numerical accuracy. Our performance analysis +reveals that the simulation problem maps extremely well onto the +GPU and TPU architectures, which for networks of 125,000 cells +leads to a 28x respectively 1,208x speedup over CPU runtimes. +At this speed, the TPU sets a new record for largest real-time IO +simulation. The GroqChip outperforms both platforms for small +networks but, due to implementing some floating-point operations +at reduced accuracy, is found not yet usable for brain simulation. +Index Terms—AI accelerator, GPU, Brain simulation, com- +puter architecture +I. INTRODUCTION +To date, GPUs have achieved spectacularly better perfor- +mance in deep learning (DL) than CPUs [1]. Recently, novel, +specialized AI hardware platforms have begun to emerge, +holding the promise of accelerating training and inference +even further. The workloads targeted mainly are artificial, and +specifically, deep neural networks (DNNs), which have shown +great potential in recent years. On the other hand, highly +biologically plausible models such as conductance-based (e.g., +Hodgkin-Huxley) neurons have not attracted similar atten- +tion from AI-chip manufacturers and analysts alike. This is +strange, given that biological brains – the inspiration behind +these DNNs – are modeled using equations built on similar +elementary functions. What is more, high-detail models are +touted as the next AI wave, which is intended to be more +biologically inspired than its predecessors [2], [3]. Therefore, +it makes sense both for neuroscientists and for AI researchers +to reach for these AI accelerators and deploy them for brain +simulations; yet no performance studies exist. +In this work, we evaluate multiple, cutting-edge AI chips +(Graphcore IPU [4], GroqChip [5], TensorRT-capable GPU [6] +and Google TPU v3 [7]) on simulating a highly biologically +detailed model of a brain region, the Inferior-Olivary nucleus +(IO). Biologically detailed brain models, such as the IO, +chiefly involve addition, multiplication, division and expo- +nential operations, arranged as sparse computations. There +is, thus, a large operation overlap with artificial networks. +Therefore, new AI chips seem a good fit for these types +of models. This IO application represents timely, relevant +research and is constructed as an extended-Hodgkin-Huxley +model. It is very suitable for stress-testing the different AI +platforms and highlighting architectural tradeoffs by adjusting +the compute density, memory requirements and numerical +accuracy of the IO model. Evaluation is performed using the +application encoded as a TensorFlow 2 [8] kernel, which in the +case of the GroqChip, is necessarily compiled to its ONNX [9] +equivalent. ONNX is an intermediary tool used to convert +models between different machine-learning (ML) frameworks. +In the analysis of the different accelerators, the exact same +TensorFlow model is used, ensuring a fair comparison across +the board. This is either used directly or ported to ONNX +via the Python package tf2onnx. TensorFlow is a high-level +API, requiring little to moderate intervention from the user +and is therefore suitable for a wide user base. A schematic +overview of this setup is presented in Fig. 1. +While all accelerators in this study support chip-to-chip +communication, this work constrains the application to single- +chip performance comparisons; multi-chip is left as future +1 +arXiv:2301.13637v1 [cs.LG] 31 Jan 2023 + +IO-model +TensorFlow +CPU +GPU +IPU +ONNX +tf2onnx +CPU +GPU +Groq +TPU +Fig. 1: Overview of the performance-analysis strategy followed in this work +work. The contributions of this work are: +• We take a deep dive into four cutting-edge AI architec- +tures with a focus on biologically plausible spiking neural +networks (SNNs). +• We build the first ML-library-based, efficient implemen- +tation of a detailed brain model, the Inferior Olive (IO). +• We deploy the IO model onto the four AI platforms and +benchmark their performance and numerical accuracy. +• We demonstrate that modern ML libraries are seman- +tically able to model classical problems in scientific +computing, offering large performance gains and reduced +development times while remaining hardware-agnostic. +• Lastly, this work is the first to ever simulate a realistic +mouse-sized IO model with real-time performance. +The paper is organized as follows: Section II presents +related works in the field. Section III introduces the IO +model used as our benchmarking application, while Section IV +briefly presents the four AI architectures under evaluation and +attempts some performance predictions. Section V ensures +experiment reproducibility by detailing the experiment param- +eters and platform configurations used to acquire our results +presented in Section VI. A general discussion of our findings +is included in Section VII and conclusions in Section VIII. +II. RELATED WORKS +Models of biological neurons come in various levels of +detail, ranging from population-level dynamics, from simpli- +fied models of single neurons to highly detailed biophysically +realistic neurons [10]. Coarse models of single neurons, no- +tably leaky-integrate-and-fire (LIF) type models have seen a +renewed interest in the DL-community (often referred here +to as SNNs) as an alternative to artificial neural networks +(ANNs) [11]. In contrast, computational neuroscience is usu- +ally interested in biophysically accurate models that model the +underlying biological processes in a way that makes it possible +to gain insights about these processes. These conductance +based models can be made more realistic by modeling of +their 3-dimensional structure (the morphology) using multiple +discretized compartments. Multi-compartmental conductance- +based neurons are then simulated by explicit calculation of +electrical currents flowing within, between and into discretized +compartments [12]. +Due to the computional resources needed for large-scale +conductance level brain simulations, computational neuro- +science was an early adopter of general-purpose GPU (GP- +GPU) in the HPC environment. Notable GPU-based ex- +amples of large-scale, biologically detailed brain simulators +include CoreNeuron [13], which enabled porting of exist- +ing conductance-level NEURON [14] models to the GPU, +and more recently, Arbor [15], a library-based approach to +performance-portable, large-scale brain simulation. Their suc- +cess shows that the computational problems of neuroscience +map well to GP-GPU platforms and result in significant +speedups for large-scale brain models. Still, even with hand- +optimized CUDA code [16], the IO application (to be detailed +in the next section) at biological sizes runs order-of-magnitude +slower than the biological brain, hampering research. +With respect to TensorFlow-based implementations of +conductance-level models, there is PymoNNto [17], an attempt +to bring the Brian [18] API of neural models to TensorFlow. +While faster than the Brian simulator on a GTX1080 GPU, +performance was not a primary goal and the architecture pro- +hibits optimizations using TensorFlow’s JIT compiler backend, +by scattering the computational definitions across the code- +base. Although this shows that TensorFlow does express the +right API surface for neural models, no efficient ML-library +based conductance-level GP-GPU brain simulators exist. +Simplified SNN models have readily available GP-GPU +implementations of LIF and similar models as well. High- +level ML-libraries like TensorFlow and PyTorch allowed for +the hardware-agnostic implementation of their neural dy- +namics, considerably lowering development efforts to build +SNN simulators for GP-GPU simulation. For example, Nengo +DL [19] allows for the GPU-based simulation of existing SNN +models defined in the Nengo framework using TensorFlow. +Beyond just simulating neural networks on the GPU, novel +developments in surrogate gradients for event-based SNNs +and automatic gradient calculation provided by ML-libraries +allowed for the nearly simultaneous appearance of similar +SNN deep-learning libraries Norse [20], snnTorch [21] and +SpikingJelly [22]. BindsNET [23] is another, efficient SNN +implementation in PyTorch with a focus on reinforcement +learning. Again, these project show that not only ML-libraries +have the expressive power and performance needed to run +large-scale SNN models, also that this arguably can be devel- +oped faster than hardware-specific low-level code. As these +libraries had DL-oriented goals in mind, none of these imple- +ments multi-compartmental, conductance-level neural models. +Simplified SNN models also led to the development of +specialized neuromorphic hardware to simulate them. Numer- +ous publications show the benefits of using these chips for +simplified-SNN simulation. For a short review of the various +chips, we point the reader to [24]. While exciting with respect +to low-power inference of SNN-based deep-learning models, +these chips, due to their hardwired dynamics, lack the ability +to simulate conductance level neural models. +On AI chips that have the semantic power to capture +more general HPC workloads, little has been published about +both simplified and conductance-level SNNs. With respect +to simplified SNN simulation, we find just one preprint tar- +geting an AI chip, introducing an IPU-optimized version of +2 + +snnTorch [25]. Training throughput of a dense 3-layer LIF +network on an image classification task is 3.4x higher on the +IPU than on the A100. The reported performance benefits +decrease if the network size is increased, with the A100 +apparently underutilized throughout the entire application. +This shows the potential of using the IPU for simple SNN +workloads, but the performance characteristics of other AI +chips or more complex SNNs are not yet obvious. +No works have been published targeting AI chips with +conductance-level models or other biologically realistic brain +simulation scenarios, neither using high-level ML libraries or +hardware-specific SDKs. To the authors’ knowledge, this is the +first work to implement an efficient, conductance-level, multi- +compartmental neuron in an ML library and also the first to +benchmark multiple AI chips on this workload class. +III. THE INFERIOR-OLIVE APPLICATION +The IO is a intrinsically oscillating brain region located +in the brainstem, and is key to motor control and learn- +ing [26]. The estimated neuron population for the mouse +brain is approx. 104 neurons [27] and for humans between +106 − 107 neurons [28]. These numbers will be referred to +during hardware-performance evaluation (Section VI). In this +work, we will capture in TensorFlow 2 the IO nucleus as +an extended Hodgkin-Huxley (eHH) model, conductance-level +brain model, first published in [29]. The model is a good +example of the computational load of realistic brain models +and, also, a good fit for our benchmarking purposes, since +it captures complex neuron dynamics and fast interneural +communication (in the form of gap junctions), as will be +shown next. +We restate the IO-neuron main equations in this section, but +refer the reader to [29] for more details. In addition, we model +connectivity based on the network described in [30]. +1) The cable model: +Cm +dV (i) +dt += − +� +k∈Channels +I(i) +k +− +� +i∈Compartments +Ik,j +− +� +i∈Gap junctions +Igj,k,j − I(i) +app +(1) +The eHH model describes the membrane that envelops the +neurons as a capacitor. The cell internal voltage can thus be +calculated by integrating currents flowing into and out of the +cell (eq. 1). Here, Iapp is an optional term describing externally +applied currents by the experimenter. +2) Channel currents: Channels (CaL, h, KCa, Na, Kdr, K, +CaH, Na, K) allow currents to flow through the cell membrane. +They produce this current as function of internal state variables +changing over time. In general, this current (eq. 2) results from +the potential difference to an channel specific reversal potential +E multiplied by the product of one or more internal gating +variables, each optionally raised to an integer power (eq. 2). +The gating variables follow an Ordinary Differential Equation +(ODE), that brings them to a certain cell-voltage dependent +steady state at a given speed (eq. 3). These latter equations +Listing 1 Axonal sodium-channel current +m inf = 1/(1+ t f . exp ( −(V axon+30) / 5 . 5 ) ) +h +inf = 1/(1+ t f . exp ( ( V axon+60) / 5 . 8 ) ) +tau h = 1.5* t f . exp ( −(V axon+40) /33) +dh dt = ( h inf −h ) / tau h +I na += g Na * ( V axon−V Na) * m inf **3* h +Listing 2 Sparse gap-junction current +V d i f f += +t f . gather ( V dend , +gj +src ) \ +− +t f . gather ( V dend , +g j +t g t ) +I +per +gj = V d i f f +* +g gj +* +(0.2 + \ +0.8 +* +t f . exp ( −0.01* V d i f f * V d i f f ) ) +I gapp += +t f . tensor scatter nd add ( +t f . zeros +like (V) , +t f . reshape ( gj +tgt , +( −1 ,1) ) , +I +per +gj ) +are usually gaussian or sigmoidal functions of the voltage. +For certain fast operating channels we set n(t) = n∞(V ) as +a numerical stability optimization. +Ii = ¯gi +�� +k +ni,k(t)mk +� +(V − Ei) +(2) +τn (V ) dn +dt = n∞ (V ) − n (t) +(3) +3) Compartmental currents: A single IO cell consist of +three separate compartments, the axon, soma and dendrite. +Currents flowing between different compartments are modeled +resistively as: Ii,j = gi,j (Vj − Vi) +4) Gap-junction currents: Gap junctions are direct electri- +cal connections between different IO cells and allow current +to flow between them. They follow experimentally determined +Connexin-36 protein dynamics: +Igj = ggj∆V +� +0.2 + 0.8 exp +� +−∆V 2/100 +�� +(4) +with ∆V the potential-difference between two connected cells. +5) Topology: The real IO looks like a large, folded sheet +with mostly local connectivity. As approximating this structure +is not a focus of this paper, our model neurons are assumed +to exist on a discrete 3-D grid with wrap-around connectivity +(i.e., a hypertorus). This should exhibit the same non-local +memory-access patterns as a more realistic model. Connec- +tions are sampled as a function of inter-neuron distance r on +a radially symmetric distribution: p(r) ∝ u(rmax − r)(e−r2 − +e−r2 +max)n(r), where n(r) is the density of neurons in the +volume shell around r. This distribution is sampled until we +have 10 connections per neuron on average. +6) TensorFlow Translation: The previous equations sum up +to a total of 14 ODEs per neuron. This system of ODEs is +translated to a series of TensorFlow operators in Python. By +defining the model in TensorFlow instead of using platform- +specific APIs, we make sure all platforms have equal op- +timization opportunities. Furthermore, TensorFlow naturally +translates to ONNX models, which is the only high-level +API available for GroqChip. Straightforward translation to +TensorFlow is achieved by storing all state in a large 2d-array +and direct substitution of mathematical expressions by their +3 + +TensorFlow counterparts (see Listing 1). When certain model +parameters need to be user-specified (e.g., gi or Iapp), these +are passed to the TensorFlow kernel, which then needs to be +recompiled before running again. +Translating gap junctions to both TensorFlow and ONNX +in a performant way requires expressing them as vector +operations, as opposed to more traditional for-loop-based +approaches [16]. With just 10 connections per IO neuron on +average, cell-to-cell communication is sparse. The effective +operation from a TensorFlow perspective is two sparse-matrix +(SM) multiplications. As a novel contribution in computa- +tional neuroscience, we model those as tf.gather and +tf.tensor_scatter_nd_add operations (see Listing 2). +Apart from being more specific and memory-efficient in +describing SM multiplications, these functions have a direct +mapping to ONNX operators as Gather and ScatterND since +ONNX specification opset 11, contrary to SM multiplica- +tions which currently are not possible in ONNX. +At each timestep, ODEs are integrated using Forward-Euler +to produce the next state array, resulting in a hardware- +agnostic timestepping function. For TensorFlow backends, a +JIT-compilable TensorFlow function is constructed that exe- +cutes 40 timesteps at a ∆t of 0.025ms, resulting in a 1ms +sampling accuracy. For ONNX backends, the timestep function +is converted to an ONNX model and either the public onnx- +runtime library or Groq compiler is used to compile this +into executable code. This does not lead to the best possible +performance by default, thus hardware-specific optimizations +are discussed in Section V-B. +IV. TARGET PLATFORMS +Hardware platforms were selected from the top-performing +AI accelerators in the MLCommons MLPerf training bench- +mark v2.0 [31]. From this, the Intel Habana Gaudi was not +available to us. The GroqChip was included as it was already +available through academic channels. An overview of all AI +chips is given in Tab. I and will be presented next. A modern, +server-grade CPU is also included as a baseline for our +subsequent performance and numerical-accuracy comparisons. +1) Nvidia GPU [6]: These are well-established accelerators +in the HPC world. With the introduction of the Tensor Cores +in Nvidia GPUs, they also became well-known for their AI +capabilities. Tensor Cores are capable of matrix multiplications +in a very efficient manner. The current generation of tensor +cores can support up to TensorFloat-32 (TF32) precision TF32 +is a floating point with float 32 dynamic range but float 16 +precision. There are multiple ways of interacting with them; +e.g., via cuBLAS and TensorRT. +2) GroqChip [5]: This is a deterministic Tensor Streaming +Processor (TSP), resembling a modified systolic array archi- +tecture. The chip layout is a conventional 2D mesh of cores, +each with its own dedicated functionality. A column of these +cores – all of the same type – is called a functional slice. +Data travels horizontally, executing 320 SIMD-style lanes. A +single instruction can control 16 lanes, effectively creating 20 +superlanes that can all be operated independently from each +other. The functional slices consist of one vector processor +(VXM), two matrix execution modules (MXM), switch ex- +ecution modules (SXM) and memory modules (MEM). Each +functional unit (core) accepts a set of instructions; for example, +the MEM unit could receive the instruction to put a vector onto +one of the data streams or store the results from the data stream +in its available SRAM. As soon as data is loaded onto a data +stream, it automatically ‘flows’ in the direction of the stream, +which can be either EAST-bound or WEST-bound. When an +addition needs to be performed, both inputs need to arrive +at the same time as the add instruction at the corresponding +VXM core. This design choice puts the burden of optimization +on the software generating the instructions. This is either done +by the Groq compiler automatically from an ONNX-graph +input or manually controlled by a user through the exposed +Groq-API, which has different levels of abstraction on top of +the Groq-ISA. To support the creation of large-scale systems, +the GroqChip has dedicated Chip-to-Chip modules that are +capable of performing off-chip communication without losing +their determinism [32]. For this work, we will mainly utilize +the VXM and MEM units, The memory modules add up +to a total of 220 MiB of on-chip SRAM. Each superlane +implements a 4x4 mesh of vector ALUs capable of doing +x16-SIMD. Each ALU has a 32-bit input operand but with +the exception of additions and multiplications, instructions are +done in a reduced-precision FP32 format. +3) Graphcore IPU [4]: The Graphcore Intelligence Pro- +cessing Unit (IPU) is designed for efficient execution of fine- +grained operations across a large number of parallel threads. +By design, the IPU offers true Multiple Instruction, Multi- +ple Data (MIMD) parallelism. This unique style of parallel- +processor design adapts well to fine-grained computations that +exhibit irregular data-access patterns. Each IPU contains 1,472 +tiles, containing 1 core and 624KiB of SRAM memory. A sin- +gle core can only access the memory in its own tile. Intra-IPU +communication relies on a powerful, low-latency interconnect +called IPU exchange. For inter-IPU communications, each +chip contains 10 so-called IPU links. The IPU compute +units, called Accumulating Matrix Product (AMP) +units, support FP32 arithmetic and are designed to accelerate +matrix multiplications and convolutions. With respect to the +programming model, the IPU adopts the Bulk Synchronous +Parallel (BSP) model [33] through which it organizes its +compute and data-exchange operations. This abstraction for +parallel computations consists of multiple sequential super- +steps. A superstep consists of a local computation phase; +every process (tile, in the IPU case) operates in isolation +performing compute only on its local memory, followed by a +communication phase where each process can exchange values +needed by other tiles. These activities are concluded with a +barrier synchronization phase; only when all processes have +reached the barrier can the next superstep be started. Because +of this, the IPU can be described as a true BSP machine. +4) Google TPU [7]: The TPU (version 1) was designed +as a systolic-array processor for inference, only supporting +8/16-bit operations. By supporting only matrix-multiply and +4 + +TABLE I: Overview of all hardware used in experimental setups +Device +On-chip Memory +Process node +Transistor count (Bn) +Base-boost freq. (MHz) +TDP (W) Software +AMD 3955WX CPU * +128 GB DDR4 +7 nm +19.94 +3900 - 4300 +280 +TF 2.11.0 +GroqChip TSP +230 MB on-chip +14 nm +26.8 +900 +- +Groq SDK 0.9.1 *** +Nvidia A100 GPU +80 GB HBM2e +7 nm +54.2 +1275 - 1410 +400 +TF 2.11.0 +Graphcore IPU (GC200) ** +900 MB on-chip +7 nm +59.4 +1330 +185 +TF IPU 2.6.3+gc3.0.0 +Google TPUv3 +32 GiB HBM +16 nm +(est.) 11 +940 +450 +TF 2.11.0 +*AMD Ryzen Threadripper PRO 3955WX (16-Core) | **Single M2000 in IPU-POD16 (with 4 GC200 chips) | ***TF2ONNX 1.13.0 and ONNX opset 16 +basic nonlinear activation functions, it was unfit for training +neural networks. Consequentially, an HPC application – for +example, the one demonstrated in this paper – would also +not be a suitable fit for this processor. However, with the +TPUv2, Google shifted their focus towards supporting training +on their TPU chips. Google added a vector-processing unit +(VPU) and changed the matrix-multiply units to support the +FP16 format (FP32, with only a 7-bit mantissa). The VPU +most likely supports higher precision, as can be deducted from +results in this work but no confirmation of this is found in the +public domain. These two major (micro)architectural changes +made it possible to run a wider range of applications including +training neural models on the TPU. All are supported through +the Google XLA compiler taking TensorFlow as input. The +TPUv3, assessed in this work, is an upgrade in terms of +functional-unit count, higher memory speed, and optimized +chip layout, but did not include any fundamental changes. +A. Performance Predictions +The IO application has two components that map differently +onto different types of hardware: i) a part with embarrassingly +parallel computations for updating local neuron states; and +ii) a part with SM computations for exchanging membrane +voltages over gap junctions. Before we proceed to the actual +experiments, we attempt performance predictions, driven by +the idiosyncrasies of the different AI-chip architectures. +Embarrassing parallelism: These are calculations for up- +dating the state of every single neuron. This boils down to +elementwise vector operations. The GPU architecture featuring +one Warp execution per Streaming Multiprocessor or multiple +Tensor Cores is very well-suited for this type of parallelization. +The TPU and the GroqChip are both based upon systolic-array +architectures, both natively supporting Matrix-Multiplication +but also Vector-Operation operations that can be utilized +for these calculations. In fact, since neuron updates require +only +1-D +data, the Matrix-Multiplication units (which is +the focus of these chips) are effectively underutilized in these +architectures. The IPU, with a large amount of very small +general-purpose cores, should also do well on parallelizing +neuron-state calculations, however, its architecture is geared +towards irregular data-access patterns, which is not essential +to the particular task. The extra overhead of such advanced +features, therefore, will not help performance in terms of +computing this embarrassingly parallel part of the simulation. +Communication: +As described previously, gap-junction +communication employs the gather-scatter operations (essen- +tially, SM operations) from TensorFlow. For either the GPU or +the IPU, such operations are handled better due to the different +execution paths that can be handled within the architecture by +design. In contrast, the GroqChip and TPU need to handle +these differently: a naive approach would be to enforce dense- +matrix operations via one-hot encoding of operands and, +then, utilizing the matrix-multiplication hardware. In case the +GroqChip or the TPU happen to use such a strategy, we expect +that performance will deteriorate very rapidly or memory will +be depleted with increasing IO-network sizes. +1) CPU + TensorFlow: For this platform, JIT compila- +tion through the XLA compiler [34] will be used; it will +automatically utilize the many threads nowadays available in +CPUs. We expect decent performance and very accurate results +because of full FP32 support. Since it is the hardware on which +brain models are traditionally executed and gives accurate +results, the CPU will form our baseline. Accelerators should +outperform this implementation in terms of runtime, especially +for larger network sizes. +2) GPU + TensorFlow: The XLA compiler is used, which +optimizes the graph resulting in a single kernel launch. Among +others, it does this by “fusing” the calculations. Moreover, this +fusion keeps intermediate values stored in GPU registers [35]. +The TensorFlow backend for CUDA use Tensor Cores, at +a loss of FP32 accuracy. However, this only happens when +explicit matrix-multiplications are requested and not as an +optimization. So in our case, the compiler will only use float32 +CUDA operations. +3) IPU + TensorFlow: The IPU architecture is not a perfect +fit for the embarrassingly parallel part of the computation. +For the interneuron-communication part, the BSP model is a +better fit and thus is expected to perform better. However, as +the topology is given as an unknown parameter to the model, +the IPU compiler can not be expected to allocate neighboring +cells on adjacent tiles, resulting in sub-par communication +performance. Available memory should easily be able to +handle large problem sizes. +4) TPUv3 + TensorFlow: The TPU supports FP32 and +is expected to handle our workload, especially for the un- +connected case, very well. As Google put much effort into +TensorFlow support, gather-scatter operations are expected to +be optimized, to the best of the hardware capabilities. Because +of FP32 support in the v3 model, we expect correct numerics +in the output, as well. +5) CPU/GPU + ONNX: Expectations are the same as for +CPU/GPU + TensorFlow. We expect the XLA compiler to +outperform the ONNX runtime slightly for the CPU case +simply because it can perform whole-program optimization. +For the GPU, this effect is expected to be much larger and +the TensorFlow is expected to dominate ONNX as the ability +5 + +to fuse kernels will be a big advantage for TensorFlow over +single-kernel invocations in ONNX. Especially the invocation +overhead for small GPU kernels will hurt the performance +of the ONNX-GPU-runtime. TensorRT is also a supported +backend in ONNX that is expected to outperform the CUDA +runtime in performance; it will, however, drop precision as the +backend switches to TF32 numerics. +6) GroqChip + ONNX: The GroqChip is a new, upcoming +modified systolic-array processor. Its compiler takes in the +ONNX graph but is not limited to executing this on an +operation-per-operation basis as it recompiles the full ONNX +graph at once. Therefore, it can potentially perform the same +optimizations as the XLA compiler for the TPU. As the first +version of the architecture, current compiler development is +still exploring ways to map non-standard ML-operations to +the hardware. Besides, the GroqChip VXM is not capable of +doing all operations in IEEE FP32 arithmetic. Because of this, +it can be expected to perform slightly better than the TPU at +the cost of reduced accuracy. +V. EXPERIMENTAL SETUP +A. Benchmarking Parameters +Each platform is benchmarked for performance on a set +problem (i.e., network) size as well as for its performance +scalability by simulating the IO network for small population +sizes in the range [43, 53, . . . , 203] and, again, for larger sizes +in the range [303, 403, . . . , 1003], where the third power is +an artifact of the cubic network-topology generation method. +These experiments are focusing on four different aspects of +each AI platform, discussed next. +1) Unconnected Network: By removing the communica- +tion step (gap junctions) from the model, we obtain a (bio- +logically unrealistic) compute-heavy, embarrassingly parallel +workload. First, we measure the setup time for each AI +platform, including on-chip buffer allocation, Ahead-Of-Time +(AOT) compilation or definition of Just-In-Time (JIT)-enabled +functions. Next, we simulate an IO network for 100ms of +biological time and take the minimum wall-clock time from +5 runs (including data-transfer times). For JIT targets, the +first runtime (if outside the other runtimes’ standard deviation) +minus follow-up runtimes is taken as the JIT compilation time, +such that we can compare setup times between AOT and JIT +targets. +2) Connected Network: By restoring gap junctions into the +IO network, we assess communication overhead. Runtimes are +obtained in an identical way as before, yet the expectation here +is that they are markedly longer than the unconnected case. +3) Numerical Validation: Measuring performance is our +main focus, yet this must not come at the cost of functional +correctness. Here, we simulate connected networks up to 729 +neurons for 10 seconds of biological time and numerically +compare the various results to the reference CPU output. +4) Numerical Stress-test: Here, we simulate the IO in a +more biologically realistic way that is of interest to neurosci- +entists: We add more variance to the neural parameters and, +most importantly, a lot of external current inputs (simulating +other brain regions) that will evoke action potentials (spikes) +in the IO dynamics. These fast transients will stress-test the +numerical performance of the AI hardware, especially non- +IEEE754 targets (Tensor Cores and GroqChip). We perform +this experiment on the smallest 64-neuron network and then +compare for numerical accuracy against the CPU. +Benchmarking +is +implemented +in +a +publicly +avail- +able +and +modular, +extensible +framework, +downloadable +from GitLab https://gitlab.com/neurocomputing-lab/Inferior +OliveEMC/ioperf. +The +main +benchmarking +script +auto- +discovers available hardware, runs the appropriate benchmarks +and records results. Used software versions are also shown in +Tab. I. +B. Hardware-specific Optimizations +While our original goal was not to write platform-specific +code, we found that by default some of the AI platforms did +not perform very well. For example, most platforms defaulted +to copying over the entire parameters arrays for each kernel +invocation, which was not needed for this mostly constant data. +For a fair comparison between hardware platforms, we allowed +optimizations to be applied to hardware-specific code that +either led to operation fusion across different execution kernels +or prevented unnecessary device-host data transfers. The exact +optimizations have been applied in close collaboration with +Graphcore and Groq for the respective chips, and are as +follows: +1) TensorFlow XLA: The TensorFlow graph executor typi- +cally performs each operation separately when a graph is run +with a corresponding kernel invocation. A different way to +run TensorFlow models is made available by XLA, which +turns a TensorFlow graph into a series of kernels created for +a particular application. These kernels can take advantage of +application-specific information for performing optimizations, +e.g., operation fusion. The CPU, GPU, and TPU are the +three available backends for the XLA compiler. For the IO +application, a TensorFlow wrapper function was implemented +that fuses up to 40 timesteps together for each call in order to +fully exploit the XLA compiler. +2) ONNX: Except for the GroqChip, all ONNX imple- +mentations build on top of onnxruntime or onnxruntime- +gpu. We enable all backend-supported graph-optimizations. +Explicit IOBindings are used to prevent unneeded host- +device data copies. Parameters are copied once to the device +at simulation start. Then, state is allocated twice, with each +timestep toggling between two buffers, one as the input state +and the other as the output (next) state. For TensorRT, we +leave the default behavior of using TF32 enabled, otherwise, +it will not utilize its Tensor Cores. +3) Groq: After the compilation of an ONNX graph with +the Groq Compiler, the binary can be executed directly on the +GroqChip. A naive approach here would be to invoke this +binary 40 times for 40 timesteps and move the data back +and forth continuously since the GroqChip only has SRAM +which is fully managed at compile time. However, the Groq +Compiler is able to tie input and output tensors together into +6 + +10 +1 +100 +101 +102 +103 +CPU (ONNX) +CPU (TF) +10 +1 +100 +101 +102 +103 +GPU (TF) +IPU (TF) +102 +103 +104 +105 +106 +10 +1 +100 +101 +102 +103 +TPU (TF) +102 +103 +104 +105 +106 +GroqChip (ONNX) +Network size (#neurons) +Time required to simulate one biological second (s) +Fig. 2: Runtime performance (lower is better), comparison between CPU baseline, GPU and AI chips. For scale, the mouse (•) and human (▲) Inferior Olive +are shown as running in realtime in all figures. The CPU is included twice to explain the observed switching behavior of the IPU. On the CPU, while the XLA +optimizer builds a single-core, connected-network simulation, it builds a multicore, unconnected-network simulation (as observed by load-testing), leading to +an unexpectedly slow simulation for the latter case. The same behavior can be observed for the IPU, which uses the XLA compiler as well. +a persistent memory buffer in the on-chip SRAM. Utilizing +this results still in 40 invocations of the binary but skips the +continuous I/O between host and accelerator. A more radical +way to improve the performance is to compile the 40 timesteps +into a single ONNX graph that can then be converted with the +Groq Compiler; this method will reduce 40 invocations to a +single invocation. We implemented all optimizations as long +as the compiler was able to compile them. The 40 timesteps at +once quickly ran into compiler errors with growing networks. +4) Graphcore: +The IPU has architectural support for +streaming memory. This means that we can run a single +program on-chip for the entire simulation that will stream +out samples every 40 timesteps. The inner, unsampled 1- +msec 40-timestep loop, is run using ipu.loops.repeat, +after +which +the +recorded +voltages +are +pushed +to +an +IPUOutfeedQueue with a 200-sample size. This is, then, +looped once more using ipu.loops.repeat for the re- +quired amount of milliseconds to simulate and wrapped in +a TensorFlow JIT function. Furthermore, the fast-math op- +timization is enabled, 128 IPU tiles are reserved for I/O +with place_ops_on_io_tiles = True and program +execution is limited to a single IPU. +VI. EXPERIMENTAL RESULTS +With the exception of the reference CPU, for brevity we +report here either TensorFlow or ONNX results, depending +on which of the two leads to better performance. Overall +performance plots are shown in Fig. 2 and will be detailed +in the next sections. In general, it is found that, for the +IO application, the ONNX ports are outperformed by their +TensorFlow counterparts. This is due to the fact that the +onnx-runtime library currently does not perform as extensive +optimizations as the XLA compiler. For example, the CUDA +target translates each compute step into a single predefined +kernel call. The TensorRT backend performs operator fusion, +resulting in multiple kernels that chain arithmetic operations. +Still, the CUDA XLA-backend vastly outperforms both ONNX +CUDA targets, and as such we removed the corresponding +findings from the main analysis. Note that the Groq platform +only supports AOT compilation of ONNX models. +A. Compilation Time +Both software stack and hardware influence program setup +time, as illustrated in Fig. 3 for the largest network (729 cells) +that could fit in all AI chips. The CPU compiles the fastest +across the board as we have a direct translation of ONNX +operations to their CPU-optimized callbacks. The TensorFlow +(XLA) version, not included in the figure, was much slower +7 + +100 +101 +102 +103 +Compile time (s) +(A). Network type at compile time (n=729) +Unconnected +Connected +CPU +IPU +GPU +TPU +GroqChip +10 +2 +10 +1 +100 +101 +102 +Run time (s) +(B).Connected network size at run time +n=64 +n=729 +n=125000 +1.0x +2.3x +8.7x +7.7x +32.9x +1.0x +4.3x +17.4x +16.4x +2.6x +1.0x +28.6x +269.5x +1208.5x +Fig. 3: (A) Setup (AOT+JIT compile + memory allocation) times for a network +of 729 neurons in both Unconnected- and Connected-network configurations. +JIT compile times are extracted from the first run of 5 performance runs +and added to the initial setup time (if outside one standard deviation). (B) +Performance and speedup of different AI chips vs. the CPU reference on +the Connected benchmark, for different network sizes. Sizes were chosen to +be the smallest (64) and largest connected networks that could fit on the +GroqChip (729) and the TPUv3 (125,000). The rightmost GroqChip bar is +absent, corresponding to the model that could not be compiled. +due to the increased compiler complexity. Both the IPU and +GPU exhibit similar JIT compilation speeds. The GroqChip’s +AOT compiler takes significantly longer for this workload due +to the explicitly concatenated 40 timesteps. The GroqChip +version with a single timestep per program compiles much +faster than the Graphcore or A100 versions, but at a small +performance loss. +B. Runtime Performance +1) Unconnected Network (embarrassingly parallel): For +unconnected cells, neural dynamics are expressed only using +vectorized operations. As predicted, this fits the compute +paradigm of the GPU very well. Performance scales linearly +with problem size (horizontal line), showing that the GPU +cores are underutilized for all simulated network sizes. +The TPU and GroqChip, as systolic-array-based processors, +were expected to be a poorer architectural fit because large +parts of the chip would be left unused. Still, the focus on +efficient vector operations could result in speedups. We can +indeed observe this in Fig. 2, although in different ways. The +TPU, similar to the GPU, flatlines across all problem sizes, +although being 4.1x slower. Consequently, memory capacity +is not a problem for the TPU but performance capping in raw +single-cell computations due to architectural design choices. +In contrast, the GroqChip starts out 2.0x faster than the GPU, +quickly loses this edge and, between 103 and 104 cells, starts +to hit its memory-capacity limits, degrading performance with +higher problem sizes. Networks of more than 640, 000 cells +simply do not fit on the chip. The GroqView analyzer confirms +that the problem is core-to-core-memory communication and +that most dedicated cores are not used most of the time. +The IPU was expected to perform well given its large core +count but the very homogeneous compute load proved a poor +fit for its MIMD design, leading to large under-utilization +of the chip. With respect to real-time performance, only the +GPU followed by the GroqChip (ignoring memory issues) and +marginally the TPU makes the 1-sec cut. +2) Connected Network (high communication overhead): As +predicted, communication patterns induced by a small number +of gap junctions lead to a large performance reduction of 4.6x +for small networks on the GPU. For higher problem sizes, +performance drops at a growing rate, with a 141x degradation +for networks of 106 cells. The AI chips fare much better here, +most of which initially shows a less than 20% reduction in +performance against their unconnected counterparts. +As an exception, the GroqChip’s connected-network sim- +ulation runs 2.5x slower than the unconnected version; even +so, it outperforms the GPU on very small, connected neural +networks by a 3.7x speedup. However, the GroqChip (as +expected) converts the SM communication into a dense- +matrix multiplication, making the best out of its deterministic- +execution hardware. This quickly leads to prohibitively large +matrix multiplications and, beyond 729 cells, the scheduler +is unable to allocate the necessary instructions. In effect, the +GroqChip loses its edge over the GPU for larger networks. +In contrast, the TPU shows nearly identical behavior to +the unconnected case and its performance does still not scale +with problem size. This changes around networks larger than +105, where the JIT compiler seems to run into performance +problems. Here, we observed large random fluctuations in +performance that either led to approx. 1-sec or very long more +than 400-sec run-times over the 5 repeated runs. We expect +that these originate from memory limits of the TPU and had +to stop benchmarking due to impractically large run times. +However, we could not determine the true source of variation. +The IPU, severely underutilized for the unconnected case, +sees in fact a performance improvement when we increase +the communication overhead in small networks. While coun- +terintuitive, this is actually the same effect we see on the +XLA-based CPU backend. Here, we see that gap junctions +force the simulation to become single core, which actually +becomes faster than the parallel, multi-core, unconnected case, +due to the lower synchronization overhead. Around 104 cells, +this behavior changes, gap-junction communication becomes a +fixed overhead on top of normal simulation. At a certain point, +this growth becomes exponential and the largest simulated +network does not fit on a single IPU anymore. +C. Numerical Validation +While all AI chips outperform the CPU baseline, it is wise +to explore also any potential decrease in numerical accuracy +of the different runs with respect to that of the same CPU. +Here, we compare 1-msec sampled cell somatic voltages of an +extended, 10-sec simulation for a 729-cell, connected network +8 + +IPU +GPU +TPU +GroqChip +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +100 +101 +Abs. difference to CPU reference (mV) +Left +boxp. +Right +boxp. +Vgroqchip +Vcpu +Fig. 4: Numerical-accuracy validation (lower is better). Box plots show +deviations from CPU baseline, as recorded over two 1-sec timespans, one +at the start (left) and one at the end (right) of the 10-sec numerical-validation +simulation. The GroqChip result, showing the largest deviation, is plotted in +the upper left corner together with the two recording spans . +(the largest population supported by all platforms); results are +shown in the box plots of Fig. 4. +As expected, platforms supporting IEEE754 floating-point +numerics (IPU, GPU, TPU) show accurate reproduction of +voltage traces. The IPU, even with fast-math enabled, is the +most faithful to the CPU baseline. The GPU and TPU exhibit +increasingly large deviations but still fall within limits explain- +able by floating-point instruction reordering. The GroqChip, +while supporting FP32 number storage, implements certain +operations at lower precision including exponent calculation. +This is visible by a quite large mV -order deviation from the +CPU baseline, for a process that happens at the 10 − 100mV - +scales. This voltage difference mostly stems from a slowly +accrued phase difference for the oscillating cells. TensorRT +(not shown in this plot) is by default using Nvidia’s TF32, for +which accuracy was found similar to that of the GroqChip. +D. Numerical Stress-test +The numerical stress test increases neuronal variation and +adds external inputs that lead the neurons to spike. These +fast transients can not be simulated using FP16 precision, but +reduced-accuracy FP32 operations as used in Tensor Cores +or GroqChip are still untested. Once more, we compare the +deviation of the somatic-voltage traces of the various AI chips +against the CPU baseline. +Again, the platforms with native FP32 support show the +lowest deviation: For the IPU this is 0.087mV , for the +GPU this is 0.135mV and for the TPU this is a 0.672mV +maximum absolute difference from the CPU baseline. These +moderate, mV -order differences can be explained by small +spike-time differences which due to the large neuronal-spike +sizes quickly lead to large voltage discrepancies. Importantly, +all simulations run stably; i.e., do not cause this chaotic IO- +model simulator to crash. The GroqChip simulation initially +starts out the same as in the numerical-validation test, but as +soon as input perturbations are applied, it becomes unstable +and settles on voltage deviation at a measured maximum +of 8.51 × 1036mV , unacceptable for scientific applications. +Notably, the error stabilizes at this point and does not explode +to infinity or NaN values, as observed with FP16 simulations. +To regain numerical stability, we tried lowering the time- +stepping constant ∆t 10-fold and 100-fold for the GroqChip +simulation, but this did not lead to results more closely in +range with the CPU ones. +VII. DISCUSSION +As this work has shown, utilizing AI platforms for executing +highly biologically plausible SNN workloads is made exceed- +ingly user-friendly when using a ML-library like TensorFlow. +Arguably, even better performances could be obtained by +coding via the various hardware SDKs (Software Development +Kits), but it is unrealistic to expect computational scientists +to learn the low-level details of all hardware options made +available to them these days. +As shown, the added benefits from JIT compilation make +a hand-coded CUDA implementation perform on par with the +XLA-compiled TensorFlow version while, at the same time, +allowing one to move easily to a new piece of hardware +when this is released. We expect that, in the future, more +classical HPC workloads will see ML-library, that is, tensor- +based implementations. +For promising upcoming accelerators like those by Graph- +core and Groq, we believe that future speedups will chiefly +come from software and compiler upgrades, as current SDKs +are mostly optimized for ML workloads. For instance, gather- +scatter operations on the GroqChip do not have to be im- +plemented as dense-matrix operations, memory can be better +utilized, and better support for iterative programs must also +be introduced. The TPU which is architecturally similar to the +GroqChip, clearly performs gather-scatter operations in a more +efficient way than encoding indexing as one-hot vectors. +Speed-ups could be gained by effective use of mixed +precision on the IPU or reduced accuracy FP32 operations +using Tensor Cores or GroqChip. For the IPU, this would +constitute a separate numerical sensitivity analysis to find out +which parts of the compute graph can be lowered to (stochastic +rounded) FP16. As shown, the accuracy loss on Tensor Cores +and GroqChip does in its current form not allow for brain +simulation, but possible these could be put to use by switching +the integration scheme or other numerical optimizations. +Finally, this work has steered clear off multi-chip topologies. +All discussed architectures do support specifically developed, +low-latency, chip-to-chip hardware and assorted communica- +tion protocols. In many ways, such coherent communication +is a bigger and more timely challenge than acceleration speed +itself, which would deliver massive benefits for large-scale +SNN simulation (or training). However, tapping into those +platform-specific interfaces requires SDK-specific coding of +the IO application; relying on TensorFlow or ONNX frame- +works will, generally, not work. Careful and platform-specific +coding is necessary, which we leave as future work. +VIII. CONCLUSION +In this work, we built the first ML-library-based, effi- +cient implementation of a large-scale, conductance-level brain +9 + +model, the Inferior Olive (IO). Subsequently, we benchmarked +the performance of simulating this model on a 16-core AMD +Ryzen Threadripper PRO 3955WX CPU, an Nvidia A100 +GPU, and different AI chips (Graphcore IPU M2000, Gro- +qChip and Google TPU v3). We found that all accelerators +provide significant speedups over the CPU implementation. +For this specific problem, the GPU and TPU seem most +fit for simulation, with the TPU setting a new record for +real-time IO simulation. For small networks, the GroqChip +outperforms the other accelerators, but large networks could +not fit in the on-chip instruction memory. More generally, we +hypothesize that modern ML-libraries possess the semantic +power to model classical problems in scientific computing. +These, then, map extremely well to ML-driven, novel AI-chip +architectures, which apart from large performance benefits, +also benefit from reduced development times. For example, the +version of our IO application running on the TPU outperforms +the handwritten and hand-optimized CUDA implementation by +a large factor, at a fraction of the development cost. The exact +hardware trade-off will vary on an application-by-application +basis, and hardware selection also benefits significantly from +the hardware-agnostic model description. +ACKNOWLEDGEMENT +This research would not have been possible without access +to dedicated hardware: The RTX6000 was gifted from the +NVIDIA Hardware Grant Program, Google provided free +cloud credits for TPU access and Graphcore provided access +to POD16 machines through Paperspace and Gcore cloud +via its Academia program. Furthermore, we’d like to thank +Graphcore employees for helping with optimizing the IPU +code and Dr. Mario Negrello for neuroscientific insights. +REFERENCES +[1] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and +J. Kepner, “Survey and benchmarking of machine learning accelerators,” +in 2019 IEEE high performance extreme computing conference (HPEC). +IEEE, 2019, pp. 1–9. +[2] N. Kasabov, “Chapter 6 - evolving and spiking connectionist systems +for brain-inspired artificial intelligence,” in Artificial Intelligence in the +Age of Neural Networks and Brain Computing, R. Kozma, C. Alippi, +Y. Choe, and F. C. Morabito, Eds. +Academic Press, 2019, pp. +111–138. [Online]. Available: https://www.sciencedirect.com/science/ +article/pii/B9780128154809000062 +[3] W. Maass, “Networks of spiking neurons: The third generation +of neural network models,” Neural Networks, vol. 10, no. 9, pp. +1659–1671, 1997. [Online]. Available: https://www.sciencedirect.com/ +science/article/pii/S0893608097000117 +[4] Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza, “Dissecting the +graphcore ipu architecture via microbenchmarking,” 2019. [Online]. +Available: https://arxiv.org/abs/1912.03413 +[5] D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker, +T. Hawkins, A. Bell, J. Thompson, T. Kahsai, G. Kimmell, J. Hwang, +R. Leslie-Hurd, M. Bye, E. R. Creswick, M. Boyd, M. Venigalla, +E. Laforge, J. Purdy, P. Kamath, D. Maheshwari, M. Beidler, +G. Rosseel, O. Ahmad, G. Gagarin, R. Czekalski, A. Rane, S. Parmar, +J. Werner, J. Sproch, A. Macias, and B. Kurtz, “Think fast: A tensor +streaming processor (tsp) for accelerating deep learning workloads,” in +Proceedings of the ACM/IEEE 47th Annual International Symposium on +Computer Architecture, ser. ISCA ’20. +IEEE Press, 2020, p. 145–158. +[Online]. Available: https://doi.org/10.1109/ISCA45697.2020.00023 +[6] R. Krashinsky, O. Giroux, S. Jones, N. Stam, and S. Ramaswamy, +“Nvidia ampere architecture in-depth.” [Online]. Available: https: +//developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ +[7] N. Jouppi, D. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young, +and D. Patterson, “A domain-specific supercomputer for training deep +neural networks,” Communications of the ACM, vol. 63, pp. 67–78, 06 +2020. +[8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. +Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, +A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, +M. Kudlur, J. Levenberg, D. Man´e, R. Monga, S. Moore, D. Murray, +C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, +P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vi´egas, O. Vinyals, +P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, +“TensorFlow: Large-scale machine learning on heterogeneous systems,” +2015, software available from tensorflow.org. [Online]. Available: +https://www.tensorflow.org/ +[9] J. Bai, F. Lu, K. Zhang et al., “Onnx: Open neural network exchange,” +https://github.com/onnx/onnx, 2019. +[10] W. Gerstner, H. Sprekeler, and G. Deco, “Theory and simulation in +neuroscience,” science, vol. 338, no. 6103, pp. 60–65, 2012. +[11] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and +A. Maida, “Deep learning in spiking neural networks,” Neural networks, +vol. 111, pp. 47–63, 2019. +[12] E. M. Izhikevich, Dynamical systems in neuroscience. MIT press, 2007. +[13] P. Kumbhar, M. Hines, J. Fouriaux, A. Ovcharenko, J. King, F. Delalon- +dre, and F. Sch¨urmann, “Coreneuron: an optimized compute engine for +the neuron simulator,” Frontiers in neuroinformatics, vol. 13, p. 63, 2019. +[14] N. T. Carnevale and M. L. Hines, The NEURON book. +Cambridge +University Press, 2006. +[15] N. Abi Akar, B. Cumming, V. Karakasis, A. K¨usters, W. Klijn, A. Peyser, +and S. Yates, “Arbor—a morphologically-detailed neural network simu- +lation library for contemporary high-performance computing architec- +tures,” in 2019 27th euromicro international conference on parallel, +distributed and network-based processing (PDP). +IEEE, 2019, pp. +274–282. +[16] M. A. v. d. Vlag, G. Smaragdos, Z. Al-Ars, and C. Strydis, “Exploring +complex brain-simulation workloads on multi-gpu deployments,” ACM +Transactions on Architecture and Code Optimization (TACO), vol. 16, +no. 4, pp. 1–25, 2019. +[17] M. Vieth, T. M. St¨ober, and J. Triesch, “Pymonnto: A flexible modular +toolbox for designing brain-inspired neural networks,” Frontiers in +Neuroinformatics, vol. 15, p. 715131, 2021. +[18] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in +neuroscience, p. 26, 2009. +[19] D. Rasmussen, “Nengodl: Combining deep learning and neuromorphic +modelling methods,” Neuroinformatics, vol. 17, no. 4, pp. 611–628, +2019. +[20] C. Pehle and J. E. Pedersen, “Norse - A deep learning library for spiking +neural networks,” Jan. 2021, documentation: https://norse.ai/docs/. +[Online]. Available: https://doi.org/10.5281/zenodo.4422025 +[21] J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi, +M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking +neural networks using lessons from deep learning,” arXiv preprint +arXiv:2109.12894, 2021. +[22] W. Fang, Y. Chen, J. Ding, D. Chen, Z. Yu, H. Zhou, T. Masque- +lier, Y. Tian, and other contributors, “Spikingjelly,” https://github.com/ +fangwei123456/spikingjelly, 2020. +[23] H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi, +H. T. Siegelmann, and R. Kozma, “Bindsnet: A machine learning- +oriented +spiking +neural +networks +library +in +python,” +Frontiers +in +Neuroinformatics, +vol. +12, +p. +89, +2018. +[Online]. +Available: +https://www.frontiersin.org/article/10.3389/fninf.2018.00089 +[24] R. A. Nawrocki, R. M. Voyles, and S. E. Shaheen, “A mini review of +neuromorphic architectures and implementations,” IEEE Transactions +on Electron Devices, vol. 63, no. 10, pp. 3819–3829, 2016. +[25] P.-S. V. Sun, A. Titterton, A. Gopiani, T. Santos, A. Basu, W. D. Lu, and +J. K. Eshraghian, “Intelligence processing units accelerate neuromorphic +learning,” arXiv preprint arXiv:2211.10725, 2022. +[26] J. De Gruijl, L. Bosman, C. I. De Zeeuw, and M. De Jeu, “Inferior +olive: all ins and outs,” Handbook of the Cerebellum and Cerebellar +Disorders, vol. 3, pp. 1013–58, 2013. +[27] Y. Yu, Y. Fu, and C. Watson, “The inferior olive of the c57bl/6j mouse: +a chemoarchitectonic study,” The Anatomical Record, vol. 297, no. 2, +pp. 289–300, 2014. +[28] V. Braitenberg and A. Sch¨uz, Cortex: statistics and geometry of neuronal +connectivity. +Springer Science & Business Media, 2013. +10 + +[29] J. R. De Gruijl, P. Bazzigaluppi, M. T. de Jeu, and C. I. De Zeeuw, +“Climbing fiber burst size and olivary sub-threshold oscillations in +a network setting,” PLoS computational biology, vol. 8, no. 12, p. +e1002814, 2012. +[30] M. Negrello, P. Warnaar, V. Romano, C. B. Owens, S. Lindeman, +E. Iavarone, J. K. Spanke, L. W. Bosman, and C. I. De Zeeuw, +“Quasiperiodic rhythms of the inferior olive,” PLoS computational +biology, vol. 15, no. 5, p. e1006475, 2019. +[31] “Mlperf training v2.0.” [Online]. Available: https://mlcommons.org/en/ +training-normal-20/ +[32] D. +Abts, +G. +Kimmell, +A. +Ling, +J. +Kim, +M. +Boyd, +A. +Bitar, +S. Parmar, I. Ahmed, R. DiCecco, D. Han, J. Thompson, M. Bye, +J. Hwang, J. Fowers, P. Lillian, A. Murthy, E. Mehtabuddin, C. Tekur, +T. Sohmers, K. Kang, S. Maresh, and J. Ross, “A software-defined +tensor streaming multiprocessor for large-scale machine learning,” in +Proceedings of the 49th Annual International Symposium on Computer +Architecture, ser. ISCA ’22. +New York, NY, USA: Association +for Computing Machinery, 2022, p. 567–580. [Online]. Available: +https://doi.org/10.1145/3470496.3527405 +[33] L. G. Valiant, “A bridging model for parallel computation,” Commun. +ACM, vol. 33, no. 8, p. 103–111, aug 1990. [Online]. Available: +https://doi.org/10.1145/79173.79181 +[34] “Xla: Optimizing compiler for machine learning.” [Online]. Available: +https://www.tensorflow.org/xla +[35] “Pushing +the +limits +of +gpu +performance +with +xla.” +[Online]. +Available: +https://blog.tensorflow.org/2018/11/ +pushing-limits-of-gpu-performance-with-xla.html +11 + diff --git a/CdFRT4oBgHgl3EQfwDjC/content/tmp_files/load_file.txt b/CdFRT4oBgHgl3EQfwDjC/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2fff9e5fc3e783f45eb129bfc194c89f415aba8b --- /dev/null +++ b/CdFRT4oBgHgl3EQfwDjC/content/tmp_files/load_file.txt @@ -0,0 +1,891 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf,len=890 +page_content='Tricking AI chips into Simulating the Human Brain: A Detailed Performance Analysis Lennart P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Landsmeer∗ Quantum & Computer Engineering Department Delft University of Technology Delft, The Netherlands Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' of Neuroscience Erasmus Medical Center Rotterdam, The Netherlands ORCID 0000-0003-0010-7249 Max C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Engelen∗ Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' of Neuroscience Erasmus Medical Center Rotterdam, The Netherlands & Maxeler IoT Labs Delft, Netherlands ORCID 0000-0002-5762-1276 Rene Miedema Quantum & Computer Engineering Department Delft University of Technology Delft, The Netherlands & Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' of Neuroscience Erasmus Medical Center Rotterdam, The Netherlands ORCID 0000-0002-0447-1083 Christos Strydis Quantum & Computer Engineering Department Delft University of Technology Delft, The Netherlands & Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' of Neuroscience Erasmus Medical Center Rotterdam, The Netherlands ORCID 0000-0002-0935-9322 Abstract—Challenging the Nvidia monopoly, dedicated AI- accelerator chips have begun emerging for tackling the compu- tational challenge that the inference and, especially, the training of modern deep neural networks (DNNs) poses to modern computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The field has been ridden with studies assessing the performance of these contestants across various DNN model types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' However, AI-experts are aware of the limitations of current DNNs and have been working towards the fourth AI wave which will, arguably, rely on more biologically inspired models, predominantly on spiking neural networks (SNNs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' At the same time, GPUs have been heavily used for simulating such models in the field of computational neuroscience, yet AI-chips have not been tested on such workloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The current paper aims at filling this important gap by evaluating multiple, cutting-edge AI-chips (Graphcore IPU, GroqChip, Nvidia GPU with Tensor Cores and Google TPU) on simulating a highly biologically detailed model of a brain region, the inferior olive (IO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This IO application stress- tests the different AI-platforms for highlighting architectural tradeoffs by varying its compute density, memory requirements and floating-point numerical accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Our performance analysis reveals that the simulation problem maps extremely well onto the GPU and TPU architectures, which for networks of 125,000 cells leads to a 28x respectively 1,208x speedup over CPU runtimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' At this speed, the TPU sets a new record for largest real-time IO simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The GroqChip outperforms both platforms for small networks but, due to implementing some floating-point operations at reduced accuracy, is found not yet usable for brain simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Index Terms—AI accelerator, GPU, Brain simulation, com- puter architecture I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' INTRODUCTION To date, GPUs have achieved spectacularly better perfor- mance in deep learning (DL) than CPUs [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Recently, novel, specialized AI hardware platforms have begun to emerge, holding the promise of accelerating training and inference even further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The workloads targeted mainly are artificial, and specifically, deep neural networks (DNNs), which have shown great potential in recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' On the other hand, highly biologically plausible models such as conductance-based (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=', Hodgkin-Huxley) neurons have not attracted similar atten- tion from AI-chip manufacturers and analysts alike.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This is strange, given that biological brains – the inspiration behind these DNNs – are modeled using equations built on similar elementary functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' What is more, high-detail models are touted as the next AI wave, which is intended to be more biologically inspired than its predecessors [2], [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Therefore, it makes sense both for neuroscientists and for AI researchers to reach for these AI accelerators and deploy them for brain simulations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' yet no performance studies exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In this work, we evaluate multiple, cutting-edge AI chips (Graphcore IPU [4], GroqChip [5], TensorRT-capable GPU [6] and Google TPU v3 [7]) on simulating a highly biologically detailed model of a brain region, the Inferior-Olivary nucleus (IO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Biologically detailed brain models, such as the IO, chiefly involve addition, multiplication, division and expo- nential operations, arranged as sparse computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' There is, thus, a large operation overlap with artificial networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Therefore, new AI chips seem a good fit for these types of models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This IO application represents timely, relevant research and is constructed as an extended-Hodgkin-Huxley model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' It is very suitable for stress-testing the different AI platforms and highlighting architectural tradeoffs by adjusting the compute density, memory requirements and numerical accuracy of the IO model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Evaluation is performed using the application encoded as a TensorFlow 2 [8] kernel, which in the case of the GroqChip, is necessarily compiled to its ONNX [9] equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' ONNX is an intermediary tool used to convert models between different machine-learning (ML) frameworks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In the analysis of the different accelerators, the exact same TensorFlow model is used, ensuring a fair comparison across the board.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This is either used directly or ported to ONNX via the Python package tf2onnx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' TensorFlow is a high-level API, requiring little to moderate intervention from the user and is therefore suitable for a wide user base.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A schematic overview of this setup is presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' While all accelerators in this study support chip-to-chip communication, this work constrains the application to single- chip performance comparisons;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' multi-chip is left as future 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='13637v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='LG] 31 Jan 2023 IO-model TensorFlow CPU GPU IPU ONNX tf2onnx CPU GPU Groq TPU Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1: Overview of the performance-analysis strategy followed in this work work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The contributions of this work are: We take a deep dive into four cutting-edge AI architec- tures with a focus on biologically plausible spiking neural networks (SNNs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We build the first ML-library-based, efficient implemen- tation of a detailed brain model, the Inferior Olive (IO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We deploy the IO model onto the four AI platforms and benchmark their performance and numerical accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We demonstrate that modern ML libraries are seman- tically able to model classical problems in scientific computing, offering large performance gains and reduced development times while remaining hardware-agnostic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Lastly, this work is the first to ever simulate a realistic mouse-sized IO model with real-time performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The paper is organized as follows: Section II presents related works in the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Section III introduces the IO model used as our benchmarking application, while Section IV briefly presents the four AI architectures under evaluation and attempts some performance predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Section V ensures experiment reproducibility by detailing the experiment param- eters and platform configurations used to acquire our results presented in Section VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A general discussion of our findings is included in Section VII and conclusions in Section VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' RELATED WORKS Models of biological neurons come in various levels of detail, ranging from population-level dynamics, from simpli- fied models of single neurons to highly detailed biophysically realistic neurons [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Coarse models of single neurons, no- tably leaky-integrate-and-fire (LIF) type models have seen a renewed interest in the DL-community (often referred here to as SNNs) as an alternative to artificial neural networks (ANNs) [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In contrast, computational neuroscience is usu- ally interested in biophysically accurate models that model the underlying biological processes in a way that makes it possible to gain insights about these processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' These conductance based models can be made more realistic by modeling of their 3-dimensional structure (the morphology) using multiple discretized compartments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Multi-compartmental conductance- based neurons are then simulated by explicit calculation of electrical currents flowing within, between and into discretized compartments [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Due to the computional resources needed for large-scale conductance level brain simulations, computational neuro- science was an early adopter of general-purpose GPU (GP- GPU) in the HPC environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Notable GPU-based ex- amples of large-scale, biologically detailed brain simulators include CoreNeuron [13], which enabled porting of exist- ing conductance-level NEURON [14] models to the GPU, and more recently, Arbor [15], a library-based approach to performance-portable, large-scale brain simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Their suc- cess shows that the computational problems of neuroscience map well to GP-GPU platforms and result in significant speedups for large-scale brain models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Still, even with hand- optimized CUDA code [16], the IO application (to be detailed in the next section) at biological sizes runs order-of-magnitude slower than the biological brain, hampering research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' With respect to TensorFlow-based implementations of conductance-level models, there is PymoNNto [17], an attempt to bring the Brian [18] API of neural models to TensorFlow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' While faster than the Brian simulator on a GTX1080 GPU, performance was not a primary goal and the architecture pro- hibits optimizations using TensorFlow’s JIT compiler backend, by scattering the computational definitions across the code- base.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Although this shows that TensorFlow does express the right API surface for neural models, no efficient ML-library based conductance-level GP-GPU brain simulators exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Simplified SNN models have readily available GP-GPU implementations of LIF and similar models as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' High- level ML-libraries like TensorFlow and PyTorch allowed for the hardware-agnostic implementation of their neural dy- namics, considerably lowering development efforts to build SNN simulators for GP-GPU simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For example, Nengo DL [19] allows for the GPU-based simulation of existing SNN models defined in the Nengo framework using TensorFlow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Beyond just simulating neural networks on the GPU, novel developments in surrogate gradients for event-based SNNs and automatic gradient calculation provided by ML-libraries allowed for the nearly simultaneous appearance of similar SNN deep-learning libraries Norse [20], snnTorch [21] and SpikingJelly [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' BindsNET [23] is another, efficient SNN implementation in PyTorch with a focus on reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Again, these project show that not only ML-libraries have the expressive power and performance needed to run large-scale SNN models, also that this arguably can be devel- oped faster than hardware-specific low-level code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' As these libraries had DL-oriented goals in mind, none of these imple- ments multi-compartmental, conductance-level neural models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Simplified SNN models also led to the development of specialized neuromorphic hardware to simulate them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Numer- ous publications show the benefits of using these chips for simplified-SNN simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For a short review of the various chips, we point the reader to [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' While exciting with respect to low-power inference of SNN-based deep-learning models, these chips, due to their hardwired dynamics, lack the ability to simulate conductance level neural models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' On AI chips that have the semantic power to capture more general HPC workloads, little has been published about both simplified and conductance-level SNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' With respect to simplified SNN simulation, we find just one preprint tar- geting an AI chip, introducing an IPU-optimized version of 2 snnTorch [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Training throughput of a dense 3-layer LIF network on an image classification task is 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='4x higher on the IPU than on the A100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The reported performance benefits decrease if the network size is increased, with the A100 apparently underutilized throughout the entire application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This shows the potential of using the IPU for simple SNN workloads, but the performance characteristics of other AI chips or more complex SNNs are not yet obvious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' No works have been published targeting AI chips with conductance-level models or other biologically realistic brain simulation scenarios, neither using high-level ML libraries or hardware-specific SDKs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' To the authors’ knowledge, this is the first work to implement an efficient, conductance-level, multi- compartmental neuron in an ML library and also the first to benchmark multiple AI chips on this workload class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' THE INFERIOR-OLIVE APPLICATION The IO is a intrinsically oscillating brain region located in the brainstem, and is key to motor control and learn- ing [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The estimated neuron population for the mouse brain is approx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 104 neurons [27] and for humans between 106 − 107 neurons [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' These numbers will be referred to during hardware-performance evaluation (Section VI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In this work, we will capture in TensorFlow 2 the IO nucleus as an extended Hodgkin-Huxley (eHH) model, conductance-level brain model, first published in [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The model is a good example of the computational load of realistic brain models and, also, a good fit for our benchmarking purposes, since it captures complex neuron dynamics and fast interneural communication (in the form of gap junctions), as will be shown next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We restate the IO-neuron main equations in this section, but refer the reader to [29] for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In addition, we model connectivity based on the network described in [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1) The cable model: Cm dV (i) dt = − � k∈Channels I(i) k − � i∈Compartments Ik,j − � i∈Gap junctions Igj,k,j − I(i) app (1) The eHH model describes the membrane that envelops the neurons as a capacitor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The cell internal voltage can thus be calculated by integrating currents flowing into and out of the cell (eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Here, Iapp is an optional term describing externally applied currents by the experimenter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2) Channel currents: Channels (CaL, h, KCa, Na, Kdr, K, CaH, Na, K) allow currents to flow through the cell membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' They produce this current as function of internal state variables changing over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In general, this current (eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2) results from the potential difference to an channel specific reversal potential E multiplied by the product of one or more internal gating variables, each optionally raised to an integer power (eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The gating variables follow an Ordinary Differential Equation (ODE), that brings them to a certain cell-voltage dependent steady state at a given speed (eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' These latter equations Listing 1 Axonal sodium-channel current m inf = 1/(1+ t f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' exp ( −(V axon+30) / 5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 5 ) ) h inf = 1/(1+ t f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' exp ( ( V axon+60) / 5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 8 ) ) tau h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='5* t f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' exp ( −(V axon+40) /33) dh dt = ( h inf −h ) / tau h I na = g Na * ( V axon−V Na) * m inf **3* h Listing 2 Sparse gap-junction current V d i f f = t f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' gather ( V dend , gj src ) \\ − t f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' gather ( V dend , g j t g t ) I per gj = V d i f f g gj (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='2 + \\ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='8 t f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' exp ( −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='01* V d i f f * V d i f f ) ) I gapp = t f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' tensor scatter nd add ( t f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' zeros like (V) , t f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' reshape ( gj tgt , ( −1 ,1) ) , I per gj ) are usually gaussian or sigmoidal functions of the voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For certain fast operating channels we set n(t) = n∞(V ) as a numerical stability optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ii = ¯gi �� k ni,k(t)mk � (V − Ei) (2) τn (V ) dn dt = n∞ (V ) − n (t) (3) 3) Compartmental currents: A single IO cell consist of three separate compartments, the axon, soma and dendrite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Currents flowing between different compartments are modeled resistively as: Ii,j = gi,j (Vj − Vi) 4) Gap-junction currents: Gap junctions are direct electri- cal connections between different IO cells and allow current to flow between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' They follow experimentally determined Connexin-36 protein dynamics: Igj = ggj∆V � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='2 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='8 exp � −∆V 2/100 �� (4) with ∆V the potential-difference between two connected cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 5) Topology: The real IO looks like a large, folded sheet with mostly local connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' As approximating this structure is not a focus of this paper, our model neurons are assumed to exist on a discrete 3-D grid with wrap-around connectivity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=', a hypertorus).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This should exhibit the same non-local memory-access patterns as a more realistic model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Connec- tions are sampled as a function of inter-neuron distance r on a radially symmetric distribution: p(r) ∝ u(rmax − r)(e−r2 − e−r2 max)n(r), where n(r) is the density of neurons in the volume shell around r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This distribution is sampled until we have 10 connections per neuron on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 6) TensorFlow Translation: The previous equations sum up to a total of 14 ODEs per neuron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This system of ODEs is translated to a series of TensorFlow operators in Python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' By defining the model in TensorFlow instead of using platform- specific APIs, we make sure all platforms have equal op- timization opportunities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Furthermore, TensorFlow naturally translates to ONNX models, which is the only high-level API available for GroqChip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Straightforward translation to TensorFlow is achieved by storing all state in a large 2d-array and direct substitution of mathematical expressions by their 3 TensorFlow counterparts (see Listing 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' When certain model parameters need to be user-specified (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=', gi or Iapp), these are passed to the TensorFlow kernel, which then needs to be recompiled before running again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Translating gap junctions to both TensorFlow and ONNX in a performant way requires expressing them as vector operations, as opposed to more traditional for-loop-based approaches [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' With just 10 connections per IO neuron on average, cell-to-cell communication is sparse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The effective operation from a TensorFlow perspective is two sparse-matrix (SM) multiplications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' As a novel contribution in computa- tional neuroscience, we model those as tf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='gather and tf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='tensor_scatter_nd_add operations (see Listing 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Apart from being more specific and memory-efficient in describing SM multiplications, these functions have a direct mapping to ONNX operators as Gather and ScatterND since ONNX specification opset 11, contrary to SM multiplica- tions which currently are not possible in ONNX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' At each timestep, ODEs are integrated using Forward-Euler to produce the next state array, resulting in a hardware- agnostic timestepping function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For TensorFlow backends, a JIT-compilable TensorFlow function is constructed that exe- cutes 40 timesteps at a ∆t of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='025ms, resulting in a 1ms sampling accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For ONNX backends, the timestep function is converted to an ONNX model and either the public onnx- runtime library or Groq compiler is used to compile this into executable code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This does not lead to the best possible performance by default, thus hardware-specific optimizations are discussed in Section V-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' TARGET PLATFORMS Hardware platforms were selected from the top-performing AI accelerators in the MLCommons MLPerf training bench- mark v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0 [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' From this, the Intel Habana Gaudi was not available to us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The GroqChip was included as it was already available through academic channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' An overview of all AI chips is given in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' I and will be presented next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A modern, server-grade CPU is also included as a baseline for our subsequent performance and numerical-accuracy comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1) Nvidia GPU [6]: These are well-established accelerators in the HPC world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' With the introduction of the Tensor Cores in Nvidia GPUs, they also became well-known for their AI capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Tensor Cores are capable of matrix multiplications in a very efficient manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The current generation of tensor cores can support up to TensorFloat-32 (TF32) precision TF32 is a floating point with float 32 dynamic range but float 16 precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' There are multiple ways of interacting with them;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=', via cuBLAS and TensorRT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2) GroqChip [5]: This is a deterministic Tensor Streaming Processor (TSP), resembling a modified systolic array archi- tecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The chip layout is a conventional 2D mesh of cores, each with its own dedicated functionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A column of these cores – all of the same type – is called a functional slice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Data travels horizontally, executing 320 SIMD-style lanes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A single instruction can control 16 lanes, effectively creating 20 superlanes that can all be operated independently from each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The functional slices consist of one vector processor (VXM), two matrix execution modules (MXM), switch ex- ecution modules (SXM) and memory modules (MEM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Each functional unit (core) accepts a set of instructions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' for example, the MEM unit could receive the instruction to put a vector onto one of the data streams or store the results from the data stream in its available SRAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' As soon as data is loaded onto a data stream, it automatically ‘flows’ in the direction of the stream, which can be either EAST-bound or WEST-bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' When an addition needs to be performed, both inputs need to arrive at the same time as the add instruction at the corresponding VXM core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This design choice puts the burden of optimization on the software generating the instructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This is either done by the Groq compiler automatically from an ONNX-graph input or manually controlled by a user through the exposed Groq-API, which has different levels of abstraction on top of the Groq-ISA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' To support the creation of large-scale systems, the GroqChip has dedicated Chip-to-Chip modules that are capable of performing off-chip communication without losing their determinism [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For this work, we will mainly utilize the VXM and MEM units, The memory modules add up to a total of 220 MiB of on-chip SRAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Each superlane implements a 4x4 mesh of vector ALUs capable of doing x16-SIMD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Each ALU has a 32-bit input operand but with the exception of additions and multiplications, instructions are done in a reduced-precision FP32 format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 3) Graphcore IPU [4]: The Graphcore Intelligence Pro- cessing Unit (IPU) is designed for efficient execution of fine- grained operations across a large number of parallel threads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' By design, the IPU offers true Multiple Instruction, Multi- ple Data (MIMD) parallelism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This unique style of parallel- processor design adapts well to fine-grained computations that exhibit irregular data-access patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Each IPU contains 1,472 tiles, containing 1 core and 624KiB of SRAM memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A sin- gle core can only access the memory in its own tile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Intra-IPU communication relies on a powerful, low-latency interconnect called IPU exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For inter-IPU communications, each chip contains 10 so-called IPU links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The IPU compute units, called Accumulating Matrix Product (AMP) units, support FP32 arithmetic and are designed to accelerate matrix multiplications and convolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' With respect to the programming model, the IPU adopts the Bulk Synchronous Parallel (BSP) model [33] through which it organizes its compute and data-exchange operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This abstraction for parallel computations consists of multiple sequential super- steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A superstep consists of a local computation phase;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' every process (tile, in the IPU case) operates in isolation performing compute only on its local memory, followed by a communication phase where each process can exchange values needed by other tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' These activities are concluded with a barrier synchronization phase;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' only when all processes have reached the barrier can the next superstep be started.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Because of this, the IPU can be described as a true BSP machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 4) Google TPU [7]: The TPU (version 1) was designed as a systolic-array processor for inference, only supporting 8/16-bit operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' By supporting only matrix-multiply and 4 TABLE I: Overview of all hardware used in experimental setups Device On-chip Memory Process node Transistor count (Bn) Base-boost freq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' (MHz) TDP (W) Software AMD 3955WX CPU * 128 GB DDR4 7 nm 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='94 3900 - 4300 280 TF 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0 GroqChip TSP 230 MB on-chip 14 nm 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='8 900 Groq SDK 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='1 *** Nvidia A100 GPU 80 GB HBM2e 7 nm 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='2 1275 - 1410 400 TF 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0 Graphcore IPU (GC200) ** 900 MB on-chip 7 nm 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='4 1330 185 TF IPU 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='3+gc3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0 Google TPUv3 32 GiB HBM 16 nm (est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=') 11 940 450 TF 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0 AMD Ryzen Threadripper PRO 3955WX (16-Core) | **Single M2000 in IPU-POD16 (with 4 GC200 chips) | ***TF2ONNX 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0 and ONNX opset 16 basic nonlinear activation functions, it was unfit for training neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Consequentially, an HPC application – for example, the one demonstrated in this paper – would also not be a suitable fit for this processor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' However, with the TPUv2, Google shifted their focus towards supporting training on their TPU chips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Google added a vector-processing unit (VPU) and changed the matrix-multiply units to support the FP16 format (FP32, with only a 7-bit mantissa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The VPU most likely supports higher precision, as can be deducted from results in this work but no confirmation of this is found in the public domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' These two major (micro)architectural changes made it possible to run a wider range of applications including training neural models on the TPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' All are supported through the Google XLA compiler taking TensorFlow as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The TPUv3, assessed in this work, is an upgrade in terms of functional-unit count, higher memory speed, and optimized chip layout, but did not include any fundamental changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Performance Predictions The IO application has two components that map differently onto different types of hardware: i) a part with embarrassingly parallel computations for updating local neuron states;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' and ii) a part with SM computations for exchanging membrane voltages over gap junctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Before we proceed to the actual experiments, we attempt performance predictions, driven by the idiosyncrasies of the different AI-chip architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Embarrassing parallelism: These are calculations for up- dating the state of every single neuron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This boils down to elementwise vector operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The GPU architecture featuring one Warp execution per Streaming Multiprocessor or multiple Tensor Cores is very well-suited for this type of parallelization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The TPU and the GroqChip are both based upon systolic-array architectures, both natively supporting Matrix-Multiplication but also Vector-Operation operations that can be utilized for these calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In fact, since neuron updates require only 1-D data, the Matrix-Multiplication units (which is the focus of these chips) are effectively underutilized in these architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The IPU, with a large amount of very small general-purpose cores, should also do well on parallelizing neuron-state calculations, however, its architecture is geared towards irregular data-access patterns, which is not essential to the particular task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The extra overhead of such advanced features, therefore, will not help performance in terms of computing this embarrassingly parallel part of the simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Communication: As described previously, gap-junction communication employs the gather-scatter operations (essen- tially, SM operations) from TensorFlow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For either the GPU or the IPU, such operations are handled better due to the different execution paths that can be handled within the architecture by design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In contrast, the GroqChip and TPU need to handle these differently: a naive approach would be to enforce dense- matrix operations via one-hot encoding of operands and, then, utilizing the matrix-multiplication hardware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In case the GroqChip or the TPU happen to use such a strategy, we expect that performance will deteriorate very rapidly or memory will be depleted with increasing IO-network sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1) CPU + TensorFlow: For this platform, JIT compila- tion through the XLA compiler [34] will be used;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' it will automatically utilize the many threads nowadays available in CPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We expect decent performance and very accurate results because of full FP32 support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Since it is the hardware on which brain models are traditionally executed and gives accurate results, the CPU will form our baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Accelerators should outperform this implementation in terms of runtime, especially for larger network sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2) GPU + TensorFlow: The XLA compiler is used, which optimizes the graph resulting in a single kernel launch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Among others, it does this by “fusing” the calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Moreover, this fusion keeps intermediate values stored in GPU registers [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The TensorFlow backend for CUDA use Tensor Cores, at a loss of FP32 accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' However, this only happens when explicit matrix-multiplications are requested and not as an optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' So in our case, the compiler will only use float32 CUDA operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 3) IPU + TensorFlow: The IPU architecture is not a perfect fit for the embarrassingly parallel part of the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For the interneuron-communication part, the BSP model is a better fit and thus is expected to perform better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' However, as the topology is given as an unknown parameter to the model, the IPU compiler can not be expected to allocate neighboring cells on adjacent tiles, resulting in sub-par communication performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available memory should easily be able to handle large problem sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 4) TPUv3 + TensorFlow: The TPU supports FP32 and is expected to handle our workload, especially for the un- connected case, very well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' As Google put much effort into TensorFlow support, gather-scatter operations are expected to be optimized, to the best of the hardware capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Because of FP32 support in the v3 model, we expect correct numerics in the output, as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 5) CPU/GPU + ONNX: Expectations are the same as for CPU/GPU + TensorFlow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We expect the XLA compiler to outperform the ONNX runtime slightly for the CPU case simply because it can perform whole-program optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For the GPU, this effect is expected to be much larger and the TensorFlow is expected to dominate ONNX as the ability 5 to fuse kernels will be a big advantage for TensorFlow over single-kernel invocations in ONNX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Especially the invocation overhead for small GPU kernels will hurt the performance of the ONNX-GPU-runtime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' TensorRT is also a supported backend in ONNX that is expected to outperform the CUDA runtime in performance;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' it will, however, drop precision as the backend switches to TF32 numerics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 6) GroqChip + ONNX: The GroqChip is a new, upcoming modified systolic-array processor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Its compiler takes in the ONNX graph but is not limited to executing this on an operation-per-operation basis as it recompiles the full ONNX graph at once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Therefore, it can potentially perform the same optimizations as the XLA compiler for the TPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' As the first version of the architecture, current compiler development is still exploring ways to map non-standard ML-operations to the hardware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Besides, the GroqChip VXM is not capable of doing all operations in IEEE FP32 arithmetic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Because of this, it can be expected to perform slightly better than the TPU at the cost of reduced accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' EXPERIMENTAL SETUP A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Benchmarking Parameters Each platform is benchmarked for performance on a set problem (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=', network) size as well as for its performance scalability by simulating the IO network for small population sizes in the range [43, 53, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' , 203] and, again, for larger sizes in the range [303, 403, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' , 1003], where the third power is an artifact of the cubic network-topology generation method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' These experiments are focusing on four different aspects of each AI platform, discussed next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1) Unconnected Network: By removing the communica- tion step (gap junctions) from the model, we obtain a (bio- logically unrealistic) compute-heavy, embarrassingly parallel workload.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' First, we measure the setup time for each AI platform, including on-chip buffer allocation, Ahead-Of-Time (AOT) compilation or definition of Just-In-Time (JIT)-enabled functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Next, we simulate an IO network for 100ms of biological time and take the minimum wall-clock time from 5 runs (including data-transfer times).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For JIT targets, the first runtime (if outside the other runtimes’ standard deviation) minus follow-up runtimes is taken as the JIT compilation time, such that we can compare setup times between AOT and JIT targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2) Connected Network: By restoring gap junctions into the IO network, we assess communication overhead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Runtimes are obtained in an identical way as before, yet the expectation here is that they are markedly longer than the unconnected case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 3) Numerical Validation: Measuring performance is our main focus, yet this must not come at the cost of functional correctness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Here, we simulate connected networks up to 729 neurons for 10 seconds of biological time and numerically compare the various results to the reference CPU output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 4) Numerical Stress-test: Here, we simulate the IO in a more biologically realistic way that is of interest to neurosci- entists: We add more variance to the neural parameters and, most importantly, a lot of external current inputs (simulating other brain regions) that will evoke action potentials (spikes) in the IO dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' These fast transients will stress-test the numerical performance of the AI hardware, especially non- IEEE754 targets (Tensor Cores and GroqChip).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We perform this experiment on the smallest 64-neuron network and then compare for numerical accuracy against the CPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Benchmarking is implemented in a publicly avail- able and modular, extensible framework, downloadable from GitLab https://gitlab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='com/neurocomputing-lab/Inferior OliveEMC/ioperf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The main benchmarking script auto- discovers available hardware, runs the appropriate benchmarks and records results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Used software versions are also shown in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Hardware-specific Optimizations While our original goal was not to write platform-specific code, we found that by default some of the AI platforms did not perform very well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For example, most platforms defaulted to copying over the entire parameters arrays for each kernel invocation, which was not needed for this mostly constant data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For a fair comparison between hardware platforms, we allowed optimizations to be applied to hardware-specific code that either led to operation fusion across different execution kernels or prevented unnecessary device-host data transfers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The exact optimizations have been applied in close collaboration with Graphcore and Groq for the respective chips, and are as follows: 1) TensorFlow XLA: The TensorFlow graph executor typi- cally performs each operation separately when a graph is run with a corresponding kernel invocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A different way to run TensorFlow models is made available by XLA, which turns a TensorFlow graph into a series of kernels created for a particular application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' These kernels can take advantage of application-specific information for performing optimizations, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=', operation fusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The CPU, GPU, and TPU are the three available backends for the XLA compiler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For the IO application, a TensorFlow wrapper function was implemented that fuses up to 40 timesteps together for each call in order to fully exploit the XLA compiler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2) ONNX: Except for the GroqChip, all ONNX imple- mentations build on top of onnxruntime or onnxruntime- gpu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We enable all backend-supported graph-optimizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Explicit IOBindings are used to prevent unneeded host- device data copies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Parameters are copied once to the device at simulation start.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Then, state is allocated twice, with each timestep toggling between two buffers, one as the input state and the other as the output (next) state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For TensorRT, we leave the default behavior of using TF32 enabled, otherwise, it will not utilize its Tensor Cores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 3) Groq: After the compilation of an ONNX graph with the Groq Compiler, the binary can be executed directly on the GroqChip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A naive approach here would be to invoke this binary 40 times for 40 timesteps and move the data back and forth continuously since the GroqChip only has SRAM which is fully managed at compile time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' However, the Groq Compiler is able to tie input and output tensors together into 6 10 1 100 101 102 103 CPU (ONNX) CPU (TF) 10 1 100 101 102 103 GPU (TF) IPU (TF) 102 103 104 105 106 10 1 100 101 102 103 TPU (TF) 102 103 104 105 106 GroqChip (ONNX) Network size (#neurons) Time required to simulate one biological second (s) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2: Runtime performance (lower is better), comparison between CPU baseline, GPU and AI chips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For scale, the mouse (•) and human (▲) Inferior Olive are shown as running in realtime in all figures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The CPU is included twice to explain the observed switching behavior of the IPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' On the CPU, while the XLA optimizer builds a single-core, connected-network simulation, it builds a multicore, unconnected-network simulation (as observed by load-testing), leading to an unexpectedly slow simulation for the latter case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The same behavior can be observed for the IPU, which uses the XLA compiler as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' a persistent memory buffer in the on-chip SRAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Utilizing this results still in 40 invocations of the binary but skips the continuous I/O between host and accelerator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A more radical way to improve the performance is to compile the 40 timesteps into a single ONNX graph that can then be converted with the Groq Compiler;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' this method will reduce 40 invocations to a single invocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We implemented all optimizations as long as the compiler was able to compile them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The 40 timesteps at once quickly ran into compiler errors with growing networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 4) Graphcore: The IPU has architectural support for streaming memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This means that we can run a single program on-chip for the entire simulation that will stream out samples every 40 timesteps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The inner, unsampled 1- msec 40-timestep loop, is run using ipu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='repeat, after which the recorded voltages are pushed to an IPUOutfeedQueue with a 200-sample size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This is, then, looped once more using ipu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='repeat for the re- quired amount of milliseconds to simulate and wrapped in a TensorFlow JIT function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Furthermore, the fast-math op- timization is enabled, 128 IPU tiles are reserved for I/O with place_ops_on_io_tiles = True and program execution is limited to a single IPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' EXPERIMENTAL RESULTS With the exception of the reference CPU, for brevity we report here either TensorFlow or ONNX results, depending on which of the two leads to better performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Overall performance plots are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2 and will be detailed in the next sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In general, it is found that, for the IO application, the ONNX ports are outperformed by their TensorFlow counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This is due to the fact that the onnx-runtime library currently does not perform as extensive optimizations as the XLA compiler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For example, the CUDA target translates each compute step into a single predefined kernel call.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The TensorRT backend performs operator fusion, resulting in multiple kernels that chain arithmetic operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Still, the CUDA XLA-backend vastly outperforms both ONNX CUDA targets, and as such we removed the corresponding findings from the main analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Note that the Groq platform only supports AOT compilation of ONNX models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Compilation Time Both software stack and hardware influence program setup time, as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 3 for the largest network (729 cells) that could fit in all AI chips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The CPU compiles the fastest across the board as we have a direct translation of ONNX operations to their CPU-optimized callbacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The TensorFlow (XLA) version, not included in the figure, was much slower 7 100 101 102 103 Compile time (s) (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Network type at compile time (n=729) Unconnected Connected CPU IPU GPU TPU GroqChip 10 2 10 1 100 101 102 Run time (s) (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='Connected network size at run time n=64 n=729 n=125000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0x 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='3x 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='7x 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='7x 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='9x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0x 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='3x 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='4x 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='4x 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='6x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0x 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='6x 269.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='5x 1208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='5x Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 3: (A) Setup (AOT+JIT compile + memory allocation) times for a network of 729 neurons in both Unconnected- and Connected-network configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' JIT compile times are extracted from the first run of 5 performance runs and added to the initial setup time (if outside one standard deviation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' (B) Performance and speedup of different AI chips vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' the CPU reference on the Connected benchmark, for different network sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Sizes were chosen to be the smallest (64) and largest connected networks that could fit on the GroqChip (729) and the TPUv3 (125,000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The rightmost GroqChip bar is absent, corresponding to the model that could not be compiled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' due to the increased compiler complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Both the IPU and GPU exhibit similar JIT compilation speeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The GroqChip’s AOT compiler takes significantly longer for this workload due to the explicitly concatenated 40 timesteps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The GroqChip version with a single timestep per program compiles much faster than the Graphcore or A100 versions, but at a small performance loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Runtime Performance 1) Unconnected Network (embarrassingly parallel): For unconnected cells, neural dynamics are expressed only using vectorized operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' As predicted, this fits the compute paradigm of the GPU very well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Performance scales linearly with problem size (horizontal line), showing that the GPU cores are underutilized for all simulated network sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The TPU and GroqChip, as systolic-array-based processors, were expected to be a poorer architectural fit because large parts of the chip would be left unused.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Still, the focus on efficient vector operations could result in speedups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We can indeed observe this in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2, although in different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The TPU, similar to the GPU, flatlines across all problem sizes, although being 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='1x slower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Consequently, memory capacity is not a problem for the TPU but performance capping in raw single-cell computations due to architectural design choices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In contrast, the GroqChip starts out 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0x faster than the GPU, quickly loses this edge and, between 103 and 104 cells, starts to hit its memory-capacity limits, degrading performance with higher problem sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Networks of more than 640, 000 cells simply do not fit on the chip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The GroqView analyzer confirms that the problem is core-to-core-memory communication and that most dedicated cores are not used most of the time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The IPU was expected to perform well given its large core count but the very homogeneous compute load proved a poor fit for its MIMD design, leading to large under-utilization of the chip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' With respect to real-time performance, only the GPU followed by the GroqChip (ignoring memory issues) and marginally the TPU makes the 1-sec cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2) Connected Network (high communication overhead): As predicted, communication patterns induced by a small number of gap junctions lead to a large performance reduction of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='6x for small networks on the GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For higher problem sizes, performance drops at a growing rate, with a 141x degradation for networks of 106 cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The AI chips fare much better here, most of which initially shows a less than 20% reduction in performance against their unconnected counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' As an exception, the GroqChip’s connected-network sim- ulation runs 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='5x slower than the unconnected version;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' even so, it outperforms the GPU on very small, connected neural networks by a 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='7x speedup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' However, the GroqChip (as expected) converts the SM communication into a dense- matrix multiplication, making the best out of its deterministic- execution hardware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This quickly leads to prohibitively large matrix multiplications and, beyond 729 cells, the scheduler is unable to allocate the necessary instructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In effect, the GroqChip loses its edge over the GPU for larger networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In contrast, the TPU shows nearly identical behavior to the unconnected case and its performance does still not scale with problem size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This changes around networks larger than 105, where the JIT compiler seems to run into performance problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Here, we observed large random fluctuations in performance that either led to approx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1-sec or very long more than 400-sec run-times over the 5 repeated runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We expect that these originate from memory limits of the TPU and had to stop benchmarking due to impractically large run times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' However, we could not determine the true source of variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The IPU, severely underutilized for the unconnected case, sees in fact a performance improvement when we increase the communication overhead in small networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' While coun- terintuitive, this is actually the same effect we see on the XLA-based CPU backend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Here, we see that gap junctions force the simulation to become single core, which actually becomes faster than the parallel, multi-core, unconnected case, due to the lower synchronization overhead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Around 104 cells, this behavior changes, gap-junction communication becomes a fixed overhead on top of normal simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' At a certain point, this growth becomes exponential and the largest simulated network does not fit on a single IPU anymore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Numerical Validation While all AI chips outperform the CPU baseline, it is wise to explore also any potential decrease in numerical accuracy of the different runs with respect to that of the same CPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Here, we compare 1-msec sampled cell somatic voltages of an extended, 10-sec simulation for a 729-cell, connected network 8 IPU GPU TPU GroqChip 10 5 10 4 10 3 10 2 10 1 100 101 Abs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' difference to CPU reference (mV) Left boxp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Right boxp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Vgroqchip Vcpu Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 4: Numerical-accuracy validation (lower is better).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Box plots show deviations from CPU baseline, as recorded over two 1-sec timespans, one at the start (left) and one at the end (right) of the 10-sec numerical-validation simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The GroqChip result, showing the largest deviation, is plotted in the upper left corner together with the two recording spans .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' (the largest population supported by all platforms);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' results are shown in the box plots of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' As expected, platforms supporting IEEE754 floating-point numerics (IPU, GPU, TPU) show accurate reproduction of voltage traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The IPU, even with fast-math enabled, is the most faithful to the CPU baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The GPU and TPU exhibit increasingly large deviations but still fall within limits explain- able by floating-point instruction reordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The GroqChip, while supporting FP32 number storage, implements certain operations at lower precision including exponent calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This is visible by a quite large mV -order deviation from the CPU baseline, for a process that happens at the 10 − 100mV - scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' This voltage difference mostly stems from a slowly accrued phase difference for the oscillating cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' TensorRT (not shown in this plot) is by default using Nvidia’s TF32, for which accuracy was found similar to that of the GroqChip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Numerical Stress-test The numerical stress test increases neuronal variation and adds external inputs that lead the neurons to spike.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' These fast transients can not be simulated using FP16 precision, but reduced-accuracy FP32 operations as used in Tensor Cores or GroqChip are still untested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Once more, we compare the deviation of the somatic-voltage traces of the various AI chips against the CPU baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Again, the platforms with native FP32 support show the lowest deviation: For the IPU this is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='087mV , for the GPU this is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='135mV and for the TPU this is a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='672mV maximum absolute difference from the CPU baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' These moderate, mV -order differences can be explained by small spike-time differences which due to the large neuronal-spike sizes quickly lead to large voltage discrepancies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Importantly, all simulations run stably;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=', do not cause this chaotic IO- model simulator to crash.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The GroqChip simulation initially starts out the same as in the numerical-validation test, but as soon as input perturbations are applied, it becomes unstable and settles on voltage deviation at a measured maximum of 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='51 × 1036mV , unacceptable for scientific applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Notably, the error stabilizes at this point and does not explode to infinity or NaN values, as observed with FP16 simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' To regain numerical stability, we tried lowering the time- stepping constant ∆t 10-fold and 100-fold for the GroqChip simulation, but this did not lead to results more closely in range with the CPU ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' DISCUSSION As this work has shown, utilizing AI platforms for executing highly biologically plausible SNN workloads is made exceed- ingly user-friendly when using a ML-library like TensorFlow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Arguably, even better performances could be obtained by coding via the various hardware SDKs (Software Development Kits), but it is unrealistic to expect computational scientists to learn the low-level details of all hardware options made available to them these days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' As shown, the added benefits from JIT compilation make a hand-coded CUDA implementation perform on par with the XLA-compiled TensorFlow version while, at the same time, allowing one to move easily to a new piece of hardware when this is released.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We expect that, in the future, more classical HPC workloads will see ML-library, that is, tensor- based implementations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For promising upcoming accelerators like those by Graph- core and Groq, we believe that future speedups will chiefly come from software and compiler upgrades, as current SDKs are mostly optimized for ML workloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For instance, gather- scatter operations on the GroqChip do not have to be im- plemented as dense-matrix operations, memory can be better utilized, and better support for iterative programs must also be introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The TPU which is architecturally similar to the GroqChip, clearly performs gather-scatter operations in a more efficient way than encoding indexing as one-hot vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Speed-ups could be gained by effective use of mixed precision on the IPU or reduced accuracy FP32 operations using Tensor Cores or GroqChip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For the IPU, this would constitute a separate numerical sensitivity analysis to find out which parts of the compute graph can be lowered to (stochastic rounded) FP16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' As shown, the accuracy loss on Tensor Cores and GroqChip does in its current form not allow for brain simulation, but possible these could be put to use by switching the integration scheme or other numerical optimizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Finally, this work has steered clear off multi-chip topologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' All discussed architectures do support specifically developed, low-latency, chip-to-chip hardware and assorted communica- tion protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' In many ways, such coherent communication is a bigger and more timely challenge than acceleration speed itself, which would deliver massive benefits for large-scale SNN simulation (or training).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' However, tapping into those platform-specific interfaces requires SDK-specific coding of the IO application;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' relying on TensorFlow or ONNX frame- works will, generally, not work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Careful and platform-specific coding is necessary, which we leave as future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' CONCLUSION In this work, we built the first ML-library-based, effi- cient implementation of a large-scale, conductance-level brain 9 model, the Inferior Olive (IO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Subsequently, we benchmarked the performance of simulating this model on a 16-core AMD Ryzen Threadripper PRO 3955WX CPU, an Nvidia A100 GPU, and different AI chips (Graphcore IPU M2000, Gro- qChip and Google TPU v3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' We found that all accelerators provide significant speedups over the CPU implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For this specific problem, the GPU and TPU seem most fit for simulation, with the TPU setting a new record for real-time IO simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For small networks, the GroqChip outperforms the other accelerators, but large networks could not fit in the on-chip instruction memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' More generally, we hypothesize that modern ML-libraries possess the semantic power to model classical problems in scientific computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' These, then, map extremely well to ML-driven, novel AI-chip architectures, which apart from large performance benefits, also benefit from reduced development times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' For example, the version of our IO application running on the TPU outperforms the handwritten and hand-optimized CUDA implementation by a large factor, at a fraction of the development cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' The exact hardware trade-off will vary on an application-by-application basis, and hardware selection also benefits significantly from the hardware-agnostic model description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' ACKNOWLEDGEMENT This research would not have been possible without access to dedicated hardware: The RTX6000 was gifted from the NVIDIA Hardware Grant Program, Google provided free cloud credits for TPU access and Graphcore provided access to POD16 machines through Paperspace and Gcore cloud via its Academia program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Furthermore, we’d like to thank Graphcore employees for helping with optimizing the IPU code and Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Mario Negrello for neuroscientific insights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' REFERENCES [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Reuther, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Michaleas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Jones, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Gadepally, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Samsi, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kepner, “Survey and benchmarking of machine learning accelerators,” in 2019 IEEE high performance extreme computing conference (HPEC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kasabov, “Chapter 6 - evolving and spiking connectionist systems for brain-inspired artificial intelligence,” in Artificial Intelligence in the Age of Neural Networks and Brain Computing, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kozma, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Alippi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Choe, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Morabito, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Academic Press, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 111–138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='com/science/ article/pii/B9780128154809000062 [3] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Maass, “Networks of spiking neurons: The third generation of neural network models,” Neural Networks, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1659–1671, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='com/ science/article/pii/S0893608097000117 [4] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Jia, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Tillman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Maggioni, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Scarpazza, “Dissecting the graphcore ipu architecture via microbenchmarking,” 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='org/abs/1912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='03413 [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Abts, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ross, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Sparling, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Wong-VanHaren, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Baker, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Hawkins, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Bell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Thompson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kahsai, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kimmell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Hwang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Leslie-Hurd, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Bye, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Creswick, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Boyd, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Venigalla, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Laforge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Purdy, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kamath, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Maheshwari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Beidler, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Rosseel, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ahmad, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Gagarin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Czekalski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Rane, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Parmar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Werner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Sproch, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Macias, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kurtz, “Think fast: A tensor streaming processor (tsp) for accelerating deep learning workloads,” in Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' ISCA ’20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' IEEE Press, 2020, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 145–158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='1109/ISCA45697.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='00023 [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Krashinsky, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Giroux, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Jones, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Stam, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ramaswamy, “Nvidia ampere architecture in-depth.” [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https: //developer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='nvidia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='com/blog/nvidia-ampere-architecture-in-depth/ [7] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Jouppi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Yoon, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kurian, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Li, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Patil, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Laudon, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Young, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Patterson, “A domain-specific supercomputer for training deep neural networks,” Communications of the ACM, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 63, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 67–78, 06 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Abadi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Agarwal, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Barham, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Brevdo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Citro, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Corrado, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Davis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Dean, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Devin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ghemawat, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Goodfellow, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Harp, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Irving, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Isard, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Jia, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Jozefowicz, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kaiser, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kudlur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Levenberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Man´e, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Monga, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Moore, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Murray, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Olah, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Schuster, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Shlens, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Steiner, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Sutskever, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Talwar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Tucker, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Vanhoucke, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Vasudevan, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Vi´egas, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Vinyals, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Warden, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Wattenberg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Wicke, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Yu, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software available from tensorflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='tensorflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='org/ [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Bai, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Lu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=', “Onnx: Open neural network exchange,” https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='com/onnx/onnx, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [10] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Gerstner, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Sprekeler, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Deco, “Theory and simulation in neuroscience,” science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 338, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 6103, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 60–65, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Tavanaei, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ghodrati, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kheradpisheh, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Masquelier, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Maida, “Deep learning in spiking neural networks,” Neural networks, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 111, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 47–63, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [12] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Izhikevich, Dynamical systems in neuroscience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' MIT press, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [13] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kumbhar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Hines, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Fouriaux, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ovcharenko, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' King, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Delalon- dre, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Sch¨urmann, “Coreneuron: an optimized compute engine for the neuron simulator,” Frontiers in neuroinformatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 13, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 63, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [14] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Carnevale and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Hines, The NEURON book.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Cambridge University Press, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [15] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Abi Akar, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Cumming, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Karakasis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' K¨usters, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Klijn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Peyser, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Yates, “Arbor—a morphologically-detailed neural network simu- lation library for contemporary high-performance computing architec- tures,” in 2019 27th euromicro international conference on parallel, distributed and network-based processing (PDP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 274–282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Vlag, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Smaragdos, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Al-Ars, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Strydis, “Exploring complex brain-simulation workloads on multi-gpu deployments,” ACM Transactions on Architecture and Code Optimization (TACO), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1–25, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [17] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Vieth, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' St¨ober, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Triesch, “Pymonnto: A flexible modular toolbox for designing brain-inspired neural networks,” Frontiers in Neuroinformatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 15, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 715131, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [18] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Goodman and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Brette, “The brian simulator,” Frontiers in neuroscience, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 26, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [19] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Rasmussen, “Nengodl: Combining deep learning and neuromorphic modelling methods,” Neuroinformatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 611–628, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [20] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Pehle and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Pedersen, “Norse - A deep learning library for spiking neural networks,” Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2021, documentation: https://norse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='ai/docs/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='4422025 [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Eshraghian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ward, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Neftci, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Lenz, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Dwivedi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Bennamoun, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Jeong, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Lu, “Training spiking neural networks using lessons from deep learning,” arXiv preprint arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='12894, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [22] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Fang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ding, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Yu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Zhou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Masque- lier, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Tian, and other contributors, “Spikingjelly,” https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='com/ fangwei123456/spikingjelly, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [23] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Hazan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Saunders, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Khan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Patel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Sanghavi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Siegelmann, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kozma, “Bindsnet: A machine learning- oriented spiking neural networks library in python,” Frontiers in Neuroinformatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 12, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 89, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='frontiersin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='org/article/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='3389/fninf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='00089 [24] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Nawrocki, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Voyles, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Shaheen, “A mini review of neuromorphic architectures and implementations,” IEEE Transactions on Electron Devices, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 63, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 3819–3829, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [25] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Sun, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Titterton, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Gopiani, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Santos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Basu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Lu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Eshraghian, “Intelligence processing units accelerate neuromorphic learning,” arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='10725, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' De Gruijl, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Bosman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' De Zeeuw, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' De Jeu, “Inferior olive: all ins and outs,” Handbook of the Cerebellum and Cerebellar Disorders, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 1013–58, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [27] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Yu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Fu, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Watson, “The inferior olive of the c57bl/6j mouse: a chemoarchitectonic study,” The Anatomical Record, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 297, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 289–300, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [28] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Braitenberg and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Sch¨uz, Cortex: statistics and geometry of neuronal connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Springer Science & Business Media, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 10 [29] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' De Gruijl, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Bazzigaluppi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' de Jeu, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' De Zeeuw, “Climbing fiber burst size and olivary sub-threshold oscillations in a network setting,” PLoS computational biology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 12, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' e1002814, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [30] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Negrello, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Warnaar, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Romano, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Owens, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Lindeman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Iavarone, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Spanke, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Bosman, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' De Zeeuw, “Quasiperiodic rhythms of the inferior olive,” PLoS computational biology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 5, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' e1006475, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [31] “Mlperf training v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='0.” [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://mlcommons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='org/en/ training-normal-20/ [32] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Abts, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kimmell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ling, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Boyd, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Bitar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Parmar, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ahmed, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' DiCecco, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Han, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Thompson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Bye, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Hwang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Fowers, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Lillian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Murthy, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Mehtabuddin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Tekur, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Sohmers, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Kang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Maresh, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Ross, “A software-defined tensor streaming multiprocessor for large-scale machine learning,” in Proceedings of the 49th Annual International Symposium on Computer Architecture, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' ISCA ’22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' New York, NY, USA: Association for Computing Machinery, 2022, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 567–580.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='1145/3470496.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='3527405 [33] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Valiant, “A bridging model for parallel computation,” Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' ACM, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 8, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' 103–111, aug 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='1145/79173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='79181 [34] “Xla: Optimizing compiler for machine learning.” [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='tensorflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='org/xla [35] “Pushing the limits of gpu performance with xla.” [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content=' Available: https://blog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='tensorflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='org/2018/11/ pushing-limits-of-gpu-performance-with-xla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} +page_content='html 11' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdFRT4oBgHgl3EQfwDjC/content/2301.13637v1.pdf'} diff --git a/DdAyT4oBgHgl3EQfSPd1/content/tmp_files/2301.00082v1.pdf.txt b/DdAyT4oBgHgl3EQfSPd1/content/tmp_files/2301.00082v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..ab043e60adc55024fbc589b28b82c5e53b0b3963 --- /dev/null +++ b/DdAyT4oBgHgl3EQfSPd1/content/tmp_files/2301.00082v1.pdf.txt @@ -0,0 +1,1456 @@ +SURFACES OF MINIMUM CURVATURE VARIATION +LUIS A. CAFFARELLI, PABLO RA´UL STINGA, AND HERN´AN VIVAS +Abstract. We establish the analytical theory of surfaces of minimum curvature variation. +We construct classical, G2 continuous surfaces, as well as weak solutions in the context of +geometric measure theory. +1. Introduction +Computer-aided design (CAD) and computer-aided manufacturing (CAM) are widely pop- +ular techniques whose basic feature is the use of computer software to create or modify shapes +in such a way that some aspects of the design process, such as quality of the object or produc- +tivity of the process, are optimized, see, for example, [9]. Their origins can be traced back +to the 1950s and 60s and their development have been continuous since then. Nowadays, +CAD/CAM are used in contexts as varied as engineering, particularly in automotive, ship- +building and aerospace industries; architectural design; and computer animation for creation +of special effects in movies, among many other applications. +Within this realm, of particular interest are geometric problems in computer-aided geomet- +ric design (CAGD). The goal of CAGD is the creation of complex smoothly shaped models +and surfaces with specified geometric constraints. The resulting surfaces have to accurately +reflect these specifications and be free of unwanted wrinkles, bulges and ripples. In many +instances, the aim is to create fair surfaces that are aesthetically pleasing to the eye. As it +turns out, many of these problems can be approached via a variational principle, that is, by +looking for a surface that minimizes an appropriate functional or fairness energy subject to +adequate geometric boundary conditions, see [10]. +The most commonly used fairness energy functionals can be split into two groups: physical- +based or geometric-based. The first group roughly corresponds to interpreting the surface as +an ideal elastic membrane or plate and minimize energies such as +´ +|∇u|2 dx or +´ +|∆u|2 dx. +The second group aims at minimizing energies that relate to geometric invariants of the +surface such as the area or curvature, see [11] and the references therein. In 1992, Moreton +and S´equin proposed in [8] a numerical algorithm for the creation of 2-dimensional fair +surfaces M as minimizers of the energy functional +ˆ +M +��dκ1 +de1 +�2 ++ +�dκ2 +de2 +�2� +dA. +Here e1 and e2 are the principal directions corresponding to the principal curvatures κ1 and +κ2 of M and dA is the differential of surface area. +It is a key aspect in CAGD to be able to construct fair surfaces that preserve several degrees +of geometric continuity. This is particularly important at the boundary of the domains where +2010 Mathematics Subject Classification. Primary: 35B65, 49Q10, 53A10. +Secondary: 49Q20, 65D17, +68U07. +Key words and phrases. Curvature variation, computer-aided design, prescribed mean curvature, regularity. +Research partially supported by NSF grant 1500871 (USA), Simons Foundation grant 580911 (USA), and +Agencia Nacional de Promoci´on Cient´ıfica y Tecnol´ogica under grant PICT 2019-3530 (Argentina). +1 +arXiv:2301.00082v1 [math.DG] 31 Dec 2022 + +2 +L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS +the surfaces meet. The notions of geometric continuity are referred to as G0 continuity, where +two surfaces meet in a continuous fashion, without jumps; G1 continuity, where the tangent +planes of the surfaces meet with continuity; and G2 continuity, where the curvatures meet +with continuity. These are not the same as the classical notions of C0, C1 and C2 continuities, +as those require some specific combination of the derivatives of the solutions to be continuous +up to the boundary. In particular, G2 continuity turns out to be crucial in applications such +as the streamlined surfaces of aircrafts, ships and cars, and this was the main motivation +for the numerical study in [8]. +In [11], a numerical finite difference method is proposed +to construct surfaces that would enjoy G2 continuity as steady states of a sixth order flow +derived from the Euler–Lagrange equation of the energy functional +ˆ +M +|∇H|2 dA +where H is the mean curvature of M. Numerical evidence of G2 continuity is observed in [11], +while G1 continuity is expected according to [8]. To the best of our knowledge, the analytical +theory of surfaces of minimum curvature variation in general is missing. Furthermore, no +proof of G2 continuity is available thus far. +The aim of this paper is to fill these gaps and to develop the analytical foundation from +the PDE perspective of the theory of surfaces of minimum curvature variation. We give +two constructions of surfaces: classical solutions that are G2-continuous, and weak solutions +through geometric measure theory methods. +Therefore, we consider the minimization problem +(1.1) +min +M +1 +2 +ˆ +M +|∇MH|2 dA +where M ranges over all n−dimensional manifolds in Rn+1, n ≥ 1, with prescribed bound- +ary, H is the mean curvature of M and dA is the differential of surface area. Notice that +(1.1) minimizes the (quadratic) variation of the mean curvature of M so that surfaces with +constant mean curvature such as planes, circles and cylinders are minimizers. +If M is the graph of a function defined on a bounded domain Ω ⊂ Rn, that is, +M = {(x, u(x)) : x ∈ Ω} +for some u : Ω → R, then the values of u at ∂Ω prescribe the boundary ∂M of M. For a +point x0 ∈ Ω, the tangent plane to M at (x0, u(x0)) and its upward pointing unit normal are +P(x) = u(x0) + ∇u(x0) · (x − x0) +and +ν(x0) = +(−∇u(x0), 1) +(1 + |∇u(x0)|2)1/2 , +respectively. The mean curvature H of M at a point is defined as the average of the n +principal curvatures of M at that point. In the coordinates given by u, it takes the form +H ≡ H(u) = 1 +n div +� +∇u +(1 + |∇u|2)1/2 +� +. +If we set +D(u) := (1 + |∇u|2)1/2 +we then have that dA = D(u) dx. +Let f be a function in C1(Ω × R). The tangential gradient of f on M is obtained by +projecting the gradient of f in Rn+1 onto the plane orthogonal to ν: +∇Mf = ∇Rn+1f − (ν · ∇Rn+1f)ν +on M. + +SURFACES OF MINIMUM CURVATURE VARIATION +3 +Clearly, ν · ∇Mf = 0 and +(1.2) +|∇Mf|2 = |∇Rn+1f|2 − |ν · ∇Rn+1f|2. +Furthermore, ∇Mf depends only on the values of f on M, see, for instance, [6, Section 16.1]. +To compute ∇MH we extend H as a function of (x, xn+1) ∈ Ω × R by making it constant +in xn+1: H(x, xn+1) ≡ H(x). This is enough to compute ∇MH because the resulting value +is independent of the extension. Since ∇Rn+1H = (∇H, Hxn+1) = (∇H, 0), by (1.2) we get +|∇MH|2 = |(∇H, 0)|2 − +����(−∇u · ∇H)(−∇u, 1) +D(u)2 +���� +2 += |∇H|2 − +���� +∇u · ∇H +D(u) +���� +2 +. +With this formula the energy in (1.1) becomes +(1.3) +E[M] = 1 +2 +ˆ +Ω +� +|∇H|2 − +���� +∇u · ∇H +D(u) +���� +2� +D(u) dx. +We will call this the geometric energy. It follows from the Cauchy–Schwartz inequality that +|∇H|2 +D(u)2 ≤ |∇MH|2 ≤ |∇H|2. +Therefore, we will also study the (larger) simplified energy functional +(1.4) +E[H, u] := 1 +2 +ˆ +Ω +|∇H|2D(u) dx. +In Section 2 we consider (1.4) and show how to construct smooth solutions that satisfy the +prescribed mean curvature equation for a curvature of minimum variation. Section 3 shows +how to modify the argument to construct solutions of the geometric energy functional (1.3). +Finally, in Section 4 we provide a weak formulation of the problem and prove existence of +minimizers in the context of geometric measure theory. +2. Existence of G2 surfaces for the simplified energy +In this section we work with the simplified energy functional (1.4). Let Ω ⊂ Rn be a +bounded domain such that ∂Ω ∈ C3,α for some 0 < α < 1 fixed. We assume that we are +given prescribed boundary values g ∈ C3,α(Ω) for u and h ∈ C1,α(Ω) for H on ∂Ω. +We address the following problem: given Ω and the boundary datum g, find a surface +given by the graph of a function u such that its mean curvature H is a minimizer of (1.4) +among all functions with prescribed boundary values h ∈ C1,α(Ω). +We will use Schauder’s fixed point theorem: +Theorem 2.1 (see [6, Corollary 11.2]). Let G be a closed convex set in a Banach space B +and let T be a continuous mapping of G into itself such that the image T(G) is precompact. +Then T has a fixed point. +Consider the Banach space B = C1,α(Ω) and its subset +G := +� +v ∈ C1,α(Ω) : v = g on ∂Ω +� +. +Observe that G is nonempty because g ∈ C3,α(Ω). By classical global Schauder estimates, +we see that another example of function in G is the harmonic extension v of g inside of Ω: +� +∆v = 0 +in Ω +v = g +on ∂Ω. + +4 +L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS +It is clear that G is convex and closed. +For any v ∈ G, we define the functional +(2.1) +E[H, v] := 1 +2 +ˆ +Ω +|∇H|2D(v) dx. +The map T : G → G is constructed in a 2-step process. +Step 1. Given any v ∈ G, we find the unique minimizer H ∈ W 1,2(Ω) to (2.1) such that +H − h ∈ W 1,2 +0 (Ω). This can be done because the coefficient D(v) satisfies +1 ≤ D(v) ≤ (1 + ∥∇v∥2 +L∞(Ω))1/2 < ∞, +so that (2.1) is a coercive functional. Then H is the unique weak solution to +� +div(D(v)∇H) = 0 +in Ω +H = h +on ∂Ω. +Since v ∈ C1,α(Ω), the coefficient D(v) ∈ C0,α(Ω). Thus, by global Schauder estimates (see +[6, Section 8.11]), +(2.2) +∥H∥C1,α(Ω) ≤ Cn[∂Ω]C1,α∥D(v)∥C0,α(Ω)∥h∥C1,α(∂Ω) +where Cn > 0 is a constant that depends only on dimension n. +Step 2. Given H ∈ C1,α(Ω) from Step 1, we find the solution u to the prescribed mean +curvature equation +(2.3) +� +� +� +div +� ∇u +D(u) +� += nH +in Ω +u = g +on ∂Ω. +For this, we use the following result (where we use nH instead of H in [7]). +Theorem 2.2 ([7, Theorem 3.4.1] and its proof). Let 0 < α < 1 and Ω ⊂ Rn be a bounded +domain with C3,α boundary. Suppose that H ∈ C1,α(Ω) satisfies +(2.4) +∥H∥Ln(Ω) < +�ˆ +Rn(1 + |p|2)− n+2 +2 +dp +�1/n +and, for any y ∈ ∂Ω, +(2.5) +|H(y)| ≤ H∂Ω(y), +where H∂Ω is the mean curvature of ∂Ω corresponding to the inner unit normal vector to ∂Ω. +Then for any g ∈ C3,α(Ω) there exists a unique solution u ∈ C3,α(Ω) to (2.3). In particular, +there exists a constant C∗ > 0, depending only on n, α, ∥H∥Ln(Ω), ∥H∥C1(Ω), ∥g∥C2,α(Ω) and +Ω, such that +(2.6) +∥u∥C2,α(Ω) ≤ C∗. +The constant in the right-hand side of (2.4) can be simplified. Recall the definition of the +Beta function and its relation with the Gamma function: for x, y > 0, +B(x, y) := +ˆ ∞ +0 +tx−1 +(1 + t)x+y dt = Γ(x)Γ(y) +Γ(x + y) . + +SURFACES OF MINIMUM CURVATURE VARIATION +5 +We have that Γ(1) = 1 and xΓ(x) = Γ(x + 1), for all x > 0. By passing to polar coordinates +p = rθ, for r > 0 and θ ∈ Sn−1, performing the change of variables t = r2 which makes +2dr/r = dt/t, and using that |Sn−1| = n|B1|, we get +ˆ +Rn(1 + |p|2)− n+2 +2 dp = |Sn−1| +ˆ ∞ +0 +rn +(1 + r2) +n+2 +2 +dr +r += n|B1| +2 +ˆ ∞ +0 +tn/2 +(1 + t) +n+2 +2 +dt +t += n|B1| +2 +B(n/2, 1) = n|B1| +2 +Γ(n/2) +Γ(n/2 + 1) = |B1|. +Therefore, (2.4) reads +(2.7) +∥H∥Ln(Ω) < |B1|1/n. +Now (2.5) and (2.7) impose further restrictions on the boundary values h of H. Condition +(2.5) is natural to assume and cannot be avoided (see, for example, the nonexistence results [6, +Theorem 16.11] and [7, Theorem 3.4.5]). Therefore, we assume that h ∈ C1,α(Ω) additionally +satisfies +(2.8) +|h(y)| ≤ H∂Ω(y) +for all y ∈ ∂Ω. +On the other hand, by the maximum principle (see [6, Section 8.1]), we can estimate +(2.9) +ˆ +Ω +|H|n dx ≤ |Ω| +� +max +∂Ω |h| +�n +. +or +∥H∥Ln(Ω) ≤ |Ω|1/n max +∂Ω |h|. +Thus, in order to ensure (2.7), we further assume that +(2.10) +max +∂Ω |h| < +�|B1| +|Ω| +�1/n +. +From the computer science point of view, this means that for large boundary curvatures h +the domain Ω for the reconstruction should be sufficiently small. +Therefore, under the additional assumptions (2.8) and (2.10), we can apply Theorem 2.2 +and find the unique solution u ∈ C3,α(Ω) to (2.3). This completes Step 2. +Using these two steps, we define T : G → G by T(v) = u. In order to apply Theorem 2.1, +we need to verify that +(1) T is continuous, and +(2) T(G) is precompact. +Let us begin with (1). Fix v1 ∈ G. We need to show that given any ε > 0 there exists +δ = δ(ε, v1) > 0 such that for any v2 ∈ G satisfying ∥v1 − v2∥C1,α(Ω) < δ we have ∥u1 − +u2∥C1,α(Ω) < ε, where uj = Tvj, for j = 1, 2. +Let Hj denote the minimizer of E[·, vj], +j = 1, 2, as constructed in Step 1. Then the difference H = H1 − H2 is the unique weak +solution to +� +div(D(v1)∇H) = div +� +(D(v2) − D(v1))∇H2 +� +in Ω +H = 0 +on ∂Ω. + +6 +L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS +By global Schauder estimates (see [6, Section 8.11]), +(2.11) +∥H∥C1,α(Ω) ≤ Cn[∂Ω]C1,α∥D(v1)∥C0,α(Ω)∥(D(v2) − D(v1))∇H2∥C0,α(Ω) +≤ C(n, α, Ω, v1, ∇H2)∥v1 − v2∥C1,α(Ω) +=: C1∥v1 − v2∥C1,α(Ω). +Let us now estimate the difference u = u1 − u2 ∈ C3,α(Ω). Since +� +� +� +div +� ∇ui +D(ui) +� += nHi +in Ω, for i = 1, 2 +u1 = u2 = g +on ∂Ω +we find that +� +� +� +div +� ∇u1 +D(u1) − ∇u2 +D(u2) +� += nH +in Ω +u = 0 +on ∂Ω. +In order to apply global Schauder estimates one more time we need to find an equation for +u. Set +F(p) := +p +� +1 + |p|2 +p ∈ Rn. +Then F is a smooth, bounded vector field with entries Fi(p) = +pi +√ +1+|p|2 , for i = 1, . . . , n. Note +that, for j = 1, . . . , n, +∂jFi(p) = +� +� +� +1 +√ +1+|p|2 − +p2 +i +(1+|p|2)3/2 +if i = j +− +pipj +(1+|p|2)3/2 +if i ̸= j += +δij +D(p) − pipj +D(p)3 . +In particular, +(2.12) +∂jFi(p) = ∂iFj(p) +so that ∇F is a symmetric matrix. It is clear that ∇F is bounded. To see that it is locally +strictly elliptic, observe that, for any ξ ∈ Rn, by the Cauchy–Schwartz inequality, +n +� +i,j=1 +∂jFi(p)ξiξj = +n +� +i,j=1 +�δijξiξj +D(p) − pipjξiξj +D(p)3 +� +≥ |ξ|2 +� +1 +D(p) − +|p|2 +D(p)3 +� += +|ξ|2 +D(p)3 ≥ θ(R)|ξ|2 +for all |p| < R, where θ(R) → 0 as R → ∞. Furthermore, we can write +Fi(∇u1) − Fi(∇u2) = +ˆ 1 +0 +d +dtFi(t∇u1 + (1 − t)∇u2) dt += +ˆ 1 +0 +∇Fi(t∇u1 + (1 − t)∇u2) · ∇(u1 − u2) dt +so that +F(∇u1) − F(∇u2) = A(x)∇u +with +Aij(x) = +ˆ 1 +0 +∂jFi(t∇u1 + (1 − t)∇u2) dt. + +SURFACES OF MINIMUM CURVATURE VARIATION +7 +The matrix A is symmetric thanks to (2.12), as well as bounded. Recall that ∇F is locally +strictly elliptic. Now, u1 ∈ C3,α(Ω) is fixed. By (2.6), the C2,α(Ω) norm of u2 is uniformly +controlled by the C1(Ω) norm of H2, which in turn is uniformly close to the C1(Ω) norm of +the initially fixed H1. These facts imply that that A(x) is strictly elliptic. Moreover, we have +the following technical lemma. +Lemma 2.3. Let U, V : Ω → Rn, U, V ∈ C0,α(Ω) and let ψ : Rn → R be a smooth function +such that +∥ψ∥L∞(Rn) + ∥∇ψ∥L∞(Rn) < ∞. +Define +φ(x) := +ˆ 1 +0 +ψ(tU(x) + (1 − t)V (x)) dt +for every x ∈ Ω. +Then φ ∈ C0,α(Ω), with +∥φ∥C0,α(Ω) ≤ ∥ψ∥L∞(Rn) + ∥∇ψ∥L∞(Rn) +� +[U]Cα(Ω) + [V ]Cα(Ω) +� +. +Proof. The boundedness of ψ implies that φ is bounded with ∥φ∥L∞(Ω) ≤ ∥ψ∥L∞(Rn). To +bound the H¨older seminorm of φ, let x, y ∈ Ω. Then +|φ(x) − φ(y)| = +���� +ˆ 1 +0 +� +ψ(tU(x) + (1 − t)V (x)) − ψ(tU(y) + (1 − t)V (y)) +� +dt +���� +≤ ∥∇ψ∥L∞(Rn) +ˆ 1 +0 +|t(U(x) − U(y)) + (1 − t)(V (x) − V (y))| dt +≤ ∥∇ψ∥L∞(Rn) (|U(x) − U(y)| + |V (x) − V (y)|) +≤ ∥∇ψ∥L∞(Rn) +� +[U]Cα(Ω) + [V ]Cα(Ω) +� +|x − y|α. +□ +Lemma 2.3 gives the H¨older continuity of A(x). Indeed, let ψ be any of the entries of the +gradient matrix of F: +(∇F(p))ij = +δij +D(p) − pipj +D(p)3 +for i, j = 1, . . . , n, +which are smooth and bounded, so ∥ψ∥L∞(Rn) ≤ M1, where M1 is independent of i and j. +For any k = 1, . . . , n, we have +∂k(∇F(p))ij = −δijpk + δikpj + δjkpi +D(p)3 ++ pipjpk +D(p)5 +and these are all bounded. Therefore, ∥∇ψ∥L∞(Rn) ≤ M2, where M2 > 0 is independent of i +and j. By setting U = ∇u1 and V = ∇u2 in Lemma 2.3, we get +∥A∥C0,α(Ω) ≤ M1 + M2 +� +[∇u1]Cα(Ω) + ([∇u2]Cα(Ω) +� +≤ M3 +with M3 > 0 a constant depending only on n, α, ∥H1∥Ln(Ω), ∥H1∥C1(Ω), ∥g∥C2,α(Ω), and +Ω, see (2.6). Observe that all these quantities are independent of u2 if v2 is close to v1 in +C1,α(Ω). In summary, we have found that u is a solution to +� +div(A(x)∇u) = nH +in Ω +u = 0 +on ∂Ω +and so, by Schauder estimates, +(2.13) +∥u∥C1,α(Ω) ≤ Cn[∂Ω]C1,αM3∥H∥C1,α(Ω) =: C2∥H∥C1,α(Ω). + +8 +L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS +Therefore, by collecting estimates (2.11) and (2.13), and recalling that u = u1 − u2 = Tv1 − +Tv2, and H = H1 − H2, we obtain +∥Tv1 − Tv2∥C1,α(Ω) ≤ C1C2∥v1 − v2∥C1,α(Ω). +If we choose δ = ε/(C1C2) then we see that T is continuous, as desired. +Let us now turn to (2), which will follow from a priori estimates for prescribed mean +curvature equations. Let {vk}k≥1 be a sequence in G such that +sup +k≥1 +∥vk∥C1,α(Ω) ≤ N1 < ∞ +and consider the corresponding solutions Hk ∈ C1,α(Ω) found in Step 1. Set uk = Tvk. By +(2.6), +∥uk∥C2,α(Ω) ≤ Ck +where Ck > 0 is a constant depending only on n, α, ∥Hk∥Ln(Ω), ∥Hk∥C1(Ω), ∥h∥C2,α(Ω), and +Ω. Since all Hk have the same boundary values h, by (2.9), we get that +sup +k≥1 +∥Hk∥Ln(Ω) = N2 < ∞. +Furthermore, from the C1,α estimate in (2.2), +sup +k≥1 +∥Hk∥C1(Ω) ≤ Cn[∂Ω]C1,α∥h∥C1,α(∂Ω) sup +k≥1 +∥D(vk)∥C0,α(Ω) = N3 < ∞. +Consequently, +sup +k≥1 +∥uk∥C2,α(Ω) ≤ sup +k≥1 +Ck = N4 < ∞. +By the Arzel`a–Ascoli compact embedding C2,α(Ω) ⊂⊂ C1,α(Ω), there exist a subsequence +{ukj}j≥1 of {uk}k≥1 and u ∈ G such that ukj → u in C1,α(Ω). We conclude that T(G) is +precompact and (2) is proved. +Thus, by Theorem 2.1, there exists u ∈ G such that Tu = u. We have proved the following: +Theorem 2.4 (Existence for the simplified energy). Let Ω ⊂ Rn be a bounded domain with +C3,α boundary ∂Ω, for some 0 < α < 1. Fix g ∈ C3,α(Ω). Let h ∈ C1,α(Ω) such that +(2.14) +|h(y)| ≤ H∂Ω(y) +for all y ∈ ∂Ω, +where H∂Ω is the mean curvature of ∂Ω corresponding to the inner unit normal vector to ∂Ω, +and +(2.15) +max +∂Ω |h| < +�|B1| +|Ω| +�1/n +. +Then there exist u ∈ C3,α(Ω) and H ∈ C1,α(Ω) such that H minimizes the energy +1 +2 +ˆ +Ω +|∇H|2D(u) dx +among all H ∈ W 1,2(Ω) such that H − h ∈ W 1,2 +0 (Ω), or, equivalently, H is the unique weak +solution to +� +div(D(u)∇H) = 0 +in Ω +H = h +on ∂Ω, + +SURFACES OF MINIMUM CURVATURE VARIATION +9 +and, in addition, H is the mean curvature of the graph of u with prescribed values on ∂Ω, +that is, +� +� +� +1 +n div +� ∇u +D(u) +� += H +in Ω +u = g +on ∂Ω. +Remark 2.5 (Nonexistence of solutions). The conditions imposed on the curvature at the +boundary datum h in Theorem 2.4 come from restrictions already present when one seeks for +solutions of the prescribed mean curvature equation. Indeed, the divergence form equation for +H is uniformly elliptic when u is, say, Lipschitz continuous and therefore is always solvable. +On the other hand, if condition (2.14) is not satisfied, that is, +|h(y0)| > H∂Ω(y0) +for some y0 ∈ ∂Ω +and h ≥ 0 (or h ≤ 0) on ∂Ω then H ≥ 0 (or H ≤ 0) in Ω and we have that for any ε > 0 +there exists g ∈ C∞(Ω) with |g| < ε such that the prescribed mean curvature equation with +curvature H and boundary values h is not solvable (see [7, Theorem 3.4.5] or [6, Corollary +14.13]) and hence neither is the minimum curvature variation system. +On the other hand, a necessary condition for existence of solutions of the prescribed mean +curvature equation is +(2.16) +���� +ˆ +Ω +Hη dx +���� ≤ 1 − ε0 +n +ˆ +Ω +|∇η| dx +for all η ∈ C1 +0(Ω) and with +1 − ε0 = sup +Ω +|∇u| +� +1 + |∇u|2 , +see [6, eq. (16.60)]. This condition implies ∥H∥Ln(Ω) < |B1|1/n, which is the structural con- +dition on H that motivates (2.15). The requirement in Theorem 2.4 could be thus weakened, +but (2.16) is the least requirement under which existence for the prescribed mean curvature +equation can be obtained and hence also for the system at hand. +3. Existence of G2 surfaces for the geometric energy +In this section we discuss how the technique we developed in the previous section can be +applied to the geometric energy functional +E[M] = 1 +2 +ˆ +Ω +� +|∇H|2 − +���� +∇u · ∇H +D(u) +���� +2� +D(u) dx. +Let Ω, α, h and g be as in Section 2. Fix v ∈ C1,α(Ω) such that v = g on ∂Ω. Consider the +energy +Ev[H] := 1 +2 +ˆ +Ω +� +|∇H|2 − +���� +∇v · ∇H +D(v) +���� +2� +D(v) dx = +ˆ +Ω +L(∇H) dx +where the smooth Lagrangian L is given by +L(p) = 1 +2 +� +|p|2 − +���� +∇v · p +D(v) +���� +2� +D(v) +for p ∈ Rn. +Then L is coercive, as +L(p) ≥ 1 +2 +� +|p|2 − |∇v|2|p|2 +D(v)2 +� +D(v) = 1 +2 +� +D(v) − |∇v|2 +D(v) +� +|p|2 = +1 +2D(v)|p|2. + +10 +L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS +To prove that L is convex, first observe that, for i = 1, . . . , n, +Lpi(p) = +� +pi − (∇v · p) +D(v)2 vxi +� +D(v) = +n +� +j=1 +� +δijD(v) − vxivxj +D(v) +� +pj +and, for i, j = 1, . . . , n, +Lpipj(p) = δijD(v) − vxivxj +D(v) . +Then, for any ξ ∈ Rn, +Lpipj(p)ξiξj = D(v)|ξ|2 − (∇v · ξ)2 +D(v) +≥ +� +D(v) − |∇v|2 +D(v) +� +|ξ|2 = +1 +D(v)|ξ|2. +Thus, D2 +pL is a positive definite matrix, and L is uniformly convex. It follows that there +exists a unique minimizer H ∈ W 1,2(Ω) of the energy Ev[H] such that H − h ∈ W 1,2 +0 (Ω). In +particular, H is the unique weak solution to +� +� +� +� +� +n +� +i=1 +(Lpi(∇H))xi = 0 +in Ω +H = h +on ∂Ω. +Since +Lpi(∇H) = +n +� +j=1 +� +δijD(v) − vxivxj +D(v) +� +Hxj +we find that H is the unique weak solution to the linear problem +� +div(a(x)∇H) = 0 +in Ω +H = h +on ∂Ω +where +aij(x) = δijD(v) − vxivxj +D(v) = Lpipj. +Observe that +|aij(x)| ≤ C +� +D(v) + |∇v|2 +D(v) +� +≤ C(D(v) + |∇v|) ≤ C(n, ∥∇v∥L∞(Ω)). +We have already seen that aij(x) is uniformly elliptic. Moreover, if v ∈ C1,α(Ω) then aij(x) ∈ +C0,α(Ω). Hence, H ∈ C1,α(Ω), with +∥H∥C1,α(Ω) ≤ Cn[∂Ω]C1,α∥v∥C1,α(Ω)∥h∥C1,α(∂Ω). +If h satisfies (2.8) and (2.10) then we can apply Theorem 2.2 and find the unique solution +u ∈ C3,α(Ω) to (2.3). From here on we can continue with the fixed point arguments we did +in Section 2 to conclude the following result. +Theorem 3.1 (Existence for the geometric functional). Let Ω ⊂ Rn be a bounded domain +with C3,α boundary ∂Ω, for some 0 < α < 1. Fix g ∈ C3,α(Ω). Let h ∈ C1,α(Ω) such that +|h(y)| ≤ H∂Ω(y) +for all y ∈ ∂Ω, + +SURFACES OF MINIMUM CURVATURE VARIATION +11 +where H∂Ω is the mean curvature of ∂Ω corresponding to the inner unit normal vector to ∂Ω, +and +max +∂Ω |h| < +�|B1| +|Ω| +�1/n +. +Then there exist u ∈ C3,α(Ω) and H ∈ C1,α(Ω) such that H minimizes the energy +1 +2 +ˆ +Ω +� +|∇H|2 − +���� +∇u · ∇H +D(u) +���� +2� +D(u) dx +among all H ∈ W 1,2(Ω) such that H − h ∈ W 1,2 +0 (Ω), or, equivalently, H is the unique weak +solution to +� +div(a(x)∇H) = 0 +in Ω +H = h +on ∂Ω, +where +aij(x) = δijD(u) − uxiuxj +D(u) +and, in addition, H is the mean curvature of the graph of u with prescribed values on ∂Ω, +that is, +� +� +� +1 +n div +� ∇u +D(u) +� += H +in Ω +u = g +on ∂Ω. +4. Weak solutions +In this section we develop the weak formulation of the minimum curvature variation prob- +lem in the context of geometric measure theory. +Given a Lipschitz bounded domain Ω, we denote by BV(Ω) the space of functions of +bounded variation in Ω. We start by recalling that u ∈ BV(Ω) is a generalized solution +to the prescribed mean curvature equation with (weak) mean curvature H ∈ L1(Ω) and +boundary value g ∈ L1(∂Ω) if +(WPMC) +J [u] = +min +v∈BV(Ω) J [v] +where +J [v] := +ˆ +Ω +D(v) + +ˆ +Ω +nHv dx + +ˆ +∂Ω +|v − g| dS +and +(4.1) +ˆ +Ω +D(v) := sup +� ˆ +Ω +� +v +n +� +i=1 +∂xiφi + φn+1 +� +dx : φi ∈ C1 +c (Ω), +n+1 +� +i=1 +φ2 +i ≤ 1 +� +. +Note that +´ +Ω +� +1 + |∇u|2 dx does not make usual sense a priori for a function of bounded +variation and so (4.1) is indeed a definition. Furthermore, this definition is consistent in the +sense that for v ∈ W 1,1(Ω) we have +ˆ +Ω +D(v) = +ˆ +Ω +� +1 + |∇v|2 dx, +see the proof of Lemma 4.1. + +12 +L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS +In [3, Theorem 1.1], Giaquinta proved that if H is a measurable function then (WPMC) +is solvable in BV(Ω) if and only if there exists ε0 > 0 such that, for every measurable subset +A ⊂ Ω, +(4.2) +���� +ˆ +A +H dx +���� ≤ (1 − ε0) 1 +nP(∂A) +where P(∂A) denotes the perimeter of A. Clearly, (4.2) is significant only when A is a set of +finite perimeter (or Caccioppoli set). +We need a generalized measure of surface area. In that regard, we recall that the dis- +tributional gradient of u ∈ BV(Ω) is a vector valued Radon measure whose total variation +is identified with |∇u|. This is again consistent in the sense that if u ∈ W 1,1(Ω) then the +total variation equals +´ +Ω |∇u| dx (see [2, Chapter 5] for this and other properties of the space +BV(Ω) used hereafter). In general, for an open set U ⊂⊂ Ω the variation measure of ∇u +over U is given by +|∇u|(U) = sup +�ˆ +U +u div φ dx : φ ∈ C1 +c (U; Rn), |φ| ≤ 1 +� +and, for an arbitrary set V ⊂ Ω, +|∇u|(V ) = inf +� +|∇u|(U) : V ⊂ U and U is open +� +. +Taking this into account, and in analogy with (4.1), we define for the area measure by +(4.3) +D(u)(U) = sup +� ˆ +Ω +� +u +n +� +i=1 +∂xiφi + φn+1 +� +dx : φi ∈ C1 +c (U), +n+1 +� +i=1 +φ2 +i ≤ 1 +� +for any U ⊂⊂ Ω open and, for an arbitrary set V ⊂ Ω, +D(u)(V ) = inf {D(u)(U) : V ⊂ U and U is open} . +Although (4.3) could be defined, in principle, for functions in L1(Ω), it is easy to check that +(4.3) is finite if and only if u ∈ BV(Ω). +Similarly as for the variation measure, D(u) is a Radon measure, namely, a locally finite, +Borel regular measure in Rn (to prove that it is locally finite, see the ideas in [5, eq. (14.2)]). +The following observation will be useful. +Lemma 4.1. Let U ⊂ Ω be a Borel set. Then +(4.4) +|U| ≤ D(u)(U). +Proof. Due to the Borel regularity of both D(u) and the Lebesugue measure it suffices to +prove (4.4) for open sets. Let U ⊂ Rn be open. +First, we note that +(4.5) +D(u)(U) = +ˆ +U +� +1 + |∇u|2 dx +for any u ∈ C1(Ω). +Indeed, an integration by parts yields +ˆ +Ω +� +u +n +� +i=1 +∂xiφi + φn+1 +� +dx = +ˆ +U +(−∇u, 1) · Φ dx +where Φ = (φ1, . . . , φn, φn+1). Then the Cauchy-Schwartz inequality in Rn+1 and the condi- +tion |Φ| ≤ 1 give +D(u)(U) ≤ +ˆ +U +� +1 + |∇u|2 dx. + +SURFACES OF MINIMUM CURVATURE VARIATION +13 +On the other hand, +� +1 + |∇u|2 ∈ L1(U) and so there exists a sequence Φj = (φj +1, . . . , φj +n, φj +n+1) +with φj +i ∈ C1 +c (U), j ≥ 1, that converges in L1(U) and almost everywhere to +(−∇u,1) +√ +1+|∇u|2 . Fur- +thermore, +(−∇u,1) +√ +1+|∇u|2 is a unit vector so we may assume that �n+1 +i=1 (φj +i)2 ≤ 1. Since +��Φj · (−∇u, 1) +�� ≤ |Φj| +� +1 + |∇u|2 ≤ +� +1 + |∇u|2 ∈ L1(U) +we can use the dominated convergence theorem to get +lim +j→∞ +ˆ +Ω +� +u +n +� +i=1 +∂xiφj +i + φj +n+1 +� +dx = lim +j→∞ +ˆ +U +(−∇u, 1) · Φj dx = +ˆ +U +� +1 + |∇u|2 dx +and the supremum is achieved. Thus (4.5) holds. +Second, we have that u ∈ BV(U) and there exists {uk}k≥1 ⊂ BV(U) ∩ C∞(U) such that +uk → u in L1(Ω) and +(4.6) +lim +k→∞ D(uk)(U) = D(u)(U), +see [2, Theorem 5.3]. Since, by (4.5), the conclusion (4.4) is trivial for C1 functions, we have +|U| ≤ lim +k→∞ D(uk)(U) = D(u)(U) +as desired. +□ +From now on, we fix a bounded, C1,1 domain Ω. We consider the minimization problem +min +(u,H)∈A I[u, H] +where +(4.7) +I[u, H] := +ˆ +Ω +|∇H|2 dD(u) +and dD(u) stands for the area measure defined in (4.3). The admissible set A is defined as +follows. Let h ∈ W 2,2(Ω) ∩ Lip(∂Ω) satisfying +(4.8) +|h(y)| ≤ n − 1 +n +Λ(y), y ∈ ∂Ω, +and +max +∂Ω |h| ≤ (1 − ε0) +�|B1| +|Ω| +�1/n +, +where Λ(y) is the weak mean curvature of ∂Ω at y ∈ ∂Ω and +(4.9) +n − 1 +n +< ε0 < 1. +Define +(4.10) +A := +� (u, H) ∈ BV(Ω) × (Ln(Ω) ∩ W 2,2(Ω)) : u solves (WPMC) +and ∥H∥Ln(Ω) + ∥H∥W 2,2(Ω) ≤ C0, H = h on ∂Ω +� +with C0 > 0 is to be appropriately chosen. The equality H = h is understood in the sense of +traces. +Remark 4.2. The condition H ∈ W 2,2(Ω) is certainly natural for applications to the design +of fair G2-continuous surfaces in CAD/CAM/CAGD. Indeed, in dimensions n = 1, 2, 3, the +Sobolev embedding gives that the curvature H is H¨older continuous. +The main result of this section is the following: +Theorem 4.3 (Existence of weak solutions). Let I be defined by (4.7), h ∈ W 2,2(Ω)∩Lip(∂Ω) +satisfying (4.8) and ε0 ∈ (0, 1) satisfying (4.9). Then the set of admissible functions A in +(4.10) is nonempty and there exists a minimizer of I within the class A. + +14 +L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS +To prove Theorem 4.3 we recall the notion and properties of Γ−convergence in our context, +referring the reader to [1] for an introduction to the topic. +Let Jk, k ≥ 1, and J∞ be +functionals defined on the common space BV(Ω) and taking values in [−∞, ∞]. The sequence +{Jk}k≥1 is said to Γ−converge to J∞ if the following two conditions hold: +(a) For every v ∈ BV(Ω) and every sequence {vk}k≥1 ⊂ BV(Ω) such that vk → v in BV(Ω) +it holds +lim inf +k→∞ Jk(vk) ≥ J∞(v). +(b) For every v ∈ BV(Ω) there exists a sequence {vk}k≥1 ⊂ BV(Ω) such that vk → v in +BV(Ω) for which +lim sup +k→∞ +Jk(vk) ≤ J∞(v). +We will use the following result. +Theorem 4.4 (see [1, Theorem 1.21]). Let (X, d) be a metric space and let {fk}k≥1 be an +equi-mildly coercive sequence of functions on X that Γ−converges to f∞. Then, there exits +min +X f∞ = lim +k→∞ inf +X fk. +Moreover, if {xk}k≥1 ⊂ X is a precompact sequence such that +lim +k→∞ fk(xk) = lim +k→∞ inf +X fk +then every limit of {xk}k≥1 is a minimum point for f∞. +Here f is said to be mildly coercive if there exists a nonempty compact set K ⊂ X such +that infK f = infX f, and equi-mild coercivity means that the set K is the same for the whole +sequence {fk}k≥1. +Proof of Theorem 4.3. The proof is divided into 4 steps. +Step 1. A ̸= ∅. We can extend h to Ω by solving +� +∆H = 0 +in Ω +H = h +on ∂Ω. +By classical elliptic regularity, H ∈ W 2,2(Ω) and +∥H∥W 2,2(Ω) ≤ C0 +where C0 = C0(∂Ω, ∥h∥L∞(∂Ω)) > 0. Moreover, by the H¨older and isoperimetric inequalities, +���� +ˆ +A +H dx +���� ≤ ∥H∥Ln(Ω)|A| +n−1 +n +≤ ∥H∥Ln(Ω) +P(∂A) +n|B1|1/n . +By the maximum principle and (4.8) we have +∥H∥Ln(Ω) ≤ |Ω|1/n max +∂Ω |h| ≤ (1 − ε0)|B1|1/n, +where we make C0 larger if needed. Therefore, +���� +ˆ +A +H dx +���� ≤ (1 − ε0) +n +P(∂A) +and (WPMC) is solvable for this H. Let u ∈ BV(Ω) be the corresponding minimizer of J . +We have that A ̸= ∅. We further point out that +´ +Ω D(u) < ∞ and H ∈ Lip(Ω) so that +ˆ +Ω +|∇H|2 dD(u) ≤ ∥∇H∥2 +L∞(Ω)D(u)(Ω) < ∞. + +SURFACES OF MINIMUM CURVATURE VARIATION +15 +In particular, +0 ≤ +inf +(u,H)∈A I[u, H] < ∞. +Step 2. Construction of a minimizer. Let {(uk, Hk)}k≥1 ⊂ A be a minimizing sequence: +m := +inf +(u,H)∈A I[u, H] = lim +k→∞ I[uk, Hk]. +To get a convergent subsequence of {uk}k≥1 we show its uniform boundedness in BV(Ω) and +use that BV(Ω) embedds compactly in L1(Ω). Since every uk is a minimizer of the functional +Jk defined by +(4.11) +Jk[v] := +ˆ +Ω +D(v) + +ˆ +Ω +nHkv dx + +ˆ +∂Ω +|v − g| dS +we have that, for any u0 ∈ BV(Ω), +ˆ +Ω +D(uk) + +ˆ +Ω +nHkuk dx + +ˆ +∂Ω +|uk − g| dS ≤ +ˆ +Ω +D(u0) + +ˆ +Ω +nHku0 dx + +ˆ +∂Ω +|u0 − g| dS +from where +(4.12) +ˆ +Ω +D(uk) + +ˆ +Ω +nHkuk dx ≤ C + +ˆ +Ω +nHku0 dx +for C > 0 independent of k. Reasoning as in [3, eq. (1.4)] we have that +(4.13) +ˆ +Ω +Hkuk dx ≥ −(1 − ε0) +ˆ +Ω +|∇uk| − C. +Furthermore, BV(Ω) ⊂ L +n +n−1 (Ω) so (4.13) and the H¨older inequality in (4.12) give +ˆ +Ω +D(uk) ≤ −n +ˆ +Ω +Hkuk dx + C + +ˆ +Ω +nHku0 dx +≤ n(1 − ε0) +ˆ +Ω +|∇uk| + n∥Hk∥Ln(Ω)∥u0∥L +n +n−1 (Ω) + C +for a new constant C > 0 that is independent of k. Moreover, the uniform bound on the +Ln(Ω) norm of {Hk}k≥1 (they all belong to A) gives +ˆ +Ω +|∇uk| ≤ n(1 − ε0) +ˆ +Ω +|∇uk| + nC0∥u0∥L +n +n−1 (Ω) + C. +Thus, after rearranging terms and recalling (4.9), +ˆ +Ω +|∇uk| ≤ +1 +(1 − n(1 − ε0)) +� +nC0∥u0∥L +n +n−1 (Ω) + C +� +. +Hence, by compactness in BV(Ω), there exists a subsequence of {uk}k≥1, still denoted by the +same indexes, and u∞ ∈ BV(Ω) such that +uk → u∞ in L1(Ω) as k → ∞, and +|∇u∞|(Ω) ≤ lim inf +k→∞ |∇uk|. +Note that we also have +(4.14) +D(u∞) ≤ lim inf +k→∞ D(uk). +By Poincar´e’s inequality and the Rellich–Kondrachov compactness theorem, there exist a +subsequence of {Hk}k≥1, still denoted by the same indexes, and H∞ ∈ W 2,2(Ω) such that +(4.15) +∇Hk → ∇H∞ in L2(Ω), as k → ∞. + +16 +L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS +Further, due to the uniform bound on ∥Hk∥Ln(Ω), we may assume that Hk converges weakly +in Ln(Ω) to H∞. Finally, the weak convergence ensures that +∥H∞∥Ln(Ω) + ∥H∞∥W 2,2(Ω) ≤ C0. +Step 3. (u∞, H∞) ∈ A. For this step we use Γ−convergence. Recall the functionals Jk +defined in (4.11) (for the subsequence Hk we found in Step 2) and define J∞ analogously. +We want to show that u∞ is a solution of (WPMC), namely, that u∞ is a minimizer of J∞ +over BV(Ω). Let us show that {Jk}k≥1 Γ−converges to J∞. A first remark is that it is +enough to prove the Γ−convergence of +� +Jk(v) := +ˆ +Ω +vHk dx +to +� +J∞(v) := +ˆ +Ω +vH∞ dx +since the other two terms do not depend on k and can be considered as continuous pertur- +bations of Jk, see [1, Remark 1.7]. To prove the liminf inequality (a), let {vk}k≥1 ⊂ BV(Ω) +and v ∈ BV(Ω) such that vk → v in BV(Ω). We write +ˆ +Ω +vkHk dx − +ˆ +Ω +vH∞ dx = Ik + IIk + IIIk +with +Ik = +ˆ +Ω +(vk − v)H∞ dx +IIk = +ˆ +Ω +(vk − v)(Hk − H∞) dx +IIIk = +ˆ +Ω +v(Hk − H∞) dx. +By lower semicontinuity [4, Proposition 2.1], +lim inf +k→∞ Ik ≥ 0 +Next, we bound +|IIk| ≤ ∥vk − v∥L +n +n−1 (Ω) +� +∥Hk∥Ln(Ω) + ∥H∞∥Ln(Ω) +� +. +Since vk converge to v in BV(Ω), by the isoperimetric embedding, the convergence also holds +in L +n +n−1 (Ω). This and the uniform bound of Hk in Ln(Ω) give +lim +k→∞ IIk = 0. +Finally, limk→∞ IIIk = 0 by the weak convergence of Hk to H∞ in Ln(Ω). As for the limsup +inequality (b), given any v ∈ BV(Ω), consider the constant sequence vk = v for all k ≥ 1 and +notice that, using the weak convergence of Hk to H∞ in Ln(Ω), we have that +lim +k→∞ +� +Jk(vk) = � +J∞(v). +Hence, {Jk}k≥1 converges to J∞ in the Γ sense. Therefore, we can apply Theorem 4.4 with +X = BV(Ω), fk = Jk, f∞ = J∞ and {xk}k≥1 and x∞ given by {uk}k≥1 and u∞, respectively +(note that the sequence {Jk}k is equi-mildly coercive), to conclude that u∞ is a minimizer +of J∞. We have thus shown that (u∞, H∞) ∈ A. + +SURFACES OF MINIMUM CURVATURE VARIATION +17 +Step 4. (u∞, H∞) is a minimizer. Recall that L(p) = 1 +2|p|2, p ∈ Rn, is convex, that is, +1 +2|p|2 ≥ 1 +2|p0|2 + p0 · (p − p0) +for every p, p0 ∈ Rn. Then we can write +1 +2 +ˆ +Ω +|∇Hk|2 dD(uk) ≥ 1 +2 +ˆ +Ω +|∇H∞|2 dD(uk) ++ +ˆ +Ω +∇H∞ · (∇Hk − ∇H∞) dD(uk). +As k → ∞, the left hand side of this inequality converges to m. As for the right hand side, +(4.6) implies that +lim inf +k→∞ +1 +2 +ˆ +Ω +|∇H∞|2 dD(uk) ≥ 1 +2 +ˆ +Ω +|∇H∞|2 dD(u∞). +It remains to analyze the second term on the right hand side. For this, notice that Lemma +4.1 implies that dD(uk) is absolutely continuous with respect to the Lebesgue measure, see +(4.4). This and H¨older’s inequality give +���� +ˆ +Ω +∇H∞ · (∇Hk − ∇H∞) dD(uk) +���� ≤ +ˆ +Ω +|∇H∞||∇Hk − ∇H∞| dD(uk) +≤ C +ˆ +Ω +|∇H∞||∇Hk − ∇H∞| dx +≤ C∥∇H∞∥L2(Ω)∥∇Hk − ∇H∞∥L2(Ω). +In view of (4.15), this term goes to 0 as k → ∞. We have shown that +m ≥ +ˆ +Ω +|∇H∞|2 dD(u∞). +Since (u∞, H∞) ∈ A equality must be attained and (u∞, H∞) is a minimizer, as desired. +□ +References +[1] A. Braides, Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22, +Oxford University Press, Oxford, 2002. +[2] L. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Revised Edition, Text- +books in Mathematics, CRC Press, Boca Raton, FL, 2015. +[3] M. Giaquinta, On the Dirichlet problem for surfaces of prescribed mean curvature, Manuscripta Math. +12 (1974), 73–86. +[4] E. Giusti, Boundary value problems for non-parametric surfaces of prescribed mean curvature, Ann. +Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 501–548. +[5] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics 80, +Birkh¨auser Verlag, Basel, 1984. +[6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in +Mathematics, Springer-Verlag, Berlin, 2001. +[7] Q. Han, Nonlinear Elliptic Equations of the Second Order, Graduate Studies in Mathematics 171, Amer- +ican Mathematical Society, Providence, RI, 2016. +[8] H. P. Moreton and C. H. S´equin Functional optimization for fair surface design, ACM SIGGRAPH +Computer Graphics 2 (1992), 167-176. +[9] K. L. Narayan, K. M. Rao and M. M. M. Sacar, Computer Aided Design and Manufacturing, PHI Learning +Pvt. Ltd., 2008. +[10] W. Welch and A. Witkin, Variational surface modeling, ACM SIGGRAPH computer graphics 2 (1992), +157-166. + +18 +L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS +[11] G. Xu and Q. Zhang, Minimal mean-curvature-variation surfaces and their applications in surface mod- +eling, in: International Conference on Geometric Modeling and Processing, 357–370, Springer, Berlin, +Heidelberg, 2006. +Department of Mathematics, The University of Texas at Austin, 2515 Speedway, Austin, TX +78712, United States of America +Email address: caffarel@math.utexas.edu +Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, IA 50011, United +States of America +Email address: stinga@iastate.edu +Centro Marplatense de Investigaciones Matem´aticas/CONICET, Dean Funes 3350, 7600 Mar +del Plata, Argentina +Email address: havivas@mdp.edu.ar + diff --git a/DdAyT4oBgHgl3EQfSPd1/content/tmp_files/load_file.txt b/DdAyT4oBgHgl3EQfSPd1/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..bf513a3ca0b540a8c588c3bde45c1279c0b6f0a5 --- /dev/null +++ b/DdAyT4oBgHgl3EQfSPd1/content/tmp_files/load_file.txt @@ -0,0 +1,558 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf,len=557 +page_content='SURFACES OF MINIMUM CURVATURE VARIATION LUIS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' CAFFARELLI, PABLO RA´UL STINGA, AND HERN´AN VIVAS Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We establish the analytical theory of surfaces of minimum curvature variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We construct classical, G2 continuous surfaces, as well as weak solutions in the context of geometric measure theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Introduction Computer-aided design (CAD) and computer-aided manufacturing (CAM) are widely pop- ular techniques whose basic feature is the use of computer software to create or modify shapes in such a way that some aspects of the design process, such as quality of the object or produc- tivity of the process, are optimized, see, for example, [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Their origins can be traced back to the 1950s and 60s and their development have been continuous since then.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Nowadays, CAD/CAM are used in contexts as varied as engineering, particularly in automotive, ship- building and aerospace industries;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' architectural design;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' and computer animation for creation of special effects in movies, among many other applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Within this realm, of particular interest are geometric problems in computer-aided geomet- ric design (CAGD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The goal of CAGD is the creation of complex smoothly shaped models and surfaces with specified geometric constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The resulting surfaces have to accurately reflect these specifications and be free of unwanted wrinkles, bulges and ripples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In many instances, the aim is to create fair surfaces that are aesthetically pleasing to the eye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' As it turns out, many of these problems can be approached via a variational principle, that is, by looking for a surface that minimizes an appropriate functional or fairness energy subject to adequate geometric boundary conditions, see [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The most commonly used fairness energy functionals can be split into two groups: physical- based or geometric-based.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The first group roughly corresponds to interpreting the surface as an ideal elastic membrane or plate and minimize energies such as ´ |∇u|2 dx or ´ |∆u|2 dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The second group aims at minimizing energies that relate to geometric invariants of the surface such as the area or curvature, see [11] and the references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In 1992, Moreton and S´equin proposed in [8] a numerical algorithm for the creation of 2-dimensional fair surfaces M as minimizers of the energy functional ˆ M ��dκ1 de1 �2 + �dκ2 de2 �2� dA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Here e1 and e2 are the principal directions corresponding to the principal curvatures κ1 and κ2 of M and dA is the differential of surface area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' It is a key aspect in CAGD to be able to construct fair surfaces that preserve several degrees of geometric continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' This is particularly important at the boundary of the domains where 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Primary: 35B65, 49Q10, 53A10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Secondary: 49Q20, 65D17, 68U07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Curvature variation, computer-aided design, prescribed mean curvature, regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Research partially supported by NSF grant 1500871 (USA), Simons Foundation grant 580911 (USA), and Agencia Nacional de Promoci´on Cient´ıfica y Tecnol´ogica under grant PICT 2019-3530 (Argentina).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='00082v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='DG] 31 Dec 2022 2 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' CAFFARELLI, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' STINGA, AND H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' VIVAS the surfaces meet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The notions of geometric continuity are referred to as G0 continuity, where two surfaces meet in a continuous fashion, without jumps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' G1 continuity, where the tangent planes of the surfaces meet with continuity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' and G2 continuity, where the curvatures meet with continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' These are not the same as the classical notions of C0, C1 and C2 continuities, as those require some specific combination of the derivatives of the solutions to be continuous up to the boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In particular, G2 continuity turns out to be crucial in applications such as the streamlined surfaces of aircrafts, ships and cars, and this was the main motivation for the numerical study in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In [11], a numerical finite difference method is proposed to construct surfaces that would enjoy G2 continuity as steady states of a sixth order flow derived from the Euler–Lagrange equation of the energy functional ˆ M |∇H|2 dA where H is the mean curvature of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Numerical evidence of G2 continuity is observed in [11], while G1 continuity is expected according to [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' To the best of our knowledge, the analytical theory of surfaces of minimum curvature variation in general is missing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Furthermore, no proof of G2 continuity is available thus far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The aim of this paper is to fill these gaps and to develop the analytical foundation from the PDE perspective of the theory of surfaces of minimum curvature variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We give two constructions of surfaces: classical solutions that are G2-continuous, and weak solutions through geometric measure theory methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Therefore, we consider the minimization problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1) min M 1 2 ˆ M |∇MH|2 dA where M ranges over all n−dimensional manifolds in Rn+1, n ≥ 1, with prescribed bound- ary, H is the mean curvature of M and dA is the differential of surface area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Notice that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1) minimizes the (quadratic) variation of the mean curvature of M so that surfaces with constant mean curvature such as planes, circles and cylinders are minimizers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' If M is the graph of a function defined on a bounded domain Ω ⊂ Rn, that is, M = {(x, u(x)) : x ∈ Ω} for some u : Ω → R, then the values of u at ∂Ω prescribe the boundary ∂M of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' For a point x0 ∈ Ω, the tangent plane to M at (x0, u(x0)) and its upward pointing unit normal are P(x) = u(x0) + ∇u(x0) · (x − x0) and ν(x0) = (−∇u(x0), 1) (1 + |∇u(x0)|2)1/2 , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The mean curvature H of M at a point is defined as the average of the n principal curvatures of M at that point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In the coordinates given by u, it takes the form H ≡ H(u) = 1 n div � ∇u (1 + |∇u|2)1/2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' If we set D(u) := (1 + |∇u|2)1/2 we then have that dA = D(u) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let f be a function in C1(Ω × R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The tangential gradient of f on M is obtained by projecting the gradient of f in Rn+1 onto the plane orthogonal to ν: ∇Mf = ∇Rn+1f − (ν · ∇Rn+1f)ν on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' SURFACES OF MINIMUM CURVATURE VARIATION 3 Clearly, ν · ∇Mf = 0 and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2) |∇Mf|2 = |∇Rn+1f|2 − |ν · ∇Rn+1f|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Furthermore, ∇Mf depends only on the values of f on M, see, for instance, [6, Section 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' To compute ∇MH we extend H as a function of (x, xn+1) ∈ Ω × R by making it constant in xn+1: H(x, xn+1) ≡ H(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' This is enough to compute ∇MH because the resulting value is independent of the extension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Since ∇Rn+1H = (∇H, Hxn+1) = (∇H, 0), by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2) we get |∇MH|2 = |(∇H, 0)|2 − ����(−∇u · ∇H)(−∇u, 1) D(u)2 ���� 2 = |∇H|2 − ���� ∇u · ∇H D(u) ���� 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' With this formula the energy in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1) becomes (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3) E[M] = 1 2 ˆ Ω � |∇H|2 − ���� ∇u · ∇H D(u) ���� 2� D(u) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We will call this the geometric energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' It follows from the Cauchy–Schwartz inequality that |∇H|2 D(u)2 ≤ |∇MH|2 ≤ |∇H|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Therefore, we will also study the (larger) simplified energy functional (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4) E[H, u] := 1 2 ˆ Ω |∇H|2D(u) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In Section 2 we consider (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4) and show how to construct smooth solutions that satisfy the prescribed mean curvature equation for a curvature of minimum variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Section 3 shows how to modify the argument to construct solutions of the geometric energy functional (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Finally, in Section 4 we provide a weak formulation of the problem and prove existence of minimizers in the context of geometric measure theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Existence of G2 surfaces for the simplified energy In this section we work with the simplified energy functional (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let Ω ⊂ Rn be a bounded domain such that ∂Ω ∈ C3,α for some 0 < α < 1 fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We assume that we are given prescribed boundary values g ∈ C3,α(Ω) for u and h ∈ C1,α(Ω) for H on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We address the following problem: given Ω and the boundary datum g, find a surface given by the graph of a function u such that its mean curvature H is a minimizer of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4) among all functions with prescribed boundary values h ∈ C1,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We will use Schauder’s fixed point theorem: Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1 (see [6, Corollary 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let G be a closed convex set in a Banach space B and let T be a continuous mapping of G into itself such that the image T(G) is precompact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then T has a fixed point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Consider the Banach space B = C1,α(Ω) and its subset G := � v ∈ C1,α(Ω) : v = g on ∂Ω � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Observe that G is nonempty because g ∈ C3,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' By classical global Schauder estimates, we see that another example of function in G is the harmonic extension v of g inside of Ω: � ∆v = 0 in Ω v = g on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 4 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' CAFFARELLI, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' STINGA, AND H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' VIVAS It is clear that G is convex and closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' For any v ∈ G, we define the functional (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1) E[H, v] := 1 2 ˆ Ω |∇H|2D(v) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The map T : G → G is constructed in a 2-step process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Given any v ∈ G, we find the unique minimizer H ∈ W 1,2(Ω) to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1) such that H − h ∈ W 1,2 0 (Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' This can be done because the coefficient D(v) satisfies 1 ≤ D(v) ≤ (1 + ∥∇v∥2 L∞(Ω))1/2 < ∞, so that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1) is a coercive functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then H is the unique weak solution to � div(D(v)∇H) = 0 in Ω H = h on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Since v ∈ C1,α(Ω), the coefficient D(v) ∈ C0,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Thus, by global Schauder estimates (see [6, Section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='11]), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2) ∥H∥C1,α(Ω) ≤ Cn[∂Ω]C1,α∥D(v)∥C0,α(Ω)∥h∥C1,α(∂Ω) where Cn > 0 is a constant that depends only on dimension n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Given H ∈ C1,α(Ω) from Step 1, we find the solution u to the prescribed mean curvature equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3) � � � div � ∇u D(u) � = nH in Ω u = g on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' For this, we use the following result (where we use nH instead of H in [7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2 ([7, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1] and its proof).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let 0 < α < 1 and Ω ⊂ Rn be a bounded domain with C3,α boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Suppose that H ∈ C1,α(Ω) satisfies (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4) ∥H∥Ln(Ω) < �ˆ Rn(1 + |p|2)− n+2 2 dp �1/n and, for any y ∈ ∂Ω, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='5) |H(y)| ≤ H∂Ω(y), where H∂Ω is the mean curvature of ∂Ω corresponding to the inner unit normal vector to ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then for any g ∈ C3,α(Ω) there exists a unique solution u ∈ C3,α(Ω) to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In particular, there exists a constant C∗ > 0, depending only on n, α, ∥H∥Ln(Ω), ∥H∥C1(Ω), ∥g∥C2,α(Ω) and Ω, such that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='6) ∥u∥C2,α(Ω) ≤ C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The constant in the right-hand side of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4) can be simplified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Recall the definition of the Beta function and its relation with the Gamma function: for x, y > 0, B(x, y) := ˆ ∞ 0 tx−1 (1 + t)x+y dt = Γ(x)Γ(y) Γ(x + y) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' SURFACES OF MINIMUM CURVATURE VARIATION 5 We have that Γ(1) = 1 and xΓ(x) = Γ(x + 1), for all x > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' By passing to polar coordinates p = rθ, for r > 0 and θ ∈ Sn−1, performing the change of variables t = r2 which makes 2dr/r = dt/t, and using that |Sn−1| = n|B1|, we get ˆ Rn(1 + |p|2)− n+2 2 dp = |Sn−1| ˆ ∞ 0 rn (1 + r2) n+2 2 dr r = n|B1| 2 ˆ ∞ 0 tn/2 (1 + t) n+2 2 dt t = n|B1| 2 B(n/2, 1) = n|B1| 2 Γ(n/2) Γ(n/2 + 1) = |B1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Therefore, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4) reads (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='7) ∥H∥Ln(Ω) < |B1|1/n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Now (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='5) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='7) impose further restrictions on the boundary values h of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Condition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='5) is natural to assume and cannot be avoided (see, for example, the nonexistence results [6, Theorem 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='11] and [7, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Therefore, we assume that h ∈ C1,α(Ω) additionally satisfies (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='8) |h(y)| ≤ H∂Ω(y) for all y ∈ ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' On the other hand, by the maximum principle (see [6, Section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1]), we can estimate (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='9) ˆ Ω |H|n dx ≤ |Ω| � max ∂Ω |h| �n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' or ∥H∥Ln(Ω) ≤ |Ω|1/n max ∂Ω |h|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Thus, in order to ensure (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='7), we further assume that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='10) max ∂Ω |h| < �|B1| |Ω| �1/n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' From the computer science point of view, this means that for large boundary curvatures h the domain Ω for the reconstruction should be sufficiently small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Therefore, under the additional assumptions (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='8) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='10), we can apply Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2 and find the unique solution u ∈ C3,α(Ω) to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' This completes Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Using these two steps, we define T : G → G by T(v) = u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In order to apply Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1, we need to verify that (1) T is continuous, and (2) T(G) is precompact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let us begin with (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Fix v1 ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We need to show that given any ε > 0 there exists δ = δ(ε, v1) > 0 such that for any v2 ∈ G satisfying ∥v1 − v2∥C1,α(Ω) < δ we have ∥u1 − u2∥C1,α(Ω) < ε, where uj = Tvj, for j = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let Hj denote the minimizer of E[·, vj], j = 1, 2, as constructed in Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then the difference H = H1 − H2 is the unique weak solution to � div(D(v1)∇H) = div � (D(v2) − D(v1))∇H2 � in Ω H = 0 on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 6 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' CAFFARELLI, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' STINGA, AND H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' VIVAS By global Schauder estimates (see [6, Section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='11]), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='11) ∥H∥C1,α(Ω) ≤ Cn[∂Ω]C1,α∥D(v1)∥C0,α(Ω)∥(D(v2) − D(v1))∇H2∥C0,α(Ω) ≤ C(n, α, Ω, v1, ∇H2)∥v1 − v2∥C1,α(Ω) =: C1∥v1 − v2∥C1,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let us now estimate the difference u = u1 − u2 ∈ C3,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Since � � � div � ∇ui D(ui) � = nHi in Ω, for i = 1, 2 u1 = u2 = g on ∂Ω we find that � � � div � ∇u1 D(u1) − ∇u2 D(u2) � = nH in Ω u = 0 on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In order to apply global Schauder estimates one more time we need to find an equation for u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Set F(p) := p � 1 + |p|2 p ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then F is a smooth, bounded vector field with entries Fi(p) = pi √ 1+|p|2 , for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Note that, for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' , n, ∂jFi(p) = � � � 1 √ 1+|p|2 − p2 i (1+|p|2)3/2 if i = j − pipj (1+|p|2)3/2 if i ̸= j = δij D(p) − pipj D(p)3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In particular, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='12) ∂jFi(p) = ∂iFj(p) so that ∇F is a symmetric matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' It is clear that ∇F is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' To see that it is locally strictly elliptic, observe that, for any ξ ∈ Rn, by the Cauchy–Schwartz inequality, n � i,j=1 ∂jFi(p)ξiξj = n � i,j=1 �δijξiξj D(p) − pipjξiξj D(p)3 � ≥ |ξ|2 � 1 D(p) − |p|2 D(p)3 � = |ξ|2 D(p)3 ≥ θ(R)|ξ|2 for all |p| < R, where θ(R) → 0 as R → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Furthermore, we can write Fi(∇u1) − Fi(∇u2) = ˆ 1 0 d dtFi(t∇u1 + (1 − t)∇u2) dt = ˆ 1 0 ∇Fi(t∇u1 + (1 − t)∇u2) · ∇(u1 − u2) dt so that F(∇u1) − F(∇u2) = A(x)∇u with Aij(x) = ˆ 1 0 ∂jFi(t∇u1 + (1 − t)∇u2) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' SURFACES OF MINIMUM CURVATURE VARIATION 7 The matrix A is symmetric thanks to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='12), as well as bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Recall that ∇F is locally strictly elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Now, u1 ∈ C3,α(Ω) is fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' By (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='6), the C2,α(Ω) norm of u2 is uniformly controlled by the C1(Ω) norm of H2, which in turn is uniformly close to the C1(Ω) norm of the initially fixed H1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' These facts imply that that A(x) is strictly elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Moreover, we have the following technical lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let U, V : Ω → Rn, U, V ∈ C0,α(Ω) and let ψ : Rn → R be a smooth function such that ∥ψ∥L∞(Rn) + ∥∇ψ∥L∞(Rn) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Define φ(x) := ˆ 1 0 ψ(tU(x) + (1 − t)V (x)) dt for every x ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then φ ∈ C0,α(Ω), with ∥φ∥C0,α(Ω) ≤ ∥ψ∥L∞(Rn) + ∥∇ψ∥L∞(Rn) � [U]Cα(Ω) + [V ]Cα(Ω) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The boundedness of ψ implies that φ is bounded with ∥φ∥L∞(Ω) ≤ ∥ψ∥L∞(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' To bound the H¨older seminorm of φ, let x, y ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then |φ(x) − φ(y)| = ���� ˆ 1 0 � ψ(tU(x) + (1 − t)V (x)) − ψ(tU(y) + (1 − t)V (y)) � dt ���� ≤ ∥∇ψ∥L∞(Rn) ˆ 1 0 |t(U(x) − U(y)) + (1 − t)(V (x) − V (y))| dt ≤ ∥∇ψ∥L∞(Rn) (|U(x) − U(y)| + |V (x) − V (y)|) ≤ ∥∇ψ∥L∞(Rn) � [U]Cα(Ω) + [V ]Cα(Ω) � |x − y|α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' □ Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3 gives the H¨older continuity of A(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Indeed, let ψ be any of the entries of the gradient matrix of F: (∇F(p))ij = δij D(p) − pipj D(p)3 for i, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' , n, which are smooth and bounded, so ∥ψ∥L∞(Rn) ≤ M1, where M1 is independent of i and j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' For any k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' , n, we have ∂k(∇F(p))ij = −δijpk + δikpj + δjkpi D(p)3 + pipjpk D(p)5 and these are all bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Therefore, ∥∇ψ∥L∞(Rn) ≤ M2, where M2 > 0 is independent of i and j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' By setting U = ∇u1 and V = ∇u2 in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3, we get ∥A∥C0,α(Ω) ≤ M1 + M2 � [∇u1]Cα(Ω) + ([∇u2]Cα(Ω) � ≤ M3 with M3 > 0 a constant depending only on n, α, ∥H1∥Ln(Ω), ∥H1∥C1(Ω), ∥g∥C2,α(Ω), and Ω, see (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Observe that all these quantities are independent of u2 if v2 is close to v1 in C1,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In summary, we have found that u is a solution to � div(A(x)∇u) = nH in Ω u = 0 on ∂Ω and so, by Schauder estimates, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='13) ∥u∥C1,α(Ω) ≤ Cn[∂Ω]C1,αM3∥H∥C1,α(Ω) =: C2∥H∥C1,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 8 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' CAFFARELLI, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' STINGA, AND H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' VIVAS Therefore, by collecting estimates (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='11) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='13), and recalling that u = u1 − u2 = Tv1 − Tv2, and H = H1 − H2, we obtain ∥Tv1 − Tv2∥C1,α(Ω) ≤ C1C2∥v1 − v2∥C1,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' If we choose δ = ε/(C1C2) then we see that T is continuous, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let us now turn to (2), which will follow from a priori estimates for prescribed mean curvature equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let {vk}k≥1 be a sequence in G such that sup k≥1 ∥vk∥C1,α(Ω) ≤ N1 < ∞ and consider the corresponding solutions Hk ∈ C1,α(Ω) found in Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Set uk = Tvk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' By (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='6), ∥uk∥C2,α(Ω) ≤ Ck where Ck > 0 is a constant depending only on n, α, ∥Hk∥Ln(Ω), ∥Hk∥C1(Ω), ∥h∥C2,α(Ω), and Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Since all Hk have the same boundary values h, by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='9), we get that sup k≥1 ∥Hk∥Ln(Ω) = N2 < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Furthermore, from the C1,α estimate in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2), sup k≥1 ∥Hk∥C1(Ω) ≤ Cn[∂Ω]C1,α∥h∥C1,α(∂Ω) sup k≥1 ∥D(vk)∥C0,α(Ω) = N3 < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Consequently, sup k≥1 ∥uk∥C2,α(Ω) ≤ sup k≥1 Ck = N4 < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' By the Arzel`a–Ascoli compact embedding C2,α(Ω) ⊂⊂ C1,α(Ω), there exist a subsequence {ukj}j≥1 of {uk}k≥1 and u ∈ G such that ukj → u in C1,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We conclude that T(G) is precompact and (2) is proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Thus, by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1, there exists u ∈ G such that Tu = u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We have proved the following: Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4 (Existence for the simplified energy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let Ω ⊂ Rn be a bounded domain with C3,α boundary ∂Ω, for some 0 < α < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Fix g ∈ C3,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let h ∈ C1,α(Ω) such that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='14) |h(y)| ≤ H∂Ω(y) for all y ∈ ∂Ω, where H∂Ω is the mean curvature of ∂Ω corresponding to the inner unit normal vector to ∂Ω, and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='15) max ∂Ω |h| < �|B1| |Ω| �1/n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then there exist u ∈ C3,α(Ω) and H ∈ C1,α(Ω) such that H minimizes the energy 1 2 ˆ Ω |∇H|2D(u) dx among all H ∈ W 1,2(Ω) such that H − h ∈ W 1,2 0 (Ω), or, equivalently, H is the unique weak solution to � div(D(u)∇H) = 0 in Ω H = h on ∂Ω, SURFACES OF MINIMUM CURVATURE VARIATION 9 and, in addition, H is the mean curvature of the graph of u with prescribed values on ∂Ω, that is, � � � 1 n div � ∇u D(u) � = H in Ω u = g on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='5 (Nonexistence of solutions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The conditions imposed on the curvature at the boundary datum h in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4 come from restrictions already present when one seeks for solutions of the prescribed mean curvature equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Indeed, the divergence form equation for H is uniformly elliptic when u is, say, Lipschitz continuous and therefore is always solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' On the other hand, if condition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='14) is not satisfied, that is, |h(y0)| > H∂Ω(y0) for some y0 ∈ ∂Ω and h ≥ 0 (or h ≤ 0) on ∂Ω then H ≥ 0 (or H ≤ 0) in Ω and we have that for any ε > 0 there exists g ∈ C∞(Ω) with |g| < ε such that the prescribed mean curvature equation with curvature H and boundary values h is not solvable (see [7, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='5] or [6, Corollary 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='13]) and hence neither is the minimum curvature variation system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' On the other hand, a necessary condition for existence of solutions of the prescribed mean curvature equation is (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='16) ���� ˆ Ω Hη dx ���� ≤ 1 − ε0 n ˆ Ω |∇η| dx for all η ∈ C1 0(Ω) and with 1 − ε0 = sup Ω |∇u| � 1 + |∇u|2 , see [6, eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' (16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='60)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' This condition implies ∥H∥Ln(Ω) < |B1|1/n, which is the structural con- dition on H that motivates (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The requirement in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4 could be thus weakened, but (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='16) is the least requirement under which existence for the prescribed mean curvature equation can be obtained and hence also for the system at hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Existence of G2 surfaces for the geometric energy In this section we discuss how the technique we developed in the previous section can be applied to the geometric energy functional E[M] = 1 2 ˆ Ω � |∇H|2 − ���� ∇u · ∇H D(u) ���� 2� D(u) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let Ω, α, h and g be as in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Fix v ∈ C1,α(Ω) such that v = g on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Consider the energy Ev[H] := 1 2 ˆ Ω � |∇H|2 − ���� ∇v · ∇H D(v) ���� 2� D(v) dx = ˆ Ω L(∇H) dx where the smooth Lagrangian L is given by L(p) = 1 2 � |p|2 − ���� ∇v · p D(v) ���� 2� D(v) for p ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then L is coercive, as L(p) ≥ 1 2 � |p|2 − |∇v|2|p|2 D(v)2 � D(v) = 1 2 � D(v) − |∇v|2 D(v) � |p|2 = 1 2D(v)|p|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 10 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' CAFFARELLI, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' STINGA, AND H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' VIVAS To prove that L is convex, first observe that, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' , n, Lpi(p) = � pi − (∇v · p) D(v)2 vxi � D(v) = n � j=1 � δijD(v) − vxivxj D(v) � pj and, for i, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' , n, Lpipj(p) = δijD(v) − vxivxj D(v) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then, for any ξ ∈ Rn, Lpipj(p)ξiξj = D(v)|ξ|2 − (∇v · ξ)2 D(v) ≥ � D(v) − |∇v|2 D(v) � |ξ|2 = 1 D(v)|ξ|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Thus, D2 pL is a positive definite matrix, and L is uniformly convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' It follows that there exists a unique minimizer H ∈ W 1,2(Ω) of the energy Ev[H] such that H − h ∈ W 1,2 0 (Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In particular, H is the unique weak solution to � � � � � n � i=1 (Lpi(∇H))xi = 0 in Ω H = h on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Since Lpi(∇H) = n � j=1 � δijD(v) − vxivxj D(v) � Hxj we find that H is the unique weak solution to the linear problem � div(a(x)∇H) = 0 in Ω H = h on ∂Ω where aij(x) = δijD(v) − vxivxj D(v) = Lpipj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Observe that |aij(x)| ≤ C � D(v) + |∇v|2 D(v) � ≤ C(D(v) + |∇v|) ≤ C(n, ∥∇v∥L∞(Ω)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We have already seen that aij(x) is uniformly elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Moreover, if v ∈ C1,α(Ω) then aij(x) ∈ C0,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Hence, H ∈ C1,α(Ω), with ∥H∥C1,α(Ω) ≤ Cn[∂Ω]C1,α∥v∥C1,α(Ω)∥h∥C1,α(∂Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' If h satisfies (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='8) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='10) then we can apply Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2 and find the unique solution u ∈ C3,α(Ω) to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' From here on we can continue with the fixed point arguments we did in Section 2 to conclude the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1 (Existence for the geometric functional).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let Ω ⊂ Rn be a bounded domain with C3,α boundary ∂Ω, for some 0 < α < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Fix g ∈ C3,α(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let h ∈ C1,α(Ω) such that |h(y)| ≤ H∂Ω(y) for all y ∈ ∂Ω, SURFACES OF MINIMUM CURVATURE VARIATION 11 where H∂Ω is the mean curvature of ∂Ω corresponding to the inner unit normal vector to ∂Ω, and max ∂Ω |h| < �|B1| |Ω| �1/n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then there exist u ∈ C3,α(Ω) and H ∈ C1,α(Ω) such that H minimizes the energy 1 2 ˆ Ω � |∇H|2 − ���� ∇u · ∇H D(u) ���� 2� D(u) dx among all H ∈ W 1,2(Ω) such that H − h ∈ W 1,2 0 (Ω), or, equivalently, H is the unique weak solution to � div(a(x)∇H) = 0 in Ω H = h on ∂Ω, where aij(x) = δijD(u) − uxiuxj D(u) and, in addition, H is the mean curvature of the graph of u with prescribed values on ∂Ω, that is, � � � 1 n div � ∇u D(u) � = H in Ω u = g on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Weak solutions In this section we develop the weak formulation of the minimum curvature variation prob- lem in the context of geometric measure theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Given a Lipschitz bounded domain Ω, we denote by BV(Ω) the space of functions of bounded variation in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We start by recalling that u ∈ BV(Ω) is a generalized solution to the prescribed mean curvature equation with (weak) mean curvature H ∈ L1(Ω) and boundary value g ∈ L1(∂Ω) if (WPMC) J [u] = min v∈BV(Ω) J [v] where J [v] := ˆ Ω D(v) + ˆ Ω nHv dx + ˆ ∂Ω |v − g| dS and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1) ˆ Ω D(v) := sup � ˆ Ω � v n � i=1 ∂xiφi + φn+1 � dx : φi ∈ C1 c (Ω), n+1 � i=1 φ2 i ≤ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Note that ´ Ω � 1 + |∇u|2 dx does not make usual sense a priori for a function of bounded variation and so (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1) is indeed a definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Furthermore, this definition is consistent in the sense that for v ∈ W 1,1(Ω) we have ˆ Ω D(v) = ˆ Ω � 1 + |∇v|2 dx, see the proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 12 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' CAFFARELLI, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' STINGA, AND H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' VIVAS In [3, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1], Giaquinta proved that if H is a measurable function then (WPMC) is solvable in BV(Ω) if and only if there exists ε0 > 0 such that, for every measurable subset A ⊂ Ω, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2) ���� ˆ A H dx ���� ≤ (1 − ε0) 1 nP(∂A) where P(∂A) denotes the perimeter of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Clearly, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2) is significant only when A is a set of finite perimeter (or Caccioppoli set).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We need a generalized measure of surface area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In that regard, we recall that the dis- tributional gradient of u ∈ BV(Ω) is a vector valued Radon measure whose total variation is identified with |∇u|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' This is again consistent in the sense that if u ∈ W 1,1(Ω) then the total variation equals ´ Ω |∇u| dx (see [2, Chapter 5] for this and other properties of the space BV(Ω) used hereafter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In general, for an open set U ⊂⊂ Ω the variation measure of ∇u over U is given by |∇u|(U) = sup �ˆ U u div φ dx : φ ∈ C1 c (U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Rn), |φ| ≤ 1 � and, for an arbitrary set V ⊂ Ω, |∇u|(V ) = inf � |∇u|(U) : V ⊂ U and U is open � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Taking this into account, and in analogy with (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1), we define for the area measure by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3) D(u)(U) = sup � ˆ Ω � u n � i=1 ∂xiφi + φn+1 � dx : φi ∈ C1 c (U), n+1 � i=1 φ2 i ≤ 1 � for any U ⊂⊂ Ω open and, for an arbitrary set V ⊂ Ω, D(u)(V ) = inf {D(u)(U) : V ⊂ U and U is open} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Although (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3) could be defined, in principle, for functions in L1(Ω), it is easy to check that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3) is finite if and only if u ∈ BV(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Similarly as for the variation measure, D(u) is a Radon measure, namely, a locally finite, Borel regular measure in Rn (to prove that it is locally finite, see the ideas in [5, eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' (14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2)]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The following observation will be useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let U ⊂ Ω be a Borel set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4) |U| ≤ D(u)(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Due to the Borel regularity of both D(u) and the Lebesugue measure it suffices to prove (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4) for open sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let U ⊂ Rn be open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' First, we note that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='5) D(u)(U) = ˆ U � 1 + |∇u|2 dx for any u ∈ C1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Indeed, an integration by parts yields ˆ Ω � u n � i=1 ∂xiφi + φn+1 � dx = ˆ U (−∇u, 1) · Φ dx where Φ = (φ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' , φn, φn+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then the Cauchy-Schwartz inequality in Rn+1 and the condi- tion |Φ| ≤ 1 give D(u)(U) ≤ ˆ U � 1 + |∇u|2 dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' SURFACES OF MINIMUM CURVATURE VARIATION 13 On the other hand, � 1 + |∇u|2 ∈ L1(U) and so there exists a sequence Φj = (φj 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' , φj n, φj n+1) with φj i ∈ C1 c (U), j ≥ 1, that converges in L1(U) and almost everywhere to (−∇u,1) √ 1+|∇u|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Fur- thermore, (−∇u,1) √ 1+|∇u|2 is a unit vector so we may assume that �n+1 i=1 (φj i)2 ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Since ��Φj · (−∇u, 1) �� ≤ |Φj| � 1 + |∇u|2 ≤ � 1 + |∇u|2 ∈ L1(U) we can use the dominated convergence theorem to get lim j→∞ ˆ Ω � u n � i=1 ∂xiφj i + φj n+1 � dx = lim j→∞ ˆ U (−∇u, 1) · Φj dx = ˆ U � 1 + |∇u|2 dx and the supremum is achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Thus (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='5) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Second, we have that u ∈ BV(U) and there exists {uk}k≥1 ⊂ BV(U) ∩ C∞(U) such that uk → u in L1(Ω) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='6) lim k→∞ D(uk)(U) = D(u)(U), see [2, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Since, by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='5), the conclusion (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4) is trivial for C1 functions, we have |U| ≤ lim k→∞ D(uk)(U) = D(u)(U) as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' □ From now on, we fix a bounded, C1,1 domain Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We consider the minimization problem min (u,H)∈A I[u, H] where (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='7) I[u, H] := ˆ Ω |∇H|2 dD(u) and dD(u) stands for the area measure defined in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The admissible set A is defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let h ∈ W 2,2(Ω) ∩ Lip(∂Ω) satisfying (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='8) |h(y)| ≤ n − 1 n Λ(y), y ∈ ∂Ω, and max ∂Ω |h| ≤ (1 − ε0) �|B1| |Ω| �1/n , where Λ(y) is the weak mean curvature of ∂Ω at y ∈ ∂Ω and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='9) n − 1 n < ε0 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Define (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='10) A := � (u, H) ∈ BV(Ω) × (Ln(Ω) ∩ W 2,2(Ω)) : u solves (WPMC) and ∥H∥Ln(Ω) + ∥H∥W 2,2(Ω) ≤ C0, H = h on ∂Ω � with C0 > 0 is to be appropriately chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The equality H = h is understood in the sense of traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The condition H ∈ W 2,2(Ω) is certainly natural for applications to the design of fair G2-continuous surfaces in CAD/CAM/CAGD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Indeed, in dimensions n = 1, 2, 3, the Sobolev embedding gives that the curvature H is H¨older continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The main result of this section is the following: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3 (Existence of weak solutions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let I be defined by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='7), h ∈ W 2,2(Ω)∩Lip(∂Ω) satisfying (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='8) and ε0 ∈ (0, 1) satisfying (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then the set of admissible functions A in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='10) is nonempty and there exists a minimizer of I within the class A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 14 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' CAFFARELLI, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' STINGA, AND H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' VIVAS To prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3 we recall the notion and properties of Γ−convergence in our context, referring the reader to [1] for an introduction to the topic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let Jk, k ≥ 1, and J∞ be functionals defined on the common space BV(Ω) and taking values in [−∞, ∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The sequence {Jk}k≥1 is said to Γ−converge to J∞ if the following two conditions hold: (a) For every v ∈ BV(Ω) and every sequence {vk}k≥1 ⊂ BV(Ω) such that vk → v in BV(Ω) it holds lim inf k→∞ Jk(vk) ≥ J∞(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' (b) For every v ∈ BV(Ω) there exists a sequence {vk}k≥1 ⊂ BV(Ω) such that vk → v in BV(Ω) for which lim sup k→∞ Jk(vk) ≤ J∞(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We will use the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4 (see [1, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='21]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let (X, d) be a metric space and let {fk}k≥1 be an equi-mildly coercive sequence of functions on X that Γ−converges to f∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then, there exits min X f∞ = lim k→∞ inf X fk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Moreover, if {xk}k≥1 ⊂ X is a precompact sequence such that lim k→∞ fk(xk) = lim k→∞ inf X fk then every limit of {xk}k≥1 is a minimum point for f∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Here f is said to be mildly coercive if there exists a nonempty compact set K ⊂ X such that infK f = infX f, and equi-mild coercivity means that the set K is the same for the whole sequence {fk}k≥1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' The proof is divided into 4 steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' A ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We can extend h to Ω by solving � ∆H = 0 in Ω H = h on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' By classical elliptic regularity, H ∈ W 2,2(Ω) and ∥H∥W 2,2(Ω) ≤ C0 where C0 = C0(∂Ω, ∥h∥L∞(∂Ω)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Moreover, by the H¨older and isoperimetric inequalities, ���� ˆ A H dx ���� ≤ ∥H∥Ln(Ω)|A| n−1 n ≤ ∥H∥Ln(Ω) P(∂A) n|B1|1/n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' By the maximum principle and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='8) we have ∥H∥Ln(Ω) ≤ |Ω|1/n max ∂Ω |h| ≤ (1 − ε0)|B1|1/n, where we make C0 larger if needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Therefore, ���� ˆ A H dx ���� ≤ (1 − ε0) n P(∂A) and (WPMC) is solvable for this H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let u ∈ BV(Ω) be the corresponding minimizer of J .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We have that A ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We further point out that ´ Ω D(u) < ∞ and H ∈ Lip(Ω) so that ˆ Ω |∇H|2 dD(u) ≤ ∥∇H∥2 L∞(Ω)D(u)(Ω) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' SURFACES OF MINIMUM CURVATURE VARIATION 15 In particular, 0 ≤ inf (u,H)∈A I[u, H] < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Construction of a minimizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let {(uk, Hk)}k≥1 ⊂ A be a minimizing sequence: m := inf (u,H)∈A I[u, H] = lim k→∞ I[uk, Hk].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' To get a convergent subsequence of {uk}k≥1 we show its uniform boundedness in BV(Ω) and use that BV(Ω) embedds compactly in L1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Since every uk is a minimizer of the functional Jk defined by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='11) Jk[v] := ˆ Ω D(v) + ˆ Ω nHkv dx + ˆ ∂Ω |v − g| dS we have that, for any u0 ∈ BV(Ω), ˆ Ω D(uk) + ˆ Ω nHkuk dx + ˆ ∂Ω |uk − g| dS ≤ ˆ Ω D(u0) + ˆ Ω nHku0 dx + ˆ ∂Ω |u0 − g| dS from where (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='12) ˆ Ω D(uk) + ˆ Ω nHkuk dx ≤ C + ˆ Ω nHku0 dx for C > 0 independent of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Reasoning as in [3, eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4)] we have that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='13) ˆ Ω Hkuk dx ≥ −(1 − ε0) ˆ Ω |∇uk| − C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Furthermore, BV(Ω) ⊂ L n n−1 (Ω) so (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='13) and the H¨older inequality in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='12) give ˆ Ω D(uk) ≤ −n ˆ Ω Hkuk dx + C + ˆ Ω nHku0 dx ≤ n(1 − ε0) ˆ Ω |∇uk| + n∥Hk∥Ln(Ω)∥u0∥L n n−1 (Ω) + C for a new constant C > 0 that is independent of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Moreover, the uniform bound on the Ln(Ω) norm of {Hk}k≥1 (they all belong to A) gives ˆ Ω |∇uk| ≤ n(1 − ε0) ˆ Ω |∇uk| + nC0∥u0∥L n n−1 (Ω) + C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Thus, after rearranging terms and recalling (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='9), ˆ Ω |∇uk| ≤ 1 (1 − n(1 − ε0)) � nC0∥u0∥L n n−1 (Ω) + C � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Hence, by compactness in BV(Ω), there exists a subsequence of {uk}k≥1, still denoted by the same indexes, and u∞ ∈ BV(Ω) such that uk → u∞ in L1(Ω) as k → ∞, and |∇u∞|(Ω) ≤ lim inf k→∞ |∇uk|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Note that we also have (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='14) D(u∞) ≤ lim inf k→∞ D(uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' By Poincar´e’s inequality and the Rellich–Kondrachov compactness theorem, there exist a subsequence of {Hk}k≥1, still denoted by the same indexes, and H∞ ∈ W 2,2(Ω) such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='15) ∇Hk → ∇H∞ in L2(Ω), as k → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 16 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' CAFFARELLI, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' STINGA, AND H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' VIVAS Further, due to the uniform bound on ∥Hk∥Ln(Ω), we may assume that Hk converges weakly in Ln(Ω) to H∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Finally, the weak convergence ensures that ∥H∞∥Ln(Ω) + ∥H∞∥W 2,2(Ω) ≤ C0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' (u∞, H∞) ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' For this step we use Γ−convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Recall the functionals Jk defined in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='11) (for the subsequence Hk we found in Step 2) and define J∞ analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We want to show that u∞ is a solution of (WPMC), namely, that u∞ is a minimizer of J∞ over BV(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Let us show that {Jk}k≥1 Γ−converges to J∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' A first remark is that it is enough to prove the Γ−convergence of � Jk(v) := ˆ Ω vHk dx to � J∞(v) := ˆ Ω vH∞ dx since the other two terms do not depend on k and can be considered as continuous pertur- bations of Jk, see [1, Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' To prove the liminf inequality (a), let {vk}k≥1 ⊂ BV(Ω) and v ∈ BV(Ω) such that vk → v in BV(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We write ˆ Ω vkHk dx − ˆ Ω vH∞ dx = Ik + IIk + IIIk with Ik = ˆ Ω (vk − v)H∞ dx IIk = ˆ Ω (vk − v)(Hk − H∞) dx IIIk = ˆ Ω v(Hk − H∞) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' By lower semicontinuity [4, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1], lim inf k→∞ Ik ≥ 0 Next, we bound |IIk| ≤ ∥vk − v∥L n n−1 (Ω) � ∥Hk∥Ln(Ω) + ∥H∞∥Ln(Ω) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Since vk converge to v in BV(Ω), by the isoperimetric embedding, the convergence also holds in L n n−1 (Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' This and the uniform bound of Hk in Ln(Ω) give lim k→∞ IIk = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Finally, limk→∞ IIIk = 0 by the weak convergence of Hk to H∞ in Ln(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' As for the limsup inequality (b), given any v ∈ BV(Ω), consider the constant sequence vk = v for all k ≥ 1 and notice that, using the weak convergence of Hk to H∞ in Ln(Ω), we have that lim k→∞ � Jk(vk) = � J∞(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Hence, {Jk}k≥1 converges to J∞ in the Γ sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Therefore, we can apply Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4 with X = BV(Ω), fk = Jk, f∞ = J∞ and {xk}k≥1 and x∞ given by {uk}k≥1 and u∞, respectively (note that the sequence {Jk}k is equi-mildly coercive), to conclude that u∞ is a minimizer of J∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We have thus shown that (u∞, H∞) ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' SURFACES OF MINIMUM CURVATURE VARIATION 17 Step 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' (u∞, H∞) is a minimizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Recall that L(p) = 1 2|p|2, p ∈ Rn, is convex, that is, 1 2|p|2 ≥ 1 2|p0|2 + p0 · (p − p0) for every p, p0 ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Then we can write 1 2 ˆ Ω |∇Hk|2 dD(uk) ≥ 1 2 ˆ Ω |∇H∞|2 dD(uk) + ˆ Ω ∇H∞ · (∇Hk − ∇H∞) dD(uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' As k → ∞, the left hand side of this inequality converges to m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' As for the right hand side, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='6) implies that lim inf k→∞ 1 2 ˆ Ω |∇H∞|2 dD(uk) ≥ 1 2 ˆ Ω |∇H∞|2 dD(u∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' It remains to analyze the second term on the right hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' For this, notice that Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='1 implies that dD(uk) is absolutely continuous with respect to the Lebesgue measure, see (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' This and H¨older’s inequality give ���� ˆ Ω ∇H∞ · (∇Hk − ∇H∞) dD(uk) ���� ≤ ˆ Ω |∇H∞||∇Hk − ∇H∞| dD(uk) ≤ C ˆ Ω |∇H∞||∇Hk − ∇H∞| dx ≤ C∥∇H∞∥L2(Ω)∥∇Hk − ∇H∞∥L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' In view of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='15), this term goes to 0 as k → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' We have shown that m ≥ ˆ Ω |∇H∞|2 dD(u∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Since (u∞, H∞) ∈ A equality must be attained and (u∞, H∞) is a minimizer, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' □ References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Braides, Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22, Oxford University Press, Oxford, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Evans and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Gariepy, Measure Theory and Fine Properties of Functions, Revised Edition, Text- books in Mathematics, CRC Press, Boca Raton, FL, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Giaquinta, On the Dirichlet problem for surfaces of prescribed mean curvature, Manuscripta Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 12 (1974), 73–86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' [4] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Giusti, Boundary value problems for non-parametric surfaces of prescribed mean curvature, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Scuola Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Sup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Pisa Cl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' (4) 3 (1976), 501–548.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' [5] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics 80, Birkh¨auser Verlag, Basel, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Gilbarg and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' [7] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Han, Nonlinear Elliptic Equations of the Second Order, Graduate Studies in Mathematics 171, Amer- ican Mathematical Society, Providence, RI, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' [8] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Moreton and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' S´equin Functional optimization for fair surface design, ACM SIGGRAPH Computer Graphics 2 (1992), 167-176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' [9] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Narayan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Rao and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Sacar, Computer Aided Design and Manufacturing, PHI Learning Pvt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Ltd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=', 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' [10] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Welch and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Witkin, Variational surface modeling, ACM SIGGRAPH computer graphics 2 (1992), 157-166.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' 18 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' CAFFARELLI, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' STINGA, AND H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' VIVAS [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Xu and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Zhang, Minimal mean-curvature-variation surfaces and their applications in surface mod- eling, in: International Conference on Geometric Modeling and Processing, 357–370, Springer, Berlin, Heidelberg, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content=' Department of Mathematics, The University of Texas at Austin, 2515 Speedway, Austin, TX 78712, United States of America Email address: caffarel@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='utexas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='edu Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, IA 50011, United States of America Email address: stinga@iastate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='edu Centro Marplatense de Investigaciones Matem´aticas/CONICET, Dean Funes 3350, 7600 Mar del Plata, Argentina Email address: havivas@mdp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} +page_content='ar' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdAyT4oBgHgl3EQfSPd1/content/2301.00082v1.pdf'} diff --git a/EdE1T4oBgHgl3EQfWgTb/content/2301.03116v1.pdf b/EdE1T4oBgHgl3EQfWgTb/content/2301.03116v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..7dbaf0f7e8eabd2400d453b344a0f5e565f5a9e2 --- /dev/null +++ b/EdE1T4oBgHgl3EQfWgTb/content/2301.03116v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6026ced5a28577f9308053424d85cf28131586cff6cf1065b5afc00a198f7576 +size 747155 diff --git a/EdE1T4oBgHgl3EQfWgTb/vector_store/index.pkl b/EdE1T4oBgHgl3EQfWgTb/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..75a57db03bf1f1c509981704fc083124dad3011e --- /dev/null +++ b/EdE1T4oBgHgl3EQfWgTb/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a7dc39e9aa2e56d6384642e0fa55677e687b502dad592b78bdd686f450d0b37f +size 244332 diff --git a/F9AzT4oBgHgl3EQfi_2P/vector_store/index.faiss b/F9AzT4oBgHgl3EQfi_2P/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..94e1f2e68a40deeb022b1cd9fb9cac60fbda86fa --- /dev/null +++ b/F9AzT4oBgHgl3EQfi_2P/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:010bfeb2cd9ab6919976b917eb1d8a32fa94cc9cfd945cea3872e702244577d7 +size 3538989 diff --git a/F9AzT4oBgHgl3EQfi_2P/vector_store/index.pkl b/F9AzT4oBgHgl3EQfi_2P/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..01aad54e5f05073cd0a43817e48f98106b5f9687 --- /dev/null +++ b/F9AzT4oBgHgl3EQfi_2P/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ba744cc3e8cfc68a463fbcb7aac4f3ffe5ce99f2f70302cfface9b13a1fcf5cc +size 123197 diff --git a/GtE1T4oBgHgl3EQf_QYB/content/2301.03577v1.pdf b/GtE1T4oBgHgl3EQf_QYB/content/2301.03577v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4b9fb80cb1590bc0f1f0d53e90e3486b27beb058 --- /dev/null +++ b/GtE1T4oBgHgl3EQf_QYB/content/2301.03577v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a268aa703369f7700237e68cf5435b817221e67b953329888ccd8747d646d74c +size 1440273 diff --git a/GtE1T4oBgHgl3EQf_QYB/vector_store/index.faiss b/GtE1T4oBgHgl3EQf_QYB/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..d24b3e9b238859fc769b7ef602ef3e4a17010c55 --- /dev/null +++ b/GtE1T4oBgHgl3EQf_QYB/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8655c73d95c06d90f3f1f15677dacd17f1ab3e8b404f0754a2940063239df414 +size 3211309 diff --git a/HtFIT4oBgHgl3EQfXys9/content/2301.11245v1.pdf b/HtFIT4oBgHgl3EQfXys9/content/2301.11245v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9705e08c3b4db22e26c51ad3100d606fbfa65858 --- /dev/null +++ b/HtFIT4oBgHgl3EQfXys9/content/2301.11245v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0b7abce9c22adf0df73242499d095c9e0f2f1bd26da25e0a9e1377e3bdcb78d8 +size 236446 diff --git a/HtFIT4oBgHgl3EQfXys9/vector_store/index.pkl b/HtFIT4oBgHgl3EQfXys9/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..98cc141b859f855dd806eb1def7e85c7dce998a6 --- /dev/null +++ b/HtFIT4oBgHgl3EQfXys9/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:322812ee3ffde9d42a97e37e92bb514e3ae640c82d0031fb0105b3f027fe23ef +size 122134 diff --git a/IdAzT4oBgHgl3EQfU_z6/content/2301.01278v1.pdf b/IdAzT4oBgHgl3EQfU_z6/content/2301.01278v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a1e035c96cc9ed3a469d5af57a7025e5d2670f48 --- /dev/null +++ b/IdAzT4oBgHgl3EQfU_z6/content/2301.01278v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:039271ace6316b1ac10367449a41e266a634f0935dd04d933feac8241daccfb4 +size 529839 diff --git a/IdAzT4oBgHgl3EQfU_z6/vector_store/index.pkl b/IdAzT4oBgHgl3EQfU_z6/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..becd7453080d15517a4d88e1def46267ed6086d3 --- /dev/null +++ b/IdAzT4oBgHgl3EQfU_z6/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c4dbf870587653c15ca70ea43863583ece3d27b109a776c57a8717792831bb53 +size 163414 diff --git a/JdFAT4oBgHgl3EQfvB7v/content/2301.08674v1.pdf b/JdFAT4oBgHgl3EQfvB7v/content/2301.08674v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..baa5e910a4dcfc43add235fa7e7928be769739ff --- /dev/null +++ b/JdFAT4oBgHgl3EQfvB7v/content/2301.08674v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:be7a908e7be7ab93a909b718b41289988142d3b0f5bffc18d381b39e9933e38b +size 705746 diff --git a/JdFAT4oBgHgl3EQfvB7v/vector_store/index.pkl b/JdFAT4oBgHgl3EQfvB7v/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..4873fbcc2b46d122274ba95c74c8517d3f3d5658 --- /dev/null +++ b/JdFAT4oBgHgl3EQfvB7v/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2f266cc30d88df1baae907271435ddcef802b617b22f12670de8423d24e35f8b +size 82920 diff --git a/KtA0T4oBgHgl3EQfCv_p/content/tmp_files/load_file.txt b/KtA0T4oBgHgl3EQfCv_p/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..69224b9440ad8203b7172a2ddc0ec79bdd5c0368 --- /dev/null +++ b/KtA0T4oBgHgl3EQfCv_p/content/tmp_files/load_file.txt @@ -0,0 +1,1866 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf,len=1865 +page_content='MNRAS 000, 1–15 (2022) Preprint 6 January 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Exploring the Intrinsic Scatter of the Star-Forming Galaxy Main Sequence at redshift 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Rongjun Huang 黄钅容钧 ID 1,2★, Andrew J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Battisti ID 1,2†, Kathryn Grasha ID 1,2,5‡, Elisabete da Cunha ID 2,3, Claudia del P Lagos ID 2,3, Sarah K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Leslie ID 2,4 and Emily Wisnioski ID 1,2 1Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia 2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia 3International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Hwy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Crawley, WA 6009, Australia 4Leiden Observatory, Leiden University, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Box 9513, NL-2300 RA Leiden, The Netherlands 5Visiting Fellow, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Accepted 2023 January 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Received 2022 December 22;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' in original form 2022 October 14 ABSTRACT Previous studies have shown that the normalization and scatter of the galaxy ‘main sequence’ (MS), the relation between star formation rate (SFR) and stellar mass (𝑀∗), evolves over cosmic time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' However, such studies often rely on photometric redshifts and/or only rest-frame UV to near-IR data, which may underestimate the SFR and 𝑀∗ uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We use MAGPHYS+photo-z to fit the UV to radio spectral energy distributions of 12,380 galaxies in the COSMOS field at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 < 𝑧 < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 and self-consistently include photometric redshift uncertainties on the derived SFR and 𝑀∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We quantify the effect on the observed MS scatter from (1) photometric redshift uncertainties (which are minor) and (2) fitting only rest-frame ultraviolet to near-infrared observations (which are severe).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' At fixed redshift and 𝑀∗, we find that the intrinsic MS scatter for our sample of galaxies is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 times larger than the measurement uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The average intrinsic MS scatter has decreased by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 dex from 𝑧 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 to ∼ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' At low-𝑧, the trend between the intrinsic MS scatter and 𝑀∗ follows a functional form similar to an inverse stellar mass-halo mass relation (SMHM;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 𝑀∗/𝑀halo vs 𝑀∗), with a minimum in intrinsic MS scatter at log(𝑀∗/𝑀⊙) ∼ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 and larger scatter at both lower and higher 𝑀∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' while this distribution becomes flatter for high-𝑧.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The SMHM is thought to be a consequence of feedback effects and this similarity may suggest a link between galaxy feedback and the intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' These results favor a slight evolution in the intrinsic MS scatter with both redshift and mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Key words: methods: observational, galaxies: evolution, galaxies: general, galaxies: star formation 1 INTRODUCTION The galaxy main sequence (MS) describes the empirical relation between the star formation rate (SFR) of galaxies and their stellar masses (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Daddi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Noeske et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Speagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Whitaker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Renzini & Peng 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Barro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' These studies find that galaxies have higher SFR with increasing redshifts at a fixed stellar mass (𝑀∗) in the earlier universe, and more massive galaxies have higher SFRs at a fixed redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Some of these studies show a flattening or turnover in the relationship at high masses (log(𝑀∗/𝑀⊙) > 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Whitaker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2021) and suggest that this turnover is driven by the quenching of star formation due to feedback processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The galaxy MS is a powerful tool for understanding and constrain- ing the distribution and evolution of galaxies (Katsianis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Curtis-Lake et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Popesso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Daddi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' According to theories of galaxy feedback, the existence of a rela- tively tight MS is thought to be mainly driven by the dynamical ★ E-mail: u6569836@anu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='au † E-mail: andrew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='battisti@anu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='au ‡ ARC DECRA Fellow balance between inflows and outflows caused by self-regulated star- formation and/or active galactic nuclei (AGN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Somerville & Davé 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Characterising this evolution is difficult because observations only provide a single snapshot in time for each observed galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' However, the evolution in the scatter, slope, and normalisation in the MS of large statistical samples of star-forming (SF) galaxies with cosmic time provides an indirect way to study galaxy evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The width (or scatter) of the MS at a single redshift is thought to reflect the burstiness of the average star formation history (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Schreiber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Santini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Caplar & Tacchella 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Donnari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Katsianis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Matthee & Schaye 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Theories suggest that a small MS width (small scatter, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 dex) is indicative of gradual, continuous star formation histo- ries (SFHs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In contrast, large MS widths (large scatter, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 dex) are indicative of more bursty, stochastic SFHs (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Tacchella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Sparre et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The question around whether the intrinsic MS scatter is constant or evolving is actively debated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Previous studies have found a time- independent MS scatter (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Daddi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Noeske et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Whitaker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Ciesla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Speagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Pessa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2021), while others suggest it evolves with redshift (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Kur- czynski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Santini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Katsianis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Davies © 2022 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='01995v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='GA] 5 Jan 2023 2 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' As the width of MS is related to the SFH, the MS scatter can provide useful constraints on the evolution of SF galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For example, a larger burstiness or stochasticity in the SFH can lead to an increase in MS scatter, and this may change over cosmic time (Matthee & Schaye 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Improving our understanding of the galaxy MS and its scatter re- quires using large samples of galaxies with accurate redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' How- ever, it is observationally expensive to get spectroscopic redshifts for every galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' A common solution is to instead use photometrically derived redshifts (𝑧phot).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Most previous studies of the galaxy MS have relied on determining stellar masses and SFRs based on SED-fitting at fixed photometric redshift 𝑧phot and ignore the uncertainty of the 𝑧phot (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Speagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Studies that do not account for zphot uncertainty will systematically underestimate the uncertainties in all distance-dependent parameters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 𝑀∗ & SFR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In this study, we use MAGPHYS+photo-z (Battisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2019) to study the intrinsic scatter of the MS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The improvement in using MAGPHYS+photo-z is that it sets 𝑧phot as an unknown quantity and finds its probability distribution (Battisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Hence, the un- certainty in the 𝑧phot is incorporated into the overall uncertainty in the derived physical properties of the galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This allows us to examine how much of the scatter in the MS is driven by measurement uncer- tainty as opposed to true intrinsic MS scatter or other measurement uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Simultaneously, MAGPHYS+photo-z also includes IR information to resolve the effect of dust attenuation at UV-near-IR wavelengths on the SED based on dust emission from mid-IR-radio, which dramatically improves the accuracy of the derived properties, particularly for SFRs (Battisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Therefore, the unique as- pect of MAGPHYS+photo-z is that it uses broadband photometry to predict the best-fitting properties in a self-consistent manner, which helps to mitigate potential biases on the derived values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This paper is organised as follows: Section 2 introduces the data and methods used in this study, Section 3 summarises our results, and Section 4 compares our results with some previous observa- tional studies and simulations and Section 5 outlines our conclu- sions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Throughout this paper, the flat Lambda Cold Dark Matter (ΛCDM) model is adopted by assuming the Hubble constant is 𝐻0 = 70km/s/Mpc and the mass density of the Universe is Ωm,0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2 DATA AND METHODS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 COSMOS Sample The multi-wavelength observations of galaxies used in this study come from two catalogues: the COSMOS2020 catalogue (Weaver et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2022) and the COSMOS Super-deblended catalogue (Jin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The COSMOS2020 catalogue contains photometric data for ∼ 1 million sources in 13 filters from UV to near-IR (Weaver et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2022), and the COSMOS Super-deblended catalogue presents photo- metric data for ∼ 200, 000 galaxies in 11 filters in the mid-IR, far-IR, and radio (Jin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We cross-match the galaxies’ ID and select a subsample of galaxies with SEDs that are sampled well enough to constrain their stellar mass and (dust-corrected) SFRs robustly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' To achieve this, we use two criteria: (1) signal-to-noise ratio (𝑆/𝑁) of 𝑆/𝑁 > 3 in three or more UV–near-IR bands and (2) 𝑆/𝑁>3 in 2 or more IR–radio bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' By virtue of criterion (2), all of the sources in our sample have a match in the Super-deblended catalogue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' It is important to note that criterion (2) roughly translates into a cut in SFR such that only galaxies above a certain SFR will be included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This SFR threshold increases as a function of increasing redshift (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Additionally, AGNs are excluded based on X-ray detections and IR & radio colour cuts (Seymour et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Donley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This is done because MAGPHYS+photo-z does not include AGN models, so the derived properties are not accurate for these sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Due to the limited availability of data required for these AGN diagnostics, some AGNs may not be identified and removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Further details and references on these cuts are in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 of the Battisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' These selec- tion criteria leave us with a photometric sample of 14,607 galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For later comparison (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1), only 3,873 of the whole 14,607 galaxies have spectroscopic redshifts (𝑧spec).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 Methods 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 MAGPHYS+photo-z MAGPHYS fits the full SEDs of galaxies with known redshifts from the ultraviolet to the radio (da Cunha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2008, 2015) by com- bining the emission from stellar populations with the attenua- tion and re-emission of starlight by interstellar dust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The recent MAGPHYS+photo-z extension, described in Battisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2019), ex- tends the code to fit the SEDs of galaxies with unknown redshifts, and constrain the photometric redshift simultaneously with other galaxy physical properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In practice, the code builds libraries of model UV-to-radio SEDs at different redshifts and compares them with the observed SEDs of galaxies, using a Bayesian method to obtain the likelihood distributions of physical parameters such as redshifts, stellar masses, and SFRs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' There are two sets of libraries used in MAGPHYS+photo-z: (1) an optical library that describes emissions from stars, and (2) an infrared library that describes the emission from dust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The optical library uses the spectral population synthesis models of (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Bruzual & Charlot 2003) and initial mass function from (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Chabrier 2003);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' while the infrared library consists of models for PAHs and hot dust emitting in the mid-IR, and warm and cold dust components in thermal equilibrium that emit in the far-IR to submillimeter (da Cunha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' These two sets of model libraries maintain the balance of the energy absorbed by dust (via attenuation in UV to near-IR) and the energy re-emitted by dust (via thermal emission in mid-IR to sub-mm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Due to insufficient models at 𝑧 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 to compare to based on the redshift prior that is adopted in the MAGPHYS+photo-z, galaxies with 𝑧phot < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 are not constrained well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Therefore, we exclude galaxies with 𝑧phot < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 after running the code (Battisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' An example MAGPHYS+photo-z fit is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We compare the distributions of photometric redshifts of our sample with those of the full COSMOS2020 sample in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We fit the SEDs of 14,607 galaxies with MAGPHYS+photo-z to determine the M*, SFR, 𝑧phot and respective errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We use the 𝜒2 value of the best-fit model from MAGPHYS+photo-z as an indicator of the goodness of fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We fit the 𝜒2 distribution with a lognormal function (see Figure 3) and convert the lognormal parameters 𝜇 and 𝜎 to the geometric parameters 𝜇geo and 𝜎geo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Finally, we perform a 2𝜎 confidence cut (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 𝜒2 < 𝜇geo + 2𝜎geo) to the histogram and remove the high-𝜒2 cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The remaining galaxies are reduced to 13,639, and their 𝜒2 ≤ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' However, some galaxies have problematic SEDs due to inconsis- tencies in fluxes and/or upper limits between bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In these cases, MAGPHYS+photo-z derives large uncertainties of 𝑧phot and distance- dependent parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In addition, some cases have multiple redshift solutions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', degeneracies in Lyman vs Balmer break position), which can lead to multi-peaked solutions for distance-dependent de- rived properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We adopt the following selection criteria based on MNRAS 000, 1–15 (2022) Intrinsic MS Scatter at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 < 𝑧 < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 3 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Output of MAGPHYS+photo-z for one of the galaxies of our sample, COSMOS2020 ID 1587.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The upper panel shows the best-fit SED (black curve), the observed data (red square) and the predicted unattenuated SED (blue curve).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The black open circle on the SED fitting curve is the corresponding model photometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The goodness of fit is presented by 𝜒2 in the upper right corner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The lower panel shows the likelihood distribution of 10 basic physical parameters: 𝑧phot, stellar mass (log[𝑀∗/𝑀⊙]), log[SFR/(𝑀⊙yr−1)], specific-SFR (log[sSFR/yr]), dust luminosity (log[𝐿dust/𝐿⊙]), dust mass (log[𝑀dust/𝑀⊙]), mass- weighted stellar age (log[𝐴𝑔𝑒𝑚/yr]), V-band dust attenuation (𝐴𝑉 /mag), 2175 𝐴 bump strength (𝐸′ 𝑏) and the effective dust temperature (𝑇𝑑𝑢𝑠𝑡/K) (Battisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' key parameters (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 𝑧phot, 𝑀∗ and SFR): ���� ���� 𝜎(𝑧phot) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 𝜎(log(𝑀∗/𝑀⊙)) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 𝜎(log(SFR/𝑀⊙yr−1)) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3, where 𝜎(𝑧phot), 𝜎(log(𝑀∗/𝑀⊙)) and 𝜎(log(SFR/𝑀⊙yr−1)) are measurement uncertainties for 𝑧phot, 𝑀∗ and SFR, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The measurement uncertainty is calculated by half of difference between upper and lower 1𝜎 (68%) boundary of probability distribution func- tion (PDF) for each parameters derived by MAGPHYS+photo-z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We restrict the measurement uncertainty on redshift based on the size of our adopted redshift bins of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 dex (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2 times larger than the un- certainty boundary).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The limits of uncertainties on 𝑀∗ and SFR are set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 dex (roughly a factor of 2) because we want the measure- ment uncertainties to be lower than the typical intrinsic MS scatter, which is ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 dex (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Daddi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Ciesla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Speagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' These cuts remove 201 galaxies (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5%) from our sample and we are left with 13, 418 galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 Reference Main Sequence Relation Numerous studies have examined the nature of the galaxy MS (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Speagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Johnston et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Tomczak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Pearson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Bisigello et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Tomczak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2016) and Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2020) introduce nonlinear fits to the MS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For our reference MS relation, we adopt Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2020) which also used galaxies in the COSMOS field, which has the form: log(SFR(𝑀, 𝑡)/𝑀⊙yr−1) = 𝑆0 − 𝑎1𝑡 − log � 1 + 10𝑀′ 𝑡 10𝑀 � 𝑀′ 𝑡 = 𝑀0 + 𝑎2𝑡, (1) MNRAS 000, 1–15 (2022) t ID:1587 Zfit = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='81 12 x2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='74 (7/77)60] 1f Resid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 1 0 100 101 102 EOT 104 10 A/μm [obs-frame] 1DO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='86 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='56 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='12 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='44+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='50 kel 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='DO 0 2 4 12 2 12 i0 8 12 Zotat lo-g[MMα ] lo-g[SFR/(Mα yr-1]] log[sSFR/yr-1] og[LdrtfL ] 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='07 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='50 ke 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0O 8 1 6 8 5 115 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content="5 152 40 8 log[Mdr/M a] lo-g[Ageur] Avfmag Eb' Taust/K4 R." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Normalized 𝑧phot histogram for the galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The red histogram in- dicates the distribution of photo-z’s from MAGPHYS+photo-z for the 14,607 galaxies in our sample, while the blue histogram represents the parent distri- bution of the whole 964,506 galaxies from COSMOS2020 catalogue (Weaver et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2022), where the 𝑧phot are derived using LePhare (Arnouts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Ilbert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We show the corresponding look-back time 𝑡lb on the top axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Distribution of MAGPHYS+photo-z fit 𝜒2 of our 14,607 galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The black curve represents the normalized lognormal distribution function fitting to the 𝜒2 histogram, while the vertical black dashed line indicates the normal 2𝜎 confidence cut within 𝜒2 ≤ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' where 𝑆0 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='97+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09, 𝑀0 = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='16+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='16, 𝑎1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='22+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='01, 𝑎2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='12+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='02, 𝑀 is log(𝑀∗/𝑀⊙) and 𝑡 is the age of the universe in Gyr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2020) separate their sample into two classes, ‘All’ and ‘SF’ (‘Star-forming’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We adopt the ‘SF’ relation, which should coincide more closely with the sample used in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2020) ‘SF’ sample applies a colour selection (NUV-r-J cut) that will exclude ‘passive’ galaxies with low SFRs, which has a similar role as our selection criterion described in next paragraph (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The probed steller mass range in Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2020) is 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 ≲ 𝑀∗ ≲ 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 and redshift range is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 < 𝑧 < 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' They use radio data to derive SFRs, which provides a dust-unbiased measurement of the SFR (Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Although the goal of this study is not to investigate the relation between SFR and 𝑀∗, we note that the exact functional form of the MS is still under debate (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Katsianis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Leja et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Different methods of estimating SFRs are thought to be the primary reason for differences between studies (Katsianis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Hence, despite using similar catalogues from the COSMOS field as Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2020) that use radio continuum for robust SFRs (dust- insensitive), there are some other systematic problems that can arise, such as priors, metallicities, timescales, stellar masses, ages, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We stress that the reference MS we show is intended only to guide the eye and we do not use it for any selection cuts (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', to define ‘on’ vs ‘off’ the MS), which instead are based on sSFR (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Therefore, the choice of the reference MS has no impact on the results of this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 sSFR Selection We also adopt a specific-SFR (sSFR = SFR/𝑀∗) cut to eliminate quenched galaxies (see the comparison to U-V-J selection in Ap- pendix A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' These ‘passive’ galaxies form stars at a much lower rate for a given stellar mass compared to SF galaxies (Renzini & Peng 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' By definition, quenched galaxies have low sSFR values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The purpose of the sSFR cut is to remove these red galaxies to avoid overestimating the MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Since the sSFR of SF galaxies evolves with cosmic time (Madau & Dickinson 2014), we adopt a redshift- dependent cut1 in this selection criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In Figure 4, we use a linear regression model fit to the median-3𝜎 values for sSFR bins (24 bins) vs 𝑧phot and remove quenched galaxies, which we define as 3 − 𝜎 outliers lying below the equation: log(sSFR/yr−1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='57𝑧phot − 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 Influence of IR-selection on SFR- and mass-completeness A galaxy’s SFR scales with the IR luminosity (𝐿IR) (Kennicutt & Evans 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Due to this, the IR-selection criteria in our sample only includes galaxies above a certain SFR (depending on redshift), introducing an SFR bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 𝐿IR in this paper represents the integrated dust emission from both dust components in MAGPHYS+photo-z over all wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' As the luminosity distance (𝐷lum) increases, the lowest SFR of the SF galaxies we can observe will increase correspondingly2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Hence, the functional form for IR-selection in SFR is similar to the relationship between luminosity and redshift: log(SFRIR/𝑀⊙yr−1) ∝ log(𝐿IR) = log(4𝜋𝐹IR𝐷2 lum) = log(𝛼𝐷2 lum), (3) where 𝛼 is a constant factor determined by the data and 𝐷lum is the luminosity distance in units of Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' By converting 𝐷lum to 𝑧phot and applying Equation 3 to log(SFR) 𝑣𝑠 𝑧phot, we obtain an empirical estimate of our SFR limit with redshift based on the 1𝜎 lower boundary of our population, and the constant factor of the function 𝛼 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='50 × 10−7 corresponds to the lower boundary of the 68% (1𝜎) population enclosed curve (see Figure 5): log(SFRIR/𝑀⊙yr−1) = log(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='50 × 10−7(𝐷lum/Mpc)2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (4) 1 We explored adopting a constant cut at log(sSFR/yr−1) = −11, which increases our sample by ∼100 galaxies, but this has a very small difference on our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We suspect that this phenomenon could be driven by IR-selection, which is described in the next subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2 This excludes the negative-k correction effect MNRAS 000, 1–15 (2022) Look-back time tb (Gyr) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='71 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='24 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='95 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='31 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='55 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='71 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='83 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8 Samples in this study 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7 Full COSMOS2020 catalog 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 Number density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 2 5 1 3 4 6 0 7 8 Zphot400 μgeo=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='43, Ogeo=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='83 350 MAGPHYS x² histogram 300 - 250 nt no 200 150 100 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='76 50 0 4 6 0 8 10 2Intrinsic MS Scatter at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 < 𝑧 < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 5 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' log(sSFR) vs z enclosed contour plot for the 13,071 selection galaxies within 2𝜎 − 𝜒2 from redshifts 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The colours ranging from blue to yellow indicate the increasing number density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The number of galaxies inside the enclosed blue and green curve is 68% (1𝜎) and 95% (2𝜎) of the total population, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The magenta points indicate the median value of log(sSFR/yr−1), while the red points are the median-3𝜎 values for 24 sSFR bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The red line is the sSFR cut adopted in this study, and there are 64 galaxies identified as quenched galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Due to the mini- mum timescale of star formation in MAGPHYS+photo-z, there is a maximum value of log(sSFR/yr−1) ∼ −8, corresponding to the adopted SFR timescale (100Myr), showing as a horizontal boundary in the diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' log(SFR) vs z enclosed contour plot for the 13,071 selection galaxies within 𝜒2 selection from redshifts 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The equation 4 is plotted as the red curve in this diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Due to the detection limits, we cannot trust our ability to detect galaxies that are below Equation 4 in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This SFR incom- pleteness translates to an incompleteness on stellar mass (via galaxy MS relation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We infer the corresponding mass-completeness thresh- old at each redshift using the Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2020) MS relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For subsequent analysis, we will refer to samples above and below this threshold as our mass-complete and mass-incomplete samples, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 3 RESULTS AND ANALYSIS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 The Role of Redshift uncertainty and IR data on the Measured Scatter of the MS In this study, we use MAGPHYS+photo-z to constrain the stellar masses and SFRs of our galaxies because it uses the full wave- length range from UV to radio, and it constrains the photometric redshifts jointly with the other physical parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Using the full SED provides the tightest possible constraints on 𝑀∗ and SFR, thus minimizing the main sequence scatter that is due to errors on these parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Obtaining the photometric redshift at the same time al- lows us to fold in the redshift error into the errors on 𝑀∗ and SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This improves our ability to quantify the ‘observational’ scatter on the main sequence and, in turn, characterise its intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In this section, we test the accuracy of MAGPHYS+photo-z and quan- tify the influence that the redshift precision and inclusion of IR data have on derived physical properties (for the COSMOS filter set).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 Accuracy of 𝑧phot relative to 𝑧spec To examine the 𝑧phot accuracy of MAGPHYS+photo-z, we use the latest COSMOS master spectroscopic catalogue (curated by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Sal- vato for internal use within the COSMOS collaboration), which is the same dataset used to originally test the code (Battisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' There are spectroscopic redshifts, 𝑧spec, for 3,873 out of the 14,607 galaxies in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' After applying the 𝜒2 cut, we obtain 3,724 galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Here we adopt some metrics defined in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 of Battisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2019) to estimate the accuracy of 𝑧phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We find 𝜎NMAD = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='086, 𝜂 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2% and 𝑧bias = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='002, where 𝜎NMAD (normalized median absolute deviation) is known as the precision or scatter of the data, 𝜂 characterises the fraction of catastrophic failures and 𝑧bias represents the accuracy of the redshift (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' systematic devi- ation or bias).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The value of 𝑧bias is much smaller than 𝜎NMAD, and hence we constrain the redshifts very well with the multiple UV to radio bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Since we use a similar database as the one used in Bat- tisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2019), the results of 𝜎NMAD, 𝜂 and 𝑧bias should be similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' As a comparison, these values calculated in Battisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2019) are 𝜎NMAD = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='032, 𝜂 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='037, 𝑧bias = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='004 for the COSMOS2015 samples, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The upper panels of Figure 6 is a demonstration of 𝑧phot accuracy of MAGPHYS+photo-z, which also shows a comparison between the 𝑀∗ and SFR derived from 𝑧phot and 𝑧spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The median values of differences for 𝑀∗ and SFR are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='00 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='05 dex, respectively, reflecting that MAGPHYS+photo-z does not affect the overall mea- surement of 𝑀∗ and SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Therefore, we do not expect that relying on 𝑧phot will introduce significant bias or dominate the uncertainty of the other derived properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 Uncertainties of 𝑧phot, 𝑀∗ and SFR We characterise the measurement uncertainties of 𝑧phot, 𝑀∗ and SFR for our sample of 13,418 galaxies in Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In our analysis, the data are separated into five bins of 𝑀∗ with a width of ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 dex at a specific redshift epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The uncertainty in 𝑀∗ in each bin is ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='06 dex, while the 𝑧phot uncertainty is ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Both uncertainties are ∼ 10 times smaller than the bin size in this study (≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 dex for log(𝑀∗) bin and ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 for redshift epoch), therefore we do not anticipate that these uncertainties will have a substantial impact on the derived intrinsic scatter on the MS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The median value of SFR’s uncertainty is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 dex, which is comparable to the scatter of galaxies on the MS (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 dex;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Speagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Thus, when measuring MNRAS 000, 1–15 (2022) log(sSFR/yr=1) 10 68%enclosedcurve 95%enclosedcurve sSFR cut: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='57Zphot - 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='60 12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Zphot3 2 log(SFR/Moyr-1) 0 IRlimit:log(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='50e-07*D2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' um 68%enclosedcurve 95%enclosedcurve 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Zphot6 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' the intrinsic scatter of MS, we need to consider SFR’s uncertainty as the component of the scatter in MS and remove it properly to obtain the intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Our method for removing this component is described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 Contribution of including IR data to the Uncertainties of 𝑀∗ and SFR IR wavelengths probe dust emission and provide information re- garding the amount of dust-obscured star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' By excluding IR observations from the SED fits, we can determine the impact of these bands on the uncertainties of 𝑀∗ and SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We rerun the MAGPHYS+photo-z without fitting the observational data for filters at wavelengths longer than IRAC2 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5um) for the same 14,607 galax- ies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' After rejecting the cases with bad fits (𝜒2 > 2𝜎), we compare the uncertainties of 𝑧phot, 𝑀∗ and SFR derived from UV to near-IR photo-z fitting to those results from fitting the full available SED in the top panels of Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' As expected (Battisti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2022), the non-IR fits tend to come with larger measurement uncertainties be- cause fewer observations are available to constrain the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For 𝑧phot and 𝑀∗, including the IR bands only leads to a relatively small improvement (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', decrease) in the uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In contrast, for SFR, the median uncertainty when IR bands are not included is nearly 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 times larger than that with the IR bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This is because the IR bands are important to distinguish the amount of dust-obscured star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' It is harder to accurately measure the intrinsic scatter of the MS with the larger measurement error in SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Therefore, by restricting the sample to sources where SED fitting can be performed that include IR filters, we significantly reduce the amount of scatter of the MS arising from measurement uncertainty to accurately con- strain the intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The lower panels of Figure 8 show the difference in the values of 𝑧phot, 𝑀∗ and SFR with and without the IR bands included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' It can be seen that the median of the difference remains close to zero as a function of each property suggesting that there is minimal bias occurring as a result of the MAGPHYS+photo-z priors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 Measuring the intrinsic MS scatter We divide our sample into 6 redshift bins: 𝑧phot = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 & 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0, with widths of Δ𝑧 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 except for the lowest bin, which spans 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75 due to the limitation on the red- shift prior for MAGPHYS+photo-z (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' At each redshift, we further divide the sample into 5 stellar mass bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We determine the log(SFR) dispersion (standard deviation) of the galaxies within each bin relative to the median log(SFR) measurement uncertain- ties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We set the following five bins for all selected galaxies according to their mass: log(𝑀∗) < 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 log(𝑀⊙), 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(𝑀⊙), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 log(𝑀⊙), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 to 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(𝑀⊙) and > 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(𝑀⊙).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The values adopted for each bin is the median log(SFR) and 𝑀∗ of each group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We characterise the intrinsic MS scatter in the range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 < 𝑧phot < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 (see Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The upper boundary (𝑧phot = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25) corresponds to where our sample size dramatically decreases such that we do not have enough sources to properly characterize the MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Then we take the further selections of 2𝜎-𝜒2 and sSFR cut (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3) to reduce the effects of quiescent galaxies on the intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For each bin, we assume that any excess in the SFR disper- sion relative to the median measurement uncertainty in SFR from MAGPHYS+photo-z is due to the intrinsic scatter of the MS relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We determine the intrinsic MS scatter by assuming the measured scatter is a result of the measurement uncertainty and intrinsic MS scatter being added in quadrature, which can be rearranged as: log(𝜎int/𝑀⊙yr−1) = √︃ (log(𝜎tot/𝑀⊙yr−1))2 − (log(𝜎meas/𝑀⊙yr−1))2, (5) where 𝜎int, 𝜎tot, and 𝜎meas are intrinsic MS scatter of the galaxies, the observed standard deviations, and the median MAGPHYS+photo-z uncertainty, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure 9 displays the galaxy MS for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 ≲ 𝑧phot ≲ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0, showing that the dispersion in SFR of the galaxies are significantly larger than the measurement uncertainties (representa- tive error bars in lower-right of each panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In each interval of 𝑀∗, the size of the SFR intrinsic MS scatter is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='15−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='39 dex larger than the measurement uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The horizontal dashed lines in Figure 9 indicate the limit on SFR defined in Equation 4 and Figure 5 at the median 𝑧phot for each bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The vertical dashed lines correspond to the stellar mass at this SFR from the reference MS relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We define the right half in each panel as the mass-complete area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' There are 12,380 galaxies (94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='71%) in the mass-complete regions and 691 galaxies (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='29%) in the mass-incomplete regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We show the values of the scatter terms for our mass-complete bins in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We observe the following three trends (see the left panel of Figure 10 and Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' First, the median SFR measurement uncertainties are always smaller than the intrinsic MS scatter of the SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The minimum difference between intrinsic MS scatter and uncertainties is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='13 dex in the range of 1010 − 1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5𝑀⊙ at 𝑧phot = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5, while the maximum occurring at 𝑧phot = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 for galaxies with log(𝑀∗/𝑀⊙) > 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='39 dex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Second, excluding the mass-incomplete regions, our galaxies roughly follow the same observed main sequence as shown in Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2020) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Equation 4), but with slightly lower SFRs than the reference MS for most redshift bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Third, the intrinsic dispersion in SFR at a given mass tends to decrease as the 𝑧phot increases at a fixed 𝑀∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The size of the 𝑧phot interval we selected may affect the behaviour of the SFR intrinsic MS scatter evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The width of each 𝑧phot in our criteria is Δ𝑧phot = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 except 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 at 𝑧phot = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' However, with the increase of 𝑧phot, the cosmic time corresponding to the Δ𝑧phot is decreasing because the look-back time 𝑡lb does not linearly increase with 𝑧phot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' As a result, this reducing length of the binning interval in cosmic time with increasing 𝑧phot may affect the SFR intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' To examine this issue, we adopt look-back time (𝑡lb) instead of redshift as a more consistent way to measure the intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We convert the 𝑧phot into 𝑡lb and rearrange our sample of 13,071 galaxies in 6 𝑡lb bins (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5, 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr) with the equal length of time (Δ𝑡lb = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2Gyr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We reproduce the log(SFR)-log(𝑀∗) plane in the right panel of Figure 10 and present the results in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We find that the 𝑡lb results share the same trends and features as the previous 𝑧phot version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' However, because binning the data in equal 𝑡lb width removes the unequal-length effect when measuring the intrinsic MS scatter, we will adopt this for our main analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The left panel of Figure 11 shows the relationship between intrinsic MS scatter and 𝑡lb for both the redshift and look-back time binning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In this study, we adopt the weighted linear regression to the intrinsic MS scatter versus 𝑡lb: log(𝜎int/𝑀⊙yr−1) = (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='012 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='002)𝑡lb + (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='432 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='015), (6) where 𝜎int is the intrinsic scatter of the MS, and these parameters are calculated with mass-complete sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We observe a trend of MNRAS 000, 1–15 (2022) Intrinsic MS Scatter at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 < 𝑧 < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 7 Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Upper left panel: Comparison of measurement uncertainties between default MAGPHYS high-𝑧 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e, fixed to 𝑧spec) and MAGPHYS+photoz runs for the subsample of 3,724 𝜒2-selection galaxies with spectroscopic redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Upper right panel: redshift accuracy ((𝑧phot − 𝑧spec)/(1 + 𝑧spec)) as a function of 𝑧spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The redshift scatter (𝜎NMAD), catastrophic failure rate (𝜂), and redshift bias (median((𝑧phot − 𝑧spec)/(1 + 𝑧spec))) values are shown at the upper right corner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Lower panels: Difference in 𝑀∗ and SFR derived by 𝑧phot and 𝑧spec as a function of the 𝑧spec-derived values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The 2D histogram/scatterplot colors range from blue to yellow with increasing number density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The black line in each sub-diagram is the one-to-one relation as reference;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' red, green and blue curves enclose 68%, 95% and 99% populations of sample galaxies within 2𝜎-𝜒2 cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' decreasing intrinsic MS scatter up to 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7Gyr (𝑧 ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7) as 𝑡lb increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The error bars are derived by bootstrap resampling the data in each bin 100 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Bins with smaller sample sizes have larger bootstrap errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Although the descending rate of intrinsic MS scatter over look-back time is shallow, the Spearman and Pearson correlation coefficients (𝑟𝑠 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='943 and 𝑟 𝑝 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='956, respectively) indicate a strong monotonic decreasing correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Conversely, with 𝑟𝑠 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='486 and 𝑟 𝑝 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='837, there is a weaker and tentative correlation when using redshift binning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This is due to the redshift binning having a potential upturning feature at 𝑧phot ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We suggest this is a consequence of unequal-length binning for redshift, which will be discussed in the next paragraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Furthermore, there is a ‘upturn’ feature, and the intrinsic MS scatter tends to increase after 𝑡lb ∼ 10Gyr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Given the uncertainty in our intrinsic MS scatter and our limited sample size at high-𝑧, it is difficult to assess the significance of this upturn with our current data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The intrinsic MS scatter may vary with the adopted Δ𝑡lb of each bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The right panel of Figure 11 presents the effect of binning the MNRAS 000, 1–15 (2022) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 68% enclosed curve 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 95% enclosed curve 99% enclosed curve 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Zphot(MAGPHYS) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0 1 2 3 4 ZspecONMAD = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='086, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 n = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2%, Zbias = - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 Zphot = Zspec ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1(1 + Zspec) 0 1 2 3 4 Zspec2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9 10 11 12 log(M* /Mo)zspec2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 +-log(SFR/Moyr- 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 log(SFR/Moyr- 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1 0 1 2 3 log(SFR/Moyr speo8 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Distribution of the values and uncertainties for the key parameters of our study for the 13,418 galaxies in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Red, green and blue curves enclose 68%, 95% and 99% populations of sample galaxies within 2𝜎-𝜒2 cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The median values of 𝑧phot, log(𝑀∗/𝑀⊙) and log(SFR/𝑀⊙yr−1) are 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='20, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='64 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='42, while the median values of uncertainties are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='06 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 dex, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Upper panels: Comparison between the uncertainties on 𝑧phot, 𝑀∗ and SFR for MAGPHYS+photo-z runs including IR bands (labeled ‘phot,IR’) and without IR or radio bands (‘phot,nonIR’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Differing from the cases for 𝑧phot and 𝑀∗, the SFR’s uncertainty increases dramatically for SED fits without the IR data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The median uncertainty values derived from MAGPHYS+photo-z including the IR bands (distributed along x-axis) are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='06 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 dex for 𝑧phot, 𝑀∗ and SFR, while the median uncertainty values derived from non-IR runs (distributed along y-axis) are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 dex, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The black line in each sub-diagram is the one-to-one relation as reference;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' red, green and blue curves enclose 68%, 95% and 99% populations of sample galaxies within 2𝜎-𝜒2 cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Lower panels: Difference in measurements between the SED fits with and without IR bands included as a function of the measurements derived from fitting including IR bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For the COSMOS2020 data, we find that the dominant factor in accurately constraining the scatter in the main sequence is whether the IR bands are included to constrain the dust-obscured SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' data in different Δ𝑡lb widths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The data are binned into 3, 6, 12, and 24 groups (no less than 100 galaxies in each bin) in 4 different sets with equal 𝑡lb widths, where 6 is our fiducial number of bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' It can be seen that the data in the 12 and 24 bins have a similar distribution statistically relative to our fiducial binning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We find that as the num- ber of bins increases, the normalisation (intrinsic MS scatter) slightly decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' However, the coefficients of the corresponding equations tend to converge somewhere closely below the current linear re- gression equation (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' the yellow line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Even though the decreasing binning time scale causes more severe fluctuation along the linear regression line, the similarity and high absolute values of 𝑟𝑠 and 𝑟 𝑝 still demonstrate a strong correlation between intrinsic MS scatter MNRAS 000, 1–15 (2022) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Zphot0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 (log(M* /Mo)) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8 9 10 11 12 log(M* /Mo)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0 2 3 log(SFR/Moyr-1)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8 O(Zphot, nonIR) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 O(Zphot, IR)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 o(log(M * /Mo)phot, nonIR) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 o(log(M * /Mo)phot, IR)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 o(log(SFR */Moyr-1 )phot,IR)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Zphot, IR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0 1 2 3 4 Zphot, IR2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8 9 10 11 12 log(M * /Mo)phot, IR2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1 0 3 log(SFR*/Moyr phot,IRIntrinsic MS Scatter at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 < 𝑧 < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9 Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 𝑀∗-SFR relation of our galaxies in 6 redshift bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' All bins are shown through 13,071 selection galaxies with colours from purple to red to green coding the range of 𝑧phot at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5, and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The horizontal dot-dashed line indicates the IR-selection completeness cut in SFR, and the vertical dashed line indicates the corresponding IR-selection completeness cut in 𝑀∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The open symbols indicate the mass-incomplete data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We drop the data points where the numbers of galaxies within a bin are less than 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The longer error bars indicate the standard deviation of the SFR distribution in each stellar mass bin, while the shorter black ones represent the median MAGPHYS measurement uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The gray error bar in the bottom right of each panel denotes the median uncertainties on 𝑀∗ (along the x-axis) and SFR (along the y-axis) from MAGPHYS+photo-z for the entire redshift bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The curves are the MS relations at each redshift epoch from Leslie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The maximum value of log(sSFR/yr−1) ∼ −8 due to the adopted SFR timescale shows as an upper boundary of the slope in each SFR-𝑀∗ panel, while the bottom right slope represents the sSFR cut at each redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' and 𝑡lb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' On the other hand, this phenomenon also partially explains why redshift binning is not a good approach in this study, especially at high redshifts: a narrower binning time scale may lead to larger fluctuations in the intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Since there is no significant discrepancy in intrinsic MS scatter for 𝑛bin ≥ 6, we expect that these coefficients in linear regression lines approach some values slightly smaller than the current binning one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Hence, we conclude that the binning does not strongly affect the trend of intrinsic MS scatter evolution and we adopt 𝑛bin ≥ 6 as the current 𝑡lb binning number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' MNRAS 000, 1–15 (2022) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 Leslie+20 z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 sSFR cut 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 mass-incomplete ★ mass-complete 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 O O 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(M* /Mo)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 Z= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='111 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 O 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(M* /Mo)3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 z= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 王 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 O 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(M* /Mo)3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Z= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 C 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 C 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 - O 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(M* /Mo)3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 z = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 - 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 - O 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(M*/Mo)3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 Z=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0- 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(M* /Mo)10 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The MS evolution and scatter for our sample with the same colour scheme adopted in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The shaded regions shown in the diagrams indicate the range of the reference MS between the upper and lower redshift boundaries for each bin and do not relate to the intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The thick and thin error bars indicate the observed standard deviation in SFR and the median SFR uncertainty from MAGPHYS+photo-z for each bin, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The left panel shows the sample binned in equal redshift bins, with the mass-incomplete bins shown as open symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The right panel is similar to the left but binned in equal look-back time bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Adopting equal-width redshift bins (left-panel) instead of look-back time (right-panel) may impact the measured intrinsic MS scatter because of the evolution in the MS relation over the redshift range contained within a single bin (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', differing widths in shaded region in left-panel relative to right-panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Hence, we adopt look-back time bins for our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The left panel is intrinsic MS scatter vs 𝑧phot and 𝑡lb binning with a linear regression fit to the look-back time bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The yellow star-like scatter points are the 𝑡lb binning data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We take the average of the data points in each mass bin and obtain error bars of intrinsic MS scatter by bootstrap resampling the distribution 100 times based on varying the individual values by their uncertainties and rebinning them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The solid yellow line is the linear fit of intrinsic MS scatter versus 𝑡lb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The right panel display the effect of binning number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' A total of 12,380 galaxies are regrouped in 3, 6, 12 and 24 bins with red circles, yellow star, green squares and blue diamonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In each panel, we show the Spearman and Pearson correlation coefficients (𝑟𝑠 and 𝑟𝑝) as well as the corresponding p-values (𝑝𝑠, 𝑝𝑝) for different binning data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 𝑀∗ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 − 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Log(M⊙) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 − 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 Log(M⊙) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 − 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Log(M⊙) > 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Log(M⊙) 𝑧phot N 𝜎tot 𝜎meas 𝜎int N 𝜎tot 𝜎meas 𝜎int N 𝜎tot 𝜎meas 𝜎int N 𝜎tot 𝜎meas 𝜎int 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 428 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='34 897 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='34 922 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='40 239 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='47 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 365 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='28 1036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='32 1660 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='34 831 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='41 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='40 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 247 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='29 776 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='26 1430 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='28 953 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='34 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='28 300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='27 663 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='30 616 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='29 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 69 202 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='24 227 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='33 261 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='28 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 25 78 74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='37 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='36 72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='26 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' "N" is the number of galaxies, "𝜎tot" is the galaxy SFR dispersion (standard deviation), "𝜎meas" is the MAGPHYS uncertainty in SFR and "𝜎int" is the intrinsic MS scatter in each 𝑀∗ bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The mass-incomplete data are marked as "-", but the number of galaxies in the binning interval are still shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Since all the 𝑀∗ < 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 log(𝑀⊙) galaxies lie in the mass-incomplete regime, they are not included in the table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' MNRAS 000, 1–15 (2022) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(SFR/Moyr-1) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 MS at z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 MS at z = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 z: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 ~ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 MS at z = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 mass-incomplete z: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75 ~ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 MS at z = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 mass-complete z: 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 ~ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 MS at z = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 z: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='40 ~ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75 z: 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75 ~ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 MS at z = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 z: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75 ~ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 log(M * /Mo)3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(SFR/Moyr-1) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 tib = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr (z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='48) tib : 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 ~5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5Gyr tib=6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1Gyr(z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='66) tib : 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 ~ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7Gyr 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 tib = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3Gyr (z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='90) tib : 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7 ~ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr tib = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5Gyr (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='22) tib : 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9 ~ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1Gyr 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 tib = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7Gyr (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='70) tb :9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1~10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3Gyr tib = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr (z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='51) tib :10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3~11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5Gyr 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 log(M* /M)Zphot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='45 linear fit: = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='012tb+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='432 tib binning 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='40 Zphot binning 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 rs, ps = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='943, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='005 rs, ps = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='486, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='329 rp, Pp = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='956, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='003 rp, Pp = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='837, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='038 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='20 4 5 6 7 8 9 10 11 12 Look-back time tb (Gyr)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='45 linear fit (3 bins): -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='017tib+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='477 linear fit (6 bins): -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='012tib+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='427 Intrinsic Scatter (log(oint/Moyr 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='40 linear fit (12 bins): -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='012tib+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='420 linear fit (24 bins): -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='012tib+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='417 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='30 ps = -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='005 rp, Pp = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='951,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='199 = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='832,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='864.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='000 rs, ps = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='770, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='000 rp, Pp = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='761, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='20 4 5 6 7 8 9 10 11 12 Look-back time tb (Gyr)Intrinsic MS Scatter at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 < 𝑧 < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11 𝑀∗ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 − 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Log(M⊙) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 − 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 Log(M⊙) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 − 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Log(M⊙) > 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Log(M⊙) 𝑡lb(Gyr) N 𝜎tot 𝜎meas 𝜎int N 𝜎tot 𝜎meas 𝜎int N 𝜎tot 𝜎meas 𝜎int N 𝜎tot 𝜎meas 𝜎int 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9(z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='48) 226 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='32 343 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='39 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='39 40 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1(z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='66) 222 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='29 532 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='31 674 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='37 195 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='47 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3(z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='90) 240 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='26 648 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='31 1082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='33 504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='39 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5(z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='22) 219 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='32 696 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='31 1128 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='28 758 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='37 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7(z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='70) 280 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='27 855 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='27 1607 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='31 1316 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='31 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9(z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='51) 49 131 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='34 157 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='27 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Look-back time version of Table 1 by collecting and reassigning the 12,380 mass-complete data to 6 𝑡lb bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We exclude bins in which the number of galaxies is less than 50 (> 1011𝑀⊙ at 𝑡lb = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr), together with the mass-incomplete data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In general, the intrinsic MS scatter is still significantly larger than measurement uncertainty in new binning criteria, which avoids the effect of nonlinear 𝑡lb widths in previous 𝑧phot binning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 4 DISCUSSION 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 Comparison to the halo mass-stellar mass relation The stochastic events that occurred throughout an SF galaxy’s history, including as galaxy mergers and supernova & AGN feedback, are assumed to be responsible for the inherent MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The amount of burstiness in SFH, which is probably related to galactic feedback mechanisms, is reflected in the distribution and evolution of intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In the left panel of Figure 12, we show the distribution of the intrinsic MS scatter versus 𝑀∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We see a minimum intrinsic MS scatter of ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 dex at 𝑀∗ ∼ 1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25𝑀⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We see a higher increase of ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 dex at higher mass (> 1011𝑀⊙) with decreasing look- back time for low redshifts (𝑡lb: 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9 - 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 Gyr) and a relatively flat relation at higher redshifts (𝑡lb ≳ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7Gyr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In the low mass end (∼ 109𝑀⊙), where the galaxies are mass-incomplete, the intrinsic scatter rises from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='35 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 dex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For some of the redshift bins, this type of trend is qualitatively similar to the turnover that occurs in the halo mass-stellar mass (HMSM) relation (see Figure 2 of Wechsler & Tinker (2018)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The shape of the HMSM relation is thought to be a consequence of feedback, with SF feedback reducing the SF efficiency in low-mass galaxies and AGN feedback reducing the SF efficiency in high-mass galaxies, with a turnover at halo mass 𝑀h ∼ 1012𝑀⊙, which is coincidentally corresponding to the upturn point of 𝑀∗-𝜎int panel at 𝑀∗ ∼ 1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25𝑀⊙ in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The intrinsic scatter in the MS is also expected to be linked to feedback, and this may account for similarities in the observed trends with the HMSM relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In the right panel of Figure 12, we present a toy model where we relate the HMSM relation with the intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We adopt the best-fit functional form and the parameterised data of the stellar mass halo mass (SMHM) relation from Equations 21 & 22 and Table 2 of Behroozi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Behroozi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2010) parameterize the evolution of SMHM relation in terms of 𝑀1, 𝑀∗,0, 𝛽, 𝛿 and 𝛾.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' All these variables vary with the scale factor 𝑎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For our model, we convert the standard SMHM relation into HMSM fraction vs stellar mass (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', log(𝑀h/𝑀∗) vs log(𝑀∗), instead of log(𝑀∗/𝑀h) vs log(𝑀h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This change results in the HMSM relation having an upturn shape instead of the usual downturn shape (because we invert the values in the y- axis ratio).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This modified HMSM relation presents a similar turnover feature as the ‘U-shaped’ distribution shown in the left subplot of Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Considering time evolution, we renormalize the HMSM relation to match our data by multiplying the HMSM fraction by an arbitrary coefficient 𝑘𝑖 (𝑖 indicates different 𝑡lb), which is computed by the non-linear regression: log(𝜎int/𝑀⊙yr−1) = 𝑘𝑖 · 𝑓HMSM(𝑎), (7) 𝑡lb 𝑘𝑖 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr (z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='48) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='20 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1Gyr (z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='66) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='19 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3Gyr (z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='90) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='17 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5Gyr (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='22) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='15 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7Gyr (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='70) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='12 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr (z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='51) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='10 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Best-fit values for the constant factor 𝑘𝑖 at different bins of look-back time for our toy model given by Equation 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' where 𝜎int is the intrinsic MS scatter, 𝑘𝑖 is a constant factor (see Table 3) and 𝑓HMSM(𝑎) = 𝑀h/𝑀∗ is the HMSM fraction that varies with the scale factor, 𝑎 (Behroozi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The Equation 7 does a reasonable job of matching the trends for the first four time bins (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9- 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5Gyr), but the final two bins (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7 and 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr) favor a flatter shape than our toy model at high 𝑀∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' At the lower and higher mass ends, the increasing intrinsic MS scatter may be driven by the feedback of supernovas and AGNs, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In contrast, in the mid-range of stellar mass (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 < log(𝑀∗/𝑀⊙) < 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5), the intrinsic MS scatter relation reaches a minimum (maximum in HMSM relation), reflecting the maximum conversion efficiency of gas to baryon and is thought to be linked to a minimum in the influence of starburst and galaxy feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We notice a large discrepancy between our data with shifted HMSM fraction at higher redshifts, which may be due to the low quality of observational data at high redshifts or differences in feedback mechanisms in the earlier universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For example, high-𝑧 observational limitation can lead to larger uncertainties on SFR and make it more difficult to constrain the intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' On the other hand, weaker AGN feedback for high-𝑀∗ galaxies at high-𝑧 may also account for the almost constant intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 Comparison to observational studies We compare our measurements of the intrinsic MS scatter with some previous studies in Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Traditionally, a redshift-independent width of MS at either 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 or 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 dex is founded in observations (Daddi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Noeske et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Whitaker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Ciesla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Speagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Kurczynski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2016), which is lower than our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In contrast, Kurczynski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Santini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Davies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022) report a redshift evolution of intrinsic MS scatter, which spans a wider range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9 dex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Our data show a similar trend to the ‘U-shaped’ distribution de- scribed in Davies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' They used the DEVILS survey, con- taining ∼60,000 galaxies with spectroscopic redshifts ranging from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In the case of 𝑧phot = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5, where our samples have red- shift overlap, the intrinsic MS scatter trend along the 𝑀∗ is highly consistent with the ‘U-shaped’ distribution, except we have signifi- cantly smaller intrinsic MS scatter (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='24 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='40 dex in this study, while ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8 dex in Davies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' At low stellar mass, Davies MNRAS 000, 1–15 (2022) 12 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Left panel: the intrinsic MS scatter 𝜎(log(SFR)) vs 𝑀∗ for our 6 look-back time bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Solid lines connect the mass-complete data and dashed lines indicate the mass-incomplete regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Right panel: we show a fit of our toy model (relation indicated in the panel), based on the halo mass to stellar mass fraction vs stellar mass relation Behroozi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2010) normalized by a constant factor, normalized by a constant factor, relative to our intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Similar to the left, we indicate the mass-complete and mass-incomplete regions with solid and dashed lines, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' A comparison of our intrinsic MS scatter to previous studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The first three panels display the distribution of intrinsic MS scatter over 𝑀∗ at 𝑧phot < 1, 1 < 𝑧phot < 2 and 𝑧phot > 2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The star symbols are the results in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The pentagon symbols show the results from Davies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022), while the curves in the top left panel are polynomial fitting curves to their data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The filled pentagons are the fitting range of Davies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The circles are the results from Kurczynski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2016), while the squares represent the data from Santini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The horizontal dashed line in the bottom indicates a constant intrinsic MS scatter at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 dex (Daddi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Ciesla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Speagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2014), while the solid line represents a non-evolving scatter at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='20 dex (Noeske et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Whitaker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Pessa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Our data are quantitatively similar to Kurczynski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Davies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' MNRAS 000, 1–15 (2022) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7 tib = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr (z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='48) tib = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1Gyr (z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='66) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 tib = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3Gyr (z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='90) tib = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5Gyr (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='22) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 tib = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7Gyr (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='70) log(oint/Moyr-1 tib = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr (z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='51) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 mass-incomplete mass-complete 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 log(M* /Mo)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 log(oint/Moyr-1) = kj - fHMSM log(oint/Moyr-1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 log(M* /Mo)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8 z<1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 log(oint/Moyr 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 7 8 9 10 11 12 log(M* /Mo)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8 1<<2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7 log(int/Moyr-1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 8 9 10 12 11 log(M*/Mo)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8 Z>2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7 (t-/w/ul0)60l 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 8 9 10 12 7 11 log(M*/Mo)constant scatter = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 dex Davies+22, z:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='85 constant scatter = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 dex Kurczynski+16, z:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 ★★★★★★ tib = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr (z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='48) Kurczynski+16, z:1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 tib = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1Gyr (z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='66) Kurczynski+16, z:1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 tib = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3Gyr (z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='90) Kurczynski+16, z:2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 tib = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5Gyr (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='22) Kurczynski+16, z:2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 tib = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7Gyr (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='70) Santini+17, z:1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3-2 tib = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr (z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='51) Santini+17, z:2-3 Davies+22, z:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 Santini+17, z:3-4 Davies+22, z:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 Santini+17, z:4-5 Davies+22, z:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='55 Santini+17, z:5-6 Davies+22, z:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='55-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7Intrinsic MS Scatter at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 < 𝑧 < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 13 et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022) suggest that the intrinsic MS scatter is driven by stochas- tic starbursts and stellar feedback events;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' while the galaxies become more massive and reach intermediate stellar mass (around 1010𝑀⊙), the galaxies are too massive so that the effect of star formation and galaxy feedback is less significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In this study, intrinsic MS scatter increases at high stellar mass (log(𝑀∗/𝑀⊙) ≳ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3), consistent with the ‘U-shaped’ distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Davies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022) conclude that AGN feedback leads to a large scatter at the high mass end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We note that in our selection, we removed sources with current AGN signatures (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1), but that the feedback from previous AGN will still affect the MS scatter over longer timescales than the AGN duty cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' As the redshift increases, more data in the low stellar mass end are identified as mass-incomplete due to IR selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' However, we can still rec- ognize that the intrinsic MS scatter tends to increase when galaxies become more massive for 𝑀∗ > 1010𝑀⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' With increasing redshift, we notice that the right half of the ‘U-shaped’ distribution becomes flattered and even decreases at 𝑡lb = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='9Gyr (𝑧phot = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='51).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This suggests that the star-forming and feedback activity or efficiency for high-mass galaxies in the early universe may differ relative to lower redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Regarding the higher intrinsic MS scatter in Davies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022) relative to our results, we think this is due to the following reasons: (1) They do not include photo-z uncertainties in the SED modeling, which results in an underestimate of the measurement uncertainty (on 𝑀∗ and SFR), and hence, an overestimation of the intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2) They derive galaxy properties for the D10 field of DEVILS (Davies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2018) by using different SED fitting code, PROSPECT (Robotham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Large differences in obtained properties are produced by different derivation techniques applied to various photometric data (see the comparison between PROSPECT and MAGPHYS3 in Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2021)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (3) They adopt the U-V-J selection rather than sSFR cut so that the samples in Davies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022) contain low-sSFR galaxies (see the discussion of these two selection criteria in Appendix A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' However, in our selection criteria, these galaxies are identified as quenched and removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The addition of quenched galaxies severely enlarges the MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' As will be shown in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 when comparing to simulations, the amplitude of the intrinsic MS scatter is very sensitive to the choice of sSFR cuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For example, Leja et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022) demonstrate that fixed-sSFR cuts may reduce the inferred MS scatter, particularly at the highest stellar mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (4) They do not strictly require detection in the IR bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' As discussed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3, the SED fitting in the absence of IR information results in considerable uncertainty of derived SFR, which may increase the SFR standard deviation and inferred intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 Comparison to theoretical studies We first compare to results from the SHARK semi-analytic models (left panel of Figure 14;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Lagos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For SHARK, we select galaxies with stellar masses between 108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='25 −1011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75𝑀⊙ within ±1 dex along the MS for each redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We calculate the standard deviations of the median SFRs for selected galaxies and present the results as the dot-dashed lines in Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' A notable difference from the observational data is that the overall scatter in SHARK is larger than observational data in the mass-complete range, particularly for the highest redshift bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We find a common trend that the SHARK results 3 We pick MAGPHYS+photo-z in this study because this code can treat red- shift as a free parameter and derive the 𝑧phot and the corresponding measure- ment uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' follow a similar ‘U-shaped’ distribution at each redshift, though the minimum and maximum points occur at a stellar mass < 1010𝑀⊙ and > 1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75𝑀⊙, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We suggest that the consistent ‘upturn’ feature in SHARK also indicates the effect of past AGNs for 𝑀∗ ≳ 1010𝑀⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We also observe a flat or decreasing scatter in SHARK for galaxies in the range of 𝑀∗ ≥ 1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75𝑀⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This occurrence indicates that galaxies in this mass range are shifted below the chosen sSFR limit because AGNs have a more significant impact on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We also investigate the effect of the sSFR cut on intrinsic MS scatter and find that the stricter sSFR cut leads to a smaller amplitude of the intrinsic MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For instance, the intrinsic MS scatter will be reduced by ∼ 1 dex overall when we pick a selection with a narrower sSFR cut, such as ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75 dex along the MS, rather than ±1 dex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Next, we compare the results with EAGLE hydrodynamical sim- ulations (right panel of Figure 14;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Matthee & Schaye 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We redivide the data in redshift binning at 𝑧phot = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 for a proper comparison with Figure 3 in Matthee & Schaye (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Matthee & Schaye (2019) adopt SF galaxies with evolved sSFR se- lection (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', log(sSFR/yr−1) = −10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 at 𝑧 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 and increases to −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 at 𝑧 = 3) and measure the scatter from the residuals by us- ing the non-parametric local polynomial regression method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Then they obtain the intrinsic MS scatter by subtracting the observational errors derived by median uncertainties of the observational sample from Chang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The EAGLE results suggest lower intrinsic MS scatter at higher redshift for 𝑀∗ < 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8𝑀⊙ and similar intrinsic MS scatter for 𝑀∗ > 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8𝑀⊙, with a downward ‘U-shaped’ feature appearing at z = 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This shape differs substantially from our findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Unlike the decreasing trend with stellar mass from simu- lation, the intrinsic MS scatter in this study decreases initially but increases at the high mass end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Matthee & Schaye (2019) consider that supermassive black hole growth accounts for the increasing scat- ter at 𝑀∗ ≈ 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8𝑀⊙ at high redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' However, our results suggest the influence of the feedback mechanism from previous AGNs might be more significant at higher stellar masses (𝑀∗ ≳ 1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3𝑀⊙) at low redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The intrinsic MS scatter at each redshift bin is also larger than Matthee & Schaye (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We suspect that different physics (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', feedback, SF model) adopted in EAGLE give rise to the quanti- tative difference to our results and from SHARK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 5 CONCLUSIONS In this paper, using the selection of 12,380 SF galaxies from the COSMOS2020 database and adopting the MAGPHYS+photo-z SED fitting code, we characterise the intrinsic scatter of galaxy MS over the redshift range 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 < 𝑧 < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We find that the intrinsic MS scatter is larger than the measure- ment uncertainty by a factor of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 when IR data is available for accurately constraining the dust-obscured star formation (Section 3), with measured MS scatter in the range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='26-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='47 dex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For the COSMOS2020 sample, the inclusion of IR data is the dominant factor (over 𝑧phot uncertainty), affecting the accuracy of measuring the scatter on the MS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Binning the data according to either redshift or look-back time, we find a slightly negative correlation between intrinsic MS scatter and look-back time (Equation 6) but with an upturn at 𝑡lb ≳ 10Gyr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' To connect the intrinsic MS scatter with the feedback mecha- nism, we present a toy model that uses the Behroozi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2010) SMHM relation (Equation 7), which does a reasonable job of match- ing the distribution of intrinsic MS scatter over 𝑀∗ and redshift (Figure 12), although with less agreement at the highest redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' MNRAS 000, 1–15 (2022) 14 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Left panel: we compare our results with SHARK models and show the sensitivity of the intrinsic MS scatter to the chosen boundary of sSFR (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', ±1 and ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75 dex).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The trends in SHARK show rough qualitative agreement with our observational results but with slight differences in the normalization, which is sensitive to the adopted sSFR cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Right panel: we overlap the results from the SHARK (dot-dashed lines) and EAGLE (solid bands) simulations (Lagos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Matthee & Schaye 2019) with our data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' For both panels, we have modified our bins to be consistent with the bins used in Matthee & Schaye (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' At 𝑀∗ > 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='8𝑀⊙, where we are mostly mass-complete, we find differing trends between the observational results and the EAGLE simulations, and also note there are large differences in the trends inferred from SHARK and EAGLE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We obtain error bars of intrinsic MS scatter by bootstrap resampling the data by their uncertainties 100 times and remeasuring the intrinsic scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We compare our results to other observational studies of the MS scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Differing from a non-evolving, mass-independent scatter, our results are qualitatively similar to the ‘U-shaped’ intrinsic MS scatter distribution with stellar mass and redshifts found in Davies et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We compare the intrinsic MS scatter to some theoretical studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' The consistent upturn trend in SHARK models suggests the agreement of the feedback mechanism from past AGN activity for galaxies with 𝑀∗ > 1010𝑀⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' These comparisons highlight the significant influ- ence that sSFR cuts can have on the measured value of the ‘intrinsic’ MS scatter and that particular care needs to be taken with such com- parisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We also find that the behaviour of intrinsic MS scatter diverges significantly between our study and EAGLE Simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In the future, the most significant gain in our understanding of the evolution in the MS scatter will come from deeper surveys in rest- frame IR to enable accurate characterization of the MS scatter at both low stellar masses and higher redshifts, where our current sample is severely limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' There is a weak agreement between observation data and theory in Equation 7 for high-𝑧 and low mass cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' In particular, better sampling in these regimes will provide a clear test of whether our toy model linking the MS scatter to the HMSM relation is reasonable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Alternatively, we also plan to explore less- restrictive selection criteria in the IR bands to push our sample to include more low-𝑀∗ and/or high-𝑧 sources from existing surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' ACKNOWLEDGEMENTS The authors appreciate the referee, Antonios Katsianis, who provided valuable and insightful comments on the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Parts of this research were supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We thank the COSMOS team for making the data products that we used in this project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' is supported by the Australian Research Council through the Discovery Early Career Researcher Award (DECRA) Fellowship DE220100766 funded by the Australian Government.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We also thank Jorryt Matthee for correspondence regarding his study using the EAGLE survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' This research was conducted on Ngunnawal Indigenous land.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' DATA AVAILABILITY The observational data used in this paper are publicly available through catalog and imaging data releases from the COSMOS survey team (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Other data products can be made available upon reasonable request to the first author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' REFERENCES Arnouts S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2002, MNRAS, 329, 355 Barro G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2017, ApJ, 840, 47 Battisti A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2019, ApJ, 882, 61 Battisti A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2022, MNRAS, 513, 4431 Behroozi P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Conroy C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Wechsler R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2010, ApJ, 717, 379 Bisigello L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Caputi K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Grogin N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Koekemoer A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2018, A&A, 609, A82 Bruzual G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Charlot S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2003, MNRAS, 344, 1000 Caplar N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Tacchella S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2019, MNRAS, 487, 3845 Chabrier G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2003, PASP, 115, 763 Chang Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', van der Wel A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', da Cunha E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Rix H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2015, ApJS, 219, 8 Ciesla L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2014, A&A, 565, A128 Curtis-Lake E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Chevallard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Charlot S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Sandles L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2021, MNRAS, 503, 4855 Daddi E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2007, ApJ, 670, 156 Daddi E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2022, A&A, 661, L7 Davies L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2018, MNRAS, 480, 768 Davies L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2022, MNRAS, 509, 4392 Donley J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2012, ApJ, 748, 142 Donnari M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2019, MNRAS, 485, 4817 Guo Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2013, ApJS, 207, 24 Ilbert O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2006, A&A, 457, 841 Jin S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2018, ApJ, 864, 56 Johnston R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Vaccari M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Jarvis M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Smith M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Giovannoli E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Häußler B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Prescott M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2015, MNRAS, 453, 2540 Katsianis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2019, ApJ, 879, 11 Katsianis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2020, MNRAS, 492, 5592 MNRAS 000, 1–15 (2022) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7 SHARK, ±1 dex SHARK, ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='75 dex 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 log(oint/Moyr-) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(Mstar/Mo)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='7 z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 SHARK, ±1 dex ☆★ z= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 mass-incomplete 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='6 z = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 mass-complete Z = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 EAGLE log(oint/Moyr-1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 log(Mstar/Mo)Intrinsic MS Scatter at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 < 𝑧 < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 15 Katsianis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Yang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Zheng X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2021, ApJ, 919, 88 Kennicutt R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Evans N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2012, ARA&A, 50, 531 Kirkpatrick A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2013, ApJ, 763, 123 Kurczynski P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2016, ApJ, 820, L1 Lagos C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Tobar R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Robotham A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Obreschkow D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Mitchell P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Power C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Elahi P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2018, MNRAS, 481, 3573 Leja J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2022, ApJ, 936, 165 Leslie S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2020, ApJ, 899, 58 Madau P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Dickinson M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2014, ARA&A, 52, 415 Matthee J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Schaye J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2019, MNRAS, 484, 915 Noeske K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2007, ApJ, 660, L43 Pearson W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2018, A&A, 615, A146 Pessa I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2021, A&A, 650, A134 Popesso P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2022, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='10487 Renzini A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Peng Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='-j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2015, ApJ, 801, L29 Robotham A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Bellstedt S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Lagos C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Thorne J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Davies L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Driver S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Bravo M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2020, MNRAS, 495, 905 Santini P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2017, ApJ, 847, 76 Schreiber C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2015, A&A, 575, A74 Seymour N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2008, MNRAS, 386, 1695 Somerville R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Davé R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2015, ARA&A, 53, 51 Sparre M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Hayward C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Feldmann R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Faucher-Giguère C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Muratov A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Kereš D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Hopkins P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2017, MNRAS, 466, 88 Speagle J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Steinhardt C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Capak P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Silverman J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2014, ApJS, 214, 15 Tacchella S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Dekel A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Carollo C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Ceverino D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', DeGraf C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Lapiner S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Mandelker N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Primack Joel R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2016, MNRAS, 457, 2790 Thorne J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2021, MNRAS, 505, 540 Tomczak A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2016, ApJ, 817, 118 Weaver J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2022, ApJS, 258, 11 Wechsler R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Tinker J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2018, ARA&A, 56, 435 Whitaker K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', van Dokkum P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Brammer G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Franx M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2012, ApJ, 754, L29 Whitaker K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2014, ApJ, 795, 104 da Cunha E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Charlot S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', Elbaz D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2008, MNRAS, 388, 1595 da Cunha E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=', 2015, ApJ, 806, 110 APPENDIX A: sSFR SELECTION VS U-V-J CUT We show a comparison between the conventional U-V-J (in rest- frame) selection from Whitaker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2012) and our adopted sSFR selection (see Figure A1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Since the sSFR is computed by multi- band SED fitting, we expect this technique will be more accurate in excluding quenched galaxies than a color-color cut based on U, V, and J bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' We find that 75% of galaxies below our sSFR cut are excluded by the U-V-J cut, so the majority of ‘quenched’ galaxies in our samples are also designated as ‘passive’ in the U-V-J diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' However, only 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='17% galaxies that were eliminated by U-V-J selec- tion lie below our sSFR cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Hence, the bulk of galaxies excluded by the colour-colour cut for our sample are SF galaxies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' presumably, they are dusty SF galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Therefore, we adopt an sSFR cut rather than U-V-J cut to remove quenched galaxies for our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' MNRAS 000, 1–15 (2022) 16 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Figure A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Left panel: U-V-J diagram lot for the 13,071 𝜒2 selection galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' Right panel: in addition to Figure 4, we show the galaxies removed by U-V-J cut from Whitaker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' 64 galaxies are excluded by the sSFR cut, and 929 galaxies are excluded by the U-V-J cut, whereas only 48 of them are marked as quenched galaxies jointly by both selections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content=' MNRAS 000, 1–15 (2022) 3 2 1 U U-V-J cut Encloses 68% Encloses 95% removed by sSFR cut Encloses 99% 0 1 2 3 468% enclosed curve 95% enclosed curve 8 sSFR cut: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='57Zphot - 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='60 removed by UVl cut log(sSFR/yr-1) 10 12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} +page_content='0 Zphot' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtA0T4oBgHgl3EQfCv_p/content/2301.01995v1.pdf'} diff --git a/LdAyT4oBgHgl3EQfsvlL/content/tmp_files/2301.00581v1.pdf.txt b/LdAyT4oBgHgl3EQfsvlL/content/tmp_files/2301.00581v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..330088bef6ee698447cc7d705783d5e45b9d42d5 --- /dev/null +++ b/LdAyT4oBgHgl3EQfsvlL/content/tmp_files/2301.00581v1.pdf.txt @@ -0,0 +1,2193 @@ +arXiv:2301.00581v1 [cs.IT] 2 Jan 2023 +1 +Bent Partitions, Vectorial Dual-Bent Functions and Partial Difference Sets† +Jiaxin Wang, Fang-Wei Fu, Yadi Wei +Abstract +Bent partitions of V (p) +n +are quite powerful in constructing bent functions, vectorial bent functions and +generalized bent functions, where V (p) +n +is an n-dimensional vector space over Fp, n is an even positive +integer and p is a prime. It is known that partial spreads is a class of bent partitions. In [4], [18], two +classes of bent partitions whose forms are similar to partial spreads were presented. In [3], more bent +partitions Γ1, Γ2, Γ• +1, Γ• +2, Θ1, Θ2 were presented from (pre)semifields, including the bent partitions given +in [4], [18]. In this paper, we investigate the relations between bent partitions and vectorial dual-bent +functions. For any prime p, we show that one can generate certain bent partitions (called bent partitions +satisfying Condition C) from certain vectorial dual-bent functions (called vectorial dual-bent functions +satisfying Condition A). In particular, when p is an odd prime, we show that bent partitions satisfying +Condition C one-to-one correspond to vectorial dual-bent functions satisfying Condition A. We give an +alternative proof that Γ1, Γ2, Γ• +1, Γ• +2, Θ1, Θ2 are bent partitions in terms of vectorial dual-bent functions. +We present a secondary construction of vectorial dual-bent functions, which can be used to generate +more bent partitions. We show that any ternary weakly regular bent function f : V (3) +n +→ F3 (n even) of +2-form can generate a bent partition. When such f is weakly regular but not regular, the generated bent +partition by f is not coming from a normal bent partition, which answers an open problem proposed in +[4]. We give a sufficient condition on constructing partial difference sets from bent partitions, and when +p is an odd prime, we provide a characterization of bent partitions satisfying Condition C in terms of +partial difference sets. +Index Terms +Bent partitions; bent functions; vectorial bent functions; vectorial dual-bent functions; semifields; +partial difference sets +Jiaxin Wang, Fang-Wei Fu and Yadi Wei are with Chern Institute of Mathematics and LPMC, Nankai University, Tianjin +300071, China, Emails: wjiaxin@mail.nankai.edu.cn, fwfu@nankai.edu.cn, wydecho@mail.nankai.edu.cn. +†This research is supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0704703 +and 2022YFA1005001), the National Natural Science Foundation of China (Grant Nos. 12141108, 61971243, 12226336), the +Natural Science Foundation of Tianjin (20JCZDJC00610), the Fundamental Research Funds for the Central Universities of China +(Nankai University), and the Nankai Zhide Foundation. +January 3, 2023 +DRAFT + +2 +I. INTRODUCTION +Boolean bent functions were introduced by Rothaus [21] and were generalized to p-ary bent +functions by Kumar, Scholtz and Welch [15], where p is an arbitrary prime. Due to applications +of p-ary bent functions in cryptography, coding theory, sequence and combinatorics, they have +been extensively studied. We refer to surveys [5], [17] and a book [19] on p-ary bent functions +and their generalizations such as vectorial bent functions and generalized bent functions. +In [10], C¸ es¸melio˘glu et al. introduced vectorial dual-bent functions, which is a special class +of vectorial bent functions. In [7], [8], [22], vectorial dual-bent functions were used to construct +partial difference sets. In particular, Wang and Fu [22] showed that for certain vectorial dual-bent +functions F : V (p) +n +→ V (p) +s +(where V (p) +n +is an n-dimensional vector space over the prime field +Fp), the preimage set of any subset of V (p) +s +for F forms a partial difference set. +Very recently, bent partitions of V (p) +n +were introduced [4], [18], which are quite powerful in +constructing bent functions, vectorial bent functions and generalized bent functions. The well- +known partial spreads is a class of bent partitions. In [18], Meidl and Pirsic for the first time +presented two classes of bent partitions for p = 2 different from partial spreads. In [4], Anbar and +Meidl generalized the contributions in [18] to the case of p being odd and gave the corresponding +two classes of bent partitions for odd p. In [3], Anbar, Kalaycı and Meidl presented more bent +partitions Γ1, Γ2, Γ• +1, Γ• +2, Θ1, Θ2 from (pre)semifields, including the bent partitions given in [4], +[18]. In [2], Anbar, Kalaycı and Meidl showed that any union of elements in the bent partition +given in [4], [18] forms a partial difference set. In terms of constructing partial difference sets, +certain vectorial dual-bent functions and certain bent partitions seem to play the same role. +Therefore, it is interesting to investigate the relations between vectorial dual-bent functions +and bent partitions. In this paper, we show that by using certain vectorial dual-bent functions +(called vectorial dual-bent functions satisfying Condition A), we can construct bent partitions +of V (p) +n +with certain properties (called bent partitions satisfying Condition C) for any prime +p. Particularly, when p is an odd prime, we prove that bent partitions of V (p) +n +with Condition +C one-to-one correspond to vectorial dual-bent functions satisfying Condition A. In terms of +vectorial dual-bent functions, we provide an alternative proof that Γ1, Γ2, Γ• +1, Γ• +2, Θ1, Θ2 given +in [3] are bent partitions. We provide a secondary construction of vectorial dual-bent functions, +which can be used to generate more bent partitions. We prove that any ternary weakly regular +bent function f : V (3) +n +→ F3 (n even) of 2-form can generate a bent partition. In the special case +January 3, 2023 +DRAFT + +3 +that f is weakly regular but not regular, the generated bent partition by f is not coming from +a normal bent partition, which answers an open problem proposed in [4]. By using vectorial +dual-bent functions as the link between bent partitions and partial difference sets, we give a +sufficient condition on constructing partial difference sets from bent partitions. When p is an +odd prime, we provide a characterization of bent partitions satisfying Condition C in terms of +partial difference sets. +The rest of the paper is organized as follows. In Section II, we state some needed results on +vectorial dual-bent functions and bent partitions. In Section III, we present relations between +certain bent partitions and certain vectorial dual-bent functions. In Section IV, we give a sec- +ondary construction of vectorial dual-bent functions, which can be used to generate more bent +partitions. In Section V, we present relations between certain bent partitions and certain partial +difference sets. In Section VI, we make a conclusion. +II. PRELIMINARIES +In this section, we state some basic results on vectorial dual-bent functions and bent partitions. +First, we fix some notations used throughout this paper. +• p is a prime. +• ζp = e +2π√−1 +p +is a complex primitive p-th root of unity. Note that ζ2 = −1. +• Fpn is the finite field with pn elements. +• Fn +p is the vector space of the n-tuples over Fp. +• V (p) +n +is an n-dimensional vector space over Fp. +• ⟨·⟩n denotes a (non-degenerate) inner product of V (p) +n . In this paper, when V (p) +n += Fpn, +let ⟨a, b⟩n = Trn +1(ab), where a, b ∈ Fpn, Trn +k(·) denotes the trace function from Fpn to +Fpk, k | n; when V (p) +n += Fn +p, let ⟨a, b⟩n = a · b = �n +i=1 aibi, where a = (a1, . . . , an), b = +(b1, . . . , bn) ∈ Fn +p; when V (p) +n += V (p) +n1 ×· · ·×V (p) +nm (n = �m +i=1 ni), let ⟨a, b⟩n = �m +i=1⟨ai, bi⟩ni, +where a = (a1, . . . , am), b = (b1, . . . , bm) ∈ V (p) +n . +• For any set A ⊆ V (p) +n +and u ∈ V (p) +n , let χu(A) = � +x∈A χu(x), where χu denotes the +character χu(x) = ζ⟨u,x⟩n +p +. +A. Vectorial dual-bent functions +A function F : V (p) +n +→ V (p) +s +is called a vectorial p-ary function, or simply p-ary function +when s = 1. The Walsh transform of a p-ary function f : V (p) +n +→ Fp is the complex valued +January 3, 2023 +DRAFT + +4 +function defined by +Wf(a) = +� +x∈V (p) +n +ζf(x)−⟨a,x⟩n +p +, a ∈ V (p) +n . +(1) +A p-ary function f : V (p) +n +→ Fp is called bent if |Wf(a)| = p +n +2 for all a ∈ V (p) +n . Note that +when f is a Boolean bent function, that is, p = 2, then n must be even since in this case, Wf is +an integer valued function. A vectorial p-ary function F : V (p) +n +→ V (p) +s +is called vectorial bent +if all component functions Fc : V (p) +n +→ Fp, c ∈ V (p) +s +\{0} defined as Fc(x) = ⟨c, F(x)⟩s are bent. +It is known that if F : V (p) +n +→ V (p) +s +is vectorial bent, then s ≤ n +2 if p = 2, and s ≤ n if p is +an odd prime. If f : V (p) +n +→ Fp is bent, then so are cf, c ∈ F∗ +p, that is, any p-ary bent function +is vectorial bent. For F : V (p) +n +→ V (p) +s +, the vectorial bentness of F is independent of the inner +products of V (p) +n +and V (p) +s +. The Walsh transform of a p-ary bent function f : V (p) +n +→ Fp satisfies +that for any a ∈ V (p) +n , when p = 2, we have +Wf(a) = 2 +n +2 (−1)f∗(a), +(2) +and when p is an odd prime, we have +Wf(a) = + + + +±p +n +2 ζf∗(a) +p +if p ≡ 1 (mod 4) or n is even, +± +√ +−1p +n +2 ζf∗(a) +p +if p ≡ 3 (mod 4) and n is odd, +(3) +where f ∗ is a function from V (p) +n +to Fp, called the dual of f. A p-ary bent function f : V (p) +n +→ Fp +is called weakly regular if Wf(a) = εfp +n +2 ζf∗(a) +p +, where εf is a constant independent of a, +otherwise f is called non-weakly regular. In particular, if εf = 1, f is called regular. The (non- +)weakly regularity of f is independent of the inner product of V (p) +n +and if f is weakly regular, +εf is independent of the inner product of V (p) +n . By (2), all Boolean bent functions are regular. +If f is a p-ary weakly regular bent function, then the dual f ∗ of f is also weakly regular bent +with (f ∗)∗(x) = f(−x) (see [9]). +In 2018, C¸ es¸melio˘glu et al. [10] introduced vectorial dual-bent functions. +Definition 1. A vectorial p-ary bent function F : V (p) +n +→ V (p) +s +is called vectorial dual-bent +if there exists a vectorial bent function G : V (p) +n +→ V (p) +s +such that (Fc)∗ = Gσ(c) for any +c ∈ V (p) +s +\{0}, where (Fc)∗ is the dual of the component function ⟨c, F(x)⟩s and σ is some +permutation over V (p) +s +\{0}. The vectorial bent function G is called a vectorial dual of F and +denoted by F ∗. +January 3, 2023 +DRAFT + +5 +It is known in [10] that the property of being vectorial dual-bent is independent of the inner +products of V (p) +n +and V (p) +s +. Note that for a vectorial dual-bent function, its vectorial dual is not +unique since being vectorial bent and vectorial dual-bent for a function is a property of the +vector space consisting of all component functions (see Remark 1 of [10]). For example, if a +p-ary function f (seen as a vectorial function into V (p) +1 +, p odd) is vectorial dual-bent under any +fixed inner product, then its dual f ∗ is unique, but its vectorial dual is not unique since for any +c ∈ F∗ +p, cf ∗ is a vectorial dual of f. A p-ary function f : V (p) +n +→ Fp is called an l-form if +f(ax) = alf(x) for any a ∈ F∗ +p and x ∈ V (p) +n , where 1 ≤ l ≤ p − 1 is an integer. By the results +in [7], [22], we have the following proposition. +Proposition 1 ( [7], [22]). A p-ary function f with f(0) = 0 is a weakly regular vectorial dual- +bent function if and only if f is a weakly regular bent function of l-form with gcd(l−1, p−1) = 1. +In particular, a p-ary function f is a weakly regular vectorial dual-bent function with (cf)∗ = cf ∗ +for any c ∈ F∗ +p if and only if f is a weakly regular bent function of (p − 1)-form. +In the rest of this subsection, we recall an important class of p-ary bent functions, called +Maiorana-McFarland bent functions. +• Let f : Fpn × Fpn → Fp be defined as +f(x, y) = Trn +1(αxπ(y)) + g(y), +where α ∈ F∗ +pn, π is a permutation over Fpn and g : Fpn → Fp is an arbitrary function. +Then f is bent and is called a Maiorana-McFarland bent function. The dual f ∗ of f is +f ∗(x, y) = Trn +1(−π−1(α−1x)y) + g(π−1(α−1x)). +(4) +All Maiorana-McFarland bent functions are regular (see [15]). +B. Bent partitions +Very recently, the concept of bent partitions of V (p) +n +were introduced [4], [18]. +Definition 2. Let n be an even positive integer, K be a positive integer divisible by p. +• Let Γ = {A1, . . . , AK} be a partition of V (p) +n . Assume that every function f for which every +i ∈ Fp has exactly K +p of sets Aj in Γ in its preimage, is a p-ary bent function. Then Γ is +called a bent partition of V (p) +n +of depth K and every such bent function f is called a bent +function constructed from bent partition Γ. +January 3, 2023 +DRAFT + +6 +• Let Γ = {U, A1, . . . , AK} be a partition of V (p) +n . Assume that every function f with the +following properties is bent: +(1) Every c ∈ Fp has exactly K +p of the sets A1, . . . , AK in its preimage set; +(2) f(x) = c0 for all x ∈ U and some fixed c0 ∈ Fp. +Then we call Γ a normal bent partition of V (p) +n +of depth K. +Bent partitions are very powerful in constructing bent functions, vectorial bent function and +generalized bent functions. In this paper, we focus on the relations between bent partitions and +vectorial bent functions. +Proposition 2 ( [4]). Let Γ = {A1, . . . , Aps} be a bent partition of V (p) +n . Then every function +F : V (p) +n +→ V (p) +s +such that every element i ∈ V (p) +s +has the elements of exactly one of the sets +Aj, 1 ≤ j ≤ ps, in its preimage, is a vectorial bent function. +It is known that partial spreads is a class of bent partitions (for instance see Section 2 of [4]). In +[4], [18], two classes of explicit bent partitions different from partial spreads were presented. In +[3], bent partitions Γ1, Γ2, Γ• +1, Γ• +2, Θ1, Θ2 were presented from certain (pre)semifields, including +the bent partitions given in [4], [18]. We will recall bent partitions Γ1, Γ2, Γ• +1, Γ• +2, Θ1, Θ2 given +in [3]. First, we need to introduce some basic knowledge on (pre)semifields. +Definition 3. Let ◦ be a binary operation defined on (V (p) +n , +) such that +(i) x ◦ y = 0 implies x = 0 or y = 0, +(ii) (x + y) ◦ z = (x ◦ z) + (y ◦ z), (z ◦ (x + y) = (z ◦ x) + (z ◦ y), respectively), +for all x, y, z ∈ V (p) +n . Then (V (p) +n , +, ◦) is called a right (left, respectively) prequasifield. If +(V (p) +n , +, ◦) is a right and a left prequasifield, then it is called a presemifield. If (V (p) +n , +, ◦) is +a presemifield for which there is an element e ̸= 0 such that e ◦ x = x ◦ e = x for all x ∈ V (p) +n , +then it is called a semifield. +Let P = (Fpn, +, ◦) be a presemifield. Then one can obtain presemifields P • = (Fpn, +, •) +and P ⋆ = (Fpn, +, ⋆) from P, where • and ⋆ are given by +x • y = y ◦ x for all x, y ∈ Fpn, +and +Trn +1(z(x ◦ y)) = Trn +1(x(z ⋆ y)) for all x, y, z ∈ Fpn, +January 3, 2023 +DRAFT + +7 +respectively. The presemifield P ⋆ is called the dual of P. Let s be a positive divisor of n. +If x ◦ (cy) = c(x ◦ y) holds for any x, y ∈ Fpn, c ∈ Fps, then P is called right Fps-linear. +Each presemifield P = (Fpn, +, ◦) can induce a semifield P ′ = (Fpn, +, ∗) via the following +transformation: choose any α ∈ F∗ +pn and give ∗ by +(x ◦ α) ∗ (α ◦ y) = x ◦ y for all x, y ∈ Fpn. +By Lemma 2 of [3], if P is right Fps-linear, then P ′ is also right Fps-linear. The finite field Fpn +is a right Fps-linear semifield (that is, ◦ is the field multiplication). For more right Fps-linear +(pre)semifields, see Section 3 of [3]. +Now we recall bent partitions Γ1, Γ2, Γ• +1, Γ• +2, Θ1, Θ2 given in [3]. +• Let n, s be positive integers satisfying s | n and gcd(pn−1, ps+p−1) = 1. Set u = ps+p−1, +and let d be an integer with du ≡ 1 mod (pn − 1). Let P = (Fpn, +, ◦) be a (pre)semifield +such that its dual P ⋆ = (Fpn, +, ⋆) is right Fps-linear. For given x ∈ Fpn, if x = 0, then let +ηx = 0, and if x ̸= 0, then let ηx be given by x ⋆ η−1 +x += 1. +• Define +Ut = {(x, t ◦ xu) : x ∈ F∗ +pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn}. +Let i0 ∈ Fps be an arbitrary element. Define +Γ1 = {Ai, i ∈ Fps}, +(5) +where Ai = � +t∈Fpn:Trn +s (t)=i Ut if i ̸= i0, Ai0 = � +t∈Fpn:Trn +s (t)=i0 Ut +� U. +• Define +U• +t = {(x, xu ◦ t) : x ∈ F∗ +pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn}. +Let i0 ∈ Fps be an arbitrary element. Define +Γ• +1 = {A• +i , i ∈ Fps}, +(6) +where A• +i = � +t∈Fpn:Trn +s (t)=i U• +t if i ̸= i0, A• +i0 = � +t∈Fpn:Trn +s (t)=i0 U• +t +� U. +• Define +Vt = {(t ◦ xd, x) : x ∈ F∗ +pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn}. +Let i0 ∈ Fps be an arbitrary element. Define +Γ2 = {Bi, i ∈ Fps}, +(7) +January 3, 2023 +DRAFT + +8 +where Bi = � +t∈Fpn:Trn +s (t)=i Vi if i ̸= i0, Bi0 = � +t∈Fpn:Trn +s (t)=i0 Vi +� V . +• Define +V • +t = {(xd ◦ t, x) : x ∈ F∗ +pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn}. +Let i0 ∈ Fps be an arbitrary element. Define +Γ• +2 = {B• +i , i ∈ Fps}, +(8) +where B• +i = � +t∈Fpn:Trn +s (t)=i V • +i if i ̸= i0, Bi0 = � +t∈Fpn:Trn +s (t)=i0 V • +i +� V . +• Define +Xt = {(tηd +x, x) : x ∈ F∗ +pn} if t ∈ Fpn, and X = {(x, 0) : x ∈ Fpn}. +Let i0 ∈ Fps be an arbitrary element. Define +Θ1 = {Si, i ∈ Fps}, +(9) +where Si = � +t∈Fpn:Trn +s (t)=i Xt if i ̸= i0, Si0 = � +t∈Fpn:Trn +s (t)=i0 Xt +� X. +• Define +Yt = {(x, tηu +x) : x ∈ F∗ +pn} if t ∈ Fpn, and Y = {(0, y) : y ∈ Fpn}. +Let i0 ∈ Fps be an arbitrary element. Define +Θ2 = {Ti, i ∈ Fps}, +(10) +where Ti = � +t∈Fpn:Trn +s (t)=i Yt if i ̸= i0, Ti0 = � +t∈Fpn:Trn +s (t)=i0 Yt +� Y . +Remark 1. In the finite field case, that is, ◦ and ⋆ are the field multiplication, then Γ1 = Γ• +1 = +Θ2, Γ2 = Γ• +2 = Θ1, which reduces to the two classes bent partitions given in [4], [18]. +Remark 2. In fact, for the parameter u in the bent partitions Γ1, Γ• +1, Γ2, Γ• +2, Θ1, Θ2, one can +consider the more general form u ≡ pj mod (ps − 1) by the proofs in [3]. +III. RELATIONS BETWEEN CERTAIN BENT PARTITIONS AND CERTAIN VECTORIAL +DUAL-BENT FUNCTIONS +Throughout this section, we consider bent partitions and vectorial dual-bent functions satisfy- +ing the following conditions, respectively. +Condition C: Let n be an even positive integer, s be a positive integer with s ≤ +n +2. Let +Γ = {Ai, i ∈ V (p) +s +} be a bent partition of V (p) +n +which satisfies that F∗ +pAi = Ai for all i ∈ V (p) +s +January 3, 2023 +DRAFT + +9 +and all bent functions f constructed from Γ are regular (that is, εf = 1) or weakly regular but +not regular (that is, εf = −1). We denote by ε = εf for all bent functions f constructed from Γ. +Condition A: Let n be an even positive integer, s be a positive integer with s ≤ +n +2. Let +F : V (p) +n +→ V (p) +s +be a vectorial dual-bent function with (Fc)∗ = (F ∗)c, c ∈ V (p) +s +\{0} for a +vectorial dual F ∗ of F and all component functions being regular or weakly regular but not +regular, that is, εFc, c ∈ V (p) +s +\{0} are all the same. We denote by ε = εFc for all c ∈ V (p) +s +\{0}. +It is easy to see that the known bent partitions, including partial spreads and Γi, Γ• +i , Θi, i = 1, 2 +defined by (5)-(10), all satisfy F∗ +pAi = Ai, i ∈ V (p) +s +. By the results in [3], [11], [14], all bent +functions constructed from partial spreads and Γi, Γ• +i , Θi, i = 1, 2 are regular. Thus, the known +bent partitions all satisfy Condition C with ε = 1. Moreover, when p = 2, it is easy to see that +Condition C is trivial for any bent partition of V (2) +n +of depth powers of 2. In this section, we +present relations between bent partitions satisfying Condition C and vectorial dual-bent functions +satisfying Condition A. First, we need a lemma. +Lemma 1. Let n be an even positive integer, s be a positive integer with s ≤ n +2, and F : V (p) +n +→ +V (p) +s +. Then the following two statements are equivalent. +(1) F is a vectorial dual-bent function satisfying Condition A. +(2) There exist pairwise disjoint sets Wi ⊆ V (p) +n , i ∈ V (p) +s +with � +i∈V (p) +s +Wi = V (p) +n +and a +constant ε ∈ {±1} (ε = 1 if p = 2) such that for any nonempty set I ⊆ V (p) +s +, +χu(DF,I) = pn−sδ{0}(u)|I| + εp +n +2 −s(psδWI(u) − |I|), u ∈ V (p) +n , +(11) +where DF,I = {x ∈ V (p) +n +: F(x) ∈ I}, WI = � +i∈I Wi, and for any set S, δS denotes the +indicator function of S. +Proof. By Proposition 3 of [22] (Note that although Proposition 3 of [22] only considers the +case of p being odd, p = 2 also holds), for any u ∈ V (p) +n , i ∈ V (p) +s +we have +χu(DF,i) = pn−sδ{0}(u) + p−s +� +c∈V (p) +s +\{0} +WFc(−u)ζ−⟨c,i⟩s +p +, +(12) +where DF,i = {x ∈ V (p) +n +: F(x) = i}. +January 3, 2023 +DRAFT + +10 +(1) ⇒ (2): If F is a vectorial dual-bent function satisfying Condition A (Note that if p = 2, +then ε = 1 since all Boolean bent functions are regular), then +χu(DF,i) = pn−sδ{0}(u) + εp +n +2 −s +� +c∈V (p) +s +\{0} +ζ(Fc)∗(−u)−⟨c,i⟩s +p += pn−sδ{0}(u) + εp +n +2 −s +� +c∈V (p) +s +\{0} +ζ(F ∗)c(−u)−⟨c,i⟩s +p += pn−sδ{0}(u) + εp +n +2 −s +� +c∈V (p) +s +\{0} +ζ⟨c,F ∗(−u)−i⟩s +p += pn−sδ{0}(u) + εp +n +2 −s(psδ{0}(F ∗(−u) − i) − 1). +(13) +Define Wi = {x ∈ V (p) +n +: F ∗(−x) = i}, i ∈ V (p) +s +. Then Wi +� Wj = ∅ for any i ̸= j and +� +i∈V (p) +s +Wi = V (p) +n . By (13), for any nonempty set I ⊆ V (p) +s +and u ∈ V (p) +n +we have +χu(DF,I) = +� +i∈I +χu(DF,i) += +� +i∈I +pn−sδ{0}(u) + εp +n +2 −s(psδWi(u) − 1) += pn−sδ{0}(u)|I| + εp +n +2 −s(psδWI(u) − |I|). +(2) ⇒ (1): By the assumption on Wi, i ∈ V (p) +s +, we have that for any x ∈ V (p) +n , there exists a +unique i ∈ V (p) +s +such that x ∈ Wi. Define G : V (p) +n +→ V (p) +s +by +G(x) = i if − x ∈ Wi. +By the definition of G, for any u ∈ V (p) +n , i ∈ V (p) +s +we have +χu(DF,i) = pn−sδ{0}(u) + εp +n +2 −s(psδ{0}(G(−u) − i) − 1). +(14) +For any c ∈ V (p) +s +\{0}, +WFc(−u) = +� +x∈V (p) +n +ζ⟨c,F (x)⟩s+⟨u,x⟩n +p += +� +i∈V (p) +s +� +x∈V (p) +n +:F (x)=i +ζ⟨c,i⟩s+⟨u,x⟩n +p +January 3, 2023 +DRAFT + +11 += +� +i∈V (p) +s +ζ⟨c,i⟩s +p +χu(DF,i) += +� +i∈V (p) +s +\{G(−u)} +ζ⟨c,i⟩s +p +(pn−sδ{0}(u) − εp +n +2 −s) + (pn−sδ{0}(u) + εp +n +2 −s(ps − 1))ζ⟨c,G(−u)⟩s +p += (pn−sδ{0}(u) − εp +n +2 −s) +� +i∈V (p) +s +ζ⟨c,i⟩s +p ++ εp +n +2 ζGc(−u) +p += εp +n +2 ζGc(−u) +p +. +(15) +By (15) and the assumption that ε = 1 if p = 2, F is a vectorial bent function with εFc = ε +and (Fc)∗ = Gc for any c ∈ V (p) +s +\{0}. Since Fc is a weakly regular bent function, we have that +Gc = (Fc)∗ is also weakly regular bent and G is vectorial bent. Thus, F is vectorial dual-bent +with εFc = ε and (Fc)∗ = (F ∗)c for any c ∈ V (p) +s +\{0}, where F ∗ = G, that is, F satisfies +Condition A. +Based on Lemma 1, we have the following theorem. +Theorem 1. Let F : V (p) +n +→ V (p) +s +be a vectorial dual-bent function satisfying Condition A. +Define +Ai = DF,i, i ∈ V (p) +s +, +where DF,i = {x ∈ V (p) +n +: F(x) = i}. Then Γ = {Ai, i ∈ V (p) +s +} is a bent partition satisfying +Condition C. +Proof. By Lemma 1 and its proof, for any i ∈ V (p) +s +and u ∈ V (p) +n , +χu(Ai) = χu(DF,i) = pn−sδ{0}(u) + εp +n +2 −s(psδ{0}(F ∗(−u) − i) − 1), +where ε = 1 if p = 2 since all Boolean bent functions are regular. For any union S of ps−1 sets +of {Ai : i ∈ V (p) +s +}, we have +χu(S) = + + + +pn−1δ{0}(u) + εp +n +2 −1(p − 1), if AF ∗(−u) ⊆ S, +pn−1δ{0}(u) − εp +n +2 −1, if AF ∗(−u) ⊈ S. +(16) +Let f be an arbitrary function such that for every j ∈ Fp, there are exactly ps−1 sets Ai in Γ in +its preimage. Define g(u) = f(AF ∗(−u)). Note that g is a p-ary function from V (p) +n +to Fp. Then +by (16), we have +χu(Df,j) = + + + +pn−1δ{0}(u) + εp +n +2 −1(p − 1), if j = g(u), +pn−1δ{0}(u) − εp +n +2 −1, if j ̸= g(u). +(17) +January 3, 2023 +DRAFT + +12 +By (17), for any u ∈ V (p) +n +we have +Wf(−u) = +� +x∈V (p) +n +ζf(x)+⟨u,x⟩n +p += +� +j∈Fp +ζj +p +� +x∈V (p) +n +:f(x)=j +ζ⟨u,x⟩n +p += +� +j∈Fp +ζj +pχu(Df,j) += +� +j∈Fp\{g(u)} +ζj +p(pn−1δ{0}(u) − εp +n +2 −1) + ζg(u) +p +(pn−1δ{0}(u) + εp +n +2 −1(p − 1)) += (pn−1δ{0}(u) − εp +n +2 −1) +� +j∈Fp +ζj +p + εp +n +2 ζg(u) +p += εp +n +2 ζg(u) +p +. +(18) +By (18) and ε = 1 if p = 2, f is a weakly regular bent function with εf = ε and f ∗(x) = g(−x). +Let +Wj = {u ∈ V (p) +n +: g(u) = j}, j ∈ Fp, +then Wj, j ∈ Fp are pairwise disjoint and � +j∈Fp Wj = V (p) +n . By (17), for any u ∈ V (p) +n +and +nonempty set J ⊆ Fp we have +χu(Df,J) = pn−1δ{0}(u)|J| + εp +n +2 −1(pδWJ(u) − |J|), +(19) +where Df,J = {x ∈ V (p) +n +: f(x) ∈ J}, WJ = � +j∈J Wj. By (19) and Lemma 1, f is vectorial dual- +bent with (cf)∗ = c(βf ∗), c ∈ F∗ +p for some β ∈ F∗ +p (since all vectorial duals of f are cf ∗, c ∈ F∗ +p). +Let c = 1, we obtain β = 1, that is, f is vectorial dual-bent with (cf)∗ = cf ∗, c ∈ F∗ +p. By +Proposition 1, f is a (p − 1)-form. In particular, Fc is a (p − 1)-form for any c ∈ F∗ +ps, which +yields that F(αx) = F(x) for any α ∈ F∗ +p and F∗ +pAi = Ai, i ∈ V (p) +s +. Hence, Γ is a bent partition +satisfying Condition C. +By Theorem 1, we have the following corollary. +Corollary 1. Let n be an even positive integer. Let f : V (p) +n +→ Fp be a weakly regular bent +function of (p − 1)-form, then {Df,j, j ∈ Fp} is a bent partition of V (p) +n , where Df,j = {x ∈ +V (p) +n +: f(x) = j}. +Proof. By Proposition 1, f is a weakly regular vectorial dual-bent function with (cf)∗ = cf ∗. +Since n is even, εcf = εf for all c ∈ F∗ +p (see Theorem 1 of [6]). Then by Theorem 1, the +conclusion holds. +January 3, 2023 +DRAFT + +13 +A bent partition Γ = {A1, . . . , AK} of depth K is called coming from a normal bent partition +if there is U ⊆ Ai for some i such that {U, A1, . . . , Ai−1, Ai\U, Ai+1, . . . , AK} is a normal bent +partition. In [4], there is an open problem: Do bent partitions exist which are not coming from +a normal bent partition of depth K > 2? In the following, we provide a positive answer for +this open problem. By the definition of l-form, a ternary function f is a 2-form if and only if +f(x) = f(−x). Let n be an even positive integer. If f : V (3) +n +→ F3 with f(x) = f(−x) is a +ternary weakly regular but not regular bent function (that is, εf = −1), then by Corollary 1, +{Df,0, Df,1, Df,2} is a bent partition of depth 3. There exist such ternary bent functions f, for +instance see [7], [17]: +• +f(x) = Trn +1(αx2), x ∈ F3n, +(20) +where n is even, α ∈ F∗ +3n is a square element if 4 | n, and α ∈ F∗ +3n is a non-square element +if 4 ∤ n; +• +f(x) = Trn +1(ax +3n−1 +4 ++3m+1), x ∈ F3n, +(21) +where n = 2m, m odd, a = α +3m+1 +4 +for a primitive element α of F3n; +• +f(x) = Trn +1(α(x33k+32k−3k+1 + x2)), x ∈ F3n, +(22) +where n = 4k for an arbitrary positive integer k, α ∈ F∗ +32k; +• +f(x, y, z) = (g(x) − h(x))z2 + yz + g(x), (x, y, z) ∈ F3n × F3 × F3, +(23) +where n is even, g and h are distinct bent functions constructed by (20) or (22) if 4 | n, g +and h are distinct bent functions constructed by (20) or (21) if 4 ∤ n. +For any ternary weakly regular but not regular bent function f : V (3) +n +→ F3 (n even) with +f(x) = f(−x), the corresponding bent partition {Df,0, Df,1, Df,2} is not coming from a normal +bent partition by Theorem 4 (i) of [4], which provides a positive answer for the above open +problem proposed in [4]. We first recall Theorem 4 (i) of [4] and then give an example to +illustrate this fact. +Lemma 2 ( [4]). Let Γ = {U, A1, . . . , AK} be a normal bent partition of V (p) +n . Then |U| = p +n +2 +and |Aj| = pn−p +n +2 +K +, 1 ≤ j ≤ K. +January 3, 2023 +DRAFT + +14 +Example 1. Let f : F34 → F3 be defined by f(x) = Tr4 +1(x2). Then f is ternary weakly regular +bent with f(x) = f(−x) and εf = −1. By Corollary 1, {Df,0, Df,1, Df,2} is a bent partition. +By the result of Nyberg [20], for any weakly regular p-ary bent function g : V (p) +n +→ Fp with +n even, we have {|Dg,i|, i ∈ Fp} = {pn−1 + εfp +n +2 −1(p − 1), pn−1 − εfp +n +2 −1}. For our example, +|Df,0| = 21, |Df,1| = |Df,2| = 30. By Lemma 2, it is easy to see that {Df,0, Df,1, Df,2} can not +be from a normal bent partition. +In the following, based on Theorem 1, we give an alternative proof that Γi, Γ• +i , Θi, i = 1, 2 +defined by (5)-(10) given in [3] are bent partitions. +Let s, n be positive integers with s | n, u be an integer with u ≡ pj0 mod (ps − 1) for some +0 ≤ j0 ≤ s − 1 and gcd(u, pn − 1) = 1, and let d be an integer with du ≡ 1 mod (pn − 1). Let +P = (Fpn, +, ◦) be a (pre)semifield such that its dual P ⋆ = (Fpn, +, ⋆) is right Fps-linear. For +given x ∈ Fpn, if x = 0, then let ηx = 0, and if x ̸= 0, then let ηx be given by x ⋆ η−1 +x += 1 (For +convention we set η−1 +0 += ηpn−2 +0 += 0). For any α ∈ F∗ +pn and i0 ∈ Fps, define +F(x, y) = Trn +s (αa(x, y)) + i0(1 − xpn−1), (x, y) ∈ Fpn × Fpn, +(24) +where for given (x, y), if x = 0, then a(x, y) = 0, and if x ̸= 0, then a(x, y) is given by +a(x, y) ◦ xu = y, and +F •(x, y) = Trn +s (αa•(x, y)) + i0(1 − xpn−1), (x, y) ∈ Fpn × Fpn, +(25) +where for given (x, y), if x = 0, then a•(x, y) = 0, and if x ̸= 0, then a•(x, y) is given by +xu ◦ a•(x, y) = y, and +G(x, y) = Trn +s (αb(x, y)) + i0(1 − ypn−1), (x, y) ∈ Fpn × Fpn, +(26) +where for given (x, y), if y = 0, then b(x, y) = 0, and if y ̸= 0, then b(x, y) is given by +b(x, y) ◦ yd = x, and +G•(x, y) = Trn +s (αb•(x, y)) + i0(1 − ypn−1), (x, y) ∈ Fpn × Fpn, +(27) +where for given (x, y), if y = 0, then b•(x, y) = 0, and if y ̸= 0, then b•(x, y) is given by +yd ◦ b•(x, y) = x, and +M(x, y) = Trn +s (αη−u +x y) + i0(1 − xpn−1), (x, y) ∈ Fpn × Fpn, +(28) +and +N(x, y) = Trn +s (αxη−d +y ) + i0(1 − ypn−1), (x, y) ∈ Fpn × Fpn. +(29) +January 3, 2023 +DRAFT + +15 +Proposition 3. Let F, F •, G, G•, M, N be defined as above. Then they are all vectorial dual-bent +functions satisfying Condition A with ε = 1. +Proof. We only prove the result for F and M since the proofs for F •, G, G• are similar to the +proof for F, and the proof for N is similar to the proof for M. +• For F: +For any c ∈ F∗ +ps, we have +Fc(x, y) = Trn +1(cαa(x, y)) + Trs +1(ci0)(1 − xpn−1). +For any c ∈ F∗ +ps and (w, v) ∈ Fpn × Fpn, we have +WFcu(w, v) = +� +x∈F∗ +pn +� +y∈Fpn +ζTrn +1 (cuαa(x,y))−Trn +1 (wx+vy) +p ++ ζTrs +1(cui0) +p +� +y∈Fpn +ζ−Trn +1 (vy) +p += +� +x∈Fpn +� +y∈Fpn +ζTrn +1 (cuαa(x,y))−Trn +1 (wx+vy) +p ++ pn(ζTrs +1(cui0) +p +− 1)δ{0}(v) += Wh(w, v) + pn(ζTrs +1(cui0) +p +− 1)δ{0}(v), +where h(x, y) = Trn +1(cuαa(x, y)). For given x ∈ Fpn, if x = 0, then let λx = 0, and if +x ̸= 0, then let λx be given by x ⋆ λ−1 +x += α (For convention we set λ−1 +0 += λpn−2 +0 += 0). Define +ρ(x) = λ−d +x . Then ρ is a permutation over Fpn. For any x ∈ F∗ +pn, set z = ρ−1(c−1x). Then +λ−d +z += ρ(z) = c−1x. By du ≡ 1 mod (pn − 1), we have λ−1 +z += c−uxu. Since z ̸= 0 and P ⋆ is +right Fps-linear, we have α = z ⋆ λ−1 +z += z ⋆ (c−uxu) = c−u(z ⋆ xu), that is, ρ−1(c−1x) ⋆ xu = +αcu for any x ̸= 0. Thus, when x ̸= 0, Trn +1(cuαa(x, y)) = Trn +1(a(x, y)(ρ−1(c−1x) ⋆ xu)) = +Trn +1(ρ−1(c−1x)(a(x, y) ◦ xu)) = Trn +1(ρ−1(c−1x)y). When x = 0, by a(0, y) = ρ−1(0) = 0, we +have Trn +1(cuαa(x, y)) = Trn +1(ρ−1(c−1x)y) = 0. Hence, h(x, y) = Trn +1(ρ−1(c−1x)y), which is a +Maiorana-McFarland bent function and by (4), +Wh(w, v) = pnζ−Trn +1 (cwρ(v)) +p +. +Therefore, for any c ∈ F∗ +ps, +WFcu(w, v) = pn(ζ−Trn +1 (cwρ(v)) +p ++ (ζTrs +1(cui0) +p +− 1)δ{0}(v)) += pnζ−Trn +1 (cwρ(v))+Trs +1(cui0)(1−vpn−1) +p +. +(30) +By (30) and ud ≡ 1 mod (pn − 1), we have that for any c ∈ F∗ +ps, Fc is a regular bent function +with +(Fc)∗(x, y) = −Trn +1(cdxρ(y)) + Trs +1(ci0)(1 − ypn−1) += −Trn +1(cdpj0(xρ(y))pj0) + Trs +1(ci0)(1 − ypn−1). +January 3, 2023 +DRAFT + +16 +Since u ≡ pj0 mod (ps − 1) and du ≡ 1 mod (pn − 1), we have d ≡ ps−j0 mod (ps − 1) and +thus (cd)pj0 = c for any c ∈ F∗ +ps. Therefore, F is a vectorial bent function with εFc = 1 and +(Fc)∗ = Hc for all c ∈ F∗ +ps, where +H(x, y) = −Trn +s ((xρ(y))pj0) + i0(1 − ypn−1) = −(Trn +s (xρ(y)))pj0 + i0(1 − ypn−1). +Since Fc is regular bent, we have that (Fc)∗ = Hc is also regular bent and H is vectorial bent. +Thus, F is vectorial dual-bent with εFc = 1 and (Fc)∗ = (F ∗)c for all c ∈ F∗ +ps, where F ∗ = H, +that is, F satisfies Condition A. +• For M: +For any c ∈ F∗ +ps, +Mc(x, y) = Trn +1(cαη−u +x y) + Trs +1(ci0)(1 − xpn−1). +Similar to the discussion for F, for any c ∈ F∗ +ps and (w, v) ∈ Fpn × Fpn we have +WMc(w, v) = Wg(w, v) + pn(ζTrs +1(ci0) +p +− 1)δ{0}(v), +where g(x, y) = Trn +1(cαη−u +x y). Let π(x) = η−u +x , then π is a permutation over Fpn. Since g is a +Maiorana-McFarland bent function, then by (4), +Wg(w, v) = pnζ−Trn +1 (wπ−1(c−1α−1v)) +p +. +For any given y ∈ F∗ +pn, set π−1(c−1α−1y) = z. Then c−1α−1y = π(z) = η−u +z . By ud ≡ +1 mod (pn − 1), we have η−1 +z += c−dα−dyd. Since z ̸= 0 and P ⋆ is right Fps-linear, we have +1 = z ⋆ η−1 +z += z ⋆ (c−dα−dyd) = c−d(z ⋆ α−dyd), that is, π−1(c−1α−1y) ⋆ α−dyd = cd. For given +(x, y) ∈ Fpn × Fpn, if y = 0, then let r(x, y) = 0, and if y ̸= 0, then let r(x, y) be given by +r(x, y)◦α−dyd = x. When v ̸= 0, we have Trn +1(wπ−1(c−1α−1v)) = Trn +1(π−1(c−1α−1v)(r(w, v)◦ +α−dvd)) = Trn +1(r(w, v)(π−1(c−1α−1v) ⋆ α−dvd)) = Trn +1(cdr(w, v)) = Trn +1(c(r(w, v))pj0). When +v = 0, since π−1(0) = 0 and r(w, 0) = 0, we have Trn +1(wπ−1(c−1α−1v)) = Trn +1(c(r(w, v))pj0) = +0. Thus, −Trn +1(wπ−1(c−1α−1v)) = −Trn +1(c(r(w, v))pj0) and +WMc(w, v) = pn(ζ−Trn +1 (c(r(w,v))pj0 ) +p ++ (ζTrs +1(ci0) +p +− 1)δ{0}(v)) += pnζ−Trn +1 (c(r(w,v))pj0 )+Trs +1(ci0)(1−vpn−1) +p +, +which implies that M is a vectorial dual-bent function with εMc = 1 and (Mc)∗ = (M∗)c for all +c ∈ F∗ +ps, where +M∗(x, y) = −Trn +s ((r(x, y))pj0) + i0(1 − ypn−1), +January 3, 2023 +DRAFT + +17 +that is, M satisfies Condition A. +By Theorem 1 and Proposition 3, we have that {DF,i, i ∈ Fps}, {DF •,i, i ∈ Fps}, {DG,i, i ∈ +Fps}, {DG•,i, i ∈ Fps}, {DM,i, i ∈ Fps} and {DN,i, i ∈ Fps} are bent partitions. It is easy to +verify that +DF,i = + + + + + + + + + + + +� +t∈Fpn:T rn +s (αt)=i +Ut, if i ̸= i0, +� +t∈Fpn:T rn +s (αt)=i0 +Ut +� +U, if i = i0, +, DF •,i = + + + + + + + + + + + +� +t∈Fpn:T rn +s (αt)=i +U • +t , if i ̸= i0, +� +t∈Fpn:T rn +s (αt)=i0 +U • +t +� +U, if i = i0, +, +DG,i = + + + + + + + + + + + +� +t∈Fpn:T rn +s (αt)=i +Vt, if i ̸= i0, +� +t∈Fpn:T rn +s (αt)=i0 +Vt +� +V, if i = i0, +, DG•,i = + + + + + + + + + + + +� +t∈Fpn:T rn +s (αt)=i +V • +t , if i ̸= i0, +� +t∈Fpn:T rn +s (αt)=i0 +V • +t +� +V, if i = i0, +, +DM,i = + + + + + + + + + + + +� +t∈Fpn:T rn +s (αt)=i +Xt, if i ̸= i0, +� +t∈Fpn:T rn +s (αt)=i0 +Xt +� +X, if i = i0, +, DN,i = + + + + + + + + + + + +� +t∈Fpn:T rn +s (αt)=i +Yt, if i ̸= i0, +� +t∈Fpn:T rn +s (αt)=i0 +Yt +� +Y, if i = i0, +where +Ut = {(x, t ◦ xu) : x ∈ F∗ +pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn}, +U• +t = {(x, xu ◦ t) : x ∈ F∗ +pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn}, +Vt = {(t ◦ xd, x) : x ∈ F∗ +pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn}, +V • +t = {(xd ◦ t, x) : x ∈ F∗ +pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn}, +Xt = {(tηd +x, x) : x ∈ F∗ +pn} if t ∈ Fpn, and X = {(x, 0) : x ∈ Fpn}, +Yt = {(x, tηu +x) : x ∈ F∗ +pn} if t ∈ Fpn, and Y = {(0, y) : y ∈ Fpn}. +For the above bent partitions from vectorial dual-bent functions F, F •, G, G•, M, N, by set- +ting α = 1, u = ps + p − 1 with gcd(u, pn − 1) = 1, then we can obtain bent partitions +Γ1, Γ• +1, Γ2, Γ• +2, Θ1, Θ2 defined by (5)-(10) respectively. Thus by the above analysis, we provide +an alternative derivation that Γ1, Γ• +1, Γ2, Γ• +2, Θ1, Θ2 are bent partitions. +When p is an odd prime, we show that the converse of Theorem 1 also holds. +Theorem 2. Let p be an odd prime. Let Γ = {Ai, i ∈ V (p) +s +} be a bent partition of V (p) +n +satisfying +Condition C. Define F : V (p) +n +→ V (p) +s +by +F(x) = i if x ∈ Ai. +Then F is a vectorial dual-bent function satisfying Condition A. +January 3, 2023 +DRAFT + +18 +Proof. Since F∗ +pAi = Ai for any i ∈ V (p) +s +, all bent functions constructed from Γ are (p−1)-form. +When s = 1, the conclusion follows from Proposition 1. In the following, we consider the case +of s ≥ 2. +Let f be an arbitrary bent function constructed from Γ. By Lemma 3.4 of [13], for any +u ∈ V (p) +n +and j ∈ Fp we have +χu(Df,j) = + + + +pn−1δ{0}(u) + εp +n +2 −1(p − 1), if f ∗(u) = j, +pn−1δ{0}(u) − εp +n +2 −1, if f ∗(u) ̸= j, +(31) +where Df,j = {x ∈ V (p) +n +: f(x) = j}, j ∈ Fp. For any fixed u ∈ V (p) +n , since +{χu(Df,j), j ∈ Fp} = {pn−1δ{0}(u) + εp +n +2 −1(p − 1), pn−1δ{0}(u) − εp +n +2 −1} +for any bent function f constructed from Γ, we have that for any fixed u ∈ V (p) +n , there exists a +unique G(u) ∈ V (p) +s +such that χu(Ai), i ̸= G(u) are all the same and χu(Ai) ̸= χu(AG(u)), i ̸= +G(u). Note that G is a function from V (p) +n +to V (p) +s +. Moreover by (31), for any fixed u ∈ V (p) +n +we have +χu(Ai) = + + + +pn−sδ{0}(u) + εp +n +2 −s(ps − 1), if i = G(u), +pn−sδ{0}(u) − εp +n +2 −s, if i ̸= G(u). +(32) +Define +Wi = {u ∈ V (p) +n +: G(u) = i}, i ∈ V (p) +s +. +Then obviously Wi, i ∈ V (p) +s +are pairwise disjoint and � +i∈V (p) +s +Wi = V (p) +n . By (32), for any +u ∈ V (p) +n +and nonempty set I ⊆ V (p) +s +we have +χu(DF,I) = +� +i∈I +χu(Ai) = pn−sδ{0}(u)|I| + εp +n +2 −s(psδWI(u) − |I|), +(33) +where DF,I = {x ∈ V (p) +n +: F(x) ∈ I}, WI = � +i∈I Wi. By (33) and Lemma 1, the conclusion +holds. +When p is an odd prime, from Theorems 1 and 2 we obtain a characterization of bent partitions +satisfying Condition C in terms of vectorial dual-bent functions. +Theorem 3. Let p be an odd prime. Let Γ = {Ai, i ∈ V (p) +s +} be a partition of V (p) +n , where n is +even, s ≤ n +2. Define F : V (p) +n +→ V (p) +s +as +F(x) = i if x ∈ Ai. +Then Γ is a bent partition satisfying Condition C if and only if F is a vectorial dual-bent function +satisfying Condition A. +January 3, 2023 +DRAFT + +19 +IV. CONSTRUCTING BENT PARTITIONS FROM VECTORIAL DUAL-BENT FUNCTIONS +In this section, we construct bent partitions from vectorial dual-bent functions. +The following theorem provides a secondary construction of vectorial dual-bent functions, +which can be used to generate more bent partitions. +Theorem 4. Let n, m, s be positive integers for which n is even and s ≤ n +2, s | m, s ̸= m. For +any i ∈ Fps, let F(i; x) : V (p) +n +→ Fps be a vectorial dual-bent function with ((F(i; x))c)∗ = +((F(i; x))∗)c and ε(F (i;x))c = ε for any c ∈ F∗ +ps, where (F(i; x))∗ is a vectorial dual of F(i; x) +and ε ∈ {±1} is a constant independent of i, c. Let α, β ∈ Fpm be linearly independent over Fps. +Let R be a permutation over Fpm with R(0) = 0 and T : Fps → Fps be an arbitrary function. +Define H : V (p) +n +× Fpm × Fpm → Fps as +H(x, y1, y2) = F(T rm +s (αR(y1ypm−2 +2 +)); x) + T rm +s (βR(y1ypm−2 +2 +)) + T (T rm +s (αR(y1ypm−2 +2 +))). +Then H is a vectorial dual-bent function satisfying Condition A and Γ = {Ai, i ∈ Fps} is a bent +partition satisfying Condition C, where Ai = {(x, y1, y2) ∈ V (p) +n +×Fpm ×Fpm : H(x, y1, y2) = i}. +Proof. Denote +d(y) = Trm +s (βR(y1ypm−2 +2 +)), e(y) = Trm +s ((β − α)R(y1ypm−2 +2 +)), y = (y1, y2) ∈ Fpm × Fpm. +For any c ∈ F∗ +ps and (a, b) = (a, b1, b2) ∈ V (p) +n +× Fpm × Fpm, we have +WHc(a, b) += +� +x∈V (p) +n +� +y=(y1,y2)∈Fpm×Fpm +ζT rs +1(cF (d(y)−e(y);x))+T rs +1(cd(y))+T rs +1(cT (d(y)−e(y))) +p +ζ−⟨a,x⟩n−T rm +1 (b1y1+b2y2) +p += +� +i∈Fps +� +y=(y1,y2)∈Fpm×Fpm:d(y)−e(y)=i +� +x∈V (p) +n +ζT rs +1(cF (i;x))+T rs +1(cd(y))+T rs +1(cT (i)) +p +ζ−⟨a,x⟩n−T rm +1 (b1y1+b2y2) +p += p−s � +i∈Fps +W(F (i;x))c(a)ζT rs +1(cT (i)) +p +� +y=(y1,y2)∈Fpm×Fpm +ζT rs +1(cd(y))−T rm +1 (b1y1+b2y2) +p +� +j∈Fps +ζT rs +1(cj(i−(d(y)−e(y)))) +p += p−s � +i∈Fps +W(F (i;x))c(a)ζT rs +1(cT (i)) +p +� +j∈Fps +ζT rs +1(ijc) +p +� +y=(y1,y2)∈Fpm×Fpm +ζT rs +1(c((1−j)d(y)+je(y)))−T rm +1 (b1y1+b2y2) +p +. +By Theorem 3 of [10], for any j ∈ Fps, J(j; y) = (1−j)d(y)+je(y) is a partial spread vectorial +dual-bent function with ε(J(j;y))c = 1 and ((J(j; y))c)∗ = ((1−j)d∗(y)+je∗(y))c for any c ∈ F∗ +ps, +January 3, 2023 +DRAFT + +20 +where d∗(y) = Trm +s (βR(−ypm−2 +1 +y2)), e∗(y) = Trm +s ((β − α)R(−ypm−2 +1 +y2)). Therefore, +WHc(a, b) += pm−s � +i∈Fps +W(F (i;x))c(a)ζT rs +1(cT (i)) +p +� +j∈Fps +ζT rs +1(ijc) +p +ζT rs +1(c((1−j)d∗(b)+je∗(b))) +p += pm−sζT rs +1(cd∗(b)) +p +� +i∈Fps +W(F (i;x))c(a)ζT rs +1(cT (i)) +p +� +j∈Fps +ζT rs +1(cj(i−(d∗(b)−e∗(b)))) +p += pmζT rs +1(cd∗(b)) +p +W(F (d∗(b)−e∗(b);x))c(a)ζT rs +1(cT (d∗(b)−e∗(b))) +p += εp +n +2 +mζ +((F (T rm +s (αR(−bpm−2 +1 +b2));x))c)∗(a)+T rs +1(cT rm +s (βR(−bpm−2 +1 +b2)))+T rs +1(cT (T rm +s (αR(−bpm−2 +1 +b2)))) +p += εp +n +2 +mζ((F (T rm +s (αR(−bpm−2 +1 +b2));x))∗)c(a)+T rs +1(cT rm +s (βR(−bpm−2 +1 +b2)))+T rs +1(cT (T rm +s (αR(−bpm−2 +1 +b2)))) +p +. +(34) +Note that ε = 1 if p = 2 since all Boolean bent functions are regular. By (34), H is a vectorial +bent function with (Hc)∗ = Gc and εHc = ε for any c ∈ F∗ +ps, where +G(a, b1, b2) = (F(T rm +s (αR(−bpm−2 +1 +b2)); x))∗(a) + T rm +s (βR(−bpm−2 +1 +b2)) + T (T rm +s (αR(−bpm−2 +1 +b2))). +Since Hc is weakly regular bent, we have that Gc = (Hc)∗ is also weakly regular bent and G is +vectorial bent. Thus, H is vectorial dual-bent with (Hc)∗ = (H∗)c and εHc = ε for any c ∈ F∗ +ps, +where H∗ = G, that is, H satisfies Condition A. By Theorem 1, the partition Γ generated from +H is a bent partition satisfying Condition C. +The following explicit construction of bent partitions is an immediate result of Proposition 3 +and Theorem 4. +Theorem 5. Let n, m, s be positive integers with s | n, s | m, s ̸= m, and ui, i ∈ Fps be +integers for which for any i ∈ Fps, ui ≡ pji mod (ps − 1) for some 0 ≤ ji ≤ s − 1 and +gcd(ui, pn − 1) = 1. For any i ∈ Fps, let di be an integer with uidi ≡ 1 mod (pn − 1), and +Pi = (Fpn, +, ◦i) be a (pre)semifield for which its dual P ⋆ +i is right Fps-linear. For any i ∈ Fps, +let F(i; x1, x2) : Fpn × Fpn → Fps be an arbitrary vectorial dual-bent function constructed by +Proposition 3 with u = ui, d = di, P = Pi. Let α, β ∈ Fpm be linearly independent over Fps, R +be a permutation over Fpm with R(0) = 0 and T : Fps → Fps be an arbitrary function. Define +H : Fpn × Fpn × Fpm × Fpm → Fps as +H(x1, x2, y1, y2) = F(T rm +s (αR(y1ypm−2 +2 +)); x1, x2) + T rm +s (βR(y1ypm−2 +2 +)) + T (T rm +s (αR(y1ypm−2 +2 +))). +Then +Γ = {Ai, i ∈ Fps} +is a bent partition satisfying Condition C, where +Ai = {(x1, x2, y1, y2) ∈ Fpn × Fpn × Fpm × Fpm : H(x1, x2, y1, y2) = i}. +January 3, 2023 +DRAFT + +21 +Remark 3. With the same notation as in Theorem 4. Note that in Theorem 4, by setting vectorial +dual-bent functions H constructed by Theorem 5 as building blocks (that is, as F(i; x)), we can +obtain more explicit vectorial dual-bent functions which can generate more bent partitions by +Theorem 4. +We give an example by using Theorem 5. +Example 2. Let p = 3, s = 4, n = m = 8. Let α be a primitive element of F38 and β = 1, R be +the identity map and T = 0. For any i ∈ F34, let +F(i; x1, x2) = + + + +Tr8 +4(x−89 +1 +x2), if i ∈ F∗ +34, +Tr8 +4(x1x−83 +2 +), if i = 0. +Then +H(x1, x2, y2, y2) = (Tr8 +4(αy1y6559 +2 +))80(Tr8 +4(x−89 +1 +x2 − x1x−83 +2 +)) + Tr8 +4(x1x−83 +2 ++ y1y6559 +2 +), +and Γ = {DH,i, i ∈ F34} is a bent partition satisfying Condition C, where DH,i = {(x1, x2, y1, y2) ∈ +(F38)4 : H(x1, x2, y1, y2) = i}. +V. RELATIONS BETWEEN BENT PARTITIONS AND PARTIAL DIFFERENCE SETS +In this section, by taking vectorial dual-bent functions as the link between bent partitions and +partial difference sets, we give a sufficient condition on constructing partial difference sets from +bent partitions. When p is an odd prime, we characterize bent partitions satisfying Condition C +in terms of partial difference sets. +Definition 4. Let (G, +) be a finite abelian group of order v and D be a subset of G with k +elements. Then D is called a (v, k, λ, µ) partial difference set of G, if the expressions d1 − d2, +for d1 and d2 in D with d1 ̸= d2, represent each nonzero element in D exactly λ times, and +represent each nonzero element in G \ D exactly µ times. When λ = µ, then D is called a +(v, k, λ) difference set. +Note that if D is a partial difference set of G with −D = D, then so are D∪{0}, D \ {0}, G \ D +(see [16]). There is an important tool to characterize partial difference sets in terms of characters. +January 3, 2023 +DRAFT + +22 +Lemma 3 ( [16]). Let G be an abelian group of order v. Suppose that D is a subset of G with +k elements which satisfies −D = D and 0 /∈ D. Then D is a (v, k, λ, µ) partial difference set +if and only if for each non-principal character χ of G, +χ(D) = β ± +√ +∆ +2 +, +where χ(D) = � +x∈D χ(x), β = λ − µ, γ = k − µ, ∆ = β2 + 4γ. +When p is an odd prime or s ≥ 2, we give the value distribution of vectorial dual-bent +functions satisfying Condition A. +Proposition 4. Let F : V (p) +n +→ V (p) +s +be a vectorial dual-bent function satisfying Condition A, +where p is odd or s ≥ 2. Then +|DF,F (0)| = pn−s + εp +n +2 −s(ps − 1), |DF,i| = pn−s − εp +n +2 −s if i ̸= F(0). +Proof. Note that if f is a weakly regular p-ary bent function, then for any a ∈ Fp, f − a is +a weakly regular bent function with (f − a)∗ = f ∗ − a and εf−a = εf. Since F is a vectorial +dual-bent function with (Fc)∗ = (F ∗)c, c ∈ V (p) +s +\{0}, we have that F(x) − F(0) is a vectorial +bent function and for any c ∈ V (p) +s +\{0}, +((F − F(0))c)∗ = (Fc)∗ − ⟨c, F(0)⟩s = (F ∗)c − ⟨c, F(0)⟩s = (F ∗ − F(0))c, +which implies that F(x) − F(0) is a vectorial dual-bent function with ((F − F(0))c)∗ = (F ∗ − +F(0))c and ε(F −F (0))c = ε for any c ∈ V (p) +s +\{0}. By the proof of Theorem 1, F(ax) = F(x) for +any a ∈ F∗ +p and thus F(x) = F(−x). By Corollary 1 of [22] (Note that although Corollary 1 of +[22] only considers the case of p being odd, the conclusion of Corollary 1 of [22] also holds +for p = 2, s ≥ 2), we have +|DF −F (0),0| = pn−s + εp +n +2 −s(ps − 1), |DF −F (0),i| = pn−s − εp +n +2 −s if i ̸= 0, +that is, +|DF,F (0)| = pn−s + εp +n +2 −s(ps − 1), |DF,i| = pn−s − εp +n +2 −s if i ̸= F(0). +In the following, we give a characterization of vectorial dual-bent functions satisfying Con- +dition A in terms of partial difference sets. +January 3, 2023 +DRAFT + +23 +Theorem 6. Let n be an even positive integer, s be a positive integer with s ≤ n +2, and F : +V (p) +n +→ V (p) +s +. The following two statements are equivalent. +(1) F is a vectorial dual-bent function satisfying Condition A. +(2) When p = 2, s = 1, then the support supp(F) of F defined as supp(F) = {x ∈ V (2) +n +: +F(x) = 1} is a (2n, 2n−1 ± 2 +n +2 −1, 2n−2 ± 2 +n +2 −1) difference set, and when p is odd or s ≥ 2, +then for any nonempty set I ⊆ V (p) +s +, DF,I\{0} is a (pn, k, λ, µ) partial difference set for which +−DF,I = DF,I and if F(0) ∈ I, then +k = pn−s|I| + εp +n +2 −s(ps − |I|) − 1, +λ = pn−2s|I|2 + εp +n +2 −s(ps − |I|) − 2, +µ = pn−2s|I|2 + εp +n +2 −s|I|, +(35) +and if F(0) /∈ I, then +k = pn−s|I| − εp +n +2 −s|I|, +λ = pn−2s|I|2 + εp +n +2 −s(ps − 3|I|), +µ = pn−2s|I|2 − εp +n +2 −s|I|, +(36) +where DF,I = {x ∈ V (p) +n +: F(x) ∈ I} and ε ∈ {±1} is a constant (ε = 1 if p = 2). +Proof. It is easy to see that a Boolean function F is a vectorial dual-bent function satisfying +Condition A if and only if F is bent, that is, Condition A is trivial for any Boolean bent function. +By the well-known result that a Boolean function F : V (2) +n +→ F2 is bent if and only if its support +supp(F) = {x ∈ V (2) +n +: F(x) = 1} is a (2n, 2n−1 ± 2 +n +2 −1, 2n−2 ± 2 +n +2 −1) difference set (see [11]), +the conclusion obviously holds for p = 2, s = 1. In the following, we prove the conclusion for +p being odd or s ≥ 2. +(1) ⇒ (2): By the proof of Theorem 1, F(−x) = F(x), that is, −DF,I = DF,I. For any +u ∈ V (p) +n \{0}, with the same argument as in the proof of Theorem 2 of [22], +χu(DF,I) = + + + +εp +n +2 − εp +n +2 −s|I|, if F ∗(−u) ∈ I, +−εp +n +2 −s|I|, if F ∗(−u) /∈ I. +where ε = 1 if p = 2 since all Boolean bent functions are regular. +If F(0) ∈ I, then |DF,I\{0}| = |DF,I|−1 and χu(DF,I\{0}) = χu(DF,I)−1. By Proposition 4, +|DF,I\{0}| = (|I|−1)(pn−s−εp +n +2 −s)+(pn−s+εp +n +2 −s(ps−1)−1) = pn−s|I|+εp +n +2 −s(ps−|I|)−1. +By Lemma 3, DF,I\{0} is a (pn, k, λ, µ) partial difference set, where k, λ, µ are given in (35). +January 3, 2023 +DRAFT + +24 +If F(0) /∈ I, then |DF,I\{0}| = |DF,I| and χu(DF,I\{0}) = χu(DF,I). By Proposition 4, +|DF,I\{0}| = |I|(pn−s − εp +n +2 −s). By Lemma 3, DF,I\{0} is a (pn, k, λ, µ) partial difference set, +where k, λ, µ are given in (36). +(2) ⇒ (1): By Lemma 3, for any u ∈ V (p) +n +and nonempty set I ⊆ V (p) +s +we have +χu(DF,I) = pn−sδ{0}(u)|I| + εp +n +2 − εp +n +2 −s|I| or χu(DF,I) = pn−sδ{0}(u)|I| − εp +n +2 −s|I|. +(37) +For any i ∈ V (p) +s +, define Wi = {u ∈ V (p) +n +: χu(DF,i) = pn−sδ{0}(u) + εp +n +2 − εp +n +2 −s}, where +DF,i = {x ∈ V (p) +n +: F(x) = i}. We claim that Wi +� Wi′ = ∅ for any i ̸= i′ and � +i∈V (p) +s +Wi = V (p) +n . +Indeed, if there exist i ̸= i′ such that Wi +� Wi′ ̸= ∅, that is, there exists u ∈ V (p) +n +such that +χu(DF,i) = χu(DF,i′) = pn−sδ{0}(u) + εp +n +2 − εp +n +2 −s, then χu(DF,i +� DF,i′) = 2pn−sδ{0}(u) + +2εp +n +2 − 2εp +n +2 −s, which contradicts with (37). Thus, Wi +� Wi′ = ∅ for any i ̸= i′. If there exists +u ∈ V (p) +n +such that u /∈ Wi for any i ∈ V (p) +s +, that is, χu(DF,i) = pn−sδ{0}(u) − εp +n +2 −s for +any i ∈ V (p) +s +, then χu(V (p) +n ) = � +i∈V (p) +s +χu(DF,i) = pnδ{0}(u) − εp +n +2 , which contradicts with +χu(V (p) +n ) = � +x∈V (p) +n +ζ⟨u,x⟩n +p += pnδ{0}(u). Thus, � +i∈V (p) +s +Wi = V (p) +n . By the above analysis, we +have +χu(DF,I) = pn−sδ{0}(u)|I| + εp +n +2 −s(psδWI(u) − |I|), +(38) +where WI = � +i∈I Wi. By (38) and Lemma 1, F is a vectorial dual-bent function satisfying +Condition A. +The following theorem provides a sufficient condition on constructing partial difference sets +from bent partitions. +Theorem 7. Let n be an even positive integer and s be a positive integer with s ≤ n +2. Assume +that Γ = {Ai, i ∈ V (p) +s +} is a bent partition of V (p) +n +for which the function F : V (p) +n +→ V (p) +s +defined by +F(x) = i if x ∈ Ai +is a vectorial dual-bent function satisfying Condition A. Then when p = 2, s = 1, A0 and A1 are +(2n, 2n−1 ± 2 +n +2 −1, 2n−2 ± 2 +n +2 −1) difference set and (2n, 2n−1 ∓ 2 +n +2 −1, 2n−2 ∓ 2 +n +2 −1) difference set, +respectively, and when p is odd or s ≥ 2, for any nonempty set I ⊆ V (p) +s +, AI\{0} = � +i∈I Ai\{0} +is a (pn, k, λ, µ) partial difference set, where (k, λ, µ) are given in (35) if 0 ∈ AI and (k, λ, µ) +are given in (36) if 0 /∈ AI. +January 3, 2023 +DRAFT + +25 +Proof. Note that if D is a (v, k, λ) difference set of a finite abelian group G, then G\D is a +(v, v − k, v − 2k + λ) difference set of G (for instance see [12]). Then the result follows from +Theorem 6. +Remark 4. By Proposition 3, the bent partition Γ1 (resp. Γ2, Γ• +1, Γ• +2, Θ1, Θ2) satisfies the +condition in Theorem 7. By Theorem 7, any union of sets from Γ1 (resp, Γ2, Γ• +1, Γ• +2, Θ1, Θ2) +forms a partial difference set. Thus, the results given in Corollary 15 of [1] on constructing +partial difference sets from Γ1 (resp. Γ2, Γ• +1, Γ• +2, Θ1, Θ2) (which includes the results given in +Theorem 2 of [2] on constructing partial difference sets from Γ1, resp. Γ2, in the finite field) +can also be illustrated by our results. +Since the bent partitions constructed in Theorem 5 satisfy the condition in Theorem 7, we +have the following corollary from Theorem 7. +Corollary 2. Let Γ = {Ai, i ∈ Fps} be a bent partition constructed by Theorem 5. Then when +p = 2, s = 1, A0 and A1 are (2n, 2n−1 ± 2 +n +2 −1, 2n−2 ± 2 +n +2 −1) difference set and (2n, 2n−1 ∓ +2 +n +2 −1, 2n−2 ∓ 2 +n +2 −1) difference set, respectively, and when p is odd or s ≥ 2, for any nonempty +set I ⊆ Fps, AI\{0} = � +i∈I Ai\{0} is a (pn, k, λ, µ) partial difference set, where (k, λ, µ) are +given in (35) with ε = 1 if 0 ∈ AI and (k, λ, µ) are given in (36) with ε = 1 if 0 /∈ AI. +We give an example by Corollary 2. +Example 3. Let Γ = {DH,i, i ∈ F34} be the bent partition constructed in Example 2. By Corol- +lary 2, DH,i is a (1853020188851841, 22876791923520, 282470988879, 282429005040) partial difference +set for any i ∈ F∗ +34, DH,0\{0} is a (1853020188851841, 22876834970240, 282472051759, 282430067922) +partial difference set, (DH,0 +� DH,1)\{0} is a (1853020188851841, 45753626893760, 1129760129761, +1129719208806) partial difference set. +When p is an odd prime, we immediately obtain the following characterization of bent +partitions of V (p) +n +satisfying Condition C from Theorems 3 and 6. +Theorem 8. Let p be an odd prime. Let Γ = {Ai, i ∈ V (p) +s +} be a partition of V (p) +n , where n is +even and s ≤ n +2. Then the following two statements are equivalent. +(1) Γ is a bent partition satisfying Condition C. +(2) For any nonempty set I ⊆ V (p) +s +, AI\{0} = � +i∈I Ai\{0} is a (pn, k, λ, µ) partial difference +January 3, 2023 +DRAFT + +26 +set with −AI = AI, where (k, λ, µ) are given in (35) if 0 ∈ AI and (k, λ, µ) are given in (36) +if 0 /∈ AI. +VI. CONCLUSION +In this paper, we investigated relations between bent partitions and vectorial dual-bent functions +(Theorems 1, 2, 3) and gave some new constructions of bent partitions satisfying Condition C +(Corollary 1, Theorems 4 and 5). We illustrated that for any ternary weakly regular bent function +f : V (3) +n +→ F3 (n even) with f(x) = f(−x) and εf = −1, the generated bent partition by f +is not coming from a normal bent partition (see Example 1), which answers an open problem +proposed in [4]. By taking vectorial dual-bent functions as the link between bent partitions and +partial difference sets, we give a sufficient condition on constructing partial difference sets from +bent partitions (Theorem 7). When p is an odd prime, we characterized bent partitions satisfying +Condition C in terms of partial difference sets (Theorem 8). +REFERENCES +[1] N. +Anbar, +T. +Kalaycı, +Amorphic +association +schemes +from +bent +partitions, +Available: +https://www.researchgate.net/publication/366593699 Amorphic association schemes from bent partitions +[2] N. Anbar, T. Kalaycı and W. Meidl, Bent partitions and partial difference sets, IEEE Trans. Inf. Theory, vol. 68, no. 10, +pp. 6894-6903, 2022 +[3] N. Anbar, T. Kalaycı and W. Meidl, Generalized semifield spreads, Des. Codes Cryptogr., Online. DOI: 10.1007/s10623- +022-01115-2 +[4] N. Anbar and W. Meidl, Bent partitions, Des. Codes Cryptogr., vol. 90, no. 4, pp. 1081-1101, 2022. +[5] C. Carlet and S. Mesnager, Four decades of research on bent functions, Des. Codes Cryptogr., vol. 78, no. 1, pp. 5-50, +2016. +[6] A. C¸ es¸melio˘glu, W. Meidl, A construction of bent functions from plateaued functions, Des. Codes Cryptogr., vol. 66, pp. +231-242, 2013. +[7] A. C¸ es¸melio˘glu, W. Meidl, Bent and vectorial bent functions, partial difference sets, and strongly regular graphs, Adv. Math. +Commun. vol. 12, pp. 691-705, 2018. +[8] A. C¸ es¸melio˘glu, W. Meidl, I. Pirsic, Vectorial bent functions and partial difference sets, Des. Codes Cryptogr. vol. 89, no. +10, pp. 2313-2330, 2021. +[9] A. C¸ es¸melio˘glu, W. Meidl, and A. Pott, On the dual of (non)-weakly regular bent functions and self-dual bent functions, +Adv. Math. Commun., vol. 7, no. 4, pp. 425-440, 2013. +[10] A. C¸ es¸melio˘glu, W. Meidl and A. Pott, Vectorial bent functions and their duals, Linear Algebra Appl., vol. 548, pp. +305-320, 2018. +[11] J. F. Dillon, Elementary Hadamard difference sets, Ph. D. Thesis, University of Maryland, 1974. +[12] C. Ding, Codes from Difference Sets, World Scientific, Singapore, 2015. +[13] J. Y. Hyun, J. Lee and Y. Lee, Ramanujan graphs and expander families constructed from p-ary bent functions, Des. Codes +Cryptogr. vol. 88, no. 2, pp.453-470, 2020. +January 3, 2023 +DRAFT + +27 +[14] P. Lisonˇek and H. Y. Lu, Bent functions on partial spreads, Des. Codes Cryptogr. vol. 73, no. 1, pp. 209-216, 2014. +[15] P. V. Kumar, R. A. Scholtz and L. R. Welch, Generalized bent functions and their properties, J. Comb. Theory Ser. A, vol. +40, no. 1, pp. 90-107, 1985. +[16] S. L. Ma, A survey of partial difference sets, Des. Codes Cryptogr. vol. 4, no. 4, pp. 221-261, 1994. +[17] W. Meidl, A survey on p-ary and generalized bent functions, Cryptogr. Commun. vol. 14, no.4, pp. 737-782, 2022. +[18] W. Meidl and I. Pirsic, Bent and Z2k-Bent functions from spread-like partitions, Des. Codes Cryptogr., vol. 89, no. 1, pp. +75-89, 2021. +[19] S. Mesnager, Bent Functions-Fundamentals and Results, Springer, Switzerland, 2016. +[20] K. Nyberg, Constructions of bent functions and difference sets, In: Advances in cryptology-EUROCRYPT’ 90, Lecture +Notes in Comput. Sci. 473, Springer, Berlin, pp. 151-160, 1991. +[21] O. S. Rothaus, On “bent” functions, J. Comb. Theory Ser. A, vol. 20, no. 3, pp. 300-305, 1976. +[22] J. Wang and F.-W. Fu, New results on vectoril dual-bent functions and partial difference sets, Des. Codes Cryptogr., Online. +DOI: 10.1007/s10623-022-01103-6 +January 3, 2023 +DRAFT + diff --git a/LdAyT4oBgHgl3EQfsvlL/content/tmp_files/load_file.txt b/LdAyT4oBgHgl3EQfsvlL/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..d388e80fb919658aa87e9947589329623350b327 --- /dev/null +++ b/LdAyT4oBgHgl3EQfsvlL/content/tmp_files/load_file.txt @@ -0,0 +1,812 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf,len=811 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='00581v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='IT] 2 Jan 2023 1 Bent Partitions, Vectorial Dual-Bent Functions and Partial Difference Sets† Jiaxin Wang, Fang-Wei Fu, Yadi Wei Abstract Bent partitions of V (p) n are quite powerful in constructing bent functions, vectorial bent functions and generalized bent functions, where V (p) n is an n-dimensional vector space over Fp, n is an even positive integer and p is a prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' It is known that partial spreads is a class of bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In [4], [18], two classes of bent partitions whose forms are similar to partial spreads were presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In [3], more bent partitions Γ1, Γ2, Γ• 1, Γ• 2, Θ1, Θ2 were presented from (pre)semifields, including the bent partitions given in [4], [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In this paper, we investigate the relations between bent partitions and vectorial dual-bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any prime p, we show that one can generate certain bent partitions (called bent partitions satisfying Condition C) from certain vectorial dual-bent functions (called vectorial dual-bent functions satisfying Condition A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In particular, when p is an odd prime, we show that bent partitions satisfying Condition C one-to-one correspond to vectorial dual-bent functions satisfying Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We give an alternative proof that Γ1, Γ2, Γ• 1, Γ• 2, Θ1, Θ2 are bent partitions in terms of vectorial dual-bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We present a secondary construction of vectorial dual-bent functions, which can be used to generate more bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We show that any ternary weakly regular bent function f : V (3) n → F3 (n even) of 2-form can generate a bent partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When such f is weakly regular but not regular, the generated bent partition by f is not coming from a normal bent partition, which answers an open problem proposed in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We give a sufficient condition on constructing partial difference sets from bent partitions, and when p is an odd prime, we provide a characterization of bent partitions satisfying Condition C in terms of partial difference sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Index Terms Bent partitions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' bent functions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' vectorial bent functions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' vectorial dual-bent functions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' semifields;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' partial difference sets Jiaxin Wang, Fang-Wei Fu and Yadi Wei are with Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China, Emails: wjiaxin@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='nankai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='cn, fwfu@nankai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='cn, wydecho@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='nankai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' †This research is supported by the National Key Research and Development Program of China (Grant Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 2018YFA0704703 and 2022YFA1005001), the National Natural Science Foundation of China (Grant Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 12141108, 61971243, 12226336), the Natural Science Foundation of Tianjin (20JCZDJC00610), the Fundamental Research Funds for the Central Universities of China (Nankai University), and the Nankai Zhide Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 2 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' INTRODUCTION Boolean bent functions were introduced by Rothaus [21] and were generalized to p-ary bent functions by Kumar, Scholtz and Welch [15], where p is an arbitrary prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Due to applications of p-ary bent functions in cryptography, coding theory, sequence and combinatorics, they have been extensively studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We refer to surveys [5], [17] and a book [19] on p-ary bent functions and their generalizations such as vectorial bent functions and generalized bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In [10], C¸ es¸melio˘glu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' introduced vectorial dual-bent functions, which is a special class of vectorial bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In [7], [8], [22], vectorial dual-bent functions were used to construct partial difference sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In particular, Wang and Fu [22] showed that for certain vectorial dual-bent functions F : V (p) n → V (p) s (where V (p) n is an n-dimensional vector space over the prime field Fp), the preimage set of any subset of V (p) s for F forms a partial difference set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Very recently, bent partitions of V (p) n were introduced [4], [18], which are quite powerful in constructing bent functions, vectorial bent functions and generalized bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The well- known partial spreads is a class of bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In [18], Meidl and Pirsic for the first time presented two classes of bent partitions for p = 2 different from partial spreads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In [4], Anbar and Meidl generalized the contributions in [18] to the case of p being odd and gave the corresponding two classes of bent partitions for odd p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In [3], Anbar, Kalaycı and Meidl presented more bent partitions Γ1, Γ2, Γ• 1, Γ• 2, Θ1, Θ2 from (pre)semifields, including the bent partitions given in [4], [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In [2], Anbar, Kalaycı and Meidl showed that any union of elements in the bent partition given in [4], [18] forms a partial difference set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In terms of constructing partial difference sets, certain vectorial dual-bent functions and certain bent partitions seem to play the same role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Therefore, it is interesting to investigate the relations between vectorial dual-bent functions and bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In this paper, we show that by using certain vectorial dual-bent functions (called vectorial dual-bent functions satisfying Condition A), we can construct bent partitions of V (p) n with certain properties (called bent partitions satisfying Condition C) for any prime p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Particularly, when p is an odd prime, we prove that bent partitions of V (p) n with Condition C one-to-one correspond to vectorial dual-bent functions satisfying Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In terms of vectorial dual-bent functions, we provide an alternative proof that Γ1, Γ2, Γ• 1, Γ• 2, Θ1, Θ2 given in [3] are bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We provide a secondary construction of vectorial dual-bent functions, which can be used to generate more bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We prove that any ternary weakly regular bent function f : V (3) n → F3 (n even) of 2-form can generate a bent partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In the special case January 3, 2023 DRAFT 3 that f is weakly regular but not regular, the generated bent partition by f is not coming from a normal bent partition, which answers an open problem proposed in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By using vectorial dual-bent functions as the link between bent partitions and partial difference sets, we give a sufficient condition on constructing partial difference sets from bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When p is an odd prime, we provide a characterization of bent partitions satisfying Condition C in terms of partial difference sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The rest of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In Section II, we state some needed results on vectorial dual-bent functions and bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In Section III, we present relations between certain bent partitions and certain vectorial dual-bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In Section IV, we give a sec- ondary construction of vectorial dual-bent functions, which can be used to generate more bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In Section V, we present relations between certain bent partitions and certain partial difference sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In Section VI, we make a conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' PRELIMINARIES In this section, we state some basic results on vectorial dual-bent functions and bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' First, we fix some notations used throughout this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' p is a prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' ζp = e 2π√−1 p is a complex primitive p-th root of unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Note that ζ2 = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Fpn is the finite field with pn elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Fn p is the vector space of the n-tuples over Fp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' V (p) n is an n-dimensional vector space over Fp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' ⟨·⟩n denotes a (non-degenerate) inner product of V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In this paper, when V (p) n = Fpn, let ⟨a, b⟩n = Trn 1(ab), where a, b ∈ Fpn, Trn k(·) denotes the trace function from Fpn to Fpk, k | n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' when V (p) n = Fn p, let ⟨a, b⟩n = a · b = �n i=1 aibi, where a = (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , an), b = (b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , bn) ∈ Fn p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' when V (p) n = V (p) n1 ×· · ·×V (p) nm (n = �m i=1 ni), let ⟨a, b⟩n = �m i=1⟨ai, bi⟩ni, where a = (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , am), b = (b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , bm) ∈ V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any set A ⊆ V (p) n and u ∈ V (p) n , let χu(A) = � x∈A χu(x), where χu denotes the character χu(x) = ζ⟨u,x⟩n p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Vectorial dual-bent functions A function F : V (p) n → V (p) s is called a vectorial p-ary function, or simply p-ary function when s = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The Walsh transform of a p-ary function f : V (p) n → Fp is the complex valued January 3, 2023 DRAFT 4 function defined by Wf(a) = � x∈V (p) n ζf(x)−⟨a,x⟩n p , a ∈ V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (1) A p-ary function f : V (p) n → Fp is called bent if |Wf(a)| = p n 2 for all a ∈ V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Note that when f is a Boolean bent function, that is, p = 2, then n must be even since in this case, Wf is an integer valued function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' A vectorial p-ary function F : V (p) n → V (p) s is called vectorial bent if all component functions Fc : V (p) n → Fp, c ∈ V (p) s \\{0} defined as Fc(x) = ⟨c, F(x)⟩s are bent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' It is known that if F : V (p) n → V (p) s is vectorial bent, then s ≤ n 2 if p = 2, and s ≤ n if p is an odd prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' If f : V (p) n → Fp is bent, then so are cf, c ∈ F∗ p, that is, any p-ary bent function is vectorial bent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For F : V (p) n → V (p) s , the vectorial bentness of F is independent of the inner products of V (p) n and V (p) s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The Walsh transform of a p-ary bent function f : V (p) n → Fp satisfies that for any a ∈ V (p) n , when p = 2, we have Wf(a) = 2 n 2 (−1)f∗(a), (2) and when p is an odd prime, we have Wf(a) = \uf8f1 \uf8f2 \uf8f3 ±p n 2 ζf∗(a) p if p ≡ 1 (mod 4) or n is even, ± √ −1p n 2 ζf∗(a) p if p ≡ 3 (mod 4) and n is odd, (3) where f ∗ is a function from V (p) n to Fp, called the dual of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' A p-ary bent function f : V (p) n → Fp is called weakly regular if Wf(a) = εfp n 2 ζf∗(a) p , where εf is a constant independent of a, otherwise f is called non-weakly regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In particular, if εf = 1, f is called regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The (non- )weakly regularity of f is independent of the inner product of V (p) n and if f is weakly regular, εf is independent of the inner product of V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By (2), all Boolean bent functions are regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' If f is a p-ary weakly regular bent function, then the dual f ∗ of f is also weakly regular bent with (f ∗)∗(x) = f(−x) (see [9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In 2018, C¸ es¸melio˘glu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [10] introduced vectorial dual-bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' A vectorial p-ary bent function F : V (p) n → V (p) s is called vectorial dual-bent if there exists a vectorial bent function G : V (p) n → V (p) s such that (Fc)∗ = Gσ(c) for any c ∈ V (p) s \\{0}, where (Fc)∗ is the dual of the component function ⟨c, F(x)⟩s and σ is some permutation over V (p) s \\{0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The vectorial bent function G is called a vectorial dual of F and denoted by F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 5 It is known in [10] that the property of being vectorial dual-bent is independent of the inner products of V (p) n and V (p) s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Note that for a vectorial dual-bent function, its vectorial dual is not unique since being vectorial bent and vectorial dual-bent for a function is a property of the vector space consisting of all component functions (see Remark 1 of [10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For example, if a p-ary function f (seen as a vectorial function into V (p) 1 , p odd) is vectorial dual-bent under any fixed inner product, then its dual f ∗ is unique, but its vectorial dual is not unique since for any c ∈ F∗ p, cf ∗ is a vectorial dual of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' A p-ary function f : V (p) n → Fp is called an l-form if f(ax) = alf(x) for any a ∈ F∗ p and x ∈ V (p) n , where 1 ≤ l ≤ p − 1 is an integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By the results in [7], [22], we have the following proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Proposition 1 ( [7], [22]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' A p-ary function f with f(0) = 0 is a weakly regular vectorial dual- bent function if and only if f is a weakly regular bent function of l-form with gcd(l−1, p−1) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In particular, a p-ary function f is a weakly regular vectorial dual-bent function with (cf)∗ = cf ∗ for any c ∈ F∗ p if and only if f is a weakly regular bent function of (p − 1)-form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In the rest of this subsection, we recall an important class of p-ary bent functions, called Maiorana-McFarland bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let f : Fpn × Fpn → Fp be defined as f(x, y) = Trn 1(αxπ(y)) + g(y), where α ∈ F∗ pn, π is a permutation over Fpn and g : Fpn → Fp is an arbitrary function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then f is bent and is called a Maiorana-McFarland bent function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The dual f ∗ of f is f ∗(x, y) = Trn 1(−π−1(α−1x)y) + g(π−1(α−1x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (4) All Maiorana-McFarland bent functions are regular (see [15]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Bent partitions Very recently, the concept of bent partitions of V (p) n were introduced [4], [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let n be an even positive integer, K be a positive integer divisible by p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let Γ = {A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , AK} be a partition of V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Assume that every function f for which every i ∈ Fp has exactly K p of sets Aj in Γ in its preimage, is a p-ary bent function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then Γ is called a bent partition of V (p) n of depth K and every such bent function f is called a bent function constructed from bent partition Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 6 Let Γ = {U, A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , AK} be a partition of V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Assume that every function f with the following properties is bent: (1) Every c ∈ Fp has exactly K p of the sets A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , AK in its preimage set;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (2) f(x) = c0 for all x ∈ U and some fixed c0 ∈ Fp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then we call Γ a normal bent partition of V (p) n of depth K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Bent partitions are very powerful in constructing bent functions, vectorial bent function and generalized bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In this paper, we focus on the relations between bent partitions and vectorial bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Proposition 2 ( [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let Γ = {A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , Aps} be a bent partition of V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then every function F : V (p) n → V (p) s such that every element i ∈ V (p) s has the elements of exactly one of the sets Aj, 1 ≤ j ≤ ps, in its preimage, is a vectorial bent function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' It is known that partial spreads is a class of bent partitions (for instance see Section 2 of [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In [4], [18], two classes of explicit bent partitions different from partial spreads were presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In [3], bent partitions Γ1, Γ2, Γ• 1, Γ• 2, Θ1, Θ2 were presented from certain (pre)semifields, including the bent partitions given in [4], [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We will recall bent partitions Γ1, Γ2, Γ• 1, Γ• 2, Θ1, Θ2 given in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' First, we need to introduce some basic knowledge on (pre)semifields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let ◦ be a binary operation defined on (V (p) n , +) such that (i) x ◦ y = 0 implies x = 0 or y = 0, (ii) (x + y) ◦ z = (x ◦ z) + (y ◦ z), (z ◦ (x + y) = (z ◦ x) + (z ◦ y), respectively), for all x, y, z ∈ V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then (V (p) n , +, ◦) is called a right (left, respectively) prequasifield.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' If (V (p) n , +, ◦) is a right and a left prequasifield, then it is called a presemifield.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' If (V (p) n , +, ◦) is a presemifield for which there is an element e ̸= 0 such that e ◦ x = x ◦ e = x for all x ∈ V (p) n , then it is called a semifield.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let P = (Fpn, +, ◦) be a presemifield.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then one can obtain presemifields P • = (Fpn, +, •) and P ⋆ = (Fpn, +, ⋆) from P, where • and ⋆ are given by x • y = y ◦ x for all x, y ∈ Fpn, and Trn 1(z(x ◦ y)) = Trn 1(x(z ⋆ y)) for all x, y, z ∈ Fpn, January 3, 2023 DRAFT 7 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The presemifield P ⋆ is called the dual of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let s be a positive divisor of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' If x ◦ (cy) = c(x ◦ y) holds for any x, y ∈ Fpn, c ∈ Fps, then P is called right Fps-linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Each presemifield P = (Fpn, +, ◦) can induce a semifield P ′ = (Fpn, +, ∗) via the following transformation: choose any α ∈ F∗ pn and give ∗ by (x ◦ α) ∗ (α ◦ y) = x ◦ y for all x, y ∈ Fpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Lemma 2 of [3], if P is right Fps-linear, then P ′ is also right Fps-linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The finite field Fpn is a right Fps-linear semifield (that is, ◦ is the field multiplication).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For more right Fps-linear (pre)semifields, see Section 3 of [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Now we recall bent partitions Γ1, Γ2, Γ• 1, Γ• 2, Θ1, Θ2 given in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let n, s be positive integers satisfying s | n and gcd(pn−1, ps+p−1) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Set u = ps+p−1, and let d be an integer with du ≡ 1 mod (pn − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let P = (Fpn, +, ◦) be a (pre)semifield such that its dual P ⋆ = (Fpn, +, ⋆) is right Fps-linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For given x ∈ Fpn, if x = 0, then let ηx = 0, and if x ̸= 0, then let ηx be given by x ⋆ η−1 x = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define Ut = {(x, t ◦ xu) : x ∈ F∗ pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let i0 ∈ Fps be an arbitrary element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define Γ1 = {Ai, i ∈ Fps}, (5) where Ai = � t∈Fpn:Trn s (t)=i Ut if i ̸= i0, Ai0 = � t∈Fpn:Trn s (t)=i0 Ut � U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define U• t = {(x, xu ◦ t) : x ∈ F∗ pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let i0 ∈ Fps be an arbitrary element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define Γ• 1 = {A• i , i ∈ Fps}, (6) where A• i = � t∈Fpn:Trn s (t)=i U• t if i ̸= i0, A• i0 = � t∈Fpn:Trn s (t)=i0 U• t � U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define Vt = {(t ◦ xd, x) : x ∈ F∗ pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let i0 ∈ Fps be an arbitrary element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define Γ2 = {Bi, i ∈ Fps}, (7) January 3, 2023 DRAFT 8 where Bi = � t∈Fpn:Trn s (t)=i Vi if i ̸= i0, Bi0 = � t∈Fpn:Trn s (t)=i0 Vi � V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define V • t = {(xd ◦ t, x) : x ∈ F∗ pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let i0 ∈ Fps be an arbitrary element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define Γ• 2 = {B• i , i ∈ Fps}, (8) where B• i = � t∈Fpn:Trn s (t)=i V • i if i ̸= i0, Bi0 = � t∈Fpn:Trn s (t)=i0 V • i � V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define Xt = {(tηd x, x) : x ∈ F∗ pn} if t ∈ Fpn, and X = {(x, 0) : x ∈ Fpn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let i0 ∈ Fps be an arbitrary element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define Θ1 = {Si, i ∈ Fps}, (9) where Si = � t∈Fpn:Trn s (t)=i Xt if i ̸= i0, Si0 = � t∈Fpn:Trn s (t)=i0 Xt � X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define Yt = {(x, tηu x) : x ∈ F∗ pn} if t ∈ Fpn, and Y = {(0, y) : y ∈ Fpn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let i0 ∈ Fps be an arbitrary element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define Θ2 = {Ti, i ∈ Fps}, (10) where Ti = � t∈Fpn:Trn s (t)=i Yt if i ̸= i0, Ti0 = � t∈Fpn:Trn s (t)=i0 Yt � Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In the finite field case, that is, ◦ and ⋆ are the field multiplication, then Γ1 = Γ• 1 = Θ2, Γ2 = Γ• 2 = Θ1, which reduces to the two classes bent partitions given in [4], [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In fact, for the parameter u in the bent partitions Γ1, Γ• 1, Γ2, Γ• 2, Θ1, Θ2, one can consider the more general form u ≡ pj mod (ps − 1) by the proofs in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' RELATIONS BETWEEN CERTAIN BENT PARTITIONS AND CERTAIN VECTORIAL DUAL-BENT FUNCTIONS Throughout this section, we consider bent partitions and vectorial dual-bent functions satisfy- ing the following conditions, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Condition C: Let n be an even positive integer, s be a positive integer with s ≤ n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let Γ = {Ai, i ∈ V (p) s } be a bent partition of V (p) n which satisfies that F∗ pAi = Ai for all i ∈ V (p) s January 3, 2023 DRAFT 9 and all bent functions f constructed from Γ are regular (that is, εf = 1) or weakly regular but not regular (that is, εf = −1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We denote by ε = εf for all bent functions f constructed from Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Condition A: Let n be an even positive integer, s be a positive integer with s ≤ n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let F : V (p) n → V (p) s be a vectorial dual-bent function with (Fc)∗ = (F ∗)c, c ∈ V (p) s \\{0} for a vectorial dual F ∗ of F and all component functions being regular or weakly regular but not regular, that is, εFc, c ∈ V (p) s \\{0} are all the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We denote by ε = εFc for all c ∈ V (p) s \\{0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' It is easy to see that the known bent partitions, including partial spreads and Γi, Γ• i , Θi, i = 1, 2 defined by (5)-(10), all satisfy F∗ pAi = Ai, i ∈ V (p) s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By the results in [3], [11], [14], all bent functions constructed from partial spreads and Γi, Γ• i , Θi, i = 1, 2 are regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Thus, the known bent partitions all satisfy Condition C with ε = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Moreover, when p = 2, it is easy to see that Condition C is trivial for any bent partition of V (2) n of depth powers of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In this section, we present relations between bent partitions satisfying Condition C and vectorial dual-bent functions satisfying Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' First, we need a lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let n be an even positive integer, s be a positive integer with s ≤ n 2, and F : V (p) n → V (p) s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then the following two statements are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (1) F is a vectorial dual-bent function satisfying Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (2) There exist pairwise disjoint sets Wi ⊆ V (p) n , i ∈ V (p) s with � i∈V (p) s Wi = V (p) n and a constant ε ∈ {±1} (ε = 1 if p = 2) such that for any nonempty set I ⊆ V (p) s , χu(DF,I) = pn−sδ{0}(u)|I| + εp n 2 −s(psδWI(u) − |I|), u ∈ V (p) n , (11) where DF,I = {x ∈ V (p) n : F(x) ∈ I}, WI = � i∈I Wi, and for any set S, δS denotes the indicator function of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Proposition 3 of [22] (Note that although Proposition 3 of [22] only considers the case of p being odd, p = 2 also holds), for any u ∈ V (p) n , i ∈ V (p) s we have χu(DF,i) = pn−sδ{0}(u) + p−s � c∈V (p) s \\{0} WFc(−u)ζ−⟨c,i⟩s p , (12) where DF,i = {x ∈ V (p) n : F(x) = i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 10 (1) ⇒ (2): If F is a vectorial dual-bent function satisfying Condition A (Note that if p = 2, then ε = 1 since all Boolean bent functions are regular), then χu(DF,i) = pn−sδ{0}(u) + εp n 2 −s � c∈V (p) s \\{0} ζ(Fc)∗(−u)−⟨c,i⟩s p = pn−sδ{0}(u) + εp n 2 −s � c∈V (p) s \\{0} ζ(F ∗)c(−u)−⟨c,i⟩s p = pn−sδ{0}(u) + εp n 2 −s � c∈V (p) s \\{0} ζ⟨c,F ∗(−u)−i⟩s p = pn−sδ{0}(u) + εp n 2 −s(psδ{0}(F ∗(−u) − i) − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (13) Define Wi = {x ∈ V (p) n : F ∗(−x) = i}, i ∈ V (p) s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then Wi � Wj = ∅ for any i ̸= j and � i∈V (p) s Wi = V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By (13), for any nonempty set I ⊆ V (p) s and u ∈ V (p) n we have χu(DF,I) = � i∈I χu(DF,i) = � i∈I pn−sδ{0}(u) + εp n 2 −s(psδWi(u) − 1) = pn−sδ{0}(u)|I| + εp n 2 −s(psδWI(u) − |I|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (2) ⇒ (1): By the assumption on Wi, i ∈ V (p) s , we have that for any x ∈ V (p) n , there exists a unique i ∈ V (p) s such that x ∈ Wi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define G : V (p) n → V (p) s by G(x) = i if − x ∈ Wi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By the definition of G, for any u ∈ V (p) n , i ∈ V (p) s we have χu(DF,i) = pn−sδ{0}(u) + εp n 2 −s(psδ{0}(G(−u) − i) − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (14) For any c ∈ V (p) s \\{0}, WFc(−u) = � x∈V (p) n ζ⟨c,F (x)⟩s+⟨u,x⟩n p = � i∈V (p) s � x∈V (p) n :F (x)=i ζ⟨c,i⟩s+⟨u,x⟩n p January 3, 2023 DRAFT 11 = � i∈V (p) s ζ⟨c,i⟩s p χu(DF,i) = � i∈V (p) s \\{G(−u)} ζ⟨c,i⟩s p (pn−sδ{0}(u) − εp n 2 −s) + (pn−sδ{0}(u) + εp n 2 −s(ps − 1))ζ⟨c,G(−u)⟩s p = (pn−sδ{0}(u) − εp n 2 −s) � i∈V (p) s ζ⟨c,i⟩s p + εp n 2 ζGc(−u) p = εp n 2 ζGc(−u) p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (15) By (15) and the assumption that ε = 1 if p = 2, F is a vectorial bent function with εFc = ε and (Fc)∗ = Gc for any c ∈ V (p) s \\{0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Since Fc is a weakly regular bent function, we have that Gc = (Fc)∗ is also weakly regular bent and G is vectorial bent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Thus, F is vectorial dual-bent with εFc = ε and (Fc)∗ = (F ∗)c for any c ∈ V (p) s \\{0}, where F ∗ = G, that is, F satisfies Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Based on Lemma 1, we have the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let F : V (p) n → V (p) s be a vectorial dual-bent function satisfying Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define Ai = DF,i, i ∈ V (p) s , where DF,i = {x ∈ V (p) n : F(x) = i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then Γ = {Ai, i ∈ V (p) s } is a bent partition satisfying Condition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Lemma 1 and its proof, for any i ∈ V (p) s and u ∈ V (p) n , χu(Ai) = χu(DF,i) = pn−sδ{0}(u) + εp n 2 −s(psδ{0}(F ∗(−u) − i) − 1), where ε = 1 if p = 2 since all Boolean bent functions are regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any union S of ps−1 sets of {Ai : i ∈ V (p) s }, we have χu(S) = \uf8f1 \uf8f2 \uf8f3 pn−1δ{0}(u) + εp n 2 −1(p − 1), if AF ∗(−u) ⊆ S, pn−1δ{0}(u) − εp n 2 −1, if AF ∗(−u) ⊈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (16) Let f be an arbitrary function such that for every j ∈ Fp, there are exactly ps−1 sets Ai in Γ in its preimage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define g(u) = f(AF ∗(−u)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Note that g is a p-ary function from V (p) n to Fp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then by (16), we have χu(Df,j) = \uf8f1 \uf8f2 \uf8f3 pn−1δ{0}(u) + εp n 2 −1(p − 1), if j = g(u), pn−1δ{0}(u) − εp n 2 −1, if j ̸= g(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (17) January 3, 2023 DRAFT 12 By (17), for any u ∈ V (p) n we have Wf(−u) = � x∈V (p) n ζf(x)+⟨u,x⟩n p = � j∈Fp ζj p � x∈V (p) n :f(x)=j ζ⟨u,x⟩n p = � j∈Fp ζj pχu(Df,j) = � j∈Fp\\{g(u)} ζj p(pn−1δ{0}(u) − εp n 2 −1) + ζg(u) p (pn−1δ{0}(u) + εp n 2 −1(p − 1)) = (pn−1δ{0}(u) − εp n 2 −1) � j∈Fp ζj p + εp n 2 ζg(u) p = εp n 2 ζg(u) p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (18) By (18) and ε = 1 if p = 2, f is a weakly regular bent function with εf = ε and f ∗(x) = g(−x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let Wj = {u ∈ V (p) n : g(u) = j}, j ∈ Fp, then Wj, j ∈ Fp are pairwise disjoint and � j∈Fp Wj = V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By (17), for any u ∈ V (p) n and nonempty set J ⊆ Fp we have χu(Df,J) = pn−1δ{0}(u)|J| + εp n 2 −1(pδWJ(u) − |J|), (19) where Df,J = {x ∈ V (p) n : f(x) ∈ J}, WJ = � j∈J Wj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By (19) and Lemma 1, f is vectorial dual- bent with (cf)∗ = c(βf ∗), c ∈ F∗ p for some β ∈ F∗ p (since all vectorial duals of f are cf ∗, c ∈ F∗ p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let c = 1, we obtain β = 1, that is, f is vectorial dual-bent with (cf)∗ = cf ∗, c ∈ F∗ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Proposition 1, f is a (p − 1)-form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In particular, Fc is a (p − 1)-form for any c ∈ F∗ ps, which yields that F(αx) = F(x) for any α ∈ F∗ p and F∗ pAi = Ai, i ∈ V (p) s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Hence, Γ is a bent partition satisfying Condition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Theorem 1, we have the following corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let n be an even positive integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let f : V (p) n → Fp be a weakly regular bent function of (p − 1)-form, then {Df,j, j ∈ Fp} is a bent partition of V (p) n , where Df,j = {x ∈ V (p) n : f(x) = j}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Proposition 1, f is a weakly regular vectorial dual-bent function with (cf)∗ = cf ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Since n is even, εcf = εf for all c ∈ F∗ p (see Theorem 1 of [6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then by Theorem 1, the conclusion holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 13 A bent partition Γ = {A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , AK} of depth K is called coming from a normal bent partition if there is U ⊆ Ai for some i such that {U, A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , Ai−1, Ai\\U, Ai+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , AK} is a normal bent partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In [4], there is an open problem: Do bent partitions exist which are not coming from a normal bent partition of depth K > 2?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In the following, we provide a positive answer for this open problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By the definition of l-form, a ternary function f is a 2-form if and only if f(x) = f(−x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let n be an even positive integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' If f : V (3) n → F3 with f(x) = f(−x) is a ternary weakly regular but not regular bent function (that is, εf = −1), then by Corollary 1, {Df,0, Df,1, Df,2} is a bent partition of depth 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' There exist such ternary bent functions f, for instance see [7], [17]: f(x) = Trn 1(αx2), x ∈ F3n, (20) where n is even, α ∈ F∗ 3n is a square element if 4 | n, and α ∈ F∗ 3n is a non-square element if 4 ∤ n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' f(x) = Trn 1(ax 3n−1 4 +3m+1), x ∈ F3n, (21) where n = 2m, m odd, a = α 3m+1 4 for a primitive element α of F3n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' f(x) = Trn 1(α(x33k+32k−3k+1 + x2)), x ∈ F3n, (22) where n = 4k for an arbitrary positive integer k, α ∈ F∗ 32k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' f(x, y, z) = (g(x) − h(x))z2 + yz + g(x), (x, y, z) ∈ F3n × F3 × F3, (23) where n is even, g and h are distinct bent functions constructed by (20) or (22) if 4 | n, g and h are distinct bent functions constructed by (20) or (21) if 4 ∤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any ternary weakly regular but not regular bent function f : V (3) n → F3 (n even) with f(x) = f(−x), the corresponding bent partition {Df,0, Df,1, Df,2} is not coming from a normal bent partition by Theorem 4 (i) of [4], which provides a positive answer for the above open problem proposed in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We first recall Theorem 4 (i) of [4] and then give an example to illustrate this fact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Lemma 2 ( [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let Γ = {U, A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' , AK} be a normal bent partition of V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then |U| = p n 2 and |Aj| = pn−p n 2 K , 1 ≤ j ≤ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 14 Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let f : F34 → F3 be defined by f(x) = Tr4 1(x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then f is ternary weakly regular bent with f(x) = f(−x) and εf = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Corollary 1, {Df,0, Df,1, Df,2} is a bent partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By the result of Nyberg [20], for any weakly regular p-ary bent function g : V (p) n → Fp with n even, we have {|Dg,i|, i ∈ Fp} = {pn−1 + εfp n 2 −1(p − 1), pn−1 − εfp n 2 −1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For our example, |Df,0| = 21, |Df,1| = |Df,2| = 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Lemma 2, it is easy to see that {Df,0, Df,1, Df,2} can not be from a normal bent partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In the following, based on Theorem 1, we give an alternative proof that Γi, Γ• i , Θi, i = 1, 2 defined by (5)-(10) given in [3] are bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let s, n be positive integers with s | n, u be an integer with u ≡ pj0 mod (ps − 1) for some 0 ≤ j0 ≤ s − 1 and gcd(u, pn − 1) = 1, and let d be an integer with du ≡ 1 mod (pn − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let P = (Fpn, +, ◦) be a (pre)semifield such that its dual P ⋆ = (Fpn, +, ⋆) is right Fps-linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For given x ∈ Fpn, if x = 0, then let ηx = 0, and if x ̸= 0, then let ηx be given by x ⋆ η−1 x = 1 (For convention we set η−1 0 = ηpn−2 0 = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any α ∈ F∗ pn and i0 ∈ Fps,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' define F(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = Trn s (αa(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y)) + i0(1 − xpn−1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) ∈ Fpn × Fpn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (24) where for given (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if x = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then a(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and if x ̸= 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then a(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) is given by a(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) ◦ xu = y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and F •(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = Trn s (αa•(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y)) + i0(1 − xpn−1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) ∈ Fpn × Fpn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (25) where for given (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if x = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then a•(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and if x ̸= 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then a•(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) is given by xu ◦ a•(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and G(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = Trn s (αb(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y)) + i0(1 − ypn−1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) ∈ Fpn × Fpn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (26) where for given (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if y = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then b(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and if y ̸= 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then b(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) is given by b(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) ◦ yd = x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and G•(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = Trn s (αb•(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y)) + i0(1 − ypn−1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) ∈ Fpn × Fpn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (27) where for given (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if y = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then b•(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and if y ̸= 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then b•(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) is given by yd ◦ b•(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and M(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = Trn s (αη−u x y) + i0(1 − xpn−1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) ∈ Fpn × Fpn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (28) and N(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = Trn s (αxη−d y ) + i0(1 − ypn−1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) ∈ Fpn × Fpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (29) January 3, 2023 DRAFT 15 Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let F, F •, G, G•, M, N be defined as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then they are all vectorial dual-bent functions satisfying Condition A with ε = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We only prove the result for F and M since the proofs for F •, G, G• are similar to the proof for F, and the proof for N is similar to the proof for M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For F: For any c ∈ F∗ ps, we have Fc(x, y) = Trn 1(cαa(x, y)) + Trs 1(ci0)(1 − xpn−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any c ∈ F∗ ps and (w, v) ∈ Fpn × Fpn, we have WFcu(w, v) = � x∈F∗ pn � y∈Fpn ζTrn 1 (cuαa(x,y))−Trn 1 (wx+vy) p + ζTrs 1(cui0) p � y∈Fpn ζ−Trn 1 (vy) p = � x∈Fpn � y∈Fpn ζTrn 1 (cuαa(x,y))−Trn 1 (wx+vy) p + pn(ζTrs 1(cui0) p − 1)δ{0}(v) = Wh(w, v) + pn(ζTrs 1(cui0) p − 1)δ{0}(v), where h(x, y) = Trn 1(cuαa(x, y)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For given x ∈ Fpn, if x = 0, then let λx = 0, and if x ̸= 0, then let λx be given by x ⋆ λ−1 x = α (For convention we set λ−1 0 = λpn−2 0 = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define ρ(x) = λ−d x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then ρ is a permutation over Fpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any x ∈ F∗ pn, set z = ρ−1(c−1x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then λ−d z = ρ(z) = c−1x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By du ≡ 1 mod (pn − 1), we have λ−1 z = c−uxu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Since z ̸= 0 and P ⋆ is right Fps-linear, we have α = z ⋆ λ−1 z = z ⋆ (c−uxu) = c−u(z ⋆ xu), that is, ρ−1(c−1x) ⋆ xu = αcu for any x ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Thus, when x ̸= 0, Trn 1(cuαa(x, y)) = Trn 1(a(x, y)(ρ−1(c−1x) ⋆ xu)) = Trn 1(ρ−1(c−1x)(a(x, y) ◦ xu)) = Trn 1(ρ−1(c−1x)y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When x = 0, by a(0, y) = ρ−1(0) = 0, we have Trn 1(cuαa(x, y)) = Trn 1(ρ−1(c−1x)y) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Hence, h(x, y) = Trn 1(ρ−1(c−1x)y), which is a Maiorana-McFarland bent function and by (4), Wh(w, v) = pnζ−Trn 1 (cwρ(v)) p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Therefore, for any c ∈ F∗ ps, WFcu(w, v) = pn(ζ−Trn 1 (cwρ(v)) p + (ζTrs 1(cui0) p − 1)δ{0}(v)) = pnζ−Trn 1 (cwρ(v))+Trs 1(cui0)(1−vpn−1) p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (30) By (30) and ud ≡ 1 mod (pn − 1), we have that for any c ∈ F∗ ps, Fc is a regular bent function with (Fc)∗(x, y) = −Trn 1(cdxρ(y)) + Trs 1(ci0)(1 − ypn−1) = −Trn 1(cdpj0(xρ(y))pj0) + Trs 1(ci0)(1 − ypn−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 16 Since u ≡ pj0 mod (ps − 1) and du ≡ 1 mod (pn − 1), we have d ≡ ps−j0 mod (ps − 1) and thus (cd)pj0 = c for any c ∈ F∗ ps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Therefore, F is a vectorial bent function with εFc = 1 and (Fc)∗ = Hc for all c ∈ F∗ ps, where H(x, y) = −Trn s ((xρ(y))pj0) + i0(1 − ypn−1) = −(Trn s (xρ(y)))pj0 + i0(1 − ypn−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Since Fc is regular bent, we have that (Fc)∗ = Hc is also regular bent and H is vectorial bent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Thus, F is vectorial dual-bent with εFc = 1 and (Fc)∗ = (F ∗)c for all c ∈ F∗ ps, where F ∗ = H, that is, F satisfies Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For M: For any c ∈ F∗ ps, Mc(x, y) = Trn 1(cαη−u x y) + Trs 1(ci0)(1 − xpn−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Similar to the discussion for F, for any c ∈ F∗ ps and (w, v) ∈ Fpn × Fpn we have WMc(w, v) = Wg(w, v) + pn(ζTrs 1(ci0) p − 1)δ{0}(v), where g(x, y) = Trn 1(cαη−u x y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let π(x) = η−u x , then π is a permutation over Fpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Since g is a Maiorana-McFarland bent function, then by (4), Wg(w, v) = pnζ−Trn 1 (wπ−1(c−1α−1v)) p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any given y ∈ F∗ pn, set π−1(c−1α−1y) = z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then c−1α−1y = π(z) = η−u z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By ud ≡ 1 mod (pn − 1), we have η−1 z = c−dα−dyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Since z ̸= 0 and P ⋆ is right Fps-linear, we have 1 = z ⋆ η−1 z = z ⋆ (c−dα−dyd) = c−d(z ⋆ α−dyd), that is, π−1(c−1α−1y) ⋆ α−dyd = cd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For given (x, y) ∈ Fpn × Fpn, if y = 0, then let r(x, y) = 0, and if y ̸= 0, then let r(x, y) be given by r(x, y)◦α−dyd = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When v ̸= 0, we have Trn 1(wπ−1(c−1α−1v)) = Trn 1(π−1(c−1α−1v)(r(w, v)◦ α−dvd)) = Trn 1(r(w, v)(π−1(c−1α−1v) ⋆ α−dvd)) = Trn 1(cdr(w, v)) = Trn 1(c(r(w, v))pj0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When v = 0, since π−1(0) = 0 and r(w, 0) = 0, we have Trn 1(wπ−1(c−1α−1v)) = Trn 1(c(r(w, v))pj0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Thus, −Trn 1(wπ−1(c−1α−1v)) = −Trn 1(c(r(w, v))pj0) and WMc(w, v) = pn(ζ−Trn 1 (c(r(w,v))pj0 ) p + (ζTrs 1(ci0) p − 1)δ{0}(v)) = pnζ−Trn 1 (c(r(w,v))pj0 )+Trs 1(ci0)(1−vpn−1) p , which implies that M is a vectorial dual-bent function with εMc = 1 and (Mc)∗ = (M∗)c for all c ∈ F∗ ps, where M∗(x, y) = −Trn s ((r(x, y))pj0) + i0(1 − ypn−1), January 3, 2023 DRAFT 17 that is, M satisfies Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Theorem 1 and Proposition 3, we have that {DF,i, i ∈ Fps}, {DF •,i, i ∈ Fps}, {DG,i, i ∈ Fps}, {DG•,i, i ∈ Fps}, {DM,i, i ∈ Fps} and {DN,i, i ∈ Fps} are bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' It is easy to verify that DF,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='i = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 � t∈Fpn:T rn s (αt)=i Ut,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i ̸= i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' � t∈Fpn:T rn s (αt)=i0 Ut � U,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i = i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' DF •,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='i = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 � t∈Fpn:T rn s (αt)=i U • t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i ̸= i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' � t∈Fpn:T rn s (αt)=i0 U • t � U,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i = i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' DG,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='i = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 � t∈Fpn:T rn s (αt)=i Vt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i ̸= i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' � t∈Fpn:T rn s (αt)=i0 Vt � V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i = i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' DG•,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='i = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 � t∈Fpn:T rn s (αt)=i V • t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i ̸= i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' � t∈Fpn:T rn s (αt)=i0 V • t � V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i = i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' DM,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='i = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 � t∈Fpn:T rn s (αt)=i Xt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i ̸= i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' � t∈Fpn:T rn s (αt)=i0 Xt � X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i = i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' DN,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='i = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 � t∈Fpn:T rn s (αt)=i Yt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i ̸= i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' � t∈Fpn:T rn s (αt)=i0 Yt � Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' if i = i0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' where Ut = {(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' t ◦ xu) : x ∈ F∗ pn} if t ∈ Fpn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and U = {(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) : y ∈ Fpn},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' U• t = {(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' xu ◦ t) : x ∈ F∗ pn} if t ∈ Fpn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and U = {(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) : y ∈ Fpn},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Vt = {(t ◦ xd,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x) : x ∈ F∗ pn} if t ∈ Fpn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and V = {(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 0) : x ∈ Fpn},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' V • t = {(xd ◦ t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x) : x ∈ F∗ pn} if t ∈ Fpn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and V = {(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 0) : x ∈ Fpn},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Xt = {(tηd x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x) : x ∈ F∗ pn} if t ∈ Fpn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and X = {(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 0) : x ∈ Fpn},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Yt = {(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' tηu x) : x ∈ F∗ pn} if t ∈ Fpn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and Y = {(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) : y ∈ Fpn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For the above bent partitions from vectorial dual-bent functions F, F •, G, G•, M, N, by set- ting α = 1, u = ps + p − 1 with gcd(u, pn − 1) = 1, then we can obtain bent partitions Γ1, Γ• 1, Γ2, Γ• 2, Θ1, Θ2 defined by (5)-(10) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Thus by the above analysis, we provide an alternative derivation that Γ1, Γ• 1, Γ2, Γ• 2, Θ1, Θ2 are bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When p is an odd prime, we show that the converse of Theorem 1 also holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let p be an odd prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let Γ = {Ai, i ∈ V (p) s } be a bent partition of V (p) n satisfying Condition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define F : V (p) n → V (p) s by F(x) = i if x ∈ Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then F is a vectorial dual-bent function satisfying Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 18 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Since F∗ pAi = Ai for any i ∈ V (p) s , all bent functions constructed from Γ are (p−1)-form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When s = 1, the conclusion follows from Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In the following, we consider the case of s ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let f be an arbitrary bent function constructed from Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='4 of [13], for any u ∈ V (p) n and j ∈ Fp we have χu(Df,j) = \uf8f1 \uf8f2 \uf8f3 pn−1δ{0}(u) + εp n 2 −1(p − 1), if f ∗(u) = j, pn−1δ{0}(u) − εp n 2 −1, if f ∗(u) ̸= j, (31) where Df,j = {x ∈ V (p) n : f(x) = j}, j ∈ Fp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any fixed u ∈ V (p) n , since {χu(Df,j), j ∈ Fp} = {pn−1δ{0}(u) + εp n 2 −1(p − 1), pn−1δ{0}(u) − εp n 2 −1} for any bent function f constructed from Γ, we have that for any fixed u ∈ V (p) n , there exists a unique G(u) ∈ V (p) s such that χu(Ai), i ̸= G(u) are all the same and χu(Ai) ̸= χu(AG(u)), i ̸= G(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Note that G is a function from V (p) n to V (p) s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Moreover by (31), for any fixed u ∈ V (p) n we have χu(Ai) = \uf8f1 \uf8f2 \uf8f3 pn−sδ{0}(u) + εp n 2 −s(ps − 1), if i = G(u), pn−sδ{0}(u) − εp n 2 −s, if i ̸= G(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (32) Define Wi = {u ∈ V (p) n : G(u) = i}, i ∈ V (p) s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then obviously Wi, i ∈ V (p) s are pairwise disjoint and � i∈V (p) s Wi = V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By (32), for any u ∈ V (p) n and nonempty set I ⊆ V (p) s we have χu(DF,I) = � i∈I χu(Ai) = pn−sδ{0}(u)|I| + εp n 2 −s(psδWI(u) − |I|), (33) where DF,I = {x ∈ V (p) n : F(x) ∈ I}, WI = � i∈I Wi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By (33) and Lemma 1, the conclusion holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When p is an odd prime, from Theorems 1 and 2 we obtain a characterization of bent partitions satisfying Condition C in terms of vectorial dual-bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let p be an odd prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let Γ = {Ai, i ∈ V (p) s } be a partition of V (p) n , where n is even, s ≤ n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define F : V (p) n → V (p) s as F(x) = i if x ∈ Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then Γ is a bent partition satisfying Condition C if and only if F is a vectorial dual-bent function satisfying Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 19 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' CONSTRUCTING BENT PARTITIONS FROM VECTORIAL DUAL-BENT FUNCTIONS In this section, we construct bent partitions from vectorial dual-bent functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The following theorem provides a secondary construction of vectorial dual-bent functions, which can be used to generate more bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let n, m, s be positive integers for which n is even and s ≤ n 2, s | m, s ̸= m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any i ∈ Fps, let F(i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x) : V (p) n → Fps be a vectorial dual-bent function with ((F(i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x))c)∗ = ((F(i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x))∗)c and ε(F (i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='x))c = ε for any c ∈ F∗ ps, where (F(i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x))∗ is a vectorial dual of F(i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x) and ε ∈ {±1} is a constant independent of i, c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let α, β ∈ Fpm be linearly independent over Fps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let R be a permutation over Fpm with R(0) = 0 and T : Fps → Fps be an arbitrary function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define H : V (p) n × Fpm × Fpm → Fps as H(x, y1, y2) = F(T rm s (αR(y1ypm−2 2 ));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x) + T rm s (βR(y1ypm−2 2 )) + T (T rm s (αR(y1ypm−2 2 ))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then H is a vectorial dual-bent function satisfying Condition A and Γ = {Ai, i ∈ Fps} is a bent partition satisfying Condition C, where Ai = {(x, y1, y2) ∈ V (p) n ×Fpm ×Fpm : H(x, y1, y2) = i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Denote d(y) = Trm s (βR(y1ypm−2 2 )), e(y) = Trm s ((β − α)R(y1ypm−2 2 )), y = (y1, y2) ∈ Fpm × Fpm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any c ∈ F∗ ps and (a, b) = (a, b1, b2) ∈ V (p) n × Fpm × Fpm, we have WHc(a, b) = � x∈V (p) n � y=(y1,y2)∈Fpm×Fpm ζT rs 1(cF (d(y)−e(y);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='x))+T rs 1(cd(y))+T rs 1(cT (d(y)−e(y))) p ζ−⟨a,x⟩n−T rm 1 (b1y1+b2y2) p = � i∈Fps � y=(y1,y2)∈Fpm×Fpm:d(y)−e(y)=i � x∈V (p) n ζT rs 1(cF (i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='x))+T rs 1(cd(y))+T rs 1(cT (i)) p ζ−⟨a,x⟩n−T rm 1 (b1y1+b2y2) p = p−s � i∈Fps W(F (i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='x))c(a)ζT rs 1(cT (i)) p � y=(y1,y2)∈Fpm×Fpm ζT rs 1(cd(y))−T rm 1 (b1y1+b2y2) p � j∈Fps ζT rs 1(cj(i−(d(y)−e(y)))) p = p−s � i∈Fps W(F (i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='x))c(a)ζT rs 1(cT (i)) p � j∈Fps ζT rs 1(ijc) p � y=(y1,y2)∈Fpm×Fpm ζT rs 1(c((1−j)d(y)+je(y)))−T rm 1 (b1y1+b2y2) p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Theorem 3 of [10], for any j ∈ Fps, J(j;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y) = (1−j)d(y)+je(y) is a partial spread vectorial dual-bent function with ε(J(j;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='y))c = 1 and ((J(j;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' y))c)∗ = ((1−j)d∗(y)+je∗(y))c for any c ∈ F∗ ps, January 3, 2023 DRAFT 20 where d∗(y) = Trm s (βR(−ypm−2 1 y2)), e∗(y) = Trm s ((β − α)R(−ypm−2 1 y2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Therefore, WHc(a, b) = pm−s � i∈Fps W(F (i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='x))c(a)ζT rs 1(cT (i)) p � j∈Fps ζT rs 1(ijc) p ζT rs 1(c((1−j)d∗(b)+je∗(b))) p = pm−sζT rs 1(cd∗(b)) p � i∈Fps W(F (i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='x))c(a)ζT rs 1(cT (i)) p � j∈Fps ζT rs 1(cj(i−(d∗(b)−e∗(b)))) p = pmζT rs 1(cd∗(b)) p W(F (d∗(b)−e∗(b);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='x))c(a)ζT rs 1(cT (d∗(b)−e∗(b))) p = εp n 2 +mζ ((F (T rm s (αR(−bpm−2 1 b2));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='x))c)∗(a)+T rs 1(cT rm s (βR(−bpm−2 1 b2)))+T rs 1(cT (T rm s (αR(−bpm−2 1 b2)))) p = εp n 2 +mζ((F (T rm s (αR(−bpm−2 1 b2));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='x))∗)c(a)+T rs 1(cT rm s (βR(−bpm−2 1 b2)))+T rs 1(cT (T rm s (αR(−bpm−2 1 b2)))) p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (34) Note that ε = 1 if p = 2 since all Boolean bent functions are regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By (34), H is a vectorial bent function with (Hc)∗ = Gc and εHc = ε for any c ∈ F∗ ps, where G(a, b1, b2) = (F(T rm s (αR(−bpm−2 1 b2));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x))∗(a) + T rm s (βR(−bpm−2 1 b2)) + T (T rm s (αR(−bpm−2 1 b2))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Since Hc is weakly regular bent, we have that Gc = (Hc)∗ is also weakly regular bent and G is vectorial bent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Thus, H is vectorial dual-bent with (Hc)∗ = (H∗)c and εHc = ε for any c ∈ F∗ ps, where H∗ = G, that is, H satisfies Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Theorem 1, the partition Γ generated from H is a bent partition satisfying Condition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The following explicit construction of bent partitions is an immediate result of Proposition 3 and Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let n, m, s be positive integers with s | n, s | m, s ̸= m, and ui, i ∈ Fps be integers for which for any i ∈ Fps, ui ≡ pji mod (ps − 1) for some 0 ≤ ji ≤ s − 1 and gcd(ui, pn − 1) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any i ∈ Fps, let di be an integer with uidi ≡ 1 mod (pn − 1), and Pi = (Fpn, +, ◦i) be a (pre)semifield for which its dual P ⋆ i is right Fps-linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any i ∈ Fps, let F(i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x1, x2) : Fpn × Fpn → Fps be an arbitrary vectorial dual-bent function constructed by Proposition 3 with u = ui, d = di, P = Pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let α, β ∈ Fpm be linearly independent over Fps, R be a permutation over Fpm with R(0) = 0 and T : Fps → Fps be an arbitrary function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Define H : Fpn × Fpn × Fpm × Fpm → Fps as H(x1, x2, y1, y2) = F(T rm s (αR(y1ypm−2 2 ));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x1, x2) + T rm s (βR(y1ypm−2 2 )) + T (T rm s (αR(y1ypm−2 2 ))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then Γ = {Ai, i ∈ Fps} is a bent partition satisfying Condition C, where Ai = {(x1, x2, y1, y2) ∈ Fpn × Fpn × Fpm × Fpm : H(x1, x2, y1, y2) = i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 21 Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' With the same notation as in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Note that in Theorem 4, by setting vectorial dual-bent functions H constructed by Theorem 5 as building blocks (that is, as F(i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x)), we can obtain more explicit vectorial dual-bent functions which can generate more bent partitions by Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We give an example by using Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let p = 3, s = 4, n = m = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let α be a primitive element of F38 and β = 1, R be the identity map and T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any i ∈ F34, let F(i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' x1, x2) = \uf8f1 \uf8f2 \uf8f3 Tr8 4(x−89 1 x2), if i ∈ F∗ 34, Tr8 4(x1x−83 2 ), if i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then H(x1, x2, y2, y2) = (Tr8 4(αy1y6559 2 ))80(Tr8 4(x−89 1 x2 − x1x−83 2 )) + Tr8 4(x1x−83 2 + y1y6559 2 ), and Γ = {DH,i, i ∈ F34} is a bent partition satisfying Condition C, where DH,i = {(x1, x2, y1, y2) ∈ (F38)4 : H(x1, x2, y1, y2) = i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' RELATIONS BETWEEN BENT PARTITIONS AND PARTIAL DIFFERENCE SETS In this section, by taking vectorial dual-bent functions as the link between bent partitions and partial difference sets, we give a sufficient condition on constructing partial difference sets from bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When p is an odd prime, we characterize bent partitions satisfying Condition C in terms of partial difference sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let (G, +) be a finite abelian group of order v and D be a subset of G with k elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then D is called a (v, k, λ, µ) partial difference set of G, if the expressions d1 − d2, for d1 and d2 in D with d1 ̸= d2, represent each nonzero element in D exactly λ times, and represent each nonzero element in G \\ D exactly µ times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When λ = µ, then D is called a (v, k, λ) difference set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Note that if D is a partial difference set of G with −D = D, then so are D∪{0}, D \\ {0}, G \\ D (see [16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' There is an important tool to characterize partial difference sets in terms of characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 22 Lemma 3 ( [16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let G be an abelian group of order v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Suppose that D is a subset of G with k elements which satisfies −D = D and 0 /∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then D is a (v, k, λ, µ) partial difference set if and only if for each non-principal character χ of G, χ(D) = β ± √ ∆ 2 , where χ(D) = � x∈D χ(x), β = λ − µ, γ = k − µ, ∆ = β2 + 4γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When p is an odd prime or s ≥ 2, we give the value distribution of vectorial dual-bent functions satisfying Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let F : V (p) n → V (p) s be a vectorial dual-bent function satisfying Condition A, where p is odd or s ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then |DF,F (0)| = pn−s + εp n 2 −s(ps − 1), |DF,i| = pn−s − εp n 2 −s if i ̸= F(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Note that if f is a weakly regular p-ary bent function, then for any a ∈ Fp, f − a is a weakly regular bent function with (f − a)∗ = f ∗ − a and εf−a = εf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Since F is a vectorial dual-bent function with (Fc)∗ = (F ∗)c, c ∈ V (p) s \\{0}, we have that F(x) − F(0) is a vectorial bent function and for any c ∈ V (p) s \\{0}, ((F − F(0))c)∗ = (Fc)∗ − ⟨c, F(0)⟩s = (F ∗)c − ⟨c, F(0)⟩s = (F ∗ − F(0))c, which implies that F(x) − F(0) is a vectorial dual-bent function with ((F − F(0))c)∗ = (F ∗ − F(0))c and ε(F −F (0))c = ε for any c ∈ V (p) s \\{0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By the proof of Theorem 1, F(ax) = F(x) for any a ∈ F∗ p and thus F(x) = F(−x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Corollary 1 of [22] (Note that although Corollary 1 of [22] only considers the case of p being odd, the conclusion of Corollary 1 of [22] also holds for p = 2, s ≥ 2), we have |DF −F (0),0| = pn−s + εp n 2 −s(ps − 1), |DF −F (0),i| = pn−s − εp n 2 −s if i ̸= 0, that is, |DF,F (0)| = pn−s + εp n 2 −s(ps − 1), |DF,i| = pn−s − εp n 2 −s if i ̸= F(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In the following, we give a characterization of vectorial dual-bent functions satisfying Con- dition A in terms of partial difference sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 23 Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let n be an even positive integer, s be a positive integer with s ≤ n 2, and F : V (p) n → V (p) s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The following two statements are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (1) F is a vectorial dual-bent function satisfying Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (2) When p = 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' s = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then the support supp(F) of F defined as supp(F) = {x ∈ V (2) n : F(x) = 1} is a (2n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 2n−1 ± 2 n 2 −1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 2n−2 ± 2 n 2 −1) difference set,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' and when p is odd or s ≥ 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then for any nonempty set I ⊆ V (p) s ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' DF,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='I\\{0} is a (pn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' µ) partial difference set for which −DF,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='I = DF,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='I and if F(0) ∈ I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then k = pn−s|I| + εp n 2 −s(ps − |I|) − 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' λ = pn−2s|I|2 + εp n 2 −s(ps − |I|) − 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' µ = pn−2s|I|2 + εp n 2 −s|I|,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (35) and if F(0) /∈ I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' then k = pn−s|I| − εp n 2 −s|I|,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' λ = pn−2s|I|2 + εp n 2 −s(ps − 3|I|),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' µ = pn−2s|I|2 − εp n 2 −s|I|,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (36) where DF,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='I = {x ∈ V (p) n : F(x) ∈ I} and ε ∈ {±1} is a constant (ε = 1 if p = 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' It is easy to see that a Boolean function F is a vectorial dual-bent function satisfying Condition A if and only if F is bent, that is, Condition A is trivial for any Boolean bent function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By the well-known result that a Boolean function F : V (2) n → F2 is bent if and only if its support supp(F) = {x ∈ V (2) n : F(x) = 1} is a (2n, 2n−1 ± 2 n 2 −1, 2n−2 ± 2 n 2 −1) difference set (see [11]), the conclusion obviously holds for p = 2, s = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' In the following, we prove the conclusion for p being odd or s ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (1) ⇒ (2): By the proof of Theorem 1, F(−x) = F(x), that is, −DF,I = DF,I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' For any u ∈ V (p) n \\{0}, with the same argument as in the proof of Theorem 2 of [22], χu(DF,I) = \uf8f1 \uf8f2 \uf8f3 εp n 2 − εp n 2 −s|I|, if F ∗(−u) ∈ I, −εp n 2 −s|I|, if F ∗(−u) /∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' where ε = 1 if p = 2 since all Boolean bent functions are regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' If F(0) ∈ I, then |DF,I\\{0}| = |DF,I|−1 and χu(DF,I\\{0}) = χu(DF,I)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Proposition 4, |DF,I\\{0}| = (|I|−1)(pn−s−εp n 2 −s)+(pn−s+εp n 2 −s(ps−1)−1) = pn−s|I|+εp n 2 −s(ps−|I|)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Lemma 3, DF,I\\{0} is a (pn, k, λ, µ) partial difference set, where k, λ, µ are given in (35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 24 If F(0) /∈ I, then |DF,I\\{0}| = |DF,I| and χu(DF,I\\{0}) = χu(DF,I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Proposition 4, |DF,I\\{0}| = |I|(pn−s − εp n 2 −s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Lemma 3, DF,I\\{0} is a (pn, k, λ, µ) partial difference set, where k, λ, µ are given in (36).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (2) ⇒ (1): By Lemma 3, for any u ∈ V (p) n and nonempty set I ⊆ V (p) s we have χu(DF,I) = pn−sδ{0}(u)|I| + εp n 2 − εp n 2 −s|I| or χu(DF,I) = pn−sδ{0}(u)|I| − εp n 2 −s|I|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (37) For any i ∈ V (p) s , define Wi = {u ∈ V (p) n : χu(DF,i) = pn−sδ{0}(u) + εp n 2 − εp n 2 −s}, where DF,i = {x ∈ V (p) n : F(x) = i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We claim that Wi � Wi′ = ∅ for any i ̸= i′ and � i∈V (p) s Wi = V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Indeed, if there exist i ̸= i′ such that Wi � Wi′ ̸= ∅, that is, there exists u ∈ V (p) n such that χu(DF,i) = χu(DF,i′) = pn−sδ{0}(u) + εp n 2 − εp n 2 −s, then χu(DF,i � DF,i′) = 2pn−sδ{0}(u) + 2εp n 2 − 2εp n 2 −s, which contradicts with (37).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Thus, Wi � Wi′ = ∅ for any i ̸= i′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' If there exists u ∈ V (p) n such that u /∈ Wi for any i ∈ V (p) s , that is, χu(DF,i) = pn−sδ{0}(u) − εp n 2 −s for any i ∈ V (p) s , then χu(V (p) n ) = � i∈V (p) s χu(DF,i) = pnδ{0}(u) − εp n 2 , which contradicts with χu(V (p) n ) = � x∈V (p) n ζ⟨u,x⟩n p = pnδ{0}(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Thus, � i∈V (p) s Wi = V (p) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By the above analysis, we have χu(DF,I) = pn−sδ{0}(u)|I| + εp n 2 −s(psδWI(u) − |I|), (38) where WI = � i∈I Wi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By (38) and Lemma 1, F is a vectorial dual-bent function satisfying Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' The following theorem provides a sufficient condition on constructing partial difference sets from bent partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let n be an even positive integer and s be a positive integer with s ≤ n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Assume that Γ = {Ai, i ∈ V (p) s } is a bent partition of V (p) n for which the function F : V (p) n → V (p) s defined by F(x) = i if x ∈ Ai is a vectorial dual-bent function satisfying Condition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then when p = 2, s = 1, A0 and A1 are (2n, 2n−1 ± 2 n 2 −1, 2n−2 ± 2 n 2 −1) difference set and (2n, 2n−1 ∓ 2 n 2 −1, 2n−2 ∓ 2 n 2 −1) difference set, respectively, and when p is odd or s ≥ 2, for any nonempty set I ⊆ V (p) s , AI\\{0} = � i∈I Ai\\{0} is a (pn, k, λ, µ) partial difference set, where (k, λ, µ) are given in (35) if 0 ∈ AI and (k, λ, µ) are given in (36) if 0 /∈ AI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 25 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Note that if D is a (v, k, λ) difference set of a finite abelian group G, then G\\D is a (v, v − k, v − 2k + λ) difference set of G (for instance see [12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then the result follows from Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Proposition 3, the bent partition Γ1 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Γ2, Γ• 1, Γ• 2, Θ1, Θ2) satisfies the condition in Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Theorem 7, any union of sets from Γ1 (resp, Γ2, Γ• 1, Γ• 2, Θ1, Θ2) forms a partial difference set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Thus, the results given in Corollary 15 of [1] on constructing partial difference sets from Γ1 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Γ2, Γ• 1, Γ• 2, Θ1, Θ2) (which includes the results given in Theorem 2 of [2] on constructing partial difference sets from Γ1, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Γ2, in the finite field) can also be illustrated by our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Since the bent partitions constructed in Theorem 5 satisfy the condition in Theorem 7, we have the following corollary from Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let Γ = {Ai, i ∈ Fps} be a bent partition constructed by Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then when p = 2, s = 1, A0 and A1 are (2n, 2n−1 ± 2 n 2 −1, 2n−2 ± 2 n 2 −1) difference set and (2n, 2n−1 ∓ 2 n 2 −1, 2n−2 ∓ 2 n 2 −1) difference set, respectively, and when p is odd or s ≥ 2, for any nonempty set I ⊆ Fps, AI\\{0} = � i∈I Ai\\{0} is a (pn, k, λ, µ) partial difference set, where (k, λ, µ) are given in (35) with ε = 1 if 0 ∈ AI and (k, λ, µ) are given in (36) with ε = 1 if 0 /∈ AI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We give an example by Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let Γ = {DH,i, i ∈ F34} be the bent partition constructed in Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By Corol- lary 2, DH,i is a (1853020188851841, 22876791923520, 282470988879, 282429005040) partial difference set for any i ∈ F∗ 34, DH,0\\{0} is a (1853020188851841, 22876834970240, 282472051759, 282430067922) partial difference set, (DH,0 � DH,1)\\{0} is a (1853020188851841, 45753626893760, 1129760129761, 1129719208806) partial difference set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When p is an odd prime, we immediately obtain the following characterization of bent partitions of V (p) n satisfying Condition C from Theorems 3 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let p be an odd prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Let Γ = {Ai, i ∈ V (p) s } be a partition of V (p) n , where n is even and s ≤ n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Then the following two statements are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (1) Γ is a bent partition satisfying Condition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' (2) For any nonempty set I ⊆ V (p) s , AI\\{0} = � i∈I Ai\\{0} is a (pn, k, λ, µ) partial difference January 3, 2023 DRAFT 26 set with −AI = AI, where (k, λ, µ) are given in (35) if 0 ∈ AI and (k, λ, µ) are given in (36) if 0 /∈ AI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' CONCLUSION In this paper, we investigated relations between bent partitions and vectorial dual-bent functions (Theorems 1, 2, 3) and gave some new constructions of bent partitions satisfying Condition C (Corollary 1, Theorems 4 and 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' We illustrated that for any ternary weakly regular bent function f : V (3) n → F3 (n even) with f(x) = f(−x) and εf = −1, the generated bent partition by f is not coming from a normal bent partition (see Example 1), which answers an open problem proposed in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' By taking vectorial dual-bent functions as the link between bent partitions and partial difference sets, we give a sufficient condition on constructing partial difference sets from bent partitions (Theorem 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' When p is an odd prime, we characterized bent partitions satisfying Condition C in terms of partial difference sets (Theorem 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' REFERENCES [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Anbar, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Kalaycı, Amorphic association schemes from bent partitions, Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='researchgate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='net/publication/366593699 Amorphic association schemes from bent partitions [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Anbar, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Kalaycı and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Meidl, Bent partitions and partial difference sets, IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 68, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 6894-6903, 2022 [3] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Anbar, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Kalaycı and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Meidl, Generalized semifield spreads, Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Codes Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=', Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='1007/s10623- 022-01115-2 [4] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Anbar and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Meidl, Bent partitions, Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Codes Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 90, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 1081-1101, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Carlet and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Mesnager, Four decades of research on bent functions, Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Codes Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 78, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 5-50, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' C¸ es¸melio˘glu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Meidl, A construction of bent functions from plateaued functions, Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Codes Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 66, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 231-242, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' C¸ es¸melio˘glu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Meidl, Bent and vectorial bent functions, partial difference sets, and strongly regular graphs, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 691-705, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' C¸ es¸melio˘glu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Meidl, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Pirsic, Vectorial bent functions and partial difference sets, Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Codes Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 89, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 2313-2330, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' C¸ es¸melio˘glu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Meidl, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Pott, On the dual of (non)-weakly regular bent functions and self-dual bent functions, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 425-440, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' C¸ es¸melio˘glu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Meidl and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Pott, Vectorial bent functions and their duals, Linear Algebra Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 548, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 305-320, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Dillon, Elementary Hadamard difference sets, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Thesis, University of Maryland, 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [12] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Ding, Codes from Difference Sets, World Scientific, Singapore, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Hyun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Lee and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Lee, Ramanujan graphs and expander families constructed from p-ary bent functions, Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Codes Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 88, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='453-470, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' January 3, 2023 DRAFT 27 [14] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Lisonˇek and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Lu, Bent functions on partial spreads, Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Codes Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 73, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 209-216, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [15] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Kumar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Scholtz and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Welch, Generalized bent functions and their properties, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Comb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Theory Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' A, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 90-107, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Ma, A survey of partial difference sets, Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Codes Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 221-261, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [17] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Meidl, A survey on p-ary and generalized bent functions, Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 737-782, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [18] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Meidl and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Pirsic, Bent and Z2k-Bent functions from spread-like partitions, Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Codes Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 89, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 75-89, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [19] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Mesnager, Bent Functions-Fundamentals and Results, Springer, Switzerland, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Nyberg, Constructions of bent functions and difference sets, In: Advances in cryptology-EUROCRYPT’ 90, Lecture Notes in Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 473, Springer, Berlin, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 151-160, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [21] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Rothaus, On “bent” functions, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Comb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Theory Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' A, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' 300-305, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Wang and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Fu, New results on vectoril dual-bent functions and partial difference sets, Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' Codes Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=', Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} +page_content='1007/s10623-022-01103-6 January 3, 2023 DRAFT' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfsvlL/content/2301.00581v1.pdf'} diff --git a/N9E4T4oBgHgl3EQfjw0A/content/tmp_files/2301.05144v1.pdf.txt b/N9E4T4oBgHgl3EQfjw0A/content/tmp_files/2301.05144v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..ba4f4ef71eb65c2a28089215a97699dfee9c4804 --- /dev/null +++ b/N9E4T4oBgHgl3EQfjw0A/content/tmp_files/2301.05144v1.pdf.txt @@ -0,0 +1,792 @@ +Draft version January 13, 2023 +Typeset using LATEX twocolumn style in AASTeX631 +The implications of large binding energies of massive stripped core collapse supernova progenitors on +the explosion mechanism +Dmitry Shishkin1 and Noam Soker1 +1Department of Physics, Technion, Haifa, 3200003, Israel; s.dmitry@campus.technion.ac.il; soker@physics.technion.ac.il +(Dated: January 2023) +ABSTRACT +We examine the binding energy of massive stripped-envelope core collapse supernova (SECCSN) +progenitors with the stellar evolution code mesa, and find that only the jittering jets explosion mech- +anism can account for explosions where carbon-oxygen cores with masses of ≳ 20M⊙ collapse to leave +a neutron star (NS) remnant. We calculate the binding energy at core collapse under the assumption +that the remnant is a NS. Namely, stellar gas above mass coordinate of ≃ 1.5−2.5M⊙ is ejected in the +explosion. We find that the typical binding energy of the ejecta of stripped-envelope progenitors with +carbon-oxygen core masses of MCO ≳ 20M⊙ is Ebind ≳ 2 × 1051 erg. Since only jet-driven explosion +mechanisms can supply such high energies, we conclude that jets must explode such cores. We apply +our results to SN 2020qlb, which is a SECCSN with a claimed core mass of ≃ 30−50M⊙, and conclude +that the jittering jets explosion mechanism best account for such an explosion that leaves a NS. +Keywords: stars: jets – stars: massive – supernovae: general – supernovae: individual: 2020qlb +1. INTRODUCTION +The binding energy of a core collapse supernova +(CCSN) progenitor plays a crucial role in determining +the explosion outcome, like explosion energy and rem- +nant mass. Typical explosion energies are estimated to +be in the range of Eexp ≃ 1050 − 1052 erg (e.g., Yang +& Chevalier 2015; Utrobin et al. 2015; Gal-Yam 2019; +Burrows & Vartanyan 2021a). The binding energy of +the most massive pre-collapse cores have similar or even +larger values than these typical explosion energies (e.g., +Pejcha & Thompson 2015; Bruenn et al. 2016; Chan +et al. 2020; Wang et al. 2022; Burrows et al. 2020). The +explosion mechanism should both overcome the binding +energy and account for the explosion energy (radiation ++ final kinetic energy of the ejecta). +Two theoretical explosion mechanisms of non-rotating +(or slowly rotating) pre-collapse cores utilize the grav- +itational energy of the collapsing core to power CC- +SNe. These are the delayed-neutrino explosion mech- +anism (e.g., Bethe & Wilson 1985; Ertl et al. 2016; Bur- +rows et al. 2020; Bruenn et al. 2020; Bollig et al. 2021; +Burrows & Vartanyan 2021b; Zha et al. 2023) and the +jittering-jets explosion mechanism (e.g., Soker 2010; Pa- +pish & Soker 2011; Gilkis & Soker 2015; Soker 2019, +2022a). Studies show that the maximum energy that the +delayed neutrino mechanism can supply to overcome the +binding energy of the ejecta is ≃ 2 × 1051 erg, resulting +in maximum explosion energies (after removing binding +energy) of Eexp ≃ 2 × 1051 erg (e.g., Fryer et al. 2012; +Ertl et al. 2016; Sukhbold et al. 2016; Gogilashvili et al. +2021). In addition, the delayed neutrino mechanism has +problems in producing the observed amount of 56Ni, in +particular in stripped-envelope CCSNe (SECCSNe; for +a recent study see Sawada & Suwa 2023) +The jittering jets explosion mechanism, on the other +hand, can account for much larger explosion energies +(e.g., Gilkis et al. 2016; Soker 2022b). +The mag- +neto rotational explosion mechanism that works only +for rapidly rotating pre-collapse cores can also account +for large explosion energies (e.g., LeBlanc & Wilson +1970; Khokhlov et al. 1999; L´opez-C´amara et al. 2013; +Wheeler et al. 2015; Bromberg & Tchekhovskoy 2016; +Kuroda et al. 2020; Gottlieb et al. 2022c,a; Fujibayashi +et al. 2022; Powell et al. 2022) because the newly born +neutron star (NS) launches fixed-axis jets. Whether the +explosion is by jittering jets (most CCSNe according to +that model; e.g., Soker 2022b) or by fixed-axis jets, the +jets operate in a negative feedback cycle, i.e., the jet +feedback explosion mechanism (e.g., Soker 2016a). As +well, the jets can influence the direction of later jets (e.g., +Papish & Soker 2014; Gottlieb et al. 2022b). Even if the +stochastically accreted mass has sub-Keplerian angular +arXiv:2301.05144v1 [astro-ph.HE] 12 Jan 2023 + +2 +momentum, it might still form an accretion belt that +can launch jets (e.g., Schreier & Soker 2016; Garain & +Kim 2022). +The above discussion implies that CCSNe with large +kinetic energies of Eexp ≳ 2 × 1051, e.g., SN 2020jfo +(Ailawadhi et al. 2022 – Eexp += +2.9 × 1051 erg); +SN 2020qlb (West et al. 2022 – Eexp = 20 × 1051 erg); +SN 2012au (Pandey et al. 2021 – Eexp = 4.8 − 5.4 × +1051 erg) require jets to drive the explosion. +In this study we examine the interesting case of the +hydrogen-poor and super-energetic CCSN SN 2020qlb. +West et al. (2022) estimate the kinetic energy of +SN 2020qlb as ≃ 20 × 1051 erg and suggest that a mag- +netar supplies the large amount of energy of the ejecta. +They also provide fitting parameters for the magnetar +model (e.g., Maeda et al. 2007; Kasen & Bildsten 2010; +Woosley 2010; Metzger et al. 2015; Nicholl et al. 2017; +Gomez et al. 2022) and estimate the progenitor pre- +explosion mass, namely, about the ejecta plus the rem- +nant mass, to be Mej + Mrem ≃ few × 10M⊙. +It seems nonetheless, that there are two reasons why +the explosion of SN 2020qlb must be driven by jets and +not by the delayed neutrino mechanism. The first one is +that the formation of an energetic magnetar must be ac- +companied by the launching of even more energetic jets +at the explosion itself and possibly after the explosion +as well (e.g. Soker 2016b, 2017; Soker & Gilkis 2017; +Shankar et al. 2021; Soker 2022c,b). The second rea- +son is the new finding of the present study, where by a +stellar evolutionary code (section 2) we show (section 3) +that the binding energies of such massive cores are much +above what the delayed neutrino mechanism can supply +(Janka 2012; Soker 2022b). In section 4 we summarize +our results and discuss their implications in the context +of the jet feedback explosion mechanism. +2. NUMERICAL SCHEME +We use the stellar evolution code mesa (Paxton et al. +2010, 2013, 2015, 2018, 2019) to simulate the struc- +ture of 52 CCSN progenitor models, all with initial +metalicity of z = 0.02. +We base our numerical rou- +tine on the ‘20M pre ms to core collapse’ example from +mesa r22.05.1, but simulate the evolution using ver- +sion r15140. Starting from the zero age main sequence +(ZAMS), we evolve the star until center He depletion +(when helium abundance in the center is either ≃ 1% +or ≃ 5%), at which point we numerically remove the +hydrogen-rich envelope, leaving only the He core. We +then evolve the star until core-collapse. We introduce +several changes to the example routine to both adhere +to our requirements, i.e., having at least 21 isotopes +and having sufficiently high resolution (Shishkin & Soker +2021), and to fit mesa version r15140. We expand on +the numerical scheme in appendix A. +By varying the ZAMS stellar mass, the wind parame- +ters, and the exact time when we numerically remove +the envelope we obtain stripped-envelope CCSN pro- +genitors, i.e., hydrogen-poor stellar progenitors, with +varying mass of a carbon-oxygen (CO) core, MCO ≃ +4 − 35M⊙. This mass range of SECCSNe corresponds +to ZAMS stellar masses range of ≃ 20 − 82M⊙. In some +cases the core contains several solar masses of helium, +while in other cases the core has a much lower helium +mass, depending on the above parameters. +Because the inner part of the core collapses to form +a NS or a black hole (BH) remnant, only the binding +energy of the outer core is relevant to our study. We +calculate the binding energy of the outer core, Ebind(r), +by integrating over the sum of the internal energy and +gravitational energy from the surface down to the mass +coordinate that separates the ejecta and the final rem- +nant m = Min, i.e., the inner boundary of the ejecta. We +calculate the binding energy of the ejecta for two values +of this mass coordinate Min = 1.5 , 2.5M⊙, because we +consider cases where the remnant is a NS. +We refer to the latest evolution point we simulate +in the stellar evolution as collapse. This point of col- +lapse must adhere to an iron core more massive than +MFe > 1.5, where we assume collapse is imminent. This +value of iron core mass is more or less when the iron +core mass reaches its maximum value (as at the onset +of collapse the iron disintegrates). About half of simu- +lations reach infall velocities at the edge of the iron core +of vfe,infall > 100 km s−1. Other simulations encounter +numerical difficulties and we had to terminate them at +somewhat earlier times. +3. RESULTS +3.1. Binding Energy towards Collapse +As the stellar core evolves towards collapse and nu- +cleosynthesis of heavier elements takes place, the core +becomes denser and the binding energy of the inner lay- +ers of the star increases. We demonstrate this for one +stellar model of carbon-oxygen core mass (mainly oxy- +gen) of MCO = 13.2M⊙ in Fig 1 where we present the +star at three times: at center oxygen depletion, at cen- +ter silicon depletion, and at collapse. We present the +composition of the main isotopes by lines with differ- +ent colors and the binding energy Ebind(m) by the black +lines. Here Ebind(m) is the binding energy (gravitational ++ internal) of the envelope laying above mass coordi- +nate m. Relevant to this study is the binding energy +of the ejecta, which is the mass above mass coordinate +m = Min ≃ 1.5, 2.5M⊙. The mass Min is the baryonic + +3 +Figure 1. Abundances and the binding energy as function +of mass coordinate at three times for a SECCSN (hydrogen- +poor) progenitor model with carbon-oxygen core mass of +M collapse +CO += 13.2M⊙, which corresponds to a ZAMS mass of +MZAMS ≈ 40M⊙. The colored step-like lines are the abun- +dances according to the inset in the lower panel. The black +and smoothly varying lines represent Ebind(m), which is the +binding energy of the envelope laying above mass coordi- +nate m. The three panels present these quantities at three +different times: center oxygen depletion (upper panel, bind- +ing energy by the black solid-line), center silicon depletion +(middle panel; binding energy by the black dashed-line), core +collapse (lower panel; binding energy by black dotted-line). +Note that the middle panel contains the binding energy at +the three times to allow for comparison. The two vertical +lines mark the mass coordinates m = Min = 1.5M⊙ and +m = Min = 2.5M⊙. Helium that appears only at collapse +results from disintegration of iron. +mass of the NS remnant (the corresponding final gravi- +tational masses will be ≃ 1.35, 2.1M⊙). We mark these +two masses by the vertical lines. We see that at collapse +the binding energy Ebind(Min) is larger than at earlier +times. +In Fig. +2 we present composition and binding en- +ergy for a model with a much more massive core of +MCO = 27M⊙. +There are two qualitative differences +between this model and the one we present in Fig. 1. +The first qualitative difference is that the binding en- +Figure 2. Similar to Fig. 1 but for a more massive core of +M collapse +CO += 26.5M⊙, which corresponds to a ZAMS mass of +MZAMS ≈ 65M⊙. Note that the left vertical axis is scaled +differently than in Fig. 1. +ergy at collapse is somewhat smaller than at the earlier +time that we present in the figure. The explanation to +the decreasing binding energy shortly before collapse is +that the envelope expands starting from deep in the oxy- +gen burning shell and outwards. We find (by drawing +the density profiles) that moving from the upper to the +middle panel of Fig. 2 the density from m ≃ 10M⊙ and +outward decreases, reducing the binding energy. This +mass coordinate is deep inside the shell where oxygen +(teal line) burns to S+Si (yellow line). +The second qualitative difference comes from the much +higher binding energy of the ejecta of the descendant +CCSN of the more massive model, i.e., Ebind(Min) ≳ 2× +1051 erg. The implication is that we do not expect that +the neutrino driven explosion mechanism can account +for explosions of such cores. We argue that jets explode +these cores. We leave the discussion of this point, as +well as our view that jets also explode cores with lower +binding energy, to section 4, where we also refer to the +claim of a very massive core of SN 2020qlb (West et al. +2022). +We first find the range of such high-binding- +energy cores. + +0 +3 +OCoreDepletion +2 +91 +erg +0 +SiCoreDepletion +BEatO +dep. +BEatSi +dep +BEatCollapse +2 +0 +3 +Collapse +2 +Helium +Carbon +Oxygen +S+Si +"Fe Group" +2 +0 +2 +4 +6 +8 +10 +12Abundance6 +0 +4 +OCoreDepletion +2 +6 +0 +Si Core Depletion +BEatOont +. dep. +- BEat Si +dep +"BEatCollapse +2 +0 +4 +Collapse +2 +Helium +Oxygen +"Fe Group' +Carbon +S+Si +2 +0 +4 +8 +12 +16 +20 +24Abundance4 +3.2. High-binding-energy cores +We search for the mass range of cores that have bind- +ing energies at collapse of Ebind(Min) ≳ 2×1051 erg. We +present the results in Fig. 3. We present the binding en- +ergy for an inner ejecta mass coordinate of Min = 2.5M⊙ +(upper panel) and Min = 1.5M⊙ (lower panel). +We +focus on the binding energy of these two mass coordi- +nates Min = 1.5 − 2.5M⊙ as the iron core masses at col- +lapse falls within this mass range. The horizontal line +at 2 × 1051 erg is the approximate energy above which +we do not expect that neutrino heating by itself can ex- +plode the core. In appendix B we provide linear fits to +the binding energy at collapse as function of CO core +mass for these two mass coordinates Min = 1.5, 2.5M⊙ +(table B.1). +We simulated 52 stripped-hydrogen envelope cases. In +27 cases the cores reach collapse as we present by the +red circles in the figure. In 25 cases cases the numeri- +cal code encountered difficulties and we had to stop the +simulation before reaching collapse. In these cases we +extrapolate from an evolutionary time before collapse +to the collapse time as we explain in appendix B (red +stars in the figure). We also include 35 in the figure the +binding energies of models with hydrogen-rich envelope +that we take from Shishkin & Soker (2022), as we mark +by open purple circles. +From Fig. 3 (with a more rigorous derivation in ap- +pendix B) we draw our conclusion that in cases where +the inner mass of Min = 2.5M⊙ of the core collapses +to form a NS, the delayed neutrino mechanism cannot +explode cores with masses of MCO ≳ 15M⊙ (or maybe +rarely do so). For Min = 1.5M⊙ we find this limit to be +MCO ≳ 13M⊙. +In Fig. 4 we present a more detailed binding energy +profile of the pre-collapse stripped-envelope models that +we simulated. When we take the lowest binding energy +of the inner core at the onset of collapse we find the limit +of core mass that the neutrino-driven explosion cannot +account for to be MCO > 20M⊙. Namely, still a large +range. +In table B.1 we provide the linear fit parameters for +the binding energy at collapse for the edge of the iron +core (gray squares in the figure) and the binding energy +curve break (black circles). The binding energy curve +break is point we refer to as separating the inner core +from the outer core, and is the point of lowest binding +energy for most simulated cases that reached collapse. +4. DISCUSSION AND SUMMARY +We simulated the evolution of 52 massive SECCSN +progenitor models corresponding to ZAMS masses of +20 ≲ MZAMS ≲ 82. We removed the entire hydrogen- +rich envelope, and calculated the binding energy just +before core collapse. +The final core mass depends on +the ZAMS mass and on the mass loss parameter (ap- +pendix C). We present the structure of the pre-collapse +progenitor for two cases in Figs. 1 and 2. We find that +to a fare accuracy we can linearly fit the binding energy +of these stripped-envelope progenitors to the CO core +mass MCO (Fig. 3 and table B.1). +We present our main results in Fig. +3. +In those +figures the horizontal gray line represents the approx- +imate maximum energy that the neutrino-driven mech- +anism can supply, Emax +ν += 2 × 1051 erg. We find that +the binding energy calculated at Min = 1.5M⊙ and +Min = 2.5M⊙, of progenitors with a carbon-oxygen core +mass of MCO ≳ 13M⊙ and MCO ≳ 15M⊙, respectively, +are larger than Emax +ν +. Namely, +Emax +ν +≲ +� +� +� +Ebind,1.5 +for +MCO ≳ 13M⊙ +Ebind,2.5 +for +MCO ≳ 15M⊙. +(1) +The main conclusion is that the delayed neutrino ex- +plosion mechanism cannot explode stars with a core +mass of MCO ≳ 13 − 15M⊙. The jittering jets explosion +mechanism, on the other hand, has no limiting explosion +energy in these ranges as it is fueled by accretion onto +the compact remnant (e.g., (Gilkis et al. 2016; Soker & +Gilkis 2017)). +Let us apply our results to a specific SECCSN. In a +recent paper West et al. (2022) deduce that SN 2020qlb +had an explosion energy of ≃ 20×1051 erg and estimate +the progenitor pre-explosion mass, ejecta plus remnant +mass, to be Mej + Mrem ≃ 30 − 50M⊙. According to +our results the binding energy alone of such cores is +Ebind > 3 × 1051 erg. We therefore conclude that jets +must have exploded SN 2020qlb. Jets can also supply +the kinetic energy of the ejecta. Namely, jet-driven ex- +plosions might make the magnetar powering less criti- +cal or not needed at all (although a magnetar might be +present). Most likely the explosion is via jittering jets. +The reason is that an explosion driven by a fixed-axis +jets, like if the core is rapidly rotating, will not expel +mass from the equatorial region, which it turn is ac- +creted by the newly formed central object. Therefore, +the final mass of the remnant will be large and the rem- +nant will be a BH (see discussion in Soker 2022b). +On a large scope, our study adds to the growing evi- +dence pointing to the major roles that jets play in the +explosion, as well as pre-explosion and post-explosion, +of CCSNe (for a recent review see Soker 2022b). +ACKNOWLEDGMENTS +This research was supported by a grant from the Israel +Science Foundation (769/20). + +5 +Figure 3. The binding energies of the simulated models as a function of the carbon-oxygen core mass nearing collapse (vertical +axis). The panels show the final binding energy at two mass coordinates: Min = 2.5M⊙ (top) and Min = 1.5M⊙ (bottom). The +red data points (filled circles and stars at the outer panels) are stripped-envelope (SE) models (SECCSNe), whilst purple empty- +circles data points are models from Shishkin & Soker (2022) that have hydrogen rich envelopes. Red stars are extrapolated +data points, as explained in appendix B. The horizontal line at 2 × 1051 erg denotes the binding energy above which we do not +expect the neutrino delayed explosion mechanism to explode the core. +Data availability +The data underlying this article will be shared upon +reasonable request to the corresponding author. +REFERENCES +Ailawadhi, B., Dastidar, R., Misra, K., et al. 2022, arXiv +e-prints, arXiv:2211.02823. +https://arxiv.org/abs/2211.02823 +Angulo, C., Arnould, M., Rayet, M., et al. 1999, NuPhA, +656, 3, doi: 10.1016/S0375-9474(99)00030-5 +Bethe, H. A., & Wilson, J. R. 1985, ApJ, 295, 14, +doi: 10.1086/163343 +Blouin, S., Shaffer, N. R., Saumon, D., & Starrett, C. E. +2020, ApJ, 899, 46, doi: 10.3847/1538-4357/ab9e75 +B¨ohm-Vitense, E. 1958, ZA, 46, 108 +Bollig, R., Yadav, N., Kresse, D., et al. 2021, ApJ, 915, 28, +doi: 10.3847/1538-4357/abf82e +Bromberg, O., & Tchekhovskoy, A. 2016, MNRAS, 456, +1739, doi: 10.1093/mnras/stv2591 +Bruenn, S. W., Lentz, E. J., Hix, W. R., et al. 2016, ApJ, +818, 123, doi: 10.3847/0004-637X/818/2/123 +Bruenn, S. W., Blondin, J. M., Hix, W. R., et al. 2020, +ApJS, 248, 11, doi: 10.3847/1538-4365/ab7aff +Burrows, A., Radice, D., Vartanyan, D., et al. 2020, +MNRAS, 491, 2715, doi: 10.1093/mnras/stz3223 + +6 +Figure 4. Upper panel: The binding energies of the simulated stripped-envelope models (vertical axis) as a function of the +mass coordinate (horizontal axis) at collapse. The color of each line signifies the final CO core mass at collapse, scaled with the +color bar on the right. Black dots mark the mass coordinate where there is a steep decrease in the density inside the core. Gray +squares denote the edge of the iron core. Lower panel: The binding energy for hydrogen-rich envelope models from Shishkin & +Soker (2022). The grey horizontal line marks more or less the upper binding energy that the neutrino delayed mechanism can +account for. +Burrows, A., & Vartanyan, D. 2021a, Nature, 589, 29, +doi: 10.1038/s41586-020-03059-w +—. 2021b, Nature, 589, 29, +doi: 10.1038/s41586-020-03059-w +Cassisi, S., Potekhin, A. Y., Pietrinferni, A., Catelan, M., & +Salaris, M. 2007, ApJ, 661, 1094, doi: 10.1086/516819 +Chan, C., M¨uller, B., & Heger, A. 2020, MNRAS, 495, +3751, doi: 10.1093/mnras/staa1431 +Chugunov, A. I., Dewitt, H. E., & Yakovlev, D. G. 2007, +PhRvD, 76, 025028, doi: 10.1103/PhysRevD.76.025028 +Cyburt, R. H., Amthor, A. M., Ferguson, R., et al. 2010, +ApJS, 189, 240, doi: 10.1088/0067-0049/189/1/240 +Ertl, T., Janka, H. T., Woosley, S. E., Sukhbold, T., & +Ugliano, M. 2016, ApJ, 818, 124, +doi: 10.3847/0004-637X/818/2/124 +Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, +ApJ, 623, 585, doi: 10.1086/428642 +Fryer, C. L., Belczynski, K., Wiktorowicz, G., et al. 2012, +ApJ, 749, 91, doi: 10.1088/0004-637X/749/1/91 + +6 +35 +Stripped Envelope +5 +30 +erg] +25 +CO core mass [M. +4 +20 +Y +15 +10 +5 +0 +654332 +14 +No envelope remova +12 +MZAMs 11-48 [M。] progenitors +10 +CO core [M +8642 +1 +0 +0 +0 +1 +2 +3 +4 +5 +6 +7 +8 +mass coordinate [M。]7 +Fujibayashi, S., Sekiguchi, Y., Shibata, M., & Wanajo, S. +2022, arXiv e-prints, arXiv:2212.03958. +https://arxiv.org/abs/2212.03958 +Fuller, G. M., Fowler, W. A., & Newman, M. J. 1985, ApJ, +293, 1, doi: 10.1086/163208 +Gal-Yam, A. 2019, ARA&A, 57, 305, +doi: 10.1146/annurev-astro-081817-051819 +Garain, S. K., & Kim, J. 2022, arXiv e-prints, +arXiv:2212.08310. https://arxiv.org/abs/2212.08310 +Gilkis, A., & Soker, N. 2015, ApJ, 806, 28, +doi: 10.1088/0004-637X/806/1/28 +Gilkis, A., Soker, N., & Papish, O. 2016, ApJ, 826, 178, +doi: 10.3847/0004-637X/826/2/178 +Gogilashvili, M., Murphy, J. W., & Mabanta, Q. 2021, +MNRAS, 500, 5393, doi: 10.1093/mnras/staa3546 +Gomez, S., Berger, E., Nicholl, M., Blanchard, P. K., & +Hosseinzadeh, G. 2022, ApJ, 941, 107, +doi: 10.3847/1538-4357/ac9842 +Gottlieb, O., Lalakos, A., Bromberg, O., Liska, M., & +Tchekhovskoy, A. 2022a, MNRAS, 510, 4962, +doi: 10.1093/mnras/stab3784 +Gottlieb, O., Liska, M., Tchekhovskoy, A., et al. 2022b, +ApJL, 933, L9, doi: 10.3847/2041-8213/ac7530 +Gottlieb, O., Tchekhovskoy, A., & Margutti, R. 2022c, +MNRAS, 513, 3810, doi: 10.1093/mnras/stac910 +Henyey, L., Vardya, M. S., & Bodenheimer, P. 1965, ApJ, +142, 841, doi: 10.1086/148357 +Herwig, F. 2000, A&A, 360, 952. +https://arxiv.org/abs/astro-ph/0007139 +Iglesias, C. A., & Rogers, F. J. 1993, ApJ, 412, 752, +doi: 10.1086/172958 +—. 1996, ApJ, 464, 943, doi: 10.1086/177381 +Irwin, A. W. 2004, The FreeEOS Code for Calculating the +Equation of State for Stellar Interiors. +http://freeeos.sourceforge.net/ +Itoh, N., Hayashi, H., Nishikawa, A., & Kohyama, Y. 1996, +ApJS, 102, 411, doi: 10.1086/192264 +Janka, H.-T. 2012, Annual Review of Nuclear and Particle +Science, 62, 407, +doi: 10.1146/annurev-nucl-102711-094901 +Jermyn, A. S., Schwab, J., Bauer, E., Timmes, F. X., & +Potekhin, A. Y. 2021, ApJ, 913, 72, +doi: 10.3847/1538-4357/abf48e +Kasen, D., & Bildsten, L. 2010, ApJ, 717, 245, +doi: 10.1088/0004-637X/717/1/245 +Khokhlov, A. M., H¨oflich, P. A., Oran, E. S., et al. 1999, +ApJL, 524, L107, doi: 10.1086/312305 +Kuroda, T., Arcones, A., Takiwaki, T., & Kotake, K. 2020, +ApJ, 896, 102, doi: 10.3847/1538-4357/ab9308 +Langanke, K., & Mart´ınez-Pinedo, G. 2000, Nuclear +Physics A, 673, 481, doi: 10.1016/S0375-9474(00)00131-7 +LeBlanc, J. M., & Wilson, J. R. 1970, ApJ, 161, 541, +doi: 10.1086/150558 +Ledoux, P. 1947, ApJ, 105, 305, doi: 10.1086/144905 +L´opez-C´amara, D., Morsony, B. J., Begelman, M. C., & +Lazzati, D. 2013, ApJ, 767, 19, +doi: 10.1088/0004-637X/767/1/19 +Maeda, K., Tanaka, M., Nomoto, K., et al. 2007, ApJ, 666, +1069, doi: 10.1086/520054 +Metzger, B. D., Margalit, B., Kasen, D., & Quataert, E. +2015, MNRAS, 454, 3311, doi: 10.1093/mnras/stv2224 +Nicholl, M., Guillochon, J., & Berger, E. 2017, ApJ, 850, +55, doi: 10.3847/1538-4357/aa9334 +Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 360, 227 +Oda, T., Hino, M., Muto, K., Takahara, M., & Sato, K. +1994, Atomic Data and Nuclear Data Tables, 56, 231, +doi: 10.1006/adnd.1994.1007 +Pandey, S. B., Kumar, A., Kumar, B., et al. 2021, MNRAS, +507, 1229, doi: 10.1093/mnras/stab1889 +Papish, O., & Soker, N. 2011, MNRAS, 416, 1697, +doi: 10.1111/j.1365-2966.2011.18671.x +—. 2014, MNRAS, 443, 664, doi: 10.1093/mnras/stu1129 +Paxton, B., Bildsten, L., Dotter, A., et al. 2010, ApJS, 192, +3, doi: 10.1088/0067-0049/192/1/3 +Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, +4, doi: 10.1088/0067-0049/208/1/4 +Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, +220, 15, doi: 10.1088/0067-0049/220/1/15 +Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, +234, 34, doi: 10.3847/1538-4365/aaa5a8 +Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, +10, doi: 10.3847/1538-4365/ab2241 +Pejcha, O., & Thompson, T. A. 2015, ApJ, 801, 90, +doi: 10.1088/0004-637X/801/2/90 +Potekhin, A. Y., & Chabrier, G. 2010, Contributions to +Plasma Physics, 50, 82, doi: 10.1002/ctpp.201010017 +Poutanen, J. 2017, ApJ, 835, 119, +doi: 10.3847/1538-4357/835/2/119 +Powell, J., Mueller, B., Aguilera-Dena, D. R., & Langer, N. +2022, arXiv e-prints, arXiv:2212.00200. +https://arxiv.org/abs/2212.00200 +Rogers, F. J., & Nayfonov, A. 2002, ApJ, 576, 1064, +doi: 10.1086/341894 +Saumon, D., Chabrier, G., & van Horn, H. M. 1995, ApJS, +99, 713, doi: 10.1086/192204 +Sawada, R., & Suwa, Y. 2023, arXiv e-prints, +arXiv:2301.03610. https://arxiv.org/abs/2301.03610 +Schreier, R., & Soker, N. 2016, Research in Astronomy and +Astrophysics, 16, 70, doi: 10.1088/1674-4527/16/5/070 + +8 +Shankar, S., M¨osta, P., Barnes, J., Duffell, P. C., & Kasen, +D. 2021, MNRAS, 508, 5390, +doi: 10.1093/mnras/stab2964 +Shishkin, D., & Soker, N. 2021, MNRAS: Letters, 508, L43, +doi: 10.1093/mnrasl/slab105 +Shishkin, D., & Soker, N. 2022, MNRAS, 513, 4224, +doi: 10.1093/mnras/stac1075 +Soker, N. 2010, MNRAS, 401, 2793, +doi: 10.1111/j.1365-2966.2009.15862.x +—. 2016a, NewAR, 75, 1, doi: 10.1016/j.newar.2016.08.002 +—. 2016b, NewA, 47, 88, doi: 10.1016/j.newast.2016.02.009 +—. 2017, ApJL, 839, L6, doi: 10.3847/2041-8213/aa6a10 +—. 2019, Research in Astronomy and Astrophysics, 19, 095, +doi: 10.1088/1674-4527/19/7/95 +—. 2022a, Research in Astronomy and Astrophysics, 22, +095007, doi: 10.1088/1674-4527/ac7cbc +—. 2022b, Research in Astronomy and Astrophysics, 22, +122003, doi: 10.1088/1674-4527/ac9782 +—. 2022c, ApJ, 935, 108, doi: 10.3847/1538-4357/ac822d +Soker, N., & Gilkis, A. 2017, ApJ, 851, 95, +doi: 10.3847/1538-4357/aa9c83 +Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & +Janka, H. T. 2016, ApJ, 821, 38, +doi: 10.3847/0004-637X/821/1/38 +Timmes, F. X. 1999, ApJS, 124, 241, doi: 10.1086/313257 +Timmes, F. X., & Swesty, F. D. 2000, ApJS, 126, 501, +doi: 10.1086/313304 +Utrobin, V. P., Wongwathanarat, A., Janka, H. T., & +M¨uller, E. 2015, A&A, 581, A40, +doi: 10.1051/0004-6361/201425513 +Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, +A&A, 369, 574, doi: 10.1051/0004-6361:20010127 +Wang, T., Vartanyan, D., Burrows, A., & Coleman, M. +S. B. 2022, MNRAS, 517, 543, +doi: 10.1093/mnras/stac2691 +West, S. L., Lunnan, R., Omand, C. M. B., et al. 2022, +arXiv e-prints, arXiv:2205.11143. +https://arxiv.org/abs/2205.11143 +Wheeler, J. C., Kagan, D., & Chatzopoulos, E. 2015, ApJ, +799, 85, doi: 10.1088/0004-637X/799/1/85 +Woosley, S. E. 2010, ApJL, 719, L204, +doi: 10.1088/2041-8205/719/2/L204 +Yang, H., & Chevalier, R. A. 2015, ApJ, 806, 153, +doi: 10.1088/0004-637X/806/2/153 +Zha, S., M¨uller, B., Weir, A., & Heger, A. 2023, arXiv +e-prints, arXiv:2301.00359. +https://arxiv.org/abs/2301.00359 + +9 +APPENDIX +A. NUMERICAL PRESCRIPTION DETAILS +Our numerical scheme files (‘inlists’) are a modified version of the ‘20 pre ms to cc’ mesa version r22.05.1 ‘test suite’ +example. We adapted this example to run on mesa version r15140 and incorporated certain parameters (e.g., over- +shooting and mesh resolution) according to our previous works (Shishkin & Soker 2021; Shishkin & Soker 2022). The +full ’inlists’ that we used are available online1. Here we mention some of the important parameters. +In a similar fashion to our previous works which focus on the convective profile of the inner layers of massive stars +(Shishkin & Soker 2021; Shishkin & Soker 2022), we use the exponential overshooting prescription (Herwig 2000) +with symmetrical (both ‘bottom’ and ‘above’) and uniform (all burning regions) settings and f = 0.01, f0 = 0.004 +parameters. +We chose the Henyey scheme (Henyey et al. 1965) for mixing length theory (MLT, B¨ohm-Vitense 1958) with +αMLT = 1.5. +We also enable the Ledoux criterion (Ledoux 1947) and set thermohaline option to ‘Kippenhahn’ +with ‘thermohaline coeff = 1’ alongside ‘alpha semiconvection = 0.01. +We make use of the ’Dutch’ wind loss scheme (e.g., Vink et al. 2001; Nugis & Lamers 2000), and vary the scaling +factor (along with the initial mass) to achieve different core masses. +For the nuclear network we use the 22 isotopes of ‘approx21 cr60 plus co56’ (e.g., Timmes 1999), aimed at +stellar evolution up to collapse. +This network includes hydrogen, He3 and He4 up to the heavier isotopes of +Fe52 , Fe54 , Fe56 , Co56 , Ni56 , Cr60. +We scale mesh refinement gradually up to ‘max dq’ values of 1d − 4 at the later stages (from the default value of +1d − 2) to properly resolve the fine burning features close to core collapse. +The mesa equation of state (EOS) is a blend of the OPAL (Rogers & Nayfonov 2002), SCVH (Saumon et al. 1995), +FreeEOS (Irwin 2004), HELM (Timmes & Swesty 2000), PC (Potekhin & Chabrier 2010), and Skye (Jermyn et al. +2021) EOSs. Nuclear reaction rates are from JINA REACLIB (Cyburt et al. 2010), NACRE (Angulo et al. 1999) and +additional tabulated weak reaction rates Fuller et al. (1985); Oda et al. (1994); Langanke & Mart´ınez-Pinedo (2000). +Screening is included via the prescription of Chugunov et al. (2007). Thermal neutrino loss rates are from Itoh et al. +(1996). Radiative opacities are primarily from OPAL (Iglesias & Rogers 1993, 1996), with low-temperature data from +Ferguson et al. (2005) and the high-temperature, Compton-scattering dominated regime by Poutanen (2017). Electron +conduction opacities are from Cassisi et al. (2007) and Blouin et al. (2020). +B. BINDING ENERGY ESTIMATION +Because of numerical difficulties of stripped-envelope progenitors (specifically some steep gradients) some simulations +did not reach the phase of core collapse, although they did reach oxygen depletion and/or silicon depletion at the center. +Time steps became much too short and we had to terminate the simulations before core collapse. In these cases we +estimated the binding energy at collapse (red-stars in Fig. 3) by extrapolating the binding energy during earlier phases +using linear fits. +We made linear fits to the binding energies as function of the CO core masses at three evolutionary phases: oxygen +depletion, silicon depletion, and core collapse. In Fig. B.1 we present these three fittings by blue, orange, and red +lines, respectively, for Min = 2.5M⊙ (upper panel) and Min = 1.5M⊙ (lower panel). From these three lines we can find +the ratio of the binding energy at core collapse to the binding energy at oxygen depletion and to the binding energy +at silicon depletion. In cases where we did not reach core collapse we use this ratio at the given CO core mass to +calculate the expected binding energy at core collapse. We mark these energies by red-stars in Fig. B.1 and use them +in Fig. 3. Error bars attached to the red stars signify the 1σ intervals of the this extrapolation procedure. We note +that the CO core mass does not change much after oxygen depletion in the non-extended helium phase. The average +difference between the CO core mass at central oxygen depletion and at core collapse is ∆mcore +CO = 0.06 ± 0.33M⊙. +1 Zenodo: Modified inlists to reproduce the models. Also included +a full simulation list and the simulated models at different time +points. + +10 +Figure B.1. The binding energy of the envelope above mass coordinate Min = 2.5M⊙ (upper panel) and Min = 1.5M⊙ (lower +panel) as a function of the final carbon-oxygen core mass. The blue circles are at central oxygen depletion (5% oxygen in the +center), the orange circles are at silicon depletion (5% silicon in the center), and red circles are at core collapse. The three +respective lines are the linear fit to the points. Red stars are the extrapolated values for the binding energy at collapse based +on available earlier data points (oxygen depletion or silicon depletion) for the cases that did not reach collapse (see text). +We fit the binding energy Ebind versus the CO core mass MCO by a linear fit Ebind = aMCO + b. In Table B.1 we +list the values of the two coefficients for the six lines (three stage for two values of the mass that collapses to form the +NS). We also list (last column) the number of data points that were used at each fitting. + +11 +aMCO + b +Fit1.5M⊙ +Fit2.5M⊙ +FitBEbreak +FitFecore +No. of points +Collapse +a [1051erg/M⊙] +0.122 ± 0.024 +0.137 ± 0.024 +0.117 ± 0.021 +0.114 ± 0.02 +27 +b [1051erg] +0.537 ± 0.46 +−0.053 ± 0.444 +0.165 ± 0.423 +0.442 ± 0.406 +Sicntr depletion +a [1051erg/M⊙] +0.132 ± 0.017 +0.145 ± 0.02 +−− +−− +43 +b [1051erg] +0.159 ± 0.38 +−0.099 ± 0.445 +−− +−− +Ocntr depletion +a [1051erg/M⊙] +0.15 ± 0.017 +0.175 ± 0.02 +−− +−− +47 +b [1051erg] +0.002 ± 0.394 +−0.447 ± 0.479 +−− +−− +Table B.1. The linear fits to the lines in Fig. B.1 and the number of data points for each of the simulation groups: at collapse +(second row), at center silicon depletion (third row) and center oxygen depletion (bottom row). The third and fourth columns +are the fits to the binding energy Ebind,1.5, Ebind,2.5 at mass coordinates Min = 1.5M⊙ and Min = 2.5M⊙, respectively. In the +fifth column we present the linear fit to the variation of the binding energy at the black dots in Fig. 4 with the CO core mass. +In the fifth column we present the linear fit to the variation of the binding energy at the edge of the iron core (gray squares in +Fig. 4) with the CO core mass. Linear fits are in units of energy Ebind [1051erg] to CO core mass MCO [M⊙]. Values and errors +(2σ) are in accordance with Fig. B.1. + +12 +C. SIMULATIONS LIST +In Fig. C.2 we present the simulations that we conducted in a three-parameters space. As input we show the dutch +wind scaling factor in mesa in the range of 0.5 < αDutch,wind < 1 and the zero age main sequence (ZAMS) mass in the +range of 20M⊙ < MZAMS < 82M⊙. As an output we present the final CO core mass (mainly oxygen mass) in units of +solar mass according to the color bar. +Figure C.2. Wind (Dutch scheme) scaling factors (vertical axis) and the ZAMS masses of the cases (horizontal axis) that we +simulated, and the final CO core mass (by color bar). We denote with a black X the cases where we extended the He burning +to a later stage before removing the hydrogen envelope. + diff --git a/N9E4T4oBgHgl3EQfjw0A/content/tmp_files/load_file.txt b/N9E4T4oBgHgl3EQfjw0A/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..510afb29835af4deff3f50a2521527a8ecd2b025 --- /dev/null +++ b/N9E4T4oBgHgl3EQfjw0A/content/tmp_files/load_file.txt @@ -0,0 +1,930 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf,len=929 +page_content='Draft version January 13, 2023 Typeset using LATEX twocolumn style in AASTeX631 The implications of large binding energies of massive stripped core collapse supernova progenitors on the explosion mechanism Dmitry Shishkin1 and Noam Soker1 1Department of Physics, Technion, Haifa, 3200003, Israel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='dmitry@campus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='technion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='il;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' soker@physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='technion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='il (Dated: January 2023) ABSTRACT We examine the binding energy of massive stripped-envelope core collapse supernova (SECCSN) progenitors with the stellar evolution code mesa, and find that only the jittering jets explosion mech- anism can account for explosions where carbon-oxygen cores with masses of ≳ 20M⊙ collapse to leave a neutron star (NS) remnant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We calculate the binding energy at core collapse under the assumption that the remnant is a NS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Namely, stellar gas above mass coordinate of ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ is ejected in the explosion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We find that the typical binding energy of the ejecta of stripped-envelope progenitors with carbon-oxygen core masses of MCO ≳ 20M⊙ is Ebind ≳ 2 × 1051 erg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Since only jet-driven explosion mechanisms can supply such high energies, we conclude that jets must explode such cores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We apply our results to SN 2020qlb, which is a SECCSN with a claimed core mass of ≃ 30−50M⊙, and conclude that the jittering jets explosion mechanism best account for such an explosion that leaves a NS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Keywords: stars: jets – stars: massive – supernovae: general – supernovae: individual: 2020qlb 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' INTRODUCTION The binding energy of a core collapse supernova (CCSN) progenitor plays a crucial role in determining the explosion outcome, like explosion energy and rem- nant mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Typical explosion energies are estimated to be in the range of Eexp ≃ 1050 − 1052 erg (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Yang & Chevalier 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Utrobin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Gal-Yam 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Burrows & Vartanyan 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The binding energy of the most massive pre-collapse cores have similar or even larger values than these typical explosion energies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Pejcha & Thompson 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Bruenn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Chan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Burrows et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The explosion mechanism should both overcome the binding energy and account for the explosion energy (radiation + final kinetic energy of the ejecta).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Two theoretical explosion mechanisms of non-rotating (or slowly rotating) pre-collapse cores utilize the grav- itational energy of the collapsing core to power CC- SNe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' These are the delayed-neutrino explosion mech- anism (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Bethe & Wilson 1985;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Ertl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Bur- rows et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Bruenn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Bollig et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Burrows & Vartanyan 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Zha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2023) and the jittering-jets explosion mechanism (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Soker 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Pa- pish & Soker 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Gilkis & Soker 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Soker 2019, 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Studies show that the maximum energy that the delayed neutrino mechanism can supply to overcome the binding energy of the ejecta is ≃ 2 × 1051 erg, resulting in maximum explosion energies (after removing binding energy) of Eexp ≃ 2 × 1051 erg (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Fryer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Ertl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Sukhbold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Gogilashvili et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In addition, the delayed neutrino mechanism has problems in producing the observed amount of 56Ni, in particular in stripped-envelope CCSNe (SECCSNe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' for a recent study see Sawada & Suwa 2023) The jittering jets explosion mechanism, on the other hand, can account for much larger explosion energies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Gilkis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Soker 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The mag- neto rotational explosion mechanism that works only for rapidly rotating pre-collapse cores can also account for large explosion energies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', LeBlanc & Wilson 1970;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Khokhlov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' L´opez-C´amara et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Wheeler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Bromberg & Tchekhovskoy 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Kuroda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Gottlieb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022c,a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Fujibayashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Powell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022) because the newly born neutron star (NS) launches fixed-axis jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Whether the explosion is by jittering jets (most CCSNe according to that model;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Soker 2022b) or by fixed-axis jets, the jets operate in a negative feedback cycle, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', the jet feedback explosion mechanism (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Soker 2016a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' As well, the jets can influence the direction of later jets (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Papish & Soker 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Gottlieb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Even if the stochastically accreted mass has sub-Keplerian angular arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='05144v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='HE] 12 Jan 2023 2 momentum, it might still form an accretion belt that can launch jets (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Schreier & Soker 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Garain & Kim 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The above discussion implies that CCSNe with large kinetic energies of Eexp ≳ 2 × 1051, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', SN 2020jfo (Ailawadhi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022 – Eexp = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='9 × 1051 erg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' SN 2020qlb (West et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022 – Eexp = 20 × 1051 erg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' SN 2012au (Pandey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021 – Eexp = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='8 − 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='4 × 1051 erg) require jets to drive the explosion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In this study we examine the interesting case of the hydrogen-poor and super-energetic CCSN SN 2020qlb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' West et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' (2022) estimate the kinetic energy of SN 2020qlb as ≃ 20 × 1051 erg and suggest that a mag- netar supplies the large amount of energy of the ejecta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' They also provide fitting parameters for the magnetar model (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Maeda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Kasen & Bildsten 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Woosley 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Metzger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Nicholl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Gomez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022) and estimate the progenitor pre- explosion mass, namely, about the ejecta plus the rem- nant mass, to be Mej + Mrem ≃ few × 10M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' It seems nonetheless, that there are two reasons why the explosion of SN 2020qlb must be driven by jets and not by the delayed neutrino mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The first one is that the formation of an energetic magnetar must be ac- companied by the launching of even more energetic jets at the explosion itself and possibly after the explosion as well (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Soker 2016b, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Soker & Gilkis 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Shankar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Soker 2022c,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The second rea- son is the new finding of the present study, where by a stellar evolutionary code (section 2) we show (section 3) that the binding energies of such massive cores are much above what the delayed neutrino mechanism can supply (Janka 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Soker 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In section 4 we summarize our results and discuss their implications in the context of the jet feedback explosion mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' NUMERICAL SCHEME We use the stellar evolution code mesa (Paxton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2010, 2013, 2015, 2018, 2019) to simulate the struc- ture of 52 CCSN progenitor models, all with initial metalicity of z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We base our numerical rou- tine on the ‘20M pre ms to core collapse’ example from mesa r22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1, but simulate the evolution using ver- sion r15140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Starting from the zero age main sequence (ZAMS), we evolve the star until center He depletion (when helium abundance in the center is either ≃ 1% or ≃ 5%), at which point we numerically remove the hydrogen-rich envelope, leaving only the He core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We then evolve the star until core-collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We introduce several changes to the example routine to both adhere to our requirements, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', having at least 21 isotopes and having sufficiently high resolution (Shishkin & Soker 2021), and to fit mesa version r15140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We expand on the numerical scheme in appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' By varying the ZAMS stellar mass, the wind parame- ters, and the exact time when we numerically remove the envelope we obtain stripped-envelope CCSN pro- genitors, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', hydrogen-poor stellar progenitors, with varying mass of a carbon-oxygen (CO) core, MCO ≃ 4 − 35M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' This mass range of SECCSNe corresponds to ZAMS stellar masses range of ≃ 20 − 82M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In some cases the core contains several solar masses of helium, while in other cases the core has a much lower helium mass, depending on the above parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Because the inner part of the core collapses to form a NS or a black hole (BH) remnant, only the binding energy of the outer core is relevant to our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We calculate the binding energy of the outer core, Ebind(r), by integrating over the sum of the internal energy and gravitational energy from the surface down to the mass coordinate that separates the ejecta and the final rem- nant m = Min, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', the inner boundary of the ejecta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We calculate the binding energy of the ejecta for two values of this mass coordinate Min = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5 , 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙, because we consider cases where the remnant is a NS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We refer to the latest evolution point we simulate in the stellar evolution as collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' This point of col- lapse must adhere to an iron core more massive than MFe > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5, where we assume collapse is imminent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' This value of iron core mass is more or less when the iron core mass reaches its maximum value (as at the onset of collapse the iron disintegrates).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' About half of simu- lations reach infall velocities at the edge of the iron core of vfe,infall > 100 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Other simulations encounter numerical difficulties and we had to terminate them at somewhat earlier times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' RESULTS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Binding Energy towards Collapse As the stellar core evolves towards collapse and nu- cleosynthesis of heavier elements takes place, the core becomes denser and the binding energy of the inner lay- ers of the star increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We demonstrate this for one stellar model of carbon-oxygen core mass (mainly oxy- gen) of MCO = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='2M⊙ in Fig 1 where we present the star at three times: at center oxygen depletion, at cen- ter silicon depletion, and at collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We present the composition of the main isotopes by lines with differ- ent colors and the binding energy Ebind(m) by the black lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Here Ebind(m) is the binding energy (gravitational + internal) of the envelope laying above mass coordi- nate m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Relevant to this study is the binding energy of the ejecta, which is the mass above mass coordinate m = Min ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The mass Min is the baryonic 3 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Abundances and the binding energy as function of mass coordinate at three times for a SECCSN (hydrogen- poor) progenitor model with carbon-oxygen core mass of M collapse CO = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='2M⊙, which corresponds to a ZAMS mass of MZAMS ≈ 40M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The colored step-like lines are the abun- dances according to the inset in the lower panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The black and smoothly varying lines represent Ebind(m), which is the binding energy of the envelope laying above mass coordi- nate m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The three panels present these quantities at three different times: center oxygen depletion (upper panel, bind- ing energy by the black solid-line), center silicon depletion (middle panel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' binding energy by the black dashed-line), core collapse (lower panel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' binding energy by black dotted-line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Note that the middle panel contains the binding energy at the three times to allow for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The two vertical lines mark the mass coordinates m = Min = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ and m = Min = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Helium that appears only at collapse results from disintegration of iron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' mass of the NS remnant (the corresponding final gravi- tational masses will be ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='35, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1M⊙).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We mark these two masses by the vertical lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We see that at collapse the binding energy Ebind(Min) is larger than at earlier times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2 we present composition and binding en- ergy for a model with a much more massive core of MCO = 27M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' There are two qualitative differences between this model and the one we present in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The first qualitative difference is that the binding en- Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1 but for a more massive core of M collapse CO = 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙, which corresponds to a ZAMS mass of MZAMS ≈ 65M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Note that the left vertical axis is scaled differently than in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' ergy at collapse is somewhat smaller than at the earlier time that we present in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The explanation to the decreasing binding energy shortly before collapse is that the envelope expands starting from deep in the oxy- gen burning shell and outwards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We find (by drawing the density profiles) that moving from the upper to the middle panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2 the density from m ≃ 10M⊙ and outward decreases, reducing the binding energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' This mass coordinate is deep inside the shell where oxygen (teal line) burns to S+Si (yellow line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The second qualitative difference comes from the much higher binding energy of the ejecta of the descendant CCSN of the more massive model, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Ebind(Min) ≳ 2× 1051 erg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The implication is that we do not expect that the neutrino driven explosion mechanism can account for explosions of such cores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We argue that jets explode these cores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We leave the discussion of this point, as well as our view that jets also explode cores with lower binding energy, to section 4, where we also refer to the claim of a very massive core of SN 2020qlb (West et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We first find the range of such high-binding- energy cores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 0 3 OCoreDepletion 2 91 erg 0 SiCoreDepletion BEatO dep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' BEatSi dep BEatCollapse 2 0 3 Collapse 2 Helium Carbon Oxygen S+Si "Fe Group" 2 0 2 4 6 8 10 12Abundance6 0 4 OCoreDepletion 2 6 0 Si Core Depletion BEatOont .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' dep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' BEat Si dep "BEatCollapse 2 0 4 Collapse 2 Helium Oxygen "Fe Group\' Carbon S+Si 2 0 4 8 12 16 20 24Abundance4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' High-binding-energy cores We search for the mass range of cores that have bind- ing energies at collapse of Ebind(Min) ≳ 2×1051 erg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We present the results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We present the binding en- ergy for an inner ejecta mass coordinate of Min = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ (upper panel) and Min = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ (lower panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We focus on the binding energy of these two mass coordi- nates Min = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5 − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ as the iron core masses at col- lapse falls within this mass range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The horizontal line at 2 × 1051 erg is the approximate energy above which we do not expect that neutrino heating by itself can ex- plode the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In appendix B we provide linear fits to the binding energy at collapse as function of CO core mass for these two mass coordinates Min = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ (table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We simulated 52 stripped-hydrogen envelope cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In 27 cases the cores reach collapse as we present by the red circles in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In 25 cases cases the numeri- cal code encountered difficulties and we had to stop the simulation before reaching collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In these cases we extrapolate from an evolutionary time before collapse to the collapse time as we explain in appendix B (red stars in the figure).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We also include 35 in the figure the binding energies of models with hydrogen-rich envelope that we take from Shishkin & Soker (2022), as we mark by open purple circles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 3 (with a more rigorous derivation in ap- pendix B) we draw our conclusion that in cases where the inner mass of Min = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ of the core collapses to form a NS, the delayed neutrino mechanism cannot explode cores with masses of MCO ≳ 15M⊙ (or maybe rarely do so).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' For Min = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ we find this limit to be MCO ≳ 13M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 4 we present a more detailed binding energy profile of the pre-collapse stripped-envelope models that we simulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' When we take the lowest binding energy of the inner core at the onset of collapse we find the limit of core mass that the neutrino-driven explosion cannot account for to be MCO > 20M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Namely, still a large range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1 we provide the linear fit parameters for the binding energy at collapse for the edge of the iron core (gray squares in the figure) and the binding energy curve break (black circles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The binding energy curve break is point we refer to as separating the inner core from the outer core, and is the point of lowest binding energy for most simulated cases that reached collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' DISCUSSION AND SUMMARY We simulated the evolution of 52 massive SECCSN progenitor models corresponding to ZAMS masses of 20 ≲ MZAMS ≲ 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We removed the entire hydrogen- rich envelope, and calculated the binding energy just before core collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The final core mass depends on the ZAMS mass and on the mass loss parameter (ap- pendix C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We present the structure of the pre-collapse progenitor for two cases in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We find that to a fare accuracy we can linearly fit the binding energy of these stripped-envelope progenitors to the CO core mass MCO (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 3 and table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We present our main results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In those figures the horizontal gray line represents the approx- imate maximum energy that the neutrino-driven mech- anism can supply, Emax ν = 2 × 1051 erg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We find that the binding energy calculated at Min = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ and Min = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙, of progenitors with a carbon-oxygen core mass of MCO ≳ 13M⊙ and MCO ≳ 15M⊙, respectively, are larger than Emax ν .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Namely, Emax ν ≲ � � � Ebind,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5 for MCO ≳ 13M⊙ Ebind,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5 for MCO ≳ 15M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' (1) The main conclusion is that the delayed neutrino ex- plosion mechanism cannot explode stars with a core mass of MCO ≳ 13 − 15M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The jittering jets explosion mechanism, on the other hand, has no limiting explosion energy in these ranges as it is fueled by accretion onto the compact remnant (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', (Gilkis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Soker & Gilkis 2017)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Let us apply our results to a specific SECCSN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In a recent paper West et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' (2022) deduce that SN 2020qlb had an explosion energy of ≃ 20×1051 erg and estimate the progenitor pre-explosion mass, ejecta plus remnant mass, to be Mej + Mrem ≃ 30 − 50M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' According to our results the binding energy alone of such cores is Ebind > 3 × 1051 erg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We therefore conclude that jets must have exploded SN 2020qlb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Jets can also supply the kinetic energy of the ejecta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Namely, jet-driven ex- plosions might make the magnetar powering less criti- cal or not needed at all (although a magnetar might be present).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Most likely the explosion is via jittering jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The reason is that an explosion driven by a fixed-axis jets, like if the core is rapidly rotating, will not expel mass from the equatorial region, which it turn is ac- creted by the newly formed central object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Therefore, the final mass of the remnant will be large and the rem- nant will be a BH (see discussion in Soker 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' On a large scope, our study adds to the growing evi- dence pointing to the major roles that jets play in the explosion, as well as pre-explosion and post-explosion, of CCSNe (for a recent review see Soker 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' ACKNOWLEDGMENTS This research was supported by a grant from the Israel Science Foundation (769/20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 5 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The binding energies of the simulated models as a function of the carbon-oxygen core mass nearing collapse (vertical axis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The panels show the final binding energy at two mass coordinates: Min = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ (top) and Min = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ (bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The red data points (filled circles and stars at the outer panels) are stripped-envelope (SE) models (SECCSNe), whilst purple empty- circles data points are models from Shishkin & Soker (2022) that have hydrogen rich envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Red stars are extrapolated data points, as explained in appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The horizontal line at 2 × 1051 erg denotes the binding energy above which we do not expect the neutrino delayed explosion mechanism to explode the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Data availability The data underlying this article will be shared upon reasonable request to the corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' REFERENCES Ailawadhi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Dastidar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Misra, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='02823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='org/abs/2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='02823 Angulo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Arnould, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Rayet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1999, NuPhA, 656, 3, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1016/S0375-9474(99)00030-5 Bethe, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Wilson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1985, ApJ, 295, 14, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/163343 Blouin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Shaffer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Saumon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Starrett, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2020, ApJ, 899, 46, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4357/ab9e75 B¨ohm-Vitense, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1958, ZA, 46, 108 Bollig, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Yadav, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Kresse, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021, ApJ, 915, 28, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4357/abf82e Bromberg, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Tchekhovskoy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016, MNRAS, 456, 1739, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/stv2591 Bruenn, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Lentz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Hix, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016, ApJ, 818, 123, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/0004-637X/818/2/123 Bruenn, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Blondin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Hix, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2020, ApJS, 248, 11, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4365/ab7aff Burrows, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Radice, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Vartanyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2020, MNRAS, 491, 2715, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/stz3223 6 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Upper panel: The binding energies of the simulated stripped-envelope models (vertical axis) as a function of the mass coordinate (horizontal axis) at collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The color of each line signifies the final CO core mass at collapse, scaled with the color bar on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Black dots mark the mass coordinate where there is a steep decrease in the density inside the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Gray squares denote the edge of the iron core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Lower panel: The binding energy for hydrogen-rich envelope models from Shishkin & Soker (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The grey horizontal line marks more or less the upper binding energy that the neutrino delayed mechanism can account for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Burrows, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Vartanyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021a, Nature, 589, 29, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1038/s41586-020-03059-w —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021b, Nature, 589, 29, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1038/s41586-020-03059-w Cassisi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Potekhin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Pietrinferni, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Catelan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Salaris, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2007, ApJ, 661, 1094, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/516819 Chan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', M¨uller, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Heger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2020, MNRAS, 495, 3751, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/staa1431 Chugunov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Dewitt, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Yakovlev, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2007, PhRvD, 76, 025028, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='025028 Cyburt, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Amthor, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Ferguson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2010, ApJS, 189, 240, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/0067-0049/189/1/240 Ertl, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Janka, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Woosley, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Sukhbold, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Ugliano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016, ApJ, 818, 124, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/0004-637X/818/2/124 Ferguson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Alexander, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Allard, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2005, ApJ, 623, 585, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/428642 Fryer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Belczynski, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Wiktorowicz, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2012, ApJ, 749, 91, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/0004-637X/749/1/91 6 35 Stripped Envelope 5 30 erg] 25 CO core mass [M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 4 20 Y 15 10 5 0 654332 14 No envelope remova 12 MZAMs 11-48 [M。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='] progenitors 10 CO core [M 8642 1 0 0 0 1 2 3 4 5 6 7 8 mass coordinate [M。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=']7 Fujibayashi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Sekiguchi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Shibata, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Wanajo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='03958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='org/abs/2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='03958 Fuller, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Fowler, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Newman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1985, ApJ, 293, 1, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/163208 Gal-Yam, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2019, ARA&A, 57, 305, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1146/annurev-astro-081817-051819 Garain, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='08310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='org/abs/2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='08310 Gilkis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Soker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2015, ApJ, 806, 28, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/0004-637X/806/1/28 Gilkis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Soker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Papish, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016, ApJ, 826, 178, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/0004-637X/826/2/178 Gogilashvili, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Murphy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Mabanta, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021, MNRAS, 500, 5393, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/staa3546 Gomez, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Berger, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Nicholl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Blanchard, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Hosseinzadeh, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022, ApJ, 941, 107, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4357/ac9842 Gottlieb, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Lalakos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Bromberg, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Liska, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Tchekhovskoy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022a, MNRAS, 510, 4962, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/stab3784 Gottlieb, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Liska, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Tchekhovskoy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022b, ApJL, 933, L9, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/2041-8213/ac7530 Gottlieb, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Tchekhovskoy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Margutti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022c, MNRAS, 513, 3810, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/stac910 Henyey, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Vardya, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Bodenheimer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1965, ApJ, 142, 841, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/148357 Herwig, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2000, A&A, 360, 952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='org/abs/astro-ph/0007139 Iglesias, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Rogers, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1993, ApJ, 412, 752, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/172958 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1996, ApJ, 464, 943, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/177381 Irwin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2004, The FreeEOS Code for Calculating the Equation of State for Stellar Interiors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' http://freeeos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='sourceforge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='net/ Itoh, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Hayashi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Nishikawa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Kohyama, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1996, ApJS, 102, 411, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/192264 Janka, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2012, Annual Review of Nuclear and Particle Science, 62, 407, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1146/annurev-nucl-102711-094901 Jermyn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Schwab, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Bauer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Timmes, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Potekhin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021, ApJ, 913, 72, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4357/abf48e Kasen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Bildsten, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2010, ApJ, 717, 245, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/0004-637X/717/1/245 Khokhlov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', H¨oflich, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Oran, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1999, ApJL, 524, L107, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/312305 Kuroda, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Arcones, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Takiwaki, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Kotake, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2020, ApJ, 896, 102, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4357/ab9308 Langanke, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Mart´ınez-Pinedo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2000, Nuclear Physics A, 673, 481, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1016/S0375-9474(00)00131-7 LeBlanc, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Wilson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1970, ApJ, 161, 541, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/150558 Ledoux, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1947, ApJ, 105, 305, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/144905 L´opez-C´amara, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Morsony, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Begelman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Lazzati, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2013, ApJ, 767, 19, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/0004-637X/767/1/19 Maeda, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Tanaka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Nomoto, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2007, ApJ, 666, 1069, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/520054 Metzger, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Margalit, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Kasen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Quataert, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2015, MNRAS, 454, 3311, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/stv2224 Nicholl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Guillochon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Berger, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2017, ApJ, 850, 55, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4357/aa9334 Nugis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Lamers, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2000, A&A, 360, 227 Oda, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Hino, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Muto, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Takahara, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Sato, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1994, Atomic Data and Nuclear Data Tables, 56, 231, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1006/adnd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1007 Pandey, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Kumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Kumar, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021, MNRAS, 507, 1229, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/stab1889 Papish, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Soker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2011, MNRAS, 416, 1697, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='18671.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='x —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2014, MNRAS, 443, 664, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/stu1129 Paxton, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Bildsten, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Dotter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2010, ApJS, 192, 3, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/0067-0049/192/1/3 Paxton, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Cantiello, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Arras, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2013, ApJS, 208, 4, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/0067-0049/208/1/4 Paxton, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Marchant, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Schwab, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2015, ApJS, 220, 15, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/0067-0049/220/1/15 Paxton, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Schwab, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Bauer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2018, ApJS, 234, 34, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4365/aaa5a8 Paxton, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Smolec, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Schwab, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2019, ApJS, 243, 10, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4365/ab2241 Pejcha, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Thompson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2015, ApJ, 801, 90, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/0004-637X/801/2/90 Potekhin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Chabrier, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2010, Contributions to Plasma Physics, 50, 82, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1002/ctpp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='201010017 Poutanen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2017, ApJ, 835, 119, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4357/835/2/119 Powell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Mueller, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Aguilera-Dena, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Langer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='00200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='org/abs/2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='00200 Rogers, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Nayfonov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2002, ApJ, 576, 1064, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/341894 Saumon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Chabrier, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & van Horn, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1995, ApJS, 99, 713, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/192204 Sawada, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Suwa, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2023, arXiv e-prints, arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='03610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='org/abs/2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='03610 Schreier, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Soker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016, Research in Astronomy and Astrophysics, 16, 70, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/1674-4527/16/5/070 8 Shankar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', M¨osta, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Barnes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Duffell, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Kasen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021, MNRAS, 508, 5390, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/stab2964 Shishkin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Soker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021, MNRAS: Letters, 508, L43, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnrasl/slab105 Shishkin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Soker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022, MNRAS, 513, 4224, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/stac1075 Soker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2010, MNRAS, 401, 2793, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='15862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='x —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016a, NewAR, 75, 1, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='newar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='002 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016b, NewA, 47, 88, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='newast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='009 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2017, ApJL, 839, L6, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/2041-8213/aa6a10 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2019, Research in Astronomy and Astrophysics, 19, 095, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/1674-4527/19/7/95 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022a, Research in Astronomy and Astrophysics, 22, 095007, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/1674-4527/ac7cbc —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022b, Research in Astronomy and Astrophysics, 22, 122003, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/1674-4527/ac9782 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022c, ApJ, 935, 108, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4357/ac822d Soker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Gilkis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2017, ApJ, 851, 95, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/1538-4357/aa9c83 Sukhbold, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Ertl, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Woosley, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Brown, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Janka, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2016, ApJ, 821, 38, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='3847/0004-637X/821/1/38 Timmes, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1999, ApJS, 124, 241, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/313257 Timmes, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Swesty, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2000, ApJS, 126, 501, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1086/313304 Utrobin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Wongwathanarat, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Janka, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & M¨uller, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2015, A&A, 581, A40, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1051/0004-6361/201425513 Vink, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', de Koter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Lamers, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2001, A&A, 369, 574, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1051/0004-6361:20010127 Wang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Vartanyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Burrows, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Coleman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022, MNRAS, 517, 543, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1093/mnras/stac2691 West, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Lunnan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Omand, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='11143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='org/abs/2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='11143 Wheeler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Kagan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Chatzopoulos, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2015, ApJ, 799, 85, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/0004-637X/799/1/85 Woosley, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2010, ApJL, 719, L204, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/2041-8205/719/2/L204 Yang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Chevalier, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2015, ApJ, 806, 153, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1088/0004-637X/806/2/153 Zha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', M¨uller, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Weir, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', & Heger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2023, arXiv e-prints, arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='00359.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='org/abs/2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='00359 9 APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' NUMERICAL PRESCRIPTION DETAILS Our numerical scheme files (‘inlists’) are a modified version of the ‘20 pre ms to cc’ mesa version r22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1 ‘test suite’ example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We adapted this example to run on mesa version r15140 and incorporated certain parameters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', over- shooting and mesh resolution) according to our previous works (Shishkin & Soker 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Shishkin & Soker 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The full ’inlists’ that we used are available online1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Here we mention some of the important parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In a similar fashion to our previous works which focus on the convective profile of the inner layers of massive stars (Shishkin & Soker 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Shishkin & Soker 2022), we use the exponential overshooting prescription (Herwig 2000) with symmetrical (both ‘bottom’ and ‘above’) and uniform (all burning regions) settings and f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='01, f0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='004 parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We chose the Henyey scheme (Henyey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1965) for mixing length theory (MLT, B¨ohm-Vitense 1958) with αMLT = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We also enable the Ledoux criterion (Ledoux 1947) and set thermohaline option to ‘Kippenhahn’ with ‘thermohaline coeff = 1’ alongside ‘alpha semiconvection = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We make use of the ’Dutch’ wind loss scheme (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Vink et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Nugis & Lamers 2000), and vary the scaling factor (along with the initial mass) to achieve different core masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' For the nuclear network we use the 22 isotopes of ‘approx21 cr60 plus co56’ (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=', Timmes 1999), aimed at stellar evolution up to collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' This network includes hydrogen, He3 and He4 up to the heavier isotopes of Fe52 , Fe54 , Fe56 , Co56 , Ni56 , Cr60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We scale mesh refinement gradually up to ‘max dq’ values of 1d − 4 at the later stages (from the default value of 1d − 2) to properly resolve the fine burning features close to core collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The mesa equation of state (EOS) is a blend of the OPAL (Rogers & Nayfonov 2002), SCVH (Saumon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1995), FreeEOS (Irwin 2004), HELM (Timmes & Swesty 2000), PC (Potekhin & Chabrier 2010), and Skye (Jermyn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2021) EOSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Nuclear reaction rates are from JINA REACLIB (Cyburt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 2010), NACRE (Angulo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1999) and additional tabulated weak reaction rates Fuller et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' (1985);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Oda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' (1994);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Langanke & Mart´ınez-Pinedo (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Screening is included via the prescription of Chugunov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Thermal neutrino loss rates are from Itoh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Radiative opacities are primarily from OPAL (Iglesias & Rogers 1993, 1996), with low-temperature data from Ferguson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' (2005) and the high-temperature, Compton-scattering dominated regime by Poutanen (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Electron conduction opacities are from Cassisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' (2007) and Blouin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' BINDING ENERGY ESTIMATION Because of numerical difficulties of stripped-envelope progenitors (specifically some steep gradients) some simulations did not reach the phase of core collapse, although they did reach oxygen depletion and/or silicon depletion at the center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Time steps became much too short and we had to terminate the simulations before core collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In these cases we estimated the binding energy at collapse (red-stars in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 3) by extrapolating the binding energy during earlier phases using linear fits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We made linear fits to the binding energies as function of the CO core masses at three evolutionary phases: oxygen depletion, silicon depletion, and core collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1 we present these three fittings by blue, orange, and red lines, respectively, for Min = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ (upper panel) and Min = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ (lower panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' From these three lines we can find the ratio of the binding energy at core collapse to the binding energy at oxygen depletion and to the binding energy at silicon depletion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In cases where we did not reach core collapse we use this ratio at the given CO core mass to calculate the expected binding energy at core collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We mark these energies by red-stars in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1 and use them in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Error bars attached to the red stars signify the 1σ intervals of the this extrapolation procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We note that the CO core mass does not change much after oxygen depletion in the non-extended helium phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The average difference between the CO core mass at central oxygen depletion and at core collapse is ∆mcore CO = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='33M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 1 Zenodo: Modified inlists to reproduce the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Also included a full simulation list and the simulated models at different time points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 10 Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The binding energy of the envelope above mass coordinate Min = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ (upper panel) and Min = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ (lower panel) as a function of the final carbon-oxygen core mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The blue circles are at central oxygen depletion (5% oxygen in the center), the orange circles are at silicon depletion (5% silicon in the center), and red circles are at core collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The three respective lines are the linear fit to the points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Red stars are the extrapolated values for the binding energy at collapse based on available earlier data points (oxygen depletion or silicon depletion) for the cases that did not reach collapse (see text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We fit the binding energy Ebind versus the CO core mass MCO by a linear fit Ebind = aMCO + b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1 we list the values of the two coefficients for the six lines (three stage for two values of the mass that collapses to form the NS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We also list (last column) the number of data points that were used at each fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 11 aMCO + b Fit1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ Fit2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ FitBEbreak FitFecore No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' of points Collapse a [1051erg/M⊙] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='122 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='137 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='117 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='114 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='02 27 b [1051erg] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='537 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='46 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='053 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='444 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='165 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='423 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='442 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='406 Sicntr depletion a [1051erg/M⊙] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='132 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='145 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='02 −− −− 43 b [1051erg] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='159 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='38 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='099 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='445 −− −− Ocntr depletion a [1051erg/M⊙] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='15 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='175 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='02 −− −− 47 b [1051erg] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='002 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='394 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='447 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='479 −− −− Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The linear fits to the lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1 and the number of data points for each of the simulation groups: at collapse (second row), at center silicon depletion (third row) and center oxygen depletion (bottom row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' The third and fourth columns are the fits to the binding energy Ebind,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5, Ebind,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5 at mass coordinates Min = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙ and Min = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5M⊙, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In the fifth column we present the linear fit to the variation of the binding energy at the black dots in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 4 with the CO core mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' In the fifth column we present the linear fit to the variation of the binding energy at the edge of the iron core (gray squares in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 4) with the CO core mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Linear fits are in units of energy Ebind [1051erg] to CO core mass MCO [M⊙].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Values and errors (2σ) are in accordance with Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' 12 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' SIMULATIONS LIST In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='2 we present the simulations that we conducted in a three-parameters space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' As input we show the dutch wind scaling factor in mesa in the range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='5 < αDutch,wind < 1 and the zero age main sequence (ZAMS) mass in the range of 20M⊙ < MZAMS < 82M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' As an output we present the final CO core mass (mainly oxygen mass) in units of solar mass according to the color bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Figure C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' Wind (Dutch scheme) scaling factors (vertical axis) and the ZAMS masses of the cases (horizontal axis) that we simulated, and the final CO core mass (by color bar).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} +page_content=' We denote with a black X the cases where we extended the He burning to a later stage before removing the hydrogen envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E4T4oBgHgl3EQfjw0A/content/2301.05144v1.pdf'} diff --git a/NdFLT4oBgHgl3EQfOC8n/content/2301.12022v1.pdf b/NdFLT4oBgHgl3EQfOC8n/content/2301.12022v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..225deafee314ab1961f35468e005770f42b0888b --- /dev/null +++ b/NdFLT4oBgHgl3EQfOC8n/content/2301.12022v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3eaf813ab34f6385812048b74d295c1416b51546935b3a194ab9e1ff627381a6 +size 176982 diff --git a/NdFLT4oBgHgl3EQfOC8n/vector_store/index.faiss b/NdFLT4oBgHgl3EQfOC8n/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..a0271c9ead23da5cef6f99322472841dfbea6ad9 --- /dev/null +++ b/NdFLT4oBgHgl3EQfOC8n/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d6c8299fbfcd81c346228c4b7f0bcb846bb2eb29991c1846efdedf74deee4f5f +size 2359341 diff --git a/NdFLT4oBgHgl3EQfOC8n/vector_store/index.pkl b/NdFLT4oBgHgl3EQfOC8n/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f3b9fac1823b3d6510ac79da395a7763768b326e --- /dev/null +++ b/NdFLT4oBgHgl3EQfOC8n/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:81c472ccac2cba688fba44cc5fdb03f48f1081b6cf2e0178bcb9a0f7467f2426 +size 92474 diff --git a/OdFJT4oBgHgl3EQf0y3g/content/tmp_files/2301.11649v1.pdf.txt b/OdFJT4oBgHgl3EQf0y3g/content/tmp_files/2301.11649v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..0ec34fe96f22dffe172480a4f27aa10f8d88f41d --- /dev/null +++ b/OdFJT4oBgHgl3EQf0y3g/content/tmp_files/2301.11649v1.pdf.txt @@ -0,0 +1,2647 @@ +arXiv:2301.11649v1 [math.OC] 27 Jan 2023 +IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, AUGUST 20XX +1 +Frequency Energy Multiplier Approach to Uniform +Exponential Stability Analysis of Semi-discrete +Scheme for a Schr¨odinger Equation +under Boundary Feedback +Bao-Zhu Guo and Fu Zheng +Abstract—In this paper, we investigate the uniform exponential +stability of a semi-discrete scheme for a Schr¨odinger equation +under boundary feedback stabilizing control in the natural state +space L2(0,1). This study is significant since a time domain energy +multiplier that allows proving the exponential stability of this +continuous Schr¨odinger system has not yet found, thus leading +to a major mathematical challenge to semi-discretization of the +PDE, an open problem for a long time. Although the powerful +frequency domain energy multiplier approach has been used in +proving exponential stability for PDEs since 1980s, its use to +the uniform exponential stability of the semi-discrete scheme for +PDEs has not been reported yet. The difficulty associated with +the uniformity is that due to the parameter of the step size, +it involves a family of operators in different state spaces that +need to be considered simultaneously. Based on the Huang-Pr¨uss +frequency domain criterion for uniform exponential stability of a +family of C0-semigroups in Hilbert spaces, we solve this problem +for the first time by proving the uniform boundedness for all the +resolvents of these operators on the imaginary axis. The proof +almost exactly follows the procedure for the exponential stability +of the continuous counterpart, highlighting the advantage of this +discretization method. +Index Terms—Schr¨odinger equation, boundary damping, fre- +quency domain multiplier, semi-discretization, uniform exponen- +tial stability. +I. INTRODUCTION +C +Ontrol systems described by partial differential equations +(PDEs) is infinite-dimensional. Being such, its controller +such as the observer-based feedback control is also infinite- +dimensional. As a result, the discretization finds itself in +almost all implementations of PDE control. Among many +discretization methods is the finite-difference method which +becames popular due to its simplicity in principle and its +appeal to engineers. One of the most commonly used dis- +cretization method is the so-called semi-discrete scheme which +keeps time continuous while discretizing the spatial variable. +It has been widely studied in literature. The main advantage +of the semi-discrete scheme is that it results in an ordinary +This work was supported by the National Natural Science Foundation +of China under grants no.61873260, 11871117, 12131008. (Corresponding +author: Fu Zheng) +Bao-Zhu Guo is with Department of Mathematics and Physics, North +China Electric Power University, Beijing 102206, China, and Key Laboratory +of System and Control, Academy of Mathematics and Systems Science, +Academia Sinica, Beijing 100190, Email:bzguo@iss.ac.cn +Fu Zheng is with School of Science of Hainan University, Haikou, Hainan +570228, E-mail: fuzheng@hainanu.edu.cn +differential equation system, which control researchers are +most familiar with. However, it has been acknowledged for a +long time that the uniform exponential stability with respect to +the spatial discrete step size cannot be guaranteed for classical +semi-discrete schemes for PDEs, largely due to presence of +high frequency spurious components. In addition, some other +typical important control properties such as uniform observ- +ability and uniform exact controllability cannot be guaranteed +either. The reason for this loss is that the spurious modes +are only weakly damped in the process of semi-discretization. +A detail account can be found in [24]. For wave equations, +several remedies such as Tichonoff regularization [7], mixed- +finite elements [2], [17], high frequency filtering [10], and +non-uniform meshes [4], have been proposed to circumvent +this difficulty. Among many these remedies, the numerical +viscosity damping introduced in [19], [20] is the most popular. +However, this approach brings a viscosity term artificially +added into the classical discrete scheme. The coefficients of the +numerical viscosity damping vary from PDE to PDE. Recently, +a new natural semi-discrete scheme based on order reduction +finite difference method was introduced in [13] and has been +applied to different systems [8], [23]. This approach has the +critical advantages that it guarantees the uniform exponential +stability. In addition, as a natural semi-discrete scheme, it al- +lows one to prove the uniform exponential stability in a manner +parallel to its continuous PDE counterpart. Nevertheless, all +the previous papers on this scheme involved construction of +Lyapunov functional which the proof heavenly relies on, both +for semi-discrete scheme and the continuous counterpart. +Construction of a suitable Lyapunov functional for a PDE +relies on a time domain energy multiplier, which is not always +available and its construction is most often very technical. In +1980s, a frequency domain energy multiplier approach was +developed for the exponential stability initially for a single +PDE ([15]). The approach is based on a frequency domain +characterization for exponential stability of C0-semigroup in +Hilbert space. Originally developed independently in [9] and +[18], the result of was proved later in [16] to be valid for +uniform exponential stability of a family of C0-semigroups in +Hilbert spaces as well. Uniform admissibility and observability +for the finite element space semi-discretizations of abstract +Schr¨odinger system and second order infinite dimensional +vibrating systems have also been developed [5], [6]. +In this paper, we investigate the uniform exponential sta- + +IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, AUGUST 20XX +2 +bility of an order reduction semi-discrete scheme for a +Schr¨odinger equation under boundary control by the frequency +domain multiplier approach. It is significant because one +cannot find a suitable time domain Lyapunov functional both +for the continuous PDE and for its discrete scheme. This +implies that successful approaches presented in [14], [13], [8], +[23] cannot be applied here. As a matter of fact, in order to +apply the Lyapunov method, the paper [14] has to consider +the Schr¨odinger system in the high order state space H1(0,1), +whereas our state space is the standard space L2(0,1). The +problem in L2(0,1) has been open for quite a long time. Fairly +speaking, this paper brings a new way to the proof of the +uniform exponential stability of the semi-discrete scheme for +PDEs. It is also worthy pointing out that the proofs for both +continuous PDE and for the discrete counterpart are again +analogous, demonstrating the advantage of the order reduction +semi-discretization approach. +We proceed as follows. In the next section, Section II, we +prove the exponential stability of the continuous PDE by the +frequency domain multiplier method. Although it is the sim- +plest PDE ever studied in the literature, it helps in constructing +a frequency domain multiplier for its semi-discrete counter- +part. In Section III, we design a semi-discretized scheme and +obtain a family of finite-dimensional systems. In Section IV, +the uniform exponential stability is developed by the frequency +domain multiplier approach. We introduce the shadow ele- +ment to help understand the numerical approximating scheme, +which plays an important role in the proof of uniform stability. +Some concluding remarks are included in Section V. +II. STABILITY OF SCHR ¨ODINGER SYSTEM VIA FREQUENCY +DOMAIN MULTIPLIER +Consider the following Schr¨odinger equation under bound- +ary control: + + + + + + + + + + + + + + + + + +wt(x,t) = −iwxx(x,t), t > 0, x ∈ (0,1), +w(0,t) = 0, t ≥ 0, +wx(1,t) = u(t), k > 0, t ≥ 0, +y(t) = w(1,t), t ≥ 0, +w(x,0) = w0(x), x ∈ [0,1], +(1) +where u(·) is the control, y(·) is the measured output and w0(·) +is the initial state. Under the proportional feedback control: +u(t) = −kiy(t), k > 0, +(2) +the closed-loop system of (1) becomes + + + + + + + + + + + + + +wt(x,t) = −iwxx(x,t), t > 0, x ∈ (0,1), +w(0,t) = 0, t ≥ 0, +wx(1,t) = −kiw(1,t), k > 0, t ≥ 0, +w(x,0) = w0(x), x ∈ [0,1], +(3) +We consider system (3) in the natural state space L2(0,1). +Define the system operator of (3) as follows: + + + + + + + +Af = −if ′′,∀f ∈ D(A), +D(A) = { f ∈ L2(0,1)|f ∈ H2(0,1), +f(0) = 0, f ′(1) = −ik f(1)}. +(4) +Then, (3) can be written as an evolution equation in L2(0,1): +� +˙w(·,t) = Aw(·,t), +w(x,0) = w0(x). +(5) +It is seen that +Re⟨Af, f⟩L2(0,1) = Re +� 1 +0 −ik f ′′(x)f(x)dx = −k|f(1)|2, +(6) +which implies that A is dissipative. In addition, the operator +A is invertible and +A−1 f(x) = −kx +� 1 +0 xf(x)dx +1 + ki +− i +� 1 +x (x− τ)f(τ)dτ − i +� 1 +0 xf(x)dx, +(7) +which is bounded in L2(0,1). As a result, A generates a C0- +semigroup of contractions on L2(0,1) by the Lumer-Phillips +theorem ([21, Theorem 3.8.4]) and since A−1 is compact, the +spectrum of A consists of isolated eigenvalues only. +Furthermore, define the system energy for (3) as +E(t) = 1 +2 +� 1 +0 |w(x,t)|2dt, +(8) +which is non-increasing as a consequence of (6): +˙E(t) = −k|w(1,t)|2. +(9) +We point out that a different version of (3): + + + + + + + + + + + + + +wt(x,t) = −iwxx(x,t), t > 0, x ∈ (0,1), +w(0,t) = 0, t ≥ 0, +wx(1,t) = −kwt(1,t), k > 0, t ≥ 0, +w(x,0) = w0(x), x ∈ [0,1], +(10) +was investigated in [14], for which one can find a time +domain energy multiplier, and a Lyapunov functional was +then constructed to both system (10) and its semi-discrete +counterpart. However, system (3) is a rather unusual system +for which a time domain energy multiplier has been not +found yet. A first exponential stability result of system (3) +was proved by the Riesz basis approach in [12]. Although +the Riesz basis is powerful and the result obtained is much +deeper than the result obtained from the multiplier method; for +instance the spectrum-determined growth condition is usually +a consequence of the Riesz basis approach yet this is usually +not the case with the multiplier method. Unfortunately, the +Riesz basis is extremely difficult, at least at the moment, to be +applied for the uniformly exponential stability of semi-discrete +model for (3) developed in this paper. +In this paper, we use an alternative powerful method called +the frequency energy multiplier method, which has been + +IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, AUGUST 20XX +3 +developed for continuous PDEs over the last three decades +([15]). In stability analysis, we can almost give one-to-one +correspondence from continuous system to its discrete coun- +terpart using this method. Our approach is so powerful that +can be applied to other PDEs as well. For notation simplicity, +hereafter, we omit without confusion the obvious dependency +in time and spatial domains. The Cn denotes the n-dimensional +complex Euclidean space; the N+ stands for the set of the +positive integer numbers; and R the set of real numbers. +Since A generates a C0-semigroup of contractions on +L2(0,1), a well-known result of Hung-Pr¨uss theorem [9], [18] +states that the C0-semigroup generated by A is exponentially +stable if and only if it possesses the following two properties: +1) Every imaginary number belongs to the resolvent set of +A, that is, iR ⊂ ρ(A). +2) The inverse operator of iω −A is uniformly bounded for +all imaginary numbers, that is, +sup +ω∈R +∥(iω − A)−1∥ < ∞. +(11) +The property iR ⊂ ρ(A) is stated in the following Lemma +2.1. +Lemma 2.1: Let A be defined by (4). Then, iR ⊂ ρ(A). +Proof. If there exist β ∈ R,β ̸= 0 and a nonzero f ∈ D(A) +such that iβ f = Af, then +� +iβ f(x) = −if ′′(x), +f ′(1) = −kif(1), f(0) = 0. +(12) +Take the inner product with f(·) over [0,1] on both sides of +the first equation of (12) to obtain +iβ∥ f∥2 = −k|f(1)|2 + i +� 1 +0 |f ′(x)|2dx, +(13) +which gives f(1) = 0 and hence f ′(1) = 0. This shows that +(12) has only zero solution, a contradiction. +Theorem 2.1: Let A be defined by (4). Then, (11) holds +true. As a consequence, the C0-semigroup eAt generated by A +is exponentially stable in L2(0,1). +Proof. We prove by assuming contrary of (11) that there +exit a sequence ωn → ∞, fn ∈ D(A), ∥ fn∥ = 1 that +lim +n→∞∥(iωn − A)fn∥ = 0, +i.e., +iωn fn + if ′′ +n → 0 in L2(0,1). +(14) +Since +Re⟨(iωn − A)fn, fn⟩L2(0,1) = Re⟨−Afn, fn⟩ = k|fn(1)|2 → 0, +(15) +by the boundary condition f ′ +n(1) = −ik fn(1), it gives +f ′ +n(1) → 0. +(16) +From (14) and ∥ fn∥ = 1, it follows that +f ′′n (·) +ωn +is bounded in +L2(0,1). By +|f ′ +n(x)− f ′ +n(1)| = +���� +� x +1 f ′′ +n (s)ds +���� ≤ ∥ f ′′ +n ∥, +it follows from (16) and ωn → ∞ that +f ′ +n(·) +ωn +is bounded in L2(0,1). +(17) +Since +Re +� +ωn fn + f ′′ +n , xf ′ +n +ωn +� +L2(0,1) += |fn(1)|2 +2 +− 1 +2 +� 1 +0 |fn(x)|2dx ++ +1 +2ωn +|f ′ +n(1)|2 − +1 +2ωn +� 1 +0 |f ′ +n(x)|2dx, +and +� +ωn fn + f ′′ +n , xf ′ +n +ωn +� +L2(0,1) +→ 0, +we have by (15) and (16) that +� 1 +0 |fn(x)|2dx+ 1 +ωn +� 1 +0 |f ′ +n(x)|2dx → 0, +(18) +which shows that when ωn > 0, ∥ fn∥2 → 0, which is a +contradiction to ∥ fn∥ = 1. On the other hand, since from (14) +and ωn → ∞, we have +� 1 +0 +����fn(x)+ f ′′ +n (x) +ωn +���� +2 +dx += +� 1 +0 +� +fn(x)+ f ′′ +n (x) +ωn +�� +fn(x)+ f ′′n (x) +ωn +� +dx += +� 1 +0 +� +|fn(x)|2 + |f ′′ +n (x)|2 +ω2n +� +dx ++ 1 +ωn +� 1 +0 [fn(x)f ′′n (x)+ fn(x) f ′′ +n (x)]dx += +� 1 +0 +� +|fn(x)|2 + |f ′′ +n (x)|2 +ω2n +� +dx ++ 1 +ωn +[fn(x)f ′n(x)+ fn(x) f ′ +n(x)]1 +0 +− 2 +ωn +� 1 +0 |f ′ +n(x)|2dx → 0, +(19) +Substitute f ′ +n(1) = −ik fn(1) and fn(0) = 0 into (19), and use +(15)-(16) to obtain +� 1 +0 |fn(x)|2dx+ +� 1 +0 +|f ′′ +n (x)|2 +ω2n +dx− 2 +ωn +� 1 +0 |f ′ +n(x)|2dx → 0. (20) +which shows that when ωn < 0, ∥ fn∥2 → 0, which is also a +contradiction. +III. SEMI-DISCRETE SCHEME OF SCHR ¨ODINGER EQUATION +In this section we apply the order reduction method to derive +a semi-discrete scheme for (3). To this purpose, we introduce +an intermediate variable v(x,t) = wx(x,t) to reduce the order +of the spacial derivative of (3). In this way, the Schr¨odinger +equation (3) can be rewritten as the following equivalent form: + + + + + + + + + + + +wt(x,t)+ ivx(x,t) = 0, +v(x,t) = wx(x,t), +w(0,t) = 0, +v(1,t) = −kiw(1,t), +w(x,0) = w0(x). +(21) + +IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, AUGUST 20XX +4 +The semi-discretization process is similar to [14]. For the +sake of completeness, we sketch briefly the process. For fixed +N ∈ N+, consider an equidistant partition of interval [0,1]: +0 = x0 < x1 < ··· < xj = jh < ··· < xN+1 = 1, +where h = +1 +N+1 is the mesh size. Denote the sequence {u j}N+1 +0 +by {u j} j and introduce respectively the average operator and +the first-order finite difference operator as +u j+ 1 +2 = u j + u j+1 +2 +, +δxu j+ 1 +2 = u j+1 − u j +h +. +(22) +For the solutions v(x,t) and w(x,t) of (21), let {Vj(t)} j and +{Wj(t)} j be grid functions at grids {xj} j, satisfying +Vj(t) = v(xj,t), +Wj(t) = w(xj,t), +0 ≤ j ≤ N + 1. +The first equation of system (21) holds at (xj+ 1 +2 ,t), i.e., +w′(xj+ 1 +2 ,t)+ ivx(xj+ 1 +2 ,t) = 0, +where xj+ 1 +2 = (j + 1 +2)h. Hereafter the prime “′” represents +the derivative with respect to time t. Replace the differential +operator ∂x with difference operator δx to get +W ′ +j+ 1 +2 (t)+ iδxVj+ 1 +2 (t) = O(h2). +(23) +Similarly, for the second equation of system (21), it has +Vj+ 1 +2 (t)− δxWj+ 1 +2 (t) = O(h2). +(24) +By dropping the infinitesimal terms in (23) and (24), and +replacing Wj(t) and Vj(t) by wj(t) and vj(t), respectively, we +arrive at a semi-discretized finite difference scheme of system +(21) as follows: + + + + + + + + + + + + + +w′ +j+ 1 +2 (t)+ iδxvj+ 1 +2 (t) = 0, 0 ≤ j ≤ N, +vj+ 1 +2 (t) = δxwj+ 1 +2 (t), 0 ≤ j ≤ N, +vN+1(t) = −kiwN+1(t), t ≥ 0 +w0(t) = 0, +wj(0) = w0 +j, 0 ≤ j ≤ N + 1, +(25) +where vj(t) and wj(t) are grid functions at grids xj (0 ≤ j ≤ +N +1), and w0 +j is the approximation of the initial value w0(xj). +Remark 3.1: The semi-discretized system (25) is a family +of differentiation-algebra systems, which is called singular +systems for which there are huge amount of references related +to them. See for instance [3], [11], [22] and the references +therein. +Now, we eliminate the intermediate variables vj(t) from +(25). To this purpose, let +Wh(t) = (w1(t),w2(t),··· ,wN+1(t))⊤ +be unknown variable of (25) and +Vh(t) = (v0(t),v1(t),··· ,vN(t))⊤ +the auxiliary variable. We write (25) into vectorial form: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +DhW ′ +h(t) = −iMhVh(t)− + + + + + +0 +... +0 +kh−1wN+1(t) + + + + +, +D⊤ +h Vh(t) = −M⊤ +h Wh(t)+ + + + + + +0 +... +0 +i2−1kwN+1(t) + + + + +, +Wh(0) = (w0 +0,w0 +1,··· ,w0 +N)⊤, +(26) +where the matrices Dh and Mh are given by +Dh = 1 +2 + + + + + + + +1 +1 +1 +... +... +1 +1 +1 +1 + + + + + + + +(N+1)×(N+1) +, +Mh = 1 +h + + + + + + + +−1 +1 +−1 +1 +... +... +−1 +1 +−1 + + + + + + + +(N+1)×(N+1) +. +(27) +Obviously, both Dh and Mh are invertible. The differential +algebraic system (25) or (26) can be written as an evolution +equation in CN+1: +� +W ′ +h(t) = AhWh(t), Wh(t) ∈ Yh = CN+1, +Wh(0) = (w0 +1,w0 +2,··· ,w0 +N+1)⊤ ∈ Yh, +(28) +where Ah is defined by +AhYh += D−1 +h +� +iMh +� +D⊤ +h +�−1 � +M⊤ +h Yh − (0,··· ,0,2−1ikyN+1)⊤� +− D−1 +h (0,··· ,0,kh−1yN+1)⊤� +, +∀Yh = (y1,y2,··· ,yN+1)⊤ ∈ CN+1. +(29) +System (28) is naturally discussed in the state space CN+1. +To relate CN+1 in (28) with the step size, we write Yh = CN+1 +and define a new inner product for Yh: +� +Yh,�Yh +� +Yh += h +� +DhYh,Dh�Yh +� +,∀Yh,�Yh ∈ Yh, +where ⟨·,·⟩ is the standard inner product of CN+1. For Yh = +(y1,y2,··· ,yN+1)⊤ ∈ Yh, we choose the vector +Zh = (z0,z1,··· ,zN)⊤ ∈ CN+1 satisfying +D⊤ +h Zh = −M⊤ +h Yh + (0,··· ,0,2−1ikyN+1)⊤. +(30) +We call Zh the shadow element of Yh, which can simplify +significantly the notation in the later proofs. +The classical semi-discrete scheme is similar with (28) +where the average operator Dh = IN+1, i.e., +� +W ′ +h(t) = +ˆ +AhWh(t), Wh(t) ∈ Yh = CN+1, +Wh(0) = (w0 +1,w0 +2,··· ,w0 +N+1)⊤ ∈ Yh, +(31) + +IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, AUGUST 20XX +5 +in which the +ˆ +Ah is defined by +ˆ +AhYh = iMh +� +M⊤ +h Yh − (0,··· ,0,2−1ikyN+1)⊤� +− (0,··· ,0,kh−1yN+1)⊤. +(32) +At the end of this section we explain the significance of +the discrete scheme (28). We plot two figures in Figures 1 +and 2, respectively. Figure 1 depicts the maximal real parts +of the eigenvalues of the classical semi-discrete scheme (31) +with step size h, from which we see that the real parts of the +eigenvalues approach zero. Figure 2 depicts the maximal real +parts of the eigenvalues of the order reduction semi-discrete +scheme (28) with the same step size, from which we see that +the real parts of the eigenvalues approach a negative number. +In both figures, we take k = 1. +N +0 +20 +40 +60 +80 +100 +120 +140 +160 +180 +200 +Real part of eigenvalue +-0.12 +-0.1 +-0.08 +-0.06 +-0.04 +-0.02 +0 +Fig. 1. +Maximal real parts of eigenvalues of the semi-discrete scheme by +classical method (31) +N +0 +20 +40 +60 +80 +100 +120 +140 +160 +180 +200 +Real part of eigenvalue +-1.954 +-1.952 +-1.95 +-1.948 +-1.946 +-1.944 +-1.942 +-1.94 +Fig. 2. +Maximal real parts of eigenvalues of the semi-discrete scheme by +order reduction method (28) +IV. PROOF OF UNIFORM EXPONENTIAL STABILITY +This section is devoted to the proof of the uniform expo- +nential stability of (28). To begin with, we first show that Ah +is dissipative for every step size h. +Lemma 4.1: For the matrix Ah defined by (29), there holds +Re⟨AhYh,Yh⟩Yh = −k|yN+1|2, ∀ Yh ∈ Yh, +(33) +which implies that Ah is dissipative for every h ∈ (0,1). +Proof. +For +Yh = (y1,y2,··· ,yN+1) ∈ Yh, +let +Zh = +(z0,z1,··· ,zN) be the shadow element of Yh: +� +D⊤ +h Zh = −M⊤ +h Yh + (0,··· ,0,2−1ikyN+1)⊤, +AhYh = D−1 +h [−iMhZh + (0,··· ,0,kh−1yN+1)⊤]. +(34) +Set y0 := 0 and zN+1 := −ikyN+1 and introduce �Yh = +(�y1,�y2,··· ,�yN+1) ∈ Yh such that AhYh = �Yh. Then, +D⊤ +h Zh + (0,··· ,0,2−1zN+1)⊤ = −M⊤ +h Yh, +(35) +which is equivalent to +zj+ 1 +2 = δxyj+ 1 +2 , j = 0,1,··· ,N, +(36) +and +Dh�Yh = −iMhZh − (0,··· ,0,ih−1zN+1)⊤, +(37) +which is equivalent to +�yj+ 1 +2 = −iδxzj+ 1 +2 , j = 0,1,··· ,N, +(38) +where in all (35) to (38), it was assumed that �y0 = 0. Take the +inner product between AhYh and Yh in Yh by taking (36) and +(38) into account to obtain +Re⟨AhYh,Yh⟩Yh = Re +� +�Yh,Yh +� +Yh += h +2 +� +Dh�Yh,DhYh +� ++ h +2 +� +DhYh,Dh�Yh +� += h +2 +N +∑ +j=0 +�yj+ 1 +2 yj+ 1 +2 + h +2 +N +∑ +j=0 +yj+ 1 +2 �yj+ 1 +2 , (using (38)) += −hi +2 +N +∑ +j=0 +δxzj+ 1 +2 yj+ 1 +2 + hi +2 +N +∑ +j=0 +yj+ 1 +2 δxzj+ 1 +2 += −hi +2 +N +∑ +j=0 +� +δxzj+ 1 +2 yj+ 1 +2 (t)+ zj+ 1 +2 δxyj+ 1 +2 +� ++ hi +2 +N +∑ +j=0 +� +yj+ 1 +2 δxzj+ 1 +2 + δxyj+ 1 +2 zj+ 1 +2 +� +. (using (36)) +(39) +A simple calculation shows that +−hi +2 +N +∑ +j=0 +� +δxzj+ 1 +2 yj+ 1 +2 + zj+ 1 +2 δxyj+ 1 +2 +� ++hi +2 +N +∑ +j=0 +� +yj+ 1 +2 δxzj+ 1 +2 + δxyj+ 1 +2 z j+ 1 +2 +� += − i +4 +N +∑ +j=0 +� +(zj+1 − zj)(yj+1 + yj)+ (zj+1 + zj)(yj+1 − yj) +� ++ i +4 +N +∑ +j=0 +� +(yj+1 + yj)(z j+1 − zj)+ (yj+1 − yj)(zj+1(t)+ zj) +� += − i +2 +N +∑ +j=0 +[zj+1yj+1 − zjyj]+ i +2 +N +∑ +j=0 +[yj+1zj+1 − yjzj] += i +2[z0y0 − zN+1yN+1]+ i +2[yN+1zN+1 − y0z0] += −k|yN+1|2. ( using − ikyN+1 = zN+1 and y0 = 0) (40) + +IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, AUGUST 20XX +6 +The (39) and (40) leads to (33). +Define the energy of (28) as +Eh(t) = h +2 +N +∑ +j=0 +���wj+ 1 +2 (t) +��� +2 += 1 +2 ⟨Wh(t),Wh(t)⟩Yh . +(41) +which is the discretization of the continuous energy (8). The +following Lemma 4.2 is the discrete counterpart of (9), which +is a consequence of (33). +Lemma 4.2: The Eh(t) defined by (41) satisfies +˙Eh(t) = −k|wN+1(t)|2. +(42) +The dissipativity of Ah implies that the spectral set σ(Ah) +of Ah is contained in the closed left half-plane of the complex +plane C. Actually, we have more stronger result. Precisely, for +any 0 < h < 1, the spectral set σ(Ah) of Ah is contained in +the open left half-plane of C. This is the following Lemma +4.3. +Lemma 4.3: For every h ∈ (0,1), iR ⊂ ρ(Ah). +Proof. If there exist β ∈ R and nonzero Yh ∈ Yh such that +iβYh = AhYh, then it follows from (33) that +0 = Re⟨iβYh, Yh⟩Yh = Re⟨AhYh, Yh⟩Yh = −k|yN+1|2. +(43) +Replacing �Yh by iβYh in (37), we obtain + + + +βyj+ 1 +2 + δxzj+ 1 +2 = 0, +0 ≤ j ≤ N, +zj+ 1 +2 − δxyj+ 1 +2 = 0, +0 ≤ j ≤ N, +(44) +where Zh is the shadow element of Yh defined in (34), y0 = +0 and zN+1 := −ikyN+1. Hence zN+1 = yN+1 = 0 from (43). +Setting j = N in (44) yields +βhyN = 2zN, zN = −2 +hyN. +It follows that yN = zN = 0 whenever βh2+4 is nonzero. Under +the condition βh2 +4 ̸= 0, suppose zj+1 = yj+1 = 0 and solve +(44) to arrive at zj = yj = 0. This gives Yh = 0 by induction, +which is a contradiction. On the other hand, whenever βh2 + +4 = 0, it follows from (44) that + + + + + +1 +h(yj+1 + yj) = 1 +2(zj+1 − zj), j = 0,1,··· ,N, +1 +h(yj+1 − yj) = 1 +2(zj+1 + zj), j = 0,1,··· ,N, +(45) +which implies that +yj+1 = h +2zj+1, yj = −h +2zj, j = 0,1,··· ,N. +(46) +This, combining with y0 = 0 and yN+1 = 0, gives yj = 0 (j = +1,2,··· ,N) which is also a contradiction. This completes the +proof of the lemma. +The following lemma comes from [13]. +Lemma 4.4: Let {ui}i, {vi}i and {wi}i be the sequences of +complex numbers. Then, +1 +4 +N +∑ +i=0 +(ui+1 − ui)(vi+1 + vi)(wi+1 + wi) ++1 +4 +N +∑ +i=0 +(ui+1 − ui)(vi+1 − vi)(wi+1 − wi) ++1 +4 +N +∑ +i=0 +(ui+1 + ui)(vi+1 − vi)(wi+1 + wi) ++1 +4 +N +∑ +i=0 +(ui+1 + ui)(vi+1 + vi)(wi+1 − wi) += uN+1vN+1wN+1 − u0v0w0. +(47) +The following uniformly stability criterion which was pre- +sented in [15] or [1] will be used in the proof of our main +result Theorem 4.2 later. +Theorem 4.1: Let h∗ > 0 and let {Sh(t)}h∈(0,h∗) be a family +of semigroups of contractions on the Hilbert space Hh, and let +�Ah be the corresponding infinitesimal generators. The family +{Sh(t)} is uniformly exponentially stable if and only if the +following two conditions are fulfilled: +• For every h ∈ (0,h∗), iR ⊂ ρ(�Ah); +• suph∈(0,h∗),β∈R∥(iβI − �Ah)−1∥ < ∞. +Now, we are in a position to give the main result of this +paper. +Theorem 4.2: For the matrices Ah defined by (29), the +corresponding family of C0-semigroups Th(t) generated by +Ah is uniformly exponentially stable, that is, there exist two +constants M > 0 and ω > 0 independent of h ∈ (0,1) such that +∥Th(t)∥ ≤ Me−ωt, ∀t ≥ 0. +(48) +Proof. The proof is based on Theorem 4.1. Notice that by +Lemma 4.1, for every h ∈ (0,1), Th(t) is a C0-semigroup of +contractions. The fact that Ah satisfies the first condition of +Theorem 4.1 has been claimed by Lemma 4.3. In order to show +that the family Ah satisfies the second condition of Theorem +4.1, we prove by contradiction. If the second condition of +Theorem 4.1 is false, then there exist a sequence βn ∈ R, hn ∈ +(0,1), and Y n +hn ∈ Yhn,∥Y n +hn∥Yhn = 1 such that +∥Un +hn∥Yhn ≤ n−1, Un +hn = (iβnIhn − Ahn)Y n +hn. +(49) +By the Cauchy-Schwartz inequality, it follows from (49) and +(33) that +Re +� +Un +hn,Y n +hn +� +Yhn += −Re +� +AhnY n +hn,Y n +hn +� +Yhn += k|yn +Nn+1|2 ≤ n−1. +(50) +Let +Zn +hn = (zn +0,zn +1,··· ,zn +Nn)⊤ ∈ Zhn +be the shadow element of Y n +hn = (yn +1,yn +2,··· ,yn +Nn+1)⊤(see(30)), +Un +hn = (un +1,un +2,··· ,un +Nn+1)⊤ with hn(Nn +1) = 1. Set artificially +un +0 = yn +0 = 0 and zn +Nn+1 = −ikyn +Nn+1 to unify the notation of + +IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, AUGUST 20XX +7 +un +j+ 1 +2 and δxzn +j+ 1 +2 from j = 0,1,··· ,Nn. Then, it follows from +(49) that +� DhnUn +hn = iβnDhnY n +hn + iMhnZn +hn + (0,··· ,0,ih−1zn +Nn+1)⊤, +−M⊤ +hnY n +hn = D⊤ +hnZn +hn + (0,··· ,0,2−1zn +Nn+1)⊤, +(51) +or in vector form: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +un +0+ 1 +2 +un +1+ 1 +2 +... +un +Nn+ 1 +2 + + + + + + + += iβn + + + + + + + +yn +0+ 1 +2 +yn +1+ 1 +2 +... +yn +Nn+ 1 +2 + + + + + + + ++ i + + + + + + + +δxzn +0+ 1 +2 +δxzn +1+ 1 +2 +... +δxzn +Nn+ 1 +2 + + + + + + + +, + + + + + + + +zn +0+ 1 +2 +zn +1+ 1 +2 +... +zn +Nn+ 1 +2 + + + + + + + += + + + + + + + +δxyn +0+ 1 +2 +δxyn +1+ 1 +2 +... +δxyn +Nn+ 1 +2 + + + + + + + +. +(52) +The proof will be split into three claims and each claim +corresponds to that in the proof of stability of PDE. Clam 1 +corresponds to ωn → ∞ in the proof of Theorem 2.1. +Cliam 1: |βn| ≥ C′ > 0 for some constant C′ independent +of n ∈ N+. +Suppose by contrary that the sequence {βn} contains a +subsequence which is still denoted by {βn} itself without +loss of generality converging to zero. Since ∥Y n +hn∥Yhn = 1 and +∥Un +hn∥Yhn ≤ n−1, it follows from (52) that +hn +Nn +∑ +j=0 +���δxzn +j+ 1 +2 +��� +2 += hn +Nn +∑ +j=0 +���un +j+ 1 +2 − iβnyn +j+ 1 +2 +��� +2 +≤ 2hn +Nn +∑ +j=0 +���un +j+ 1 +2 +��� +2 ++ 2β 2 +nhn +Nn +∑ +j=0 +���yn +j+ 1 +2 +��� +2 += 2∥Un +hn∥2 +Yhn + 2β 2 +n∥Y n +hn∥2 +Yhn ≤ 2n−2, +(53) +which holds for all sufficiently large n. On the other hand, by +some simple operations, we get +|zn +j − zn +Nn+1|2 = |zn +j − zn +j+1 + zn +j+1 − zn +j+2 + zn +j+2···− zn +Nn+1|2 += +����� +Nn +∑ +l= j +(zn +l+1 − zn +l ) +����� +2 +≤ +� +Nn +∑ +l= j +|1|2 +�� +Nn +∑ +l= j +��zn +l+1 − zn +l +��2 +� +≤ (Nn + 1) +� +Nn +∑ +l=0 +��zn +l+1 − zn +l +��2 +� += hn +Nn +∑ +j=1 +���δxzn +j+ 1 +2 +��� +2 +, +j = 0,1,··· ,Nn, +(54) +in which hn(Nn + 1) = 1 is used in the last step, and for j = +0,1,··· ,Nn +|zn +j| ≤ |zn +j − zn +Nn+1|+ |zn +Nn+1| ≤ +� +� +� +�hn +Nn +∑ +j=1 +|δxzn +j+ 1 +2 |2 + |zn +Nn+1|. +This inequality, together with zn +Nn+1 = −ikyn +Nn+1 and (50)- +(53), implies that for each j = 0,1,··· ,Nn, |zn +j|2 = O(n−1). +Therefore, in light of hn(Nn + 1) = 1 and the second identity +of (52), +hn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 +≤ hn +2 +Nn +∑ +j=0 +���zn +j+1 +��2 + +��zn +j +��2� +≤ hn(Nn + 1) +������ +� +� +� +�hn +Nn +∑ +j=1 +|δxzn +j+ 1 +2 |2 + |zn +Nn+1| +������ +2 +≤ hn(Nn + 1)Cn−1 = O(n−1). +(55) +Thus, the deducing process from (53) to (55) tells us that +hn +Nn +∑ +j=0 +���δxzn +j+ 1 +2 +��� +2 += O(n−2), +which implies that +hn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 += O(n−1). +By noticing the second identity of (52), we have +hn +Nn +∑ +j=0 +���δxyn +j+ 1 +2 +��� +2 += hn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 +, +which means, by (55) that +hn +Nn +∑ +j=0 +���δxyn +j+ 1 +2 +��� +2 += O(n−1). +Similarly, repeating the procedure from (53) to (55), for Y n +hn, +we obtain +∥Y n +hn∥2 +Yhn = hn +Nn +∑ +j=0 +���yn +j+ 1 +2 +��� +2 += O(n−1/2), +which leads to a contradiction. Thus, the sequence {βn} cannot +contain a subsequence converging to zero. We can therefore +assume that |βn| ≥ C′ > 0 for some constant C′ independent +of n ∈ N+. +The second claim is the discrete counterpart of (18) but with +two extra terms +h3 +n +4βn +Nn +∑ +j=0 +���δxzn +j+ 1 +2 +��� +2 ++ h3 +n +4 +Nn +∑ +j=0 +���δxyn +j+ 1 +2 +��� +2 +which play important roles in our proofs. +Claim 2: the following (56) holds true: +∥Y n +hn∥2 +Yhn + 1 +βn +hn∥Σhn �Zn +hn∥2 +CNn+2 ++ h2 +n +4βn +hn∥∆hn �Zn +hn∥2 +CNn+2 + h2 +n +4 hn∥∆hn�Y n +hn∥2 +CNn+2 += hn +Nn +∑ +j=0 +���yn +j+ 1 +2 +��� +2 ++ hn +βn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 ++ h3 +n +4βn +Nn +∑ +j=0 +���δxzn +j+ 1 +2 +��� +2 ++ h3 +n +4 +Nn +∑ +j=0 +���δxyn +j+ 1 +2 +��� +2 += O(n−1), +(56) + +IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, AUGUST 20XX +8 +where ∥ ·∥CNn+2 denotes the standard norm of CNn+2 and +�Zn +hn = (z0,z1,··· ,zNn+1)⊤ = +� +(Zn +hn)⊤,zNn+1 +�⊤ +, +�Y n +hn = (0,y1,··· ,yNn+1)⊤ = +� +0,(Y n +hn)⊤�⊤ +, +Σh = 1 +2 + + + + + +1 +1 +... +... +1 +1 +1 +1 + + + + + +(N+2)×(N+1) +, +∆h = 1 +h + + + + + +−1 +1 +−1 +1 +... +... +−1 +1 + + + + + +(N+2)×(N+1) +. +(57) +Actually, it follows from (49), (52), and ∥Y n +hn∥Yhn = 1 that +β −2 +n hn ∑Nn +j=0 +����δxzn +j+ 1 +2 +���� +2 +is uniformly bounded with respect to +n ∈ N+ because +1 +βn + + + + + + + +δxzn +0+ 1 +2 +δxzn +1+ 1 +2 +... +δxzn +Nn+ 1 +2 + + + + + + + += − + + + + + + + +yn +0+ 1 +2 +yn +1+ 1 +2 +... +yn +Nn+ 1 +2 + + + + + + + +− i +βn + + + + + + + +un +0+ 1 +2 +un +1+ 1 +2 +... +un +Nn+ 1 +2 + + + + + + + +. +By (55) and Claim 1, +β −2 +n hn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 +is also uniformly bounded with respect to n ∈ N+. Let xn +j = jhn +for j = 0,1,··· ,Nn + 1 and consider the following estimates: +�����hn +Nn +∑ +j=0 +xn +j+ 1 +2 (βnyn +j+ 1 +2 + δxzn +j+ 1 +2 ) +zn +j+ 1 +2 +βn +����� +2 += +�����hn +Nn +∑ +j=0 +xn +j+ 1 +2 un +j+ 1 +2 +zn +j+ 1 +2 +βn +����� +2 +≤ +� +Nn +∑ +j=0 +��� +� +hnun +j+ 1 +2 +��� +����� +� +hn +zn +j+ 1 +2 +βn +����� +�2 +≤ +� +hn +Nn +∑ +j=0 +���un +j+ 1 +2 +��� +2 +�� +β −2 +n hn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 +� += ∥Un +hn∥2 +Yhn +� +β −2 +n hn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 +� += O(n−2), +(58) +where (49) and (52) were used. On the other hand, by the +second identity of (52), we have +hn +Nn +∑ +j=0 +xn +j+ 1 +2 (βnyn +j+ 1 +2 + δxzn +j+ 1 +2 ) +zn +j+ 1 +2 +βn += hn +Nn +∑ +j=0 +xn +j+ 1 +2 yn +j+ 1 +2 δxyn +j+ 1 +2 ++β −1 +n hn +Nn +∑ +j=0 +xn +j+ 1 +2 δxzn +j+ 1 +2 zn +j+ 1 +2 . +(59) +Applying Lemma 4.4 to the two terms of the right hand side +of (59) and noticing xn +Nn+1 = 1, xn +0 = 0, xn +j+1 − xn +j = hn, it is +easy to obtain +2Re +� +hn +Nn +∑ +j=0 +xn +j+ 1 +2 yn +j+ 1 +2 δxyn +j+ 1 +2 +� += hn +Nn +∑ +j=0 +xn +j+ 1 +2 yn +j+ 1 +2 δxyn +j+ 1 +2 + hn +Nn +∑ +j=0 +xn +j+ 1 +2 yn +j+ 1 +2 δxyn +j+ 1 +2 += 1 +4 +Nn +∑ +j=0 +(xn +j+1 + xn +j)(yn +j+1 + yn +j)(yn +j+1 − yn +j) ++1 +4 +Nn +∑ +j=0 +(xn +j+1 + xn +j)(yn +j+1 − yn +j)(yn +j+1 + yn +j) += |yNn+1|2 − hn +Nn +∑ +j=0 +���yn +j+ 1 +2 +��� +2 +− h3 +n +4 +Nn +∑ +j=0 +���δxyn +j+ 1 +2 +��� +2 +, +(60) +and +2Re +� +hn +Nn +∑ +j=0 +xn +j+ 1 +2 zn +j+ 1 +2 δxzn +j+ 1 +2 +� += hn +Nn +∑ +j=0 +xn +j+ 1 +2 zn +j+ 1 +2 δxzn +j+ 1 +2 + hn +Nn +∑ +j=0 +xn +j+ 1 +2 zn +j+ 1 +2 δxzn +j+ 1 +2 += 1 +4 +Nn +∑ +j=0 +(xn +j+1 + xn +j)(zn +j+1 + zn +j)(zn +j+1 − zn +j) ++ 1 +4 +Nn +∑ +j=0 +(xn +j+1 + xn +j)(zn +j+1 + zn +j)(zn +j+1 − zn +j) += |zNn+1|2 − hn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 +− h3 +n +4 +Nn +∑ +j=0 +���δxzn +j+ 1 +2 +��� +2 +. +(61) +By (59)-(61), it follows that +hn +Nn +∑ +j=0 +���yn +j+ 1 +2 +��� +2 ++ h3 +n +4 +Nn +∑ +j=0 +���δxyn +j+ 1 +2 +��� +2 ++ hn +βn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 ++ h3 +n +4βn +Nn +∑ +j=0 +���δxzn +j+ 1 +2 +��� +2 += −2Re +� +hn +Nn +∑ +j=0 +xn +j+ 1 +2 (βnyn +j+ 1 +2 + δxzn +j+ 1 +2 ) +zn +j+ 1 +2 +βn +� ++|yNn+1|2 + β −1 +n |zNn+1|2, +(62) +which proves (56) by (50), (58) and zNn+1 = −ikyNn+1. + +IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, AUGUST 20XX +9 +The third claim is perfectly the discrete counterpart of (20). +Claim 3: The following (63) holds true: +∥Y n +hn∥2 +Yhn + 1 +β 2n +hn∥∆hn �Zn +hn∥2 +CNn+2 − 2 +βn +hn∥Σhn �Zn +hn∥2 +CNn+2 += hn +Nn +∑ +j=0 +���yn +j+ 1 +2 +��� +2 ++ hn +β 2n +Nn +∑ +j=0 +���δxzn +j+ 1 +2 +��� +2 +− 2hn +βn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 += O(n−2), +(63) +in which Σhn and ∆hn are defined in (57) and ∥ · ∥CNn+2 +denotes the standard norm of CNn+2. +Actually, from (52), we have +∥Un +hn∥2 +Yhn +β 2n += hn +β 2n +Nn +∑ +j=0 +���un +j+ 1 +2 +��� +2 += hn +Nn +∑ +j=0 +�����yn +j+ 1 +2 + +δxzn +j+ 1 +2 +βn +����� +2 += hn +Nn +∑ +j=0 +���yn +j+ 1 +2 +��� +2 ++ hn +β 2n +Nn +∑ +j=0 +���δxzn +j+ 1 +2 +��� +2 ++ hn +βn +Nn +∑ +j=0 +(yn +j+ 1 +2 δxzn +j+ 1 +2 + yn +j+ 1 +2 δxzn +j+ 1 +2 ). +(64) +On the other hand, it follows from the second identity of (52) +that zn +j+ 1 +2 = δxyn +j+ 1 +2 and +hn +βn +Nn +∑ +j=0 +(yn +j+ 1 +2 δxzn +j+ 1 +2 + yn +j+ 1 +2 δxzn +j+ 1 +2 )+ 2hn +βn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 += hn +βn +Nn +∑ +j=0 +(yn +j+ 1 +2 δxzn +j+ 1 +2 + δxyn +j+ 1 +2 zn +j+ 1 +2 ) ++ hn +βn +Nn +∑ +j=0 +(δxyn +j+ 1 +2 zn +j+ 1 +2 + yn +j+ 1 +2 δxzn +j+ 1 +2 ) += +1 +2βn +Nn +∑ +j=0 +[(yn +j+1 + yn +j)(zn +j+1 − zn +j)+ (yn +j+1 − yn +j)(zn +j+1 + zn +j)] ++ 1 +2βn +Nn +∑ +j=0 +[(yn +j+1 + yn +j)(zn +j+1 − zn +j)+ (yn +j+1 − yn +j)(zn +j+1 + zn +j)] += 1 +βn +Nn +∑ +j=0 +(yn +j+1zn +j+1 − yn +jzn +j)+ 1 +βn +Nn +∑ +j=0 +(yn +j+1zn +j+1 − yn +jzn +j) += 1 +βn +[yn +Nn+1zn +Nn+1 + yn +Nn+1zn +Nn+1 − yn +0zn +0 − yn +0zn +0] = 0, +where zn +Nn+1 = −ikyn +Nn+1 and yn +0 = 0 were used in the last step. +Hence +hn +βn +Nn +∑ +j=0 +(yn +j+ 1 +2 δxzn +j+ 1 +2 + yn +j+ 1 +2 δxzn +j+ 1 +2 ) = −2hn +βn +Nn +∑ +j=0 +���zn +j+ 1 +2 +��� +2 +. (65) +Plugging (65) into (64) and using ∥Un +hn∥Yhn ≤ n−1 and Claim +1, we arrive at (63). +Finally, if βn > 0, we have ∥Y n +hn∥2 +Yhn = O(n−1) from (56), +which is a contradiction to ∥Y n +hn∥Yhn = 1. When βn < 0, +∥Y n +hn∥Yhn = O(n−1) by virtue of (63), which is also a con- +tradiction. We therefore complete the proof of the theorem. +V. CONCLUDING REMARKS +In this paper, the uniform approximation of exponential +stability of a one-dimensional Schr¨odinger equation is investi- +gated. We introduce an order reduction space semi-discretized +finite difference scheme for approximating uniformly the expo- +nentially stable closed-loop system. Although the scheme has +been applied to certain PDEs in previous works, they all share +a common feature that it is possible to find a suitable Lyapunov +functional for the closed-loop systems, both for the continuous +system and its discrete counterpart. However, for the system +considered in this paper, it is a longstanding problem that in +the natural state space L2(0,1), even for the continuous system, +the time domain energy multiplier has not been found. This +makes the convergence of the semi-discrete scheme of this +PDE be open for a long time. This paper is the first work +that applies the frequency domain multiplier approach to the +uniformly exponential convergence of semi-discretized PDE +system. The convergence of the discrete scheme to continuous +system is not included because it is a standard procedure +and can be followed analogously from [14] and many other +papers. Considering it is difficult to find a time domain energy +multiplier for many other PDEs, the approach presented in this +paper has significant potentials in applying to other PDEs. +ACKNOWLEDGMENTS +The authors would like to thank Dr. Jiankang Liu and Dr. +Hanjin Ren for their careful reading and many suggestions on +the presentation of the initial manuscript of the paper. The +Figures 1 and 2 were depicted by Dr. Jiangkang Liu. +REFERENCES +[1] F. Abdallah, S. Nicaise, J. Valein, and A. Wehbe, Uniformly exponentially +or polynomially stable approximations for second order evolution equa- +tions and some applications, ESAIM Control Optim. Calc. Var., 19(2013), +844-887. +[2] H.T. Banks, K. Ito, and C. Wang, Exponentially stable approximations +of weakly damped wave equations, in: “Estimation and Control of +Distributed Parameter Systems”, Basel, Birkhauser, 1991, pp.1-33. +[3] L. Dai, Singular Control Systems, SpringerVerlag, New York, 1989. +[4] S. Ervedoza, A. Marica, and E. Zuazua, Numerical meshes ensuring +uniform observability of 1d waves construction and analysis, IMA J. +Numer. Anal., 36(2015), 503-542. +[5] S. Ervedoza, Spectral conditions for admissibility and observability of +wave systems: applications to finite element schemes, Numer. Math, +113(2009), 377-415. +[6] S. Ervedoza, Spectral conditions for admissibility and observability +of Schr¨odinger systems: Applications to finite element discretizations, +Asymptot. Anal., 71(2011), 1-32. +[7] R. Glowinski, C.H. Li, and J.L. Lions, A numerical approach to the +exact boundary controllability of the wave equation. I. Dirichlet controls: +description of the numerical methods, Japan J. Appl. Math., 7(1990), +1-76. +[8] B.Z. Guo and B.B. Xu, A Semi-discrete Finite Difference Method to +Uniform Stabilization of Wave Equation with Local Viscosity, IFAC J. +Syst. Control , 13(2020), Art.101000. +[9] F.L. Huang, Characteristic conditions for exponential stability of lin- +ear dynamical systems in Hilbert spaces, Ann. Differential Equations, +1(1)(1985), 43-56. + +IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, AUGUST 20XX +10 +[10] J.A. Infante and E. Zuazua, Boundary observability for the space semi- +discretizations of the 1-d wave equation, +M2AN Math. Model. Numer. +Anal., 33(1999), 407-438. +[11] Y. Kao, J. Xie and C. Wang, Stabilization of Singular Markovian +Jump Systems With Generally Uncertain Transition Rates, IEEE Trans. +Automat. Control, 59(2014), 2604-2610. +[12] M. Krstic, B.Z. Guo, and A. Smyshlyaev, Boundary controllers and +observers for the linearized Schr¨odinger equation, SIAM J. Control +Optim., 49(2011), 1479-1497. +[13] J. Liu and B.Z. Guo, A new semi-discretized order reduction finite +difference scheme for uniform approximation of 1-D wave equation, +SIAM J. Control Optim., 58(2020), 2256-2287. +[14] J. Liu, R.Q. Hao, and B.Z. Guo, Order reduction-based uniform approxi- +mation of exponential stability for one-dimensional Schr¨odinger equation, +Systems Control Lett., 160(2022), Art.105136. +[15] Z.Y. Liu and S.M. Zheng, Liu, Exponential stability of the semigroup +associated with a thermoelastic system, Quart. Appl. Math., 51(1993), +535-545. +[16] Z.Y. Liu and S.M. Zheng, Uniform exponnential stability and approx- +imation in control of a thermoelastic system, SIAM J. Control Optim., +32(1994), 1226-1246. +[17] S. Micu and C. Castro, Boundary controllability of a linear semi-discrete +1-D wave equation derived from a mixed finite element method, Numer. +Math, 102(2006), 413-462. +[18] J. Pr¨uss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., +284(1984), 847-857. +[19] L.T. Tebou and E. ZuaZua, Uniform exponential long time decay for +the space semi-discretization of a locally damped wave equation via an +artificial numerical viscosity, Numer. Math, 95(2003), 563-598. +[20] L.T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite +difference space discretization of the 1-d wave equation, Adv. Comput. +Math, 26(2007), 337-365. +[21] M. Tucsnak and G. Weiss, Observation and Control for Operator +Semigroups, Birkhauser Verlag, Basel, 2009. +[22] Y. Wang, Y. Xia, H. Shen and P. Zhou, SMC Design for Robust +Stabilization of Nonlinear Markovian Jump Singular Systems, IEEE +Trans. Automat. Control, 63(1)(2018), 219-224. +[23] F. Zheng and H. Zhou, State reconstruction of the wave equation with +general viscosity and non-collocated observation and control, J. Math. +Anal. Appl., 502(2020), Art. 125257. +[24] E. Zuazua, Propagation, observation, and control of waves approximated +by finite difference methods, SIAM Rev., 47(2005), 197-243. +PLACE +PHOTO +HERE +Bao-Zhu Guo received the Ph.D. degree from the +Chinese University of Hong Kong in Applied Math- +ematics in 1991. Since 2000, he has been with +the Academy of Mathematics and Systems Science, +the Chinese Academy of Sciences, where he is a +Research Professor in mathematical system theory. +From 2004-2019, he was a chair professor in School +of Computer Science and Applied Mathematics, +University of the Witwatersrand, South Africa. He is +the author or co-author of the books: “Stability and +Stabilization of Infinite Dimensional Systems with +Applications” (Springer-Verlag, 1999); “Active Disturbance Rejection Control +for Nonlinear Systems: An Introduction” (John Wiley & Sons, 2016); and +“Control of Wave and Beam PDEs-The Riesz Basis Approach” (Springer- +Verlag, 2019). His research interests include theory of infinite-dimensional +systems and active disturbance rejection control. +Dr. Guo received the One Hundred Talent Program from the Chinese +Academy of Sciences (1999), and the National Science Fund for Distinguished +Young Scholars (2003). +PLACE +PHOTO +HERE +Fu Zheng received the B.Sc. and M.Sc. degrees +in mathematics from the Yanbian University, Jilin, +China in 2002 and 2005, and the Ph.D. from Beijing +Institute of Information and Control, Beijing, China +in 2011. He held a postdoctoral research position +in Academy of Mathematics and Systems Science, +Academia Sinica, Beijing, China, from 2013 to +2015. From 2012-2021, he was an associate profes- +sor at Bohai University, Jinzhou, China. At the end +of 2021, he joined the School of Science, Hainan +University, Hainan China, where he is currently a +professor. His research interests include control theory of infinite-dimensional +systems and numerical solutions to control problems of distributed parameter +systems. + diff --git a/OdFJT4oBgHgl3EQf0y3g/content/tmp_files/load_file.txt b/OdFJT4oBgHgl3EQf0y3g/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..5521715ea03298dd7739a58214e01b3c696821d9 --- /dev/null +++ b/OdFJT4oBgHgl3EQf0y3g/content/tmp_files/load_file.txt @@ -0,0 +1,649 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf,len=648 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='11649v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='OC] 27 Jan 2023 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' XX, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' X, AUGUST 20XX 1 Frequency Energy Multiplier Approach to Uniform Exponential Stability Analysis of Semi-discrete Scheme for a Schr¨odinger Equation under Boundary Feedback Bao-Zhu Guo and Fu Zheng Abstract—In this paper, we investigate the uniform exponential stability of a semi-discrete scheme for a Schr¨odinger equation under boundary feedback stabilizing control in the natural state space L2(0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' This study is significant since a time domain energy multiplier that allows proving the exponential stability of this continuous Schr¨odinger system has not yet found, thus leading to a major mathematical challenge to semi-discretization of the PDE, an open problem for a long time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Although the powerful frequency domain energy multiplier approach has been used in proving exponential stability for PDEs since 1980s, its use to the uniform exponential stability of the semi-discrete scheme for PDEs has not been reported yet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The difficulty associated with the uniformity is that due to the parameter of the step size, it involves a family of operators in different state spaces that need to be considered simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Based on the Huang-Pr¨uss frequency domain criterion for uniform exponential stability of a family of C0-semigroups in Hilbert spaces, we solve this problem for the first time by proving the uniform boundedness for all the resolvents of these operators on the imaginary axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The proof almost exactly follows the procedure for the exponential stability of the continuous counterpart, highlighting the advantage of this discretization method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Index Terms—Schr¨odinger equation, boundary damping, fre- quency domain multiplier, semi-discretization, uniform exponen- tial stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' INTRODUCTION C Ontrol systems described by partial differential equations (PDEs) is infinite-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Being such, its controller such as the observer-based feedback control is also infinite- dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' As a result, the discretization finds itself in almost all implementations of PDE control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Among many discretization methods is the finite-difference method which becames popular due to its simplicity in principle and its appeal to engineers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' One of the most commonly used dis- cretization method is the so-called semi-discrete scheme which keeps time continuous while discretizing the spatial variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' It has been widely studied in literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The main advantage of the semi-discrete scheme is that it results in an ordinary This work was supported by the National Natural Science Foundation of China under grants no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='61873260, 11871117, 12131008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (Corresponding author: Fu Zheng) Bao-Zhu Guo is with Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China, and Key Laboratory of System and Control, Academy of Mathematics and Systems Science, Academia Sinica, Beijing 100190, Email:bzguo@iss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='cn Fu Zheng is with School of Science of Hainan University, Haikou, Hainan 570228, E-mail: fuzheng@hainanu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='cn differential equation system, which control researchers are most familiar with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' However, it has been acknowledged for a long time that the uniform exponential stability with respect to the spatial discrete step size cannot be guaranteed for classical semi-discrete schemes for PDEs, largely due to presence of high frequency spurious components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In addition, some other typical important control properties such as uniform observ- ability and uniform exact controllability cannot be guaranteed either.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The reason for this loss is that the spurious modes are only weakly damped in the process of semi-discretization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' A detail account can be found in [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' For wave equations, several remedies such as Tichonoff regularization [7], mixed- finite elements [2], [17], high frequency filtering [10], and non-uniform meshes [4], have been proposed to circumvent this difficulty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Among many these remedies, the numerical viscosity damping introduced in [19], [20] is the most popular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' However, this approach brings a viscosity term artificially added into the classical discrete scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The coefficients of the numerical viscosity damping vary from PDE to PDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Recently, a new natural semi-discrete scheme based on order reduction finite difference method was introduced in [13] and has been applied to different systems [8], [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' This approach has the critical advantages that it guarantees the uniform exponential stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In addition, as a natural semi-discrete scheme, it al- lows one to prove the uniform exponential stability in a manner parallel to its continuous PDE counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Nevertheless, all the previous papers on this scheme involved construction of Lyapunov functional which the proof heavenly relies on, both for semi-discrete scheme and the continuous counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Construction of a suitable Lyapunov functional for a PDE relies on a time domain energy multiplier, which is not always available and its construction is most often very technical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In 1980s, a frequency domain energy multiplier approach was developed for the exponential stability initially for a single PDE ([15]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The approach is based on a frequency domain characterization for exponential stability of C0-semigroup in Hilbert space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Originally developed independently in [9] and [18], the result of was proved later in [16] to be valid for uniform exponential stability of a family of C0-semigroups in Hilbert spaces as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Uniform admissibility and observability for the finite element space semi-discretizations of abstract Schr¨odinger system and second order infinite dimensional vibrating systems have also been developed [5], [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In this paper, we investigate the uniform exponential sta- IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' XX, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' X, AUGUST 20XX 2 bility of an order reduction semi-discrete scheme for a Schr¨odinger equation under boundary control by the frequency domain multiplier approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' It is significant because one cannot find a suitable time domain Lyapunov functional both for the continuous PDE and for its discrete scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' This implies that successful approaches presented in [14], [13], [8], [23] cannot be applied here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' As a matter of fact, in order to apply the Lyapunov method, the paper [14] has to consider the Schr¨odinger system in the high order state space H1(0,1), whereas our state space is the standard space L2(0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The problem in L2(0,1) has been open for quite a long time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Fairly speaking, this paper brings a new way to the proof of the uniform exponential stability of the semi-discrete scheme for PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' It is also worthy pointing out that the proofs for both continuous PDE and for the discrete counterpart are again analogous, demonstrating the advantage of the order reduction semi-discretization approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' We proceed as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In the next section, Section II, we prove the exponential stability of the continuous PDE by the frequency domain multiplier method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Although it is the sim- plest PDE ever studied in the literature, it helps in constructing a frequency domain multiplier for its semi-discrete counter- part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In Section III, we design a semi-discretized scheme and obtain a family of finite-dimensional systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In Section IV, the uniform exponential stability is developed by the frequency domain multiplier approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' We introduce the shadow ele- ment to help understand the numerical approximating scheme, which plays an important role in the proof of uniform stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Some concluding remarks are included in Section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' STABILITY OF SCHR ¨ODINGER SYSTEM VIA FREQUENCY DOMAIN MULTIPLIER Consider the following Schr¨odinger equation under bound- ary control: \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 wt(x,t) = −iwxx(x,t), t > 0, x ∈ (0,1), w(0,t) = 0, t ≥ 0, wx(1,t) = u(t), k > 0, t ≥ 0, y(t) = w(1,t), t ≥ 0, w(x,0) = w0(x), x ∈ [0,1], (1) where u(·) is the control, y(·) is the measured output and w0(·) is the initial state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Under the proportional feedback control: u(t) = −kiy(t), k > 0, (2) the closed-loop system of (1) becomes \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 wt(x,t) = −iwxx(x,t), t > 0, x ∈ (0,1), w(0,t) = 0, t ≥ 0, wx(1,t) = −kiw(1,t), k > 0, t ≥ 0, w(x,0) = w0(x), x ∈ [0,1], (3) We consider system (3) in the natural state space L2(0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Define the system operator of (3) as follows: \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 Af = −if ′′,∀f ∈ D(A), D(A) = { f ∈ L2(0,1)|f ∈ H2(0,1), f(0) = 0, f ′(1) = −ik f(1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (4) Then, (3) can be written as an evolution equation in L2(0,1): � ˙w(·,t) = Aw(·,t), w(x,0) = w0(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (5) It is seen that Re⟨Af, f⟩L2(0,1) = Re � 1 0 −ik f ′′(x)f(x)dx = −k|f(1)|2, (6) which implies that A is dissipative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In addition, the operator A is invertible and A−1 f(x) = −kx � 1 0 xf(x)dx 1 + ki − i � 1 x (x− τ)f(τ)dτ − i � 1 0 xf(x)dx, (7) which is bounded in L2(0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' As a result, A generates a C0- semigroup of contractions on L2(0,1) by the Lumer-Phillips theorem ([21, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='4]) and since A−1 is compact, the spectrum of A consists of isolated eigenvalues only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Furthermore, define the system energy for (3) as E(t) = 1 2 � 1 0 |w(x,t)|2dt, (8) which is non-increasing as a consequence of (6): ˙E(t) = −k|w(1,t)|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (9) We point out that a different version of (3): \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 wt(x,t) = −iwxx(x,t), t > 0, x ∈ (0,1), w(0,t) = 0, t ≥ 0, wx(1,t) = −kwt(1,t), k > 0, t ≥ 0, w(x,0) = w0(x), x ∈ [0,1], (10) was investigated in [14], for which one can find a time domain energy multiplier, and a Lyapunov functional was then constructed to both system (10) and its semi-discrete counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' However, system (3) is a rather unusual system for which a time domain energy multiplier has been not found yet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' A first exponential stability result of system (3) was proved by the Riesz basis approach in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Although the Riesz basis is powerful and the result obtained is much deeper than the result obtained from the multiplier method;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' for instance the spectrum-determined growth condition is usually a consequence of the Riesz basis approach yet this is usually not the case with the multiplier method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Unfortunately, the Riesz basis is extremely difficult, at least at the moment, to be applied for the uniformly exponential stability of semi-discrete model for (3) developed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In this paper, we use an alternative powerful method called the frequency energy multiplier method, which has been IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' XX, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' X, AUGUST 20XX 3 developed for continuous PDEs over the last three decades ([15]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In stability analysis, we can almost give one-to-one correspondence from continuous system to its discrete coun- terpart using this method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Our approach is so powerful that can be applied to other PDEs as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' For notation simplicity, hereafter, we omit without confusion the obvious dependency in time and spatial domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The Cn denotes the n-dimensional complex Euclidean space;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' the N+ stands for the set of the positive integer numbers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' and R the set of real numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Since A generates a C0-semigroup of contractions on L2(0,1), a well-known result of Hung-Pr¨uss theorem [9], [18] states that the C0-semigroup generated by A is exponentially stable if and only if it possesses the following two properties: 1) Every imaginary number belongs to the resolvent set of A, that is, iR ⊂ ρ(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' 2) The inverse operator of iω −A is uniformly bounded for all imaginary numbers, that is, sup ω∈R ∥(iω − A)−1∥ < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (11) The property iR ⊂ ρ(A) is stated in the following Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1: Let A be defined by (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Then, iR ⊂ ρ(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' If there exist β ∈ R,β ̸= 0 and a nonzero f ∈ D(A) such that iβ f = Af, then � iβ f(x) = −if ′′(x), f ′(1) = −kif(1), f(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (12) Take the inner product with f(·) over [0,1] on both sides of the first equation of (12) to obtain iβ∥ f∥2 = −k|f(1)|2 + i � 1 0 |f ′(x)|2dx, (13) which gives f(1) = 0 and hence f ′(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' This shows that (12) has only zero solution, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1: Let A be defined by (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Then, (11) holds true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' As a consequence, the C0-semigroup eAt generated by A is exponentially stable in L2(0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' We prove by assuming contrary of (11) that there exit a sequence ωn → ∞, fn ∈ D(A), ∥ fn∥ = 1 that lim n→∞∥(iωn − A)fn∥ = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', iωn fn + if ′′ n → 0 in L2(0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (14) Since Re⟨(iωn − A)fn, fn⟩L2(0,1) = Re⟨−Afn, fn⟩ = k|fn(1)|2 → 0, (15) by the boundary condition f ′ n(1) = −ik fn(1), it gives f ′ n(1) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (16) From (14) and ∥ fn∥ = 1, it follows that f ′′n (·) ωn is bounded in L2(0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' By |f ′ n(x)− f ′ n(1)| = ���� � x 1 f ′′ n (s)ds ���� ≤ ∥ f ′′ n ∥, it follows from (16) and ωn → ∞ that f ′ n(·) ωn is bounded in L2(0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (17) Since Re � ωn fn + f ′′ n , xf ′ n ωn � L2(0,1) = |fn(1)|2 2 − 1 2 � 1 0 |fn(x)|2dx + 1 2ωn |f ′ n(1)|2 − 1 2ωn � 1 0 |f ′ n(x)|2dx, and � ωn fn + f ′′ n , xf ′ n ωn � L2(0,1) → 0, we have by (15) and (16) that � 1 0 |fn(x)|2dx+ 1 ωn � 1 0 |f ′ n(x)|2dx → 0, (18) which shows that when ωn > 0, ∥ fn∥2 → 0, which is a contradiction to ∥ fn∥ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' On the other hand,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' since from (14) and ωn → ∞,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' we have � 1 0 ����fn(x)+ f ′′ n (x) ωn ���� 2 dx = � 1 0 � fn(x)+ f ′′ n (x) ωn �� fn(x)+ f ′′n (x) ωn � dx = � 1 0 � |fn(x)|2 + |f ′′ n (x)|2 ω2n � dx + 1 ωn � 1 0 [fn(x)f ′′n (x)+ fn(x) f ′′ n (x)]dx = � 1 0 � |fn(x)|2 + |f ′′ n (x)|2 ω2n � dx + 1 ωn [fn(x)f ′n(x)+ fn(x) f ′ n(x)]1 0 − 2 ωn � 1 0 |f ′ n(x)|2dx → 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (19) Substitute f ′ n(1) = −ik fn(1) and fn(0) = 0 into (19),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' and use (15)-(16) to obtain � 1 0 |fn(x)|2dx+ � 1 0 |f ′′ n (x)|2 ω2n dx− 2 ωn � 1 0 |f ′ n(x)|2dx → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (20) which shows that when ωn < 0, ∥ fn∥2 → 0, which is also a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' SEMI-DISCRETE SCHEME OF SCHR ¨ODINGER EQUATION In this section we apply the order reduction method to derive a semi-discrete scheme for (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' To this purpose, we introduce an intermediate variable v(x,t) = wx(x,t) to reduce the order of the spacial derivative of (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In this way, the Schr¨odinger equation (3) can be rewritten as the following equivalent form: \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 wt(x,t)+ ivx(x,t) = 0, v(x,t) = wx(x,t), w(0,t) = 0, v(1,t) = −kiw(1,t), w(x,0) = w0(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (21) IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' XX, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' X, AUGUST 20XX 4 The semi-discretization process is similar to [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' For the sake of completeness, we sketch briefly the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' For fixed N ∈ N+, consider an equidistant partition of interval [0,1]: 0 = x0 < x1 < ··· < xj = jh < ··· < xN+1 = 1, where h = 1 N+1 is the mesh size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Denote the sequence {u j}N+1 0 by {u j} j and introduce respectively the average operator and the first-order finite difference operator as u j+ 1 2 = u j + u j+1 2 , δxu j+ 1 2 = u j+1 − u j h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (22) For the solutions v(x,t) and w(x,t) of (21), let {Vj(t)} j and {Wj(t)} j be grid functions at grids {xj} j, satisfying Vj(t) = v(xj,t), Wj(t) = w(xj,t), 0 ≤ j ≤ N + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The first equation of system (21) holds at (xj+ 1 2 ,t), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', w′(xj+ 1 2 ,t)+ ivx(xj+ 1 2 ,t) = 0, where xj+ 1 2 = (j + 1 2)h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Hereafter the prime “′” represents the derivative with respect to time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Replace the differential operator ∂x with difference operator δx to get W ′ j+ 1 2 (t)+ iδxVj+ 1 2 (t) = O(h2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (23) Similarly, for the second equation of system (21), it has Vj+ 1 2 (t)− δxWj+ 1 2 (t) = O(h2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (24) By dropping the infinitesimal terms in (23) and (24),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' and replacing Wj(t) and Vj(t) by wj(t) and vj(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' respectively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' we arrive at a semi-discretized finite difference scheme of system (21) as follows: \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 w′ j+ 1 2 (t)+ iδxvj+ 1 2 (t) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' 0 ≤ j ≤ N,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' vj+ 1 2 (t) = δxwj+ 1 2 (t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' 0 ≤ j ≤ N,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' vN+1(t) = −kiwN+1(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' t ≥ 0 w0(t) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' wj(0) = w0 j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' 0 ≤ j ≤ N + 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (25) where vj(t) and wj(t) are grid functions at grids xj (0 ≤ j ≤ N +1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' and w0 j is the approximation of the initial value w0(xj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1: The semi-discretized system (25) is a family of differentiation-algebra systems, which is called singular systems for which there are huge amount of references related to them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' See for instance [3], [11], [22] and the references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Now, we eliminate the intermediate variables vj(t) from (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' To this purpose, let Wh(t) = (w1(t),w2(t),··· ,wN+1(t))⊤ be unknown variable of (25) and Vh(t) = (v0(t),v1(t),··· ,vN(t))⊤ the auxiliary variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' We write (25) into vectorial form: \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 DhW ′ h(t) = −iMhVh(t)− \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' 0 kh−1wN+1(t) \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8, D⊤ h Vh(t) = −M⊤ h Wh(t)+ \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' 0 i2−1kwN+1(t) \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8, Wh(0) = (w0 0,w0 1,··· ,w0 N)⊤, (26) where the matrices Dh and Mh are given by Dh = 1 2 \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed 1 1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' 1 1 1 1 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 (N+1)×(N+1) , Mh = 1 h \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed −1 1 −1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' −1 1 −1 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 (N+1)×(N+1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (27) Obviously, both Dh and Mh are invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The differential algebraic system (25) or (26) can be written as an evolution equation in CN+1: � W ′ h(t) = AhWh(t), Wh(t) ∈ Yh = CN+1, Wh(0) = (w0 1,w0 2,··· ,w0 N+1)⊤ ∈ Yh, (28) where Ah is defined by AhYh = D−1 h � iMh � D⊤ h �−1 � M⊤ h Yh − (0,··· ,0,2−1ikyN+1)⊤� − D−1 h (0,··· ,0,kh−1yN+1)⊤� , ∀Yh = (y1,y2,··· ,yN+1)⊤ ∈ CN+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (29) System (28) is naturally discussed in the state space CN+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' To relate CN+1 in (28) with the step size, we write Yh = CN+1 and define a new inner product for Yh: � Yh,�Yh � Yh = h � DhYh,Dh�Yh � ,∀Yh,�Yh ∈ Yh, where ⟨·,·⟩ is the standard inner product of CN+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' For Yh = (y1,y2,··· ,yN+1)⊤ ∈ Yh, we choose the vector Zh = (z0,z1,··· ,zN)⊤ ∈ CN+1 satisfying D⊤ h Zh = −M⊤ h Yh + (0,··· ,0,2−1ikyN+1)⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (30) We call Zh the shadow element of Yh, which can simplify significantly the notation in the later proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The classical semi-discrete scheme is similar with (28) where the average operator Dh = IN+1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', � W ′ h(t) = ˆ AhWh(t), Wh(t) ∈ Yh = CN+1, Wh(0) = (w0 1,w0 2,··· ,w0 N+1)⊤ ∈ Yh, (31) IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' XX, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' X, AUGUST 20XX 5 in which the ˆ Ah is defined by ˆ AhYh = iMh � M⊤ h Yh − (0,··· ,0,2−1ikyN+1)⊤� − (0,··· ,0,kh−1yN+1)⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (32) At the end of this section we explain the significance of the discrete scheme (28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' We plot two figures in Figures 1 and 2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Figure 1 depicts the maximal real parts of the eigenvalues of the classical semi-discrete scheme (31) with step size h, from which we see that the real parts of the eigenvalues approach zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Figure 2 depicts the maximal real parts of the eigenvalues of the order reduction semi-discrete scheme (28) with the same step size, from which we see that the real parts of the eigenvalues approach a negative number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In both figures, we take k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' N 0 20 40 60 80 100 120 140 160 180 200 Real part of eigenvalue 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='02 0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Maximal real parts of eigenvalues of the semi-discrete scheme by classical method (31) N 0 20 40 60 80 100 120 140 160 180 200 Real part of eigenvalue 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='954 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='952 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='948 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='946 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='944 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='942 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='94 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Maximal real parts of eigenvalues of the semi-discrete scheme by order reduction method (28) IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' PROOF OF UNIFORM EXPONENTIAL STABILITY This section is devoted to the proof of the uniform expo- nential stability of (28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' To begin with, we first show that Ah is dissipative for every step size h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1: For the matrix Ah defined by (29), there holds Re⟨AhYh,Yh⟩Yh = −k|yN+1|2, ∀ Yh ∈ Yh, (33) which implies that Ah is dissipative for every h ∈ (0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' For Yh = (y1,y2,··· ,yN+1) ∈ Yh, let Zh = (z0,z1,··· ,zN) be the shadow element of Yh: � D⊤ h Zh = −M⊤ h Yh + (0,··· ,0,2−1ikyN+1)⊤, AhYh = D−1 h [−iMhZh + (0,··· ,0,kh−1yN+1)⊤].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (34) Set y0 := 0 and zN+1 := −ikyN+1 and introduce �Yh = (�y1,�y2,··· ,�yN+1) ∈ Yh such that AhYh = �Yh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Then, D⊤ h Zh + (0,··· ,0,2−1zN+1)⊤ = −M⊤ h Yh, (35) which is equivalent to zj+ 1 2 = δxyj+ 1 2 , j = 0,1,··· ,N, (36) and Dh�Yh = −iMhZh − (0,··· ,0,ih−1zN+1)⊤, (37) which is equivalent to �yj+ 1 2 = −iδxzj+ 1 2 , j = 0,1,··· ,N, (38) where in all (35) to (38), it was assumed that �y0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Take the inner product between AhYh and Yh in Yh by taking (36) and (38) into account to obtain Re⟨AhYh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Yh⟩Yh = Re � �Yh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Yh � Yh = h 2 � Dh�Yh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='DhYh � + h 2 � DhYh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Dh�Yh � = h 2 N ∑ j=0 �yj+ 1 2 yj+ 1 2 + h 2 N ∑ j=0 yj+ 1 2 �yj+ 1 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (using (38)) = −hi 2 N ∑ j=0 δxzj+ 1 2 yj+ 1 2 + hi 2 N ∑ j=0 yj+ 1 2 δxzj+ 1 2 = −hi 2 N ∑ j=0 � δxzj+ 1 2 yj+ 1 2 (t)+ zj+ 1 2 δxyj+ 1 2 � + hi 2 N ∑ j=0 � yj+ 1 2 δxzj+ 1 2 + δxyj+ 1 2 zj+ 1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (using (36)) (39) A simple calculation shows that −hi 2 N ∑ j=0 � δxzj+ 1 2 yj+ 1 2 + zj+ 1 2 δxyj+ 1 2 � +hi 2 N ∑ j=0 � yj+ 1 2 δxzj+ 1 2 + δxyj+ 1 2 z j+ 1 2 � = − i 4 N ∑ j=0 � (zj+1 − zj)(yj+1 + yj)+ (zj+1 + zj)(yj+1 − yj) � + i 4 N ∑ j=0 � (yj+1 + yj)(z j+1 − zj)+ (yj+1 − yj)(zj+1(t)+ zj) � = − i 2 N ∑ j=0 [zj+1yj+1 − zjyj]+ i 2 N ∑ j=0 [yj+1zj+1 − yjzj] = i 2[z0y0 − zN+1yN+1]+ i 2[yN+1zN+1 − y0z0] = −k|yN+1|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' ( using − ikyN+1 = zN+1 and y0 = 0) (40) IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' XX, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' X, AUGUST 20XX 6 The (39) and (40) leads to (33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Define the energy of (28) as Eh(t) = h 2 N ∑ j=0 ���wj+ 1 2 (t) ��� 2 = 1 2 ⟨Wh(t),Wh(t)⟩Yh .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (41) which is the discretization of the continuous energy (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The following Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 is the discrete counterpart of (9), which is a consequence of (33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2: The Eh(t) defined by (41) satisfies ˙Eh(t) = −k|wN+1(t)|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (42) The dissipativity of Ah implies that the spectral set σ(Ah) of Ah is contained in the closed left half-plane of the complex plane C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Actually, we have more stronger result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Precisely, for any 0 < h < 1, the spectral set σ(Ah) of Ah is contained in the open left half-plane of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' This is the following Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='3: For every h ∈ (0,1), iR ⊂ ρ(Ah).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' If there exist β ∈ R and nonzero Yh ∈ Yh such that iβYh = AhYh, then it follows from (33) that 0 = Re⟨iβYh, Yh⟩Yh = Re⟨AhYh, Yh⟩Yh = −k|yN+1|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (43) Replacing �Yh by iβYh in (37), we obtain \uf8f1 \uf8f2 \uf8f3 βyj+ 1 2 + δxzj+ 1 2 = 0, 0 ≤ j ≤ N, zj+ 1 2 − δxyj+ 1 2 = 0, 0 ≤ j ≤ N, (44) where Zh is the shadow element of Yh defined in (34), y0 = 0 and zN+1 := −ikyN+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Hence zN+1 = yN+1 = 0 from (43).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Setting j = N in (44) yields βhyN = 2zN, zN = −2 hyN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' It follows that yN = zN = 0 whenever βh2+4 is nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Under the condition βh2 +4 ̸= 0, suppose zj+1 = yj+1 = 0 and solve (44) to arrive at zj = yj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' This gives Yh = 0 by induction, which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' On the other hand, whenever βh2 + 4 = 0, it follows from (44) that \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 1 h(yj+1 + yj) = 1 2(zj+1 − zj), j = 0,1,··· ,N, 1 h(yj+1 − yj) = 1 2(zj+1 + zj), j = 0,1,··· ,N, (45) which implies that yj+1 = h 2zj+1, yj = −h 2zj, j = 0,1,··· ,N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (46) This, combining with y0 = 0 and yN+1 = 0, gives yj = 0 (j = 1,2,··· ,N) which is also a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' This completes the proof of the lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The following lemma comes from [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='4: Let {ui}i, {vi}i and {wi}i be the sequences of complex numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Then, 1 4 N ∑ i=0 (ui+1 − ui)(vi+1 + vi)(wi+1 + wi) +1 4 N ∑ i=0 (ui+1 − ui)(vi+1 − vi)(wi+1 − wi) +1 4 N ∑ i=0 (ui+1 + ui)(vi+1 − vi)(wi+1 + wi) +1 4 N ∑ i=0 (ui+1 + ui)(vi+1 + vi)(wi+1 − wi) = uN+1vN+1wN+1 − u0v0w0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (47) The following uniformly stability criterion which was pre- sented in [15] or [1] will be used in the proof of our main result Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1: Let h∗ > 0 and let {Sh(t)}h∈(0,h∗) be a family of semigroups of contractions on the Hilbert space Hh, and let �Ah be the corresponding infinitesimal generators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The family {Sh(t)} is uniformly exponentially stable if and only if the following two conditions are fulfilled: For every h ∈ (0,h∗), iR ⊂ ρ(�Ah);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' suph∈(0,h∗),β∈R∥(iβI − �Ah)−1∥ < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Now, we are in a position to give the main result of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2: For the matrices Ah defined by (29), the corresponding family of C0-semigroups Th(t) generated by Ah is uniformly exponentially stable, that is, there exist two constants M > 0 and ω > 0 independent of h ∈ (0,1) such that ∥Th(t)∥ ≤ Me−ωt, ∀t ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (48) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The proof is based on Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Notice that by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1, for every h ∈ (0,1), Th(t) is a C0-semigroup of contractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The fact that Ah satisfies the first condition of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1 has been claimed by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' In order to show that the family Ah satisfies the second condition of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1, we prove by contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' If the second condition of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1 is false, then there exist a sequence βn ∈ R, hn ∈ (0,1), and Y n hn ∈ Yhn,∥Y n hn∥Yhn = 1 such that ∥Un hn∥Yhn ≤ n−1, Un hn = (iβnIhn − Ahn)Y n hn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (49) By the Cauchy-Schwartz inequality, it follows from (49) and (33) that Re � Un hn,Y n hn � Yhn = −Re � AhnY n hn,Y n hn � Yhn = k|yn Nn+1|2 ≤ n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (50) Let Zn hn = (zn 0,zn 1,··· ,zn Nn)⊤ ∈ Zhn be the shadow element of Y n hn = (yn 1,yn 2,··· ,yn Nn+1)⊤(see(30)), Un hn = (un 1,un 2,··· ,un Nn+1)⊤ with hn(Nn +1) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Set artificially un 0 = yn 0 = 0 and zn Nn+1 = −ikyn Nn+1 to unify the notation of IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' XX, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' X, AUGUST 20XX 7 un j+ 1 2 and δxzn j+ 1 2 from j = 0,1,··· ,Nn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Then, it follows from (49) that � DhnUn hn = iβnDhnY n hn + iMhnZn hn + (0,··· ,0,ih−1zn Nn+1)⊤, −M⊤ hnY n hn = D⊤ hnZn hn + (0,··· ,0,2−1zn Nn+1)⊤, (51) or in vector form: \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed un 0+ 1 2 un 1+ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' un Nn+ 1 2 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 = iβn \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed yn 0+ 1 2 yn 1+ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' yn Nn+ 1 2 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 + i \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed δxzn 0+ 1 2 δxzn 1+ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' δxzn Nn+ 1 2 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 , \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed zn 0+ 1 2 zn 1+ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' zn Nn+ 1 2 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed δxyn 0+ 1 2 δxyn 1+ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' δxyn Nn+ 1 2 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (52) The proof will be split into three claims and each claim corresponds to that in the proof of stability of PDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Clam 1 corresponds to ωn → ∞ in the proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Cliam 1: |βn| ≥ C′ > 0 for some constant C′ independent of n ∈ N+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Suppose by contrary that the sequence {βn} contains a subsequence which is still denoted by {βn} itself without loss of generality converging to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Since ∥Y n hn∥Yhn = 1 and ∥Un hn∥Yhn ≤ n−1, it follows from (52) that hn Nn ∑ j=0 ���δxzn j+ 1 2 ��� 2 = hn Nn ∑ j=0 ���un j+ 1 2 − iβnyn j+ 1 2 ��� 2 ≤ 2hn Nn ∑ j=0 ���un j+ 1 2 ��� 2 + 2β 2 nhn Nn ∑ j=0 ���yn j+ 1 2 ��� 2 = 2∥Un hn∥2 Yhn + 2β 2 n∥Y n hn∥2 Yhn ≤ 2n−2, (53) which holds for all sufficiently large n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' On the other hand,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' by some simple operations,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' we get |zn j − zn Nn+1|2 = |zn j − zn j+1 + zn j+1 − zn j+2 + zn j+2···− zn Nn+1|2 = ����� Nn ∑ l= j (zn l+1 − zn l ) ����� 2 ≤ � Nn ∑ l= j |1|2 �� Nn ∑ l= j ��zn l+1 − zn l ��2 � ≤ (Nn + 1) � Nn ∑ l=0 ��zn l+1 − zn l ��2 � = hn Nn ∑ j=1 ���δxzn j+ 1 2 ��� 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' j = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='··· ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (54) in which hn(Nn + 1) = 1 is used in the last step,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' and for j = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='··· ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn |zn j| ≤ |zn j − zn Nn+1|+ |zn Nn+1| ≤ � � � �hn Nn ∑ j=1 |δxzn j+ 1 2 |2 + |zn Nn+1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' This inequality, together with zn Nn+1 = −ikyn Nn+1 and (50)- (53), implies that for each j = 0,1,··· ,Nn, |zn j|2 = O(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Therefore, in light of hn(Nn + 1) = 1 and the second identity of (52), hn Nn ∑ j=0 ���zn j+ 1 2 ��� 2 ≤ hn 2 Nn ∑ j=0 ���zn j+1 ��2 + ��zn j ��2� ≤ hn(Nn + 1) ������ � � � �hn Nn ∑ j=1 |δxzn j+ 1 2 |2 + |zn Nn+1| ������ 2 ≤ hn(Nn + 1)Cn−1 = O(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (55) Thus, the deducing process from (53) to (55) tells us that hn Nn ∑ j=0 ���δxzn j+ 1 2 ��� 2 = O(n−2), which implies that hn Nn ∑ j=0 ���zn j+ 1 2 ��� 2 = O(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' By noticing the second identity of (52), we have hn Nn ∑ j=0 ���δxyn j+ 1 2 ��� 2 = hn Nn ∑ j=0 ���zn j+ 1 2 ��� 2 , which means, by (55) that hn Nn ∑ j=0 ���δxyn j+ 1 2 ��� 2 = O(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Similarly, repeating the procedure from (53) to (55), for Y n hn, we obtain ∥Y n hn∥2 Yhn = hn Nn ∑ j=0 ���yn j+ 1 2 ��� 2 = O(n−1/2), which leads to a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Thus, the sequence {βn} cannot contain a subsequence converging to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' We can therefore assume that |βn| ≥ C′ > 0 for some constant C′ independent of n ∈ N+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The second claim is the discrete counterpart of (18) but with two extra terms h3 n 4βn Nn ∑ j=0 ���δxzn j+ 1 2 ��� 2 + h3 n 4 Nn ∑ j=0 ���δxyn j+ 1 2 ��� 2 which play important roles in our proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Claim 2: the following (56) holds true: ∥Y n hn∥2 Yhn + 1 βn hn∥Σhn �Zn hn∥2 CNn+2 + h2 n 4βn hn∥∆hn �Zn hn∥2 CNn+2 + h2 n 4 hn∥∆hn�Y n hn∥2 CNn+2 = hn Nn ∑ j=0 ���yn j+ 1 2 ��� 2 + hn βn Nn ∑ j=0 ���zn j+ 1 2 ��� 2 + h3 n 4βn Nn ∑ j=0 ���δxzn j+ 1 2 ��� 2 + h3 n 4 Nn ∑ j=0 ���δxyn j+ 1 2 ��� 2 = O(n−1), (56) IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' XX, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' X, AUGUST 20XX 8 where ∥ ·∥CNn+2 denotes the standard norm of CNn+2 and �Zn hn = (z0,z1,··· ,zNn+1)⊤ = � (Zn hn)⊤,zNn+1 �⊤ , �Y n hn = (0,y1,··· ,yNn+1)⊤ = � 0,(Y n hn)⊤�⊤ , Σh = 1 2 \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed 1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' 1 1 1 1 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8 (N+2)×(N+1) , ∆h = 1 h \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed −1 1 −1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' −1 1 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8 (N+2)×(N+1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (57) Actually, it follows from (49), (52), and ∥Y n hn∥Yhn = 1 that β −2 n hn ∑Nn j=0 ����δxzn j+ 1 2 ���� 2 is uniformly bounded with respect to n ∈ N+ because 1 βn \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed δxzn 0+ 1 2 δxzn 1+ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' δxzn Nn+ 1 2 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 = − \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed yn 0+ 1 2 yn 1+ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' yn Nn+ 1 2 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 − i βn \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed un 0+ 1 2 un 1+ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' un Nn+ 1 2 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' By (55) and Claim 1, β −2 n hn Nn ∑ j=0 ���zn j+ 1 2 ��� 2 is also uniformly bounded with respect to n ∈ N+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Let xn j = jhn for j = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='··· ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn + 1 and consider the following estimates: �����hn Nn ∑ j=0 xn j+ 1 2 (βnyn j+ 1 2 + δxzn j+ 1 2 ) zn j+ 1 2 βn ����� 2 = �����hn Nn ∑ j=0 xn j+ 1 2 un j+ 1 2 zn j+ 1 2 βn ����� 2 ≤ � Nn ∑ j=0 ��� � hnun j+ 1 2 ��� ����� � hn zn j+ 1 2 βn ����� �2 ≤ � hn Nn ∑ j=0 ���un j+ 1 2 ��� 2 �� β −2 n hn Nn ∑ j=0 ���zn j+ 1 2 ��� 2 � = ∥Un hn∥2 Yhn � β −2 n hn Nn ∑ j=0 ���zn j+ 1 2 ��� 2 � = O(n−2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (58) where (49) and (52) were used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' On the other hand, by the second identity of (52), we have hn Nn ∑ j=0 xn j+ 1 2 (βnyn j+ 1 2 + δxzn j+ 1 2 ) zn j+ 1 2 βn = hn Nn ∑ j=0 xn j+ 1 2 yn j+ 1 2 δxyn j+ 1 2 +β −1 n hn Nn ∑ j=0 xn j+ 1 2 δxzn j+ 1 2 zn j+ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (59) Applying Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='4 to the two terms of the right hand side of (59) and noticing xn Nn+1 = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' xn 0 = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' xn j+1 − xn j = hn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' it is easy to obtain 2Re � hn Nn ∑ j=0 xn j+ 1 2 yn j+ 1 2 δxyn j+ 1 2 � = hn Nn ∑ j=0 xn j+ 1 2 yn j+ 1 2 δxyn j+ 1 2 + hn Nn ∑ j=0 xn j+ 1 2 yn j+ 1 2 δxyn j+ 1 2 = 1 4 Nn ∑ j=0 (xn j+1 + xn j)(yn j+1 + yn j)(yn j+1 − yn j) +1 4 Nn ∑ j=0 (xn j+1 + xn j)(yn j+1 − yn j)(yn j+1 + yn j) = |yNn+1|2 − hn Nn ∑ j=0 ���yn j+ 1 2 ��� 2 − h3 n 4 Nn ∑ j=0 ���δxyn j+ 1 2 ��� 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (60) and 2Re � hn Nn ∑ j=0 xn j+ 1 2 zn j+ 1 2 δxzn j+ 1 2 � = hn Nn ∑ j=0 xn j+ 1 2 zn j+ 1 2 δxzn j+ 1 2 + hn Nn ∑ j=0 xn j+ 1 2 zn j+ 1 2 δxzn j+ 1 2 = 1 4 Nn ∑ j=0 (xn j+1 + xn j)(zn j+1 + zn j)(zn j+1 − zn j) + 1 4 Nn ∑ j=0 (xn j+1 + xn j)(zn j+1 + zn j)(zn j+1 − zn j) = |zNn+1|2 − hn Nn ∑ j=0 ���zn j+ 1 2 ��� 2 − h3 n 4 Nn ∑ j=0 ���δxzn j+ 1 2 ��� 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (61) By (59)-(61), it follows that hn Nn ∑ j=0 ���yn j+ 1 2 ��� 2 + h3 n 4 Nn ∑ j=0 ���δxyn j+ 1 2 ��� 2 + hn βn Nn ∑ j=0 ���zn j+ 1 2 ��� 2 + h3 n 4βn Nn ∑ j=0 ���δxzn j+ 1 2 ��� 2 = −2Re � hn Nn ∑ j=0 xn j+ 1 2 (βnyn j+ 1 2 + δxzn j+ 1 2 ) zn j+ 1 2 βn � +|yNn+1|2 + β −1 n |zNn+1|2, (62) which proves (56) by (50), (58) and zNn+1 = −ikyNn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' XX, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' X, AUGUST 20XX 9 The third claim is perfectly the discrete counterpart of (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Claim 3: The following (63) holds true: ∥Y n hn∥2 Yhn + 1 β 2n hn∥∆hn �Zn hn∥2 CNn+2 − 2 βn hn∥Σhn �Zn hn∥2 CNn+2 = hn Nn ∑ j=0 ���yn j+ 1 2 ��� 2 + hn β 2n Nn ∑ j=0 ���δxzn j+ 1 2 ��� 2 − 2hn βn Nn ∑ j=0 ���zn j+ 1 2 ��� 2 = O(n−2), (63) in which Σhn and ∆hn are defined in (57) and ∥ · ∥CNn+2 denotes the standard norm of CNn+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Actually, from (52), we have ∥Un hn∥2 Yhn β 2n = hn β 2n Nn ∑ j=0 ���un j+ 1 2 ��� 2 = hn Nn ∑ j=0 �����yn j+ 1 2 + δxzn j+ 1 2 βn ����� 2 = hn Nn ∑ j=0 ���yn j+ 1 2 ��� 2 + hn β 2n Nn ∑ j=0 ���δxzn j+ 1 2 ��� 2 + hn βn Nn ∑ j=0 (yn j+ 1 2 δxzn j+ 1 2 + yn j+ 1 2 δxzn j+ 1 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (64) On the other hand,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' it follows from the second identity of (52) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='that zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 = δxyn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='hn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='βn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='∑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='(yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 δxzn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 + yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 δxzn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 )+ 2hn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='βn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='∑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='���zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='= hn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='βn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='∑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='(yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 δxzn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 + δxyn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='+ hn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='βn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='∑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='(δxyn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 + yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 δxzn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2 ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2βn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='∑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='[(yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1 + yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j)(zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1 − zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j)+ (yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1 − yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j)(zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1 + zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j)] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='2βn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='∑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='[(yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1 + yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j)(zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1 − zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j)+ (yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1 − yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j)(zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1 + zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j)] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='= 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='βn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='∑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='(yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1 − yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='jzn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j)+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='βn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='∑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='(yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j+1 − yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='jzn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='j) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='= 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='βn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='[yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn+1zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn+1 + yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn+1zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Nn+1 − yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='0zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='0 − yn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='0zn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='0] = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' where zn Nn+1 = −ikyn Nn+1 and yn 0 = 0 were used in the last step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Hence hn βn Nn ∑ j=0 (yn j+ 1 2 δxzn j+ 1 2 + yn j+ 1 2 δxzn j+ 1 2 ) = −2hn βn Nn ∑ j=0 ���zn j+ 1 2 ��� 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' (65) Plugging (65) into (64) and using ∥Un hn∥Yhn ≤ n−1 and Claim 1, we arrive at (63).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Finally, if βn > 0, we have ∥Y n hn∥2 Yhn = O(n−1) from (56), which is a contradiction to ∥Y n hn∥Yhn = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' When βn < 0, ∥Y n hn∥Yhn = O(n−1) by virtue of (63), which is also a con- tradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' We therefore complete the proof of the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' CONCLUDING REMARKS In this paper, the uniform approximation of exponential stability of a one-dimensional Schr¨odinger equation is investi- gated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' We introduce an order reduction space semi-discretized finite difference scheme for approximating uniformly the expo- nentially stable closed-loop system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Although the scheme has been applied to certain PDEs in previous works, they all share a common feature that it is possible to find a suitable Lyapunov functional for the closed-loop systems, both for the continuous system and its discrete counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' However, for the system considered in this paper, it is a longstanding problem that in the natural state space L2(0,1), even for the continuous system, the time domain energy multiplier has not been found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' This makes the convergence of the semi-discrete scheme of this PDE be open for a long time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' This paper is the first work that applies the frequency domain multiplier approach to the uniformly exponential convergence of semi-discretized PDE system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The convergence of the discrete scheme to continuous system is not included because it is a standard procedure and can be followed analogously from [14] and many other papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Considering it is difficult to find a time domain energy multiplier for many other PDEs, the approach presented in this paper has significant potentials in applying to other PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' ACKNOWLEDGMENTS The authors would like to thank Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Jiankang Liu and Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Hanjin Ren for their careful reading and many suggestions on the presentation of the initial manuscript of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' The Figures 1 and 2 were depicted by Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Jiangkang Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' REFERENCES [1] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Abdallah, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Nicaise, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Valein, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Wehbe, Uniformly exponentially or polynomially stable approximations for second order evolution equa- tions and some applications, ESAIM Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Calc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 19(2013), 844-887.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [2] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Banks, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Ito, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Wang, Exponentially stable approximations of weakly damped wave equations, in: “Estimation and Control of Distributed Parameter Systems”, Basel, Birkhauser, 1991, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='1-33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Dai, Singular Control Systems, SpringerVerlag, New York, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Ervedoza, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Marica, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Zuazua, Numerical meshes ensuring uniform observability of 1d waves construction and analysis, IMA J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 36(2015), 503-542.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Ervedoza, Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes, Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Math, 113(2009), 377-415.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Ervedoza, Spectral conditions for admissibility and observability of Schr¨odinger systems: Applications to finite element discretizations, Asymptot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 71(2011), 1-32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Glowinski, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Lions, A numerical approach to the exact boundary controllability of the wave equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Dirichlet controls: description of the numerical methods, Japan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 7(1990), 1-76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Guo and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Xu, A Semi-discrete Finite Difference Method to Uniform Stabilization of Wave Equation with Local Viscosity, IFAC J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Control , 13(2020), Art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='101000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [9] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Huang, Characteristic conditions for exponential stability of lin- ear dynamical systems in Hilbert spaces, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Differential Equations, 1(1)(1985), 43-56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' XX, NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' X, AUGUST 20XX 10 [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Infante and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Zuazua, Boundary observability for the space semi- discretizations of the 1-d wave equation, M2AN Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 33(1999), 407-438.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [11] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Kao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Xie and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Wang, Stabilization of Singular Markovian Jump Systems With Generally Uncertain Transition Rates, IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Automat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Control, 59(2014), 2604-2610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Krstic, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Guo, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Smyshlyaev, Boundary controllers and observers for the linearized Schr¨odinger equation, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 49(2011), 1479-1497.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Liu and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Guo, A new semi-discretized order reduction finite difference scheme for uniform approximation of 1-D wave equation, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 58(2020), 2256-2287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Liu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Hao, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Guo, Order reduction-based uniform approxi- mation of exponential stability for one-dimensional Schr¨odinger equation, Systems Control Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 160(2022), Art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='105136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [15] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Liu and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Zheng, Liu, Exponential stability of the semigroup associated with a thermoelastic system, Quart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 51(1993), 535-545.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [16] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Liu and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Zheng, Uniform exponnential stability and approx- imation in control of a thermoelastic system, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 32(1994), 1226-1246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Micu and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Castro, Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method, Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Math, 102(2006), 413-462.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Pr¨uss, On the spectrum of C0-semigroups, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 284(1984), 847-857.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [19] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Tebou and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' ZuaZua, Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity, Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Math, 95(2003), 563-598.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [20] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Tebou and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Math, 26(2007), 337-365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Tucsnak and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Weiss, Observation and Control for Operator Semigroups, Birkhauser Verlag, Basel, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [22] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Xia, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Shen and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Zhou, SMC Design for Robust Stabilization of Nonlinear Markovian Jump Singular Systems, IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Automat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Control, 63(1)(2018), 219-224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [23] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Zheng and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Zhou, State reconstruction of the wave equation with general viscosity and non-collocated observation and control, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 502(2020), Art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' 125257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' [24] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=', 47(2005), 197-243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' PLACE PHOTO HERE Bao-Zhu Guo received the Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' degree from the Chinese University of Hong Kong in Applied Math- ematics in 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Since 2000, he has been with the Academy of Mathematics and Systems Science, the Chinese Academy of Sciences, where he is a Research Professor in mathematical system theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' From 2004-2019, he was a chair professor in School of Computer Science and Applied Mathematics, University of the Witwatersrand, South Africa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' He is the author or co-author of the books: “Stability and Stabilization of Infinite Dimensional Systems with Applications” (Springer-Verlag, 1999);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' “Active Disturbance Rejection Control for Nonlinear Systems: An Introduction” (John Wiley & Sons, 2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' and “Control of Wave and Beam PDEs-The Riesz Basis Approach” (Springer- Verlag, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' His research interests include theory of infinite-dimensional systems and active disturbance rejection control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' Guo received the One Hundred Talent Program from the Chinese Academy of Sciences (1999), and the National Science Fund for Distinguished Young Scholars (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' PLACE PHOTO HERE Fu Zheng received the B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Sc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='Sc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' degrees in mathematics from the Yanbian University, Jilin, China in 2002 and 2005, and the Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' from Beijing Institute of Information and Control, Beijing, China in 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' He held a postdoctoral research position in Academy of Mathematics and Systems Science, Academia Sinica, Beijing, China, from 2013 to 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' From 2012-2021, he was an associate profes- sor at Bohai University, Jinzhou, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' At the end of 2021, he joined the School of Science, Hainan University, Hainan China, where he is currently a professor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} +page_content=' His research interests include control theory of infinite-dimensional systems and numerical solutions to control problems of distributed parameter systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OdFJT4oBgHgl3EQf0y3g/content/2301.11649v1.pdf'} diff --git a/RdE4T4oBgHgl3EQflQ1W/content/tmp_files/2301.05158v1.pdf.txt b/RdE4T4oBgHgl3EQflQ1W/content/tmp_files/2301.05158v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..a5f9c89c2c715ae7910307979890bd44de3e81c5 --- /dev/null +++ b/RdE4T4oBgHgl3EQflQ1W/content/tmp_files/2301.05158v1.pdf.txt @@ -0,0 +1,2038 @@ +Preprint. +SEMPPL: PREDICTING PSEUDO-LABELS FOR BETTER +CONTRASTIVE REPRESENTATIONS +Matko Boˇsnjak, Pierre H. Richemond, Nenad Tomasev, Florian Strub, Jacob C. Walker, +Felix Hill, Lars Holger Buesing, Razvan Pascanu, Charles Blundell, Jovana Mitrovic +DeepMind +{matko, richemond, mitrovic}@deepmind.com +ABSTRACT +Learning from large amounts of unsupervised data and a small amount of super- +vision is an important open problem in computer vision. We propose a new semi- +supervised learning method, Semantic Positives via Pseudo-Labels (SEMPPL), +that combines labelled and unlabelled data to learn informative representations. +Our method extends self-supervised contrastive learning—where representations +are shaped by distinguishing whether two samples represent the same underlying +datum (positives) or not (negatives)—with a novel approach to selecting posi- +tives. To enrich the set of positives, we leverage the few existing ground-truth +labels to predict the missing ones through a k-nearest neighbours classifier by +using the learned embeddings of the labelled data. We thus extend the set of +positives with datapoints having the same pseudo-label and call these semantic +positives. We jointly learn the representation and predict bootstrapped pseudo- +labels. This creates a reinforcing cycle. Strong initial representations enable better +pseudo-label predictions which then improve the selection of semantic positives +and lead to even better representations. SEMPPL outperforms competing semi- +supervised methods setting new state-of-the-art performance of 68.5% and 76% +top-1 accuracy when using a ResNet-50 and training on 1% and 10% of labels on +ImageNet, respectively. Furthermore, when using selective kernels, SEMPPL sig- +nificantly outperforms previous state-of-the-art achieving 72.3% and 78.3% top-1 +accuracy on ImageNet with 1% and 10% labels, respectively, which improves +absolute +7.8% and +6.2% over previous work. SEMPPL also exhibits state- +of-the-art performance over larger ResNet models as well as strong robustness, +out-of-distribution and transfer performance. +1 +INTRODUCTION +In recent years, self-supervised learning has made significant strides in learning useful visual fea- +tures from large unlabelled datasets [Oord et al., 2018; Chen et al., 2020a; Mitrovic et al., 2021; +Grill et al., 2020; Caron et al., 2021]. Moreover, self-supervised representations have matched the +performance of historical supervised baselines on the ImageNet-1k benchmark [Russakovsky et al., +2015] in like-for-like comparisons as well as outperformed supervised learning in many transfer +settings [Tomasev et al., 2022]. While such results show exciting progress in the field, in many +real-wold applications often there exists a small amount of ground-truth labelled datapoints making +the problem of representation learning semi-supervised. +In this work we propose a novel approach to semi-supervised learning called Semantic Positives +via Pseudo-Labels (SEMPPL) which incorporates supervised information during the representation +learning stage within a self-supervised loss. Unlike previous work which uses the available super- +vision as targets within a cross-entropy objective, we propose to use the supervised information to +help inform which points should have similar representations. We propose to learn representations +using a contrastive approach, i.e. we learn the representation of a datapoint (anchor) by maximizing +the similarity of the embedding of that datapoint with a set of similar points (positives), while simul- +taneously minimizing the similarity of that embedding with a set of dissimilar points (negatives). +1 +arXiv:2301.05158v1 [cs.CV] 12 Jan 2023 + +Preprint. +As such, the appropriate construction of these sets of positives and negatives is crucial to the success +of contrastive learning methods. While strategies for sampling negatives have been extensively +studied in the literature [Schroff et al., 2015; Harwood et al., 2017; Ge et al., 2018; Wang et al., +2019a; He et al., 2020; Chen et al., 2020c], the sampling of positives has received far less attention. +We propose a novel approach to selecting positives which leverages supervised information. Specif- +ically, we propose using the small amount of available ground-truth labels in order to non- +parametrically predict the missing labels (pseudo-labels) for the unlabelled data. Note that many +previous semi-supervised approaches use pseudo-labels as targets within a cross-entropy-based ob- +jective [Van Engelen & Hoos, 2020; Yang et al., 2021]. In SEMPPL we use pseudo-labels in a very +different way, i.e. we use them to select positives based on whether two datapoints (we call these +semantic positives) share the same (pseudo-)label. By maximizing the similarity of a datapoint with +its semantic positives we expect to learn representations that are more semantically aligned and as a +consequence encode more abstract, higher-level features which should generalise better. To predict +informative pseudo-labels, we compare the representations of the unlabelled data with those of the +labelled subset and use a k-nearest neighbours (k-NN) classifier to impute the missing labels. +We simultaneously learn the representation, predict pseudo-labels and select semantic positives. +This creates a virtuous cycle: better representations enable better pseudo-label prediction which in +turn enables better selection of semantic positives and thus helps us learn better representations. Im- +portantly, as the prediction of pseudo-labels and selection of semantic positives does not depend on +the exact form of the contrastive objective employed, SEMPPL is compatible with and complements +all contrastive losses, e.g. [Chen et al., 2020a;b; Caron et al., 2020; He et al., 2020; Mitrovic et al., +2021] and may even be extended to non-contrastive losses [Grill et al., 2020; Chen & He, 2021]. +We evaluate the representations learned with SEMPPL across a varied set of tasks and datasets. In +particular, SEMPPL sets new state-of-the-art in semi-supervised learning on ImageNet with 1% and +10% of labels on the standard ResNet-50 (1×) architecture with respectively 68.5% and 76.0% top- +1 performance and across larger architectures. When combined with Selective Kernels [Li et al., +2019b], we achieve 72.3% and 78.3% top-1 performance with 1% and 10% labels, respectively, +significantly outperforming previous state-of-the-art by absolute +7.8% and +6.2% in top-1 perfor- +mance. We also outperform previous state-of-the-art on robustness and out-of-distribution (OOD) +generalisation benchmarks while retaining competitive performance in transfer learning. +Our main contributions are: +• We extend contrastive learning to the semi-supervised setting by introducing the idea of es- +timating pseudo-labels for selecting semantic positives as a key component especially in the +low-label regime, +• We propose a novel semi-supervised method SEMPPL that jointly estimates pseudo-labels, +selects semantic positives and learns representations which creates a virtuous cycle and enables +us to learn more informative representations, +• We extensively evaluate SEMPPL and achieve a new state-of-the-art in semi-supervised learn- +ing, robustness and out-of-distribution generalisation, and competitive performance in transfer. +2 +SEMANTIC POSITIVES VIA PSEUDO-LABELS +The selection of appropriate positive and negative examples are the cornerstone of contrastive learn- +ing. Though the research community has mainly focused on the selection of negatives, positives +are equally important as they play a vital role in learning semantic similarity. We thus leverage +labelled information as it encodes semantic information to improve the selection of informative pos- +itives. Specifically, we expand a self-supervised model to use this labelled data to non-parametrically +predict pseudo-labels for the remaining unlabelled data. Using both ground-truth labels and the pre- +dicted pseudo-labels, we expand the set of positives with semantic positives. +Notations Let D = Dl ∪Du be a dataset consisting of labelled training data Dl = {(xi, yi)}N +i=1 and +unlabelled training data Du = {(xj)}M +j=N+1 with M ≫ N. Let B be a batch of data of size B with +B = {(xi, yi)}b +i=1 ∪ {xj}B +j=b+1 where (xi, yi) ∈ Dl and xj ∈ Du, where the indices i, j and m to +denote labelled, unlabelled, and all datapoints, respectively. Following established self-supervised +learning practices [Chen et al., 2020a;b; Caron et al., 2020; Mitrovic et al., 2021; Dwibedi et al., +2 + +Preprint. +Embedding +Projection +Semantic +positive +Loss +Prediction +Projection +Projection +Projection +Projection +K-NN +Query +Pseudo +labels +Embedding +Projection +Target Network +Negatives +Loss +Target Network +Online Network +Online Network +Embedding +Projection +Prediction +Online Network +Prediction +Queue +Figure 1: Sketch of SEMPPL. (Left) Standard contrastive pipelines. (Middle) Unlabelled data are +tagged with pseudo-labels by using a k-NN over projected labelled data. (Right) Semantic positives +are queried from the queue and processed to compute an additional contrastive loss. +2021; Tomasev et al., 2022], we create different views of the data by applying pairs of randomly +sampled augmentations a1, a2 ∼ A from the augmentation distribution A proposed in Chen et al. +[2020a]. For every datapoint xm ∈ D we denote the corresponding augmentations as xa1 +m , xa2 +m . +Augmentation positives +We embed one data view xa1 +m via an online encoder network f and embed +the other data view xa2 +m with a target encoder network ft, i.e. we get latent representations za1 +m = +f(xa1 +m ) and za2 +m,t = ft(xa2 +m ). Note that the weights of ft are an exponential moving average of the +weights of f. Next, we pass these latent representations through projection and prediction multi- +layer perceptrons. Specifically, we use an online projector g and target projector gt, as well as an +online predictor h, to further transform za1 +m and za2 +m,t; again, the weights of gt are an exponential +moving average of the weights of g. We then get ˆza1 +m = h(g(za1 +m )) and ˜za2 +m,t = gt(za2 +m,t) and l2- +normalise these; we use ˆza1 +m , ˜za2 +m,t onward as the normalised latent embeddings. +In order to learn the representation of ˆza1 +m , we contrast it against the augmentation-based positive +˜za2 +m,t as well as against negatives. For this, we use the contrastive loss: +LAUGM = − +B +� +m=1 +log +ϕ(ˆza1 +m , ˜za2 +m,t) +ϕ(ˆza1 +m , ˜za2 +m,t) + � +xn∈N (xm) ϕ(ˆza1 +m , ˜za2 +n,t) +(1) +where N(xk) is the set of negatives, randomly uniformly sampled from the current batch, ˜za2 +n,t = +gt(ft(xn)) the target network projection of the negative sample; ϕ(x1, x2) = τ · exp(⟨x1, x2⟩/τ) +is the scoring function, τ > 0 is a scalar temperature, and ⟨·, ·⟩ denotes the Euclidean dot product. +Since the representations we contrast are l2-normalised, the dot product effectively turns into cosine +similarity. +Pseudo-label prediction and semantic positives +Since we have access to a small labelled dataset, +we can use the label information to select more informative positives beyond just augmentations of +the original image. Specifically, we can associate images with the same label as positives and we call +these semantic positives. We want to select semantic positives for all the data, not just the labelled +subset. For this purpose, we propose to compute pseudo-labels for the unlabelled data and use this +to select semantic positives. To compute pseudo-labels we compare the current latent embeddings +of the unlabelled data to those of the labelled data. Specifically, we propose to use a first-in-first-out +3 + +020202Preprint. +queue Q with capacity C for storing labelled embeddings which we use for computing the pseudo- +labels. At the start of training, we simply initialise the queue with random vectors, and use the queue +from the first step. For each batch B, we add the target projection of only the labelled data to the +queue, i.e. Q ← (˜za2 +i,t, yi). To predict a pseudo-label for an unlabelled datapoint xj, we first compute +the online predictor output ˆza1 +j , before retrieving its k-nearest neighbours {(˜za2 +s,t, ys)}k +s=1 in cosine +similarity from the queue Q.1 Finally, we compute the pseudo-label ¯yj of xj as: +¯yj = mode +ys +{(˜za2 +s,t, ys)}k +s=1 +(2) +where mode is the mode of the set, tasked with obtaining the most frequent class in the k-nearest +neighbours. We use the ground-truth labels (for the labelled data) or the computed pseudo-labels +(for the unlabelled data) to select semantic positives for every datapoint in B. For each xm ∈ B, +we uniformly sample over all the embeddings in Q that share the same (pseudo-) label as xm to +get a semantic positive ˜za2,+ +m,t +∼ U({(˜za2 +l,t, yl) ∈ Q | yl = pl(xm)}), where pl(xm) = ym if xm is +labelled and pl(xm) = ¯ym if xm is unlabelled. Next, we include these semantic positives within our +representation learning process through the contrastive objective +LSEMPOS = − +B +� +m=1 +log +ϕ(ˆza1 +m , ˜za2,+ +m,t ) +ϕ(ˆza1 +m , ˜za2,+ +m,t ) + � +xn∈N (xm) ϕ(ˆza1 +m , ˜za2 +n,t) +(3) +Taking these two losses (1) and (3) together, we propose to learn representations in our method +SemPPL by minimising the following total loss +LSEMPPL = LAUGM + αLSEMPOS +(4) +where α controls the ratio between these sub-losses. +2.1 +IMPLEMENTATION DETAILS +Architecture We use Residual Networks [He et al., 2016] (v1; pre-activation as customary in the +literature) for f and ft and use either 50 or 200 layers deep networks and with a width multiplier +ranging from 1× to 4×. As in [Grill et al., 2020; Tomasev et al., 2022], we use multi-layer per- +ceptrons with 2 layers of size 4096 and 256, with batch normalisation [Ioffe & Szegedy, 2015] and +rectified linear activation. +Self-supervised learning method We use RELICv2 [Tomasev et al., 2022] as our default self- +supervised training objective due to its competitive performance. Therefore, we add an invariance +penalty on top of Equation 4 to further enforce the similarity constraints and regularize the learning +process as detailed in Appendix B. We also explore other self-supervised learning objectives in +Section 4. +Algorithm parameters We use a queue of capacity C = 20B, with batch size B = 4096, and +temperature τ = 0.2 while randomly sampling negatives from the current batch; we take |N(x)| = +10 negatives in total. For augmentations, we use the standard SIMCLR augmentations [Chen et al., +2020a] and the RELICV2 multi-crop and saliency-based masking [Tomasev et al., 2022]; we use 4 +large views and 2 small views for augmentation positives and 3 semantic positives. The semantic +positives are computed with a k-NN with k = 1 (see the analysis section in Appendix D); we build +a single k-NN instance per augmentation a queried with all the augmentations where |a| = 4. This +produces |a|2 = 16 k-NN induced pseudo-labels in total for each unlabelled image among which +we then perform majority voting to compute the final pseudo-label. +Optimisation Our networks are optimized with LARS [You et al., 2017]. Our base learning rate +is 0.3 and we train our models for 300 epochs with a learning rate warm-up period of 10 epochs +and cosine decay schedule thereafter. We use a weight decay of 10−6 and batch size B = 4096. +We exclude the biases and batch normalisation parameters both from LARS adaptation and weight +decay. The exponential moving average parameter for target networks is 0.996. Our pseudo-code +is described in the appendix along with precise architectural and implementation details. Pretrained +model checkpoints and code will be made available on GitHub. +1We use the cosine similarity as the embeddings are normalised. +4 + +Preprint. +3 +EXPERIMENTAL RESULTS +To evaluate SEMPPL, we pre-train representations using 1% and 10% labelled data from the Ima- +geNet dataset [Russakovsky et al., 2015] based on the splits from Chen et al. [2020a] +We then test SEMPPL in semi-supervised classification, robustness and out-of-distribution general- +isation tasks. Lastly, we probe the transfer capabilities of the representations to other image classi- +fication datasets. For a complete set of results and experimental details, please see the Appendix A. +3.1 +SEMI-SUPERVISED LEARNING +In Table 1, we report top-1 accuracy on the ImageNet test set when either 1% or 10% of the data is +labelled for the ResNet-50 architecture as well as deeper and wider ResNets. +SEMPPL achieves top-1 accuracy of 68.5% with 1% of labels, significantly outperforming the previ- +ous state-of-the-art SimMatch [Zheng et al., 2022] by an absolute +1.3% in ImageNet test accuracy. +With 10% of label data, our top-1 accuracy on ResNet-50 reaches 76.0%, outperforming the previ- +ous state-of-the-art PAWS [Assran et al., 2021] in semi-supervised learning. SEMPPL outperforms +competing representation learning methods across the board, achieving state-of-the-art performance +on all ResNet-50 2×, ResNet-50 4× and , in both the 1% and 10% labelled settings. SEMPPL does +not use, and therefore excludes from comparison, distillation from larger networks as in [Chen et al., +2020b; Pham et al., 2021]. +Similar to [Chen et al., 2020b], we also tested SEMPPL on ResNets with Selective Kernels (SK) [Li +et al., 2019b]. +This increases the encoder parameter count to 27.5M. +We thus achieve a new absolute state-of-the-art of 72.3% and 78.3% top-1 accuracies, respectively, +when using 1% and 10% of labelled data. Finally, SEMPPL reaches a new state-of-the-art using 76.0 +and 80.5 on 1% and 10% of labels without self-distillation with a ResNet-200 2× + SK architecture. +For implementation details of the semi-supervised results and additional results, see the Ap- +pendix A.1. +Table 1: Top-1 accuracy (in %) for ResNet encoders with different depth and width. +ResNet-50 1× +ResNet-50 2× +ResNet-50 4× +ResNet-200 2× +Method +Top-1 +Top-1 +Top-1 +Top-1 +1% +10% +1% +10% +1% +10% +1% +10% +SimCLR [Chen et al., 2020a] +48.3 +65.6 +58.5 +71.7 +63.0 +74.4 +- +- +BYOL [Grill et al., 2020] +53.2 +68.8 +62.2 +73.5 +69.1 +75.7 +71.2 +77.7 +RELICv2 [Tomasev et al., 2022] +58.1 +72.4 +64.7 +73.7 +69.5 +74.6 +72.1 +76.4 +SimCLRv2 [Chen et al., 2020b] +57.9 +68.4 +66.3 +73.9 +- +- +- +- +CoMatch [Li et al., 2021a] +66.0 +73.7 +- +- +- +- +- +- +PAWS [Assran et al., 2021] +66.5 +75.5 +69.6 +77.8 +69.9 +79.0 +- +- +SimMatch [Zheng et al., 2022] +67.2 +74.4 +- +- +- +- +- +- +SemPPL (ours) +68.5 +76.0 +71.9 +78.6 +72.5 +79.3 +74.8 +80.4 +SimCLRv2 + SK [Chen et al., 2020b] +64.5 +72.1 +70.6 +77.0 +- +- +- +- +SemPPL + SK (ours) +72.3 +78.3 +74.5 +79.8 +- +- +76.0 +80.5 +3.2 +ROBUSTNESS AND OOD GENERALISATION +We evaluate the robustness and generalisation abilities of SEMPPL on ImageNetV2 [Recht et al., +2019], ImageNet-C [Hendrycks & Dietterich, 2019], ImageNet-R [Hendrycks et al., 2021] and Ob- +jectNet [Barbu et al., 2019] which have all been purposefully constructed to test different robustness +and generalisation aspects. We evaluate all three variants on ImageNetV2: matched frequency (MF), +Threshold 0.7 (T-0.7) and Top Images (TI). When evaluating PAWS, we used the publicly available +checkpoints. +5 + +Preprint. +Table 2 shows good robustness and generalisation ability of the representations learned with +SEMPPL. SEMPPL sets the new state-of-the-art performance (outperforming even the supervised +baseline) on 4 out of 5 datasets, while outperforming PAWS across all datasets. SEMPPL also out- +performs SimMatch on 4 out of 5 datasets. For more details on the evaluation protocols and results +for ImageNet-C see the Appendix A.2. +Table 2: Top-1 accuracy (in %) for ImageNetV2, ImageNet-R and ObjectNet. +Robustness +OOD generalization +Method +MF +T-0.7 +Ti +ImageNet-R +ObjectNet +Supervised (100% labels) [Lim et al., 2019] +65.1 +73.9 +78.4 +24.0 +26.6 +Semi-supervised (10% labels) +PAWS [Assran et al., 2021] +64.5 +73.7 +78.9 +23.5 +23.8 +SimMatch [Zheng et al., 2022] +63.8 +73.2 +78.3 +25.0 +24.5 +SemPPL (ours) +65.4 +74.1 +79.6 +24.4 +25.3 +3.3 +TRANSFER LEARNING +We evaluate the generality of SEMPPL representations by testing whether the features learned on +ImageNet are useful across different datasets and tasks. Specifically, we evaluate the transfer per- +formance of SEMPPL on a set of 11 image classification datasets commonly used in the contrastive +literature under the linear protocol [Grill et al., 2020; Chen et al., 2020a; Dwibedi et al., 2021; Mitro- +vic et al., 2021; Tomasev et al., 2022]. For the linear protocol, the pretrained encoder is frozen and a +randomly initialized linear classifier is trained on top using the training data from the target dataset. +We report standard metrics for each dataset as well as performance on a held-out test set. For more +details on the evaluation protocol see the Appendix A.3. Table 3 compares the transfer performance +of representations pretrained using the supervised baseline [Chen et al., 2020a], PAWS [Assran et al., +2021], SimMatch [Zheng et al., 2022] and our method SEMPPL. SEMPPL outperforms the super- +vised baseline on 8 out of 11 datasets, PAWS on 9 out of 11 datasets, while showing competitive +performance to SimMatch, outperforming it on 4 out of 7 datasets. +3.4 +FULL LABELLED DATASET +Figure 2: Top-1 accuracy for ResNet50 with 100% of the +labels across augmentations, initializations and networks. +Method +Params +Top-1 +Supervised (ResNet-50) ++ AutoAugment [Cubuk et al., 2019] +27M +77.6 ++ MaxUp [Gong et al., 2021] +27M +78.9 +Representation Learning (ResNet-50) +SEMPPL (SimCLR base) +27M +76.0 +SEMPPL (BYOL base) +27M +77.7 +SEMPPL (ReLICv2 base; ours) +27M +79.7 +Other Architectures +Swin-T [Liu et al., 2021b] +29M +81.3 +ConvNeXt [Liu et al., 2022] +29M +82.1 +SEMPPL + SK (ours) +29M +82.0 +We also assess how SEMPPL be- +haves in a fully supervised setting. +For this purpose, we select semantic +positives based on the ground-truth +labels and fine-tune the learned rep- +resentations with the full ImageNet +dataset. We compare against strong +supervised baselines on ResNets as +well as against recent performant net- +work architectures that are extensions +of the ResNet, e.g. [Liu et al., 2021b; +2022]. +Our method reaches 79.7% top-1 ac- +curacy on a ResNet 50 outperforming +a number of strong supervised base- +lines. When we add selective kernels +to a ResNet 50, we achieve 82% top-1 +accuracy outperforming recent trans- +formers architecture [Liu et al., 2021b], and matching highly tuned ConvNext [Liu et al., 2022]. +Therefore, SEMPPL may also be considered as a promising pretraining method in the supervised +learning setting. +6 + +Preprint. +Table 3: Top-1 accuracy (in %) on the full suite of transfer tasks. +Method +Food101 CIFAR10 +CIFAR100 +Birdsnap +SUN397 +Cars +Aircraft DTD +Pets +Caltech101 +Flowers +Supervised-IN [Chen et al., 2020a] +72.3 +93.6 +78.3 +53.7 +61.9 +66.7 +61.0 +74.9 +91.5 +94.5 +94.7 +Semi-supervised methods with 10% labels: +PAWS [Assran et al., 2021] +79.1 +92.3 +76.3 +62.0 +66.1 +75.7 +61.4 +77.0 +92.2 +91.9 +96.5 +SimMatch [Zheng et al., 2022] +71.7 +93.6 +78.4 +– +– +69.7 +– +75.1 +92.8 +– +93.2 +SEMPPL (ours) +80.2 +92.5 +77.6 +64.2 +66.3 +75.5 +63.9 +77.8 +92.5 +93.0 +96.3 +4 +ANALYSIS +We analyse the impact of different design choices in SEMPPL on downstream performance. In +this section, we focus the behaviour and impact of pseudo-labels and semantic positives on learning +representations. For further analyses and experimental details, please see Appendix D. +Semantic positives across self-supervised learning objectives +With SEMPPL we extend the set +of positives to include semantic positives based on predicted pseudo-labels; we can combine these +ideas with other self-supervised methods. In Table 4.1, we additionally evaluate SEMPPL on the +non-contrastive self-supervised method BYOL [Grill et al., 2020]. BYOL replaces the contrastive +loss in Equation 4 with an l2 loss. Importantly, we follow the training pipeline (e.g. augmentation, +hyperparameters etc.) from [Grill et al., 2020] to fairly highlight the impact of SEMPPL. We ob- +serve a drastic improvement when adding semantic positives. With 1% labels on ImageNet BYOL +improves by absolute +3.9% and by absolute +3.6% when using 10% labels. For completeness we +have also highlighted the contribution of SEMPPL when using RELICv2 as the base self-supervised +objective which is our default implementation. For 1% labeled data, we see an absolute improve- +ment of +10.4% in top-1 accuracy, while for 10% labels we see a gain of absolute +3.6% in top-1 +accuracy. In summary, we see that SEMPPL can be easily combined with other self-supervised +objectives to yield significant improvements and can be used a standard plug-and-play module in +within semi-supervised learning. +The contribution of pseudo-labels and semantic positives +We examine the impact of omitting +pseudo-label prediction and semantic positives from learning representations. Specifically, we ab- +late the use of pseudo-labels when selecting semantic positives for unlabelled datapoints, i.e. we +only use labelled images when retrieving semantic positives. In Table 4.2 (middle row), removing +pseudo-label prediction significantly decreases performance both in the 1% and 10% label settings. +In addition, the low-label regime (1% labels) suffers a stronger performance decrease −6.6% than +the 10% labels regime, −4.9%. This underscores the importance of pseudo-label estimation and +subsequent selection of semantic positives for unlabelled data especially in the low-data regime. +Going a step further, we remove semantic positives even for the labelled data, falling back to vanilla +RELICv2. In Table 4.2 (bottom row), we see again a significant drop in performance for both the +1% and 10% label settings with a sharper drop for the low-label regime. Together these highlights +the importance of both including semantic positives for labelled data as well as using pseudo-label +prediction for selecting semantic positives for unlabelled data in order to learn informative represen- +tations in a semi-supervised setting in a label-efficient way. +Table 4: Top-1 test accuracy (in %) with a ResNet50 pretrained on ImageNet with 1% and 10% +labels: (1) when trained on different self-supervised objective, (2) when removing pseudo-labelling, +and semantic positives in SEMPPL. +Top-1 +1% +10% +BYOL [Grill et al., 2020] +53.2 +68.8 +SEMPPL with BYOL +57.1 +72.4 +ReLICv2 [Tomasev et al., 2022] +58.1 +72.4 +SEMPPL with RELICv2 (ours) +68.5 +76.0 +1% labels +10% labels +SEMPPL +68.5 +76.0 +- Pseudo-labels +61.9 +71.1 +- Semantic Positives +58.1 +72.4 +7 + +Preprint. +Table 5: Top-1 test accuracy (in %) with a ResNet50 pretrained on ImageNet 10% labels for 100 +epoches when using ground truth labels instead of pseudo-labels while retrieving semantic positives +(oracle); PL accuracy helds for the accuracy of the pseudo-label. +10% labels +Top-1 +PL accuracy +SEMPPL +69.9 +69.7 +SEMPPL (+oracle) +71.6 +76.9 +Precision and Recall of pseudo-labels. +In Figure 3, we analyse the behaviour of pseudo-labels +by looking at the precision and recall as training progresses. We train a ResNet-50 for 100 epochs +using 10% labels with SEMPPL on ImageNet. As we have 4 large views there will be in total 16 +votes cast and then the pseudo-label will be estimated using majority voting. We want to measure +how often these 16 votes agree or disagree; we denote as voting threshold the number k where at +least k votes have been cast for one class. We see that as training progresses the precision across all +thresholds increases as expected. This means that the pseudo-label prediction is bootstrapping itself +to become more accurate, which enables us to select better semantic positives and thus learn more +informative representations as training progresses, i.e. we have a virtuous cycle of representation +learning and pseudo-label prediction. Furthermore, precision is an increasing function of the voting +threshold throughout training and is highest for the biggest voting threshold. This indicates how +confident we can be in the accuracy of pseudo-label prediction, and thus how confident we can be +that an appropriate semantic positive has been selected. Yet, we see that the recall for individual +thresholds is also increasing as training progresses but that the recall decreases as we increase the +voting threshold. This is expected as there is always a trade-off between precision and recall. +5000 +10000 +15000 +20000 +25000 +30000 +Steps +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Precision +5000 +10000 +15000 +20000 +25000 +30000 +Steps +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Recall +Voting threshold +0 +2 +5 +7 +10 +12 +15 +Figure 3: Precision and recall for pseudo-labels computed based on k-nearest neighbours when +trained on ImageNet with 10% labels over 100 epoches. +Noise in pseudo-label prediction +In Figure 3, we observe that the proportion of correctly pre- +dicted pseudo-labels at the end of training is reasonably high (60% accuracy of voting threshold +0). Yet, it also means that 40% of pseudo labels are still incorrectly predicted. As the incorrect +prediction results in suboptimal semantic positives selection, i.e., SEMPPL does not select semantic +positives from the same class as the datapoint, this behavior may ultimately worsen the quality of ex- +tracted features. To quantify this phenomenon, we train the representation with SEMPPL where an +oracle replaces the pseudo-label prediction with ground-truth labels and those are used for selecting +semantic positives. In Table 5, we train the representations for 100 epochs on ImageNet with 10% +labels. There, the oracle increases the top-1 performance of 1.7% in the test set with 10%. Besides, +the pseudo-label accuracy also gets 6.2% higher. It thus confirms that incorrect pseudo-label predic- +tions, and incorrect semantic positives retrieval, hurts learning informative representations and the +downstream performance. Yet, the oracle performance remains close to the actual performance of +SEMPPL, illustrating the method’s robustness. +Further ablations on other design choices, such as the number of semantic positives, the use of view +voting, the choice of k in k-NN, queue length and training duration can be found in Appendix D.2. +8 + +Preprint. +5 +RELATED WORK +Semi-supervised learning +In the semi-supervised regime [Cheplygina et al., 2019; Van Engelen +& Hoos, 2020; Yang et al., 2021; Alizadehsani et al., 2021], one can either pre-train a model on +unlabelled data and subsequently fine-tune it on labelled data, or train both jointly. Joint training +on labelled and unlabelled data often involves combining the two losses [Grandvalet & Bengio, +2004; Miyato et al., 2018; Zhai et al., 2019; Verma et al., 2019; Berman et al., 2019; Xie et al., +2020a]. Pseudo-label self-training approaches [Zoph et al., 2020] present an important alternative, +first inferring approximate pseudo-labels for the unlabelled examples, and then incorporating them +in supervised losses. Pseudo-labels can either be generated prior to a subsequent supervised learning +phase [Yarowsky, 1995; Riloff, 1996; Lee et al., 2013] or jointly in an online fashion [Berthelot +et al., 2019; 2020; Sohn et al., 2020]. These methods may benefit from pseudo-label confidence +measures [Sohn et al., 2020; Rizve et al., 2021; Zhang et al., 2021] as well as thresholding [Xu et al., +2021], temporal ensembling [Laine & Aila, 2017], or stronger regularization to mitigate bias in early +model training [Sajjadi et al., 2016; Arazo et al., 2020]. The use of pseudo-labels with rebalancing +has shown improvements, both in class-imbalanced problems [Wei et al., 2021] and in a general +context [Wang et al., 2022]. Teacher-student network configurations for generating and utilising +pseudo-labels have also shown promise [Tarvainen & Valpola, 2017; Luo et al., 2018; Ke et al., 2019; +Xie et al., 2020b; Cai et al., 2021; Pham et al., 2021]. Co-training uses different feature extractors for +different data views and alternates between pseudo-labelling and training phases [Blum & Mitchell, +1998; Qiao et al., 2018]. Good performance has been reached by using consistency losses between +pseudo-labels of different inputs [Verma et al., 2019; Hu et al., 2021]. +Predicting view assignments with support samples [Assran et al., 2021] (PAWS) has resulted in +substantial performance improvements, with the idea that the assigned pseudo-labels ought to be +similar across multiple views of the same image. +Recent work has shown that incorporating label information in positive selection in contrastive meth- +ods is highly promising, compared to the cross-entropy loss in the fully supervised case [Khosla +et al., 2020]. Our method demonstrates a similar utility of pseudo-labels for semi-supervised prob- +lems, and differs from competing ones in the following ways. Unlike DebiasPL [Wang et al., 2022] +that uses an adaptive margin loss, SemPPL does not seek to directly address or re-shape the distri- +bution of pseudo-labels. Unlike SimCLRv2 [Chen et al., 2020b], we do not rely on self-distillation +procedures. In contrast with PAWS [Assran et al., 2021], we fully leverage the contrastive approach +for semi-supervised learning; not using positives only for training means SEMPPL does not require +specific care like pseudo-labels sharpening to stabilize learning and avoid representational collapse. +SEMPPL is more closely related to CoMatch [Li et al., 2021a] that also uses bootstrapping to im- +prove pseudo-labels representational quality, but is conceptually much simpler, avoiding phases of +distributional alignment and of performing graph-based contrastive learning. In a similar vein, Sim- +Match [Zheng et al., 2022] also uses a memory buffer to propagate pseudo-labels, but has a more +complex objective than SEMPPL and equally requires additional phases of pseudo-labels unfolding +and aggregation to function. +Self-supervised learning +Major advances in learning useful representations from unlabelled +data [Liu et al., 2021a; Goyal et al., 2021] can be seen as a paradigm shift, since these methods +have recently been competitive with supervised training baselines [Tomasev et al., 2022]. A num- +ber of self-supervised learning methods involve contrasting multiple views of the data [Oord et al., +2018; Bachman et al., 2019; Chen et al., 2020a; He et al., 2020; Grill et al., 2020; Dwibedi et al., +2021]. +Similar performance were also achieved by bootstrapping-based multi-view learning [Grill et al., +2020; Richemond et al., 2020; Chen & He, 2021; Zbontar et al., 2021; Wang et al., 2021], or involv- +ing explicit clustering steps [Caron et al., 2020; Asano et al., 2020; Li et al., 2021b]. An explicit +causally-motivated invariance loss, when used in conjunction with the contrastive objective, has +been shown to lead to more compact representations, and desirable generalisation properties [Mitro- +vic et al., 2021; Tomasev et al., 2022]. +Contrastive approaches are not always used in self-supervised methods [He et al., 2021; Ermolov +et al., 2021; Chen et al., 2022]. Transformer-specific methods have been devised [Caron et al., 2021; +Chen et al., 2021; Zhai et al., 2022]. +9 + +Preprint. +6 +CONCLUSION +In this work, we propose SEMPPL, a novel semi-supervised learning method to incorporate semantic +positives in self-supervised objectives by taking advantage of pseudo-labels. Through extensive +empirical evaluation, we demonstrated that our approach achieves state-of-the-art semi-supervised +performance on ImageNet across several ResNet architectures as well as on the robustness, out-of- +distribution generalization and transfer tasks. We also show that SEMPPL can be easily combined +with other existing self-supervised methods and is a promising direction to pre-train networks also in +a fully supervised learning regime. Our analyses suggest that the role of pseudo-labels in selecting +positives for semi-supervised contrastive methods might be underappreciated. Despite widespread +use in semi-supervised applications, pseudo-labels are less understood and have been explored far +less in the context of self-supervised methods. We hope this study, which shows empirically that +prior work has under-utilized pseudo-labels, may help bridge that gap. +REFERENCES +Roohallah Alizadehsani, Danial Sharifrazi, Navid Hoseini Izadi, Javad Hassannataj Joloudari, Afshin Shoeibi, +Juan M Gorriz, Sadiq Hussain, Juan E Arco, Zahra Alizadeh Sani, Fahime Khozeimeh, et al. Uncertainty- +aware semi-supervised method using large unlabeled and limited labeled covid-19 data. ACM Transactions +on Multimedia Computing, Communications, and Applications (TOMM), 17(3s):1–24, 2021. +Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness. Pseudo-labeling and con- +firmation bias in deep semi-supervised learning. In Proc. of the International Joint Conference on Neural +Networks (IJCNN), 2020. +Yuki M. Asano, C. Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous clustering and representa- +tion learning. In Proc. of International Conference on Learning Representations (ICLR), 2020. +Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Armand Joulin, Nicolas Ballas, and +Michael Rabbat. Semi-supervised learning of visual features by non-parametrically predicting view assign- +ments with support samples. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), +2021. +Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing mutual +information across views. In Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2019. +Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenenbaum, +and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition +models. Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2019. +Irwan Bello, William Fedus, Xianzhi Du, Ekin Dogus Cubuk, A. Srinivas, Tsung-Yi Lin, Jonathon Shlens, and +Barret Zoph. Revisiting resnets: Improved training and scaling strategies. In Proc. of Advances in Neural +Information Processing Systems (NeurIPS), 2021. +Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L Alexander, David W Jacobs, and Peter N Belhumeur. +Birdsnap: Large-scale fine-grained visual categorization of birds. In Proc. of Conference on Computer Vision +and Pattern Recognition (CVPR), 2014. +Maxim Berman, Herv´e J´egou, Andrea Vedaldi, Iasonas Kokkinos, and Matthijs Douze. Multigrain: a unified +image embedding for classes and instances. arxiv preprint arXiv:1902.05509, 2019. +David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A Raffel. Mix- +match: A holistic approach to semi-supervised learning. In Proc. of Advances in Neural Information Pro- +cessing Systems (NeurIPS), 2019. +David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. +Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring. In Proc. of +International Conference on Learning Representations (ICLR), 2020. +Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Proc. of the Annual +Conference on Computational Learning Theory, 1998. +Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative components with +random forests. In Proc. of the European conference on computer vision (ECCV), 2014. +10 + +Preprint. +Zhaowei Cai, Avinash Ravichandran, Subhransu Maji, Charless Fowlkes, Zhuowen Tu, and Stefano Soatto. +Exponential moving average normalization for self-supervised and semi-supervised learning. In Proc. of +Conference on Computer Vision and Pattern Recognition (CVPR), 2021. +Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised +learning of visual features by contrasting cluster assignments. In Proc. of Advances in Neural Information +Processing Systems (NeurIPS), 2020. +Mathilde Caron, Hugo Touvron, Ishan Misra, Herv´e J´egou, Julien Mairal, Piotr Bojanowski, and Armand +Joulin. Emerging properties in self-supervised vision transformers. In Proc. of Conference on Computer +Vision and Pattern Recognition (CVPR), 2021. +Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive +learning of visual representations. +In Proc. of International Conference on Machine Learning (ICML), +2020a. +Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big self-supervised +models are strong semi-supervised learners. In Proc. of Advances in Neural Information Processing Systems +(NeurIPS), 2020b. +Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo, Yunhao Wang, Shumin Han, Ping Luo, +Gang Zeng, and Jingdong Wang. Context autoencoder for self-supervised representation learning. arxiv +preprint arXiv:2202.03026, 2022. +Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proc. of Conference on +Computer Vision and Pattern Recognition (CVPR), 2021. +Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved baselines with momentum contrastive +learning. arxiv preprint arXiv:2003.04297, 2020c. +Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision transformers. +In Proc. of the International Conference on Computer Vision (ICCV), 2021. +Veronika Cheplygina, Marleen de Bruijne, and Josien PW Pluim. +Not-so-supervised: a survey of semi- +supervised, multi-instance, and transfer learning in medical image analysis. Medical image analysis, 54: +280–296, 2019. +Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing tex- +tures in the wild. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2014. +Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning +augmentation policies from data. +In Proc. of Conference on Computer Vision and Pattern Recognition +(CVPR), 2019. +Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated data +augmentation with a reduced search space. In Proc. of Conference on Computer Vision and Pattern Recog- +nition Workshop (CVPRW), 2020. +Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman. With a lit- +tle help from my friends: Nearest-neighbor contrastive learning of visual representations. In Proc. of the +International Conference on Computer Vision (ICCV), 2021. +Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for self-supervised +representation learning. In Proc. of International Conference on Machine Learning (ICML), 2021. +Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training examples: An +incremental bayesian approach tested on 101 object categories. In Proc. of Conference on Computer Vision +and Pattern Recognition Workshop (CVPRW), 2004. +Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R. Scott. Deep metric learning with hierarchical triplet +loss. In Proc. of European Conference on Computer Vision (ECCV), 2018. +Chengyue Gong, Tongzheng Ren, Mao Ye, and Qiang Liu. Maxup: Lightweight adversarial training with data +augmentation improves neural network training. In Proc. of Conference on Computer Vision and Pattern +Recognition (CVPR), 2021. +Priya Goyal, Piotr Doll´ar, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew +Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arxiv +preprint arXiv:1706.02677, 2017. +11 + +Preprint. +Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min Xu, Pengchao Wang, Vivek Pai, Mannat Singh, Vi- +taliy Liptchinsky, Ishan Misra, Armand Joulin, and Piotr Bojanowski. Self-supervised pretraining of visual +features in the wild. arxiv preprint arXiv:2103.01988, 2021. +Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In Proc. of Advances +in Neural Information Processing Systems (NeurIPS), 2004. +Jean-Bastien Grill, Florian Strub, Florent Altch´e, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl +Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own +latent-a new approach to self-supervised learning. Proc. of Advances in Neural Information Processing +Systems (NeurIPS), 2020. +Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Wai-Hung Tsang, and Masashi +Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In Proc. of +Advances in Neural Information Processing Systems (NeurIPS), 2018. +Ben Harwood, B. V. Kumar, G. Carneiro, Ian D. Reid, and Tom Drummond. Smart mining for deep metric +learning. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2017. +Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In +Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2016. +Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised +visual representation learning. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), +2020. +Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll´ar, and Ross Girshick. Masked autoencoders are +scalable vision learners. arxiv preprint arXiv:2111.06377, 2021. +Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. +Bag of tricks for image +classification with convolutional neural networks. In Proc. of Conference on Computer Vision and Pattern +Recognition (CVPR), 2019. +Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and +perturbations. In Proc. of International Conference on Learning Representations (ICLR), 2019. +Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, +Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of- +distribution generalization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, +pp. 8340–8349, 2021. +Zijian Hu, Zhengyu Yang, Xuefeng Hu, and Ram Nevatia. Simple: Similar pseudo label exploitation for semi- +supervised classification. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), +2021. +S. Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal +covariate shift. In Proc. of International Conference on Machine Learning (ICML), 2015. +Zhanghan Ke, Daoye Wang, Qiong Yan, Jimmy Ren, and Rynson W.H. Lau. Dual student: Breaking the limits +of the teacher in semi-supervised learning. In Proc. of the International Conference on Computer Vision +(ICCV), 2019. +Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, +Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Proc. of Advances in Neural Information +Processing Systems (NeurIPS), 33:18661–18673, 2020. +Youngdong Kim, Junho Yim, Juseung Yun, and Junmo Kim. Nlnl: Negative learning for noisy labels. In Proc. +of the International Conference on Computer Vision (ICCV), 2019. +Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained catego- +rization. In Proc of the International Conference on Computer Vision Workshops, 2013. +Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical +report, Toronto, 2009. +Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In Proc. of International +Conference on Learning Representations (ICLR), 2017. +12 + +Preprint. +Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural +networks. In Proc. of the ICML Workshop on Challenges in Representation Learning, 2013. +Kuang-Huei Lee, Anurag Arnab, Sergio Guadarrama, John Canny, and Ian Fischer. Compressive visual repre- +sentations. Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2021. +Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankanhalli. Learning to learn from noisy labeled data. In +Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2019a. +Junnan Li, Caiming Xiong, and Steven C. H. Hoi. Comatch: Semi-supervised learning with contrastive graph +regularization. In Proc. of the International Conference on Computer Vision (ICCV), 2021a. +Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and Steven C. H. Hoi. Prototypical contrastive learning +of unsupervised representations. In Proc. of International Conference on Learning Representations (ICLR), +2021b. +Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. In Proc. of Conference on +Computer Vision and Pattern Recognition (CVPR), 2019b. +Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment. Proc. of +Advances in Neural Information Processing Systems (NeurIPS), 32, 2019. +Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning regulariza- +tion prevents memorization of noisy labels. Proc. of Advances in Neural Information Processing Systems +(NeurIPS), 2020. +Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-supervised +learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engineering, 2021a. +Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin +transformer: Hierarchical vision transformer using shifted windows. In Proc. of the International Conference +on Computer Vision (ICCV), 2021b. +Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet +for the 2020s. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2022. +Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang. Smooth neighbors on teacher graphs for semi- +supervised learning. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2018. +Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual clas- +sification of aircraft. arxiv preprint arXiv:1306.5151, 2013. +Jovana Mitrovic, Brian McWilliams, Jacob Walker, Lars Buesing, and Charles Blundell. Representation learn- +ing via invariant causal mechanisms. In Proc. of International Conference on Learning Representations +(ICLR), 2021. +Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a regular- +ization method for supervised and semi-supervised learning. Proc. of Transactions on Pattern Analysis and +Machine Intelligence, 2018. +Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. +In Proc. of Indian Conference on Computer Vision, Graphics & Image Processing, 2008. +Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. +arxiv preprint arXiv:1807.03748, 2018. +Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In Proc. of Conference +on Computer Vision and Pattern Recognition (CVPR), 2012. +Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In Proc. of Conference on Computer +Vision and Pattern Recognition (CVPR), 2021. +Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Loddon Yuille. Deep co-training for semi- +supervised image recognition. In Proc. of European Conference on Computer Vision (ECCV), 2018. +Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize +to imagenet? In Proc. of International Conference on Machine Learning (ICML), 2019. +13 + +Preprint. +Pierre H Richemond, Jean-Bastien Grill, Florent Altch´e, Corentin Tallec, Florian Strub, Andrew Brock, Samuel +Smith, Soham De, Razvan Pascanu, Bilal Piot, et al. Byol works even without batch statistics. In Proc. of +Advances in Neural Information Processing Systems Workshops, 2020. +Ellen Riloff. Automatically generating extraction patterns from untagged text. In Proc. of the National Con- +ference on Artificial Intelligence, 1996. +Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, and Mubarak Shah. +In defense of pseudo- +labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning. +arxiv +preprint arXiv:2101.06329, 2021. +Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An- +drej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. +International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. +Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic transformations and +perturbations for deep semi-supervised learning. Proc. of Advances in Neural Information Processing Sys- +tems (NeurIPS), 2016. +Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition +and clustering. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2015. +Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus +Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with consis- +tency and confidence. In Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2020. +Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency targets +improve semi-supervised deep learning results. In Proc. of Advances in Neural Information Processing +Systems (NeurIPS), 2017. +Nenad Tomasev, Ioana Bica, Brian McWilliams, Lars Buesing, Razvan Pascanu, Charles Blundell, and Jovana +Mitrovic. Pushing the limits of self-supervised resnets: Can we outperform supervised learning without +labels on imagenet? arxiv preprint arXiv:2201.05119, 2022. +Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. Machine Learning, 109(2): +373–440, 2020. +Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, and David Lopez-Paz. Interpolation consistency +training for semi-supervised learning. In Proc. of the International Joint Conference on Artificial Intelligence +(IJCAI), 2019. +Xiang Wang, Xinlei Chen, Simon Shaolei Du, and Yuandong Tian. +Towards demystifying representation +learning with non-contrastive self-supervision. arxiv preprint arXiv:2110.04947, 2021. +Xudong Wang, Zhirong Wu, Long Lian, and Stella X Yu. Debiased learning from naturally imbalanced pseudo- +labels. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2022. +Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R. Scott. Multi-similarity loss with +general pair weighting for deep metric learning. In Proc. of Conference on Computer Vision and Pattern +Recognition (CVPR), 2019a. +Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross entropy for +robust learning with noisy labels. In Proceedings of the IEEE/CVF International Conference on Computer +Vision, pp. 322–330, 2019b. +Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille, and Fan Yang. Crest: A class-rebalancing self-training +framework for imbalanced semi-supervised learning. In Proc. of Conference on Computer Vision and Pattern +Recognition (CVPR), 2021. +Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database: Large-scale +scene recognition from abbey to zoo. In Proc. of Conference on Computer Vision and Pattern Recognition +(CVPR), 2010. +Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. +Unsupervised data augmentation for +consistency training. In Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2020a. +Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student improves +imagenet classification. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2020b. +14 + +Preprint. +Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yu-Feng Li, Baigui Sun, Hao Li, and Rong Jin. Dash: Semi-supervised +learning with dynamic thresholding. In Proc. of International Conference on Machine Learning (ICML)g +(ICML), 2021. +Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised learning. arxiv +preprint arXiv:2103.00550, 2021. +David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In Proc. of Annual +Meeting of the Association for Computational Linguistics (ACL), 1995. +Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arxiv preprint +arXiv:1708.03888, 2017. +Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and St´ephane Deny. Barlow twins: Self-supervised learning +via redundancy reduction. In Proc. of International Conference on Machine Learning (ICML), 2021. +Shuangfei Zhai, Navdeep Jaitly, Jason Ramapuram, Dan Busbridge, Tatiana Likhomanenko, Joseph Yitan +Cheng, Walter Talbott, Chen Huang, Hanlin Goh, and Joshua Susskind. Position prediction as an effec- +tive pretraining strategy. In Proc. of International Conference on Machine Learning (ICML), 2022. +Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-supervised semi-supervised +learning. In Proc. of the International Conference on Computer Vision (ICCV), 2019. +Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro Shi- +nozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. In Proc. of Ad- +vances in Neural Information Processing Systems (NeurIPS), 2021. +Zhilu Zhang and Mert Rory Sabuncu. Generalized cross entropy loss for training deep neural networks with +noisy labels. In Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2018. +Mingkai Zheng, Shan You, Lang Huang, Fei Wang, Chen Qian, and Chang Xu. Simmatch: Semi-supervised +learning with similarity matching. In Proc. of Conference on Computer Vision and Pattern Recognition +(CVPR), 2022. +Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus Cubuk, and Quoc Le. Rethinking +pre-training and self-training. In Proc. of Advances in Neural Information Processing Systems (NeurIPS), +2020. +15 + +Preprint. +A +ADDITIONAL RESULTS AND IMPLEMENTATION DETAILS +A.1 +SEMI-SUPERVISED DETAILS AND RESULTS +Implementation details. +In this work, we follow the protocol of Chen et al. [2020b]; Assran et al. +[2021] for fine-tuning from the first layer of the projector and initialize both the encoder and the first +layer of the projector with the parameters of the pretrained model. We add the randomly initialized +classifier on top of the first layer of the projector (after the non-linearity). We train all the weights +(pretrained and classifier weights) using either 1% or 10% of the ImageNet-1k training data, and we +use the splits introduced in Chen et al. [2020a] and used in all the methods to compare to Grill et al. +[2020]; Caron et al. [2020]; Dwibedi et al. [2021]; Lee et al. [2021]; Mitrovic et al. [2021]; Tomasev +et al. [2022]; Assran et al. [2021]. +At training time we randomly crop the image, resize it to 224 × 224, and then randomly apply +a horizontal flip. At test time we resize images to 256 pixels along the shorter side with bicubic +resampling and apply a 224 × 224 center crop to it. Both at training and testing times we subtract +from the color channels the average channel value and divide it by the standard deviation of the +channel value (as computed on ImageNet-1k). +We use a cross entropy loss and stochastic gradient descent with Nesterov momentum of 0.9 +to fine-tune the model. For both 1% and 10% settings, we train for 30 epochs and decay the +initial learning rate by a factor 0.2 at 18 and 24 epochs. +Following the approach of Caron +et al. [2020], we pick different learning rates for the encoder (and the first projector layer) +and for the classifier weights. +We do not use any weight decay or other regularization tech- +niques. We sweep over batch sizes values in {512, 1024, 2048}, encoder base learning rate val- +ues in {0.005, 0.0035, 0.003, 0.0025, 0.002, 0.001}, and linear layer base learning rate values in +{0.5, 0.3, 0.2, 0.1, 0.05, 0.025}. +Table 6: Top-1 and Top-5 accuracies (in %), after semi-supervised fine-tuning with a fraction of +ImageNet labels, for a ResNet-50 encoder across a number of representation learning methods. +Method +Top-1 +Top-5 +1% +10% +1% +10% +Supervised [Zhai et al., 2019] +25.4 +56.4 +48.4 +80.4 +Pseudo labels in classification: +MPL [Pham et al., 2021] +- +73.9 +- +- +Representation learning methods: +SimCLRv2 [Chen et al., 2020b] +57.9 +68.4 +- +- +SimCLRv2 + self distillation [Chen et al., 2020b] +60.0 +70.5 +- +- +CoMatch [Li et al., 2021a] +66.0 +73.7 +86.4 +91.6 +PAWS [Assran et al., 2021] +66.5 +75.5 +- +- +DebiasPL [Wang et al., 2022] +67.1 +- +85.8 +- +SimMatch [Zheng et al., 2022] +67.2 +74.4 +87.1 +91.6 +SEMPPL (ours) +68.5 +76.0 +88.2 +92.7 +SimCLRv2 + Selective Kernels [Li et al., 2019b] +64.5 +72.1 +86.7 +91.4 +SEMPPL (ours) + Selective Kernels +72.3 +78.2 +90.6 +93.9 +Additional results and larger networks. +When the architecture of the ResNet-50 is modified to +include selective kernels [Li et al., 2019b], we see significant gains in performance at the expense +of additional weights. Our implementation of selective kernels is standard and follows rigorously Li +et al. [2019b] for a total of 27.5 million weights instead of of 25.5 million for a regular ResNet-50. +Specifically, we use 2 channels, two convolution kernels of (3, 3) and (5, 5) with the latter imple- +mented as a (3, 3) dilated convolution with rate 2, and 32 grouped convolutions. Unlike SimCLRv2 +[Chen et al., 2020b], we implement our group convolutions explicitly, and do not use the additional +ResNet-D architectural modification from He et al. [2019]. When using selective kernels our per- +formance after finetuning with 1% of labels is the same as that of SimCLRv2 after finetuning with +10% of labels. +16 + +Preprint. +Additionally, in order to investigate the robustness and scalability of these results, we further test +the generality of SEMPPL by learning representations on larger (both deeper and wider) ResNet en- +coders. Table 1 testifies to SEMPPL outperforming the competing representation learning methods +across all the architectures, both in the 1% and the 10% labelled settings. Also, as our flagship result +we reach 80.4% top-1 accuracy on ResNet-200 2× with 10% of ImageNet-1k labels. Just as in the +ResNet-50 1× case this figure is comparable with the fully supervised accuracy attained by historical +methods. 80.1% top-1 is defined as in Grill et al. [2020] with standard RandAugment [Cubuk et al., +2020] data augmentation. However it’s certainly a few percentage accuracy points away from results +obtained with optimal current training protocols [Bello et al., 2021]. We also note that SEMPPL is +pre-trained for 300 epochs in all cases. This, rather than the 1000 epochs used as standard by most +other representation learning methods, again compares with a typical figure of 200 epochs used in +supervised learning. Overall this hints at SEMPPL having achieved close to an order of magnitude +gain in label efficiency (compared to supervised learning) at a similar epochs budget. +Our final networks were optimized using tranches of between 128 (for a ResNet-50) and 512 (for +the largest ResNets) Cloud TPUv3s all during 300 epochs each irrespective of size. This required +around a day of computation time per run and tranche for a ResNet-50 on 128 devices, time which +scaled approximately linearly with the number of parameters on larger networks, depending on the +actual network. +A.2 +ROBUSTNESS AND OOD GENERALIZATION +We test the robustness and out-of-distribution (OOD) generalization abilities of representations +learned via SEMPPL on several detasets. We use ImageNetV2 [Recht et al., 2019] and ImageNet- +C [Hendrycks & Dietterich, 2019] datasets to evaluate robustness and the datasets ObjectNet [Barbu +et al., 2019] and ImageNet-R [Hendrycks et al., 2021] to evaluate the OOD generalization. +The ImageNetV2 dataset [Recht et al., 2019] has three sets of 10000 images (matched frequency +(MF), Threshold 0.7 (T-0.7) and Top Images (TI)) that were collected to have a similar distribution +to the ImageNet test set. The ImageNet-C dataset [Hendrycks & Dietterich, 2019] consists of 15 +synthetically generated corruptions of 5 different severities (e.g. blur, noise) that are applied to +the ImageNet validation set. The ImageNet-R dataset [Hendrycks et al., 2021] consists of 30000 +different renditions (e.g. paintings, cartoons) of 200 ImageNet classes; the aim of this dataset is to +test the generalization ability to different textures and other naturally occurring style changes that +are out-of-distribution to the ImageNet training data. The ObjectNet dataset [Barbu et al., 2019] has +18574 images from differing viewpoints and backgrounds compared to the ImageNet training set. +On all datasets we evaluate the representations learned on a standard ResNet50 encoder under a +linear evaluation protocol. We freeze the pretrained representations (no gradient updates) and train +a linear classifier on top of the output of the ResNet-50 encoder using the full labelled ImageNet +training set. We perform the test evaluation zero-shot, i.e the above datasets are not seen during the +training of the representation or classifier. +We provide a detailed breakdown across the different ImageNet-C corruptions in Table 7. Our +proposed approach SEMPPL outperforms both the supervised baseline, on 12 out of 15 corruptions, +as well as the competing semi-supervised representation learning model PAWS, on 12 out of 15 +corruptions (notably, over all Blur, Weather and Digital corruptions). +Table 7: Top-1 accuracies (in %) for OOD generalisation on Gauss, Shot, Impulse, Blur, Weather, +and Digital corruption types of ImageNet-C. +Blur +Weather +Digital +Method +Gauss +Shot +Impulse +Defocus +Glass +Motion +Zoom +Snow +Frost +Fog +Bright +Contrast +Elastic +Pixel +JPEG +Supervised [Lim et al., 2019] +37.1 +35.1 +30.8 +36.8 +25.9 +34.9 +38.1 +34.5 +40.7 +56.9 +68.1 +40.6 +45.6 +32.6 +56.0 +Semi-supervised representations: +PAWS [Assran et al., 2021] +43.5 +40.6 +33.5 +38.7 +19.7 +34.1 +32.8 +40.3 +44.7 +64.0 +70.5 +59.7 +42.4 +38.5 +55.1 +SEMPPL(ours) +41.3 +39.1 +30.0 +41.9 +23.2 +37.5 +34.0 +40.5 +45.5 +64.4 +71.9 +60.6 +44.2 +45.1 +57.7 +A.3 +TRANSFER +To further evaluate the usefulness of the learned representations, we evaluate how well they transfer +across datasets. For this, we follow the standard evaluation protocol outlined in Grill et al. [2020]; +17 + +Preprint. +Chen et al. [2020a]. We evaluate SEMPPL across the linear evaluation protocol which consists of +freezing the encoder and only training a randomly initialized linear classifier on top of the encoder. +In line with prior work [Chen et al., 2020a; Grill et al., 2020; Dwibedi et al., 2021], we test SEMPPL +representations on the following datasets: Food101 [Bossard et al., 2014], CIFAR10 [Krizhevsky +et al., 2009], CIFAR100 [Krizhevsky et al., 2009], Birdsnap [Berg et al., 2014], SUN397 (split +1) [Xiao et al., 2010], DTD (split 1) [Cimpoi et al., 2014], Cars [Krause et al., 2013] Aircraft [Maji +et al., 2013], Pets [Parkhi et al., 2012], Caltech101 [Fei-Fei et al., 2004], and Flowers [Nilsback +& Zisserman, 2008], where we compare the downstream performance of SEMPPL to that of other +reported semi-supervised methods on 10% of labels. Across these datasets there are differences +in terms of metrics used for selecting the best hyper-parameters as well the reporting of the final +results. In line with prior work [Chen et al., 2020a; Grill et al., 2020; Dwibedi et al., 2021], for +Food101 [Bossard et al., 2014], CIFAR10 [Krizhevsky et al., 2009], CIFAR100 [Krizhevsky et al., +2009], Birdsnap [Berg et al., 2014], SUN397 (split 1) [Xiao et al., 2010], DTD (split 1) [Cimpoi +et al., 2014], and Cars [Krause et al., 2013] we report the Top-1 accuracy on the test set, and for +Aircraft [Maji et al., 2013], Pets [Parkhi et al., 2012], Caltech101 [Fei-Fei et al., 2004], and Flow- +ers [Nilsback & Zisserman, 2008] we report the mean per-class accuracy. For DTD and SUN397 we +only use the first split of the 10 provided splits in the dataset as per Chen et al. [2020a]; Grill et al. +[2020]; Dwibedi et al. [2021]. +In these experiments, models are initially trained on the training sets of the individual datasets, and +the validation sets are used to select the best hyperparameters from the executed hyperparameter +sweeps. Once the best hyperparameters have been selected, the final models are trained on a merged +dataset containing both the training and the validation split and evaluated on the held-out test split. +The final results of the transfer experiments are reported in Table 3. The performed hyperparameter +sweeps involved sweeping over the learning rates {.001, .01, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 1., +2.}, batch sizes {128, 256, 512, 1024, 2048}, weight decay {1e−6, 1e−5, 1e−4, 1e−3, 0.01, 0.1}, +warmup epochs {0, 10}, momentum {0.9, 0.99}, Nesterov {True, False}, and the number of training +epochs. For the linear transfer protocol we considered setting epochs among {20, 30, 60, 80, 100}. +Models were trained by stochastic gradient descent with momentum. +18 + +Preprint. +B +INVARIANCE REGULARIZATION +We define the short-hands +p(ˆza1 +m ; ˜za2,+ +m,t ) = +ϕ(ˆza1 +m , ˜za2,+ +m,t ) +ϕ(ˆza1 +m , ˜za2,+ +m,t ) + � +xn∈N (xm) ϕ(ˆza1 +m , ˜za2 +n,t) +(5) +and +p(ˆza1 +m ; ˜za2 +m,t) = +ϕ(ˆza1 +m , ˜za2 +m,t) +ϕ(ˆza1 +m , ˜za2 +m,t) + � +xn∈N (xm) ϕ(ˆza1 +m , ˜za2 +n,t) +(6) +where N(xk) is the set of negatives, randomly uniformly sampled from the current batch, ˜za2 +n,t = +gt(ft(xn)) is the target network projection of the negative sample; ϕ(x1, x2) = τ · exp(⟨x1, x2⟩/τ) +is the scoring function, τ > 0 is a scalar temperature, and ⟨·, ·⟩ denotes the standard Euclidean dot +product. +We can now rewrite the components of the overall loss +LSEMPPL = LAUGM + αLSEMPOS +(7) +as +LSEMPOS = − +B +� +m=1 +log p(ˆza1 +m ; ˜za2,+ +m,t ) +(8) +and +LAUGM = − +B +� +m=1 +log p(ˆza1 +m ; ˜za2 +m,t). +(9) +As discussed in the main text we add the invariance penalty introduced in Mitrovic et al. [2021] to +further increase the similarity between the anchor and positives and regularize the learning process. +We add this invariance penalty both for augmentation positives and semantic positives. In particular, +we compute +Iaugm =DKL(p(ˆza1 +m ; ˜za2 +m,t) ∥ p(ˆza2 +m ; ˜za1 +m,t)) +=sg[Ep(ˆza1 +m ;˜za2 +m,t) log p(ˆza1 +m ; ˜za2 +m,t)] − Ep(ˆza1 +m ;˜za2 +m,t) log p(ˆza2 +m ; ˜za1 +m,t) +and +Isempos =DKL(p(ˆza1 +m ; ˜za2,+ +m,t ) ∥ p(ˆza2,+ +m +; ˜za1 +m,t)) +=sg[Ep(ˆza1 +m ;˜za2,+ +m,t ) log p(ˆza1 +m ; ˜za2,+ +m,t )] − Ep(ˆza1 +m ;˜za2,+ +m,t ) log p(ˆza2,+ +m +; ˜za1 +m,t) +where sg denotes the stop-gradient operation. Taking all this together, this gives the final form of +the loss as +LSEMPPL = c(LAUGM + αLSEMPOS) + λ(Iaugm + Isempos) +(10) +with λ the invariance scale and c is the contrastive scale. We use λ = 5 and c = 0.3 in all our +experiments irrespective of encoder size or training time as our method is robust to the choice of +these hyperparameters. +19 + +Preprint. +C +PSEUDO-CODE OF SEMPPL +Listing 1 provides PyTorch-like pseudo-code for SEMPPL detailing how we compute pseudo-labels +and use them to select the additional semantic positives, which are then used in the contrastive loss, +along the augmentation positives. +1 +’ ’ ’ +2 k : +The number +of +neighbors +in kNN when computing +p s e u d o l a b e l s . +3 +f o : +o n l i n e +network : +Encoder + comparison net . +4 +g t : +t a r g e t +network : +Encoder + comparison net . +5 gamma : +Target EMA c o e f f i c i e n t . +6 +n e : +Number of +n e g a t i v e s . +7 p m : Mask apply +p r o b a b i l i t y +. +8 +’ ’ ’ +9 +f o r +i +in +range ( num large views ) : +10 +queue i = queue . i n i t ( queue size , +FIFO ) +11 +12 +f o r x , +y in +batch : +# Load +batch +of B samples +each +with +data x and +( maybe ) +l a b e l +y . +13 +x m = mask background ( x ) +14 +f o r +i +in +range ( num large views ) : +15 +# +S t o c h a s t i c a l l y +apply +background +removal . +16 +x = B e r n o u l l i ( p m ) +? x m +: +x +17 +# Create +an augmented +l a r g e +view . +18 +x l i += augment ( c r o p l a r g e ( x ) ) +19 +o l i += f o ( x l i ) +20 +t l +i += g t ( x l i ) +21 +# Enqueue +the +l a b e l e d +images +in +the +batch . +22 +i f +y +i s +not None : +23 +queue i . enqueue ( ( t l i , +y i ) ) +24 +25 +f o r +i +in +range ( num small views ) : +26 +x s i = augment ( c r o p s m a l l ( x ) ) +27 +# Small +views +only go +through +the +o n l i n e +network +28 +o s i = f o ( x s i ) +29 +30 +# Pseudo − l a b e l +computation +f o r +u n l a b e l l e d +examples . +31 +i f +y +i s +None : +# Missing +l a b e l . +32 +votes = [ knn ( k , +queue i , +o l j ) +f o r +i , +j +in +a l l p a i r s ( num large views ) ] +33 +y = mode ( votes ) +34 +35 +l o s s = 0 +36 +# Compute +the +l o s s +between +a l l +the +p a i r s +of +l a r g e +views . +37 +f o r +i +in +range ( num large views ) : +38 +f o r +j +in +range ( num large views ) : +39 +l o s s += +c o n t r a s t i v e l o s s ( o l i , +t l j , +n e ) +# Augmentation +p o s i t i v e s . +40 +f o r +in +range ( n u m s e m a n t i c p o s i t i v e s ) : +41 +# Sample +semantic +p o s i t i v e s +from +the +queue , +and add +to +the +l o s s . +42 +z = sample ( queue j . f i l t e r ( y ) ) +43 +l o s s += +c o n t r a s t i v e l o s s ( o l i , +z , +n e ) +44 +45 +# Compute +the +l o s s +between +the +small +and +l a r g e +views . +46 +f o r +i +in +range ( num small views ) : +47 +f o r +j +in +range ( num large views ) : +48 +l o s s += +c o n t r a s t i v e l o s s ( os i , +t l j , +n e ) +# Augmentation +p o s i t i v e s . +49 +f o r +in +range ( n u m s e m a n t i c p o s i t i v e s ) : +50 +# Sample +semantic +p o s i t i v e s +from +the +queue , +and add +to +the +l o s s . +51 +z = sample ( queue j . f i l t e r ( y ) ) +52 +l o s s += +c o n t r a s t i v e l o s s ( o l i , +z , +n e ) +53 +54 +l o s s +/= +( ( num large views + num small views ) +55 +* num large views * (1 + n u m s e m a n t i c p o s i t i v e s ) ) +56 +57 +# Compute +the +g r a d i e n t s , +and +update +the +o n l i n e +and +t a r g e t +network . +58 +l o s s . backward ( ) +59 +update ( f o ) +60 +g t = gamma * +g t + (1 − gamma) * +f o +Listing 1 Pseudo-code for SEMPPL. +20 + +Preprint. +D +ANALYSIS +D.1 +IMPLEMENTATION DETAILS +We perform all the ablation experiments using 10% of labelled data and train a standard ResNet- +50 encoder with SEMPPL for 100 epochs (except in the training duration ablation). We report the +top-1 accuracies on the ImageNet test set after fine-tuning from the first layer of the projector. As +in Grill et al. [2020] and for the main results in this paper, we use multi-layer perceptrons for the +projector and predictor with 2 linear layers—the first one followed by batch normalization [Ioffe +& Szegedy, 2015] and rectified linear activation with output sizes 4096 and 256 for the two layers +respectively. We use the same augmentations as for the experiments in the main paper—the stan- +dard SIMCLR augmentations [Chen et al., 2020a] and the RELICV2 multi-crop and saliency-based +masking [Tomasev et al., 2022]. Following the hyperparameter settings of the main results, we use +• batch size: B = 4096 +• queue capacity C = 20B (unless specifically ablated) +• number of nearest neighbours k = 1 (unless specifically ablated) +• view voting is used (unless specifically ablated) +• weight decay: 1e − 6 (exclude biases and batch normalization parameters) +• optimizer: LARS (exclude biases and batch normalization parameters from adaptation) +• base learning rate: 0.3 (scaled linearly with batch size [Goyal et al., 2017]) +• warm-up: 10 epochs +• cosine decay schedule for learning rate +• exponential moving average parameter: 0.996 +• views: 4 large views of size 224 × 224 and 2 small views of size 96 × 96 +• temperature: τ = 0.2 +• number of semantic positives: 3 (unless specifically ablated) +• 10 randomly subsampled negatives per anchor +• α = 1/5 (unless specifically ablated), λ = 5 and c = 0.3. +21 + +Preprint. +D.2 +ADDITIONAL ANALYSES +Number of semantic positives +We study the effect of varying the number of semantic positives in +SEMPPL. Table 8a shows that increasing this number from 1 to 3 only has an effect on the amount +of correctly predicted pseudo-labels, but no effect on downstream performance. On the other hand, +using 5 or 10 semantic positives significantly improves performance and also yields much more +accurate pseudo-labels prediction. +Training duration +Next, we vary the length of training representations and examine downstream +performance. As can be seen from Table 8b, both the proportion of correctly predicted pseudo- +labels and downstream performance improve with longer training up to 300 epochs but decrease if +we continue training up to 500 epochs. This indicates with training longer than 300 epochs SEMPPL +is starting to overfit, an observation consistent with phenomena reported elsewhere in the literature +involving noisy labels [Li et al., 2019a; Kim et al., 2019; Liu et al., 2020; Han et al., 2018; Zhang & +Sabuncu, 2018; Wang et al., 2019b]. +Table 8: Top-1 accuracy (in %) on the ImageNet-1k test set, and accuracy (in %) of correctly pre- +dicted pseudo-labels at the end of training for semantic positives and training length experiments. +Num. positives +Top-1 +Pseudo-label acc. +1 +69.9 +68.6 +2 +69.9 +70.9 +3 +69.9 +69 +5 +71.0 +72.8 +10 +70.7 +72.9 +(a) Varying the number of semantic positives. +Training time (epochs) +Top-1 +Pseudo-label acc. +100 +69.9 +69.2 +200 +72.4 +76.8 +300 +72.7 +77.9 +500 +72.3 +75.6 +(b) Varying the length of training. +View voting +SEMPPL generates multiple views from a single instance image in order to learn rep- +resentations. Those different views can be leveraged towards better pseudo-labels prediction. Rather +than only picking one randomly selected data view to compute a single pseudo-label, we perform +majority voting over (noisy) pseudo-labels computed from all available image views. Specifically, +we compare the online predictor embedding of one view with the queue of the target projector em- +beddings of the same data view from previous batches in the first setting; in the second setting we +compare the online predictor embedding of each view with the queue of the target projector embed- +dings of each other data view from previous batches. +Since SEMPPL relies on 4 large views, this yields up to 16 different pairs of views to compare +and compute pseudo-labels from, i.e. we get 16 pseudo-label predictions; this setting we call view +voting. Table 9 shows that using all available views to compute pseudo-labels significantly increases +pseudo-labels accuracy which in turn significantly improves downstream performance. +Table 9: Top-1 accuracy (in %) on the ImageNet-1k test set, and accuracy (in %) of correctly pre- +dicted pseudo-labels at the end of training for view voting experiments (using all views to compute +pseudo-labels vs using just a single view). +View voting +Top-1 +Pseudo-label acc. +On +69.9 +68.6 +Off +69.0 +62.5 +Number of nearest neighbours +In order to compute pseudo-labels we use k-nearest neighbour +lookup on the queue. While in the main results Section 3 we consistently assume k = 1 here we +ablate the effect of varying k on downstream performance. As can be seen Table 10a, increasing +k actually leads to a small decrease in performance. This is attributable to the decrease in the +proportion of correctly predicted pseudo-labels as k increases. +22 + +Preprint. +Queue length +How long should the queue of target projector embeddings for computing pseudo- +labels be? As the queue grows in size, it contains increasingly stale embeddings and threatens to +hamper the accuracy of predicted pseudo-labels. On the other hand, increasing queue size increases +the amount and diversity of labelled embeddings available which we would expect to be beneficial. +Those two opposing forces—staleness and increasing coverage—govern the accuracy with which we +can correctly predict pseudo-labels in turn directly affecting the selection of semantic positives and +their quality. We resolve this ambiguity empirically. As seen in Table 10b, increasing the coverage +and diversity of labelled embeddings has a strong positive effect on representation learning and +downstream performance. Staleness of embeddings is far less of a problem at practical (i.e., not +very large) queue sizes, showing diversity and coverage to be the dominant factor. +Table 10: Top-1 accuracy (in %) on the ImageNet-1k test set, and accuracy (in %) of correctly +predicted pseudo-labels at the end of training for k-NN and queue length experiments. +k-nn +Top-1 +Pseudo-label acc. +1 +70.0 +70.5 +2 +69.9 +69.5 +3 +69.8 +70.0 +5 +69.8 +70.0 +10 +69.1 +68.0 +(a) Varying the number of nearest neighbours. +Queue size (C) +Top-1 +Pseudo-label acc. +4000 +67.9 +53.1 +8000 +68.6 +60.4 +12000 +68.8 +62.0 +20000 +69.2 +64.3 +40000 +69.6 +66.9 +80000 +69.9 +68.8 +200000 +69.8 +69.5 +(b) Varying queue size. +The effect of the loss weight α +We use α in Equation 4 to weight the contribution of the loss +coming from semantic positives against the loss coming from augmentation positives. In SEMPPL +we use multiple semantic positives for learning and thus we need to adjust α to appropriately weigh +the contribution of the individual semantic positives. In our main experiments, we use 3 semantic +positives and for this reason α is not equal to 1. +In Table 11 we vary α from 0.0 to 1.0, with α = 0.0 effectively recovering RELICV2. The results +indicate that the SEMPPL loss notably improves over RELICV2, but that the exact choice of α +should be treated as a hyperparameter. Note that the value 0.2 is very close to the 1 +3 which is exactly +1/number of semantic positives. Thus, the optimal choice of α is very close to that fraction. +Table 11: Top-1 accuracy (in %) on the ImageNet-1k test set for varied values of the loss weight α +Loss weight (α) +Top-1 +0.0 (RELICV2) +72.4 +0.2 +76.0 +1.0 +74.6 +23 + +Preprint. +E +AUGMENTATIONS +In this work, we follow the established data augmentations protocols and pipelines of Chen et al. +[2020a]; Grill et al. [2020]; Caron et al. [2020]; Mitrovic et al. [2021]; Chen et al. [2020b]. Specifi- +cally, SEMPPL uses a set of augmentations to generate different views of the original image which +has three channels, red r, green g and blue b with r, g, b ∈ [0, 1]. +The augmentations we use are generated by applying the following sequence of operations in the +following order +1. Crop the image: Randomly select a patch of the image, between a minimum and maximum +crop area of the image, with aspect ratio sampled log-uniformly in [3/4, 4/3]. Upscale the +patch, via bicubic interpolation, to a square image of size s × s. +2. Flip the image horizontally. +3. Colour jitter: randomly adjust brightness, contrast, saturation and hue of the image, in a +random order, uniformly by a value in [−a, a] where a is the maximum adjustment (speci- +fied below). +4. Grayscale the image, such that the channels are combined into one channel with value +0.2989r + 0.5870g + 0.1140b. +5. Randomly blur. Apply a 23 × 23 Gaussian kernel with standard deviation sampled uni- +formly in [0.1, 2.0]. +6. Randomly solarize: threshold each channel value such that all values less than 0.5 are +replaced by 0 and all values above or equal to 0.5 are replaced with 1. +Apart from the initial step of image cropping, each subsequent step is applied with a certain proba- +bility to generate the augmented view of the original image. These probabilities and other augmen- +tation parameters are given in Table 12. SEMPPL uses 4 large views of size 224 × 224 pixels and 2 +small views of 96 × 96 pixels; to get the first and third large views and the first small view we use +the parameters listed below for odd views, while for the second and fourth large view and the second +small view we use the parameters for even views. Note that these are the same augmentations used +also in Chen et al. [2020a]; Grill et al. [2020]; Caron et al. [2020]; Mitrovic et al. [2021]; Chen et al. +[2020b]. +In addition to these augmentations, we also randomly apply the saliency masking augmentation +proposed in Tomasev et al. [2022] which enables us to remove a large part of the background. We +follow the protocol described in Tomasev et al. [2022] for computing the saliency masking for an +image and we apply this augmentation with probability 0.1 to the 4 large views. In keeping with +Tomasev et al. [2022], we fill out the removed background of the image with homogeneous grayscale +noise with the grayscale level randomly sampled for each view. We only apply the saliency masking +when the remaining foreground covers at least 20% of the total image. +24 + +Preprint. +Parameter +Even views +Odd views +Probability of randomly cropping +50% +50% +Probability of horizontal flip +50% +50% +Probability of colour jittering +80% +80% +Probability of grayscaling +20% +20% +Probability of blurring +100% +10% +Probability of solarization +0% +20% +Maximum adjustment a of brightness +0.4 +0.4 +Maximum adjustment a of contrast +0.4 +0.4 +Maximum adjustment a of saturation +0.2 +0.2 +Maximum adjustment a of hue +0.1 +0.1 +Crop size s +224 +96 (small), 224 (large) +Crop minimum area +8% +5% (small), 14% (large) +Crop maximum area +100% +14% (small), 100% (large) +Table 12: Parameters of data augmentation scheme. Small/large indicates small or large crop. +25 + diff --git a/RdE4T4oBgHgl3EQflQ1W/content/tmp_files/load_file.txt b/RdE4T4oBgHgl3EQflQ1W/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..aacf322f8f68d20b1f020e43c727fae2b2ff8344 --- /dev/null +++ b/RdE4T4oBgHgl3EQflQ1W/content/tmp_files/load_file.txt @@ -0,0 +1,1587 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf,len=1586 +page_content='Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' SEMPPL: PREDICTING PSEUDO-LABELS FOR BETTER CONTRASTIVE REPRESENTATIONS Matko Boˇsnjak, Pierre H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Richemond, Nenad Tomasev, Florian Strub, Jacob C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Walker, Felix Hill, Lars Holger Buesing, Razvan Pascanu, Charles Blundell, Jovana Mitrovic DeepMind {matko, richemond, mitrovic}@deepmind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='com ABSTRACT Learning from large amounts of unsupervised data and a small amount of super- vision is an important open problem in computer vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We propose a new semi- supervised learning method, Semantic Positives via Pseudo-Labels (SEMPPL), that combines labelled and unlabelled data to learn informative representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Our method extends self-supervised contrastive learning—where representations are shaped by distinguishing whether two samples represent the same underlying datum (positives) or not (negatives)—with a novel approach to selecting posi- tives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' To enrich the set of positives, we leverage the few existing ground-truth labels to predict the missing ones through a k-nearest neighbours classifier by using the learned embeddings of the labelled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We thus extend the set of positives with datapoints having the same pseudo-label and call these semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We jointly learn the representation and predict bootstrapped pseudo- labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This creates a reinforcing cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Strong initial representations enable better pseudo-label predictions which then improve the selection of semantic positives and lead to even better representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' SEMPPL outperforms competing semi- supervised methods setting new state-of-the-art performance of 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5% and 76% top-1 accuracy when using a ResNet-50 and training on 1% and 10% of labels on ImageNet, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Furthermore, when using selective kernels, SEMPPL sig- nificantly outperforms previous state-of-the-art achieving 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3% and 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3% top-1 accuracy on ImageNet with 1% and 10% labels, respectively, which improves absolute +7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8% and +6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2% over previous work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' SEMPPL also exhibits state- of-the-art performance over larger ResNet models as well as strong robustness, out-of-distribution and transfer performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 1 INTRODUCTION In recent years, self-supervised learning has made significant strides in learning useful visual fea- tures from large unlabelled datasets [Oord et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mitrovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Caron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Moreover, self-supervised representations have matched the performance of historical supervised baselines on the ImageNet-1k benchmark [Russakovsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2015] in like-for-like comparisons as well as outperformed supervised learning in many transfer settings [Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' While such results show exciting progress in the field, in many real-wold applications often there exists a small amount of ground-truth labelled datapoints making the problem of representation learning semi-supervised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In this work we propose a novel approach to semi-supervised learning called Semantic Positives via Pseudo-Labels (SEMPPL) which incorporates supervised information during the representation learning stage within a self-supervised loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Unlike previous work which uses the available super- vision as targets within a cross-entropy objective, we propose to use the supervised information to help inform which points should have similar representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We propose to learn representations using a contrastive approach, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we learn the representation of a datapoint (anchor) by maximizing the similarity of the embedding of that datapoint with a set of similar points (positives), while simul- taneously minimizing the similarity of that embedding with a set of dissimilar points (negatives).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='05158v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='CV] 12 Jan 2023 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' As such, the appropriate construction of these sets of positives and negatives is crucial to the success of contrastive learning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' While strategies for sampling negatives have been extensively studied in the literature [Schroff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Harwood et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Ge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020c], the sampling of positives has received far less attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We propose a novel approach to selecting positives which leverages supervised information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Specif- ically, we propose using the small amount of available ground-truth labels in order to non- parametrically predict the missing labels (pseudo-labels) for the unlabelled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Note that many previous semi-supervised approaches use pseudo-labels as targets within a cross-entropy-based ob- jective [Van Engelen & Hoos, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In SEMPPL we use pseudo-labels in a very different way, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we use them to select positives based on whether two datapoints (we call these semantic positives) share the same (pseudo-)label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' By maximizing the similarity of a datapoint with its semantic positives we expect to learn representations that are more semantically aligned and as a consequence encode more abstract, higher-level features which should generalise better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' To predict informative pseudo-labels, we compare the representations of the unlabelled data with those of the labelled subset and use a k-nearest neighbours (k-NN) classifier to impute the missing labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We simultaneously learn the representation, predict pseudo-labels and select semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This creates a virtuous cycle: better representations enable better pseudo-label prediction which in turn enables better selection of semantic positives and thus helps us learn better representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Im- portantly, as the prediction of pseudo-labels and selection of semantic positives does not depend on the exact form of the contrastive objective employed, SEMPPL is compatible with and complements all contrastive losses, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Caron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mitrovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] and may even be extended to non-contrastive losses [Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen & He, 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We evaluate the representations learned with SEMPPL across a varied set of tasks and datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In particular, SEMPPL sets new state-of-the-art in semi-supervised learning on ImageNet with 1% and 10% of labels on the standard ResNet-50 (1×) architecture with respectively 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5% and 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0% top- 1 performance and across larger architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' When combined with Selective Kernels [Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019b], we achieve 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3% and 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3% top-1 performance with 1% and 10% labels, respectively, significantly outperforming previous state-of-the-art by absolute +7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8% and +6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2% in top-1 perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We also outperform previous state-of-the-art on robustness and out-of-distribution (OOD) generalisation benchmarks while retaining competitive performance in transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Our main contributions are: We extend contrastive learning to the semi-supervised setting by introducing the idea of es- timating pseudo-labels for selecting semantic positives as a key component especially in the low-label regime,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We propose a novel semi-supervised method SEMPPL that jointly estimates pseudo-labels,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' selects semantic positives and learns representations which creates a virtuous cycle and enables us to learn more informative representations,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We extensively evaluate SEMPPL and achieve a new state-of-the-art in semi-supervised learn- ing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' robustness and out-of-distribution generalisation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' and competitive performance in transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 2 SEMANTIC POSITIVES VIA PSEUDO-LABELS The selection of appropriate positive and negative examples are the cornerstone of contrastive learn- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Though the research community has mainly focused on the selection of negatives, positives are equally important as they play a vital role in learning semantic similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We thus leverage labelled information as it encodes semantic information to improve the selection of informative pos- itives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Specifically, we expand a self-supervised model to use this labelled data to non-parametrically predict pseudo-labels for the remaining unlabelled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Using both ground-truth labels and the pre- dicted pseudo-labels, we expand the set of positives with semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Notations Let D = Dl ∪Du be a dataset consisting of labelled training data Dl = {(xi, yi)}N i=1 and unlabelled training data Du = {(xj)}M j=N+1 with M ≫ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Let B be a batch of data of size B with B = {(xi, yi)}b i=1 ∪ {xj}B j=b+1 where (xi, yi) ∈ Dl and xj ∈ Du, where the indices i, j and m to denote labelled, unlabelled, and all datapoints, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Following established self-supervised learning practices [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Caron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mitrovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dwibedi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Embedding Projection Semantic positive Loss Prediction Projection Projection Projection Projection K-NN Query Pseudo labels Embedding Projection Target Network Negatives Loss Target Network Online Network Online Network Embedding Projection Prediction Online Network Prediction Queue Figure 1: Sketch of SEMPPL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' (Left) Standard contrastive pipelines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' (Middle) Unlabelled data are tagged with pseudo-labels by using a k-NN over projected labelled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' (Right) Semantic positives are queried from the queue and processed to compute an additional contrastive loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022], we create different views of the data by applying pairs of randomly sampled augmentations a1, a2 ∼ A from the augmentation distribution A proposed in Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For every datapoint xm ∈ D we denote the corresponding augmentations as xa1 m , xa2 m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Augmentation positives We embed one data view xa1 m via an online encoder network f and embed the other data view xa2 m with a target encoder network ft, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we get latent representations za1 m = f(xa1 m ) and za2 m,t = ft(xa2 m ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Note that the weights of ft are an exponential moving average of the weights of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Next, we pass these latent representations through projection and prediction multi- layer perceptrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Specifically, we use an online projector g and target projector gt, as well as an online predictor h, to further transform za1 m and za2 m,t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' again, the weights of gt are an exponential moving average of the weights of g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We then get ˆza1 m = h(g(za1 m )) and ˜za2 m,t = gt(za2 m,t) and l2- normalise these;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we use ˆza1 m , ˜za2 m,t onward as the normalised latent embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In order to learn the representation of ˆza1 m , we contrast it against the augmentation-based positive ˜za2 m,t as well as against negatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For this, we use the contrastive loss: LAUGM = − B � m=1 log ϕ(ˆza1 m , ˜za2 m,t) ϕ(ˆza1 m , ˜za2 m,t) + � xn∈N (xm) ϕ(ˆza1 m , ˜za2 n,t) (1) where N(xk) is the set of negatives, randomly uniformly sampled from the current batch, ˜za2 n,t = gt(ft(xn)) the target network projection of the negative sample;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ϕ(x1, x2) = τ · exp(⟨x1, x2⟩/τ) is the scoring function, τ > 0 is a scalar temperature, and ⟨·, ·⟩ denotes the Euclidean dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Since the representations we contrast are l2-normalised, the dot product effectively turns into cosine similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Pseudo-label prediction and semantic positives Since we have access to a small labelled dataset, we can use the label information to select more informative positives beyond just augmentations of the original image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Specifically, we can associate images with the same label as positives and we call these semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We want to select semantic positives for all the data, not just the labelled subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For this purpose, we propose to compute pseudo-labels for the unlabelled data and use this to select semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' To compute pseudo-labels we compare the current latent embeddings of the unlabelled data to those of the labelled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Specifically, we propose to use a first-in-first-out 3 020202Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' queue Q with capacity C for storing labelled embeddings which we use for computing the pseudo- labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' At the start of training, we simply initialise the queue with random vectors, and use the queue from the first step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For each batch B, we add the target projection of only the labelled data to the queue, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Q ← (˜za2 i,t, yi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' To predict a pseudo-label for an unlabelled datapoint xj, we first compute the online predictor output ˆza1 j , before retrieving its k-nearest neighbours {(˜za2 s,t, ys)}k s=1 in cosine similarity from the queue Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 Finally, we compute the pseudo-label ¯yj of xj as: ¯yj = mode ys {(˜za2 s,t, ys)}k s=1 (2) where mode is the mode of the set, tasked with obtaining the most frequent class in the k-nearest neighbours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We use the ground-truth labels (for the labelled data) or the computed pseudo-labels (for the unlabelled data) to select semantic positives for every datapoint in B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For each xm ∈ B, we uniformly sample over all the embeddings in Q that share the same (pseudo-) label as xm to get a semantic positive ˜za2,+ m,t ∼ U({(˜za2 l,t, yl) ∈ Q | yl = pl(xm)}), where pl(xm) = ym if xm is labelled and pl(xm) = ¯ym if xm is unlabelled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Next, we include these semantic positives within our representation learning process through the contrastive objective LSEMPOS = − B � m=1 log ϕ(ˆza1 m , ˜za2,+ m,t ) ϕ(ˆza1 m , ˜za2,+ m,t ) + � xn∈N (xm) ϕ(ˆza1 m , ˜za2 n,t) (3) Taking these two losses (1) and (3) together, we propose to learn representations in our method SemPPL by minimising the following total loss LSEMPPL = LAUGM + αLSEMPOS (4) where α controls the ratio between these sub-losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 IMPLEMENTATION DETAILS Architecture We use Residual Networks [He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2016] (v1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' pre-activation as customary in the literature) for f and ft and use either 50 or 200 layers deep networks and with a width multiplier ranging from 1× to 4×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' As in [Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022], we use multi-layer per- ceptrons with 2 layers of size 4096 and 256, with batch normalisation [Ioffe & Szegedy, 2015] and rectified linear activation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Self-supervised learning method We use RELICv2 [Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] as our default self- supervised training objective due to its competitive performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Therefore, we add an invariance penalty on top of Equation 4 to further enforce the similarity constraints and regularize the learning process as detailed in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We also explore other self-supervised learning objectives in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Algorithm parameters We use a queue of capacity C = 20B, with batch size B = 4096, and temperature τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 while randomly sampling negatives from the current batch;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we take |N(x)| = 10 negatives in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For augmentations, we use the standard SIMCLR augmentations [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a] and the RELICV2 multi-crop and saliency-based masking [Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we use 4 large views and 2 small views for augmentation positives and 3 semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The semantic positives are computed with a k-NN with k = 1 (see the analysis section in Appendix D);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we build a single k-NN instance per augmentation a queried with all the augmentations where |a| = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This produces |a|2 = 16 k-NN induced pseudo-labels in total for each unlabelled image among which we then perform majority voting to compute the final pseudo-label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Optimisation Our networks are optimized with LARS [You et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Our base learning rate is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 and we train our models for 300 epochs with a learning rate warm-up period of 10 epochs and cosine decay schedule thereafter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We use a weight decay of 10−6 and batch size B = 4096.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We exclude the biases and batch normalisation parameters both from LARS adaptation and weight decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The exponential moving average parameter for target networks is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Our pseudo-code is described in the appendix along with precise architectural and implementation details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Pretrained model checkpoints and code will be made available on GitHub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 1We use the cosine similarity as the embeddings are normalised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 4 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 3 EXPERIMENTAL RESULTS To evaluate SEMPPL, we pre-train representations using 1% and 10% labelled data from the Ima- geNet dataset [Russakovsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2015] based on the splits from Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020a] We then test SEMPPL in semi-supervised classification, robustness and out-of-distribution general- isation tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Lastly, we probe the transfer capabilities of the representations to other image classi- fication datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For a complete set of results and experimental details, please see the Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 SEMI-SUPERVISED LEARNING In Table 1, we report top-1 accuracy on the ImageNet test set when either 1% or 10% of the data is labelled for the ResNet-50 architecture as well as deeper and wider ResNets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' SEMPPL achieves top-1 accuracy of 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5% with 1% of labels, significantly outperforming the previ- ous state-of-the-art SimMatch [Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] by an absolute +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3% in ImageNet test accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' With 10% of label data, our top-1 accuracy on ResNet-50 reaches 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0%, outperforming the previ- ous state-of-the-art PAWS [Assran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] in semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' SEMPPL outperforms competing representation learning methods across the board, achieving state-of-the-art performance on all ResNet-50 2×, ResNet-50 4× and , in both the 1% and 10% labelled settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' SEMPPL does not use, and therefore excludes from comparison, distillation from larger networks as in [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Pham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Similar to [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020b], we also tested SEMPPL on ResNets with Selective Kernels (SK) [Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This increases the encoder parameter count to 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We thus achieve a new absolute state-of-the-art of 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3% and 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3% top-1 accuracies, respectively, when using 1% and 10% of labelled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Finally, SEMPPL reaches a new state-of-the-art using 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 and 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 on 1% and 10% of labels without self-distillation with a ResNet-200 2× + SK architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For implementation details of the semi-supervised results and additional results, see the Ap- pendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 1: Top-1 accuracy (in %) for ResNet encoders with different depth and width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ResNet-50 1× ResNet-50 2× ResNet-50 4× ResNet-200 2× Method Top-1 Top-1 Top-1 Top-1 1% 10% 1% 10% 1% 10% 1% 10% SimCLR [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a] 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 BYOL [Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020] 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 RELICv2 [Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 SimCLRv2 [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020b] 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 CoMatch [Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021a] 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 PAWS [Assran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 SimMatch [Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 SemPPL (ours) 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 SimCLRv2 + SK [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020b] 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 SemPPL + SK (ours) 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 ROBUSTNESS AND OOD GENERALISATION We evaluate the robustness and generalisation abilities of SEMPPL on ImageNetV2 [Recht et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019], ImageNet-C [Hendrycks & Dietterich, 2019], ImageNet-R [Hendrycks et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] and Ob- jectNet [Barbu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019] which have all been purposefully constructed to test different robustness and generalisation aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We evaluate all three variants on ImageNetV2: matched frequency (MF), Threshold 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 (T-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7) and Top Images (TI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' When evaluating PAWS, we used the publicly available checkpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 5 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 2 shows good robustness and generalisation ability of the representations learned with SEMPPL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' SEMPPL sets the new state-of-the-art performance (outperforming even the supervised baseline) on 4 out of 5 datasets, while outperforming PAWS across all datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' SEMPPL also out- performs SimMatch on 4 out of 5 datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For more details on the evaluation protocols and results for ImageNet-C see the Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 2: Top-1 accuracy (in %) for ImageNetV2, ImageNet-R and ObjectNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Robustness OOD generalization Method MF T-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 Ti ImageNet-R ObjectNet Supervised (100% labels) [Lim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019] 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 Semi-supervised (10% labels) PAWS [Assran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 SimMatch [Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 SemPPL (ours) 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 TRANSFER LEARNING We evaluate the generality of SEMPPL representations by testing whether the features learned on ImageNet are useful across different datasets and tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Specifically, we evaluate the transfer per- formance of SEMPPL on a set of 11 image classification datasets commonly used in the contrastive literature under the linear protocol [Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dwibedi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mitro- vic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For the linear protocol, the pretrained encoder is frozen and a randomly initialized linear classifier is trained on top using the training data from the target dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We report standard metrics for each dataset as well as performance on a held-out test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For more details on the evaluation protocol see the Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 3 compares the transfer performance of representations pretrained using the supervised baseline [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a], PAWS [Assran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021], SimMatch [Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] and our method SEMPPL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' SEMPPL outperforms the super- vised baseline on 8 out of 11 datasets, PAWS on 9 out of 11 datasets, while showing competitive performance to SimMatch, outperforming it on 4 out of 7 datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 FULL LABELLED DATASET Figure 2: Top-1 accuracy for ResNet50 with 100% of the labels across augmentations, initializations and networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Method Params Top-1 Supervised (ResNet-50) + AutoAugment [Cubuk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019] 27M 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 + MaxUp [Gong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] 27M 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 Representation Learning (ResNet-50) SEMPPL (SimCLR base) 27M 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 SEMPPL (BYOL base) 27M 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 SEMPPL (ReLICv2 base;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ours) 27M 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 Other Architectures Swin-T [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021b] 29M 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 ConvNeXt [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] 29M 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 SEMPPL + SK (ours) 29M 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 We also assess how SEMPPL be- haves in a fully supervised setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For this purpose, we select semantic positives based on the ground-truth labels and fine-tune the learned rep- resentations with the full ImageNet dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We compare against strong supervised baselines on ResNets as well as against recent performant net- work architectures that are extensions of the ResNet, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Our method reaches 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7% top-1 ac- curacy on a ResNet 50 outperforming a number of strong supervised base- lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' When we add selective kernels to a ResNet 50, we achieve 82% top-1 accuracy outperforming recent trans- formers architecture [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021b], and matching highly tuned ConvNext [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Therefore, SEMPPL may also be considered as a promising pretraining method in the supervised learning setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 6 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 3: Top-1 accuracy (in %) on the full suite of transfer tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Method Food101 CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft DTD Pets Caltech101 Flowers Supervised-IN [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a] 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 Semi-supervised methods with 10% labels: PAWS [Assran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 SimMatch [Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 – – 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 – 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 – 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 SEMPPL (ours) 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 4 ANALYSIS We analyse the impact of different design choices in SEMPPL on downstream performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In this section, we focus the behaviour and impact of pseudo-labels and semantic positives on learning representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For further analyses and experimental details, please see Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Semantic positives across self-supervised learning objectives With SEMPPL we extend the set of positives to include semantic positives based on predicted pseudo-labels;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we can combine these ideas with other self-supervised methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1, we additionally evaluate SEMPPL on the non-contrastive self-supervised method BYOL [Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' BYOL replaces the contrastive loss in Equation 4 with an l2 loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Importantly, we follow the training pipeline (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' augmentation, hyperparameters etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=') from [Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020] to fairly highlight the impact of SEMPPL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We ob- serve a drastic improvement when adding semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' With 1% labels on ImageNet BYOL improves by absolute +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9% and by absolute +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6% when using 10% labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For completeness we have also highlighted the contribution of SEMPPL when using RELICv2 as the base self-supervised objective which is our default implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For 1% labeled data, we see an absolute improve- ment of +10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4% in top-1 accuracy, while for 10% labels we see a gain of absolute +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6% in top-1 accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In summary, we see that SEMPPL can be easily combined with other self-supervised objectives to yield significant improvements and can be used a standard plug-and-play module in within semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The contribution of pseudo-labels and semantic positives We examine the impact of omitting pseudo-label prediction and semantic positives from learning representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Specifically, we ab- late the use of pseudo-labels when selecting semantic positives for unlabelled datapoints, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we only use labelled images when retrieving semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 (middle row), removing pseudo-label prediction significantly decreases performance both in the 1% and 10% label settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In addition, the low-label regime (1% labels) suffers a stronger performance decrease −6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6% than the 10% labels regime, −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This underscores the importance of pseudo-label estimation and subsequent selection of semantic positives for unlabelled data especially in the low-data regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Going a step further, we remove semantic positives even for the labelled data, falling back to vanilla RELICv2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 (bottom row), we see again a significant drop in performance for both the 1% and 10% label settings with a sharper drop for the low-label regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Together these highlights the importance of both including semantic positives for labelled data as well as using pseudo-label prediction for selecting semantic positives for unlabelled data in order to learn informative represen- tations in a semi-supervised setting in a label-efficient way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 4: Top-1 test accuracy (in %) with a ResNet50 pretrained on ImageNet with 1% and 10% labels: (1) when trained on different self-supervised objective, (2) when removing pseudo-labelling, and semantic positives in SEMPPL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Top-1 1% 10% BYOL [Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020] 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 SEMPPL with BYOL 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 ReLICv2 [Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 SEMPPL with RELICv2 (ours) 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 1% labels 10% labels SEMPPL 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 Pseudo-labels 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 Semantic Positives 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 7 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 5: Top-1 test accuracy (in %) with a ResNet50 pretrained on ImageNet 10% labels for 100 epoches when using ground truth labels instead of pseudo-labels while retrieving semantic positives (oracle);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' PL accuracy helds for the accuracy of the pseudo-label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 10% labels Top-1 PL accuracy SEMPPL 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 SEMPPL (+oracle) 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 Precision and Recall of pseudo-labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Figure 3, we analyse the behaviour of pseudo-labels by looking at the precision and recall as training progresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We train a ResNet-50 for 100 epochs using 10% labels with SEMPPL on ImageNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' As we have 4 large views there will be in total 16 votes cast and then the pseudo-label will be estimated using majority voting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We want to measure how often these 16 votes agree or disagree;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we denote as voting threshold the number k where at least k votes have been cast for one class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We see that as training progresses the precision across all thresholds increases as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This means that the pseudo-label prediction is bootstrapping itself to become more accurate, which enables us to select better semantic positives and thus learn more informative representations as training progresses, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we have a virtuous cycle of representation learning and pseudo-label prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Furthermore, precision is an increasing function of the voting threshold throughout training and is highest for the biggest voting threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This indicates how confident we can be in the accuracy of pseudo-label prediction, and thus how confident we can be that an appropriate semantic positive has been selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Yet, we see that the recall for individual thresholds is also increasing as training progresses but that the recall decreases as we increase the voting threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This is expected as there is always a trade-off between precision and recall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 5000 10000 15000 20000 25000 30000 Steps 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 Precision 5000 10000 15000 20000 25000 30000 Steps 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 Recall Voting threshold 0 2 5 7 10 12 15 Figure 3: Precision and recall for pseudo-labels computed based on k-nearest neighbours when trained on ImageNet with 10% labels over 100 epoches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Noise in pseudo-label prediction In Figure 3, we observe that the proportion of correctly pre- dicted pseudo-labels at the end of training is reasonably high (60% accuracy of voting threshold 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Yet, it also means that 40% of pseudo labels are still incorrectly predicted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' As the incorrect prediction results in suboptimal semantic positives selection, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', SEMPPL does not select semantic positives from the same class as the datapoint, this behavior may ultimately worsen the quality of ex- tracted features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' To quantify this phenomenon, we train the representation with SEMPPL where an oracle replaces the pseudo-label prediction with ground-truth labels and those are used for selecting semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Table 5, we train the representations for 100 epochs on ImageNet with 10% labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' There, the oracle increases the top-1 performance of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7% in the test set with 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Besides, the pseudo-label accuracy also gets 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2% higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' It thus confirms that incorrect pseudo-label predic- tions, and incorrect semantic positives retrieval, hurts learning informative representations and the downstream performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Yet, the oracle performance remains close to the actual performance of SEMPPL, illustrating the method’s robustness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Further ablations on other design choices, such as the number of semantic positives, the use of view voting, the choice of k in k-NN, queue length and training duration can be found in Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 8 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 5 RELATED WORK Semi-supervised learning In the semi-supervised regime [Cheplygina et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Van Engelen & Hoos, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Alizadehsani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021], one can either pre-train a model on unlabelled data and subsequently fine-tune it on labelled data, or train both jointly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Joint training on labelled and unlabelled data often involves combining the two losses [Grandvalet & Bengio, 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Miyato et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Zhai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Verma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Berman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Pseudo-label self-training approaches [Zoph et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020] present an important alternative, first inferring approximate pseudo-labels for the unlabelled examples, and then incorporating them in supervised losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Pseudo-labels can either be generated prior to a subsequent supervised learning phase [Yarowsky, 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Riloff, 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2013] or jointly in an online fashion [Berthelot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Sohn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' These methods may benefit from pseudo-label confidence measures [Sohn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Rizve et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] as well as thresholding [Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021], temporal ensembling [Laine & Aila, 2017], or stronger regularization to mitigate bias in early model training [Sajjadi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Arazo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The use of pseudo-labels with rebalancing has shown improvements, both in class-imbalanced problems [Wei et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] and in a general context [Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Teacher-student network configurations for generating and utilising pseudo-labels have also shown promise [Tarvainen & Valpola, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Ke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Cai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Pham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Co-training uses different feature extractors for different data views and alternates between pseudo-labelling and training phases [Blum & Mitchell, 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Qiao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Good performance has been reached by using consistency losses between pseudo-labels of different inputs [Verma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Predicting view assignments with support samples [Assran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] (PAWS) has resulted in substantial performance improvements, with the idea that the assigned pseudo-labels ought to be similar across multiple views of the same image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Recent work has shown that incorporating label information in positive selection in contrastive meth- ods is highly promising, compared to the cross-entropy loss in the fully supervised case [Khosla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Our method demonstrates a similar utility of pseudo-labels for semi-supervised prob- lems, and differs from competing ones in the following ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Unlike DebiasPL [Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] that uses an adaptive margin loss, SemPPL does not seek to directly address or re-shape the distri- bution of pseudo-labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Unlike SimCLRv2 [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020b], we do not rely on self-distillation procedures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In contrast with PAWS [Assran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021], we fully leverage the contrastive approach for semi-supervised learning;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' not using positives only for training means SEMPPL does not require specific care like pseudo-labels sharpening to stabilize learning and avoid representational collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' SEMPPL is more closely related to CoMatch [Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021a] that also uses bootstrapping to im- prove pseudo-labels representational quality, but is conceptually much simpler, avoiding phases of distributional alignment and of performing graph-based contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In a similar vein, Sim- Match [Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] also uses a memory buffer to propagate pseudo-labels, but has a more complex objective than SEMPPL and equally requires additional phases of pseudo-labels unfolding and aggregation to function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Self-supervised learning Major advances in learning useful representations from unlabelled data [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Goyal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] can be seen as a paradigm shift, since these methods have recently been competitive with supervised training baselines [Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' A num- ber of self-supervised learning methods involve contrasting multiple views of the data [Oord et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Bachman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dwibedi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Similar performance were also achieved by bootstrapping-based multi-view learning [Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Richemond et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen & He, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Zbontar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021], or involv- ing explicit clustering steps [Caron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Asano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' An explicit causally-motivated invariance loss, when used in conjunction with the contrastive objective, has been shown to lead to more compact representations, and desirable generalisation properties [Mitro- vic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Contrastive approaches are not always used in self-supervised methods [He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Ermolov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Transformer-specific methods have been devised [Caron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Zhai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 9 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 6 CONCLUSION In this work, we propose SEMPPL, a novel semi-supervised learning method to incorporate semantic positives in self-supervised objectives by taking advantage of pseudo-labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Through extensive empirical evaluation, we demonstrated that our approach achieves state-of-the-art semi-supervised performance on ImageNet across several ResNet architectures as well as on the robustness, out-of- distribution generalization and transfer tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We also show that SEMPPL can be easily combined with other existing self-supervised methods and is a promising direction to pre-train networks also in a fully supervised learning regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Our analyses suggest that the role of pseudo-labels in selecting positives for semi-supervised contrastive methods might be underappreciated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Despite widespread use in semi-supervised applications, pseudo-labels are less understood and have been explored far less in the context of self-supervised methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We hope this study, which shows empirically that prior work has under-utilized pseudo-labels, may help bridge that gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' REFERENCES Roohallah Alizadehsani, Danial Sharifrazi, Navid Hoseini Izadi, Javad Hassannataj Joloudari, Afshin Shoeibi, Juan M Gorriz, Sadiq Hussain, Juan E Arco, Zahra Alizadeh Sani, Fahime Khozeimeh, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Uncertainty- aware semi-supervised method using large unlabeled and limited labeled covid-19 data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(3s):1–24, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Pseudo-labeling and con- firmation bias in deep semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the International Joint Conference on Neural Networks (IJCNN), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Yuki M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Asano, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Rupprecht, and Andrea Vedaldi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Self-labelling via simultaneous clustering and representa- tion learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Learning Representations (ICLR), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Armand Joulin, Nicolas Ballas, and Michael Rabbat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Semi-supervised learning of visual features by non-parametrically predicting view assign- ments with support samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Philip Bachman, R Devon Hjelm, and William Buchwalter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Learning representations by maximizing mutual information across views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenenbaum, and Boris Katz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Irwan Bello, William Fedus, Xianzhi Du, Ekin Dogus Cubuk, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Srinivas, Tsung-Yi Lin, Jonathon Shlens, and Barret Zoph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Revisiting resnets: Improved training and scaling strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L Alexander, David W Jacobs, and Peter N Belhumeur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Birdsnap: Large-scale fine-grained visual categorization of birds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Maxim Berman, Herv´e J´egou, Andrea Vedaldi, Iasonas Kokkinos, and Matthijs Douze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Multigrain: a unified image embedding for classes and instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='05509, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A Raffel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mix- match: A holistic approach to semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Pro- cessing Systems (NeurIPS), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' David Berthelot, Nicholas Carlini, Ekin D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Learning Representations (ICLR), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Avrim Blum and Tom Mitchell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Combining labeled and unlabeled data with co-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the Annual Conference on Computational Learning Theory, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Food-101–mining discriminative components with random forests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the European conference on computer vision (ECCV), 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 10 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Zhaowei Cai, Avinash Ravichandran, Subhransu Maji, Charless Fowlkes, Zhuowen Tu, and Stefano Soatto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Exponential moving average normalization for self-supervised and semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Unsupervised learning of visual features by contrasting cluster assignments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mathilde Caron, Hugo Touvron, Ishan Misra, Herv´e J´egou, Julien Mairal, Piotr Bojanowski, and Armand Joulin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Emerging properties in self-supervised vision transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' A simple framework for contrastive learning of visual representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Machine Learning (ICML), 2020a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Big self-supervised models are strong semi-supervised learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2020b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo, Yunhao Wang, Shumin Han, Ping Luo, Gang Zeng, and Jingdong Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Context autoencoder for self-supervised representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='03026, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xinlei Chen and Kaiming He.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Exploring simple siamese representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xinlei Chen, Haoqi Fan, Ross B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Girshick, and Kaiming He.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Improved baselines with momentum contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='04297, 2020c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xinlei Chen, Saining Xie, and Kaiming He.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' An empirical study of training self-supervised vision transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the International Conference on Computer Vision (ICCV), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Veronika Cheplygina, Marleen de Bruijne, and Josien PW Pluim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Not-so-supervised: a survey of semi- supervised, multi-instance, and transfer learning in medical image analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Medical image analysis, 54: 280–296, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Describing tex- tures in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Autoaugment: Learning augmentation policies from data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Randaugment: Practical automated data augmentation with a reduced search space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recog- nition Workshop (CVPRW), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' With a lit- tle help from my friends: Nearest-neighbor contrastive learning of visual representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the International Conference on Computer Vision (ICCV), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Whitening for self-supervised representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Machine Learning (ICML), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Li Fei-Fei, Rob Fergus, and Pietro Perona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Scott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Deep metric learning with hierarchical triplet loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of European Conference on Computer Vision (ECCV), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chengyue Gong, Tongzheng Ren, Mao Ye, and Qiang Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Maxup: Lightweight adversarial training with data augmentation improves neural network training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Priya Goyal, Piotr Doll´ar, Ross B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Accurate, large minibatch sgd: Training imagenet in 1 hour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='02677, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 11 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min Xu, Pengchao Wang, Vivek Pai, Mannat Singh, Vi- taliy Liptchinsky, Ishan Misra, Armand Joulin, and Piotr Bojanowski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Self-supervised pretraining of visual features in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='01988, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Yves Grandvalet and Yoshua Bengio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Semi-supervised learning by entropy minimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Jean-Bastien Grill, Florian Strub, Florent Altch´e, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Bootstrap your own latent-a new approach to self-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Wai-Hung Tsang, and Masashi Sugiyama.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Co-teaching: Robust training of deep neural networks with extremely noisy labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Ben Harwood, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Kumar, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Carneiro, Ian D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Reid, and Tom Drummond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Smart mining for deep metric learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Deep residual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Momentum contrast for unsupervised visual representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll´ar, and Ross Girshick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Masked autoencoders are scalable vision learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='06377, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Bag of tricks for image classification with convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dan Hendrycks and Thomas Dietterich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Benchmarking neural network robustness to common corruptions and perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Learning Representations (ICLR), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The many faces of robustness: A critical analysis of out-of- distribution generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 8340–8349, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Zijian Hu, Zhengyu Yang, Xuefeng Hu, and Ram Nevatia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Simple: Similar pseudo label exploitation for semi- supervised classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Ioffe and Christian Szegedy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Batch normalization: Accelerating deep network training by reducing internal covariate shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Machine Learning (ICML), 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Zhanghan Ke, Daoye Wang, Qiong Yan, Jimmy Ren, and Rynson W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Lau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dual student: Breaking the limits of the teacher in semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the International Conference on Computer Vision (ICCV), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Supervised contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 33:18661–18673, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Youngdong Kim, Junho Yim, Juseung Yun, and Junmo Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Nlnl: Negative learning for noisy labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the International Conference on Computer Vision (ICCV), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 3d object representations for fine-grained catego- rization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc of the International Conference on Computer Vision Workshops, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Alex Krizhevsky, Geoffrey Hinton, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Learning multiple layers of features from tiny images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Technical report, Toronto, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Samuli Laine and Timo Aila.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Temporal ensembling for semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Learning Representations (ICLR), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 12 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dong-Hyun Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the ICML Workshop on Challenges in Representation Learning, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Kuang-Huei Lee, Anurag Arnab, Sergio Guadarrama, John Canny, and Ian Fischer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Compressive visual repre- sentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankanhalli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Learning to learn from noisy labeled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Junnan Li, Caiming Xiong, and Steven C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Hoi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Comatch: Semi-supervised learning with contrastive graph regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the International Conference on Computer Vision (ICCV), 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and Steven C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Hoi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Prototypical contrastive learning of unsupervised representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Learning Representations (ICLR), 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Selective kernel networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Fast autoaugment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 32, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Early-learning regulariza- tion prevents memorization of noisy labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Self-supervised learning: Generative or contrastive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' IEEE Transactions on Knowledge and Data Engineering, 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Swin transformer: Hierarchical vision transformer using shifted windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the International Conference on Computer Vision (ICCV), 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' A convnet for the 2020s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Smooth neighbors on teacher graphs for semi- supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Fine-grained visual clas- sification of aircraft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:1306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5151, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Jovana Mitrovic, Brian McWilliams, Jacob Walker, Lars Buesing, and Charles Blundell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Representation learn- ing via invariant causal mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Learning Representations (ICLR), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Virtual adversarial training: a regular- ization method for supervised and semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Transactions on Pattern Analysis and Machine Intelligence, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Maria-Elena Nilsback and Andrew Zisserman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Automated flower classification over a large number of classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Indian Conference on Computer Vision, Graphics & Image Processing, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Aaron van den Oord, Yazhe Li, and Oriol Vinyals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Representation learning with contrastive predictive coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='03748, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Cats and dogs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Meta pseudo labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Loddon Yuille.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Deep co-training for semi- supervised image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of European Conference on Computer Vision (ECCV), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Do imagenet classifiers generalize to imagenet?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Machine Learning (ICML), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 13 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Pierre H Richemond, Jean-Bastien Grill, Florent Altch´e, Corentin Tallec, Florian Strub, Andrew Brock, Samuel Smith, Soham De, Razvan Pascanu, Bilal Piot, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Byol works even without batch statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems Workshops, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Ellen Riloff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Automatically generating extraction patterns from untagged text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the National Con- ference on Artificial Intelligence, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, and Mubarak Shah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In defense of pseudo- labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='06329, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An- drej Karpathy, Aditya Khosla, Michael Bernstein, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Imagenet large scale visual recognition challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Regularization with stochastic transformations and perturbations for deep semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Sys- tems (NeurIPS), 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Florian Schroff, Dmitry Kalenichenko, and James Philbin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Facenet: A unified embedding for face recognition and clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Fixmatch: Simplifying semi-supervised learning with consis- tency and confidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Antti Tarvainen and Harri Valpola.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Nenad Tomasev, Ioana Bica, Brian McWilliams, Lars Buesing, Razvan Pascanu, Charles Blundell, and Jovana Mitrovic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Pushing the limits of self-supervised resnets: Can we outperform supervised learning without labels on imagenet?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='05119, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Jesper E Van Engelen and Holger H Hoos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' A survey on semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Machine Learning, 109(2): 373–440, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, and David Lopez-Paz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Interpolation consistency training for semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the International Joint Conference on Artificial Intelligence (IJCAI), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xiang Wang, Xinlei Chen, Simon Shaolei Du, and Yuandong Tian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Towards demystifying representation learning with non-contrastive self-supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='04947, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xudong Wang, Zhirong Wu, Long Lian, and Stella X Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Debiased learning from naturally imbalanced pseudo- labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Scott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Multi-similarity loss with general pair weighting for deep metric learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Symmetric cross entropy for robust learning with noisy labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 322–330, 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille, and Fan Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Crest: A class-rebalancing self-training framework for imbalanced semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Sun database: Large-scale scene recognition from abbey to zoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Unsupervised data augmentation for consistency training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2020a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Self-training with noisy student improves imagenet classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2020b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 14 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yu-Feng Li, Baigui Sun, Hao Li, and Rong Jin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dash: Semi-supervised learning with dynamic thresholding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Machine Learning (ICML)g (ICML), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' A survey on deep semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='00550, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' David Yarowsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Unsupervised word sense disambiguation rivaling supervised methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Annual Meeting of the Association for Computational Linguistics (ACL), 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Yang You, Igor Gitman, and Boris Ginsburg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Large batch training of convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' arxiv preprint arXiv:1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='03888, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and St´ephane Deny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Barlow twins: Self-supervised learning via redundancy reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Machine Learning (ICML), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Shuangfei Zhai, Navdeep Jaitly, Jason Ramapuram, Dan Busbridge, Tatiana Likhomanenko, Joseph Yitan Cheng, Walter Talbott, Chen Huang, Hanlin Goh, and Joshua Susskind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Position prediction as an effec- tive pretraining strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of International Conference on Machine Learning (ICML), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' S4l: Self-supervised semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of the International Conference on Computer Vision (ICCV), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro Shi- nozaki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Ad- vances in Neural Information Processing Systems (NeurIPS), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Zhilu Zhang and Mert Rory Sabuncu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Generalized cross entropy loss for training deep neural networks with noisy labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mingkai Zheng, Shan You, Lang Huang, Fei Wang, Chen Qian, and Chang Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Simmatch: Semi-supervised learning with similarity matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Conference on Computer Vision and Pattern Recognition (CVPR), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus Cubuk, and Quoc Le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Rethinking pre-training and self-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' of Advances in Neural Information Processing Systems (NeurIPS), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 15 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' A ADDITIONAL RESULTS AND IMPLEMENTATION DETAILS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 SEMI-SUPERVISED DETAILS AND RESULTS Implementation details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In this work, we follow the protocol of Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020b];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Assran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2021] for fine-tuning from the first layer of the projector and initialize both the encoder and the first layer of the projector with the parameters of the pretrained model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We add the randomly initialized classifier on top of the first layer of the projector (after the non-linearity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We train all the weights (pretrained and classifier weights) using either 1% or 10% of the ImageNet-1k training data, and we use the splits introduced in Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020a] and used in all the methods to compare to Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Caron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dwibedi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2021];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2021];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mitrovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2021];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2022];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Assran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' At training time we randomly crop the image, resize it to 224 × 224, and then randomly apply a horizontal flip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' At test time we resize images to 256 pixels along the shorter side with bicubic resampling and apply a 224 × 224 center crop to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Both at training and testing times we subtract from the color channels the average channel value and divide it by the standard deviation of the channel value (as computed on ImageNet-1k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We use a cross entropy loss and stochastic gradient descent with Nesterov momentum of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 to fine-tune the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For both 1% and 10% settings, we train for 30 epochs and decay the initial learning rate by a factor 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 at 18 and 24 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Following the approach of Caron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020], we pick different learning rates for the encoder (and the first projector layer) and for the classifier weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We do not use any weight decay or other regularization tech- niques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We sweep over batch sizes values in {512, 1024, 2048}, encoder base learning rate val- ues in {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='005, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0035, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0025, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='001}, and linear layer base learning rate values in {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='025}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 6: Top-1 and Top-5 accuracies (in %), after semi-supervised fine-tuning with a fraction of ImageNet labels, for a ResNet-50 encoder across a number of representation learning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Method Top-1 Top-5 1% 10% 1% 10% Supervised [Zhai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019] 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 Pseudo labels in classification: MPL [Pham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 Representation learning methods: SimCLRv2 [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020b] 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 SimCLRv2 + self distillation [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020b] 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 CoMatch [Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021a] 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 PAWS [Assran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 DebiasPL [Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 SimMatch [Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022] 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 SEMPPL (ours) 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 SimCLRv2 + Selective Kernels [Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019b] 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 SEMPPL (ours) + Selective Kernels 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 Additional results and larger networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' When the architecture of the ResNet-50 is modified to include selective kernels [Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019b], we see significant gains in performance at the expense of additional weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Our implementation of selective kernels is standard and follows rigorously Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2019b] for a total of 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 million weights instead of of 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 million for a regular ResNet-50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Specifically, we use 2 channels, two convolution kernels of (3, 3) and (5, 5) with the latter imple- mented as a (3, 3) dilated convolution with rate 2, and 32 grouped convolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Unlike SimCLRv2 [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020b], we implement our group convolutions explicitly, and do not use the additional ResNet-D architectural modification from He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' When using selective kernels our per- formance after finetuning with 1% of labels is the same as that of SimCLRv2 after finetuning with 10% of labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 16 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Additionally, in order to investigate the robustness and scalability of these results, we further test the generality of SEMPPL by learning representations on larger (both deeper and wider) ResNet en- coders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 1 testifies to SEMPPL outperforming the competing representation learning methods across all the architectures, both in the 1% and the 10% labelled settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Also, as our flagship result we reach 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4% top-1 accuracy on ResNet-200 2× with 10% of ImageNet-1k labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Just as in the ResNet-50 1× case this figure is comparable with the fully supervised accuracy attained by historical methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1% top-1 is defined as in Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020] with standard RandAugment [Cubuk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020] data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' However it’s certainly a few percentage accuracy points away from results obtained with optimal current training protocols [Bello et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We also note that SEMPPL is pre-trained for 300 epochs in all cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This, rather than the 1000 epochs used as standard by most other representation learning methods, again compares with a typical figure of 200 epochs used in supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Overall this hints at SEMPPL having achieved close to an order of magnitude gain in label efficiency (compared to supervised learning) at a similar epochs budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Our final networks were optimized using tranches of between 128 (for a ResNet-50) and 512 (for the largest ResNets) Cloud TPUv3s all during 300 epochs each irrespective of size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This required around a day of computation time per run and tranche for a ResNet-50 on 128 devices, time which scaled approximately linearly with the number of parameters on larger networks, depending on the actual network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 ROBUSTNESS AND OOD GENERALIZATION We test the robustness and out-of-distribution (OOD) generalization abilities of representations learned via SEMPPL on several detasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We use ImageNetV2 [Recht et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019] and ImageNet- C [Hendrycks & Dietterich, 2019] datasets to evaluate robustness and the datasets ObjectNet [Barbu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019] and ImageNet-R [Hendrycks et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] to evaluate the OOD generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The ImageNetV2 dataset [Recht et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019] has three sets of 10000 images (matched frequency (MF), Threshold 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 (T-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7) and Top Images (TI)) that were collected to have a similar distribution to the ImageNet test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The ImageNet-C dataset [Hendrycks & Dietterich, 2019] consists of 15 synthetically generated corruptions of 5 different severities (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' blur, noise) that are applied to the ImageNet validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The ImageNet-R dataset [Hendrycks et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] consists of 30000 different renditions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' paintings, cartoons) of 200 ImageNet classes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' the aim of this dataset is to test the generalization ability to different textures and other naturally occurring style changes that are out-of-distribution to the ImageNet training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The ObjectNet dataset [Barbu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019] has 18574 images from differing viewpoints and backgrounds compared to the ImageNet training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' On all datasets we evaluate the representations learned on a standard ResNet50 encoder under a linear evaluation protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We freeze the pretrained representations (no gradient updates) and train a linear classifier on top of the output of the ResNet-50 encoder using the full labelled ImageNet training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We perform the test evaluation zero-shot, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='e the above datasets are not seen during the training of the representation or classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We provide a detailed breakdown across the different ImageNet-C corruptions in Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Our proposed approach SEMPPL outperforms both the supervised baseline, on 12 out of 15 corruptions, as well as the competing semi-supervised representation learning model PAWS, on 12 out of 15 corruptions (notably, over all Blur, Weather and Digital corruptions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 7: Top-1 accuracies (in %) for OOD generalisation on Gauss, Shot, Impulse, Blur, Weather, and Digital corruption types of ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Blur Weather Digital Method Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Supervised [Lim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019] 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 Semi-supervised representations: PAWS [Assran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021] 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 SEMPPL(ours) 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 TRANSFER To further evaluate the usefulness of the learned representations, we evaluate how well they transfer across datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For this, we follow the standard evaluation protocol outlined in Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 17 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We evaluate SEMPPL across the linear evaluation protocol which consists of freezing the encoder and only training a randomly initialized linear classifier on top of the encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In line with prior work [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dwibedi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021], we test SEMPPL representations on the following datasets: Food101 [Bossard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2014], CIFAR10 [Krizhevsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2009], CIFAR100 [Krizhevsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2009], Birdsnap [Berg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2014], SUN397 (split 1) [Xiao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2010], DTD (split 1) [Cimpoi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2014], Cars [Krause et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2013] Aircraft [Maji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2013], Pets [Parkhi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2012], Caltech101 [Fei-Fei et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2004], and Flowers [Nilsback & Zisserman, 2008], where we compare the downstream performance of SEMPPL to that of other reported semi-supervised methods on 10% of labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Across these datasets there are differences in terms of metrics used for selecting the best hyper-parameters as well the reporting of the final results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In line with prior work [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dwibedi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2021], for Food101 [Bossard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2014], CIFAR10 [Krizhevsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2009], CIFAR100 [Krizhevsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2009], Birdsnap [Berg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2014], SUN397 (split 1) [Xiao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2010], DTD (split 1) [Cimpoi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2014], and Cars [Krause et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2013] we report the Top-1 accuracy on the test set, and for Aircraft [Maji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2013], Pets [Parkhi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2012], Caltech101 [Fei-Fei et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2004], and Flow- ers [Nilsback & Zisserman, 2008] we report the mean per-class accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For DTD and SUN397 we only use the first split of the 10 provided splits in the dataset as per Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020a];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Dwibedi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In these experiments, models are initially trained on the training sets of the individual datasets, and the validation sets are used to select the best hyperparameters from the executed hyperparameter sweeps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Once the best hyperparameters have been selected, the final models are trained on a merged dataset containing both the training and the validation split and evaluated on the held-out test split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The final results of the transfer experiments are reported in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The performed hyperparameter sweeps involved sweeping over the learning rates {.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='001, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='01, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='25, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='35, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' }, batch sizes {128, 256, 512, 1024, 2048}, weight decay {1e−6, 1e−5, 1e−4, 1e−3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='01, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1}, warmup epochs {0, 10}, momentum {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='99}, Nesterov {True, False}, and the number of training epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' For the linear transfer protocol we considered setting epochs among {20, 30, 60, 80, 100}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Models were trained by stochastic gradient descent with momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 18 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' B INVARIANCE REGULARIZATION We define the short-hands p(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za2,+ m,t ) = ϕ(ˆza1 m , ˜za2,+ m,t ) ϕ(ˆza1 m , ˜za2,+ m,t ) + � xn∈N (xm) ϕ(ˆza1 m , ˜za2 n,t) (5) and p(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za2 m,t) = ϕ(ˆza1 m , ˜za2 m,t) ϕ(ˆza1 m , ˜za2 m,t) + � xn∈N (xm) ϕ(ˆza1 m , ˜za2 n,t) (6) where N(xk) is the set of negatives, randomly uniformly sampled from the current batch, ˜za2 n,t = gt(ft(xn)) is the target network projection of the negative sample;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ϕ(x1, x2) = τ · exp(⟨x1, x2⟩/τ) is the scoring function, τ > 0 is a scalar temperature, and ⟨·, ·⟩ denotes the standard Euclidean dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We can now rewrite the components of the overall loss LSEMPPL = LAUGM + αLSEMPOS (7) as LSEMPOS = − B � m=1 log p(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za2,+ m,t ) (8) and LAUGM = − B � m=1 log p(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za2 m,t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' (9) As discussed in the main text we add the invariance penalty introduced in Mitrovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2021] to further increase the similarity between the anchor and positives and regularize the learning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We add this invariance penalty both for augmentation positives and semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In particular, we compute Iaugm =DKL(p(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za2 m,t) ∥ p(ˆza2 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za1 m,t)) =sg[Ep(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='˜za2 m,t) log p(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za2 m,t)] − Ep(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='˜za2 m,t) log p(ˆza2 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za1 m,t) and Isempos =DKL(p(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za2,+ m,t ) ∥ p(ˆza2,+ m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za1 m,t)) =sg[Ep(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='˜za2,+ m,t ) log p(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za2,+ m,t )] − Ep(ˆza1 m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='˜za2,+ m,t ) log p(ˆza2,+ m ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' ˜za1 m,t) where sg denotes the stop-gradient operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Taking all this together, this gives the final form of the loss as LSEMPPL = c(LAUGM + αLSEMPOS) + λ(Iaugm + Isempos) (10) with λ the invariance scale and c is the contrastive scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We use λ = 5 and c = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 in all our experiments irrespective of encoder size or training time as our method is robust to the choice of these hyperparameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 19 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' C PSEUDO-CODE OF SEMPPL Listing 1 provides PyTorch-like pseudo-code for SEMPPL detailing how we compute pseudo-labels and use them to select the additional semantic positives, which are then used in the contrastive loss, along the augmentation positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 1 ’ ’ ’ 2 k : The number of neighbors in kNN when computing p s e u d o l a b e l s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 3 f o : o n l i n e network : Encoder + comparison net .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 4 g t : t a r g e t network : Encoder + comparison net .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 5 gamma : Target EMA c o e f f i c i e n t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 6 n e : Number of n e g a t i v e s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 7 p m : Mask apply p r o b a b i l i t y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 8 ’ ’ ’ 9 f o r i in range ( num large views ) : 10 queue i = queue .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' i n i t ( queue size , FIFO ) 11 12 f o r x , y in batch : # Load batch of B samples each with data x and ( maybe ) l a b e l y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 13 x m = mask background ( x ) 14 f o r i in range ( num large views ) : 15 # S t o c h a s t i c a l l y apply background removal .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 16 x = B e r n o u l l i ( p m ) ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' x m : x 17 # Create an augmented l a r g e view .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 18 x l i = augment ( c r o p l a r g e ( x ) ) 19 o l i = f o ( x l i ) 20 t l i = g t ( x l i ) 21 # Enqueue the l a b e l e d images in the batch .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 22 i f y i s not None : 23 queue i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' enqueue ( ( t l i , y i ) ) 24 25 f o r i in range ( num small views ) : 26 x s i = augment ( c r o p s m a l l ( x ) ) 27 # Small views only go through the o n l i n e network 28 o s i = f o ( x s i ) 29 30 # Pseudo − l a b e l computation f o r u n l a b e l l e d examples .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 31 i f y i s None : # Missing l a b e l .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 32 votes = [ knn ( k , queue i , o l j ) f o r i , j in a l l p a i r s ( num large views ) ] 33 y = mode ( votes ) 34 35 l o s s = 0 36 # Compute the l o s s between a l l the p a i r s of l a r g e views .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 37 f o r i in range ( num large views ) : 38 f o r j in range ( num large views ) : 39 l o s s += c o n t r a s t i v e l o s s ( o l i , t l j , n e ) # Augmentation p o s i t i v e s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 40 f o r in range ( n u m s e m a n t i c p o s i t i v e s ) : 41 # Sample semantic p o s i t i v e s from the queue , and add to the l o s s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 42 z = sample ( queue j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' f i l t e r ( y ) ) 43 l o s s += c o n t r a s t i v e l o s s ( o l i , z , n e ) 44 45 # Compute the l o s s between the small and l a r g e views .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 46 f o r i in range ( num small views ) : 47 f o r j in range ( num large views ) : 48 l o s s += c o n t r a s t i v e l o s s ( os i , t l j , n e ) # Augmentation p o s i t i v e s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 49 f o r in range ( n u m s e m a n t i c p o s i t i v e s ) : 50 # Sample semantic p o s i t i v e s from the queue , and add to the l o s s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 51 z = sample ( queue j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' f i l t e r ( y ) ) 52 l o s s += c o n t r a s t i v e l o s s ( o l i , z , n e ) 53 54 l o s s /= ( ( num large views + num small views ) 55 num large views * (1 + n u m s e m a n t i c p o s i t i v e s ) ) 56 57 # Compute the g r a d i e n t s , and update the o n l i n e and t a r g e t network .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 58 l o s s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' backward ( ) 59 update ( f o ) 60 g t = gamma * g t + (1 − gamma) * f o Listing 1 Pseudo-code for SEMPPL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 20 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' D ANALYSIS D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 IMPLEMENTATION DETAILS We perform all the ablation experiments using 10% of labelled data and train a standard ResNet- 50 encoder with SEMPPL for 100 epochs (except in the training duration ablation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We report the top-1 accuracies on the ImageNet test set after fine-tuning from the first layer of the projector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' As in Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020] and for the main results in this paper, we use multi-layer perceptrons for the projector and predictor with 2 linear layers—the first one followed by batch normalization [Ioffe & Szegedy, 2015] and rectified linear activation with output sizes 4096 and 256 for the two layers respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We use the same augmentations as for the experiments in the main paper—the stan- dard SIMCLR augmentations [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020a] and the RELICV2 multi-crop and saliency-based masking [Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Following the hyperparameter settings of the main results, we use batch size: B = 4096 queue capacity C = 20B (unless specifically ablated) number of nearest neighbours k = 1 (unless specifically ablated) view voting is used (unless specifically ablated) weight decay: 1e − 6 (exclude biases and batch normalization parameters) optimizer: LARS (exclude biases and batch normalization parameters from adaptation) base learning rate: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 (scaled linearly with batch size [Goyal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2017]) warm-up: 10 epochs cosine decay schedule for learning rate exponential moving average parameter: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='996 views: 4 large views of size 224 × 224 and 2 small views of size 96 × 96 temperature: τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 number of semantic positives: 3 (unless specifically ablated) 10 randomly subsampled negatives per anchor α = 1/5 (unless specifically ablated), λ = 5 and c = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 21 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 ADDITIONAL ANALYSES Number of semantic positives We study the effect of varying the number of semantic positives in SEMPPL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 8a shows that increasing this number from 1 to 3 only has an effect on the amount of correctly predicted pseudo-labels, but no effect on downstream performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' On the other hand, using 5 or 10 semantic positives significantly improves performance and also yields much more accurate pseudo-labels prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Training duration Next, we vary the length of training representations and examine downstream performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' As can be seen from Table 8b, both the proportion of correctly predicted pseudo- labels and downstream performance improve with longer training up to 300 epochs but decrease if we continue training up to 500 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This indicates with training longer than 300 epochs SEMPPL is starting to overfit, an observation consistent with phenomena reported elsewhere in the literature involving noisy labels [Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Kim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Han et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Zhang & Sabuncu, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', 2019b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 8: Top-1 accuracy (in %) on the ImageNet-1k test set, and accuracy (in %) of correctly pre- dicted pseudo-labels at the end of training for semantic positives and training length experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' positives Top-1 Pseudo-label acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 1 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 69 5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 10 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 (a) Varying the number of semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Training time (epochs) Top-1 Pseudo-label acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 100 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 200 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 300 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 500 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 (b) Varying the length of training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' View voting SEMPPL generates multiple views from a single instance image in order to learn rep- resentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Those different views can be leveraged towards better pseudo-labels prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Rather than only picking one randomly selected data view to compute a single pseudo-label, we perform majority voting over (noisy) pseudo-labels computed from all available image views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Specifically, we compare the online predictor embedding of one view with the queue of the target projector em- beddings of the same data view from previous batches in the first setting;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' in the second setting we compare the online predictor embedding of each view with the queue of the target projector embed- dings of each other data view from previous batches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Since SEMPPL relies on 4 large views, this yields up to 16 different pairs of views to compare and compute pseudo-labels from, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' we get 16 pseudo-label predictions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' this setting we call view voting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 9 shows that using all available views to compute pseudo-labels significantly increases pseudo-labels accuracy which in turn significantly improves downstream performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 9: Top-1 accuracy (in %) on the ImageNet-1k test set, and accuracy (in %) of correctly pre- dicted pseudo-labels at the end of training for view voting experiments (using all views to compute pseudo-labels vs using just a single view).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' View voting Top-1 Pseudo-label acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' On 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 Off 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 Number of nearest neighbours In order to compute pseudo-labels we use k-nearest neighbour lookup on the queue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' While in the main results Section 3 we consistently assume k = 1 here we ablate the effect of varying k on downstream performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' As can be seen Table 10a, increasing k actually leads to a small decrease in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' This is attributable to the decrease in the proportion of correctly predicted pseudo-labels as k increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 22 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Queue length How long should the queue of target projector embeddings for computing pseudo- labels be?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' As the queue grows in size, it contains increasingly stale embeddings and threatens to hamper the accuracy of predicted pseudo-labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' On the other hand, increasing queue size increases the amount and diversity of labelled embeddings available which we would expect to be beneficial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Those two opposing forces—staleness and increasing coverage—govern the accuracy with which we can correctly predict pseudo-labels in turn directly affecting the selection of semantic positives and their quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We resolve this ambiguity empirically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' As seen in Table 10b, increasing the coverage and diversity of labelled embeddings has a strong positive effect on representation learning and downstream performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Staleness of embeddings is far less of a problem at practical (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=', not very large) queue sizes, showing diversity and coverage to be the dominant factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 10: Top-1 accuracy (in %) on the ImageNet-1k test set, and accuracy (in %) of correctly predicted pseudo-labels at the end of training for k-NN and queue length experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' k-nn Top-1 Pseudo-label acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 10 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 (a) Varying the number of nearest neighbours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Queue size (C) Top-1 Pseudo-label acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 4000 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 8000 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 12000 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 20000 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='3 40000 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 80000 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 200000 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 (b) Varying queue size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The effect of the loss weight α We use α in Equation 4 to weight the contribution of the loss coming from semantic positives against the loss coming from augmentation positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In SEMPPL we use multiple semantic positives for learning and thus we need to adjust α to appropriately weigh the contribution of the individual semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In our main experiments, we use 3 semantic positives and for this reason α is not equal to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In Table 11 we vary α from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0, with α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 effectively recovering RELICV2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The results indicate that the SEMPPL loss notably improves over RELICV2, but that the exact choice of α should be treated as a hyperparameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Note that the value 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 is very close to the 1 3 which is exactly 1/number of semantic positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Thus, the optimal choice of α is very close to that fraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Table 11: Top-1 accuracy (in %) on the ImageNet-1k test set for varied values of the loss weight α Loss weight (α) Top-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 (RELICV2) 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='6 23 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' E AUGMENTATIONS In this work, we follow the established data augmentations protocols and pipelines of Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020a];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Caron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mitrovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2021];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Specifi- cally, SEMPPL uses a set of augmentations to generate different views of the original image which has three channels, red r, green g and blue b with r, g, b ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' The augmentations we use are generated by applying the following sequence of operations in the following order 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Crop the image: Randomly select a patch of the image, between a minimum and maximum crop area of the image, with aspect ratio sampled log-uniformly in [3/4, 4/3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Upscale the patch, via bicubic interpolation, to a square image of size s × s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Flip the image horizontally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Colour jitter: randomly adjust brightness, contrast, saturation and hue of the image, in a random order, uniformly by a value in [−a, a] where a is the maximum adjustment (speci- fied below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Grayscale the image, such that the channels are combined into one channel with value 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2989r + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5870g + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1140b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Randomly blur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Apply a 23 × 23 Gaussian kernel with standard deviation sampled uni- formly in [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Randomly solarize: threshold each channel value such that all values less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 are replaced by 0 and all values above or equal to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='5 are replaced with 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Apart from the initial step of image cropping, each subsequent step is applied with a certain proba- bility to generate the augmented view of the original image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' These probabilities and other augmen- tation parameters are given in Table 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' SEMPPL uses 4 large views of size 224 × 224 pixels and 2 small views of 96 × 96 pixels;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' to get the first and third large views and the first small view we use the parameters listed below for odd views, while for the second and fourth large view and the second small view we use the parameters for even views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Note that these are the same augmentations used also in Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020a];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Grill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Caron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Mitrovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2021];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2020b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In addition to these augmentations, we also randomly apply the saliency masking augmentation proposed in Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2022] which enables us to remove a large part of the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We follow the protocol described in Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2022] for computing the saliency masking for an image and we apply this augmentation with probability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 to the 4 large views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' In keeping with Tomasev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' [2022], we fill out the removed background of the image with homogeneous grayscale noise with the grayscale level randomly sampled for each view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' We only apply the saliency masking when the remaining foreground covers at least 20% of the total image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 24 Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Parameter Even views Odd views Probability of randomly cropping 50% 50% Probability of horizontal flip 50% 50% Probability of colour jittering 80% 80% Probability of grayscaling 20% 20% Probability of blurring 100% 10% Probability of solarization 0% 20% Maximum adjustment a of brightness 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 Maximum adjustment a of contrast 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='4 Maximum adjustment a of saturation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='2 Maximum adjustment a of hue 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content='1 Crop size s 224 96 (small), 224 (large) Crop minimum area 8% 5% (small), 14% (large) Crop maximum area 100% 14% (small), 100% (large) Table 12: Parameters of data augmentation scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' Small/large indicates small or large crop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} +page_content=' 25' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdE4T4oBgHgl3EQflQ1W/content/2301.05158v1.pdf'} diff --git a/S9E0T4oBgHgl3EQf2AKe/content/tmp_files/2301.02707v1.pdf.txt b/S9E0T4oBgHgl3EQf2AKe/content/tmp_files/2301.02707v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..a13af665e0b4b81ec1f4a4794490382c9a9ba3b0 --- /dev/null +++ b/S9E0T4oBgHgl3EQf2AKe/content/tmp_files/2301.02707v1.pdf.txt @@ -0,0 +1,1848 @@ +Manipulation of nonequilibrium spin dynamics of an ultracold gas in a moving optical +lattice +Z. N. Hardesty-Shaw,1 Q. Guan,2, 3, 4 J. O. Austin,1 D. Blume,2, 3 R. J. Lewis-Swan,2, 3, ∗ and Y. Liu1, † +1Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA +2Homer L. Dodge Department of Physics and Astronomy, +The University of Oklahoma, Norman, Oklahoma 73019, USA +3Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA +4Department of Physics and Astronomy, Washington State University, Pullman, WA 99164, USA +(Dated: January 10, 2023) +The isolation and control of disparate degrees of freedom underpin quantum simulators. +We +advance the programmability of cold atom quantum simulators with a first realization of the dynamic +interplay of spatial and spin degrees of freedom. We experimentally demonstrate that violent spatial +evolutions tune long-lived coherent spin dynamics and develop a model of quantum spin-mixing +incorporating the spatial evolution via time-dependent spin-spin interactions. Our results open new +paths towards the simulation of quantum spin models with tunable interactions via tailored spatial +dynamics. +Introduction – Ultracold quantum gases that feature spa- +tial and spin degrees of freedom offer a powerful plat- +form for simulating quantum magnetism in controlled, +isolated settings [1–5]. When combined with optical lat- +tices, these simulation capabilities are exemplified by ex- +perimental studies featuring tunable dimensionality and +filling factors [6–9]. +Possessing long coherence times, +these systems also provide an ideal platform for study- +ing out-of-equilibrium phenomena such as spin-mixing +[10–13], transport [14, 15], dynamical phases of matter +[16], and critical dynamics across quantum phase tran- +sitions [7, 8, 17]. Simultaneously, advances in spin- and +spatially-resolved probes [7, 9, 18, 19] and the control of +time- and spin-dependent lattice potentials are opening +up new opportunities, including the study of multi-state +tunneling physics [20] and driven-dissipative phases [21], +in the presence of the spin degree of freedom. +Typically, the energy scales of the spin and spatial de- +grees of freedom are disparate. This has been exploited +to obtain a reduced description of the spin dynamics that +depends only on a spatial profile that remains frozen due +to, e.g., a strong confining potential [11, 16, 22–28]. In +the context of spinor Bose-Einstein condensates (BECs), +this decoupled regime has received significant attention +[29–31] and, amongst other applications, has been uti- +lized to generate entangled states in the highly control- +lable spin degree of freedom [32–37], which can also be +mapped to the motional degrees of freedom [38–40]. +In contrast, the interplay of spatial and spin degrees of +freedom remains largely unexplored, and, although typi- +cally weak, can provide a powerful avenue for controlling +the spin dynamics through tailored dynamical manipula- +tion of the spatial properties of the gas [41–45]. We inves- +tigate this interplay, providing a first example of how spa- +tial degrees of freedom can be utilized to manipulate the +spin dynamics. We experimentally observe that a one- +dimensional (1D) moving lattice, combined with a skew +optical dipole trap (ODT), induces violent transient spa- +tial motion which is nevertheless accompanied by long- +lived spin-mixing dynamics. We develop a theoretical un- +derstanding of these observations based on a dynamical +single spatial-mode approximation (dSMA), which leads +to an effective spin model with a time-dependent spin- +spin interaction coefficient that depends on the tempo- +ral evolution of the BEC density profile. Experimental +observations — including a robust critical regime featur- +ing divergent timescales for the spin dynamics, which is +tuned by the applied moving optical lattice and associ- +ated spatial motion — are qualitatively described by our +model. +Our results open the way for the exploitation of classi- +cal spatial dynamics for simulating many-body quantum +spin dynamics with highly tunable, time-dependent in- +teractions [46, 47], thereby enhancing the class of quan- +tum spin models accessible in spinor BECs. In addition, +our findings imply spatial dynamics can provide new con- +trol knobs for the nonequilibrium generation of entangled +spin states for, e.g., quantum-enhanced sensing [38]. +Experimental setup – Each experimental cycle begins +with a sodium spin-1 BEC at quadratic Zeeman energy +q in an ODT (see Supplemental Materials [48]). A key +feature of spinor BECs is their spin degree of freedom +characterized by the spin-dependent interaction coeffi- +cient c2. Spin-mixing and other nonequilibrium phenom- +ena driven by a static c2 have been studied in various +contexts [7, 8, 11, 23, 24, 28, 31]. Here, in contrast, we +demonstrate that c2 can be tuned dynamically by uti- +lizing a moving lattice to change the BEC’s spatial den- +sity profile. We construct a 1D moving lattice with two +nearly orthogonal optical beams whose frequency differ- +ence ∆f determines the moving lattice speed [48]. Our +initial BEC has a fractional population ρ0 = 0.5 of atoms +in the |S = 1, m = 0⟩ state and zero magnetization (equal +populations in the |S = 1, m = ±1⟩ states). The BEC +is then adiabatically loaded into the lattice, which is sta- +tionary at time t = 0 and quenched to the desired speed +arXiv:2301.02707v1 [cond-mat.quant-gas] 6 Jan 2023 + +2 +0.6 +0.4 +0.2 +ρ0 +(a) +(b) +(c) +40 +35 +30 +25 +20 +15 +10 +5 +Spin oscillation period T (ms) +q/h (Hz) +Δf = 4.6 ER/h + Markers: Experiment + Line: Theory +70 +60 +50 +40 +30 +20 +10 +(g) +c2(t) / c2(0) +(h) +0 +BEC +tF +t1 +0 +Time +(i) +tF (ms) +tF (ms) +tF (ms) +tF (ms) +30 +20 +10 +Δf = 0 +Δf = 4.6 ER/h +1.2 +0.8 +0.4 +0.0 +Δf +0 +uL +ρ0 +30 +20 +10 +30 +20 +10 +30 +20 +10 +0.6 +0.4 +0.2 +(d) +(e) +(f) +q < q* +q ≈ q* +q > q* +FIG. 1. (a)-(f) Exemplary time traces of ρ0 for spinor BECs. Panels (a)-(c) show experimental results for ρ0 (red markers) +at q/h = 15 Hz (a), 25 Hz (b), and 65 Hz (c) as well as sSMA predictions (dotted lines) with c2,fit/h = 23.7(1)Hz extracted +from Fig. 1(g). Panel (a) compares static (black) and moving (red) lattice results. Solid lines are sinusoidal fits to guide the +eye. Panels (d)-(f) compare predicted ρ0 for q/h = 15 Hz (d), 22 Hz (e), and 65 Hz (f) from 1D GP simulations (solid lines) to +sSMA (dotted lines) with c2 obtained through fits to the GP data [48], and dSMA (dashed lines) with c2(t) obtained from GP +data. The chosen q values exemplify the interaction dominated (q < q∗) and Zeeman (q > q∗) regimes separated by the critical +region q ≈ q∗. (g) Observed T (markers) versus q fit by analytical sSMA expressions (solid line) with the fitting parameter +c2,fit/h = 23.7(1)Hz [48]. (h) Red (black) lines are evolution of c2(t)/c2(0) for q/h = 15 Hz obtained from 1D GP simulations +of the moving (static) lattice. All moving lattice data use a lattice depth uL = 2.3ER, t1 = 1.43ms, and fixed ∆f = 4.6ER/h. +(i) Timeline of the lattice depth (lower panel) and moving lattice speed (upper panel). +for t > 0 (see Fig. 1(i)). We study the ensuing non-trivial +spin (Fig. 1) and spatial (Fig. 2) dynamics of the atoms +by holding them in the moving lattice for a time tF before +releasing them for ballistic expansion and imaging [9, 48]. +Spin dynamics – We first study the nonequilibrium spin +dynamics generated by experimental sequences (Fig. 1(i) +∆f = 4.6ER/h) which near-resonantly couple the initial +stationary BEC with the p = 2ℏkL momentum state. +Here, ER is the recoil energy, h (ℏ) is the (reduced) +Planck constant, and kL is the lattice vector [6, 48]. +Spin-mixing oscillations, arising from coherent intercon- +versions among two m = 0 atoms and a pair of atoms +in the m = ±1 Zeeman states [3], constitute a useful +tool in understanding the spin dynamics. The periods +T of these oscillations are determined by the competi- +tion between c2 and q, illustrated by typical examples of +the interaction dominated region (Fig. 1(a)) and Zeeman +dominated region (Fig. 1(c)). +We also see convincing +experimental signatures of a critical separatrix regime +near q = q∗ where T diverges (see Fig. 1(b)). +These +observations are qualitatively consistent with expecta- +tions based on established theory formulations referred +to as a static single spatial-mode approximation (sSMA) +in this paper, which assumes c2 is time-independent +[3, 7, 8, 11, 23, 24, 28, 31]. +Fig. 1(g) shows the ob- +served T can be used to estimate the effective static spin- +spin interaction c2,fit/h = 23.7(1) Hz as sSMA predicts +q∗ ≈ c2,fit for our initial state [6, 11]. However, direct +comparisons to the sSMA predicted time traces (dotted +lines in Figs. 1(a)-(c)) demonstrate that the model fails +to capture experimentally observed features such as the +damping of the oscillation amplitude and the drift of the +oscillations. Another notable observation that cannot be +explained by sSMA is the shift of the separatrix location +induced by the moving lattice, as shown by a compari- +son between static (∆f = 0) and moving lattice results +in Fig. 1(a).1 These experimental observations suggest +sSMA provides an incomplete description of our system. +Theoretical model – To explain the sSMA’s shortcomings, +we develop the following dSMA model which assumes c2 +varies with time and describes our system with the spin +Hamiltonian [6, 22, 39, 48], +ˆHeff(t) = c2(t) +2N +ˆS · ˆS + q(ˆn1 + ˆn−1). +(1) +Here, ˆS = �N +i=1 ˆsi where ˆsi denotes the spin-1 operator +for the ith of the total N atoms and ˆnm is the number +operator for the Zeeman state m. The time-dependent +c2(t) arises from the temporal evolution of the BEC’s +spatial density profile and, in turn, modulation of the +effective interaction strength of the spin model, driven +by the moving lattice. Formally, c2(t) emerges from the +time-dependence of the Gross-Pitaevskii (GP) orbitals +ψm(r, t) that describe the spatial dynamics of the mth +Zeeman component. +By assuming the spatial density +1 Fig. 1(a) indicates that for static lattices at an identical q in the +interaction dominated regime T is smaller and thus, using the +same sSMA interpretation, would lie on a curve shifted to higher +q (indicating a larger characteristic c2) relative to the moving +lattice data shown in Fig. 1(g). + +3 +-4 +-2 +0 +2 +-4 +-2 +0 +2 +-4 +-2 +0 +2 +-4 +-2 +0 +2 +tF = 1.22 ms +tF = 3.72 ms +L +R1 +R2 +px/ħkL +pz/ħkL +pz/ħkL +(a) +-4 +-2 +0 +2 +-4 +-2 +0 +2 +tF = 2.22 ms +L +R1 +pz/ħkL +(b) +(c) +Experimental +Theoretical +-4 +-2 +0 +2 +-4 +-2 +0 +2 +tF = 1.22 ms +-4 +-2 +0 +2 +-4 +-2 +0 +2 +tF = 2.22 ms +L +R1 +-4 +-2 +0 +2 +-4 +-2 +0 +2 +px/ħkL +tF = 3.72 ms +L +R1 +R2 +(d) +(e) +(f) +0.6 +0.4 +0.2 +0.0 +0.6 +0.4 +0.2 +0.0 +0.8 +0.4 +0.0 +Optical density +Optical density +Optical density +FIG. 2. Time-of-flight snapshots of 2D integrated momentum +distribution with ∆f = 4.6ER/h, uL = 1.2ER, t1 = 0.72 ms, +and tF = 1.22 ms (a), 2.22 ms (b), and 3.72 ms (c) in a shal- +low ODT with LODT,z = 20 µm [48] at q/h = 42Hz. (d)-(f) +Analogous theoretical results of in-situ momentum distribu- +tions based on 2D GP simulations [48]. The colorbar scale +indicates the optical density of the images for each row. +profiles |ψm(r, t)|2 for the different m states are the same +but time-dependent (as we find in theory calculations dis- +cussed in more detail later) it is implicit that while the +spatial degree of freedom may contribute to the spin dy- +namics the converse is not true, i.e., the spin degree of +freedom does not feed back onto the evolution of the spa- +tial profile. Setting |ψm(r, t)|2 ∝ |φ(r, t)|2 and integrat- +ing out the spatial degrees of freedom leads to Eq. (1) +with c2(t) ∝ (N − 1) +� +d3r |φ(r, t)|4 [48]. A key result +of the presented experiment-theory work is that dSMA +enables a transparent understanding of the non-trivial +spin dynamics triggered by violent spatial evolution of +the BEC that occurs on faster characteristic time scales +than the spin dynamics. +Interplay of spin and spatial dynamics – To illustrate +the typical spatial dynamics driving the spin-mixing ob- +served in Fig. 1, we show experimental BEC momentum +distributions in Figs. 2(a)-(c), which capture the emer- +gence of violent spatial motion due to the interplay of +momentum kicks generated by the moving lattice and +the shallow ODT harmonic confinement on a timescale +significantly shorter than the observed spin dynamics. +The rapid appearance of many of discrete momentum +peaks and associated spatial dynamics shown in Fig. 2 +simultaneously suggests that the deviations from sSMA +predictions in Figs. 1(a)-(c) are to be expected but also +entices us to reconcile elements of the good qualitative +agreement between the experimental data and sSMA cal- +culations in Fig. 1(g). We note that the creation of the +discrete momentum peaks is a coherent process and does +not conflict with the assumption of the single spatial- +mode approximation. In fact, the Supplemental Materi- +als [48] show that Figs. 1(a)-(c) are replicated if different +momentum components are used to construct ρ0, thereby +providing experimental support for dSMA. +To gain further insight, we use numerical GP calcu- +lations [48], which provides a mean-field description of +the full spinor BEC dynamics including both spatial and +spin degrees of freedom. The complexity of the experi- +mental system, in particular the disparate timescales of +spin and spatial dynamics, precludes a full quantitative +3D GP treatment. Instead, we use a reduced dimension- +ality 1D spinor GP calculation with parameters tuned to +capture essential aspects of the experimental 3D system. +This simplified treatment enables us to develop a qual- +itative understanding of the experimental results [48]. +The GP simulations (solid lines in Figs. 1(d)-(f)) quali- +tatively replicate the coherent spin dynamics, including +a diverging oscillation period for q ≈ q∗ (Fig. 1(e)) and +robust harmonic oscillations for q < q∗ (Fig. 1(d)) and +q > q∗ (Fig. 1(f)) with damped amplitude and drift- +ing mean value, respectively. +We note that the up- +ward drifting mean value in the experimental data for +q > q∗ (Fig. 1(c)), notably not captured by the 1D GP +theory, may be induced by a subtle resonance mecha- +nism between the spin and spatial dynamics [31] that +depends sensitively on the dimensionality of the system. +Higher dimensionality calculations will be presented else- +where [49]. +We use GP calculations to make a more fine-grained +theoretical investigation of the relationship between the +spatial and spin dynamics and, in particular, certify that +while the BEC undergoes violent motion on fast time- +scales: i) all Zeeman components are described by a com- +mon spatial density profile |φ(r, t)|2, and ii) the sophis- +ticated interplay of the moving lattice and ODT drive +complex dynamics of c2(t). These observations lead us +to self-consistently compare the 1D GP results to dSMA +predictions, i.e., mean-field dynamics based on Eq. (1) +with c2(t) computed via the GP density |φ(r, t)|2 [48]. +The GP and dSMA time traces in Figs. 1(d)-(f) show +excellent agreement with each other. +This implicitly +demonstrates the spin dynamics do not feed back into the +spatial evolution, in agreement with expectations based +on the disparity of energy scales. The dSMA results also +show significantly improved qualitative agreements with +experimental data than sSMA results, providing further +support for our dSMA model. +GP calculations of the spatial dynamics in the pres- +ence of a moving lattice lead to appreciable variation of + +4 +c2(t) (red line in Fig. 1(h)) at t ≲ 3 ms. Over longer +timescales c2(t) features an overall decrease, which we un- +derstand as being driven by the relaxation of the spatial +density profile as the BEC fractures into many momen- +tum components. This behavior is in stark contrast with +predictions for a static lattice (black line in Fig. 1(h)) +that indicate c2(t) instead fluctuates around a well de- +fined time-averaged value with small oscillations due to +excitations created during the loading phase. After the +initial transient behavior in the moving lattice, our re- +sults (Fig. 1(h)) indicate that the decay of c2(t) is slow +relative to the characteristic time of the spin dynamics, +and therefore observables such as the spin oscillation pe- +riod are captured by sSMA [48]. Our calculations show +that the precise details of the spin dynamics (e.g., quali- +tative features including damping of the spin oscillations +in Fig. 1(a)) can depend greatly on the temporal vari- +ation of c2(t) and hence a more rigorous description is +provided by the GP and dSMA models. +Single-particle resonances – The precise evolution of +the spatial density profile, seen in Figs. 2(a)-(c) as a +menagerie of seemingly irregularly distributed wavepack- +ets in momentum space, can be understood with the aid +of GP simulations (Figs. 2(d)-(f)). +To more precisely +capture the impact of gravity and the finite trap depth, +the simulations in Fig. 2 are performed using an axially +symmetric 2D setup. This numerical treatment is feasi- +ble due to the relatively short time scales over which the +spatial dynamics are studied in detail. Using 2D simula- +tions also enables us to capture key details of the momen- +tum kicks that 1D simulations, such as those employed +in Fig. 1, miss. At short times, the lattice kicks atoms +from the initial BEC with momentum p = 0 to the near- +resonant state with momentum p = 2ℏkL (Figs. 2(a) +and 2(d)). Subsequently, an additional momentum com- +ponent, referred to as the lead peak (L-peak), splits from +the p = 2ℏkL peak and decelerates as it travels away +from the minima of the relatively shallow ODT poten- +tial. As the L-peak slows, its momentum evolves until +it sweeps through the approximate resonance region cen- +tered on the line pz ≈ 0.86px + 0.20ℏkL (see the gray +shaded region in Fig. 3(b) and Supplemental Materi- +als [48]), where the lattice couples two nearly resonant +momentum states, corresponding to the L-peak and a +new peak labelled R1, that are separated by another +2ℏkL momentum kick (Figs. 2(b) and 2(e)). Similarly, +the R1-peak also decelerates until it crosses the resonance +region and the lattice generates a new peak labelled R2 +(Figs. 2(c) and 2(f)). +This pattern continues and the +BEC fractures into a multitude of momentum states. +Figure 3(a) confirms our prior analysis, which suggests +a dependence on both the confining ODT potential and +moving lattice, by tracking the position of the L- and +R1-peaks in time and momentum space in a compressed +ODT. The position of the L-peak initially follows a tra- +jectory consistent with a Lissajous curve derived from a +-1 +0 +1 +2 +1 +0 +-1 +pz/ħkL +px/ħkL +(b) +Red: R1-Peak +Blue: L-Peak +-1 +0 +1 +pz/ħkL +px/ħkL +-1 +0 +1 +1 +2 +3 +4 +tF (ms) +5 +(a) +FIG. 3. (a) Time evolution trajectories of the mean position +of the L-peak (circles) and R1-peak (squares) in the pz-px +plane taken in a compressed ODT with LODT,z = 33 µm [48], +extracted from experimental images similar to those shown in +Figs. 2(a)-(c) at q/h = 42Hz. With increasing time, markers +appear larger due to movement in the px axis. +Blue (red) +solid lines are the L-peak (R1-peak) trajectories correspond- +ing to Lissajous curves (see text) [48]. +(b) Trajectories of +panel (a) projected into the pz-px plane. The gray shaded +region encompasses an approximate resonance region where +decelerated atoms are kicked by the lattice (to create, e.g., +the R1-peak) [48]. +simplified classical treatment of a single particle initially +moving with momentum 2ℏkL in the ODT (see Supple- +mental Materials [48]). A sudden momentum kick im- +parted by the lattice couples the L- and R1-peaks as the +former crosses the approximate resonance region, shown +by the gray region in Fig. 3(b) [48]. As time increases +(i.e., deeper into the trajectory of each peak), the agree- +ment between the experimentally observed and the the- +oretically predicted trajectories for the L- and R1-peaks +deteriorates, as shown near the end of the time axis in +Fig. 3(a). The deterioration is most clearly seen when +comparing an ideal (effectively LODT,i = ∞) harmonic +trap with our typical shallow ODT depth that features a +comparatively small curvature (see Supplemental Mate- +rials [48]). In Fig. 3, we use compressed ODTs instead of +shallow ODTs, trading reduced visibility and condensate + +2 +3 +55 +fraction, to better illustrate the bending of the trajectory +in the px − pz plane [48]. +Conclusion – Our results open a new direction for the +exploitation of spatial dynamics as a control knob for +quantum simulations of many-body quantum spin models +with tunable, time-dependent interactions [46, 47]. Tai- +lored modulation of the spatial profile could be used to +control the precise time dependence of the spin-spin inter- +actions and realize Floquet-driven spin dynamics [59, 60]. +This can have immediate applications for the dynam- +ical generation of entangled spin states for quantum- +enhanced sensing [36, 39, 61–63]. +The observed short +time dynamics also raise intriguing questions about equi- +libration of spinor BECs. +For example, future studies +might utilize the time dependence of c2(t) to force these +systems along different equilibration trajectories. +Acknowledgements – D. B. acknowledges support by the +National Science Foundation (NSF) through grant No. +PHY-2110158. R. J. L-S. acknowledges support by NSF +through Grant No. PHY-2110052 and the Dodge Family +College of Arts and Sciences at the University of Okla- +homa (OU). Z. N. H-S., J. O. A., and Y. L. acknowledge +support by the Noble Foundation and the NSF through +Grant Nos. PHY-1912575 and PHY-2207777. This work +used the OU Supercomputing Center for Education and +Research (OSCER). +∗ lewisswan@ou.edu +† yingmei.liu@okstate.edu +[1] Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, +M. Colloquium: Nonequilibrium dynamics of closed in- +teracting quantum systems. +Rev. Mod. Phys. 83, 863 +(2011). +[2] Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics +with ultracold gases. Rev. Mod. Phys. 80, 885 (2008). +[3] Stamper-Kurn, D. M. & Ueda, M. Spinor Bose gases: +Symmetries, magnetism, and quantum dynamics. Rev. +Mod. Phys. 85, 1191 (2013). +[4] Lewenstein, M. et al. Ultracold atomic gases in optical +lattices: mimicking condensed matter physics and be- +yond. Adv. Phys. 56, 243–379 (2007). +[5] Eckert, K., Zawitkowski, �L., Leskinen, M. J., Sanpera, +A. & Lewenstein, M. Ultracold atomic Bose and Fermi +spinor gases in optical lattices. +New J. Phys. 9, 133– +133 (2007). URL https://doi.org/10.1088/1367-2630/ +9/5/133. +[6] Zhao, L., Jiang, J., Tang, T., Webb, M. & Liu, Y. An- +tiferromagnetic spinor condensates in a two-dimensional +optical lattice. Phys. Rev. Lett. 114, 225302 (2015). +[7] Austin, J. O., Shaw, Z. N., Chen, Z., Mahmud, K. W. +& Liu, Y. Manipulating atom-number distributions and +detecting spatial distributions in lattice-confined spinor +gases. Phys. Rev. A 104, L041304 (2021). URL https: +//link.aps.org/doi/10.1103/PhysRevA.104.L041304. +[8] Austin, J. O., Chen, Z., Shaw, Z. N., Mahmud, K. W. & +Liu, Y. Quantum critical dynamics in a spinor Hubbard +model quantum simulator. Commun. Phys. 4, 61 (2021). +[9] Z. Chen, T. Tang, J. Austin, Z. Shaw, L. Zhao, Y. +Liu, Quantum quench and nonequilibrium dynamics in +lattice-confined spinor condensates. Phys. Rev. Lett. 123, +113002 (2019). +[10] Becker, C. et al. Ultracold quantum gases in triangular +optical lattices. New J. Phys. 12, 065025 (2010). URL +https://doi.org/10.1088/1367-2630/12/6/065025. +[11] Zhao, L., Jiang, J., Tang, T., Webb, M. & Liu, Y. Dy- +namics in spinor condensates tuned by a microwave dress- +ing field. Phys. Rev. A 89, 023608 (2014). +[12] Mahmud, K. W. & Tiesinga, E. +Dynamics of spin- +1 bosons in an optical lattice: Spin mixing, quantum- +phase-revival spectroscopy, and effective three-body in- +teractions. Phys. Rev. A 88, 023602 (2013). URL https: +//link.aps.org/doi/10.1103/PhysRevA.88.023602. +[13] L. Gabardos, B. Zhu, S. Lepoutre, A. M. Rey, B. +Laburthe-Tolra, and L. Vernac, +Relaxation of the +collective magnetization of a dense 3d array of in- +teracting dipolar s += +3 atoms. +Phys. Rev. Lett. +125, 143401 (2020). URL https://link.aps.org/doi/ +10.1103/PhysRevLett.125.143401. +[14] S. Hild, T. Fukuhara, P. Schauss,J. Zeiher, M. Knap, E. +Demler, I. Bloch, and C.Gross, Far-from-equilibrium spin +transport in Heisenberg quantum magnets. Phys. Rev. +Lett. 113, 147205 (2014). URL https://link.aps.org/ +doi/10.1103/PhysRevLett.113.147205. +[15] Jepsen, P. N. et al. +Spin transport in a tunable +Heisenberg model realized with ultracold atoms. Nature +588, 403–407 (2020). +URL https://doi.org/10.1038/ +s41586-020-3033-y. +[16] Smale, S. et al. +Observation of a transition between +dynamical +phases +in +a +quantum +degenerate +Fermi +gas. +Sci. Adv. 5, eaax1568 (2019). +URL https: +//www.science.org/doi/abs/10.1126/sciadv.aax1568. +https://www.science.org/doi/pdf/10.1126/sciadv.aax1568. +[17] J. Jiang, L. Zhao, S.-T. Wang, Z. Chen, T. Tang, L.- +M. Duan, and Y. Liu, +First-order superfluid-to-mott- +insulator phase transitions in spinor condensates. Phys. +Rev. A 93, 063607 (2016). URL https://link.aps.org/ +doi/10.1103/PhysRevA.93.063607. +[18] Boll, M. et al. +Spin- and density-resolved microscopy +of +antiferromagnetic +correlations +in +Fermi-Hubbard +chains. +Science 353, 1257–1260 (2016). +URL https: +//www.science.org/doi/abs/10.1126/science.aag1635. +https://www.science.org/doi/pdf/10.1126/science.aag1635. +[19] Asteria, L., Zahn, H. P., Kosch, M. N., Sengstock, K. +& Weitenberg, C. +Quantum gas magnifier for sub- +lattice-resolved imaging of 3d quantum systems. Nature +599, 571–575 (2021). +URL https://doi.org/10.1038/ +s41586-021-04011-2. +[20] Sinitsyn, N. A. & Chernyak, V. Y. +The quest for +solvable multistate Landau-Zener models. +J. Phys. A +Math. Theor. 50, 255203 (2017). URL https://doi.org/ +10.1088/1751-8121/aa6800. +[21] Dogra, N. et al. +Dissipation-induced structural in- +stability +and +chiral +dynamics +in +a +quantum +gas. +Science +366, +1496–1499 +(2019). +URL +https: +//www.science.org/doi/abs/10.1126/science.aaw4465. +https://www.science.org/doi/pdf/10.1126/science.aaw4465. +[22] Law, C. K., Pu, H. & Bigelow, N. P. +Quantum spins +mixing in spinor Bose-Einstein condensates. Phys. Rev. +Lett. 81, 5257–5261 (1998). URL https://link.aps.org/ +doi/10.1103/PhysRevLett.81.5257. +[23] Pu, H., Law, C. K., Raghavan, S., Eberly, J. H. + +6 +& Bigelow, N. P. +Spin-mixing dynamics of a spinor +Bose-Einstein condensate. +Phys. Rev. A 60, 1463– +1470 (1999). URL https://link.aps.org/doi/10.1103/ +PhysRevA.60.1463. +[24] Yi, S., M¨ustecaplıo˘glu, O. E., Sun, C. P. & You, L. +Single-mode approximation in a spinor-1 atomic conden- +sate. Phys. Rev. A 66, 011601(R) (2002). URL https: +//link.aps.org/doi/10.1103/PhysRevA.66.011601. +[25] Martin, +M. +J. +et +al. +A +quantum +many-body +spin +system +in +an +optical +lattice +clock. +Sci- +ence +341, +632–636 +(2013). +URL +https: +//www.science.org/doi/abs/10.1126/science.1236929. +https://www.science.org/doi/pdf/10.1126/science.1236929. +[26] Zhang, +X. +et +al. +Spectroscopic +observation +of +su(N )-symmetric +interactions +in +Sr +orbital +mag- +netism. +Science 345, 1467–1473 (2014). +URL https: +//www.science.org/doi/abs/10.1126/science.1254978. +https://www.science.org/doi/pdf/10.1126/science.1254978. +[27] Krauser, J. S. et al. Giant spin oscillations in an ultracold +Fermi sea. Science 343, 157–160 (2014). +[28] Y. Liu, S. Jung, S. E. Maxwell, L. D. Turner, E. Tiesinga, +and P. D. Lett, Quantum phase transitions and contin- +uous observation of spinor dynamics in an antiferromag- +netic condensate. Phys. Rev. Lett. 102, 125301 (2009). +[29] Kronj¨ager, J., Becker, C., Navez, P., Bongs, K. & Sen- +gstock, K. +Magnetically tuned spin dynamics reso- +nance. Phys. Rev. Lett. 97, 110404 (2006). URL https: +//link.aps.org/doi/10.1103/PhysRevLett.97.110404. +[30] H. K. Pechkis, J. P. Wrubel, A. Schwettmann, P. F. Grif- +fin, R. Barnett, E. Tiesinga, and P. D. Lett, +Spinor +dynamics in an antiferromagnetic spin-1 thermal Bose +gas. Phys. Rev. Lett. 111, 025301 (2013). URL https: +//link.aps.org/doi/10.1103/PhysRevLett.111.025301. +[31] Jie, J., Guan, Q., Zhong, S., Schwettmann, A. & +Blume, D. +Mean-field spin-oscillation dynamics be- +yond the single-mode approximation for a harmonically +trapped spin-1 Bose-Einstein condensate. Phys. Rev. A +102, 023324 (2020). URL https://link.aps.org/doi/ +10.1103/PhysRevA.102.023324. +[32] Gross, +C. et al. +Atomic homodyne detection +of +continuous-variable entangled twin-atom states. Nature +480, 219–223 (2011). +[33] L¨ucke, +B. +et +al. +Twin +matter +waves +for +in- +terferometry +beyond +the +classical +limit. +Sci- +ence +334, +773–776 +(2011). +URL +https: +//www.science.org/doi/abs/10.1126/science.1208798. +https://www.science.org/doi/pdf/10.1126/science.1208798. +[34] Hamley, C. D., Gerving, C., Hoang, T., Bookjans, E. +& Chapman, M. S. Spin-nematic squeezed vacuum in a +quantum gas. Nat. Phys. 8, 305–308 (2012). +[35] Peise, J. et al. Satisfying the Einstein–Podolsky–Rosen +criterion with massive particles. Nat. Commun. 6, 1–8 +(2015). +[36] Zou, Y.-Q. et al. Beating the classical precision limit with +spin-1 Dicke states of more than 10,000 atoms. +Proc. +Natl. Acad. Sci. U.S.A. 115, 6381–6385 (2018). +[37] Qu, +A., +Evrard, +B., +Dalibard, +J. +& +Gerbier, +F. +Probing spin correlations in a Bose-Einstein conden- +sate near the single-atom level. +Phys. Rev. Lett. +125, 033401 (2020). URL https://link.aps.org/doi/ +10.1103/PhysRevLett.125.033401. +[38] F. Anders, +A. Idel, +P. Feldmann, +D. Bondarenko, +S. +Loriani, +K. +Lange, +et +al. +Momentum +entan- +glement for atom interferometry. +Phys. Rev. Lett. +127, 140402 (2021). URL https://link.aps.org/doi/ +10.1103/PhysRevLett.127.140402. +[39] Guan, Q., Biedermann, G. W., Schwettmann, A. & +Lewis-Swan, R. J. +Tailored generation of quantum +states in an entangled spinor interferometer to over- +come detection noise. +Phys. Rev. A 104, +042415 +(2021). +URL +https://link.aps.org/doi/10.1103/ +PhysRevA.104.042415. +[40] Kunkel, +P. et al. +Spatially distributed multipar- +tite +entanglement +enables +epr +steering +of +atomic +clouds. +Science 360, 413–416 (2018). +URL https: +//www.science.org/doi/abs/10.1126/science.aao2254. +https://www.science.org/doi/pdf/10.1126/science.aao2254. +[41] Lange, +K. +et +al. +Entanglement +between +two +spatially +separated +atomic +modes. +Sci- +ence +360, +416–418 +(2018). +URL +https: +//www.science.org/doi/abs/10.1126/science.aao2035. +https://www.science.org/doi/pdf/10.1126/science.aao2035. +[42] P. Kunkel, M. Prufer, S. Lannig, R. Rosa-Medina, +A. Bonnin, +M. Garttner, +H. Strobel, +and M. K. +Oberthaler, Simultaneous readout of noncommuting col- +lective spin observables beyond the standard quantum +limit. Phys. Rev. Lett. 123, 063603 (2019). URL https: +//link.aps.org/doi/10.1103/PhysRevLett.123.063603. +[43] P. Kunkel, M. Prufer, S. Lannig, R. Strohmaier, M. +Garttner, H. Strobel, and M. K. Oberthaler, +De- +tecting entanglement structure in continuous many- +body quantum systems. +Phys. Rev. Lett. 128, 020402 +(2022). +URL +https://link.aps.org/doi/10.1103/ +PhysRevLett.128.020402. +[44] Deuretzbacher, F., Becker, D., Bjerlin, J., Reimann, +S. M. & Santos, L. +Quantum magnetism without +lattices in strongly interacting one-dimensional spinor +gases. +Phys. Rev. A 90, 013611 (2014). +URL https: +//link.aps.org/doi/10.1103/PhysRevA.90.013611. +[45] A. G. Volosniev, D. Petrosyan, M. Valiente, D. V. +Fedorov, +A. S. Jensen, +and N. T. Zinner, +Engi- +neering the dynamics of effective spin-chain models +for strongly interacting atomic gases. +Phys. Rev. A +91, 023620 (2015). +URL https://link.aps.org/doi/ +10.1103/PhysRevA.91.023620. +[46] Davis, +E. +J., +Bentsen, +G., +Homeier, +L., +Li, +T. +& +Schleier-Smith, +M. +H. +Photon-mediated +spin- +exchange dynamics of spin-1 atoms. +Phys. Rev. Lett. +122, 010405 (2019). URL https://link.aps.org/doi/ +10.1103/PhysRevLett.122.010405. +[47] Periwal, A. et al. Programmable interactions and emer- +gent geometry in an array of atom clouds. Nature 600, +630–635 (2021). +[48] URL will be inserted by publisher. For further details +on the experimental setup, the theory formulation and +simulation, and supporting experimental and theoretical +results. +[49] Guan, Q. et al. Manuscript in preparation. +[50] Wu, B. & Niu, Q. Nonlinear Landau-Zener tunneling. +Phys. Rev. A 61, 023402 (2000). +[51] Q. Guan, M.K.H. Ome, T.M. Bersano, S. Mossman, P. +Engels, and D. Blume, Nonexponential tunneling due to +mean-field-induced swallowtails. +Phys. Rev. Lett. 125, +213401 (2020). +[52] Smerzi, +A., +Fantoni, +S., +Giovanazzi, +S. & Shenoy, +S. R. Quantum coherent atomic tunneling between two +trapped Bose-Einstein condensates. +Phys. Rev. Lett. +79, 4950–4953 (1997). URL https://link.aps.org/doi/ + +7 +10.1103/PhysRevLett.79.4950. +[53] Raghavan, S., Smerzi, A., Fantoni, S. & Shenoy, S. R. +Coherent oscillations between two weakly coupled Bose- +Einstein condensates: Josephson effects, π oscillations, +and macroscopic quantum self-trapping. Phys. Rev. A +59, 620–633 (1999). +URL https://link.aps.org/doi/ +10.1103/PhysRevA.59.620. +[54] Guan, +Q. & Lewis-Swan, +R. J. +Identifying and +harnessing dynamical phase transitions for quantum- +enhanced sensing. +Phys. Rev. Research 3, +033199 +(2021). +URL +https://link.aps.org/doi/10.1103/ +PhysRevResearch.3.033199. +[55] Evrard, B., Qu, A., Jim´enez-Garc´ıa, K., Dalibard, J. & +Gerbier, F. Relaxation and hysteresis near Shapiro res- +onances in a driven spinor condensate. +Phys. Rev. A +100, 023604 (2019). URL https://link.aps.org/doi/ +10.1103/PhysRevA.100.023604. +[56] T.M. Hoang, C.S. Gerving, B.J. Land, M. Anquez, C. +D. Hamley, and M. S. Chapman, Dynamic stabilization +of a quantum many-body spin system. Phys. Rev. Lett. +111, 090403 (2013). URL https://link.aps.org/doi/ +10.1103/PhysRevLett.111.090403. +[57] Hoang, T. M. et al. Parametric excitation and squeez- +ing in a many-body spinor condensate. +Nat. Com- +mun. 7, 11233 (2016). URL https://doi.org/10.1038/ +ncomms11233. +[58] Zhang, W., Sun, B., Chapman, M. S. & You, L. +Localization +of +spin +mixing +dynamics +in +a +spin-1 +Bose-Einstein condensate. +Phys. Rev. A 81, 033602 +(2010). +URL +https://link.aps.org/doi/10.1103/ +PhysRevA.81.033602. +[59] Fujimoto, K. & Uchino, S. Floquet spinor Bose gases. +Phys. Rev. Research 1, 033132 (2019). URL https:// +link.aps.org/doi/10.1103/PhysRevResearch.1.033132. +[60] Li, Zheng-Chun and Jiang, Qi-Hui and Lan, Zhihao +and Zhang, Weiping and Zhou, Lu, +Nonlinear Flo- +quet dynamics of spinor condensates in an optical cav- +ity: Cavity-amplified parametric resonance, Phys. Rev. +A 100, 033617 (2019). URL https://link.aps.org/doi/ +10.1103/PhysRevA.100.033617 +[61] P. Feldmann, M. Gessner, M. Gabbrielli, C. Klempt, L. +Santos, L. Pezze, and A. Smerzi, +Interferometric sen- +sitivity and entanglement by scanning through quan- +tum phase transitions in spinor Bose-Einstein conden- +sates. +Phys. Rev. A 97, 032339 (2018). +URL https: +//link.aps.org/doi/10.1103/PhysRevA.97.032339. +[62] Mirkhalaf, S. S., Witkowska, E. & Lepori, L. +Su- +persensitive quantum sensor based on criticality in an +antiferromagnetic spinor condensate. +Phys. Rev. A +101, 043609 (2020). URL https://link.aps.org/doi/ +10.1103/PhysRevA.101.043609. +[63] Sundar, B. et al. Bosonic pair production and squeez- +ing for optical phase measurements in long-lived dipoles +coupled to a cavity (2022). arXiv:2204.13090. + +Supplemental Material: Manipulation of nonequilibrium spin dynamics of an ultracold +gas in a moving optical lattice +Z. N. Hardesty-Shaw,1 Q. Guan,2, 3, 4 J. O. Austin,1 D. Blume,2, 3 R. J. Lewis-Swan,2, 3 and Y. Liu1 +1Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA +2Homer L. Dodge Department of Physics and Astronomy, +The University of Oklahoma, 440 W. Brooks Street, Norman, Oklahoma 73019, USA +3Center for Quantum Research and Technology, The University of Oklahoma, +440 W. Brooks Street, Norman, Oklahoma 73019, USA +4Department of Physics and Astronomy, Washington State University, Pullman, WA 99164, USA +(Dated: January 10, 2023) +arXiv:2301.02707v1 [cond-mat.quant-gas] 6 Jan 2023 + +S2 +I. +EXPERIMENTAL DETAILS +A. +Experimental sequence +Our experimental sequences start by creating a S = 1 spinor BEC of up to 105 sodium (23Na) atoms in a crossed, +anisotropic harmonic optical dipole trap (ODT) at a particular quadratic Zeeman shift q tuned by external magnetic +fields, similar to our previous work [1–3]. +We apply a resonant radio-frequency (RF) pulse to prepare an initial +state with fractional population ρ0 = ⟨ˆn0⟩/N = 0.5 in the |S = 1, m = 0⟩ state and zero magnetization, M = +⟨ˆn1 − ˆn−1⟩/N = 0. We then adiabatically load the initial state into a one-dimensional moving optical lattice. The +lattice is constructed from two nearly orthogonal lattice beams originating from a single-mode laser with wavelength +1064 nm and characterized by the potential Vlat(r, t) = uL cos2[kL ·r−2π∆f(t)t/4], with lattice vector kL oriented at +approximately 40◦ from the z-axis defined by gravity. The resulting standing wave potential has a lattice spacing of +λL/2 = 0.81µm. The time-dependent frequency difference ∆f(t) = |fH −fV |, where fH and fV are the corresponding +lattice beam frequencies, determines the velocity v of the moving lattice, v = λL(fH − fV ). +The velocity v is +manipulated via a linear ramping rate α = h(∆f(t2) − ∆f(t1)) +t2 − t1 +such that when v < 0 (v > 0) the atoms move in +the p = 2ℏkL (p = −2ℏkL) direction. In the main text, the data in Fig. 1 were taken with positive velocities, while +the data in Figs. 2 and 3 were taken with negative velocities. The value of ∆f is initially set to zero and, after an +adiabatic ramp of the lattice depth uL to its final value at t = t1, is quenched to its final value. The total time the +atoms spend in the lattice is denoted by tF (for details see Fig. 1(i) of the main text). At the conclusion of each +sequence, the trapping potentials are turned off so that the atoms can ballistically expand and be captured using a +two-step microwave imaging after a given time of flight (TOF) [1]. Each data point in this paper is an average of at +least 8 repeated measurements and all error bars reported are estimated one standard deviations. +B. +Optical dipole trap +An essential element of our experimental setup is a harmonic confinement potential skew to the moving lattice +potential. The interplay of these two potentials triggers the nontrivial spatial dynamics that are key to our findings. +The harmonic confinement is provided by a crossed optical dipole trap (ODT) constructed by two orthogonal beams +with wavelength λ = 1064 nm. One ODT beam (ODT1) is orthogonal to gravity while the other (ODT2) is at a +76 degree angle relative to gravity (see Fig. S1). ODT1 is along the xODT axis, while the projection of ODT2 into +the plane normal to gravity falls along the yODT axis (see Fig. S1). The moving lattice lies 72 degrees horizontally +from ODT1 and is tilted at a 40 degree angle relative to gravity. Due to experimental considerations, our theoretical +calculations therefore occur in three distinct coordinate systems that share a common z axis defined by gravity: the +coordinate systems defined by the ODT potential, the moving lattice, and the imaging plane, as illustrated in Fig. S1. +xODT +px +yODT +py +kL,x +kL,y +72° +30° +pz & kL,z +zODT +xODT +yODT +pz & kL,z zODT +kL,x +kL,y +px +py +14° +76° +g +a) +b) +FIG. S1. +a) The three coordinate systems used in our theoretical calculations projected into the plane spanned by px and py. +Blue (red) [black] axes refer to the ODT (moving lattice, with associated lattice vector kL) [imaging plane, with associated +momentum vector p] coordinate system. b) Similar to a) but projected into the plane spanned by yODT and zODT. The green +vector labeled by g indicates the direction of gravity. The projections in this figure are to scale. + +S3 +The potential generated by our crossed ODT can be parameterized to a good approximation by +V3D(xODT, yODT, z) = −V0 +� +� +� +1 +1 + x2 +ODT +z2 +0 +exp +� +�−2(y2 +ODT + z2) +w2 +0 +� +1 + x2 +ODT +z2 +0 +� +� +� + +1 +1 + y2 +ODT +z2 +0 +exp +� +�−2(x2 +ODT + z2) +w2 +0 +� +1 + y2 +ODT +z2 +0 +� +� +� +� +� +� , +(S1) +where V0 = +P0hαfsλ2λNa +2 +2π3mec2w2 +0(λ2−λNa2), w0 = 33 µm is the ODT beam waist, z0 = πw2 +0 +λ +is the associated Rayleigh length, +P0 is the ODT power, λNa is the D2 line of sodium atoms, λ is the wavelength of the ODT beam, me is the mass +of an electron, h (ℏ) is the (reduced) Planck constant, αfs ≈ +1 +137 is the fine structure constant, g is the gravitational +acceleration, and c is the speed of light. The ODT power, P0, can be varied to change the effective trap depth and +size. +Shallow ODT +Compressed ODT +LODT,z +LODT,z +40 +30 +20 +10 +0 +-10 +-60 +-40 +-20 +0 +20 +ODT Potential (kHz) +zODT (μm) +FIG. S2. +Cross-sectional cut of the ODT potential after accounting for gravity in the zODT-direction at a local minimum in +the xODT and yODT directions. The effective length of the ODT along the zODT-direction is LODT,z = 20µm for the shallow +ODT (red solid line) and LODT,z = 33µm for the compressed ODT (blue dashed line). Similar plots can be made for the ODT +potential in the yODT-direction, giving an effective length of LODT,y = 31µm (LODT,y = 40µm) for the shallow (compressed) +ODT. +In Fig. S2 we utilize Eq. (S1) and take into account the effects of gravity to generate cross-sectional cuts for the +compressed ODT trap (P0 ≈ 35 mW), which was utilized for the experiments discussed in Fig. 3 of the main text +and Fig. S3 of the Supplementary Information, and the shallow ODT trap (P0 ≈ 17 mW), which was utilized for all +other experimental figures and discussions. The effective trap length LODT,i is defined as the difference between the +values for which V3D takes on a local maximum and local minimum (see Fig. S2) in the i-coordinate axis. Thus, the +shallow trap (red solid line) is characterized by a smaller effective trap length LODT,i than the compressed trap (blue +dashed line), i.e., atoms with high momentum exit the shallow trap more easily than the compressed trap. Since the +trapping extends over a larger spatial region for the larger LODT,i, the compressed trap extends the time scales over +which the complex spatial dynamics can be observed. However, the extended trapping times come at the cost of an +increased average atom temperature, which in turn tends to reduce the coherence and condensate fractions. This is +demonstrated in Fig. S3, which exhibits less coherent peaks than those shown in the analogous time-of-flight (TOF) +image in Fig. 2(c) of the main text. +C. +Spin-mixing oscillations +All spin oscillation data presented in the main text are extracted from considering just the zero momentum, p = 0, +peak. For completeness, Fig. S4 presents spin oscillation data derived from the same data sets as Figs. 1(a)-(c) of the +main text but obtained by counting all trapped atoms. Using this data, we obtain similar results to Figs. 1(a)-(c); +specifically, the respective fitted periods agree within the margins of the errors. The agreement between the distinct +counting methods provides further support for the assumption of a dynamical single spatial-mode approximation +(dSMA), as it indicates that coherence is retained between different momentum components as they evolve under the +dynamics driven by the lattice potential. +In Fig. 1(g) of the main text we see good agreement between the experimental data and the sSMA predictions in +the Zeeman-dominated region. This is because we expect the dynamics of c2(t) to be less important in this region. +To support this, Fig. S5 shows experimental data for time traces of ρ0, the fractional population of the |S = 1, m = 0⟩ +state, obtained for a large range of ∆f at q/h = 42 Hz, in the Zeeman-dominated region. We observe no significant + +S4 +-4 +-2 +0 +2 +4 +-4 +-2 +0 +2 +L +R1 +tF = 3.72 ms +px/ħkL +pz/ħkL +Optical Density +0.0 +0.1 +0.2 +0.3 +R2 +FIG. S3. +Typical experimental TOF images obtained with the compressed ODT (LODT,z = 33µm, LODT,y = 40µm) displayed +in Fig. S2. Data are taken following the same experimental sequence as in Fig. 2(c) of the main text, which instead used the +shallow ODT (LODT,z = 20µm, LODT,y = 31µm). The colorbar scale on the right indicates the optical density of the image. +ρ0 +tF (ms) +tF (ms) +q < q* +q ≈ q* +q > q* +tF (ms) +0.6 +0.5 +0.4 +0.3 +0.2 +0.1 +0.0 +35 +30 +25 +20 +15 +10 +5 +0.6 +0.5 +0.4 +0.3 +0.2 +0.1 +0.0 +35 +30 +25 +20 +15 +10 +5 +0.6 +0.5 +0.4 +0.3 +0.2 +0.1 +0.0 +35 +30 +25 +20 +15 +10 +5 +(a) +(b) +(c) +FIG. S4. +Example time traces of ρ0, the fractional population of the |S = 1, m = 0⟩ state, obtained by counting all trapped +atoms (see text) for: (a) q/h = 15 Hz, (b) q/h = 25 Hz, and (c) q/h = 65 Hz. Here, q is the quadratic Zeeman energy. All +data is obtained from an experimental sequence illustrated in Fig. 1(i) of the main text with final lattice depth uL = 2.3ER +and fixed ∆f = 4.6ER/h. Sinusoidal fits (lines), which are used to extract the spin oscillation period T, are shown to guide +the eye. +dependence of the period or amplitude of the oscillations on the actual value of ∆f (i.e., the speed of the moving +lattice), and thus c2(t) associated with the resulting spatial dynamics. +II. +DETAILS ON THEORETICAL TREATMENT OF SPIN-1 GASES +A. +Gross-Pitaevskii treatment of spin-1 condensates +We consider a spin-1 condensate of N sodium atoms of mass MNa under external confinement in the presence of a +moving lattice. The two-body interactions are characterized by the spin-independent and spin-dependent interaction +coefficients g0 and g2, +g0 = 4πℏ2(aS=0 + 2aS=2) +3MNa +(S2) +and +g2 = 4πℏ2(aS=2 − aS=0) +3MNa +, +(S3) +where aS=0 = 48.9a0 and aS=2 = 54.5a0 are, respectively, the s-wave scattering lengths for the S = 0 and S = 2 +states with a0 the Bohr radius [1, 4]. Our treatment includes the quadratic Zeeman shift term (proportional to q) but +not the linear Zeeman shift, which does not play a role for the dynamics since it is conserved. +At the mean-field level, the coupled dynamics of the spin and spatial degrees of freedom is described by the time- +dependent spinor Gross-Pitaevskii (GP) equation, + +S5 +0.8 +0.6 +0.4 +0.2 +25 +20 +15 +10 +5 +tF (ms) +ρ0 + Δf = 4.6 ER/h + Δf = 7 ER/h + Δf = 9.3 ER/h +q/h = 42 Hz +FIG. S5. +Time traces of ρ0 at fixed q/h = 42Hz and a range of lattice speeds, set by ∆f = 4.6ER/h (blue), 7ER/h (green), +and 9.3ER/h (black). All data is for a final lattice depth uL = 2.3ER. Sinusoidal fits (lines), which are used to extract the +spin oscillation period T, are shown to guide the eye. The ∆f = 7ER/h (∆f = 9.3ER/h) curves are offset by 0.2 (0.4) in the +y direction for visual clarity. +iℏ ∂ +∂t +� +� +ψ−1 +ψ0 +ψ1 +� +� = +� +− ℏ2∇2 +2MNa ++ V (r, t) + g0(N − 1) +� +|ψ−1|2 + |ψ0|2 + |ψ1|2�� � +� +ψ−1 +ψ0 +ψ1 +� +� + +� +� +q 0 0 +0 0 0 +0 0 q +� +� +� +� +ψ−1 +ψ0 +ψ1 +� +� +(S4) ++ g2(N − 1) +� +� +|ψ−1|2 + |ψ0|2 − |ψ1|2 +ψ∗ +1ψ0 +0 +ψ1ψ∗ +0 +|ψ−|2 + |ψ−1|2 +ψ−1ψ∗ +0 +0 +ψ∗ +−1ψ0 +|ψ1|2 + |ψ0|2 − |ψ−1|2 +� +� +� +� +ψ−1 +ψ0 +ψ1 +� +� , +where V (r, t) includes contributions from the moving optical lattice Vlat(r, t), the confining potential (see Sec. I A), +and gravity. Within the GP formalism, each Zeeman component of the BEC is described by a mean-field wavefunc- +tion ψm(r, t), such that both spin and spatial degrees of freedom, and their interplay, are simultaneously captured. +The model ignores quantum fluctuations, which are expected to contribute minimally for the regimes in which the +experiment operates. +For the scenarios reported in the main text, solution of the GP equation for the full 3D system by direct numerical +integration is not feasible. This is due to both the disparate timescales for the spin and spatial degrees of freedom +as well as the large spatial region occupied by the BEC when it is kicked by the lattice. Specifically, the repeated +momentum kicks imparted by the moving optical lattice on the fractured BEC lead to intricate spatial structure +as well as a rapidly expanding cloud that must be tracked over comparatively long time scales (36 ms in Fig. 1 of +the main text), requiring a large simulation box with good spatial resolution. Thus, the GP result presented in the +main text are from numerical simulations of reduced dimensionality 1D (Fig. 1) or 2D (Fig. 2) models, wherein the +interaction coefficients g0 and g2, mean spatial density of the BEC and trapping potential V (r, t) are adjusted to +capture the features of the experimental setup. The GP results presented are generated by numerically integrating +the coupled GP equations using the XMDS2 software package [5]. +The dynamics shown in Figs. 2-3 of the main text are restricted to a few ms, i.e., much shorter times than those on +which the spin oscillation dynamics occurs (see Fig. 1 of the main text). These dynamics out to 3 ms are amenable +to 2D GP equations. To this end, we define a “2D simulation plane” by the direction of the px − pz imaging plane. +The reduced dimensionality trap V2D is obtained by projecting the 3D trap V3D onto the 2D simulation plane. Our +simulations capture the role of the ODT trap (including, e.g., non-harmonic corrections to the confining potential) +and its interplay with gravity. Approximating the azimuthal and polar angles introduced in Sec. I B by 30◦ and 76◦, +respectively, the 2D trap is given by +V2D(y, z) = V3D [cos(76◦) cos(30◦)y, − sin(30◦)y, sin(76◦)z] . +(S5) +The projection of the moving lattice in the px − py plane is described by kL,x (see Fig. S1). Neglecting the 12◦ angle +between the kL,x axis and the negative px axis, the moving lattice is in the px − pz plane. Given the fact that the + +S6 +lattice has a 40◦ angle relative to the pz axis (see the discussion above Fig. S1), the lattice vector is described by +kL = kL[− sin(40◦), 0, cos(40◦)]. The reduction from 3D to 2D does change the mean density and, correspondingly, +the chemical potential. This is accounted for by introducing the effective 2D interaction strength geff +2D; similar to the +1D case, g0(N − 1) and g2(N − 1) are replaced by geff +2D and geff +2D/28.06, respectively. The coupling constant geff +2D is set +by enforcing that the chemical potential of the 2D system, obtained by solving the scalar GP equation, is equal to +that of the 3D system at t = 0. +The procedure for mapping the full 3D system to a reduced dimensionality model is not unique. Figure S6(c) +illustrates this exemplary for the 1D case. Since the chemical potential µ is the characteristic energy scale of the +time-independent scalar GP equation and c2 the characteristic energy scale of the effective spin Hamiltonian, it is +natural to demand that the reduced dimensionality scalar GP model reproduces these two energy scales. The solid +and dashed horizontal lines in Fig. S6(c) show the chemical potential µ and the spin-spin interaction strength c2 of +the 3D system in the presence of a static optical lattice with uL = 2.3 ER (note that the initial state preparation +within the full 3D framework is significantly simpler than tracking the time evolution); this is the final lattice depth +used in the experiment. Fixing the parameters of the scalar 1D GP equation requires setting the values of ℏωz/ER +and geff +1D/(ERk−1 +L ). The 1D scalar GP equation is given by Eq. (S7) with the r-vector replaced by z and g0(N − 1) +replaced by geff +1D, where geff +1D has units of “energy times length”. The 1D spinor GP equation is obtained analogously, +i.e., g0(N − 1) and g2(N − 1) are replaced by geff +1D and geff +1D/28.06, respectively. The black and red dashed lines in +Fig. S6(c) show c2 and µ as a function of geff +1D/(ERk−1 +L ) for fixed ℏωz/ER (plugging in uL = 2.3 ER, this corresponds +to ωz = 197 Hz). It can be seen that the dashed lines cross the solid lines at geff +1D/(ERk−1 +L ) ≈ 7 and 12.5, respectively, +i.e., for the ℏωz/ER value chosen there exists no unique geff +1D/(ERk−1 +L ) at which the values of c2 and µ calculated within +the 1D framework agree with the respective values calculated within the 3D framework. Since we do not find a unique +geff +1D/(ERk−1 +L ) for other values of ℏωz/ER either, there exists—unless additional conditions are added—an arbitrariness +in the chosen 1D simulation parameters. With this in mind, we select parameters that place the divergence of T at +about the same q value as observed experimentally (see Fig. S6(a)). Specifically, the simulations shown in Figs. 1(d)- +1(f) of the main text (and in Fig. S6(a)) use the same final lattice depth as the experiment (namely, uL = 2.3 ER), +ωz = 197 Hz, and geff +1D/(ERk−1 +L ) = 12.0. +(c) +FIG. S6. +(a) Spin oscillation period T as a function of Zeeman shift q. The black markers show T extracted from 1D spinor +GP calculations that account for the spin-independent and spin-dependent interactions. The spin oscillation period diverges +around q∗/h = 22 Hz. Emulating the analysis of the experimental data shown in Fig. 1(g) of the main text, the solid line is +obtained by fitting the 1D GP data using the analytical sSMA expressions and treating the spin-spin interaction as a fitting +parameter (namely, c2,fit). (b) Time evolution of the overlap of the Zeeman states (see Eq. (S10)) as a function of the Zeeman +shift q. An overlap F of one indicates that all Zeeman states share a common spatial density profile, consistent with the +dSMA. The only significant deviation from unity is observed for relatively long times (t ≳ 20 ms) when q ≈ q∗. (c) Parameter +calibration of reduced dimensionality 1D GP equation. The black and red solid horizontal lines show the interaction energy +c2 (left axis) and chemical potential µ (right axis), respectively, for a 3D scalar BEC in the presence of a static lattice with +uL = 2.3 ER for N = 80, 000 and angular trapping frequencies ωx = 125 Hz, ωy = 125 Hz, and ωz = 155 Hz. The red and +black dashed lines show c2 and µ, obtained by solving the 1D scalar GP equation as a function of the 1D coupling constant +geff +1D. The 1D calculations use ωz = 197 Hz and uL = 2.3 ER. +B. +Single spatial-mode approximation and effective spin model +We now motivate and introduce an approximate treatment that decouples the spin and spatial degrees of freedom. +Typically, the energy scales associated with the spin-independent terms of the Hamiltonian (i.e., the energy scales +of the external harmonic and lattice confinement, the interactions that are proportional to g0, and the chemical +potential µ of the system) are of the order of kilohertz and much larger than those of the spin-dependent terms of + +70 +5.5 +(b) +60 +(2H) +5 +α (kHz) +50 +40 +4.5 +30 +20 +4 +5 +10 +15 +20 +81Dk/ER60 +(a) +45 +(su) L +30 +15 +0 +0 +15 +30 +45 +60 +q/h (Hz)ur(b)S7 +the Hamiltonian (i.e., the value of the Zeeman shift q and the interactions that are proportional to g2), which are of +the order of hertz. This scale separation motivates an approximate treatment wherein the spin and spatial degrees of +freedom are treated independently [6], with the spatial degree of freedom controlled solely by the spin-independent +terms of the Hamiltonian and the spin dynamics governed by the spin-dependent terms of the Hamiltonian. +Following the literature [7], we make a single spatial-mode approximation (SMA) wherein the bosonic field operators +are decomposed as +ˆψm(r) = ˆamφ(r, t), +(S6) +where ˆam (ˆa† +m) is a bosonic operator that destroys (creates) a particle in Zeeman state m in a spatial mode defined +by the spatial mean-field wavefunction φ(r, t), which is normalized to one, i.e., +� +d3r|φ(r, t)|2 = 1; in Eq. (S6), m +labels the Zeeman states (m = 0 and ±1). The key assumption of the SMA is that φ(r, t) is identical for all three +Zeeman states. The mean-field wave function φ(r, t) is the solution to the time-dependent scalar Gross-Pitaevskii +(GP) equation +iℏ∂φ(r, t) +∂t +≈ +� +− ℏ2∇2 +2MNa ++ V (r, t) + g0(N − 1)|φ(r, t)|2 +� +φ(r, t), +(S7) +where V (r, t) is the same as Eq. (S4). The spin dynamics, in turn, is governed by the effective Hamiltonian ˆHeff(t), +ˆHeff(t) = c2(t) +2N +ˆS · ˆS + q(ˆa† +1ˆa1 + ˆa† +−1ˆa−1), +(S8) +where the quantity ˆS denotes a collective spin operator. The time-dependent interaction strength c2(t), +c2(t) = (N − 1)g2 +� +d3r|φ(r, t)|4, +(S9) +is driven by the time dependence of the spatial mean-field wave function φ(r, t), i.e., the spin dynamics is governed— +through the coefficient c2(t)—by the spatial dynamics. In our experiment, the spatial dynamics is, to a large degree, +induced by the moving optical lattice potential. The time dependence of the interaction coefficient c2(t) is distinct +from prior works (e.g., Refs. [2, 8, 9]), which assumed that the condensate is prepared in the ground-state of a static +confining potential such that subsequent spatial motion is minimal and to a good approximation |φ(r, t)|2 = |φ(r, 0)|2. +For this reason, we use the distinguishing nomenclature of dynamical SMA (dSMA; time-dependent c2) and static +SMA (sSMA; time-independent c2) for our and prior works, respectively. The latter is recovered from Eq. (S8) by +assuming c2(t) = c2. To zeroth-order, the dynamics of the moving lattice experiments during the first few milli- +seconds is dominated by spatial dynamics. At later times, however, the spin degrees of freedom become increasingly +important as evidenced by the observation of spin oscillations (see Fig. 1 of the main text). +The dSMA is supported by our 1D spinor GP calculations. First, Fig. 1 of the main text shows good agreement +between dSMA and GP predictions for ρ0(t). Second, we can explicitly validate the assumption that each Zeeman +state occupies a single common spatial mode by computing the overlap, +F = +| +� +dxψ∗ +0(x)ψ1(x)| +�� +dx|ψ0(x)|2 +�� +dx|ψ1(x)|2 +. +(S10) +The time evolution of this quantity over a range of Zeeman shifts is plotted in Fig. S6(b). We observe that F remains +near unity across the interaction dominated regime (q < q∗) throughout the timescales we investigate (up to 40 ms in +the GP calculations, which is longer than the 30 ms covered by the experiment). In the Zeeman regime, the overlap +remains close to unity for t ≲ 20 ms before minor deviations appear. As might be expected naively, a substantial +breakdown of the single spatial-mode approximation occurs in a narrow region around the critical regime, q ≈ q∗. +The experimental spin oscillation data in Fig. 1 of the main text are analyzed using the sSMA, i.e., the mean- +field equations associated with ˆHeff(t) for a time-independent spin-spin interaction coefficient. Specifically, the spin +oscillation period T is extracted by fitting the experimentally measured fractional population ρ0(t) for various q +with sinusoidal functions, which provide good approximations to the spin oscillation dynamics away from the critical +regime where the period diverges. All fits include at least one full period of oscillation. To determine the spin-spin +interaction coefficient from the extracted periods, we perform a nonlinear least squares fit of the T-versus-q data using +the analytical solutions to the mean-field equations associated with ˆHeff [10]. The fit uses ρ0(0) = 0.5 and θ(0) = 0 +and treats c2 as a free parameter (we denote the fit result by c2,fit). While ρ0(0) is measured experimentally, θ(0) +is not. However, based on the experimental sequence used to prepare the initial Zeeman populations we expect that +θ(0) is equal to 0. As reported in the main text, our fitting procedure yields c2,fit = 23.7(1) Hz. + +S8 +To gain additional insights, we perform an analogous analysis for the spin oscillation data obtained by solving the +1D spinor GP equations. Specifically, we obtain ρ0(t) and the associated period T by solving the spinor GP equations +(see markers in Fig. S6(a)), and then extract c2,fit from the T-versus-q data using the sSMA (solid line in Fig. S6(a)). +For the 1D spinor GP simulations shown in Fig. S6(a), the spin oscillation period diverges at q∗/h ≈ 22 Hz, i.e., +at roughly the same value of the Zeeman energy as in the experiment presented in the main text. The qualitative +agreement between the experimental and theoretical analysis, particularly the consistency with the sSMA results, is +encouraging and suggests that the 1D spinor GP simulations provide a qualitatively correct description of the moving +lattice experiments. +The GP simulations also enable us to better understand why the spin oscillation period extracted from the exper- +imental data is consistent with the predictions of sSMA, even though the time traces show significant discrepancies. +In the regime q ≤ q∗, the sSMA theory predicts that the spin oscillation period should be strongly correlated with +the spin-spin interaction strength [3, 10, 11], which the GP results (see, e.g., Fig. 1(h) of the main text) predict to +decay relatively slowly, compared to the typical timescales of the spin degree of freedom, apart from initial transient +dynamics for t ≲ 3 ms. This suggests that the spin oscillation period obtained from the experimental data for q ≤ q∗ +should be interpreted as being reflective of the characteristic scale of c2(t) over the experimental sequence. On the +other hand, in the regime q ≫ q∗ the oscillation period is expected to be dominated by the quadratic Zeeman shift. +Thus, the experimentally observed spin oscillation periods are fit well by the sSMA predictions as the time dependence +of c2(t) is less relevant for larger q. +III. +CLASSICAL INTERPRETATION OF SPATIAL DYNAMICS: LISSAJOUS CURVES +A. +Model +Figure 3 of the main text presents an analysis of the experimentally observed spatial dynamics of the condensate. +Specifically, the plot tracks the positions of the L- and R1-peaks in momentum space. These peaks are extracted +by fitting each momentum peak in a TOF image with a 2D Gaussian and extracting the fitted position. Positions +are then converted to quasimomentum. The main text compared the experimental results to the predicted Lissajous +curves. This section introduces the classical trajectory model that generates these Lissajous curves, using a single +confined particle and initial conditions that are determined self-consistently from the properties of the experimental +optical lattice and confining potential. +-0.8 +-0.6 +-0.4 +-0.2 +0.0 +-0.2 +0.0 +0.2 +0.4 +0.6 +0.8 +pcom,x/ℏkL +pcom,y/ℏk +FIG. S7. +Example trajectory of the center-of-mass momentum pcom extracted from a 2D GPE simulation via pcom = +� +d2p p � +m |ψm(p, t)|2, for a lattice depth of uL = 1.2ER and ∆f = 4.6ER/h. +Our model is underpinned by the insight that the spatial motion of the condensate atoms is predominantly controlled +by the approximately harmonic trap and the main effect of the optical lattice is to stroboscopically impart sudden +(instantaneous) kicks to the atoms when a resonance condition is satisfied dynamically. This is well supported by +an inspection of the time evolution of the center-of-mass (COM) momentum of the entire atomic cloud according +to a 2D GP calculation, as shown in Fig. S7. The phase-space trajectory of the COM momentum is dominated by +smooth evolution – as different momentum components move freely within the confining potential V2D(x, z) – with +the exception of a sequence of regular abrupt reversals, indicating the sudden imparting of 2ℏkL to a subset of atoms +by the moving optical lattice. Our classical model constructs analogous Lissajous curves for an ensemble of individual +(non-interacting) momentum components – defined with respect to their initial position and velocity within the trap + +S9 +– that are treated as classical particles traversing the 3D confining potential V3D(r). Note that our classical trajectory +simulations employ the full 3D potential since these calculations are not numerically challenging. The initial position +and momentum for each particle are determined by solving for the dynamically appearing resonances at which the +moving lattice couples different momentum components. +For concreteness, we introduce the specifics of our model by using it to describe the trajectory of the L-peak, which +is assumed to be instantaneously populated at t = t1 (i.e., when the lattice detuning is suddenly quenched) due to +a near-resonant coupling mediated by the moving lattice between the initial BEC at p = 0 and a second non-zero +momentum state p = 2ℏkL whose kinetic energy differs by 4ER/h ≈ ∆f. Already, we note that the assumption +that the L-peak is “born” instantaneously at t = t1 is an oversimplification, but we argue that for lattice depths uL +on the order of ER the coupling between momentum states generated by the moving lattice is much faster than any +subsequent spatial motion. Based on this description, the L-peak is initially located at the central minimum of the +trap, which herein we define as the origin of our co-ordinate system, rL(t = t1) = (0, 0, 0), as it is directly outcoupled +from the stationary BEC, and has initial momentum pL(t = t1) = 2ℏkL. +We expect the L-peak to quickly separate from the stationary BEC and then to begin climbing the walls of the +confining potential and decelerate. To describe this evolution, we assume that the mean position and momentum of +the L-peak follow a trajectory defined by an equivalent classical particle subject to the confining potential V3D. Such +a trajectory is described by solving the equations, +MNa +d2r(t) +dt2 += −∇V3D [cos(30◦)x − sin(30◦)y, cos(76◦) sin(30◦)x + cos(76◦) cos(30◦)y + sin(76◦)z, sin(76◦)z − cos(76◦)y] +(S11) +and +p(t) = MNa +dr(t) +dt , +(S12) +for the mean position and momentum of the corresponding classical particle, respectively. At this point, we highlight +that we are assuming that the moving lattice is effectively invisible for the L-peak’s motion; this is justified since +the L-peak’s motion rapidly changes its “status” from being on resonance with the p = 0 BEC at t = t1 to being +off-resonant with the p = 0 BEC for t just a bit larger than t1. +The L-peak moves freely within the confining potential until it dynamically satisfies a resonance condition where +the optical lattice instantaneously couples the L-peak with momentum pL(t) to a new state – the R1-peak – with +momentum pR1(t) = pL(t)+2ℏkL. The resonance condition is defined by equating the difference between the kinetic +energies of these states (it is assumed that the potential energy is unchanged as the new momentum component is +created at the same location within the trap) with the energy imparted by the moving lattice, i.e., 4.6ER, +|pL(t) + 2ℏkL|2 +2MNa +− |pL(t)|2 +2MNa += 4.6ER. +(S13) +For the lattice vector kL used in our moving-lattice experiment, this resonance condition can be written as a relation +between different momentum components of the L-peak, +pL(t) · kL = (0.6/4)ℏk2 +L. +(S14) +In the experiment, we approximately have kL = kL[− sin(40◦), 0, cos(40◦)], which leads to the resonance condition +of pL,z = 0.86pL,x + 0.20ℏkL. The critical time when this resonance is fulfilled is estimated to be tcr = 34.6ℏ/ER = +1.67 ms. The time tcr also defines the time at which we assume the R1-peak is “born”. The initial condition for the R1- +peak is then straightforward to compute as rR1(tcr) = rL(tcr) = (−65.0, 0, 55.1)k−1 +L +and pR1(tcr) = pL(tcr) + 2ℏkL = +(−0.42, 0, −0.35)ℏkL + 2ℏkL. The computation of the Lissajous curve for the R1-peak, and subsequent creation of, +e.g., the R2-peak, follows the same scheme as discussed above. +We reiterate that these theoretical calculations should only be relied upon as a qualitative guide to help understand +the mechanism of trap-induced resonances that lead to the experimentally observed dynamical fracturing of the BEC +in momentum space. The Lissajous curves can only provide an approximate guide to the observed trajectories of +the fractured components in momentum space for a number of reasons. Primarily, these are that the phase-space +trajectories generated by Eqs. (S11) and (S12) ignore the role of: i) interactions and ii) time-dependent corrugation +of the confining potential due to the moving lattice. +Lastly, we comment on the width of the approximate resonance. As previously discussed, the optical lattice couples +momentum states separated by 2ℏkL over a finite energy window, i.e., states that do not exactly fulfill the resonance +criterion Eq. (S14). While quantifying the width of this energy window, or resonance region, is not straightforward, +and further complicated by the role of interactions and motion of the BEC components in the ODT, we can provide +a rough estimate. + +S10 +We use that the coupling of the initial p = 0 BEC to the p = 2ℏkL momentum state is off-resonance (the +energy difference between these states is 4ER rather than 4.6ER) to determine an estimate of a minimum width of +the resonance region. Specifically, the fact that we see atoms transfer from the zero momentum state to the 2ℏkL +momentum state at t ≈ t1 for a detuning of 4.6ER, even though the true resonance for these momentum states occurs +for a detuning of 4ER, indicates that the lattice-induced coupling of momentum states is near resonance for a window +of at least 4.6ER ± 0.6ER. Correspondingly, the upper and lower boundaries of the resonance width can be derived +by replacing the right hand side of Eq. (S13) with 5.2ER and 4ER, respectively. This width is what is plotted in +Fig. 3(b) of the main text and Fig. S8 as gray shaded regions. +B. +Experimental comparison with Lissajous curves +pz/ħkL +px/ħkL +Red (Blue): R1-Peak (L-Peak) +Solid lines: theory +Markers: experiment +-2 +-1 +0 +1 +-2 +-1 +0 +1 +FIG. S8. +Trajectories of the mean position of L-peak (blue triangles) and R1-peak (red squares), extracted similarly to Fig. 3 +of the main text. Markers represent data taken in a typical ODT (LODT,z = 20 µm). Blue (red) solid lines are L-peak (R1-peak) +positions according to Lissajous curves based on a calculation of a classical point particle in an ideal (effectively, LODT,i = ∞) +harmonic trap. Preceding L-peak formation, atoms occupy the p = 0 state at pz = px = 0 (prepared BEC) and the p = 2ℏkL +state. The gray shaded region marks the approximate resonance region where decelerated atoms are kicked by the lattice (to +create, e.g., the R1-peak). +As illustrated in Fig. 3 of the main text, theoretical calculations of the Lissajous trajectories qualitatively reproduce +the experimental trajectories that utilize the compressed ODT. However, as discussed in the main text, ODT com- +pression is accompanied by lower condensate fractions and reduced visibility (see also Fig. S3). In Fig. S8 we compare +the Lissajous curves with the ODT typically employed in our experiment (uncompressed trap with LODT,z = 20 µm). +We find stark differences between experiment and theory curves for these parameters, including an early exiting of +atoms out of the ODT trap due to gravity. The disagreements found in the compressed trap of Fig. 3 and Fig. S8 +illustrate that fully capturing all the aspects of the experiment is necessarily beyond the simplified classical model, +which is designed to minimally capture the dynamical appearance of resonances between different momentum states. +A closer quantitative comparison would be provided by, e.g., a full 3D GP simulation and analysis of momentum +space dynamics analogous to what is carried out in Figs. 3 and S8 for the experimental data. +[1] Chen, Z. et al. Quantum quench and nonequilibrium dynamics in lattice-confined spinor condensates. Phys. Rev. Lett. +123, 113002 (2019). And references therein. +[2] Zhao, L., Jiang, J., Tang, T., Webb, M. & Liu, Y. Dynamics in spinor condensates tuned by a microwave dressing field. +Phys. Rev. A 89, 023608 (2014). +[3] Zhao, L., Jiang, J., Tang, T., Webb, M. & Liu, Y. Antiferromagnetic spinor condensates in a two-dimensional optical +lattice. Phys. Rev. Lett. 114, 225302 (2015). + +S11 +[4] Knoop, S. et al. Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium. Phys. Rev. A 83, +042704 (2011). URL https://link.aps.org/doi/10.1103/PhysRevA.83.042704. +[5] Dennis, G. R., Hope, J. J. & Johnsson, M. T. XMDS2: Fast, scalable simulation of coupled stochastic partial differential +equations. Computer Physics Communications 184, 201–208 (2013). URL https://www.sciencedirect.com/science/ +article/pii/S0010465512002822. +[6] Law, C. K., Pu, H. & Bigelow, N. P. Quantum spins mixing in spinor Bose-Einstein condensates. Phys. Rev. Lett. 81, +5257–5261 (1998). URL https://link.aps.org/doi/10.1103/PhysRevLett.81.5257. +[7] Stamper-Kurn, D. M. & Ueda, M. Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. +85, 1191 (2013). +[8] Yi, S., M¨ustecaplıo˘glu, O. E., Sun, C. P. & You, L. Single-mode approximation in a spinor-1 atomic condensate. Phys. +Rev. A 66, 011601 (2002). URL https://link.aps.org/doi/10.1103/PhysRevA.66.011601. +[9] Liu, Y. et al. Quantum phase transitions and continuous observation of spinor dynamics in an antiferromagnetic condensate. +Phys. Rev. Lett. 102, 125301 (2009). +[10] Zhang, W., Zhou, D. L., Chang, M.-S., Chapman, M. S. & You, L. Coherent spin mixing dynamics in a spin-1 atomic +condensate. Phys. Rev. A 72, 013602 (2005). URL https://link.aps.org/doi/10.1103/PhysRevA.72.013602. +[11] Kronj¨ager, J., Becker, C., Navez, P., Bongs, K. & Sengstock, K. Magnetically tuned spin dynamics resonance. Phys. Rev. +Lett. 97, 110404 (2006). URL https://link.aps.org/doi/10.1103/PhysRevLett.97.110404. + diff --git a/S9E0T4oBgHgl3EQf2AKe/content/tmp_files/load_file.txt b/S9E0T4oBgHgl3EQf2AKe/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..b4057d8f0088e629caf6736f19600ae2b9bc9147 --- /dev/null +++ b/S9E0T4oBgHgl3EQf2AKe/content/tmp_files/load_file.txt @@ -0,0 +1,1632 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf,len=1631 +page_content='Manipulation of nonequilibrium spin dynamics of an ultracold gas in a moving optical lattice Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Hardesty-Shaw,1 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Guan,2, 3, 4 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Austin,1 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Blume,2, 3 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lewis-Swan,2, 3, ∗ and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Liu1, † 1Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA 2Homer L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA 3Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA 4Department of Physics and Astronomy, Washington State University, Pullman, WA 99164, USA (Dated: January 10, 2023) The isolation and control of disparate degrees of freedom underpin quantum simulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We advance the programmability of cold atom quantum simulators with a first realization of the dynamic interplay of spatial and spin degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We experimentally demonstrate that violent spatial evolutions tune long-lived coherent spin dynamics and develop a model of quantum spin-mixing incorporating the spatial evolution via time-dependent spin-spin interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Our results open new paths towards the simulation of quantum spin models with tunable interactions via tailored spatial dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Introduction – Ultracold quantum gases that feature spa- tial and spin degrees of freedom offer a powerful plat- form for simulating quantum magnetism in controlled, isolated settings [1–5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' When combined with optical lat- tices, these simulation capabilities are exemplified by ex- perimental studies featuring tunable dimensionality and filling factors [6–9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Possessing long coherence times, these systems also provide an ideal platform for study- ing out-of-equilibrium phenomena such as spin-mixing [10–13], transport [14, 15], dynamical phases of matter [16], and critical dynamics across quantum phase tran- sitions [7, 8, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Simultaneously, advances in spin- and spatially-resolved probes [7, 9, 18, 19] and the control of time- and spin-dependent lattice potentials are opening up new opportunities, including the study of multi-state tunneling physics [20] and driven-dissipative phases [21], in the presence of the spin degree of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Typically, the energy scales of the spin and spatial de- grees of freedom are disparate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This has been exploited to obtain a reduced description of the spin dynamics that depends only on a spatial profile that remains frozen due to, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', a strong confining potential [11, 16, 22–28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In the context of spinor Bose-Einstein condensates (BECs), this decoupled regime has received significant attention [29–31] and, amongst other applications, has been uti- lized to generate entangled states in the highly control- lable spin degree of freedom [32–37], which can also be mapped to the motional degrees of freedom [38–40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In contrast, the interplay of spatial and spin degrees of freedom remains largely unexplored, and, although typi- cally weak, can provide a powerful avenue for controlling the spin dynamics through tailored dynamical manipula- tion of the spatial properties of the gas [41–45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We inves- tigate this interplay, providing a first example of how spa- tial degrees of freedom can be utilized to manipulate the spin dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We experimentally observe that a one- dimensional (1D) moving lattice, combined with a skew optical dipole trap (ODT), induces violent transient spa- tial motion which is nevertheless accompanied by long- lived spin-mixing dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We develop a theoretical un- derstanding of these observations based on a dynamical single spatial-mode approximation (dSMA), which leads to an effective spin model with a time-dependent spin- spin interaction coefficient that depends on the tempo- ral evolution of the BEC density profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Experimental observations — including a robust critical regime featur- ing divergent timescales for the spin dynamics, which is tuned by the applied moving optical lattice and associ- ated spatial motion — are qualitatively described by our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Our results open the way for the exploitation of classi- cal spatial dynamics for simulating many-body quantum spin dynamics with highly tunable, time-dependent in- teractions [46, 47], thereby enhancing the class of quan- tum spin models accessible in spinor BECs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In addition, our findings imply spatial dynamics can provide new con- trol knobs for the nonequilibrium generation of entangled spin states for, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', quantum-enhanced sensing [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Experimental setup – Each experimental cycle begins with a sodium spin-1 BEC at quadratic Zeeman energy q in an ODT (see Supplemental Materials [48]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A key feature of spinor BECs is their spin degree of freedom characterized by the spin-dependent interaction coeffi- cient c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spin-mixing and other nonequilibrium phenom- ena driven by a static c2 have been studied in various contexts [7, 8, 11, 23, 24, 28, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Here, in contrast, we demonstrate that c2 can be tuned dynamically by uti- lizing a moving lattice to change the BEC’s spatial den- sity profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We construct a 1D moving lattice with two nearly orthogonal optical beams whose frequency differ- ence ∆f determines the moving lattice speed [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Our initial BEC has a fractional population ρ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5 of atoms in the |S = 1, m = 0⟩ state and zero magnetization (equal populations in the |S = 1, m = ±1⟩ states).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The BEC is then adiabatically loaded into the lattice, which is sta- tionary at time t = 0 and quenched to the desired speed arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='02707v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='quant-gas] 6 Jan 2023 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 ρ0 (a) (b) (c) 40 35 30 25 20 15 10 5 Spin oscillation period T (ms) q/h (Hz) Δf = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 ER/h Markers: Experiment Line: Theory 70 60 50 40 30 20 10 (g) c2(t) / c2(0) (h) 0 BEC tF t1 0 Time (i) tF (ms) tF (ms) tF (ms) tF (ms) 30 20 10 Δf = 0 Δf = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 ER/h 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0 Δf 0 uL ρ0 30 20 10 30 20 10 30 20 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 (d) (e) (f) q < q* q ≈ q* q > q* FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (a)-(f) Exemplary time traces of ρ0 for spinor BECs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Panels (a)-(c) show experimental results for ρ0 (red markers) at q/h = 15 Hz (a), 25 Hz (b), and 65 Hz (c) as well as sSMA predictions (dotted lines) with c2,fit/h = 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='7(1)Hz extracted from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Panel (a) compares static (black) and moving (red) lattice results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Solid lines are sinusoidal fits to guide the eye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Panels (d)-(f) compare predicted ρ0 for q/h = 15 Hz (d), 22 Hz (e), and 65 Hz (f) from 1D GP simulations (solid lines) to sSMA (dotted lines) with c2 obtained through fits to the GP data [48], and dSMA (dashed lines) with c2(t) obtained from GP data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The chosen q values exemplify the interaction dominated (q < q∗) and Zeeman (q > q∗) regimes separated by the critical region q ≈ q∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (g) Observed T (markers) versus q fit by analytical sSMA expressions (solid line) with the fitting parameter c2,fit/h = 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='7(1)Hz [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (h) Red (black) lines are evolution of c2(t)/c2(0) for q/h = 15 Hz obtained from 1D GP simulations of the moving (static) lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' All moving lattice data use a lattice depth uL = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3ER, t1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='43ms, and fixed ∆f = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER/h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (i) Timeline of the lattice depth (lower panel) and moving lattice speed (upper panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' for t > 0 (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(i)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We study the ensuing non-trivial spin (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1) and spatial (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2) dynamics of the atoms by holding them in the moving lattice for a time tF before releasing them for ballistic expansion and imaging [9, 48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spin dynamics – We first study the nonequilibrium spin dynamics generated by experimental sequences (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(i) ∆f = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER/h) which near-resonantly couple the initial stationary BEC with the p = 2ℏkL momentum state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Here, ER is the recoil energy, h (ℏ) is the (reduced) Planck constant, and kL is the lattice vector [6, 48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spin-mixing oscillations, arising from coherent intercon- versions among two m = 0 atoms and a pair of atoms in the m = ±1 Zeeman states [3], constitute a useful tool in understanding the spin dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The periods T of these oscillations are determined by the competi- tion between c2 and q, illustrated by typical examples of the interaction dominated region (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(a)) and Zeeman dominated region (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We also see convincing experimental signatures of a critical separatrix regime near q = q∗ where T diverges (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' These observations are qualitatively consistent with expecta- tions based on established theory formulations referred to as a static single spatial-mode approximation (sSMA) in this paper, which assumes c2 is time-independent [3, 7, 8, 11, 23, 24, 28, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(g) shows the ob- served T can be used to estimate the effective static spin- spin interaction c2,fit/h = 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='7(1) Hz as sSMA predicts q∗ ≈ c2,fit for our initial state [6, 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' However, direct comparisons to the sSMA predicted time traces (dotted lines in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(a)-(c)) demonstrate that the model fails to capture experimentally observed features such as the damping of the oscillation amplitude and the drift of the oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Another notable observation that cannot be explained by sSMA is the shift of the separatrix location induced by the moving lattice, as shown by a compari- son between static (∆f = 0) and moving lattice results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1 These experimental observations suggest sSMA provides an incomplete description of our system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Theoretical model – To explain the sSMA’s shortcomings, we develop the following dSMA model which assumes c2 varies with time and describes our system with the spin Hamiltonian [6, 22, 39, 48], ˆHeff(t) = c2(t) 2N ˆS · ˆS + q(ˆn1 + ˆn−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (1) Here, ˆS = �N i=1 ˆsi where ˆsi denotes the spin-1 operator for the ith of the total N atoms and ˆnm is the number operator for the Zeeman state m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The time-dependent c2(t) arises from the temporal evolution of the BEC’s spatial density profile and, in turn, modulation of the effective interaction strength of the spin model, driven by the moving lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Formally, c2(t) emerges from the time-dependence of the Gross-Pitaevskii (GP) orbitals ψm(r, t) that describe the spatial dynamics of the mth Zeeman component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' By assuming the spatial density 1 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(a) indicates that for static lattices at an identical q in the interaction dominated regime T is smaller and thus, using the same sSMA interpretation, would lie on a curve shifted to higher q (indicating a larger characteristic c2) relative to the moving lattice data shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3 4 2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 tF = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='22 ms tF = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='72 ms L R1 R2 px/ħkL pz/ħkL pz/ħkL (a) 4 2 0 2 4 2 0 2 tF = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='22 ms L R1 pz/ħkL (b) (c) Experimental Theoretical 4 2 0 2 4 2 0 2 tF = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='22 ms 4 2 0 2 4 2 0 2 tF = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='22 ms L R1 4 2 0 2 4 2 0 2 px/ħkL tF = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='72 ms L R1 R2 (d) (e) (f) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0 Optical density Optical density Optical density FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Time-of-flight snapshots of 2D integrated momentum distribution with ∆f = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER/h, uL = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2ER, t1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='72 ms, and tF = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='22 ms (a), 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='22 ms (b), and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='72 ms (c) in a shal- low ODT with LODT,z = 20 µm [48] at q/h = 42Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (d)-(f) Analogous theoretical results of in-situ momentum distribu- tions based on 2D GP simulations [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The colorbar scale indicates the optical density of the images for each row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' profiles |ψm(r, t)|2 for the different m states are the same but time-dependent (as we find in theory calculations dis- cussed in more detail later) it is implicit that while the spatial degree of freedom may contribute to the spin dy- namics the converse is not true, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', the spin degree of freedom does not feed back onto the evolution of the spa- tial profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Setting |ψm(r, t)|2 ∝ |φ(r, t)|2 and integrat- ing out the spatial degrees of freedom leads to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (1) with c2(t) ∝ (N − 1) � d3r |φ(r, t)|4 [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A key result of the presented experiment-theory work is that dSMA enables a transparent understanding of the non-trivial spin dynamics triggered by violent spatial evolution of the BEC that occurs on faster characteristic time scales than the spin dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Interplay of spin and spatial dynamics – To illustrate the typical spatial dynamics driving the spin-mixing ob- served in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1, we show experimental BEC momentum distributions in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2(a)-(c), which capture the emer- gence of violent spatial motion due to the interplay of momentum kicks generated by the moving lattice and the shallow ODT harmonic confinement on a timescale significantly shorter than the observed spin dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The rapid appearance of many of discrete momentum peaks and associated spatial dynamics shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2 simultaneously suggests that the deviations from sSMA predictions in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(a)-(c) are to be expected but also entices us to reconcile elements of the good qualitative agreement between the experimental data and sSMA cal- culations in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We note that the creation of the discrete momentum peaks is a coherent process and does not conflict with the assumption of the single spatial- mode approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In fact, the Supplemental Materi- als [48] show that Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(a)-(c) are replicated if different momentum components are used to construct ρ0, thereby providing experimental support for dSMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' To gain further insight, we use numerical GP calcu- lations [48], which provides a mean-field description of the full spinor BEC dynamics including both spatial and spin degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The complexity of the experi- mental system, in particular the disparate timescales of spin and spatial dynamics, precludes a full quantitative 3D GP treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Instead, we use a reduced dimension- ality 1D spinor GP calculation with parameters tuned to capture essential aspects of the experimental 3D system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This simplified treatment enables us to develop a qual- itative understanding of the experimental results [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The GP simulations (solid lines in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(d)-(f)) quali- tatively replicate the coherent spin dynamics, including a diverging oscillation period for q ≈ q∗ (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(e)) and robust harmonic oscillations for q < q∗ (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(d)) and q > q∗ (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(f)) with damped amplitude and drift- ing mean value, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We note that the up- ward drifting mean value in the experimental data for q > q∗ (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(c)), notably not captured by the 1D GP theory, may be induced by a subtle resonance mecha- nism between the spin and spatial dynamics [31] that depends sensitively on the dimensionality of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Higher dimensionality calculations will be presented else- where [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We use GP calculations to make a more fine-grained theoretical investigation of the relationship between the spatial and spin dynamics and, in particular, certify that while the BEC undergoes violent motion on fast time- scales: i) all Zeeman components are described by a com- mon spatial density profile |φ(r, t)|2, and ii) the sophis- ticated interplay of the moving lattice and ODT drive complex dynamics of c2(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' These observations lead us to self-consistently compare the 1D GP results to dSMA predictions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', mean-field dynamics based on Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (1) with c2(t) computed via the GP density |φ(r, t)|2 [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The GP and dSMA time traces in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(d)-(f) show excellent agreement with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This implicitly demonstrates the spin dynamics do not feed back into the spatial evolution, in agreement with expectations based on the disparity of energy scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The dSMA results also show significantly improved qualitative agreements with experimental data than sSMA results, providing further support for our dSMA model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' GP calculations of the spatial dynamics in the pres- ence of a moving lattice lead to appreciable variation of 4 c2(t) (red line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(h)) at t ≲ 3 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Over longer timescales c2(t) features an overall decrease, which we un- derstand as being driven by the relaxation of the spatial density profile as the BEC fractures into many momen- tum components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This behavior is in stark contrast with predictions for a static lattice (black line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(h)) that indicate c2(t) instead fluctuates around a well de- fined time-averaged value with small oscillations due to excitations created during the loading phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' After the initial transient behavior in the moving lattice, our re- sults (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(h)) indicate that the decay of c2(t) is slow relative to the characteristic time of the spin dynamics, and therefore observables such as the spin oscillation pe- riod are captured by sSMA [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Our calculations show that the precise details of the spin dynamics (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', quali- tative features including damping of the spin oscillations in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(a)) can depend greatly on the temporal vari- ation of c2(t) and hence a more rigorous description is provided by the GP and dSMA models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Single-particle resonances – The precise evolution of the spatial density profile, seen in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2(a)-(c) as a menagerie of seemingly irregularly distributed wavepack- ets in momentum space, can be understood with the aid of GP simulations (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2(d)-(f)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' To more precisely capture the impact of gravity and the finite trap depth, the simulations in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2 are performed using an axially symmetric 2D setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This numerical treatment is feasi- ble due to the relatively short time scales over which the spatial dynamics are studied in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Using 2D simula- tions also enables us to capture key details of the momen- tum kicks that 1D simulations, such as those employed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1, miss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' At short times, the lattice kicks atoms from the initial BEC with momentum p = 0 to the near- resonant state with momentum p = 2ℏkL (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2(a) and 2(d)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Subsequently, an additional momentum com- ponent, referred to as the lead peak (L-peak), splits from the p = 2ℏkL peak and decelerates as it travels away from the minima of the relatively shallow ODT poten- tial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' As the L-peak slows, its momentum evolves until it sweeps through the approximate resonance region cen- tered on the line pz ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='86px + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='20ℏkL (see the gray shaded region in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3(b) and Supplemental Materi- als [48]), where the lattice couples two nearly resonant momentum states, corresponding to the L-peak and a new peak labelled R1, that are separated by another 2ℏkL momentum kick (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2(b) and 2(e)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Similarly, the R1-peak also decelerates until it crosses the resonance region and the lattice generates a new peak labelled R2 (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2(c) and 2(f)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This pattern continues and the BEC fractures into a multitude of momentum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Figure 3(a) confirms our prior analysis, which suggests a dependence on both the confining ODT potential and moving lattice, by tracking the position of the L- and R1-peaks in time and momentum space in a compressed ODT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The position of the L-peak initially follows a tra- jectory consistent with a Lissajous curve derived from a 1 0 1 2 1 0 1 pz/ħkL px/ħkL (b) Red: R1-Peak Blue: L-Peak 1 0 1 pz/ħkL px/ħkL 1 0 1 1 2 3 4 tF (ms) 5 (a) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (a) Time evolution trajectories of the mean position of the L-peak (circles) and R1-peak (squares) in the pz-px plane taken in a compressed ODT with LODT,z = 33 µm [48], extracted from experimental images similar to those shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2(a)-(c) at q/h = 42Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' With increasing time, markers appear larger due to movement in the px axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Blue (red) solid lines are the L-peak (R1-peak) trajectories correspond- ing to Lissajous curves (see text) [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (b) Trajectories of panel (a) projected into the pz-px plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The gray shaded region encompasses an approximate resonance region where decelerated atoms are kicked by the lattice (to create, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', the R1-peak) [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' simplified classical treatment of a single particle initially moving with momentum 2ℏkL in the ODT (see Supple- mental Materials [48]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A sudden momentum kick im- parted by the lattice couples the L- and R1-peaks as the former crosses the approximate resonance region, shown by the gray region in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3(b) [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' As time increases (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', deeper into the trajectory of each peak), the agree- ment between the experimentally observed and the the- oretically predicted trajectories for the L- and R1-peaks deteriorates, as shown near the end of the time axis in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The deterioration is most clearly seen when comparing an ideal (effectively LODT,i = ∞) harmonic trap with our typical shallow ODT depth that features a comparatively small curvature (see Supplemental Mate- rials [48]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3, we use compressed ODTs instead of shallow ODTs, trading reduced visibility and condensate 2 3 55 fraction, to better illustrate the bending of the trajectory in the px − pz plane [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Conclusion – Our results open a new direction for the exploitation of spatial dynamics as a control knob for quantum simulations of many-body quantum spin models with tunable, time-dependent interactions [46, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Tai- lored modulation of the spatial profile could be used to control the precise time dependence of the spin-spin inter- actions and realize Floquet-driven spin dynamics [59, 60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This can have immediate applications for the dynam- ical generation of entangled spin states for quantum- enhanced sensing [36, 39, 61–63].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The observed short time dynamics also raise intriguing questions about equi- libration of spinor BECs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' For example, future studies might utilize the time dependence of c2(t) to force these systems along different equilibration trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Acknowledgements – D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' acknowledges support by the National Science Foundation (NSF) through grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' PHY-2110158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' L-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' acknowledges support by NSF through Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' PHY-2110052 and the Dodge Family College of Arts and Sciences at the University of Okla- homa (OU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' H-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' acknowledge support by the Noble Foundation and the NSF through Grant Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' PHY-1912575 and PHY-2207777.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This work used the OU Supercomputing Center for Education and Research (OSCER).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' ∗ lewisswan@ou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='edu † yingmei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='liu@okstate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='edu [1] Polkovnikov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Sengupta, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Silva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Vengalattore, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Colloquium: Nonequilibrium dynamics of closed in- teracting quantum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 83, 863 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [2] Bloch, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Dalibard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Zwerger, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Many-body physics with ultracold gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 80, 885 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [3] Stamper-Kurn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Ueda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spinor Bose gases: Symmetries, magnetism, and quantum dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 85, 1191 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [4] Lewenstein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Ultracold atomic gases in optical lattices: mimicking condensed matter physics and be- yond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 56, 243–379 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [5] Eckert, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Zawitkowski, �L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Leskinen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Sanpera, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Lewenstein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Ultracold atomic Bose and Fermi spinor gases in optical lattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 9, 133– 133 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1088/1367-2630/ 9/5/133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [6] Zhao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Tang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Webb, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' An- tiferromagnetic spinor condensates in a two-dimensional optical lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 114, 225302 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [7] Austin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Shaw, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Mahmud, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Manipulating atom-number distributions and detecting spatial distributions in lattice-confined spinor gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 104, L041304 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='L041304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [8] Austin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Shaw, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Mahmud, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Quantum critical dynamics in a spinor Hubbard model quantum simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 4, 61 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [9] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Tang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Austin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Shaw, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Liu, Quantum quench and nonequilibrium dynamics in lattice-confined spinor condensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 123, 113002 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [10] Becker, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Ultracold quantum gases in triangular optical lattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 12, 065025 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1088/1367-2630/12/6/065025.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [11] Zhao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Tang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Webb, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Dy- namics in spinor condensates tuned by a microwave dress- ing field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 89, 023608 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [12] Mahmud, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Tiesinga, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Dynamics of spin- 1 bosons in an optical lattice: Spin mixing, quantum- phase-revival spectroscopy, and effective three-body in- teractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 88, 023602 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='023602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [13] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Gabardos, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Zhu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lepoutre, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rey, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Laburthe-Tolra, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Vernac, Relaxation of the collective magnetization of a dense 3d array of in- teracting dipolar s = 3 atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 125, 143401 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='143401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Hild, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Fukuhara, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Schauss,J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Zeiher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Knap, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Demler, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Bloch, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='Gross, Far-from-equilibrium spin transport in Heisenberg quantum magnets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 113, 147205 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/ doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='147205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [15] Jepsen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spin transport in a tunable Heisenberg model realized with ultracold atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Nature 588, 403–407 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1038/ s41586-020-3033-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [16] Smale, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Observation of a transition between dynamical phases in a quantum degenerate Fermi gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 5, eaax1568 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/sciadv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aax1568.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/sciadv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aax1568.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Jiang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Zhao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Tang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='- M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Duan, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Liu, First-order superfluid-to-mott- insulator phase transitions in spinor condensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 93, 063607 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/ doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='063607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [18] Boll, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Science 353, 1257–1260 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aag1635.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aag1635.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [19] Asteria, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Zahn, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Kosch, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Sengstock, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Weitenberg, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Quantum gas magnifier for sub- lattice-resolved imaging of 3d quantum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Nature 599, 571–575 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1038/ s41586-021-04011-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [20] Sinitsyn, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Chernyak, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The quest for solvable multistate Landau-Zener models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 50, 255203 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1088/1751-8121/aa6800.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [21] Dogra, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Dissipation-induced structural in- stability and chiral dynamics in a quantum gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Science 366, 1496–1499 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aaw4465.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aaw4465.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [22] Law, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Pu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Bigelow, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Quantum spins mixing in spinor Bose-Einstein condensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 81, 5257–5261 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/ doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [23] Pu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Law, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Raghavan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Eberly, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 6 & Bigelow, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spin-mixing dynamics of a spinor Bose-Einstein condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 60, 1463– 1470 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/ PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1463.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [24] Yi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', M¨ustecaplıo˘glu, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Sun, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & You, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Single-mode approximation in a spinor-1 atomic conden- sate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 66, 011601(R) (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='011601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [25] Martin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A quantum many-body spin system in an optical lattice clock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Sci- ence 341, 632–636 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1236929.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1236929.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [26] Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spectroscopic observation of su(N )-symmetric interactions in Sr orbital mag- netism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Science 345, 1467–1473 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1254978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1254978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [27] Krauser, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Giant spin oscillations in an ultracold Fermi sea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Science 343, 157–160 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [28] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Jung, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Maxwell, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Turner, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Tiesinga, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett, Quantum phase transitions and contin- uous observation of spinor dynamics in an antiferromag- netic condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 102, 125301 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [29] Kronj¨ager, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Becker, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Navez, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Bongs, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Sen- gstock, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Magnetically tuned spin dynamics reso- nance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 97, 110404 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='110404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [30] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Pechkis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Wrubel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Schwettmann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Grif- fin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Barnett, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Tiesinga, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett, Spinor dynamics in an antiferromagnetic spin-1 thermal Bose gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 111, 025301 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='025301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [31] Jie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Guan, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Zhong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Schwettmann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Blume, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Mean-field spin-oscillation dynamics be- yond the single-mode approximation for a harmonically trapped spin-1 Bose-Einstein condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 102, 023324 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='023324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [32] Gross, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Atomic homodyne detection of continuous-variable entangled twin-atom states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Nature 480, 219–223 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [33] L¨ucke, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Twin matter waves for in- terferometry beyond the classical limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Sci- ence 334, 773–776 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1208798.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1208798.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [34] Hamley, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Gerving, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Hoang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Bookjans, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Chapman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spin-nematic squeezed vacuum in a quantum gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 8, 305–308 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [35] Peise, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Satisfying the Einstein–Podolsky–Rosen criterion with massive particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 6, 1–8 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [36] Zou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Beating the classical precision limit with spin-1 Dicke states of more than 10,000 atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 115, 6381–6385 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [37] Qu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Evrard, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Dalibard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Gerbier, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Probing spin correlations in a Bose-Einstein conden- sate near the single-atom level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 125, 033401 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='033401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [38] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Anders, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Idel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Feldmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Bondarenko, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Loriani, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lange, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Momentum entan- glement for atom interferometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 127, 140402 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='140402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [39] Guan, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Biedermann, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Schwettmann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Lewis-Swan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Tailored generation of quantum states in an entangled spinor interferometer to over- come detection noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 104, 042415 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/ PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='042415.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [40] Kunkel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spatially distributed multipar- tite entanglement enables epr steering of atomic clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Science 360, 413–416 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aao2254.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aao2254.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [41] Lange, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Entanglement between two spatially separated atomic modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Sci- ence 360, 416–418 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aao2035.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aao2035.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [42] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Kunkel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Prufer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lannig, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rosa-Medina, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Bonnin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Garttner, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Strobel, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Oberthaler, Simultaneous readout of noncommuting col- lective spin observables beyond the standard quantum limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 123, 063603 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='063603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [43] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Kunkel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Prufer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lannig, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Strohmaier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Garttner, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Strobel, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Oberthaler, De- tecting entanglement structure in continuous many- body quantum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 128, 020402 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/ PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='020402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [44] Deuretzbacher, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Becker, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Bjerlin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Reimann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Santos, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 90, 013611 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='013611.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [45] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Volosniev, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Petrosyan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Valiente, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Fedorov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Jensen, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Zinner, Engi- neering the dynamics of effective spin-chain models for strongly interacting atomic gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 91, 023620 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='023620.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [46] Davis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Bentsen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Homeier, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Schleier-Smith, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Photon-mediated spin- exchange dynamics of spin-1 atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 122, 010405 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='010405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [47] Periwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Programmable interactions and emer- gent geometry in an array of atom clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Nature 600, 630–635 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [48] URL will be inserted by publisher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' For further details on the experimental setup, the theory formulation and simulation, and supporting experimental and theoretical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [49] Guan, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Manuscript in preparation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [50] Wu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Niu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Nonlinear Landau-Zener tunneling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 61, 023402 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [51] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Guan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Ome, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Bersano, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Mossman, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Engels, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Blume, Nonexponential tunneling due to mean-field-induced swallowtails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 125, 213401 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [52] Smerzi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Fantoni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Giovanazzi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Shenoy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 79, 4950–4953 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 7 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [53] Raghavan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Smerzi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Fantoni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Shenoy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Coherent oscillations between two weakly coupled Bose- Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 59, 620–633 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='620.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [54] Guan, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Lewis-Swan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Identifying and harnessing dynamical phase transitions for quantum- enhanced sensing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Research 3, 033199 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/ PhysRevResearch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='033199.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [55] Evrard, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Qu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Jim´enez-Garc´ıa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Dalibard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Gerbier, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Relaxation and hysteresis near Shapiro res- onances in a driven spinor condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 100, 023604 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='023604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [56] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Hoang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Gerving, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Land, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Anquez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Hamley, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Chapman, Dynamic stabilization of a quantum many-body spin system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 111, 090403 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='090403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [57] Hoang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Parametric excitation and squeez- ing in a many-body spinor condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Com- mun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 7, 11233 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1038/ ncomms11233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [58] Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Sun, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Chapman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & You, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Localization of spin mixing dynamics in a spin-1 Bose-Einstein condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 81, 033602 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/ PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='033602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [59] Fujimoto, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Uchino, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Floquet spinor Bose gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Research 1, 033132 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https:// link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevResearch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='033132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [60] Li, Zheng-Chun and Jiang, Qi-Hui and Lan, Zhihao and Zhang, Weiping and Zhou, Lu, Nonlinear Flo- quet dynamics of spinor condensates in an optical cav- ity: Cavity-amplified parametric resonance, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 100, 033617 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='033617 [61] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Feldmann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Gessner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Gabbrielli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Klempt, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Santos, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Pezze, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Smerzi, Interferometric sen- sitivity and entanglement by scanning through quan- tum phase transitions in spinor Bose-Einstein conden- sates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 97, 032339 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https: //link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='032339.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [62] Mirkhalaf, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Witkowska, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Lepori, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Su- persensitive quantum sensor based on criticality in an antiferromagnetic spinor condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 101, 043609 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='043609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [63] Sundar, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Bosonic pair production and squeez- ing for optical phase measurements in long-lived dipoles coupled to a cavity (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='13090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Supplemental Material: Manipulation of nonequilibrium spin dynamics of an ultracold gas in a moving optical lattice Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Hardesty-Shaw,1 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Guan,2, 3, 4 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Austin,1 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Blume,2, 3 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lewis-Swan,2, 3 and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Liu1 1Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA 2Homer L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Brooks Street, Norman, Oklahoma 73019, USA 3Center for Quantum Research and Technology, The University of Oklahoma, 440 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Brooks Street, Norman, Oklahoma 73019, USA 4Department of Physics and Astronomy, Washington State University, Pullman, WA 99164, USA (Dated: January 10, 2023) arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='02707v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='quant-gas] 6 Jan 2023 S2 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' EXPERIMENTAL DETAILS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Experimental sequence Our experimental sequences start by creating a S = 1 spinor BEC of up to 105 sodium (23Na) atoms in a crossed, anisotropic harmonic optical dipole trap (ODT) at a particular quadratic Zeeman shift q tuned by external magnetic fields, similar to our previous work [1–3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We apply a resonant radio-frequency (RF) pulse to prepare an initial state with fractional population ρ0 = ⟨ˆn0⟩/N = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5 in the |S = 1, m = 0⟩ state and zero magnetization, M = ⟨ˆn1 − ˆn−1⟩/N = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We then adiabatically load the initial state into a one-dimensional moving optical lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The lattice is constructed from two nearly orthogonal lattice beams originating from a single-mode laser with wavelength 1064 nm and characterized by the potential Vlat(r, t) = uL cos2[kL ·r−2π∆f(t)t/4], with lattice vector kL oriented at approximately 40◦ from the z-axis defined by gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The resulting standing wave potential has a lattice spacing of λL/2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='81µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The time-dependent frequency difference ∆f(t) = |fH −fV |, where fH and fV are the corresponding lattice beam frequencies, determines the velocity v of the moving lattice, v = λL(fH − fV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The velocity v is manipulated via a linear ramping rate α = h(∆f(t2) − ∆f(t1)) t2 − t1 such that when v < 0 (v > 0) the atoms move in the p = 2ℏkL (p = −2ℏkL) direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In the main text, the data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1 were taken with positive velocities, while the data in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2 and 3 were taken with negative velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The value of ∆f is initially set to zero and, after an adiabatic ramp of the lattice depth uL to its final value at t = t1, is quenched to its final value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The total time the atoms spend in the lattice is denoted by tF (for details see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(i) of the main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' At the conclusion of each sequence, the trapping potentials are turned off so that the atoms can ballistically expand and be captured using a two-step microwave imaging after a given time of flight (TOF) [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Each data point in this paper is an average of at least 8 repeated measurements and all error bars reported are estimated one standard deviations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Optical dipole trap An essential element of our experimental setup is a harmonic confinement potential skew to the moving lattice potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The interplay of these two potentials triggers the nontrivial spatial dynamics that are key to our findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The harmonic confinement is provided by a crossed optical dipole trap (ODT) constructed by two orthogonal beams with wavelength λ = 1064 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' One ODT beam (ODT1) is orthogonal to gravity while the other (ODT2) is at a 76 degree angle relative to gravity (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' ODT1 is along the xODT axis, while the projection of ODT2 into the plane normal to gravity falls along the yODT axis (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The moving lattice lies 72 degrees horizontally from ODT1 and is tilted at a 40 degree angle relative to gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Due to experimental considerations, our theoretical calculations therefore occur in three distinct coordinate systems that share a common z axis defined by gravity: the coordinate systems defined by the ODT potential, the moving lattice, and the imaging plane, as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' xODT px yODT py kL,x kL,y 72° 30° pz & kL,z zODT xODT yODT pz & kL,z zODT kL,x kL,y px py 14° 76° g a) b) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' a) The three coordinate systems used in our theoretical calculations projected into the plane spanned by px and py.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Blue (red) [black] axes refer to the ODT (moving lattice, with associated lattice vector kL) [imaging plane, with associated momentum vector p] coordinate system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' b) Similar to a) but projected into the plane spanned by yODT and zODT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The green vector labeled by g indicates the direction of gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The projections in this figure are to scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S3 The potential generated by our crossed ODT can be parameterized to a good approximation by V3D(xODT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' yODT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' z) = −V0 � � � 1 1 + x2 ODT z2 0 exp � �−2(y2 ODT + z2) w2 0 � 1 + x2 ODT z2 0 � � � + 1 1 + y2 ODT z2 0 exp � �−2(x2 ODT + z2) w2 0 � 1 + y2 ODT z2 0 � � � � � � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S1) where V0 = P0hαfsλ2λNa 2 2π3mec2w2 0(λ2−λNa2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' w0 = 33 µm is the ODT beam waist,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' z0 = πw2 0 λ is the associated Rayleigh length,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' P0 is the ODT power,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' λNa is the D2 line of sodium atoms,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' λ is the wavelength of the ODT beam,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' me is the mass of an electron,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' h (ℏ) is the (reduced) Planck constant,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' αfs ≈ 1 137 is the fine structure constant,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' g is the gravitational acceleration,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' and c is the speed of light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The ODT power, P0, can be varied to change the effective trap depth and size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Shallow ODT Compressed ODT LODT,z LODT,z 40 30 20 10 0 10 60 40 20 0 20 ODT Potential (kHz) zODT (μm) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Cross-sectional cut of the ODT potential after accounting for gravity in the zODT-direction at a local minimum in the xODT and yODT directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The effective length of the ODT along the zODT-direction is LODT,z = 20µm for the shallow ODT (red solid line) and LODT,z = 33µm for the compressed ODT (blue dashed line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Similar plots can be made for the ODT potential in the yODT-direction, giving an effective length of LODT,y = 31µm (LODT,y = 40µm) for the shallow (compressed) ODT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S2 we utilize Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S1) and take into account the effects of gravity to generate cross-sectional cuts for the compressed ODT trap (P0 ≈ 35 mW), which was utilized for the experiments discussed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3 of the main text and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S3 of the Supplementary Information, and the shallow ODT trap (P0 ≈ 17 mW), which was utilized for all other experimental figures and discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The effective trap length LODT,i is defined as the difference between the values for which V3D takes on a local maximum and local minimum (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S2) in the i-coordinate axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Thus, the shallow trap (red solid line) is characterized by a smaller effective trap length LODT,i than the compressed trap (blue dashed line), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', atoms with high momentum exit the shallow trap more easily than the compressed trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Since the trapping extends over a larger spatial region for the larger LODT,i, the compressed trap extends the time scales over which the complex spatial dynamics can be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' However, the extended trapping times come at the cost of an increased average atom temperature, which in turn tends to reduce the coherence and condensate fractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This is demonstrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S3, which exhibits less coherent peaks than those shown in the analogous time-of-flight (TOF) image in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2(c) of the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spin-mixing oscillations All spin oscillation data presented in the main text are extracted from considering just the zero momentum, p = 0, peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' For completeness, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S4 presents spin oscillation data derived from the same data sets as Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(a)-(c) of the main text but obtained by counting all trapped atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Using this data, we obtain similar results to Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(a)-(c);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' specifically, the respective fitted periods agree within the margins of the errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The agreement between the distinct counting methods provides further support for the assumption of a dynamical single spatial-mode approximation (dSMA), as it indicates that coherence is retained between different momentum components as they evolve under the dynamics driven by the lattice potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(g) of the main text we see good agreement between the experimental data and the sSMA predictions in the Zeeman-dominated region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This is because we expect the dynamics of c2(t) to be less important in this region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' To support this, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S5 shows experimental data for time traces of ρ0, the fractional population of the |S = 1, m = 0⟩ state, obtained for a large range of ∆f at q/h = 42 Hz, in the Zeeman-dominated region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We observe no significant S4 4 2 0 2 4 4 2 0 2 L R1 tF = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='72 ms px/ħkL pz/ħkL Optical Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3 R2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Typical experimental TOF images obtained with the compressed ODT (LODT,z = 33µm, LODT,y = 40µm) displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Data are taken following the same experimental sequence as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2(c) of the main text, which instead used the shallow ODT (LODT,z = 20µm, LODT,y = 31µm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The colorbar scale on the right indicates the optical density of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' ρ0 tF (ms) tF (ms) q < q* q ≈ q* q > q* tF (ms) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0 35 30 25 20 15 10 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0 35 30 25 20 15 10 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0 35 30 25 20 15 10 5 (a) (b) (c) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Example time traces of ρ0, the fractional population of the |S = 1, m = 0⟩ state, obtained by counting all trapped atoms (see text) for: (a) q/h = 15 Hz, (b) q/h = 25 Hz, and (c) q/h = 65 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Here, q is the quadratic Zeeman energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' All data is obtained from an experimental sequence illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(i) of the main text with final lattice depth uL = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3ER and fixed ∆f = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER/h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Sinusoidal fits (lines), which are used to extract the spin oscillation period T, are shown to guide the eye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' dependence of the period or amplitude of the oscillations on the actual value of ∆f (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', the speed of the moving lattice), and thus c2(t) associated with the resulting spatial dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' DETAILS ON THEORETICAL TREATMENT OF SPIN-1 GASES A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Gross-Pitaevskii treatment of spin-1 condensates We consider a spin-1 condensate of N sodium atoms of mass MNa under external confinement in the presence of a moving lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The two-body interactions are characterized by the spin-independent and spin-dependent interaction coefficients g0 and g2, g0 = 4πℏ2(aS=0 + 2aS=2) 3MNa (S2) and g2 = 4πℏ2(aS=2 − aS=0) 3MNa , (S3) where aS=0 = 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='9a0 and aS=2 = 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5a0 are, respectively, the s-wave scattering lengths for the S = 0 and S = 2 states with a0 the Bohr radius [1, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Our treatment includes the quadratic Zeeman shift term (proportional to q) but not the linear Zeeman shift, which does not play a role for the dynamics since it is conserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' At the mean-field level, the coupled dynamics of the spin and spatial degrees of freedom is described by the time- dependent spinor Gross-Pitaevskii (GP) equation, S5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 25 20 15 10 5 tF (ms) ρ0 Δf = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 ER/h Δf = 7 ER/h Δf = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3 ER/h q/h = 42 Hz FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Time traces of ρ0 at fixed q/h = 42Hz and a range of lattice speeds, set by ∆f = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER/h (blue), 7ER/h (green), and 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3ER/h (black).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' All data is for a final lattice depth uL = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3ER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Sinusoidal fits (lines), which are used to extract the spin oscillation period T, are shown to guide the eye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The ∆f = 7ER/h (∆f = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3ER/h) curves are offset by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4) in the y direction for visual clarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' iℏ ∂ ∂t � � ψ−1 ψ0 ψ1 � � = � − ℏ2∇2 2MNa + V (r, t) + g0(N − 1) � |ψ−1|2 + |ψ0|2 + |ψ1|2�� � � ψ−1 ψ0 ψ1 � � + � � q 0 0 0 0 0 0 0 q � � � � ψ−1 ψ0 ψ1 � � (S4) + g2(N − 1) � � |ψ−1|2 + |ψ0|2 − |ψ1|2 ψ∗ 1ψ0 0 ψ1ψ∗ 0 |ψ−|2 + |ψ−1|2 ψ−1ψ∗ 0 0 ψ∗ −1ψ0 |ψ1|2 + |ψ0|2 − |ψ−1|2 � � � � ψ−1 ψ0 ψ1 � � , where V (r, t) includes contributions from the moving optical lattice Vlat(r, t), the confining potential (see Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' I A), and gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Within the GP formalism, each Zeeman component of the BEC is described by a mean-field wavefunc- tion ψm(r, t), such that both spin and spatial degrees of freedom, and their interplay, are simultaneously captured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The model ignores quantum fluctuations, which are expected to contribute minimally for the regimes in which the experiment operates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' For the scenarios reported in the main text, solution of the GP equation for the full 3D system by direct numerical integration is not feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This is due to both the disparate timescales for the spin and spatial degrees of freedom as well as the large spatial region occupied by the BEC when it is kicked by the lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Specifically, the repeated momentum kicks imparted by the moving optical lattice on the fractured BEC lead to intricate spatial structure as well as a rapidly expanding cloud that must be tracked over comparatively long time scales (36 ms in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1 of the main text), requiring a large simulation box with good spatial resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Thus, the GP result presented in the main text are from numerical simulations of reduced dimensionality 1D (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1) or 2D (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2) models, wherein the interaction coefficients g0 and g2, mean spatial density of the BEC and trapping potential V (r, t) are adjusted to capture the features of the experimental setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The GP results presented are generated by numerically integrating the coupled GP equations using the XMDS2 software package [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The dynamics shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 2-3 of the main text are restricted to a few ms, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', much shorter times than those on which the spin oscillation dynamics occurs (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1 of the main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' These dynamics out to 3 ms are amenable to 2D GP equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' To this end, we define a “2D simulation plane” by the direction of the px − pz imaging plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The reduced dimensionality trap V2D is obtained by projecting the 3D trap V3D onto the 2D simulation plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Our simulations capture the role of the ODT trap (including, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', non-harmonic corrections to the confining potential) and its interplay with gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Approximating the azimuthal and polar angles introduced in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' I B by 30◦ and 76◦, respectively, the 2D trap is given by V2D(y, z) = V3D [cos(76◦) cos(30◦)y, − sin(30◦)y, sin(76◦)z] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S5) The projection of the moving lattice in the px − py plane is described by kL,x (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Neglecting the 12◦ angle between the kL,x axis and the negative px axis, the moving lattice is in the px − pz plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Given the fact that the S6 lattice has a 40◦ angle relative to the pz axis (see the discussion above Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S1), the lattice vector is described by kL = kL[− sin(40◦), 0, cos(40◦)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The reduction from 3D to 2D does change the mean density and, correspondingly, the chemical potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This is accounted for by introducing the effective 2D interaction strength geff 2D;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' similar to the 1D case, g0(N − 1) and g2(N − 1) are replaced by geff 2D and geff 2D/28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='06, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The coupling constant geff 2D is set by enforcing that the chemical potential of the 2D system, obtained by solving the scalar GP equation, is equal to that of the 3D system at t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The procedure for mapping the full 3D system to a reduced dimensionality model is not unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Figure S6(c) illustrates this exemplary for the 1D case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Since the chemical potential µ is the characteristic energy scale of the time-independent scalar GP equation and c2 the characteristic energy scale of the effective spin Hamiltonian, it is natural to demand that the reduced dimensionality scalar GP model reproduces these two energy scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The solid and dashed horizontal lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S6(c) show the chemical potential µ and the spin-spin interaction strength c2 of the 3D system in the presence of a static optical lattice with uL = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3 ER (note that the initial state preparation within the full 3D framework is significantly simpler than tracking the time evolution);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' this is the final lattice depth used in the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Fixing the parameters of the scalar 1D GP equation requires setting the values of ℏωz/ER and geff 1D/(ERk−1 L ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The 1D scalar GP equation is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S7) with the r-vector replaced by z and g0(N − 1) replaced by geff 1D, where geff 1D has units of “energy times length”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The 1D spinor GP equation is obtained analogously, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', g0(N − 1) and g2(N − 1) are replaced by geff 1D and geff 1D/28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='06, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The black and red dashed lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S6(c) show c2 and µ as a function of geff 1D/(ERk−1 L ) for fixed ℏωz/ER (plugging in uL = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3 ER, this corresponds to ωz = 197 Hz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' It can be seen that the dashed lines cross the solid lines at geff 1D/(ERk−1 L ) ≈ 7 and 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5, respectively, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', for the ℏωz/ER value chosen there exists no unique geff 1D/(ERk−1 L ) at which the values of c2 and µ calculated within the 1D framework agree with the respective values calculated within the 3D framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Since we do not find a unique geff 1D/(ERk−1 L ) for other values of ℏωz/ER either, there exists—unless additional conditions are added—an arbitrariness in the chosen 1D simulation parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' With this in mind, we select parameters that place the divergence of T at about the same q value as observed experimentally (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S6(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Specifically, the simulations shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(d)- 1(f) of the main text (and in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S6(a)) use the same final lattice depth as the experiment (namely, uL = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3 ER), ωz = 197 Hz, and geff 1D/(ERk−1 L ) = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (c) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (a) Spin oscillation period T as a function of Zeeman shift q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The black markers show T extracted from 1D spinor GP calculations that account for the spin-independent and spin-dependent interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The spin oscillation period diverges around q∗/h = 22 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Emulating the analysis of the experimental data shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(g) of the main text, the solid line is obtained by fitting the 1D GP data using the analytical sSMA expressions and treating the spin-spin interaction as a fitting parameter (namely, c2,fit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (b) Time evolution of the overlap of the Zeeman states (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S10)) as a function of the Zeeman shift q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' An overlap F of one indicates that all Zeeman states share a common spatial density profile, consistent with the dSMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The only significant deviation from unity is observed for relatively long times (t ≳ 20 ms) when q ≈ q∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (c) Parameter calibration of reduced dimensionality 1D GP equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The black and red solid horizontal lines show the interaction energy c2 (left axis) and chemical potential µ (right axis), respectively, for a 3D scalar BEC in the presence of a static lattice with uL = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3 ER for N = 80, 000 and angular trapping frequencies ωx = 125 Hz, ωy = 125 Hz, and ωz = 155 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The red and black dashed lines show c2 and µ, obtained by solving the 1D scalar GP equation as a function of the 1D coupling constant geff 1D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The 1D calculations use ωz = 197 Hz and uL = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='3 ER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Single spatial-mode approximation and effective spin model We now motivate and introduce an approximate treatment that decouples the spin and spatial degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Typically, the energy scales associated with the spin-independent terms of the Hamiltonian (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', the energy scales of the external harmonic and lattice confinement, the interactions that are proportional to g0, and the chemical potential µ of the system) are of the order of kilohertz and much larger than those of the spin-dependent terms of 70 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5 (b) 60 (2H) 5 α (kHz) 50 40 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5 30 20 4 5 10 15 20 81Dk/ER60 (a) 45 (su) L 30 15 0 0 15 30 45 60 q/h (Hz)ur(b)S7 the Hamiltonian (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', the value of the Zeeman shift q and the interactions that are proportional to g2), which are of the order of hertz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This scale separation motivates an approximate treatment wherein the spin and spatial degrees of freedom are treated independently [6], with the spatial degree of freedom controlled solely by the spin-independent terms of the Hamiltonian and the spin dynamics governed by the spin-dependent terms of the Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Following the literature [7], we make a single spatial-mode approximation (SMA) wherein the bosonic field operators are decomposed as ˆψm(r) = ˆamφ(r, t), (S6) where ˆam (ˆa† m) is a bosonic operator that destroys (creates) a particle in Zeeman state m in a spatial mode defined by the spatial mean-field wavefunction φ(r, t), which is normalized to one, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', � d3r|φ(r, t)|2 = 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S6), m labels the Zeeman states (m = 0 and ±1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The key assumption of the SMA is that φ(r, t) is identical for all three Zeeman states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The mean-field wave function φ(r, t) is the solution to the time-dependent scalar Gross-Pitaevskii (GP) equation iℏ∂φ(r, t) ∂t ≈ � − ℏ2∇2 2MNa + V (r, t) + g0(N − 1)|φ(r, t)|2 � φ(r, t), (S7) where V (r, t) is the same as Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The spin dynamics, in turn, is governed by the effective Hamiltonian ˆHeff(t), ˆHeff(t) = c2(t) 2N ˆS · ˆS + q(ˆa† 1ˆa1 + ˆa† −1ˆa−1), (S8) where the quantity ˆS denotes a collective spin operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The time-dependent interaction strength c2(t), c2(t) = (N − 1)g2 � d3r|φ(r, t)|4, (S9) is driven by the time dependence of the spatial mean-field wave function φ(r, t), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', the spin dynamics is governed— through the coefficient c2(t)—by the spatial dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In our experiment, the spatial dynamics is, to a large degree, induced by the moving optical lattice potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The time dependence of the interaction coefficient c2(t) is distinct from prior works (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [2, 8, 9]), which assumed that the condensate is prepared in the ground-state of a static confining potential such that subsequent spatial motion is minimal and to a good approximation |φ(r, t)|2 = |φ(r, 0)|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' For this reason, we use the distinguishing nomenclature of dynamical SMA (dSMA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' time-dependent c2) and static SMA (sSMA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' time-independent c2) for our and prior works, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The latter is recovered from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S8) by assuming c2(t) = c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' To zeroth-order, the dynamics of the moving lattice experiments during the first few milli- seconds is dominated by spatial dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' At later times, however, the spin degrees of freedom become increasingly important as evidenced by the observation of spin oscillations (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1 of the main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The dSMA is supported by our 1D spinor GP calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' First, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1 of the main text shows good agreement between dSMA and GP predictions for ρ0(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Second, we can explicitly validate the assumption that each Zeeman state occupies a single common spatial mode by computing the overlap, F = | � dxψ∗ 0(x)ψ1(x)| �� dx|ψ0(x)|2 �� dx|ψ1(x)|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S10) The time evolution of this quantity over a range of Zeeman shifts is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S6(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We observe that F remains near unity across the interaction dominated regime (q < q∗) throughout the timescales we investigate (up to 40 ms in the GP calculations, which is longer than the 30 ms covered by the experiment).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In the Zeeman regime, the overlap remains close to unity for t ≲ 20 ms before minor deviations appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' As might be expected naively, a substantial breakdown of the single spatial-mode approximation occurs in a narrow region around the critical regime, q ≈ q∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The experimental spin oscillation data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1 of the main text are analyzed using the sSMA, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', the mean- field equations associated with ˆHeff(t) for a time-independent spin-spin interaction coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Specifically, the spin oscillation period T is extracted by fitting the experimentally measured fractional population ρ0(t) for various q with sinusoidal functions, which provide good approximations to the spin oscillation dynamics away from the critical regime where the period diverges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' All fits include at least one full period of oscillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' To determine the spin-spin interaction coefficient from the extracted periods, we perform a nonlinear least squares fit of the T-versus-q data using the analytical solutions to the mean-field equations associated with ˆHeff [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The fit uses ρ0(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5 and θ(0) = 0 and treats c2 as a free parameter (we denote the fit result by c2,fit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' While ρ0(0) is measured experimentally, θ(0) is not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' However, based on the experimental sequence used to prepare the initial Zeeman populations we expect that θ(0) is equal to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' As reported in the main text, our fitting procedure yields c2,fit = 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='7(1) Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S8 To gain additional insights, we perform an analogous analysis for the spin oscillation data obtained by solving the 1D spinor GP equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Specifically, we obtain ρ0(t) and the associated period T by solving the spinor GP equations (see markers in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S6(a)), and then extract c2,fit from the T-versus-q data using the sSMA (solid line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S6(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' For the 1D spinor GP simulations shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S6(a), the spin oscillation period diverges at q∗/h ≈ 22 Hz, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', at roughly the same value of the Zeeman energy as in the experiment presented in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The qualitative agreement between the experimental and theoretical analysis, particularly the consistency with the sSMA results, is encouraging and suggests that the 1D spinor GP simulations provide a qualitatively correct description of the moving lattice experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The GP simulations also enable us to better understand why the spin oscillation period extracted from the exper- imental data is consistent with the predictions of sSMA, even though the time traces show significant discrepancies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In the regime q ≤ q∗, the sSMA theory predicts that the spin oscillation period should be strongly correlated with the spin-spin interaction strength [3, 10, 11], which the GP results (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 1(h) of the main text) predict to decay relatively slowly, compared to the typical timescales of the spin degree of freedom, apart from initial transient dynamics for t ≲ 3 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This suggests that the spin oscillation period obtained from the experimental data for q ≤ q∗ should be interpreted as being reflective of the characteristic scale of c2(t) over the experimental sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' On the other hand, in the regime q ≫ q∗ the oscillation period is expected to be dominated by the quadratic Zeeman shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Thus, the experimentally observed spin oscillation periods are fit well by the sSMA predictions as the time dependence of c2(t) is less relevant for larger q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' CLASSICAL INTERPRETATION OF SPATIAL DYNAMICS: LISSAJOUS CURVES A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Model Figure 3 of the main text presents an analysis of the experimentally observed spatial dynamics of the condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Specifically, the plot tracks the positions of the L- and R1-peaks in momentum space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' These peaks are extracted by fitting each momentum peak in a TOF image with a 2D Gaussian and extracting the fitted position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Positions are then converted to quasimomentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The main text compared the experimental results to the predicted Lissajous curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This section introduces the classical trajectory model that generates these Lissajous curves, using a single confined particle and initial conditions that are determined self-consistently from the properties of the experimental optical lattice and confining potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='8 pcom,x/ℏkL pcom,y/ℏk FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Example trajectory of the center-of-mass momentum pcom extracted from a 2D GPE simulation via pcom = � d2p p � m |ψm(p, t)|2, for a lattice depth of uL = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2ER and ∆f = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER/h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Our model is underpinned by the insight that the spatial motion of the condensate atoms is predominantly controlled by the approximately harmonic trap and the main effect of the optical lattice is to stroboscopically impart sudden (instantaneous) kicks to the atoms when a resonance condition is satisfied dynamically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This is well supported by an inspection of the time evolution of the center-of-mass (COM) momentum of the entire atomic cloud according to a 2D GP calculation, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The phase-space trajectory of the COM momentum is dominated by smooth evolution – as different momentum components move freely within the confining potential V2D(x, z) – with the exception of a sequence of regular abrupt reversals, indicating the sudden imparting of 2ℏkL to a subset of atoms by the moving optical lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Our classical model constructs analogous Lissajous curves for an ensemble of individual (non-interacting) momentum components – defined with respect to their initial position and velocity within the trap S9 – that are treated as classical particles traversing the 3D confining potential V3D(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Note that our classical trajectory simulations employ the full 3D potential since these calculations are not numerically challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The initial position and momentum for each particle are determined by solving for the dynamically appearing resonances at which the moving lattice couples different momentum components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' For concreteness, we introduce the specifics of our model by using it to describe the trajectory of the L-peak, which is assumed to be instantaneously populated at t = t1 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', when the lattice detuning is suddenly quenched) due to a near-resonant coupling mediated by the moving lattice between the initial BEC at p = 0 and a second non-zero momentum state p = 2ℏkL whose kinetic energy differs by 4ER/h ≈ ∆f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Already, we note that the assumption that the L-peak is “born” instantaneously at t = t1 is an oversimplification, but we argue that for lattice depths uL on the order of ER the coupling between momentum states generated by the moving lattice is much faster than any subsequent spatial motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Based on this description, the L-peak is initially located at the central minimum of the trap, which herein we define as the origin of our co-ordinate system, rL(t = t1) = (0, 0, 0), as it is directly outcoupled from the stationary BEC, and has initial momentum pL(t = t1) = 2ℏkL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We expect the L-peak to quickly separate from the stationary BEC and then to begin climbing the walls of the confining potential and decelerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' To describe this evolution, we assume that the mean position and momentum of the L-peak follow a trajectory defined by an equivalent classical particle subject to the confining potential V3D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Such a trajectory is described by solving the equations, MNa d2r(t) dt2 = −∇V3D [cos(30◦)x − sin(30◦)y, cos(76◦) sin(30◦)x + cos(76◦) cos(30◦)y + sin(76◦)z, sin(76◦)z − cos(76◦)y] (S11) and p(t) = MNa dr(t) dt , (S12) for the mean position and momentum of the corresponding classical particle, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' At this point, we highlight that we are assuming that the moving lattice is effectively invisible for the L-peak’s motion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' this is justified since the L-peak’s motion rapidly changes its “status” from being on resonance with the p = 0 BEC at t = t1 to being off-resonant with the p = 0 BEC for t just a bit larger than t1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The L-peak moves freely within the confining potential until it dynamically satisfies a resonance condition where the optical lattice instantaneously couples the L-peak with momentum pL(t) to a new state – the R1-peak – with momentum pR1(t) = pL(t)+2ℏkL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The resonance condition is defined by equating the difference between the kinetic energies of these states (it is assumed that the potential energy is unchanged as the new momentum component is created at the same location within the trap) with the energy imparted by the moving lattice, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER, |pL(t) + 2ℏkL|2 2MNa − |pL(t)|2 2MNa = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S13) For the lattice vector kL used in our moving-lattice experiment, this resonance condition can be written as a relation between different momentum components of the L-peak, pL(t) · kL = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6/4)ℏk2 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S14) In the experiment, we approximately have kL = kL[− sin(40◦), 0, cos(40◦)], which leads to the resonance condition of pL,z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='86pL,x + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='20ℏkL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The critical time when this resonance is fulfilled is estimated to be tcr = 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ℏ/ER = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='67 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The time tcr also defines the time at which we assume the R1-peak is “born”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The initial condition for the R1- peak is then straightforward to compute as rR1(tcr) = rL(tcr) = (−65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='0, 0, 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1)k−1 L and pR1(tcr) = pL(tcr) + 2ℏkL = (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='42, 0, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='35)ℏkL + 2ℏkL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The computation of the Lissajous curve for the R1-peak, and subsequent creation of, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', the R2-peak, follows the same scheme as discussed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We reiterate that these theoretical calculations should only be relied upon as a qualitative guide to help understand the mechanism of trap-induced resonances that lead to the experimentally observed dynamical fracturing of the BEC in momentum space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The Lissajous curves can only provide an approximate guide to the observed trajectories of the fractured components in momentum space for a number of reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Primarily, these are that the phase-space trajectories generated by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S11) and (S12) ignore the role of: i) interactions and ii) time-dependent corrugation of the confining potential due to the moving lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lastly, we comment on the width of the approximate resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' As previously discussed, the optical lattice couples momentum states separated by 2ℏkL over a finite energy window, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', states that do not exactly fulfill the resonance criterion Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' While quantifying the width of this energy window, or resonance region, is not straightforward, and further complicated by the role of interactions and motion of the BEC components in the ODT, we can provide a rough estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S10 We use that the coupling of the initial p = 0 BEC to the p = 2ℏkL momentum state is off-resonance (the energy difference between these states is 4ER rather than 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER) to determine an estimate of a minimum width of the resonance region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Specifically, the fact that we see atoms transfer from the zero momentum state to the 2ℏkL momentum state at t ≈ t1 for a detuning of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER, even though the true resonance for these momentum states occurs for a detuning of 4ER, indicates that the lattice-induced coupling of momentum states is near resonance for a window of at least 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='6ER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Correspondingly, the upper and lower boundaries of the resonance width can be derived by replacing the right hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' (S13) with 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='2ER and 4ER, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' This width is what is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3(b) of the main text and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S8 as gray shaded regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Experimental comparison with Lissajous curves pz/ħkL px/ħkL Red (Blue): R1-Peak (L-Peak) Solid lines: theory Markers: experiment 2 1 0 1 2 1 0 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Trajectories of the mean position of L-peak (blue triangles) and R1-peak (red squares), extracted similarly to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3 of the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Markers represent data taken in a typical ODT (LODT,z = 20 µm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Blue (red) solid lines are L-peak (R1-peak) positions according to Lissajous curves based on a calculation of a classical point particle in an ideal (effectively, LODT,i = ∞) harmonic trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Preceding L-peak formation, atoms occupy the p = 0 state at pz = px = 0 (prepared BEC) and the p = 2ℏkL state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The gray shaded region marks the approximate resonance region where decelerated atoms are kicked by the lattice (to create, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', the R1-peak).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' As illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3 of the main text, theoretical calculations of the Lissajous trajectories qualitatively reproduce the experimental trajectories that utilize the compressed ODT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' However, as discussed in the main text, ODT com- pression is accompanied by lower condensate fractions and reduced visibility (see also Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S8 we compare the Lissajous curves with the ODT typically employed in our experiment (uncompressed trap with LODT,z = 20 µm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' We find stark differences between experiment and theory curves for these parameters, including an early exiting of atoms out of the ODT trap due to gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' The disagreements found in the compressed trap of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S8 illustrate that fully capturing all the aspects of the experiment is necessarily beyond the simplified classical model, which is designed to minimally capture the dynamical appearance of resonances between different momentum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A closer quantitative comparison would be provided by, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', a full 3D GP simulation and analysis of momentum space dynamics analogous to what is carried out in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 3 and S8 for the experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [1] Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Quantum quench and nonequilibrium dynamics in lattice-confined spinor condensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 123, 113002 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' And references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [2] Zhao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Tang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Webb, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Dynamics in spinor condensates tuned by a microwave dressing field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 89, 023608 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [3] Zhao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Tang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Webb, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Antiferromagnetic spinor condensates in a two-dimensional optical lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 114, 225302 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S11 [4] Knoop, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 83, 042704 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='042704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [5] Dennis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Hope, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Johnsson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Computer Physics Communications 184, 201–208 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='com/science/ article/pii/S0010465512002822.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [6] Law, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Pu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Bigelow, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Quantum spins mixing in spinor Bose-Einstein condensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 81, 5257–5261 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='5257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [7] Stamper-Kurn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Ueda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Spinor Bose gases: Symmetries, magnetism, and quantum dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 85, 1191 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [8] Yi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', M¨ustecaplıo˘glu, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Sun, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & You, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Single-mode approximation in a spinor-1 atomic condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 66, 011601 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='011601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [9] Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Quantum phase transitions and continuous observation of spinor dynamics in an antiferromagnetic condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 102, 125301 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [10] Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Zhou, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Chang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Chapman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & You, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Coherent spin mixing dynamics in a spin-1 atomic condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' A 72, 013602 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='013602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' [11] Kronj¨ager, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Becker, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Navez, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=', Bongs, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' & Sengstock, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Magnetically tuned spin dynamics resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' 97, 110404 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} +page_content='110404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9E0T4oBgHgl3EQf2AKe/content/2301.02707v1.pdf'} diff --git a/S9FJT4oBgHgl3EQfMCwG/content/tmp_files/2301.11471v1.pdf.txt b/S9FJT4oBgHgl3EQfMCwG/content/tmp_files/2301.11471v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..368510973b9e26086b90d733ee380b0aa2c2c84a --- /dev/null +++ b/S9FJT4oBgHgl3EQfMCwG/content/tmp_files/2301.11471v1.pdf.txt @@ -0,0 +1,946 @@ +Multi-channel Medium Access Control Protocols +for Wireless Networks within Computing Packages +Bernat Oll´e∗, Pau Talarn∗, Albert Cabellos-Aparicio∗, Filip Lemic†, Eduard Alarc´on∗, and Sergi Abadal∗ +∗NaNoNetworking Center in Catalunya (N3Cat), Universitat Polit`ecnica de Catalunya, 08034 Barcelona, Spain +†AI-driven Systems Lab, i2Cat Foundation, 08034 Barcelona, Spain +Abstract—Wireless communications at the chip scale emerge +as a interesting complement to traditional wire-based approaches +thanks to their low latency, inherent broadcast nature, and ca- +pacity to bypass pin constraints. However, as current trends push +towards massive and bandwidth-hungry processor architectures, +there is a need for wireless chip-scale networks that exploit and +share as many channels as possible. In this context, this work +addresses the issue of channel sharing by exploring the design +space of multi-channel Medium Access Control (MAC) protocols +for chip-scale networks. Distinct channel assignment strategies +for both random access and token passing are presented and +evaluated under realistic traffic patterns. It is shown that, even +with the improvements enabled by the multiple channels, both +protocols maintain their intrinsic advantages and disadvantages. +I. INTRODUCTION +Efficient integrated networks at the chip scale within +Systems-in-Package (SiPs) are a prerequisite for high perfor- +mance in such computing systems. Currently, most systems +incorporate a Network-in-Package (NiP) consisting of a set +of on-chip routers and intra-/inter-chip wired links [1], [2]. +However, recent scaling [3], [4], specialization [5], [6], and +disintegration trends [7], [8] are increasing the pressure placed +on the interconnect, to the point that new communication +paradigms may be required [9], [10]. +Among the emerging alternatives, wireless chip-scale com- +munications stand as a promising contender [11]–[14]. This +communication paradigm relies the use of modulated electro- +magnetic waves for data transmission using the chip package +as communications medium (Fig. 1). The resulting wireless +in-package links provide low latency, inherent broadcast capa- +bilities, and global reconfigurability. +Since the communications medium is shared, wireless in- +package communications require Medium Access Control +(MAC) protocols to avoid or manage wasteful collisions. In +this scenario, MAC protocols generally reduce to variants +of multiplexing, random access, or token passing [15]–[21]. +Even though recent works have demonstrated that computing +packages could support a few frequency [22], [23] and space +channels [24], [25], it is still unclear how MAC protocols can +benefit from them. This is because more than a few chan- +nels are needed to implement truly scalable frequency/space +multiplexing techniques [15], and most importantly, because +multi-channel variants of random access and token passing +have not been explored yet. +This work is supported by the European Commission under H2020 grant +WiPLASH (GA 863337) and HE grant WINC (GA 101042080). +Package Substrate +Chiplet +Chiplet +Package Substrate +Chiplet +Chiplet +Interposer +Package Substrate +Chiplet +Chiplet +Silicon bridge +Package Substrate +Chiplet +Chiplet +Wireless Antennas +Fig. 1. Pictorial view of a wireless chip-to-chip communication link. +This paper aims to bridge this gap by focusing on the +study of multi-channel versions of the two most representative +protocol types in chip-scale scenarios, i.e. random access and +token passing. In particular, the main contributions are as +follows. We first describe the different ways we can extend +random access and token passing with a small set of channels +in Sec. II. Then, in Sec. III, we evaluate these protocol variants +with traffic models typically used to mimic multiprocessor +workloads [26]. This analysis sheds light on the impact of +channel assignment on the protocol performance, as summa- +rized in Sec. IV and concluded in Sec. V. +II. MULTI-CHANNEL MAC PROTOCOLS +In this work, we describe three distinct channel assignment +strategies for random access and token passing. As baselines, +we take BRS [18] for random access and the baseline from +[20] for token passing. The strategies presented here are not +provably optimal, but they are simple (as required by the +resource constraints of the chip-scale scenario) and represen- +tative of the potential techniques that can be used. +A. Assignment Methods for BRS +In random access protocols such as BRS [18], nodes con- +tend for channel access and back off if the channel is busy or +there is a collision. Assuming N nodes, we study three ways +to reduce the collision probability using Nc channels, namely: +AS1: Channels are assigned to nodes individually and ran- +domly. When a node has a packet to transmit, the node is +assigned a random channel. If the channel is busy or there is +a collision, nodes undergo a random back off and also choose +a random channel to use in the next attempt. +AS2: Each channel is assigned to +N +Nc nodes statically follow- +ing a uniform distribution, this is, assuming that all nodes have +the same load (see Fig. 2, left). While this is not optimal for +spatially unbalanced traffic, it serves as a baseline. +AS3: Channels are assigned to a variable number of nodes +following a distribution that balances the load in each channel +(see Fig. 2, right). To that end, nodes are ordered based on +arXiv:2301.11471v1 [cs.ET] 27 Jan 2023 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Node +Node with information +Token +16 nodes +4 channels + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Node +Node with information +Token +16 nodes +4 channels + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +16 nodes +4 channels +Node +Node with information +Token +Fig. 2. +Graphical representations of assignment techniques AS2 (left) and +AS3 (right) for BRS assuming 16 nodes and 4 channels. +1 +1 +1 +i +1 +v + +Node (low load) +Node (high load) +Token + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Node +Node with information +Token +16 nodes +4 channels + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Node +Node with information +Token +16 nodes +4 channels +Fig. 3. Graphical representations of the different assignment techniques for +token passing assuming 16 nodes and 4 channels. +the expected normalized load and assigned to each channel in +order following a greedy algorithm. +B. Assignment Methods for Token Passing +In token passing [27], typically, all N nodes are sorted +forming a virtual ring and the token is passed in order through +that ring. In a version with Nc channels, each channel can be +a token. The design decisions then lie on the number of rings +and the nodes that form each ring. For instance: +AS1: We assume as many rings as there are channels and map +nodes uniformly to each ring. In other words, we distribute +them in rings of +N +Nc nodes, regardless of their expected load. +AS2: We assume a single virtual ring with multiple tokens +circulating in it. In this case, tokens can jump over other +tokens: when node i holds a token for multiple cycles during +a transmission, idle tokens that arrive at i-1 can jump to i+1. +AS3: This strategy is similar to AS1, but nodes are mapped +to rings based on their expected load. This may lead to rings +of different sizes, but similar in the expected overall load. +III. PERFORMANCE EVALUATION +The architecture and application parameters are summarized +in Table I. We implement both single-channel baselines and +multi-channel versions of BRS and token passing as finite state +machines in a modified version of Multi2sim that models wire- +less links and supports collision detection [28]. The protocols +are stressed with synthetic traffic modeling uneven injection +distributions (through the σ parameter) and bursty temporal +behavior (through the Hurst exponent H) [26]. The default +values for the different parameters are N = 64 nodes, Nc = 4 +channels, H = 0.5 and σ = 1. Simulations are cycle-accurate. +In all cases, we compare the packet latency (in cycles) and +throughput (in packets/cycle) of the different options. Given +the high number of protocol strategies and traffic types, instead +of plotting the classical latency–throughput curve, we make +use of box plots that summarize the latency and throughput +statistics. In our plots, the X axis shows the parameters under +study. The plots have two Y axis: the left axis represents +the latency and corresponds to the box plot values, whereas +TABLE I +CHARACTERISTICS OF SIMULATED PROTOCOLS AND APPLICATIONS. +Application +Synthetic traffic, H=0.5–0.85, σ=0.05–100 +System +N=64–512 cores, one antenna/core, 1-GHz clock +Network +80-bit packets (preamble: 20 bits), Nc=1–4 channels +Link +BRS [18], Token passing +Physical +On-Off Keying, 20 Gb/s +101 +102 +Latency cycles/packet +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +Throughput paq/cycle +BRS +C1 +AS1_C2 +AS2_C2 +AS3_C2 +AS1_C4 +AS2_C4 +AS3_C4 +101 +102 +Latency cycles/packet +0 +0.2 +0.4 +0.6 +0.8 +1 +Throughput paq/cycle +TOKEN +C1 +AS1_C2 +AS2_C2 +AS3_C2 +AS1_C4 +AS2_C4 +AS3_C4 +Fig. 4. Performance of multi-channel BRS (top) and token passing (bottom) +for an increasing number of channels, C1 to C4, and different assignments. +the right axis represents the throughput and corresponds to +single-value markers of saturation throughput. Since a single +packet takes 4 cycles in a single channel to be transmitted, the +maximum throughput is 0.25 packets/cycle/channel. +A. Number of Channels +Here, we discuss the results shown in Fig. 4 for BRS and +token passing and an increasing number of channels. +Latency. In general, it can be observed that BRS is less stable +than token in terms of latency as the range of values is larger, +with a higher number of outlier points. However, BRS has a +much better zero-load latency than token since, in BRS, the +protocol allows nodes to start transmitting immediately when +the channel is sensed idle. This fact also can explain why +independently of the parameters evaluated here (assignment, +number of channels) the minimum latency is quite similar. The +worst-case latency, however, clearly improves when having +multiple channels, as the high load is distributed over multiple +channels. On the other hand, in token passing, nodes must +wait until they possess the token to start transmitting. For this +reason, when the number of nodes is large, N = 64 in this +case, the system remains idle much longer. +Throughput. The results for token passing depict a rather +stable increase in saturation throughput as more channels are +added, regardless of the assignment method. This could be +due to the use, by default, of non-bursty and non-hotspot +traffic to evaluate scalability. On the other hand, the results +for BRS illustrate a different behavior than in token passing. +Firstly, BRS cannot reach a saturation throughput as high as +token passing. The main reasons are that channel contention +and multiple collisions lead to channel waste and, hence, to a +reduced throughput. Furthermore, BRS is more irregular than +token passing in terms of saturation throughput as it depends + +10 1 +10 2 +Latency cycles/paq +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +Throughput paq/cycle +Ncores BRS +AS1_64 +AS1_128 +AS1_512 +AS2_64 +AS2_128 +AS2_512 +AS3_64 +AS3_128 +AS3_512 +10 1 +10 2 +Latency cycles/paq +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +Throughput paq/cycle +Sigmas BRS +AS1_0.05 +AS1_0.1 +AS1_1 +AS1_100 +AS2_0.05 +AS2_0.1 +AS2_1 +AS2_100 +AS3_0.05 +AS3_0.1 +AS3_1 +AS3_100 +101 +102 +Latency cycles/paq +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +Throughput paq/cycle +Hs BRS +AS1_H0.5 +AS1_H0.7 +AS1_H0.85 +AS2_H0.5 +AS2_H0.7 +AS2_H0.85 +AS3_H0.5 +AS3_H0.7 +AS3_H0.85 +Fig. 5. Performance of multi-channel BRS protocol for an increasing number of nodes, N=64–512 (left graph), different spatial concentration levels, σ=0.1–100 +(center graph), different temporal burstiness levels, H=0.5–0.85 (right graph), and different assignment techniques. +10 1 +10 2 +Latency cycles/paq +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +Throughput paq/cycle +Ncores TOKEN +AS1_64 +AS1_128 +AS1_512 +AS2_64 +AS2_128 +AS2_512 +AS3_64 +AS3_128 +AS3_512 +10 1 +10 2 +Latency cycles/paq +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +Throughput paq/cycle +Sigmas TOKEN +AS1_0.05 +AS1_0.1 +AS1_1 +AS1_100 +AS2_0.05 +AS2_0.1 +AS2_1 +AS2_100 +AS3_0.05 +AS3_0.1 +AS3_1 +AS3_100 +101 +102 +Latency cycles/paq +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +Throughput paq/cycle +Hs TOKEN +AS1_H0.5 +AS1_H0.7 +AS1_H0.85 +AS2_H0.5 +AS2_H0.7 +AS2_H0.85 +AS3_H0.5 +AS3_H0.7 +AS3_H0.85 +Fig. 6. Performance of multi-channel token passing protocol for an increasing number of nodes, N=64–512 (left graph), different spatial concentration levels, +σ=0.1–100 (center graph), different temporal burstiness levels, H=0.5–0.85 (right graph), and different assignment techniques. +on the percentage of collisions at high loads. As a result, +the difference between the saturation throughput achieved for +different assignments increases with the number of channels. +B. Number of Nodes +Next, we comment on the performance of BRS and token +passing for an increasing number of nodes, with Nc = 4. The +results are shown in the left charts of Fig. 5 and Fig. 6. +Latency. BRS has a much lower latency than token passing +due to its ability to transmit when the channel is idle. The +span of the latency values differs across number of nodes and +assignments, but in general are restrained to similar values +because in the end, the same aggregated load ends up being +distributed over more nodes. Static assignment of channels +(AS2) works worse than the other alternatives. On the other +hand, from the plot of token passing, it is clear that more nodes +lead to much higher latency due to the increase of the token +turnaround time. In fact, the low-load latency is proportional +to the number of nodes in all cases. The span of the latency +values is similar across the different system sizes. +Throughput. In general, saturation throughput is slightly +higher for a lower number of nodes. In our protocols, having +more nodes means having a higher population and, hence, a +higher chance of collisions even for the same load for BRS, +and a higher waiting time (or lower probability of having all +nodes backlogged) in token passing. It seems, in any case, that +BRS is more resilient to the change in the number of nodes +as the drop is more subtle, except for AS3, where possibly +the load balancing algorithm is not performing well when +such a large number of nodes has to be classified. Finally, +all three assignments have very similar throughput in all cases +for token passing, whereas AS1 (random channel assignment +to individual packets) works better in BRS. +C. Hotspot Traffic +We next discuss the results shown in the middle plots of +Fig. 5 and Fig. 6, which illustrate the impact of uneven spatial +injection distribution on performance. We remind that low/high +values of σ mean that traffic is hotspot/evenly distributed [26]. +Latency. In BRS, the hotspot behavior of traffic does not seem +to have a large influence on the performance of the different +assignment methods. The outlier, third quartile, and maximum +values within the distribution seem to be mildly impacted by +the hotspot nature of traffic. In general, BRS is resilient to +such variations and actually could benefit from having a lower +amount of nodes contending for the available channels. Still, +the results show a small tendency to worse results when traffic +is concentrated around a few nodes, possibly because of the +nodes with higher load reaching higher backoff values. In AS3, +this situation is avoided by proactively placing high-load nodes +in different channels. Similarly, in token passing, latency is +affected by the concentration of traffic around a given set of +nodes mostly because the different assignment methods are +able to provide tokens quickly to nodes that need it, even if +they are spaced apart within the ring. This is clearly visible in +the extreme case of σ = 0.05. Similarly, outlier values seem +to be larger when traffic is more hotspot. We also observe how +AS2 fails to provide a good performance at low loads, and this +behavior is exacerbated for very hotspot traffic. +Throughput. The throughput of BRS in its different im- +plementations does not vary significantly with the type of + +spatial distribution of traffic, except for AS3, where a higher +concentration of traffic around a few nodes seems to have a +positive effect on the throughput. One reason could be that the +most active nodes are distributed over the different channels +so that contention is minimized. That does not happen in +other assignment methods. Different behavior is observed in +token passing, where the hotspot behavior of traffic modifies +the throughput of the different assignment methods, with +AS3 being affected a bit less. This is because if the load is +concentrated around a small set of nodes, a large portion of the +airtime is wasted while passing the token among these nodes. +D. Bursty Traffic +Finally, we present the latency and throughput results for +an increasingly bursty traffic. The results are shown in the +right plots of Fig. 5 and Fig. 6 for BRS and token passing, +respectively. Temporal injection of traffic is modeled through +the Hurst exponent [26], with higher values indicating more +bursty behavior, i.e. longer bursts followed by longer silences. +Latency. In BRS, it can be seen that the higher the value of +H, the higher the latency in average and also the more un- +predictable. This is because with an H of 0.5, the packets are +injected following a random Poisson process, which minimizes +the probability of collisions. However, when increasingly +bursty traffic is considered, the probability of packets being +injected (and nodes trying to transmit) in the same exact +cycle increases. The effect is multiplicative with the burstiness, +as the effect of cascading collisions leads to an exponential +increase of the backoff time. This affects the system at all +loads. On the other hand, token passing also suffers when +bursty traffic is served, leading to very high latency especially +for high values of H. The latency is a bit more stable than in +the case of BRS, mainly because the protocol does not react +with exponential backoffs, but rather with linear token passings +to bursts of traffic. Still, the latency is much higher than that +of BRS, discouraging its use for large number of nodes. +Throughput. On one hand, it can be verified that in BRS, +the saturation throughput remains rather constant across all +assignments regardless of the value of the Hurst exponent. A +possible reason could stem from the behavior of the backoff +mechanism; bursty traffic leads to a large number of collisions +which increases latency even for low loads, but the protocol +may converge to a large backoff value that can accommodate +the load even if it comes in bursts. In other works, the backoff +mechanisms spreads out the bursts of traffic over time, until +all nodes are backlogged. On the other hand, it can be seen +that in the case of token passing, the saturation throughput +seems to drop significantly for higher numbers of H, to a +point that the achieved throughput becomes comparable with +that of BRS. A potential reason for this behavior is the lack +of an adaptive mechanism to react to bursts; the token has to +still move around the ring even if bursts of traffic lead to the +generation of multiple packets in a given node, leading to gaps +where the wireless channel remains silent. When traffic is less +bursty, the probability of such events is lower. +AS2_N64 +AS3_S0.05 +AS1_N64 +AS1_H0.5 +0 +10 +20 +30 +40 +50 +60 +0 +0,2 +0,4 +0,6 +0,8 +1 +1,2 +Latency cycles/packet +Throughput packets/cycle +B_C +T_C +B_N +T_N +B_S +T_S +B_H +T_H +LOW LATENCY REGION +HIGH CAPACITY REGION +Fig. 7. Summary of the latency and throughput results over all the protocols, +assignment methods, and traffic conditions. B and T stand for BRS (random +access) and token passing, C and N denote number of channels and nodes, +whereas S and H represent the different spatial and temporal injection +distributions. For instance, the B C symbols represent the latency-throughput +of all the assignment methods for BRS for different number of channels. Two +desirable design spaces and a Pareto frontier are also given. +IV. DISCUSSION +Figure 7 plots the performance of all the compared protocols +and assignments representing the zero-load latency (X axis) +and saturation throughput (Y axis) of a particular protocol for +a given number of channels and assignment method. +In general terms, BRS is preferred over token in terms +of zero-load latency given its ability to transmit immediately +when the channels are idle. Hence, we see most BRS points +located in a low latency region. Among the assignment tech- +niques, AS1 achieves similar results than AS3 and would +probably be preferred as it does not require prior knowledge of +the load of each node to assign the channels. On the downside, +the throughput is half of that of token passing, at most. +On the other hand, token passing can reach high throughput +levels in the high capacity region, close to the maximum +total bandwidth of the wireless network. However, while +putting more channels reduces the latency significantly, the +best latency in token passing is still several cycles away +from the BRS values. Finally, we observe that it is hard to +provide a good channel assignment overall: AS3 requires prior +knowledge on the traffic distribution, AS1 does not perform +well for hotspot traffic and AS2 has high latency. +V. CONCLUSIONS +This paper has explored several techniques to extend ran- +dom access and token passing MAC protocols to multiple +channels for wireless chip-scale networks. In general, more +channels alleviate the problems of both types of protocols, in- +creasing the throughput of random access and cutting down the +latency of token passing to a few tens of cycles. Additionally, +random access is more resilient to hotspot and bursty traffic +and more scalable to massive chip-scale networks. However, +the higher throughput achievable with token renders the de- +cision of the protocol (and assignment) to choose extremely +challenging. Hence, we see a trend similar to that of single- +channel protocols: it would be desirable to develop a multi- +channel protocol that is able to seamlessly obtain the best of +both paradigms. This will be explored in future work. + +REFERENCES +[1] R. Marculescu, U. Ogras, L.-S. Peh, N. Enright Jerger, and Y. Hoskote, +“Outstanding research problems in NoC design: system, microarchitec- +ture, and circuit perspectives,” IEEE Transactions on Computer-Aided +Design of Integrated Circuits and Systems, vol. 28, no. 1, pp. 3–21, +2009. +[2] D. Bertozzi, G. Dimitrakopoulos, J. Flich, and S. Sonntag, “The fast +evolving landscape of on-chip communication,” Design Automation for +Embedded Systems, vol. 19, no. 1, pp. 59–76, 2015. +[3] S. Salahuddin, K. Ni, and S. Datta, “The era of hyper-scaling in +electronics,” Nature Electronics, vol. 1, no. 8, pp. 442–450, 2018. +[4] C. Mayr, S. Hoeppner, and S. Furber, “Spinnaker 2: A 10 million core +processor system for brain simulation and machine learning,” arXiv +preprint arXiv:1911.02385, 2019. +[5] T. Krishna, H. Kwon, A. Parashar, M. Pellauer, and A. Samajdar, +“Data orchestration in deep learning accelerators,” Synthesis Lectures +on Computer Architecture, vol. 15, no. 3, pp. 1–164, 2020. +[6] T. Wang, F. Feng, S. Xiang, Q. Li, and J. Xia, “Application defined +on-chip networks for heterogeneous chiplets: An implementation per- +spective,” in 2022 IEEE International Symposium on High-Performance +Computer Architecture (HPCA), pp. 1198–1210, IEEE, 2022. +[7] A. Kannan, N. E. Jerger, and G. H. Loh, “Exploiting interposer technolo- +gies to disintegrate and reintegrate multicore processors,” Ieee Micro, +vol. 36, no. 3, pp. 84–93, 2016. +[8] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Subramony, and +S. White, “Pioneering chiplet technology and design for the amd epyc™ +and ryzen™ processor families: Industrial product,” in 2021 ACM/IEEE +48th Annual International Symposium on Computer Architecture (ISCA), +pp. 57–70, IEEE, 2021. +[9] A. Karkar, T. Mak, K.-F. Tong, and A. Yakovlev, “A survey of emerging +interconnects for on-chip efficient multicast and broadcast in many- +cores,” IEEE Circuits and Systems Magazine, vol. 16, no. 1, pp. 58–72, +2016. +[10] A. Ganguly, S. Abadal, I. Thakkar, N. E. Jerger, M. Riedel, M. Babaie, +R. Balasubramonian, A. Sebastian, S. Pasricha, and B. Taskin, “Inter- +connects for dna, quantum, in-memory, and optical computing: Insights +from a panel discussion,” IEEE micro, vol. 42, no. 3, pp. 40–49, 2022. +[11] D. W. Matolak, A. Kodi, S. Kaya, D. Ditomaso, S. Laha, and W. Rayess, +“Wireless networks-on-chips: architecture, wireless channel, and de- +vices,” IEEE Wireless Communications, vol. 19, no. 5, pp. 58–65, 2012. +[12] S. Laha, S. Kaya, D. W. Matolak, W. Rayess, D. DiTomaso, and A. Kodi, +“A new frontier in ultralow power wireless links: Network-on-chip +and chip-to-chip interconnects,” IEEE Transactions on Computer-Aided +Design of Integrated Circuits and Systems, vol. 34, no. 2, pp. 186–198, +2014. +[13] S. Abadal, R. Guirado, H. Taghvaee, A. Jain, E. P. de Santana, P. H. +Bol´ıvar, M. Saeed, R. Negra, Z. Wang, K.-T. Wang, et al., “Graphene- +based wireless agile interconnects for massive heterogeneous multi-chip +processors,” IEEE Wireless Communications, 2022. +[14] R. S. Narde, J. Venkataraman, A. Ganguly, and I. Puchades, “Intra-and +inter-chip transmission of millimeter-wave interconnects in noc-based +multi-chip systems,” IEEE Access, vol. 7, pp. 112200–112215, 2019. +[15] D. DiTomaso, A. Kodi, D. Matolak, S. Kaya, S. Laha, and W. Rayess, +“A-WiNoC: Adaptive wireless network-on-chip architecture for chip +multiprocessors,” vol. 26, no. 12, pp. 3289–3302, 2015. +[16] N. Mansoor and A. Ganguly, “Reconfigurable wireless network-on-chip +with a dynamic medium access mechanism,” in Proceedings of the 9th +International Symposium on Networks-on-Chip, pp. 1–8, 2015. +[17] K. Duraisamy, R. G. Kim, and P. P. Pande, “Enhancing Performance of +Wireless NoCs with Distributed MAC Protocols,” in Proceedings of the +ISQED ’15, pp. 406–11, 2015. +[18] A. Mestres, S. Abadal, J. Torrellas, E. Alarc´on, and A. Cabellos- +Aparicio, “A MAC protocol for Reliable Broadcast Communications in +Wireless Network-on-Chip,” in Proceedings of the NoCArc ’16, pp. 21– +26, 2016. +[19] S. Jog, Z. Liu, A. Franques, V. Fernando, S. Abadal, J. Torrellas, and +H. Hassanieh, “One protocol to rule them all: Wireless network-on- +chip using deep reinforcement learning,” in 18th USENIX Symposium +on Networked Systems Design and Implementation (NSDI 21), pp. 973– +989, 2021. +[20] A. Franques, S. Abadal, H. Hassanieh, and J. Torrellas, “Fuzzy-Token: +An adaptive mac protocol for wireless-enabled manycores,” in Design, +Automation and Test in Europe Conference (DATE), 2021. +[21] Y. Ouyang, C. Sun, B. Jia, Q. Wang, and H. Liang, “Architecting a +priority-based dynamic media access control mechanism in wireless +network-on-chip,” Microelectronics Journal, vol. 116, p. 105218, 2021. +[22] W. Rayess, D. W. Matolak, S. Kaya, and A. K. Kodi, “Antennas +and Channel Characteristics for Wireless Networks on Chips,” Wireless +Personal Communications, vol. 95, no. 4, pp. 5039–5056, 2017. +[23] X. Timoneda, A. Cabellos-Aparicio, D. Manessis, E. Alarc´on, and +S. Abadal, “Channel characterization for chip-scale wireless commu- +nications within computing packages,” in 2018 Twelfth IEEE/ACM +International Symposium on Networks-on-Chip (NOCS), pp. 1–8, IEEE, +2018. +[24] P. Baniya, A. Bisognin, K. L. Melde, and C. Luxey, “Chip-to-Chip +Switched Beam 60 GHz Circular Patch Planar Antenna Array and Pat- +tern Considerations,” IEEE Transactions on Antennas and Propagation, +vol. 66, no. 4, pp. 1776–1787, 2018. +[25] F. Rodr´ıguez-Gal´an, E. P. de Santana, P. H. Bol´ıvar, S. Abadal, and +E. Alarc´on, “Towards spatial multiplexing in wireless networks within +computing packages,” in Proceedings of the 9th ACM International +Conference on Nanoscale Computing and Communication, pp. 1–6, +2022. +[26] V. Soteriou, H. Wang, and L. Peh, “A statistical traffic model for on- +chip interconnection networks,” in 14th IEEE International Symposium +on Modeling, Analysis, and Simulation, pp. 104–116, IEEE, 2006. +[27] G. Holland, N. Vaidya, and P. Bahl, “A rate-adaptive mac protocol +for multi-hop wireless networks,” in Proceedings of the 7th annual +international conference on Mobile computing and networking, pp. 236– +251, 2001. +[28] R. Ubal, P. Mistry, D. Schaa, H. Ave, and D. Kaeli, “Multi2Sim: A +Simulation Framework for CPU-GPU Computing,” in Proceedings of +the PACT’12, 2012. + diff --git a/S9FJT4oBgHgl3EQfMCwG/content/tmp_files/load_file.txt b/S9FJT4oBgHgl3EQfMCwG/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..4555cb1671fd44aab0e30b8909f4ef45efef2cd2 --- /dev/null +++ b/S9FJT4oBgHgl3EQfMCwG/content/tmp_files/load_file.txt @@ -0,0 +1,543 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf,len=542 +page_content='Multi-channel Medium Access Control Protocols for Wireless Networks within Computing Packages Bernat Oll´e∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Pau Talarn∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Albert Cabellos-Aparicio∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Filip Lemic†,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Eduard Alarc´on∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' and Sergi Abadal∗ ∗NaNoNetworking Center in Catalunya (N3Cat),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Universitat Polit`ecnica de Catalunya,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 08034 Barcelona,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Spain †AI-driven Systems Lab,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' i2Cat Foundation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 08034 Barcelona,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Spain Abstract—Wireless communications at the chip scale emerge as a interesting complement to traditional wire-based approaches thanks to their low latency,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' inherent broadcast nature,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' and ca- pacity to bypass pin constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' However, as current trends push towards massive and bandwidth-hungry processor architectures, there is a need for wireless chip-scale networks that exploit and share as many channels as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In this context, this work addresses the issue of channel sharing by exploring the design space of multi-channel Medium Access Control (MAC) protocols for chip-scale networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Distinct channel assignment strategies for both random access and token passing are presented and evaluated under realistic traffic patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' It is shown that, even with the improvements enabled by the multiple channels, both protocols maintain their intrinsic advantages and disadvantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' INTRODUCTION Efficient integrated networks at the chip scale within Systems-in-Package (SiPs) are a prerequisite for high perfor- mance in such computing systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Currently, most systems incorporate a Network-in-Package (NiP) consisting of a set of on-chip routers and intra-/inter-chip wired links [1], [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' However, recent scaling [3], [4], specialization [5], [6], and disintegration trends [7], [8] are increasing the pressure placed on the interconnect, to the point that new communication paradigms may be required [9], [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Among the emerging alternatives, wireless chip-scale com- munications stand as a promising contender [11]–[14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This communication paradigm relies the use of modulated electro- magnetic waves for data transmission using the chip package as communications medium (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The resulting wireless in-package links provide low latency, inherent broadcast capa- bilities, and global reconfigurability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Since the communications medium is shared, wireless in- package communications require Medium Access Control (MAC) protocols to avoid or manage wasteful collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In this scenario, MAC protocols generally reduce to variants of multiplexing, random access, or token passing [15]–[21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Even though recent works have demonstrated that computing packages could support a few frequency [22], [23] and space channels [24], [25], it is still unclear how MAC protocols can benefit from them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This is because more than a few chan- nels are needed to implement truly scalable frequency/space multiplexing techniques [15], and most importantly, because multi-channel variants of random access and token passing have not been explored yet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This work is supported by the European Commission under H2020 grant WiPLASH (GA 863337) and HE grant WINC (GA 101042080).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Package Substrate Chiplet Chiplet Package Substrate Chiplet Chiplet Interposer Package Substrate Chiplet Chiplet Silicon bridge Package Substrate Chiplet Chiplet Wireless Antennas Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Pictorial view of a wireless chip-to-chip communication link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This paper aims to bridge this gap by focusing on the study of multi-channel versions of the two most representative protocol types in chip-scale scenarios, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' random access and token passing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In particular, the main contributions are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' We first describe the different ways we can extend random access and token passing with a small set of channels in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Then, in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' III, we evaluate these protocol variants with traffic models typically used to mimic multiprocessor workloads [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This analysis sheds light on the impact of channel assignment on the protocol performance, as summa- rized in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' IV and concluded in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' MULTI-CHANNEL MAC PROTOCOLS In this work, we describe three distinct channel assignment strategies for random access and token passing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' As baselines, we take BRS [18] for random access and the baseline from [20] for token passing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The strategies presented here are not provably optimal, but they are simple (as required by the resource constraints of the chip-scale scenario) and represen- tative of the potential techniques that can be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Assignment Methods for BRS In random access protocols such as BRS [18], nodes con- tend for channel access and back off if the channel is busy or there is a collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Assuming N nodes, we study three ways to reduce the collision probability using Nc channels, namely: AS1: Channels are assigned to nodes individually and ran- domly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' When a node has a packet to transmit, the node is assigned a random channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' If the channel is busy or there is a collision, nodes undergo a random back off and also choose a random channel to use in the next attempt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' AS2: Each channel is assigned to N Nc nodes statically follow- ing a uniform distribution, this is, assuming that all nodes have the same load (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 2, left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' While this is not optimal for spatially unbalanced traffic, it serves as a baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' AS3: Channels are assigned to a variable number of nodes following a distribution that balances the load in each channel (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 2, right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' To that end, nodes are ordered based on arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='11471v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='ET] 27 Jan 2023 Node Node with information Token 16 nodes 4 channels Node Node with information Token 16 nodes 4 channels 16 nodes 4 channels Node Node with information Token Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Graphical representations of assignment techniques AS2 (left) and AS3 (right) for BRS assuming 16 nodes and 4 channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1 1 1 i 1 v Node (low load) Node (high load) Token Node Node with information Token 16 nodes 4 channels Node Node with information Token 16 nodes 4 channels Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Graphical representations of the different assignment techniques for token passing assuming 16 nodes and 4 channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' the expected normalized load and assigned to each channel in order following a greedy algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Assignment Methods for Token Passing In token passing [27], typically, all N nodes are sorted forming a virtual ring and the token is passed in order through that ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In a version with Nc channels, each channel can be a token.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The design decisions then lie on the number of rings and the nodes that form each ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' For instance: AS1: We assume as many rings as there are channels and map nodes uniformly to each ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In other words, we distribute them in rings of N Nc nodes, regardless of their expected load.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' AS2: We assume a single virtual ring with multiple tokens circulating in it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In this case, tokens can jump over other tokens: when node i holds a token for multiple cycles during a transmission, idle tokens that arrive at i-1 can jump to i+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' AS3: This strategy is similar to AS1, but nodes are mapped to rings based on their expected load.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This may lead to rings of different sizes, but similar in the expected overall load.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' PERFORMANCE EVALUATION The architecture and application parameters are summarized in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' We implement both single-channel baselines and multi-channel versions of BRS and token passing as finite state machines in a modified version of Multi2sim that models wire- less links and supports collision detection [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The protocols are stressed with synthetic traffic modeling uneven injection distributions (through the σ parameter) and bursty temporal behavior (through the Hurst exponent H) [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The default values for the different parameters are N = 64 nodes, Nc = 4 channels, H = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 and σ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Simulations are cycle-accurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In all cases, we compare the packet latency (in cycles) and throughput (in packets/cycle) of the different options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Given the high number of protocol strategies and traffic types, instead of plotting the classical latency–throughput curve, we make use of box plots that summarize the latency and throughput statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In our plots, the X axis shows the parameters under study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The plots have two Y axis: the left axis represents the latency and corresponds to the box plot values, whereas TABLE I CHARACTERISTICS OF SIMULATED PROTOCOLS AND APPLICATIONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Application Synthetic traffic, H=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='85, σ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='05–100 System N=64–512 cores, one antenna/core, 1-GHz clock Network 80-bit packets (preamble: 20 bits), Nc=1–4 channels Link BRS [18], Token passing Physical On-Off Keying, 20 Gb/s 101 102 Latency cycles/packet 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 Throughput paq/cycle BRS C1 AS1_C2 AS2_C2 AS3_C2 AS1_C4 AS2_C4 AS3_C4 101 102 Latency cycles/packet 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='8 1 Throughput paq/cycle TOKEN C1 AS1_C2 AS2_C2 AS3_C2 AS1_C4 AS2_C4 AS3_C4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Performance of multi-channel BRS (top) and token passing (bottom) for an increasing number of channels, C1 to C4, and different assignments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' the right axis represents the throughput and corresponds to single-value markers of saturation throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Since a single packet takes 4 cycles in a single channel to be transmitted, the maximum throughput is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='25 packets/cycle/channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Number of Channels Here, we discuss the results shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 4 for BRS and token passing and an increasing number of channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In general, it can be observed that BRS is less stable than token in terms of latency as the range of values is larger, with a higher number of outlier points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' However, BRS has a much better zero-load latency than token since, in BRS, the protocol allows nodes to start transmitting immediately when the channel is sensed idle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This fact also can explain why independently of the parameters evaluated here (assignment, number of channels) the minimum latency is quite similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The worst-case latency, however, clearly improves when having multiple channels, as the high load is distributed over multiple channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' On the other hand, in token passing, nodes must wait until they possess the token to start transmitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' For this reason, when the number of nodes is large, N = 64 in this case, the system remains idle much longer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The results for token passing depict a rather stable increase in saturation throughput as more channels are added, regardless of the assignment method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This could be due to the use, by default, of non-bursty and non-hotspot traffic to evaluate scalability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' On the other hand, the results for BRS illustrate a different behavior than in token passing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Firstly, BRS cannot reach a saturation throughput as high as token passing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The main reasons are that channel contention and multiple collisions lead to channel waste and, hence, to a reduced throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Furthermore, BRS is more irregular than token passing in terms of saturation throughput as it depends 10 1 10 2 Latency cycles/paq 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 Throughput paq/cycle Ncores BRS AS1_64 AS1_128 AS1_512 AS2_64 AS2_128 AS2_512 AS3_64 AS3_128 AS3_512 10 1 10 2 Latency cycles/paq 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 Throughput paq/cycle Sigmas BRS AS1_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='05 AS1_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 AS1_1 AS1_100 AS2_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='05 AS2_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 AS2_1 AS2_100 AS3_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='05 AS3_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 AS3_1 AS3_100 101 102 Latency cycles/paq 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 Throughput paq/cycle Hs BRS AS1_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 AS1_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 AS1_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='85 AS2_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 AS2_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 AS2_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='85 AS3_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 AS3_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 AS3_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='85 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Performance of multi-channel BRS protocol for an increasing number of nodes, N=64–512 (left graph), different spatial concentration levels, σ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1–100 (center graph), different temporal burstiness levels, H=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='85 (right graph), and different assignment techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 10 1 10 2 Latency cycles/paq 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='9 1 Throughput paq/cycle Ncores TOKEN AS1_64 AS1_128 AS1_512 AS2_64 AS2_128 AS2_512 AS3_64 AS3_128 AS3_512 10 1 10 2 Latency cycles/paq 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='9 1 Throughput paq/cycle Sigmas TOKEN AS1_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='05 AS1_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 AS1_1 AS1_100 AS2_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='05 AS2_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 AS2_1 AS2_100 AS3_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='05 AS3_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 AS3_1 AS3_100 101 102 Latency cycles/paq 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='9 1 Throughput paq/cycle Hs TOKEN AS1_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 AS1_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 AS1_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='85 AS2_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 AS2_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 AS2_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='85 AS3_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 AS3_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='7 AS3_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='85 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Performance of multi-channel token passing protocol for an increasing number of nodes, N=64–512 (left graph), different spatial concentration levels, σ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='1–100 (center graph), different temporal burstiness levels, H=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='85 (right graph), and different assignment techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' on the percentage of collisions at high loads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' As a result, the difference between the saturation throughput achieved for different assignments increases with the number of channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Number of Nodes Next, we comment on the performance of BRS and token passing for an increasing number of nodes, with Nc = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The results are shown in the left charts of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 5 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' BRS has a much lower latency than token passing due to its ability to transmit when the channel is idle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The span of the latency values differs across number of nodes and assignments, but in general are restrained to similar values because in the end, the same aggregated load ends up being distributed over more nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Static assignment of channels (AS2) works worse than the other alternatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' On the other hand, from the plot of token passing, it is clear that more nodes lead to much higher latency due to the increase of the token turnaround time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In fact, the low-load latency is proportional to the number of nodes in all cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The span of the latency values is similar across the different system sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In general, saturation throughput is slightly higher for a lower number of nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In our protocols, having more nodes means having a higher population and, hence, a higher chance of collisions even for the same load for BRS, and a higher waiting time (or lower probability of having all nodes backlogged) in token passing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' It seems, in any case, that BRS is more resilient to the change in the number of nodes as the drop is more subtle, except for AS3, where possibly the load balancing algorithm is not performing well when such a large number of nodes has to be classified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Finally, all three assignments have very similar throughput in all cases for token passing, whereas AS1 (random channel assignment to individual packets) works better in BRS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Hotspot Traffic We next discuss the results shown in the middle plots of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 5 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 6, which illustrate the impact of uneven spatial injection distribution on performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' We remind that low/high values of σ mean that traffic is hotspot/evenly distributed [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In BRS, the hotspot behavior of traffic does not seem to have a large influence on the performance of the different assignment methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The outlier, third quartile, and maximum values within the distribution seem to be mildly impacted by the hotspot nature of traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In general, BRS is resilient to such variations and actually could benefit from having a lower amount of nodes contending for the available channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Still, the results show a small tendency to worse results when traffic is concentrated around a few nodes, possibly because of the nodes with higher load reaching higher backoff values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In AS3, this situation is avoided by proactively placing high-load nodes in different channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Similarly, in token passing, latency is affected by the concentration of traffic around a given set of nodes mostly because the different assignment methods are able to provide tokens quickly to nodes that need it, even if they are spaced apart within the ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This is clearly visible in the extreme case of σ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Similarly, outlier values seem to be larger when traffic is more hotspot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' We also observe how AS2 fails to provide a good performance at low loads, and this behavior is exacerbated for very hotspot traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The throughput of BRS in its different im- plementations does not vary significantly with the type of spatial distribution of traffic, except for AS3, where a higher concentration of traffic around a few nodes seems to have a positive effect on the throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' One reason could be that the most active nodes are distributed over the different channels so that contention is minimized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' That does not happen in other assignment methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Different behavior is observed in token passing, where the hotspot behavior of traffic modifies the throughput of the different assignment methods, with AS3 being affected a bit less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This is because if the load is concentrated around a small set of nodes, a large portion of the airtime is wasted while passing the token among these nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Bursty Traffic Finally, we present the latency and throughput results for an increasingly bursty traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The results are shown in the right plots of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 5 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 6 for BRS and token passing, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Temporal injection of traffic is modeled through the Hurst exponent [26], with higher values indicating more bursty behavior, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' longer bursts followed by longer silences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In BRS, it can be seen that the higher the value of H, the higher the latency in average and also the more un- predictable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This is because with an H of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5, the packets are injected following a random Poisson process, which minimizes the probability of collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' However, when increasingly bursty traffic is considered, the probability of packets being injected (and nodes trying to transmit) in the same exact cycle increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The effect is multiplicative with the burstiness, as the effect of cascading collisions leads to an exponential increase of the backoff time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This affects the system at all loads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' On the other hand, token passing also suffers when bursty traffic is served, leading to very high latency especially for high values of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' The latency is a bit more stable than in the case of BRS, mainly because the protocol does not react with exponential backoffs, but rather with linear token passings to bursts of traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Still, the latency is much higher than that of BRS, discouraging its use for large number of nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' On one hand, it can be verified that in BRS, the saturation throughput remains rather constant across all assignments regardless of the value of the Hurst exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' A possible reason could stem from the behavior of the backoff mechanism;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' bursty traffic leads to a large number of collisions which increases latency even for low loads, but the protocol may converge to a large backoff value that can accommodate the load even if it comes in bursts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In other works, the backoff mechanisms spreads out the bursts of traffic over time, until all nodes are backlogged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' On the other hand, it can be seen that in the case of token passing, the saturation throughput seems to drop significantly for higher numbers of H, to a point that the achieved throughput becomes comparable with that of BRS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' A potential reason for this behavior is the lack of an adaptive mechanism to react to bursts;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' the token has to still move around the ring even if bursts of traffic lead to the generation of multiple packets in a given node, leading to gaps where the wireless channel remains silent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' When traffic is less bursty, the probability of such events is lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' AS2_N64 AS3_S0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='05 AS1_N64 AS1_H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='5 0 10 20 30 40 50 60 0 0,2 0,4 0,6 0,8 1 1,2 Latency cycles/packet Throughput packets/cycle B_C T_C B_N T_N B_S T_S B_H T_H LOW LATENCY REGION HIGH CAPACITY REGION Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Summary of the latency and throughput results over all the protocols, assignment methods, and traffic conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' B and T stand for BRS (random access) and token passing, C and N denote number of channels and nodes, whereas S and H represent the different spatial and temporal injection distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' For instance, the B C symbols represent the latency-throughput of all the assignment methods for BRS for different number of channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Two desirable design spaces and a Pareto frontier are also given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' DISCUSSION Figure 7 plots the performance of all the compared protocols and assignments representing the zero-load latency (X axis) and saturation throughput (Y axis) of a particular protocol for a given number of channels and assignment method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In general terms, BRS is preferred over token in terms of zero-load latency given its ability to transmit immediately when the channels are idle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Hence, we see most BRS points located in a low latency region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Among the assignment tech- niques, AS1 achieves similar results than AS3 and would probably be preferred as it does not require prior knowledge of the load of each node to assign the channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' On the downside, the throughput is half of that of token passing, at most.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' On the other hand, token passing can reach high throughput levels in the high capacity region, close to the maximum total bandwidth of the wireless network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' However, while putting more channels reduces the latency significantly, the best latency in token passing is still several cycles away from the BRS values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Finally, we observe that it is hard to provide a good channel assignment overall: AS3 requires prior knowledge on the traffic distribution, AS1 does not perform well for hotspot traffic and AS2 has high latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' CONCLUSIONS This paper has explored several techniques to extend ran- dom access and token passing MAC protocols to multiple channels for wireless chip-scale networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' In general, more channels alleviate the problems of both types of protocols, in- creasing the throughput of random access and cutting down the latency of token passing to a few tens of cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Additionally, random access is more resilient to hotspot and bursty traffic and more scalable to massive chip-scale networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' However, the higher throughput achievable with token renders the de- cision of the protocol (and assignment) to choose extremely challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Hence, we see a trend similar to that of single- channel protocols: it would be desirable to develop a multi- channel protocol that is able to seamlessly obtain the best of both paradigms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' This will be explored in future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' REFERENCES [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Marculescu, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Ogras, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Peh, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Enright Jerger, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Hoskote, “Outstanding research problems in NoC design: system, microarchitec- ture, and circuit perspectives,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 3–21, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Bertozzi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Dimitrakopoulos, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Flich, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Sonntag, “The fast evolving landscape of on-chip communication,” Design Automation for Embedded Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 59–76, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Salahuddin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Ni, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Datta, “The era of hyper-scaling in electronics,” Nature Electronics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 442–450, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Mayr, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Hoeppner, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Furber, “Spinnaker 2: A 10 million core processor system for brain simulation and machine learning,” arXiv preprint arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='02385, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [5] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Krishna, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kwon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Parashar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Pellauer, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Samajdar, “Data orchestration in deep learning accelerators,” Synthesis Lectures on Computer Architecture, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1–164, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [6] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Wang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Feng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Xiang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Xia, “Application defined on-chip networks for heterogeneous chiplets: An implementation per- spective,” in 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1198–1210, IEEE, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kannan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Jerger, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Loh, “Exploiting interposer technolo- gies to disintegrate and reintegrate multicore processors,” Ieee Micro, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 36, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 84–93, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Naffziger, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Beck, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Burd, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Lepak, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Loh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Subramony, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' White, “Pioneering chiplet technology and design for the amd epyc™ and ryzen™ processor families: Industrial product,” in 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 57–70, IEEE, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Karkar, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Mak, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Tong, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Yakovlev, “A survey of emerging interconnects for on-chip efficient multicast and broadcast in many- cores,” IEEE Circuits and Systems Magazine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 58–72, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Ganguly, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Abadal, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Thakkar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Jerger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Riedel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Babaie, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Balasubramonian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Sebastian, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Pasricha, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Taskin, “Inter- connects for dna, quantum, in-memory, and optical computing: Insights from a panel discussion,” IEEE micro, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 42, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 40–49, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Matolak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kodi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kaya, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Ditomaso, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Laha, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Rayess, “Wireless networks-on-chips: architecture, wireless channel, and de- vices,” IEEE Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 58–65, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Laha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kaya, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Matolak, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Rayess, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' DiTomaso, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kodi, “A new frontier in ultralow power wireless links: Network-on-chip and chip-to-chip interconnects,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 34, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 186–198, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Abadal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Guirado, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Taghvaee, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Jain, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' de Santana, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Bol´ıvar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Saeed, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Negra, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Wang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=', “Graphene- based wireless agile interconnects for massive heterogeneous multi-chip processors,” IEEE Wireless Communications, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Narde, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Venkataraman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Ganguly, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Puchades, “Intra-and inter-chip transmission of millimeter-wave interconnects in noc-based multi-chip systems,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 112200–112215, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' DiTomaso, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kodi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Matolak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kaya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Laha, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Rayess, “A-WiNoC: Adaptive wireless network-on-chip architecture for chip multiprocessors,” vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 3289–3302, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [16] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Mansoor and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Ganguly, “Reconfigurable wireless network-on-chip with a dynamic medium access mechanism,” in Proceedings of the 9th International Symposium on Networks-on-Chip, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1–8, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [17] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Duraisamy, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kim, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Pande, “Enhancing Performance of Wireless NoCs with Distributed MAC Protocols,” in Proceedings of the ISQED ’15, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 406–11, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Mestres, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Abadal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Torrellas, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Alarc´on, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Cabellos- Aparicio, “A MAC protocol for Reliable Broadcast Communications in Wireless Network-on-Chip,” in Proceedings of the NoCArc ’16, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 21– 26, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [19] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Jog, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Liu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Franques, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Fernando, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Abadal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Torrellas, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Hassanieh, “One protocol to rule them all: Wireless network-on- chip using deep reinforcement learning,” in 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 973– 989, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Franques, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Abadal, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Hassanieh, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Torrellas, “Fuzzy-Token: An adaptive mac protocol for wireless-enabled manycores,” in Design, Automation and Test in Europe Conference (DATE), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [21] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Ouyang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Sun, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Jia, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Wang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Liang, “Architecting a priority-based dynamic media access control mechanism in wireless network-on-chip,” Microelectronics Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 116, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 105218, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [22] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Rayess, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Matolak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kaya, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kodi, “Antennas and Channel Characteristics for Wireless Networks on Chips,” Wireless Personal Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 95, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 5039–5056, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [23] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Timoneda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Cabellos-Aparicio, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Manessis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Alarc´on, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Abadal, “Channel characterization for chip-scale wireless commu- nications within computing packages,” in 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1–8, IEEE, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [24] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Baniya, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Bisognin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Melde, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Luxey, “Chip-to-Chip Switched Beam 60 GHz Circular Patch Planar Antenna Array and Pat- tern Considerations,” IEEE Transactions on Antennas and Propagation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 66, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1776–1787, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [25] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Rodr´ıguez-Gal´an, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' de Santana, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Bol´ıvar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Abadal, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Alarc´on, “Towards spatial multiplexing in wireless networks within computing packages,” in Proceedings of the 9th ACM International Conference on Nanoscale Computing and Communication, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 1–6, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [26] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Soteriou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Wang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Peh, “A statistical traffic model for on- chip interconnection networks,” in 14th IEEE International Symposium on Modeling, Analysis, and Simulation, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 104–116, IEEE, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [27] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Holland, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Vaidya, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Bahl, “A rate-adaptive mac protocol for multi-hop wireless networks,” in Proceedings of the 7th annual international conference on Mobile computing and networking, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' 236– 251, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' [28] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Ubal, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Mistry, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Schaa, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Ave, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} +page_content=' Kaeli, “Multi2Sim: A Simulation Framework for CPU-GPU Computing,” in Proceedings of the PACT’12, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf'} diff --git a/TNE3T4oBgHgl3EQfzgsS/content/2301.04728v1.pdf b/TNE3T4oBgHgl3EQfzgsS/content/2301.04728v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..b9af5901ba6c6afcb3389354aa14708284ca4449 --- /dev/null +++ b/TNE3T4oBgHgl3EQfzgsS/content/2301.04728v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4a83a26d15054d4b6d0eb0b8de3d9fb22d7d1ef174aaf7c1a9b1fd1d065fb953 +size 268740 diff --git a/TNE3T4oBgHgl3EQfzgsS/vector_store/index.faiss b/TNE3T4oBgHgl3EQfzgsS/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..3279254693ac99a6e910b2ca0cef2a4313236aa9 --- /dev/null +++ b/TNE3T4oBgHgl3EQfzgsS/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:606025147bd6b97e7b64cabb453bea71a0c8b47ac0b27ea3a6f603a12aaead3b +size 2752557 diff --git a/TNE3T4oBgHgl3EQfzgsS/vector_store/index.pkl b/TNE3T4oBgHgl3EQfzgsS/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..6e5475eb6e2f63bb03fa7342e583302d5371a839 --- /dev/null +++ b/TNE3T4oBgHgl3EQfzgsS/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8d9a383032675187ecbdd68406561ace4e074f43bf3f78dd0ecd0ed454eedf9f +size 115029 diff --git a/UNE1T4oBgHgl3EQfawQW/content/tmp_files/2301.03164v1.pdf.txt b/UNE1T4oBgHgl3EQfawQW/content/tmp_files/2301.03164v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..6422040f959f3f23b7c3ad4d0532f5d17895b95c --- /dev/null +++ b/UNE1T4oBgHgl3EQfawQW/content/tmp_files/2301.03164v1.pdf.txt @@ -0,0 +1,1377 @@ +CURSIVE CAPTION TEXT DETECTION IN VIDEOS +Ali Mirza +Center of Artificial Intelligence +Mantalus +Melbourne, Australia +ali.mirza@mantalus.com +Imran Siddiqi +Center of Excellence in Artificial Intelligence +Bahria University +Islamabad, Pakistan +imran.siddiqi@bahria.edu.pk +Keywords Text Detection · Script Identification · Deep Neural Networks (DNNs) · Convolutional Neural Networks +(CNNs) · Video Text · Video Frames Dataset +ABSTRACT +Textual content appearing in videos represents an interesting index for semantic retrieval of videos +(from archives), generation of alerts (live streams) as well as high level applications like opinion +mining and content summarization. One of the key components of such systems is the detection +of textual content in video frames and the same makes the subject of our present study. This +paper presents a robust technique for detection of textual content appearing in video frames. More +specifically we target text in cursive script taking Urdu text as a case study. Detection of textual +regions in video frames is carried out by fine-tuning object detectors based on deep convolutional +neural networks for the specific case of text detection. Since it is common to have videos with caption +text in multiple-scripts, cursive text is distinguished from Latin text using a script-identification +module. Finally, detection and script identification are combined in a single end-to-end trainable +system. Experiments on a comprehensive dataset of around 11,000 video frames report an F-measure +of 0.91. +1 +Introduction +In the recent years, there has been a tremendous increase in the amount of digital multimedia data, especially the video +content, both in the form of video archives and live streams. According to statistics [6], 300 hours of video is being +uploaded every minute on the YouTube. A key factor responsible for this enormous increase is the availability of +low-cost smart phones equipped with cameras. With such huge collections of data, there is a need to have efficient +as well as effective retrieval techniques allowing users retrieve the desired content. Traditionally, videos are mostly +stored with user assigned annotations or keywords which are called tags. When a content is to be searched, a keyword +provided as query is matched with these tags to retrieve the relevant content. The assigned tags, naturally, cannot +encompass the rich video content leading to a constrained retrieval. A better and more effective strategy is to search +within the actual content rather than simply matching the tags i.e. Content based Image or Video Retrieval. CBVR +systems have been researched and developed for long a time and allow a smarter way of retrieving the desired content. +The term content may refer to the visual content (for example objects or persons in the video), audio content (the +spoken keywords for instance) or the textual content (News tickers, anchor names, score cards etc.). Among these, the +focus of our current study lies on textual content. More specifically, we target a smart retrieval system that exploits the +textual content in videos as an index. +The textual content in video can be categorized into two broad classes, scene text and caption text. Scene text (Figure 1) +is captured through camera during the video recording process and may not always be correlated with the content. +Examples of scene text include advertisement banners, sign boards, text on a T-shirt etc. Scene text is commonly +employed for applications like robot navigation and assistance systems for the visually impaired. Artificial or caption +text (Figure 2) is superimposed on video and typical examples include News tickers, movie credits, score cards, names +of anchors etc. Caption text is generally correlated with the video content and is mostly applied for semantic retrieval of +arXiv:2301.03164v1 [cs.CV] 9 Jan 2023 + +Cursive Caption Text Detection in Videos +videos. +Figure 1: Examples of Scene Text +Figure 2: Examples of Caption Text +The key components of a textual content based indexing and retrieval system include detection of text regions [36], +extraction of text (segmentation from background) [37], identification of script (for multi-script videos) [25] and +finally recognition of text (through a video OCR) [16]. Among these, we focus on detection of text in the current +study. Detection of text can be carried out using unsupervised [4, 8, 3], supervised [63, 18, 32] or hybrid [36, 53] +approaches. +Unsupervised text detection employs image analysis techniques to discriminate between text and +non-text regions. Supervised methods, on the other hand, involve training a learning algorithm with examples of text +and non-text regions to discriminate between the two. In some cases, a combination of the two techniques is em- +ployed where the candidate text regions identified by unsupervised methods are validated through a supervised approach. +This paper presents a comprehensive framework for video text detection in a multi-script environment. Though we +primarily target cursive caption text, since video frames frequently contain text in more than one script, text in the +Roman script is also detected by the proposed technique. The key highlights of this study are outlined in the following. +• Development of a comprehensive dataset of video images with ground truth information supporting evaluation +of detection and recognition tasks. +• Adaptation of various deep learning based object detectors for detection of textual content. +• Combination of text detection and script identification in a single end-to-end system. +• Validation of proposed technique through an extensive series of experiments and a comprehensive performance +comparison of various detectors. +The paper is organized as follows. In the next section, we present an overview of the current state-of-the-art on detection +of textual content in videos. In Section 3, we introduce the dataset developed in our study along with the ground +truth information. Section 4 presents the details of the proposed framework while Section 5 presents the experimental +protocol, the realized results and the corresponding discussion. Finally, Section 6 concludes the paper with a discussion +on open challenges on this subject. +2 + +EIVE YOUR +SFORTUNE +ELECTIONCOMMISS +LOF +PAKISTAN +02 +www.samaa.ty +O92NEWSHD +O92NEWSCHANNELWWW.92NEWSHD.TV +NEWS +SAMAA +11SWAT +4200 +ja +www.samaa.ty +SAMAA +SundayCursive Caption Text Detection in Videos +2 +Background +Detection of textual content in videos, images, documents and natural scenes has been investigated for more than four +decades. The domain has matured progressively over the years starting with trivial image analysis based systems to +complex end-to-end learning based systems. We discuss notable contributions to text detection in the following while +detailed surveys on the problem (and related problems) can be found in [40, 60, 68, 72, 48]. +Text detection refers to localization of textual content in images. Techniques proposed for detection of text are typically +categorized into unsupervised and supervised approaches. While unsupervised approaches primarily rely on image +analysis techniques to segment text from background, supervised methods involve training a learning algorithm to +discriminate between text and non-text regions. +Unsupervised text detection techniques include edge-based methods [4, 8, 3, 20, 24] which (assume and) exploit +the high contrast between text and its background; connected component based methods [27, 28, 31, 39] which +mostly rely on the color/intensity of text pixels and texture-based methods [2, 22] which consider textual content +in the image as a unique texture that distinguishes itself from the non-text regions. Texture based methods have +remained a popular choice of researchers and features based on Gabor filters [11], wavelets [64], curvelets [14], local +binary patterns (LBP) [1], discrete cosine transformation (DCT) [75], histograms of oriented gradients (HoG) [9] and +Fourier transformation [51] have been investigated in the literature. Another common category of techniques includes +color-based methods [65, 66, 50] which are similar in many aspects to the component-based methods and employ color +information of text pixels to distinguish it from non-text regions. +Supervised approaches for detection of textual content typically employ state-of-the-art learning algorithms which +are trained on examples of text and non-text blocks either using pixel values or by first extracting relevant features. +Classifiers like naive Bayes [52], Support Vector Machine [74], Artificial Neural Network [67, 36] and Deep Neural +Networks [30] have been investigated for this problem over the years. +In the recent years, deep learning based solutions have been widely applied to a variety of recognition problems and +have outperformed the traditional techniques. Among deep learning based techniques adapted for text detection, Huang +et al. [21] employed sliding windows with CNNs to detect textual regions in low resolution scene images. Likewise, +fully convolutional networks are explored for detection of textaul regions in [73] and the technique is evaluated on +various ICDAR datasets. A similar work is presented by Gupta et al. [15] where CNNs are trained using synthetic data +for detection of text at multiple scales from natural images. Another method called ‘SegLink’, is proposed in [49] that +relies on decomposing the text into segments (oriented boxes of words or lines) and links (connecting two adjacent +segments). The segments and links are detected using fully convolutional networks at multiple scales and combined +together to detect the complete text line. In [57] vertical anchor based method is reported that predicts text and non-text +scores of fixed size regions and reports high detection performance on the ICDAR 2013 and ICDAR 2015 datasets. In +another notable work, Wang et al. [61] present a framework based on conditional random field (CRF) to detect text in +scene images. Authors define a cost function by considering the color, stroke, shape and spatial features with CNN for +effective detection of textual regions. +Among other end-to-end trainable deep neural networks based systems, Liao et al. [32] present a system called +‘TextBoxes’ which detects text in natural images in a single forward pass network. The technique was later extended to +‘TextBoxes++’ and was evaluated on four public databases outperforming the state-of-the-art. He et al. [18] improved +the convolutional layer of CNNs to detect text with arbitrary orientation. EAST [76], is another well-known scene text +detector that provides promising results in challenging scenarios. In another study [63], an ensemble of Convolutional +Neural Networks (CNNs) is trained on synthetic data to detect video text in East Asian languages. +The literature is relatively limited once it comes to detection of cursive caption text. Among one of the preliminary +works, Jamil et al. [26] exploit edge based features with morphological processing to detect Urdu caption text from +a small set of 150 video frames. The same study was extended by Raza et al. [54] and evaluated on a larger set of +1000 video frames reporting a recall of 0.80. The dataset of images termed as IPC Artificial Text dataset [54] was +also made publicly available. In a later study [41] by the same group, the authors proposed a cascaded framework +of spatial transforms to detect caption text in five different scripts including Arabic and Urdu. In a relatively recent +work on detection of Arabic caption text, Zayene et al. [70] employ a combination of stroke width transform with a +convolutional auto-encoder and evaluate the technique on a publicly available dataset AcTiV-DB [71]. In one of our +3 + +Cursive Caption Text Detection in Videos +previous works [36], we investigated a combination of image analysis techniques with textural features to detect textual +regions in video frames and realized an F-measure of 0.80 on 1000 images. +Summarizing, it can be concluded that the problem of text detection has been dominated by the application of different +deep learning based techniques in the recent years. The availability of benchmark datasets has also contributed to +the rapid developments in this area. While detection of text in languages based on the Latin alphabet has received +significant research attention and is very much mature, detection of cursive text still remains a relatively less addressed +and challenging issue. Development of a (generic) text detector that could work in multi-script environments also +remains an open problem. +In the next section, we introduce the dataset that has been collected and labeled as a part of this study. +3 +Dataset +Availability of labeled datasets is of utmost importance for algorithmic development and evaluation of any computerized +system. From the perspective of Urdu caption text detection, a dataset of 1000 labeled video frames has been made +publicly available [54]. A collection of 1000 frames, however, seems to be very small to generalize the findings for +practical applications. We, therefore, collected and labeled a comprehensive dataset of video frames allowing evaluation +of text detection and text recognition tasks. We collected a set of 46 videos from four different News channels in +Pakistan. All videos are recorded at a resolution of 900 × 600 and a frame rate of 25 fps. Frames in these video +contain textual content in two languages, (cursive) Urdu and English. The collected video frames are labeled from two +perspectives, detection and recognition. For detection, the bounding rectangle of all text regions in a frame is labeled +and stored. Similarly, for recognition, the transcription of each text line is stored as ground truth. +In the literature, several evaluation metrics have been proposed to evaluate the performance of text detection +systems [26, 35, 62]. In our system, for evaluation of the text detection module, we employ the most commonly used +area based precision and recall measures reported in [26] and defined as follows. +Let AE be the estimated text area given by the system and AT be the ground truth text area, then the precision P and +recall R are defined as: +P = +AE ∩ AT +AE +(1) +R = +AE ∩ AT +AT +(2) +The precision and recall measures can be combined in a single F-measure as follows. +F = +2 × Precision × Recall +Precision + Recall +(3) +The same idea can be extended to multiple images by simply summing up area of intersection and dividing by +the total ground truth area (in N images) for recall and the total detected area for precision. To compute these +measures, for each frame, we need to store the actual location of the textual content. The text detected automatically +by the system can then be compared with the ground truth text regions to compute precision, recall and F-measure. +The idea is illustrated in Figure 3. +Figure 3-a illustrates an example where the text regions detected by the +system are shown while Figure 3-b illustrates the ground truth text locations for the given frame. The detected and +ground truth text regions can be compared to compute the metrics defined earlier and quantify the detection performance. +To facilitate the labeling process and standardize the ground truth data, a comprehensive labeling tool has been developed +that allows storing the location of each textual region in a frame along with its ground truth transcription. The location +is stored in terms of the x and y coordinates of the top left of the bounding box along its width and height. The ground +truth information of each frame is stored as an XML file that comprises frame meta data and the information on textual +regions. A screen shot of the labeling tool is presented in Figure 4 while the ground truth information of an example +frame is illustrated in Figure 5. +It is known that videos typically contain 25–30 frames per second; consequently, successive frames in a video contain +redundant information (both visual and textual content). From the view point of automatic analysis systems, frames +4 + +Cursive Caption Text Detection in Videos +Figure 3: Text regions in an image and the corresponding ground truth image +Figure 4: Screen shot of ground truth labeling tool for text data +Figure 5: An XML file containing ground truth information of a frame +with unique content are of interest. Hence, each single video frame does not need to be labeled as major proportions of +such frames will have exactly the same textual information. In our study, we have extracted more than 11,000 frames +5 + +BREAKINGNEWS +BREAKI +BREAK +NEW +e +NATIONALOASPAKISTANWILLNEVERLEAVEITSKASHMIRI BRETHRENALONE:COAS +NATIONAL OAS PAKISTAN WILL NEVER LEAVEITS KASHMIRIBRETHREN ALONE: +COAS Video Images Groud Truth Labeling Tool +十 + Attributes +Text Type +Frames +Frame No +O Atficial +O Scene +Browse +C:NUsers VAliNDesktop \Frames +Samaa_News_2017041 +Language +Samaa_News_20170413_11^ +O Urdu +Samaa_News_20170413_11 +X: 891 Y : 358 +Urdu Text +Samaa_News_20170413_11 +Rectangle Location +X84Y522 +Samaa_News_20170413_11 +Samaa_News_20170413_1 +Rectangle Siz +Width +Heighi +4 +5 +6 +7 +8 +Samaa_News_20170413_11 +588 +54 +c +‘s +上 +Samaa News 20170413 1 +Rectangle Area +Samaa_News_20170413_11 +31752 +3 +n +Samaa_News_20170413_11 +Image Size +Samaa_News_20170413_11 +900 × 600 +Samaa_News_20170413_11 +Grids +Samaa_News_20170413_11 + Cross Hair +Space +Samaa News 20170413 11 +cill +Samaa_News_20170413_11 +Channe +O Ary Default +Samaa_News_20170413_11 +O Samaa + Store Text Feed +Samaa_News_20170413_11~ +ekung O +REPEAT +O Express +eLaw +SAMAA +REPEAT +SAMAA + Done Generate XML +215 + Zoom Selected +Zoomed Preview +Add +Remove Feed +Remaining Images : 34 + + + +Samaa News +Samaa_News_20170413_113759_10701 + + + +/..**!..-+xa1 ..9.-tah .0..-+pm ..ss..- ..9..-x ..Tett++..-d x1 ....- aux1> + +c:1 -x .s..-tah ..88s..-m ....- .8..-x ..ett+..=d x .S..- aux> + + + + + + +Cursive Caption Text Detection in Videos +from videos with an attempt to have as much unique text as possible. The statistics of videos, frames and text lines of +our dataset are presented in Table 1. Inspired from the Arabic caption text dataset AcTiV-DB [71], we have named the +our dataset UTiV (Urdu Text in Video). The dataset along with its ground truth has also been made publicly available1 +to support quantitative evaluation of text detection and recognition tasks. +Table 1: Statistics of labeled video frames +S# +Channel +Videos +Labeled Images +Urdu Lines +English Lines +1 +Ary News +7 +3,206 +10,250 +3,605 +2 +Samaa News +13 +2,503 +10,961 +4,411 +3 +Dunya News +16 +3,059 +10,723 +8,861 +4 +Express News +10 +2,424 +8,536 +6,755 +Total +46 +11,203 +40,470 +23,632 +4 +Methods +This section presents the details of detecting textual content from video frames. Detection relies on adapting object +detectors based on deep convolutional neural networks for text regions. Once the text is detected, script of the detected +text is identified by employing the ConvNets in a classification framework. Subsequently, text detection and script +identification are combined in a single end-to-end system that detects the textual content along with its script. Details +are presented in the following sections. +4.1 +Deep Learning based Object Detectors +Deep neural networks enjoy a renewed interest of the machine learning community thanks primarily to the availability +of high performance computing hardware (GPUs) as well as large data sets to train these systems. A major development +contributing to the current fame of deep learning was the application of ConvNets by Krizhevsky et al. [29] on the +ImageNet Large Scale Visual Recognition competition [46], which greatly reduced the error rates. Since then, CNNs +are considered to be state-of-the-art feature extractors and classifiers [55, 56] and have been applied to a variety of +recognition tasks [5, 58, 10]. +While traditional CNNs are typically employed for object classification, Region-based Convolutional Networks +(R-CNN) [13] and their further enhancements Fast R-CNN [12] and Faster R-CNN [45] adapt CNNs for object +detection. In addition to different variants of R-CNN, a number of new architectures have also been proposed in the +recent years for real time object detection. The most notable of these include YOLO (You Only Look Once) [42] and +SSD (Single Shot Detector) [34]. Each of these object detectors can be trained to detect C object classes (plus one for +the background). The output of the detector is the location of the bounding box (four coordinates) containing one of the +C classes as well as the class confidence score. +In our study, for detection of textual content in a given frame, we investigated a number of CNN based object detectors. +Although, many object detectors are trained with thousands of class examples and provide high accuracy in detection +and recognition of different objects, these object detectors can not be directly applied to identify text regions in images. +These models have to be tuned to the specific problem of discrimination of text from non-text regions. The convolutional +base of these models can be trained from scratch or, known pre-trained models can be fine-tuned by training them on +text and non-text regions. In our study, we investigated the following object detectors for localization of text regions. +• Faster R-CNN +• Region-Based Fully Convolutional Networks (R-FCN) +• Single Shot Detector (SSD) +• You Only Look Once (YOLO) +For completeness, we provide a brief overview of these object detectors in the following sections. +1http://cbvir.media-tics.net/ +6 + +Cursive Caption Text Detection in Videos +4.1.1 +Faster R-CNN +Faster R-CNN [45] is an enhanced version of its predecessors R-CNN [13] and Fast R-CNN [12]. Each of these +detectors exploits the powerful features of ConvNets for object localization as well as classification. R-CNN was one +of the first attempts to apply ConvNets for object detection. An R-CNN scans the input image for potential objects +using Selective Search [58] that generates around 2,000 region proposals. Each of these region proposals is then fed +to a CNN for feature extraction. The output of the CNN is finally employed by an SVM to classify the object and a +linear regressor to tighten the bounding box. R-CNN was enhanced in terms of training efficiency by extending it to +Fast R-CNN [12]. In Fast R-CNN, rather than separately feeding each region proposal to the ConvNet, convolution is +performed only once on the complete image and the region proposals are projected on the feature maps. Furthermore, +the SVM in R-CNN was replaced by a softmax layer extending the network to predict the class labels rather than +using a separate model. While Fast R-CNN significantly reduced the time complexity of the basic R-CNN, a major +bottleneck was the selective search algorithm to generate the region proposals. This was addressed through Region +Proposal Network (RPN) in Faster R-CNN [45] which shares convolutional features with the detection network. RPN +predicts region proposals which are then fed to the detection network to identify the object class and refine the bounding +boxes produced by the RPN. A summary of various R-CNN models in presented in Figure 6. +Figure 6: Summary of R-CNN Family based Object Detectors +4.1.2 +You Only Look Once (YOLO) +YOLO [42] takes a different approach to object detection primarily focusing on improving the detection speed (rather +than accuracy). As the name suggests, YOLO employs a single pass of the convolutional network for localization and +classification of objects from the the input images. The input image is divided into a grid and an object is expected +to be detected by the grid which holds the center of the object. Each cell in the grid predicts up to two bounding +boxes (and class probabilities). The network comprises 24 convolutional and fully connected layers. YOLO works in +real time but in terms of accuracy, it is known to make significant localization errors in comparison to region based +object detectors (Faster R-CNN for instance). YOLO was later enhanced to YOLO9000 [43] by introducing batch +normalization, increasing the resolution of the input image (by a factor of 2) and introducing the concept of anchor boxes. +YOLO9000 employs Darknet 19 architecture with 19 convolutional layers, 5 max pooling layers and a softmax layer for +classification objects. Incremental improvements in YOLO v2 resulted in YOLO v3 [44] that uses logistic regerssion to +predict the score of objectness for each bounding box. Furthermore, it employs class-wise logistic classifiers (rather +than softmax) allowing multi-label classification. +7 + +Box offset +SVM object +Box offset +Softmax +Box offset +Softmax +Regressor +Classifier +Regressor +Classifier +Regressor +Classifier +Independent +Joint +Joint +Region CNN +Region CNN +Region CNN +Fine-tuned +Fine-tuned +Features +Features +Features +ROl Pooling +Pre-trained +RPN +Pre-trained +ROl Pooling +Region +Region +Deep CNN +Deep CNN +Proposal +Proposal +Deep CNN +Independent +Independent +Independent +MP +GMP +R-CNN +Fast R-CNN +Faster R-CNNCursive Caption Text Detection in Videos +4.1.3 +Single Shot Detector (SSD) +Unlike the R-CNN series object detectors which require two shots to detect objects in an image, Single Shot Multi-box +Detector [34], as the name suggests, requires a single shot to detect objects (similar to YOLO). SSD relies on the idea +of default boxes and multi-scale predictions and directly applies bounding box regression to the default boxes without +generating the region proposals. Detection at multiple scales are handled by exploiting the feature maps of different +convolutional layers corresponding to different receptive fields in the input image. The architecture has an input size +of 300 × 300 × 3 and primarily builds on the VGG-16 architecture discarding the fully connected layers. VGG-16 is +used as base network mainly due to its robust performance of image classification tasks. The bounding box regression +technique of SSD is inspired by [56] while the MultiBox relies on priors, the pre-computed fixed size bounding boxes. +The priors are selected in such a way that their Intersection over Union ratio (with ground truth objects) is greater than +0.5. The MultiBox starts with the priors as predictions and attempt to regress closer to the ground truth bounding boxes. +SSD works in real time but requires images of fixed square size and is known to miss small objects in the image. +4.1.4 +Region-Based Fully Convolutional Networks (R-FCN) +R-FCN [7] builds on the idea of increasing the detection accuracy by maximizing the shared calculations. R-FCN +generates position-sensitive score maps to represent different relative positions of an object. An object is represented by +k2 relative positions dividing it into a grid of size k × k. A ConvNet (ResNet in the original R-FCN paper) sweeps the +input image and an additional fully convoltional layer produces the position-sensitive scores in k2 × (C + 1) score maps +where C is the number of classes plus 1 class for the background. A fully convolutional proposal network generates +regions of interest which are divided in k2 bins and the corresponding class probabilities are obtained from the score +maps. The scores are averaged to convert the k2 × (C + 1) values into a one dimensional (C + 1) sized vector which is +finally fed to the softmax layer for classification. Localization is carried out using the bounding box regression similar +to other object detectors. R-FCN speeds up the detection in comparison to Faster R-CNN but compared to other Single +Shot methods, it requires more computational resources. +4.2 +Adapting Object Detectors for Text Detection +In the context of object detection, the problem of text detection can be formulated as a two class problem. The text +regions represent object of interest while the non-text regions need to be ignored. The object detectors discussed in +the previous sections are adapted for text detection using two pre-trained models, ResNet 101 [17] and Inception +v2 [23]. These models are trained on the large scale Microsoft COCO (Common Objects in Context) database [33]. The +database contains images of 91 different object types with a total of 2.5 million labeled instances in 328K images. The +pre-trained network serves as starting point rather than random weight initialization and the network is made to learn the +specific class labels (text or non-text) by continuing back propagation. The ground truth localization information of the +textual regions in the video frames is employed for training the models, the overall workflow being illustrated in Figure 7. +A critical aspect in employing object detectors for text detection is the choice of anchor boxes. +The anchor +boxes in all the detectors have been designed to detect general object categories. Text appearing in videos has +specific geometric properties in terms of size and aspect ratio hence the default anchor boxes of the detectors +need to be adapted to detect textual regions. We carried out a comprehensive analysis of the textual regions in +terms of width, height and aspect ratios of the bounding boxes. As a result of this analysis we have chosen a +base anchor of size 256 × 256. To each anchor box we apply three scales (1.0, 2.0, 5.0) and five aspect ratios +(0.125, 0.1875, 0.25, 0.375, 0.50) as illustrated in Figure 8. Models are fine-tuned using the proposed anchor boxes +and the effectiveness of these anchor boxes is validated through experimental study as presented in Section 5 of the paper. +4.3 +Script Identification +As discussed earlier, we primarily target detection of cursive caption text. However, like many practical scenarios, video +frames in our case contain bilingual textual content (Urdu & English). Consequently, once the text is detected, we +need to identify the script of each detected region (Figure 9) so that the subsequent processing of each type of script +can be carried out by the respective recognition engine. For script identification, we employ CNNs in a classification +framework (rather than detection). Urdu and English text lines are employed to fine-tune CNNs to discriminate between +the two classes. Once trained, the model is able to separate text lines as a function of the script. Similar to detection, +rather than training the networks from scratch, we fine-tune known pre-trained models (Inception and ResNet) to solve +the two-class classification problem. +8 + +Cursive Caption Text Detection in Videos +Figure 7: Overview of adapting object detectors for text detection +Figure 8: +Anchor boxes (base size 256 × 256) at three scales (1.0, 2.0, 5.0) and five aspect ratios +(0.125, 0.1875, 0.25, 0.375, 0.50) +Figure 9: Script identification of detected text lines +9 + +Test Image +Frames +VIDEO +Output Image +Ground Truth Data +Object +Fine-Tuning +Text Detector +Inference +Detector +CNN Model +Pre-trained +CNN +ModelsScale: 1.0 +(a) +Scale: 2.0 +(b) +Scale: 5.0 +(c)Urdu Text Regions +Bilingual Text Regions +SHAZIA ZEESHAN +ZAFAR HILALY +Script +Identification +English Text Regions +AHMAD AWAIS +ORYAMAQBOOL JAN +SHAZIA ZEESHAN +ZAFAR HILALY +AHMAD AWAIS +ORYAMAQBOOLJANCursive Caption Text Detection in Videos +4.4 +Hybrid Text Detector & Script Identifier +Detection of text and identification of script, as discussed previously, can be implemented in a cascaded framework +where the output of text detector is fed to the script identifier. A deep learning framework can be tuned to discriminate +between text and non-text regions and the extracted text regions can be fed to a separate script recognition model that +identifies the script of the detected text. This, however, introduces a bottleneck of training two separate networks. +Furthermore, the cascaded solution also implies that errors in detection are propagated to the next step as well. We, +therefore, propose to combine the text detector and script identifier in a single hybrid model. Rather than treating +detection as a two-class problem (text and non-text), we consider it as a three class problem, i.e. non-text regions, +English text and Urdu text. This not only avoids training two separate models but also eliminates the accumulation +of errors in a cascaded solution. The superiority of the combined text detector and script identifier is also supported +through quantitative evaluations as discussed in the next section. +All detectors are trained in an end-to-end manner with a multi-task objective function that combines the classification +and regression losses. The evolution of training loss for the investigated detectors (with Inception and ResNet) is +illustrated in Figure 10 where it can be seen that the loss begins to stabilize from 30 epochs on wards. +Figure 10: Training loss of various detectors – Hybrid text detector and script identifier +5 +Experiments and Results +The detection performance is evaluated through a series of experiments carried out on the collected set of video frames. +We first present the experimental protocol followed by the detection results of various object detectors. We then present +the script identification results and the performance of the combined text detector and script identifier. Furthermore, +performance sensitivity of the system as well as a comparison with state-of-the-art is also presented. +5.1 +Experimental Settings +As introduced in Section 3, we collected a total of 11,203 video frames from four different News channel videos. The +localization information of text regions in these frames is used to train and subsequently evaluate the text detection and +script identification performance. The distribution of frames into training and test sets along with the number of text +lines in each set is summarized in Table 2 while the details of detection performance are presented in the next section. +5.2 +Text Detection Results +Object detectors including Faster R-CNN, YOLO, SSD and R-FCN are adapted to detect textual content by fine-tuning +the Inception and ResNet pre-trained models and changing the anchor boxes as discussed previously. Performance of +10 + +7 ++FasterRCNN-Inception +6.5 +Faster RCNN-ResNet +6 +SSD-Inception +SSD-ResNet101 +5.5 +米RFCN-Inception +5 +RFCN-ResNet +TRANING LOSS +4.5 +YoloV3 +3.5 +3 +2.5 +2 +1.5 +1 +0.5 +0 +0 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +EPOCHSCursive Caption Text Detection in Videos +Table 2: Data distribution for text detection experiments +Train +Test +Frames +Lines +Frames +Line +Urdu +8,500 +31,321 +2,703 +9,149 +English +16,207 +7,425 +Total +49,046 +11,056 +each of these detectors in terms of precision, recall and F-measure is summarized in Table 3. It can be seen that in all +cases, detectors pre-trained on Inception outperform those trained on ResNet. Among various detectors, Faster R-CNN +reports the highest F-measure of 0.90. The lowest performance is reported by Yolo reading an F-measure of 0.66. A +comprehensive study on the trade-off between speed and accuracy of various object detectors is presented in [19] and +our findings on detection of text are consistent with those of [19]. It is also important to recap that precision and recall +are computed using area based metrics. As a result, if the detected bounding box is larger (smaller) than the ground +truth, it results in penalizing the precision (recall) of the detector as illustrated in Figure 11. The output of the Faster +R-CNN based text detector for few sample frames in our dataset is illustrated in Figure 12. +Table 3: Text Detection Results +RestNet +Inception +Model +Precision +Recall +F-Measure +Precision +Recall +F-Measure +SSD +0.83 +0.71 +0.77 +0.82 +0.77 +0.80 +R-FCN +0.79 +0.86 +0.82 +0.84 +0.89 +0.86 +Faster R-CNN +0.82 +0.90 +0.85 +0.86 +0.95 +0.90 +Yolo +- +- +- +0.63 +0.69 +0.66 +Figure 11: Computation of precision and recall (a):Ground Truth Bounding Box (b): Detected region is larger than +ground truth (c):Detected region is smaller than ground truth (d):Detected region overlaps perfectly with the ground +truth +In an attempt to provide an insight into the detection errors, few of the errors are illustrated in Figure 13. It can be seen +that in most cases, the detector is able to detect the textual region but the localization is not perfect i.e. in some cases +the bounding box is larger (shorter) than the actual content leading to a reduced precision (recall). +11 + +SAMAA +SAMAA +(a) +(b) +SAMAA +SAMAA +(c) +(d)Cursive Caption Text Detection in Videos + + + + +Figure 12: Text detection results on sample images (Faster R-CNN with Inception) +Figure 13: Imperfect Localization of Text Regions +5.3 +Script Identification Results +For script identification, we employ the same distribution of frames into training and test sets as that of the detection +protocol. Text lines from the video frames in the training set are employed to fine-tune the pre-trained ConvNets while +the identification rates are computed on text lines from the frames in the test set. A total of 31, 321 Urdu and 16, 207 +English text lines are used in the training set while the test set comprises 9, 9149 and 7, 425 text lines in Urdu and +English respectively. The resulting confusion matrix is presented in Table 4 while the precision, recall and F-measure +are summarized in Table 5. It can be seen that the model was able to correctly identify the scripts with an accuracy of +more than 94%. +12 + +text: 99% +text: +/O0U +text: 99% +了02912. +text: 99% +text: 96% +text: 99% +text: 92% +CAN BECOMELEADING EXPORTINGNATIOR +000 +text: 77% +text: 59% +77.7370nua +text: 97% +text: 92% +text: 96% +text: 53% +INYA +FACEBOOK.COM/DUNYANEWS +0007 +text: +85% +GWLC +58 +-0.78text: 96% +text: 88% +text: 99% +text: 91% +JEWS +WITTER:@DUNYANEWSI FACEBOOK.CO +text: 81% +text: 53% +8.45-0.30text: 84% +text: 98% +text: +1000: +text: 95% +Wewill pressurize PMto resig +text: 83% +:ImranKhan +text: 65% +text: 98% +text: 80% +1021PN43300 +2YearsWarrant +Its including 21 each in Puniab and Sindh will beCursive Caption Text Detection in Videos +Table 4: Script identification confusion matrix +Urdu +English +Urdu +8763 +386 +English +551 +6874 +Table 5: Performance of Script Identification +Precision +Recall +F–Measure +Urdu +0.940 +0.957 +0.95 +English +0.946 +0.925 +0.94 +5.4 +Hybrid Text Detection & Script Identification Results +As discussed previously, text detection and script identification can be combined in a single model treating detection as +a three (rather than two) class problem. The results of these experiments are summarized in Table 6 keeping the same +distribution of training and test frames as in the previous experiments. Many interesting observations can be drawn from +the results in Table 6. Similar to the script independent detectors, models pre-trained on Inception outperform those +trained on ResNet and the observation is consistent for all four detectors. Likewise, Faster R-CNN reports the highest +F-measure both for detection of Urdu and English text reading 0.91 and 0.87 respectively. In all cases, the performances +on detection of Urdu text are better than those on Engish text. This can be attributed to the fact that the data is collected +primarily from Urdu News channels which have limited amount of English text. It is also interesting to note that by +combining text detection and script identification in a single model, not only the cascaded solution is avoided, the +detection F-measures have also improved (in most cases). Though the improvement is marginal, eliminating the separate +processing of detected text regions to identify the script offers a much simplified (yet effective) solution. Detection +outputs on sample frames for the four detectors are illustrated in Figure 14. +Table 6: Performance of hybrid text detector and script identifier +RestNet +Inception +Method +Script +Precision +Recall +F-Measure +Precision +Recall +F-Measure +SSD +Urdu +0.83 +0.72 +0.77 +0.82 +0.78 +0.80 +English +0.80 +0.63 +0.70 +0.82 +0.70 +0.75 +R-FCN +Urdu +0.80 +0.87 +0.83 +0.85 +0.90 +0.87 +English +0.73 +0.81 +0.77 +0.77 +0.84 +0.81 +Faster R-CNN +Urdu +0.82 +0.92 +0.86 +0.87 +0.95 +0.91 +English +0.80 +0.81 +0.80 +0.81 +0.94 +0.87 +Yolo +Urdu +- +- +- +0.64 +0.70 +0.67 +English +- +- +- +0.62 +0.67 +0.64 +In an attempt to carry out an in-depth analysis of the detection performance and its evolution with respect to important +system parameters, we carried out another series of experiments using Faster R-CNN (with Inception). In the first such +experiment, we study the performance sensitivity to the amount of training data. We train the model by varying the +number of text line images (from 10K to 49K) and compute the detector F-measure. Naturally, the detector performance +enhances with the increase in the amount of training data (Figure 15) and begins to stabilize from around 30K-35K +training lines. +Resolution of input video frames is an important parameter that might affect the detector performance. To study the +detector sensitivity to image resolution, we varied the image resolution from 256 × 144 to 1920 × 1080. The resolution +was varied only in the test set and all sets of images were evaluated on the detector trained on a single resolution +(900 × 600). The F-measures in Figure 16 are more less consistent for varied image resolutions reflecting the robustness +of the detector. The proposed anchor boxes adapted for textual content play a key role in achieving this scale invariance. +5.5 +Performance Comparison +In an attempt to compare the performance of our detector with those reported in the literature, we present a comparative +overview of various text detectors targeting cursive caption text in Table 7. It is important to note that since different +studies are evaluated on different datasets, a direct comparison of these techniques is difficult. Most of the listed studies +employ a small set of images (≤ 1000). Moradi et al. [38] and Zayene et al. [70] report results on relatively larger +datasets with F-measures of 0.89 and 0.84 respectively. In comparison to other studies, we employ a significantly +13 + +Cursive Caption Text Detection in Videos + + +(a) + + + +(b) + + + +(c) + + + +(d) + +Figure 14: Detection output of hybrid text detection and script identification for different detectors (a): SSD (b): R-FCN +(c): Faster RCNN (d): Yolo +14 + +urdu:95% +BBEAKING +NEWS +%86nJn +urdu:80% +urdu:91% +urdu:97% +urdu:96% +Lrdu:99% +english:85% +cnglish:87% +07:53urdu:97% +urdu:89% +%86.npin +urdu:89% +english:78% +urdu:97% +JUSTIN +enalish:81% +BRR +9.21-0.23urdu:60% +EIREAKING +NEWS +urdu:96% +urdu:92% +7 +%96:npJn +urdu:96% +urdu:91% +uluu:98% +english:98% +english:95% +AG +urdu:99 +ITIESAIMINGATDESTABILIZINGPAKISTAN: +english:88% +07:53%66npin +urdu:82% +urdr:97% +%66npin +urdu:94% +english:80% +%66npn +JUSTIN +english:72% +english:65% +9210.23Benglish:93% +english:80% +urdu:99% +urdu:97% +urdu:94% +urdu:97% +urdu:99% +urdu:72% +urdu:94% +english:84% +english:L97% +english:67% +AGE +TIESAIMINGATDESTABILIZINGPAKISTAN: +LIVEI +17:53urdu:98% +%66npJn +urdu:99% +urdu:98% +urdu:78% +english:9tenglish:91% +urdu:99% +DUSTIN +english:95% +english:73% +9.21-0.23english0.14 +HIEAKING +Fdu18.508.15 +urdu 9.15 +english 0.32 +english 0.37 +AGEACTIVITIESAIMINGATDESTABILIZINGPAKISTAN: +english 0.27english e.1l +urdu0.18 +nduo.1 +english e.15 +nalish e.13 +englibinc. +JUISTIN +english0:11 +BRR +3210.23Cursive Caption Text Detection in Videos +Figure 15: Impact of size of training data on text detection performance (Faster R-CNN with Inception) +Figure 16: Impact of video resolution on text detection performance (Faster R-CNN with Inception) +larger set of images with an F-measure of 0.91. Furthermore, for a fair comparison, we also evaluated our system on +the set 1000 images in the publicly available IPC dataset [54], the corresponding F-measure reads 0.92 validating the +effectiveness of our detection technique, +6 +Conclusion +This paper presented a system for detection of caption text appearing in video frames. The developed technique relies +on exploiting deep learning based object detectors and adapting them for text detection. Since it is common in videos to +have text in more than one script, we presented, as a case study, video frames with text in cursive (Urdu) and Roman +(English) scripts. Since each script requires different processing, the detection is combined with script identification in +an end-to-end fashion so that the system is able to not only localize the text but also identify its script. Among various +investigated object detectors, Faster R-CNN with our proposed set of anchor boxes reported the highest detection rates. +The presented work is a part of a comprehensive video indexing and retrieval system and the current study focused on +the detection of text. In our other [77, 78] work, the detection module is integrated with the video OCR module so that +15 + +0.95 +0.9 +0.9 +0.89 +0.89 +0.9 +0.88 +0.86 +F-Measure +0.85 +0.85 +0.82 +0.8 +0.76 +0.75 +0.7 +10k +15k +20k +25k +30k +35k +40k +45k +49k +Number of Tranining Lines1.000 +0.950 +-Urdu +MEASURE +English +0.900 +0.850 +0.800 +0.750 +256 X 144 +426 X 240 +640 X 360 +900 X 600 +1280 X 720 1920 X 1080 +VIDEO RESOLUTIONCursive Caption Text Detection in Videos +Table 7: Performance comparison with other techniques +Study +Method +Dataset +Script +Video Frames +Precision +Recall +F-Measure +Jamil et al.(2011) [26] +Edge-based Features +IPC +Urdu +150 +0.77 +0.81 +0.79 +Siddiqi and Raza(2012) [54] +Image Analysis +IPC +Urdu +1,000 +0.71 +0.80 +0.75 +Moradi et al.(2013) [38] +LBP with SVM +- +Farsi/Arabic +4971 +0.91 +0.87 +0.89 +Raza et al.(2013) [41] +Cascade of Transforms +IPC +Urdu +1,000 +0.80 +0.89 +0.84 +Raza et al.(2013) [41] +Cascade of Transforms +IPC +Arabic +300 +0.81 +0.93 +0.86 +Yousfi et al.(2014) [69] +ConvNet +- +Arabic +201 +0.75 +0.80 +0.77 +Zayene et al.(2015) [71] +SWT +AcTiV +Arabic +425 +0.67 +0.73 +0.70 +Zayene et al.(2016) [70] +SWT&Conv Autoencoders +AcTiV +Arabic +1843 +0.83 +0.85 +0.84 +Shahzad et al.(2017) [47] +Image Analysis +- +Urdu/Arabic +240 +0.83 +0.93 +0.88 +Mirza et al.(2018) [36] +Textural Features +UTiV +Urdu +1,000 +0.72 +0.89 +0.80 +Unar et al.(2018) [59] +Image Analysis+SVM +IPC +Urdu +1,000 +0.83 +0.88 +0.85 +Proposed Method +Deep ConvNets +UTiV +Urdu +11,203 +0.87 +0.95 +0.91 +IPC +Urdu +1,000 +0.91 +0.93 +0.92 +detected text is recognized. Once recognized, videos are indexed based on keywords and retrieved on user provided +queries. In addition to retrieval, automatic News summarization from ticker text and comparison of News across various +News channels is also planned to be implemented. Furthermore, the textual content based retrieval will be combined +with audio as well as visual objects appearing in videos. +References +[1] Marios Anthimopoulos, Basilis Gatos, and Ioannis Pratikakis. A two-stage scheme for text detection in video +images. Image and Vision Computing, 28(9):1413–1426, 2010. +[2] Xiang Bai, Cong Yao, and Wenyu Liu. Strokelets: A learned multi-scale mid-level representation for scene text +recognition. IEEE TRANSACTIONS ON IMAGE PROCESSING, 25, 2016. +[3] Sudipto Banerjee, Koustav Mullick, and Ujjwal Bhattacharya. A robust approach to extraction of texts from +camera captured images. In International Workshop on Camera-Based Document Analysis and Recognition, pages +30–46. Springer, 2013. +[4] Remigiusz Baran, Pavol Partila, and Rafal Wilk. Automated text detection and character recognition in natural +scenes based on local image features and contour processing techniques. In International Conference on Intelligent +Human Systems Integration, pages 42–48. Springer, 2018. +[5] David Bouchain. Character recognition using convolutional neural networks. Institute for Neural Information +Processing, 2007, 2006. +[6] Jean Burgess and Joshua Green. YouTube: Online video and participatory culture. John Wiley & Sons, 2018. +[7] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based fully convolutional +networks. In Advances in neural information processing systems, pages 379–387, 2016. +[8] Jin Dai, Zu Wang, Xianjing Zhao, and Shuai Shao. Scene text detection based on enhanced multi-channels mser +and a fast text grouping process. In 2018 IEEE 3rd International Conference on Cloud Computing and Big Data +Analysis (ICCCBDA), pages 351–355. IEEE, 2018. +[9] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In Computer Vision and +Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE, +2005. +[10] Sachin Sudhakar Farfade, Mohammad J Saberian, and Li-Jia Li. Multi-view face detection using deep convolu- +tional neural networks. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, +pages 643–650. ACM, 2015. +[11] Dennis Gabor. Theory of communication. part 1: The analysis of information. Journal of the Institution of +Electrical Engineers-Part III: Radio and Communication Engineering, 93(26):429–441, 1946. +[12] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pages +1440–1448, 2015. +[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object +detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern +recognition, pages 580–587, 2014. +16 + +Cursive Caption Text Detection in Videos +[14] Joutel Guillaume, Eglin Véronique, Bres Stéphane, and Emptoz Hubert. Curvelets based feature extraction of +handwritten shapes for ancient manuscripts classification. In Electronic Imaging 2007, pages 65000D–65000D. +International Society for Optics and Photonics, 2007. +[15] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. Synthetic data for text localisation in natural images. In +Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2315–2324, 2016. +[16] Umar Hayat, Muhammad Aatif, Osama Zeeshan, and Imran Siddiqi. Ligature recognition in urdu caption text +using deep convolutional neural networks. In 2018 14th International Conference on Emerging Technologies +(ICET), pages 1–6. IEEE, 2018. +[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In +Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. +[18] Tong He, Zhi Tian, Weilin Huang, Chunhua Shen, Yu Qiao, and Changming Sun. Single shot textspotter with +explicit alignment and attention. arXiv preprint arXiv:1803.03474, 2018. +[19] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew +Wojna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy trade-offs for modern convolutional object detectors. +In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7310–7311, 2017. +[20] Rong Huang, Palaiahnakote Shivakumara, and Seiichi Uchida. Scene character detection by an edge-ray filter. In +Document Analysis and Recognition (ICDAR), 2013 12th International Conference on, pages 462–466. IEEE, +2013. +[21] Weilin Huang, Yu Qiao, and Xiaoou Tang. Robust scene text detection with convolution neural network induced +mser trees. In European Conference on Computer Vision, pages 497–511. Springer, 2014. +[22] X Huang. A novel video text extraction approach based on log-gabor filters. In 4th International Congress on +Image and Signal Processing, 2011. +[23] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal +covariate shift. arXiv preprint arXiv:1502.03167, 2015. +[24] A Jamil, I Siddiqi, F Arif, and A Raza. Edge-based features for localization of artificial urdu text in video images. +In International Conference on Document Analysis and Recognition, Jamil, A., et al. Edge-based Features for +Localization of Artificial Urdu Text in Video Images. in International Conference on 2011. +[25] Akhtar Jamil, Azra Batool, Zumra Malik, Ali Mirza, and Imran Siddiqi. Multilingual artificial text extraction and +script identification from video images. International Journal of Advanced Computer Science & Applications, +1(7):529–539, 2016. +[26] Akhtar Jamil, Imran Siddiqi, Fahim Arif, and Ahsen Raza. Edge-based features for localization of artificial urdu +text in video images. In Document Analysis and Recognition (ICDAR), 2011 International Conference on, pages +1120–1124. IEEE, 2011. +[27] Y.C. Kiran and L.N. C. Text extraction and verification from video based on svm. World Journal of Science and +Technology, 2(5):124–126, 2012. +[28] Hyung Il Koo and Duck Hoon Kim. Scene text detection via connected component clustering and nontext filtering. +IEEE transactions on image processing, 22(6):2296–2305, 2013. +[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural +networks. In Advances in neural information processing systems, pages 1097–1105, 2012. +[30] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015. +[31] SeongHun Lee, Min Su Cho, Kyomin Jung, and Jin Hyung Kim. Scene text extraction with edge constraint and +text collinearity. In Pattern Recognition (ICPR), 2010 20th International Conference on, pages 3983–3986. IEEE, +2010. +[32] Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang Wang, and Wenyu Liu. Textboxes: A fast text detector with a +single deep neural network. In AAAI, pages 4161–4167, 2017. +[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and +C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on computer vision, +pages 740–755. Springer, 2014. +[34] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C +Berg. Ssd: Single shot multibox detector. In European conference on computer vision, pages 21–37. Springer, +2016. +17 + +Cursive Caption Text Detection in Videos +[35] Simon M Lucas, Alex Panaretos, Luis Sosa, Anthony Tang, Shirley Wong, Robert Young, Kazuki Ashida, Hiroki +Nagai, Masayuki Okamoto, Hiroaki Yamamoto, et al. Icdar 2003 robust reading competitions: entries, results, and +future directions. International Journal of Document Analysis and Recognition (IJDAR), 7(2-3):105–122, 2005. +[36] Ali Mirza, Marium Fayyaz, Zunera Seher, and Imran Siddiqi. Urdu caption text detection using textural features. +In Proceedings of the 2nd Mediterranean Conference on Pattern Recognition and Artificial Intelligence, pages +70–75. ACM, 2018. +[37] Ali Mirza, Imran Siddiqi, Syed G.Mustufa, and Mazahir Hussain. Impact of pre-processing on recognition of +cursive video text. In 9th Iberian Conference on Pattern Recognition and Image Analysis. Springer, 2019. +[38] Mohieddin Moradi and Saeed Mozaffari. Hybrid approach for farsi/arabic text detection and localisation in video +frames. IET Image Processing, 7(2):154–164, 2013. +[39] Yi-Feng Pan, Xinwen Hou, and Cheng-Lin Liu. A hybrid approach to detect and localize texts in natural scene +images. IEEE Transactions on Image Processing, 20(3):800–813, 2011. +[40] Ye Qiaoyang and David Doermann. Text detection and recognition in imagery: A survey. IEEE Transactions On +Pattern Analysis And Machine Intelligence, 37, July 2015. +[41] Ahsen Raza, Imran Siddiqi, Chawki Djeddi, and Abdellatif Ennaji. Multilingual artificial text detection using a +cascade of transforms. In 2013 12th International Conference on Document Analysis and Recognition, pages +309–313. IEEE, 2013. +[42] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object +detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788, +2016. +[43] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE conference on +computer vision and pattern recognition, pages 7263–7271, 2017. +[44] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018. +[45] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with +region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015. +[46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej +Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. International +Journal of Computer Vision, 115(3):211–252, 2015. +[47] Usman Shahzad and Khurram Khurshid. Oriental-script text detection and extraction in videos. In 2017 1st +International Workshop on Arabic Script Analysis and Recognition (ASAR), pages 15–20. IEEE, 2017. +[48] Nabin Sharma, Umapada Pal, and Michael Blumenstein. Recent advances in video based document processing: a +review. In Document Analysis Systems (DAS), 2012 10th IAPR International Workshop on, pages 63–68. IEEE, +2012. +[49] Baoguang Shi, Xiang Bai, and Serge Belongie. Detecting oriented text in natural images by linking segments. +arXiv preprint arXiv:1703.06520, 2017. +[50] P. Shivakumara, T.Q. Phan, and C.L. Tan. New fourier-statistical features in rgb space for video text detection. +IEEE Trans. Circuits Syst. Video Techn, pages 1520–1532, 2010. +[51] Palaiahnakote Shivakumara, Trung Quy Phan, and Chew Lim Tan. New fourier-statistical features in rgb space for +video text detection. IEEE Transactions on Circuits and Systems for Video Technology, 20(11):1520–1532, 2010. +[52] Palaiahnakote Shivakumara, Rushi Padhuman Sreedhar, Trung Quy Phan, Shijian Lu, and Chew Lim Tan. +Multioriented video scene text detection through bayesian classification and boundary growing. IEEE Transactions +on Circuits and systems for Video Technology, 22(8):1227–1235, 2012. +[53] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb. Learning +from simulated and unsupervised images through adversarial training. In CVPR, volume 2, page 5, 2017. +[54] Imran Siddiqi and Ahsen Raza. A database of artificial urdu text in video images with semi-automatic text line +labeling scheme. In MMEDIA 2012, The Fourth International Conferences on Advances in Multimedia, pages +75–81, 2012. +[55] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. +arXiv preprint arXiv:1409.1556, 2014. +[56] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, +Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE +conference on computer vision and pattern recognition, pages 1–9, 2015. +18 + +Cursive Caption Text Detection in Videos +[57] Zhi Tian, Weilin Huang, Tong He, Pan He, and Yu Qiao. Detecting text in natural image with connectionist text +proposal network. In European conference on computer vision, pages 56–72. Springer, 2016. +[58] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders. Selective search for +object recognition. International journal of computer vision, 104(2):154–171, 2013. +[59] Salahuddin Unar, Akhtar Hussain Jalbani, Muhammad Moazzam Jawaid, Mohsin Shaikh, and Asghar Ali Chandio. +Artificial urdu text detection and localization from individual video frames. Mehran University Research Journal +of Engineering and Technology, 37(2):429–438, 2018. +[60] Shupeng Wang, Chenglin Fu, and Qi Li. Text detection in natural scene image: A survey. In International +Conference on Machine Learning and Intelligent Communications, pages 257–264. Springer, 2016. +[61] Yanna Wang, Cunzhao Shi, Baihua Xiao, Chunheng Wang, and Chengzuo Qi. Crf based text detection for natural +scene images using convolutional neural network and context information. Neurocomputing, 295:46–58, 2018. +[62] Christian Wolf and Jean-Michel Jolion. Object count/area graphs for the evaluation of object detection and +segmentation algorithms. International Journal of Document Analysis and Recognition (IJDAR), 8(4):280–296, +2006. +[63] Xu Yan, Shan Siyuan, Qiu Ziming, Jia Zhipeng, Shen Zhengyang, Wang Yipei, Shi Mengfei, Eric I, and Chang +Chao. End-to-end subtitle detection and recognition for videos in east asian languages via cnn ensemble. Signal +Processing: Image Communication, 60:131–143, 2018. +[64] Qixiang Ye, Qingming Huang, Wen Gao, and Debin Zhao. Fast and robust text detection in images and video +frames. Image and Vision Computing, 23(6):565–576, 2005. +[65] Chucai Yi and Yingli Tian. Localizing text in scene images by boundary clustering, stroke segmentation, and +string fragment classification. IEEE Transactions on Image Processing, 21(9):4256–4268, 2012. +[66] J Yi, Y Peng, and J Xiao. Color-based clustering for text detection and extraction in image. In 15th international +conference on Multimedia, Germany., 2007. +[67] X.-C.and X. Yin Yin and K. Huang. Robust text detection in natural scene images. CoRR abs/1301.2628., 2013. +[68] Xu-Cheng Yin, Ze-Yu Zuo, Shu Tian, and Cheng-Lin Liu. Text detection, tracking and recognition in video: A +comprehensive survey. IEEE Transactions on Image Processing, 25(6):2752–2773, 2016. +[69] Sonia Yousfi, Sid-Ahmed Berrani, and Christophe Garcia. Arabic text detection in videos using neural and +boosting-based approaches: Application to video indexing. In 2014 IEEE International Conference on Image +Processing (ICIP), pages 3028–3032. IEEE, 2014. +[70] Oussama Zayene, Jean Hennebert, Mathias Seuret, Sameh M. Touj, Rolf Ingold, and Najoua Essoukri Ben Amara. +Text detection in arabic news video based on swt operator and convolutional auto-encoders. 2016 12th IAPR +Workshop on Document Analysis Systems, 2016. +[71] Oussama Zayene, Jean Hennebert, Sameh Masmoudi Touj, Rolf Ingold, and Najoua Essoukri Ben Amara. A +dataset for arabic text detection, tracking and recognition in news videos - activ. 2015 13th International +Conference on Document Analysis and Recognition (ICDAR), 2015. +[72] Honggang Zhang, Kaili Zhao, Yi-Zhe Song, and Jun Guo. Text extraction from natural scene image: A survey. +Neurocomputing, 122:310–323, 2013. +[73] Zheng Zhang, Chengquan Zhang, Wei Shen, Cong Yao, Wenyu Liu, and Xiang Bai. Multi-oriented text detection +with fully convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern +Recognition, pages 4159–4167, 2016. +[74] W. Zhen and W. Zagiqiang. A comparative study of feature selection for svm in video text detection. In 2nd +International symposium on Computational Intelligence and Design p. 552 - 556., 2009. +[75] Yu Zhong, Hongjiang Zhang, and Anil K Jain. Automatic caption localization in compressed video. IEEE +transactions on pattern analysis and machine intelligence, 22(4):385–392, 2000. +[76] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, and Jiajun Liang. East: an efficient +and accurate scene text detector. In Proc. CVPR, pages 2642–2651, 2017. +[77] Ali Mirza, Ossama Zeshan, Muhammad Atif, Imran Siddiqi. Detection and recognition of cursive text from video +frames. In EURASIP Journal on Image and Video Processing, pages 1–19, 2020. +[78] Ali Mirza, Imran Siddiqi. Recognition of cursive video text using a deep learning framework. In IET Image +Processing, pages 3444–3455, 2020. +19 + diff --git a/UNE1T4oBgHgl3EQfawQW/content/tmp_files/load_file.txt b/UNE1T4oBgHgl3EQfawQW/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..8e594667a50f39818d373d604f482ce9cd52603e --- /dev/null +++ b/UNE1T4oBgHgl3EQfawQW/content/tmp_files/load_file.txt @@ -0,0 +1,968 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf,len=967 +page_content='CURSIVE CAPTION TEXT DETECTION IN VIDEOS Ali Mirza Center of Artificial Intelligence Mantalus Melbourne, Australia ali.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='mirza@mantalus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='com Imran Siddiqi Center of Excellence in Artificial Intelligence Bahria University Islamabad, Pakistan imran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='siddiqi@bahria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='pk Keywords Text Detection · Script Identification · Deep Neural Networks (DNNs) · Convolutional Neural Networks (CNNs) · Video Text · Video Frames Dataset ABSTRACT Textual content appearing in videos represents an interesting index for semantic retrieval of videos (from archives), generation of alerts (live streams) as well as high level applications like opinion mining and content summarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' One of the key components of such systems is the detection of textual content in video frames and the same makes the subject of our present study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' This paper presents a robust technique for detection of textual content appearing in video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' More specifically we target text in cursive script taking Urdu text as a case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Detection of textual regions in video frames is carried out by fine-tuning object detectors based on deep convolutional neural networks for the specific case of text detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Since it is common to have videos with caption text in multiple-scripts, cursive text is distinguished from Latin text using a script-identification module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Finally, detection and script identification are combined in a single end-to-end trainable system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Experiments on a comprehensive dataset of around 11,000 video frames report an F-measure of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 1 Introduction In the recent years, there has been a tremendous increase in the amount of digital multimedia data, especially the video content, both in the form of video archives and live streams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' According to statistics [6], 300 hours of video is being uploaded every minute on the YouTube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A key factor responsible for this enormous increase is the availability of low-cost smart phones equipped with cameras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' With such huge collections of data, there is a need to have efficient as well as effective retrieval techniques allowing users retrieve the desired content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Traditionally, videos are mostly stored with user assigned annotations or keywords which are called tags.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' When a content is to be searched, a keyword provided as query is matched with these tags to retrieve the relevant content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The assigned tags, naturally, cannot encompass the rich video content leading to a constrained retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A better and more effective strategy is to search within the actual content rather than simply matching the tags i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Content based Image or Video Retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' CBVR systems have been researched and developed for long a time and allow a smarter way of retrieving the desired content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The term content may refer to the visual content (for example objects or persons in the video), audio content (the spoken keywords for instance) or the textual content (News tickers, anchor names, score cards etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Among these, the focus of our current study lies on textual content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' More specifically, we target a smart retrieval system that exploits the textual content in videos as an index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The textual content in video can be categorized into two broad classes, scene text and caption text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Scene text (Figure 1) is captured through camera during the video recording process and may not always be correlated with the content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Examples of scene text include advertisement banners, sign boards, text on a T-shirt etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Scene text is commonly employed for applications like robot navigation and assistance systems for the visually impaired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Artificial or caption text (Figure 2) is superimposed on video and typical examples include News tickers, movie credits, score cards, names of anchors etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Caption text is generally correlated with the video content and is mostly applied for semantic retrieval of arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='03164v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='CV] 9 Jan 2023 Cursive Caption Text Detection in Videos videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Figure 1: Examples of Scene Text Figure 2: Examples of Caption Text The key components of a textual content based indexing and retrieval system include detection of text regions [36], extraction of text (segmentation from background) [37], identification of script (for multi-script videos) [25] and finally recognition of text (through a video OCR) [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Among these, we focus on detection of text in the current study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Detection of text can be carried out using unsupervised [4, 8, 3], supervised [63, 18, 32] or hybrid [36, 53] approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Unsupervised text detection employs image analysis techniques to discriminate between text and non-text regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Supervised methods, on the other hand, involve training a learning algorithm with examples of text and non-text regions to discriminate between the two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In some cases, a combination of the two techniques is em- ployed where the candidate text regions identified by unsupervised methods are validated through a supervised approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' This paper presents a comprehensive framework for video text detection in a multi-script environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Though we primarily target cursive caption text, since video frames frequently contain text in more than one script, text in the Roman script is also detected by the proposed technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The key highlights of this study are outlined in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Development of a comprehensive dataset of video images with ground truth information supporting evaluation of detection and recognition tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Adaptation of various deep learning based object detectors for detection of textual content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Combination of text detection and script identification in a single end-to-end system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Validation of proposed technique through an extensive series of experiments and a comprehensive performance comparison of various detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In the next section, we present an overview of the current state-of-the-art on detection of textual content in videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Section 3, we introduce the dataset developed in our study along with the ground truth information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Section 4 presents the details of the proposed framework while Section 5 presents the experimental protocol, the realized results and the corresponding discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Finally, Section 6 concludes the paper with a discussion on open challenges on this subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 2 EIVE YOUR SFORTUNE ELECTIONCOMMISS LOF PAKISTAN 02 www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='samaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='ty O92NEWSHD O92NEWSCHANNELWWW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='92NEWSHD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='TV NEWS SAMAA 11SWAT 4200 ja www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='samaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='ty SAMAA SundayCursive Caption Text Detection in Videos 2 Background Detection of textual content in videos, images, documents and natural scenes has been investigated for more than four decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The domain has matured progressively over the years starting with trivial image analysis based systems to complex end-to-end learning based systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' We discuss notable contributions to text detection in the following while detailed surveys on the problem (and related problems) can be found in [40, 60, 68, 72, 48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Text detection refers to localization of textual content in images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Techniques proposed for detection of text are typically categorized into unsupervised and supervised approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' While unsupervised approaches primarily rely on image analysis techniques to segment text from background, supervised methods involve training a learning algorithm to discriminate between text and non-text regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Unsupervised text detection techniques include edge-based methods [4, 8, 3, 20, 24] which (assume and) exploit the high contrast between text and its background;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' connected component based methods [27, 28, 31, 39] which mostly rely on the color/intensity of text pixels and texture-based methods [2, 22] which consider textual content in the image as a unique texture that distinguishes itself from the non-text regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Texture based methods have remained a popular choice of researchers and features based on Gabor filters [11], wavelets [64], curvelets [14], local binary patterns (LBP) [1], discrete cosine transformation (DCT) [75], histograms of oriented gradients (HoG) [9] and Fourier transformation [51] have been investigated in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Another common category of techniques includes color-based methods [65, 66, 50] which are similar in many aspects to the component-based methods and employ color information of text pixels to distinguish it from non-text regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Supervised approaches for detection of textual content typically employ state-of-the-art learning algorithms which are trained on examples of text and non-text blocks either using pixel values or by first extracting relevant features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Classifiers like naive Bayes [52], Support Vector Machine [74], Artificial Neural Network [67, 36] and Deep Neural Networks [30] have been investigated for this problem over the years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In the recent years, deep learning based solutions have been widely applied to a variety of recognition problems and have outperformed the traditional techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Among deep learning based techniques adapted for text detection, Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [21] employed sliding windows with CNNs to detect textual regions in low resolution scene images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Likewise, fully convolutional networks are explored for detection of textaul regions in [73] and the technique is evaluated on various ICDAR datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A similar work is presented by Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [15] where CNNs are trained using synthetic data for detection of text at multiple scales from natural images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Another method called ‘SegLink’, is proposed in [49] that relies on decomposing the text into segments (oriented boxes of words or lines) and links (connecting two adjacent segments).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The segments and links are detected using fully convolutional networks at multiple scales and combined together to detect the complete text line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In [57] vertical anchor based method is reported that predicts text and non-text scores of fixed size regions and reports high detection performance on the ICDAR 2013 and ICDAR 2015 datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In another notable work, Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [61] present a framework based on conditional random field (CRF) to detect text in scene images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Authors define a cost function by considering the color, stroke, shape and spatial features with CNN for effective detection of textual regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Among other end-to-end trainable deep neural networks based systems, Liao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [32] present a system called ‘TextBoxes’ which detects text in natural images in a single forward pass network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The technique was later extended to ‘TextBoxes++’ and was evaluated on four public databases outperforming the state-of-the-art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [18] improved the convolutional layer of CNNs to detect text with arbitrary orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' EAST [76], is another well-known scene text detector that provides promising results in challenging scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In another study [63], an ensemble of Convolutional Neural Networks (CNNs) is trained on synthetic data to detect video text in East Asian languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The literature is relatively limited once it comes to detection of cursive caption text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Among one of the preliminary works, Jamil et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [26] exploit edge based features with morphological processing to detect Urdu caption text from a small set of 150 video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The same study was extended by Raza et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [54] and evaluated on a larger set of 1000 video frames reporting a recall of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The dataset of images termed as IPC Artificial Text dataset [54] was also made publicly available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In a later study [41] by the same group, the authors proposed a cascaded framework of spatial transforms to detect caption text in five different scripts including Arabic and Urdu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In a relatively recent work on detection of Arabic caption text, Zayene et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [70] employ a combination of stroke width transform with a convolutional auto-encoder and evaluate the technique on a publicly available dataset AcTiV-DB [71].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In one of our 3 Cursive Caption Text Detection in Videos previous works [36], we investigated a combination of image analysis techniques with textural features to detect textual regions in video frames and realized an F-measure of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80 on 1000 images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Summarizing, it can be concluded that the problem of text detection has been dominated by the application of different deep learning based techniques in the recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The availability of benchmark datasets has also contributed to the rapid developments in this area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' While detection of text in languages based on the Latin alphabet has received significant research attention and is very much mature, detection of cursive text still remains a relatively less addressed and challenging issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Development of a (generic) text detector that could work in multi-script environments also remains an open problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In the next section, we introduce the dataset that has been collected and labeled as a part of this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 3 Dataset Availability of labeled datasets is of utmost importance for algorithmic development and evaluation of any computerized system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' From the perspective of Urdu caption text detection, a dataset of 1000 labeled video frames has been made publicly available [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A collection of 1000 frames, however, seems to be very small to generalize the findings for practical applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' We, therefore, collected and labeled a comprehensive dataset of video frames allowing evaluation of text detection and text recognition tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' We collected a set of 46 videos from four different News channels in Pakistan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' All videos are recorded at a resolution of 900 × 600 and a frame rate of 25 fps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Frames in these video contain textual content in two languages, (cursive) Urdu and English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The collected video frames are labeled from two perspectives, detection and recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' For detection, the bounding rectangle of all text regions in a frame is labeled and stored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Similarly, for recognition, the transcription of each text line is stored as ground truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In the literature, several evaluation metrics have been proposed to evaluate the performance of text detection systems [26, 35, 62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In our system, for evaluation of the text detection module, we employ the most commonly used area based precision and recall measures reported in [26] and defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Let AE be the estimated text area given by the system and AT be the ground truth text area, then the precision P and recall R are defined as: P = AE ∩ AT AE (1) R = AE ∩ AT AT (2) The precision and recall measures can be combined in a single F-measure as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' F = 2 × Precision × Recall Precision + Recall (3) The same idea can be extended to multiple images by simply summing up area of intersection and dividing by the total ground truth area (in N images) for recall and the total detected area for precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' To compute these measures, for each frame, we need to store the actual location of the textual content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The text detected automatically by the system can then be compared with the ground truth text regions to compute precision, recall and F-measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The idea is illustrated in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Figure 3-a illustrates an example where the text regions detected by the system are shown while Figure 3-b illustrates the ground truth text locations for the given frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The detected and ground truth text regions can be compared to compute the metrics defined earlier and quantify the detection performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' To facilitate the labeling process and standardize the ground truth data, a comprehensive labeling tool has been developed that allows storing the location of each textual region in a frame along with its ground truth transcription.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The location is stored in terms of the x and y coordinates of the top left of the bounding box along its width and height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The ground truth information of each frame is stored as an XML file that comprises frame meta data and the information on textual regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A screen shot of the labeling tool is presented in Figure 4 while the ground truth information of an example frame is illustrated in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' It is known that videos typically contain 25–30 frames per second;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' consequently, successive frames in a video contain redundant information (both visual and textual content).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' From the view point of automatic analysis systems, frames 4 Cursive Caption Text Detection in Videos Figure 3: Text regions in an image and the corresponding ground truth image Figure 4: Screen shot of ground truth labeling tool for text data Figure 5: An XML file containing ground truth information of a frame with unique content are of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Hence, each single video frame does not need to be labeled as major proportions of such frames will have exactly the same textual information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In our study,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' we have extracted more than 11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='000 frames ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='BREAKINGNEWS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='BREAKI ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='BREAK ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='NEW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='NATIONALOASPAKISTANWILLNEVERLEAVEITSKASHMIRI BRETHRENALONE:COAS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='NATIONAL OAS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='PAKISTAN WILL NEVER LEAVEITS KASHMIRIBRETHREN ALONE: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='COAS Video Images Groud Truth Labeling Tool ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='十 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Attributes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Text Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Frames ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Frame No ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='O Atficial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='O Scene ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Browse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='C:NUsers VAliNDesktop \\Frames ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_2017041 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Language ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11^ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='O Urdu ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='X: 891 Y : 358 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Urdu Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Rectangle Location ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='X84Y522 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Rectangle Siz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Width ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Heighi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='588 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='c ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='‘s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='上 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa News 20170413 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Rectangle Area ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='31752 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Image Size ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='900 × 600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Grids ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Cross Hair ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Space ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa News 20170413 11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='cill ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Channe ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='O Ary Default ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='O Samaa ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Store Text Feed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Samaa_News_20170413_11~ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='ekung O ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='REPEAT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='O Express ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='eLaw ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='SAMAA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='REPEAT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='SAMAA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Done Generate XML ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='215 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Zoom Selected ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Zoomed Preview ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Add ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Remove Feed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Remaining Images : 34 Samaa News Samaa_News_20170413_113759_10701 /.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.**!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='-+xa1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='-tah .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.-+pm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.ss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.- .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.-x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.Tett++.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.-d x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.- aux1> c:1 -x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.-tah .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.88s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.-m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.- .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.-x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.ett+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.=d x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='.- aux> Cursive Caption Text Detection in Videos from videos with an attempt to have as much unique text as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The statistics of videos, frames and text lines of our dataset are presented in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Inspired from the Arabic caption text dataset AcTiV-DB [71], we have named the our dataset UTiV (Urdu Text in Video).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The dataset along with its ground truth has also been made publicly available1 to support quantitative evaluation of text detection and recognition tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Table 1: Statistics of labeled video frames S# Channel Videos Labeled Images Urdu Lines English Lines 1 Ary News 7 3,206 10,250 3,605 2 Samaa News 13 2,503 10,961 4,411 3 Dunya News 16 3,059 10,723 8,861 4 Express News 10 2,424 8,536 6,755 Total 46 11,203 40,470 23,632 4 Methods This section presents the details of detecting textual content from video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Detection relies on adapting object detectors based on deep convolutional neural networks for text regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Once the text is detected, script of the detected text is identified by employing the ConvNets in a classification framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Subsequently, text detection and script identification are combined in a single end-to-end system that detects the textual content along with its script.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Details are presented in the following sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1 Deep Learning based Object Detectors Deep neural networks enjoy a renewed interest of the machine learning community thanks primarily to the availability of high performance computing hardware (GPUs) as well as large data sets to train these systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A major development contributing to the current fame of deep learning was the application of ConvNets by Krizhevsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [29] on the ImageNet Large Scale Visual Recognition competition [46], which greatly reduced the error rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Since then, CNNs are considered to be state-of-the-art feature extractors and classifiers [55, 56] and have been applied to a variety of recognition tasks [5, 58, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' While traditional CNNs are typically employed for object classification, Region-based Convolutional Networks (R-CNN) [13] and their further enhancements Fast R-CNN [12] and Faster R-CNN [45] adapt CNNs for object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In addition to different variants of R-CNN, a number of new architectures have also been proposed in the recent years for real time object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The most notable of these include YOLO (You Only Look Once) [42] and SSD (Single Shot Detector) [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Each of these object detectors can be trained to detect C object classes (plus one for the background).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The output of the detector is the location of the bounding box (four coordinates) containing one of the C classes as well as the class confidence score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In our study, for detection of textual content in a given frame, we investigated a number of CNN based object detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Although, many object detectors are trained with thousands of class examples and provide high accuracy in detection and recognition of different objects, these object detectors can not be directly applied to identify text regions in images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' These models have to be tuned to the specific problem of discrimination of text from non-text regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The convolutional base of these models can be trained from scratch or, known pre-trained models can be fine-tuned by training them on text and non-text regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In our study, we investigated the following object detectors for localization of text regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Faster R-CNN Region-Based Fully Convolutional Networks (R-FCN) Single Shot Detector (SSD) You Only Look Once (YOLO) For completeness, we provide a brief overview of these object detectors in the following sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 1http://cbvir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='media-tics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='net/ 6 Cursive Caption Text Detection in Videos 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1 Faster R-CNN Faster R-CNN [45] is an enhanced version of its predecessors R-CNN [13] and Fast R-CNN [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Each of these detectors exploits the powerful features of ConvNets for object localization as well as classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' R-CNN was one of the first attempts to apply ConvNets for object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' An R-CNN scans the input image for potential objects using Selective Search [58] that generates around 2,000 region proposals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Each of these region proposals is then fed to a CNN for feature extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The output of the CNN is finally employed by an SVM to classify the object and a linear regressor to tighten the bounding box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' R-CNN was enhanced in terms of training efficiency by extending it to Fast R-CNN [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Fast R-CNN, rather than separately feeding each region proposal to the ConvNet, convolution is performed only once on the complete image and the region proposals are projected on the feature maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Furthermore, the SVM in R-CNN was replaced by a softmax layer extending the network to predict the class labels rather than using a separate model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' While Fast R-CNN significantly reduced the time complexity of the basic R-CNN, a major bottleneck was the selective search algorithm to generate the region proposals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' This was addressed through Region Proposal Network (RPN) in Faster R-CNN [45] which shares convolutional features with the detection network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' RPN predicts region proposals which are then fed to the detection network to identify the object class and refine the bounding boxes produced by the RPN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A summary of various R-CNN models in presented in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Figure 6: Summary of R-CNN Family based Object Detectors 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='2 You Only Look Once (YOLO) YOLO [42] takes a different approach to object detection primarily focusing on improving the detection speed (rather than accuracy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' As the name suggests, YOLO employs a single pass of the convolutional network for localization and classification of objects from the the input images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The input image is divided into a grid and an object is expected to be detected by the grid which holds the center of the object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Each cell in the grid predicts up to two bounding boxes (and class probabilities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The network comprises 24 convolutional and fully connected layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' YOLO works in real time but in terms of accuracy, it is known to make significant localization errors in comparison to region based object detectors (Faster R-CNN for instance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' YOLO was later enhanced to YOLO9000 [43] by introducing batch normalization, increasing the resolution of the input image (by a factor of 2) and introducing the concept of anchor boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' YOLO9000 employs Darknet 19 architecture with 19 convolutional layers, 5 max pooling layers and a softmax layer for classification objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Incremental improvements in YOLO v2 resulted in YOLO v3 [44] that uses logistic regerssion to predict the score of objectness for each bounding box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Furthermore, it employs class-wise logistic classifiers (rather than softmax) allowing multi-label classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Box offset ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='SVM object ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Box offset ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Softmax ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Box offset ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Softmax ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Regressor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Classifier ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Regressor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Classifier ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Regressor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Classifier ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Independent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Joint ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Joint ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Region CNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Region CNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Region CNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Fine-tuned ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Fine-tuned ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Features ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Features ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Features ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='ROl Pooling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Pre-trained ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='RPN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Pre-trained ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='ROl Pooling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Region ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Region ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Deep CNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Deep CNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Proposal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Proposal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Deep CNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Independent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Independent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Independent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='MP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='GMP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='R-CNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Fast R-CNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Faster R-CNNCursive Caption Text Detection in Videos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='3 Single Shot Detector (SSD) Unlike the R-CNN series object detectors which require two shots to detect objects in an image, Single Shot Multi-box Detector [34], as the name suggests, requires a single shot to detect objects (similar to YOLO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' SSD relies on the idea of default boxes and multi-scale predictions and directly applies bounding box regression to the default boxes without generating the region proposals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Detection at multiple scales are handled by exploiting the feature maps of different convolutional layers corresponding to different receptive fields in the input image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The architecture has an input size of 300 × 300 × 3 and primarily builds on the VGG-16 architecture discarding the fully connected layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' VGG-16 is used as base network mainly due to its robust performance of image classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The bounding box regression technique of SSD is inspired by [56] while the MultiBox relies on priors, the pre-computed fixed size bounding boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The priors are selected in such a way that their Intersection over Union ratio (with ground truth objects) is greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The MultiBox starts with the priors as predictions and attempt to regress closer to the ground truth bounding boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' SSD works in real time but requires images of fixed square size and is known to miss small objects in the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='4 Region-Based Fully Convolutional Networks (R-FCN) R-FCN [7] builds on the idea of increasing the detection accuracy by maximizing the shared calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' R-FCN generates position-sensitive score maps to represent different relative positions of an object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' An object is represented by k2 relative positions dividing it into a grid of size k × k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A ConvNet (ResNet in the original R-FCN paper) sweeps the input image and an additional fully convoltional layer produces the position-sensitive scores in k2 × (C + 1) score maps where C is the number of classes plus 1 class for the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A fully convolutional proposal network generates regions of interest which are divided in k2 bins and the corresponding class probabilities are obtained from the score maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The scores are averaged to convert the k2 × (C + 1) values into a one dimensional (C + 1) sized vector which is finally fed to the softmax layer for classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Localization is carried out using the bounding box regression similar to other object detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' R-FCN speeds up the detection in comparison to Faster R-CNN but compared to other Single Shot methods, it requires more computational resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='2 Adapting Object Detectors for Text Detection In the context of object detection, the problem of text detection can be formulated as a two class problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The text regions represent object of interest while the non-text regions need to be ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The object detectors discussed in the previous sections are adapted for text detection using two pre-trained models, ResNet 101 [17] and Inception v2 [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' These models are trained on the large scale Microsoft COCO (Common Objects in Context) database [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The database contains images of 91 different object types with a total of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5 million labeled instances in 328K images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The pre-trained network serves as starting point rather than random weight initialization and the network is made to learn the specific class labels (text or non-text) by continuing back propagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The ground truth localization information of the textual regions in the video frames is employed for training the models, the overall workflow being illustrated in Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A critical aspect in employing object detectors for text detection is the choice of anchor boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The anchor boxes in all the detectors have been designed to detect general object categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Text appearing in videos has specific geometric properties in terms of size and aspect ratio hence the default anchor boxes of the detectors need to be adapted to detect textual regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' We carried out a comprehensive analysis of the textual regions in terms of width, height and aspect ratios of the bounding boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' As a result of this analysis we have chosen a base anchor of size 256 × 256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' To each anchor box we apply three scales (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='0, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='0, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='0) and five aspect ratios (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='125, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1875, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='25, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='375, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='50) as illustrated in Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Models are fine-tuned using the proposed anchor boxes and the effectiveness of these anchor boxes is validated through experimental study as presented in Section 5 of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='3 Script Identification As discussed earlier, we primarily target detection of cursive caption text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' However, like many practical scenarios, video frames in our case contain bilingual textual content (Urdu & English).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Consequently, once the text is detected, we need to identify the script of each detected region (Figure 9) so that the subsequent processing of each type of script can be carried out by the respective recognition engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' For script identification, we employ CNNs in a classification framework (rather than detection).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Urdu and English text lines are employed to fine-tune CNNs to discriminate between the two classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Once trained, the model is able to separate text lines as a function of the script.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Similar to detection, rather than training the networks from scratch, we fine-tune known pre-trained models (Inception and ResNet) to solve the two-class classification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 8 Cursive Caption Text Detection in Videos Figure 7: Overview of adapting object detectors for text detection Figure 8: Anchor boxes (base size 256 × 256) at three scales (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='0, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='0, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='0) and five aspect ratios (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='125, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1875, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='25, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='375, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='50) Figure 9: Script identification of detected text lines 9 Test Image Frames VIDEO Output Image Ground Truth Data Object Fine-Tuning Text Detector Inference Detector CNN Model Pre-trained CNN ModelsScale: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='0 (a) Scale: 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='0 (b) Scale: 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='0 (c)Urdu Text Regions Bilingual Text Regions SHAZIA ZEESHAN ZAFAR HILALY Script Identification English Text Regions AHMAD AWAIS ORYAMAQBOOL JAN SHAZIA ZEESHAN ZAFAR HILALY AHMAD AWAIS ORYAMAQBOOLJANCursive Caption Text Detection in Videos 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='4 Hybrid Text Detector & Script Identifier Detection of text and identification of script, as discussed previously, can be implemented in a cascaded framework where the output of text detector is fed to the script identifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A deep learning framework can be tuned to discriminate between text and non-text regions and the extracted text regions can be fed to a separate script recognition model that identifies the script of the detected text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' This, however, introduces a bottleneck of training two separate networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Furthermore, the cascaded solution also implies that errors in detection are propagated to the next step as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' We, therefore, propose to combine the text detector and script identifier in a single hybrid model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Rather than treating detection as a two-class problem (text and non-text), we consider it as a three class problem, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' non-text regions, English text and Urdu text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' This not only avoids training two separate models but also eliminates the accumulation of errors in a cascaded solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The superiority of the combined text detector and script identifier is also supported through quantitative evaluations as discussed in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' All detectors are trained in an end-to-end manner with a multi-task objective function that combines the classification and regression losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The evolution of training loss for the investigated detectors (with Inception and ResNet) is illustrated in Figure 10 where it can be seen that the loss begins to stabilize from 30 epochs on wards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Figure 10: Training loss of various detectors – Hybrid text detector and script identifier 5 Experiments and Results The detection performance is evaluated through a series of experiments carried out on the collected set of video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' We first present the experimental protocol followed by the detection results of various object detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' We then present the script identification results and the performance of the combined text detector and script identifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Furthermore, performance sensitivity of the system as well as a comparison with state-of-the-art is also presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1 Experimental Settings As introduced in Section 3, we collected a total of 11,203 video frames from four different News channel videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The localization information of text regions in these frames is used to train and subsequently evaluate the text detection and script identification performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The distribution of frames into training and test sets along with the number of text lines in each set is summarized in Table 2 while the details of detection performance are presented in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='2 Text Detection Results Object detectors including Faster R-CNN, YOLO, SSD and R-FCN are adapted to detect textual content by fine-tuning the Inception and ResNet pre-trained models and changing the anchor boxes as discussed previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Performance of 10 7 +FasterRCNN-Inception 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5 Faster RCNN-ResNet 6 SSD-Inception SSD-ResNet101 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5 米RFCN-Inception 5 RFCN-ResNet TRANING LOSS 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5 YoloV3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5 0 0 5 10 15 20 25 30 35 40 45 50 EPOCHSCursive Caption Text Detection in Videos Table 2: Data distribution for text detection experiments Train Test Frames Lines Frames Line Urdu 8,500 31,321 2,703 9,149 English 16,207 7,425 Total 49,046 11,056 each of these detectors in terms of precision, recall and F-measure is summarized in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' It can be seen that in all cases, detectors pre-trained on Inception outperform those trained on ResNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Among various detectors, Faster R-CNN reports the highest F-measure of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The lowest performance is reported by Yolo reading an F-measure of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A comprehensive study on the trade-off between speed and accuracy of various object detectors is presented in [19] and our findings on detection of text are consistent with those of [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' It is also important to recap that precision and recall are computed using area based metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' As a result, if the detected bounding box is larger (smaller) than the ground truth, it results in penalizing the precision (recall) of the detector as illustrated in Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The output of the Faster R-CNN based text detector for few sample frames in our dataset is illustrated in Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Table 3: Text Detection Results RestNet Inception Model Precision Recall F-Measure Precision Recall F-Measure SSD 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80 R-FCN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='86 Faster R-CNN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='90 Yolo 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='66 Figure 11: Computation of precision and recall (a):Ground Truth Bounding Box (b): Detected region is larger than ground truth (c):Detected region is smaller than ground truth (d):Detected region overlaps perfectly with the ground truth In an attempt to provide an insight into the detection errors, few of the errors are illustrated in Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' It can be seen that in most cases, the detector is able to detect the textual region but the localization is not perfect i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' in some cases the bounding box is larger (shorter) than the actual content leading to a reduced precision (recall).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 11 SAMAA SAMAA (a) (b) SAMAA SAMAA (c) (d)Cursive Caption Text Detection in Videos Figure 12: Text detection results on sample images (Faster R-CNN with Inception) Figure 13: Imperfect Localization of Text Regions 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='3 Script Identification Results For script identification, we employ the same distribution of frames into training and test sets as that of the detection protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Text lines from the video frames in the training set are employed to fine-tune the pre-trained ConvNets while the identification rates are computed on text lines from the frames in the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A total of 31, 321 Urdu and 16, 207 English text lines are used in the training set while the test set comprises 9, 9149 and 7, 425 text lines in Urdu and English respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The resulting confusion matrix is presented in Table 4 while the precision, recall and F-measure are summarized in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' It can be seen that the model was able to correctly identify the scripts with an accuracy of more than 94%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 12 text: 99% text: /O0U text: 99% 了02912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' text: 99% text: 96% text: 99% text: 92% CAN BECOMELEADING EXPORTINGNATIOR 000 text: 77% text: 59% 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='7370nua text: 97% text: 92% text: 96% text: 53% INYA FACEBOOK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='COM/DUNYANEWS 0007 text: 85% GWLC 58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='78text: 96% text: 88% text: 99% text: 91% JEWS WITTER:@DUNYANEWSI FACEBOOK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='CO text: 81% text: 53% 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='45-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='30text: 84% text: 98% text: 1000: text: 95% Wewill pressurize PMto resig text: 83% :ImranKhan text: 65% text: 98% text: 80% 1021PN43300 2YearsWarrant Its including 21 each in Puniab and Sindh will beCursive Caption Text Detection in Videos Table 4: Script identification confusion matrix Urdu English Urdu 8763 386 English 551 6874 Table 5: Performance of Script Identification Precision Recall F–Measure Urdu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='957 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='95 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='946 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='925 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='94 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='4 Hybrid Text Detection & Script Identification Results As discussed previously, text detection and script identification can be combined in a single model treating detection as a three (rather than two) class problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The results of these experiments are summarized in Table 6 keeping the same distribution of training and test frames as in the previous experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Many interesting observations can be drawn from the results in Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Similar to the script independent detectors, models pre-trained on Inception outperform those trained on ResNet and the observation is consistent for all four detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Likewise, Faster R-CNN reports the highest F-measure both for detection of Urdu and English text reading 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='91 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='87 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In all cases, the performances on detection of Urdu text are better than those on Engish text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' This can be attributed to the fact that the data is collected primarily from Urdu News channels which have limited amount of English text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' It is also interesting to note that by combining text detection and script identification in a single model, not only the cascaded solution is avoided, the detection F-measures have also improved (in most cases).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Though the improvement is marginal, eliminating the separate processing of detected text regions to identify the script offers a much simplified (yet effective) solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Detection outputs on sample frames for the four detectors are illustrated in Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Table 6: Performance of hybrid text detector and script identifier RestNet Inception Method Script Precision Recall F-Measure Precision Recall F-Measure SSD Urdu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='75 R-FCN Urdu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='87 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='81 Faster R-CNN Urdu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='91 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='87 Yolo Urdu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='67 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='64 In an attempt to carry out an in-depth analysis of the detection performance and its evolution with respect to important system parameters, we carried out another series of experiments using Faster R-CNN (with Inception).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In the first such experiment, we study the performance sensitivity to the amount of training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' We train the model by varying the number of text line images (from 10K to 49K) and compute the detector F-measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Naturally, the detector performance enhances with the increase in the amount of training data (Figure 15) and begins to stabilize from around 30K-35K training lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Resolution of input video frames is an important parameter that might affect the detector performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' To study the detector sensitivity to image resolution, we varied the image resolution from 256 × 144 to 1920 × 1080.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The resolution was varied only in the test set and all sets of images were evaluated on the detector trained on a single resolution (900 × 600).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The F-measures in Figure 16 are more less consistent for varied image resolutions reflecting the robustness of the detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The proposed anchor boxes adapted for textual content play a key role in achieving this scale invariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='5 Performance Comparison In an attempt to compare the performance of our detector with those reported in the literature, we present a comparative overview of various text detectors targeting cursive caption text in Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' It is important to note that since different studies are evaluated on different datasets, a direct comparison of these techniques is difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Most of the listed studies employ a small set of images (≤ 1000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Moradi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [38] and Zayene et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [70] report results on relatively larger datasets with F-measures of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='89 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='84 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In comparison to other studies, we employ a significantly 13 Cursive Caption Text Detection in Videos (a) (b) (c) (d) Figure 14: Detection output of hybrid text detection and script identification for different detectors (a): SSD (b): R-FCN (c): Faster RCNN (d): Yolo 14 urdu:95% BBEAKING NEWS %86nJn urdu:80% urdu:91% urdu:97% urdu:96% Lrdu:99% english:85% cnglish:87% 07:53urdu:97% urdu:89% %86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='npin urdu:89% english:78% urdu:97% JUSTIN enalish:81% BRR 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='21-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='23urdu:60% EIREAKING NEWS urdu:96% urdu:92% 7 %96:npJn urdu:96% urdu:91% uluu:98% english:98% english:95% AG urdu:99 ITIESAIMINGATDESTABILIZINGPAKISTAN: english:88% 07:53%66npin urdu:82% urdr:97% %66npin urdu:94% english:80% %66npn JUSTIN english:72% english:65% 9210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='23Benglish:93% english:80% urdu:99% urdu:97% urdu:94% urdu:97% urdu:99% urdu:72% urdu:94% english:84% english:L97% english:67% AGE TIESAIMINGATDESTABILIZINGPAKISTAN: LIVEI 17:53urdu:98% %66npJn urdu:99% urdu:98% urdu:78% english:9tenglish:91% urdu:99% DUSTIN english:95% english:73% 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='21-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='23english0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='14 HIEAKING Fdu18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='15 urdu 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='15 english 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='32 english 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='37 AGEACTIVITIESAIMINGATDESTABILIZINGPAKISTAN: english 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='27english e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1l urdu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='18 nduo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1 english e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='15 nalish e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='13 englibinc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' JUISTIN english0:11 BRR 3210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='23Cursive Caption Text Detection in Videos Figure 15: Impact of size of training data on text detection performance (Faster R-CNN with Inception) Figure 16: Impact of video resolution on text detection performance (Faster R-CNN with Inception) larger set of images with an F-measure of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Furthermore, for a fair comparison, we also evaluated our system on the set 1000 images in the publicly available IPC dataset [54], the corresponding F-measure reads 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='92 validating the effectiveness of our detection technique, 6 Conclusion This paper presented a system for detection of caption text appearing in video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The developed technique relies on exploiting deep learning based object detectors and adapting them for text detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Since it is common in videos to have text in more than one script, we presented, as a case study, video frames with text in cursive (Urdu) and Roman (English) scripts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Since each script requires different processing, the detection is combined with script identification in an end-to-end fashion so that the system is able to not only localize the text but also identify its script.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Among various investigated object detectors, Faster R-CNN with our proposed set of anchor boxes reported the highest detection rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' The presented work is a part of a comprehensive video indexing and retrieval system and the current study focused on the detection of text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In our other [77, 78] work, the detection module is integrated with the video OCR module so that 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='86 F-Measure 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='7 10k 15k 20k 25k 30k 35k 40k 45k 49k Number of Tranining Lines1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='950 Urdu MEASURE English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='750 256 X 144 426 X 240 640 X 360 900 X 600 1280 X 720 1920 X 1080 VIDEO RESOLUTIONCursive Caption Text Detection in Videos Table 7: Performance comparison with other techniques Study Method Dataset Script Video Frames Precision Recall F-Measure Jamil et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' (2011) [26] Edge-based Features IPC Urdu 150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='79 Siddiqi and Raza(2012) [54] Image Analysis IPC Urdu 1,000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='75 Moradi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' (2013) [38] LBP with SVM Farsi/Arabic 4971 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='91 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='89 Raza et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' (2013) [41] Cascade of Transforms IPC Urdu 1,000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='84 Raza et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' (2013) [41] Cascade of Transforms IPC Arabic 300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='86 Yousfi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' (2014) [69] ConvNet Arabic 201 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='77 Zayene et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' (2015) [71] SWT AcTiV Arabic 425 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='70 Zayene et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' (2016) [70] SWT&Conv Autoencoders AcTiV Arabic 1843 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='84 Shahzad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' (2017) [47] Image Analysis Urdu/Arabic 240 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='88 Mirza et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' (2018) [36] Textural Features UTiV Urdu 1,000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='80 Unar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' (2018) [59] Image Analysis+SVM IPC Urdu 1,000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='85 Proposed Method Deep ConvNets UTiV Urdu 11,203 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='91 IPC Urdu 1,000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='91 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='92 detected text is recognized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Once recognized, videos are indexed based on keywords and retrieved on user provided queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In addition to retrieval, automatic News summarization from ticker text and comparison of News across various News channels is also planned to be implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Furthermore, the textual content based retrieval will be combined with audio as well as visual objects appearing in videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' References [1] Marios Anthimopoulos, Basilis Gatos, and Ioannis Pratikakis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A two-stage scheme for text detection in video images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Image and Vision Computing, 28(9):1413–1426, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [2] Xiang Bai, Cong Yao, and Wenyu Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Strokelets: A learned multi-scale mid-level representation for scene text recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE TRANSACTIONS ON IMAGE PROCESSING, 25, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [3] Sudipto Banerjee, Koustav Mullick, and Ujjwal Bhattacharya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A robust approach to extraction of texts from camera captured images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In International Workshop on Camera-Based Document Analysis and Recognition, pages 30–46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Springer, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [4] Remigiusz Baran, Pavol Partila, and Rafal Wilk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Automated text detection and character recognition in natural scenes based on local image features and contour processing techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In International Conference on Intelligent Human Systems Integration, pages 42–48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Springer, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [5] David Bouchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Character recognition using convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Institute for Neural Information Processing, 2007, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [6] Jean Burgess and Joshua Green.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' YouTube: Online video and participatory culture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' John Wiley & Sons, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [7] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' R-fcn: Object detection via region-based fully convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Advances in neural information processing systems, pages 379–387, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [8] Jin Dai, Zu Wang, Xianjing Zhao, and Shuai Shao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Scene text detection based on enhanced multi-channels mser and a fast text grouping process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), pages 351–355.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [9] Navneet Dalal and Bill Triggs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Histograms of oriented gradients for human detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Computer Vision and Pattern Recognition, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' CVPR 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE Computer Society Conference on, volume 1, pages 886–893.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [10] Sachin Sudhakar Farfade, Mohammad J Saberian, and Li-Jia Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Multi-view face detection using deep convolu- tional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pages 643–650.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' ACM, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [11] Dennis Gabor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Theory of communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' part 1: The analysis of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93(26):429–441, 1946.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [12] Ross Girshick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Fast r-cnn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proceedings of the IEEE international conference on computer vision, pages 1440–1448, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Rich feature hierarchies for accurate object detection and semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 16 Cursive Caption Text Detection in Videos [14] Joutel Guillaume, Eglin Véronique, Bres Stéphane, and Emptoz Hubert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Curvelets based feature extraction of handwritten shapes for ancient manuscripts classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Electronic Imaging 2007, pages 65000D–65000D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' International Society for Optics and Photonics, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [15] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Synthetic data for text localisation in natural images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2315–2324, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [16] Umar Hayat, Muhammad Aatif, Osama Zeeshan, and Imran Siddiqi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Ligature recognition in urdu caption text using deep convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In 2018 14th International Conference on Emerging Technologies (ICET), pages 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Deep residual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [18] Tong He, Zhi Tian, Weilin Huang, Chunhua Shen, Yu Qiao, and Changming Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Single shot textspotter with explicit alignment and attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' arXiv preprint arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='03474, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [19] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Speed/accuracy trade-offs for modern convolutional object detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7310–7311, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [20] Rong Huang, Palaiahnakote Shivakumara, and Seiichi Uchida.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Scene character detection by an edge-ray filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Document Analysis and Recognition (ICDAR), 2013 12th International Conference on, pages 462–466.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [21] Weilin Huang, Yu Qiao, and Xiaoou Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Robust scene text detection with convolution neural network induced mser trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In European Conference on Computer Vision, pages 497–511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Springer, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [22] X Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A novel video text extraction approach based on log-gabor filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In 4th International Congress on Image and Signal Processing, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [23] Sergey Ioffe and Christian Szegedy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Batch normalization: Accelerating deep network training by reducing internal covariate shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' arXiv preprint arXiv:1502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='03167, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [24] A Jamil, I Siddiqi, F Arif, and A Raza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Edge-based features for localization of artificial urdu text in video images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In International Conference on Document Analysis and Recognition, Jamil, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Edge-based Features for Localization of Artificial Urdu Text in Video Images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' in International Conference on 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [25] Akhtar Jamil, Azra Batool, Zumra Malik, Ali Mirza, and Imran Siddiqi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Multilingual artificial text extraction and script identification from video images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' International Journal of Advanced Computer Science & Applications, 1(7):529–539, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [26] Akhtar Jamil, Imran Siddiqi, Fahim Arif, and Ahsen Raza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Edge-based features for localization of artificial urdu text in video images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Document Analysis and Recognition (ICDAR), 2011 International Conference on, pages 1120–1124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [27] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Kiran and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Text extraction and verification from video based on svm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' World Journal of Science and Technology, 2(5):124–126, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [28] Hyung Il Koo and Duck Hoon Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Scene text detection via connected component clustering and nontext filtering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE transactions on image processing, 22(6):2296–2305, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Imagenet classification with deep convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Advances in neural information processing systems, pages 1097–1105, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [30] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' nature, 521(7553):436, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [31] SeongHun Lee, Min Su Cho, Kyomin Jung, and Jin Hyung Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Scene text extraction with edge constraint and text collinearity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Pattern Recognition (ICPR), 2010 20th International Conference on, pages 3983–3986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [32] Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang Wang, and Wenyu Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Textboxes: A fast text detector with a single deep neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In AAAI, pages 4161–4167, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Microsoft coco: Common objects in context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In European conference on computer vision, pages 740–755.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Springer, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [34] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Ssd: Single shot multibox detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In European conference on computer vision, pages 21–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Springer, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 17 Cursive Caption Text Detection in Videos [35] Simon M Lucas, Alex Panaretos, Luis Sosa, Anthony Tang, Shirley Wong, Robert Young, Kazuki Ashida, Hiroki Nagai, Masayuki Okamoto, Hiroaki Yamamoto, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Icdar 2003 robust reading competitions: entries, results, and future directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' International Journal of Document Analysis and Recognition (IJDAR), 7(2-3):105–122, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [36] Ali Mirza, Marium Fayyaz, Zunera Seher, and Imran Siddiqi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Urdu caption text detection using textural features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proceedings of the 2nd Mediterranean Conference on Pattern Recognition and Artificial Intelligence, pages 70–75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' ACM, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [37] Ali Mirza, Imran Siddiqi, Syed G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Mustufa, and Mazahir Hussain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Impact of pre-processing on recognition of cursive video text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In 9th Iberian Conference on Pattern Recognition and Image Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Springer, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [38] Mohieddin Moradi and Saeed Mozaffari.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Hybrid approach for farsi/arabic text detection and localisation in video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IET Image Processing, 7(2):154–164, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [39] Yi-Feng Pan, Xinwen Hou, and Cheng-Lin Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A hybrid approach to detect and localize texts in natural scene images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE Transactions on Image Processing, 20(3):800–813, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [40] Ye Qiaoyang and David Doermann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Text detection and recognition in imagery: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE Transactions On Pattern Analysis And Machine Intelligence, 37, July 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [41] Ahsen Raza, Imran Siddiqi, Chawki Djeddi, and Abdellatif Ennaji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Multilingual artificial text detection using a cascade of transforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In 2013 12th International Conference on Document Analysis and Recognition, pages 309–313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [42] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' You only look once: Unified, real-time object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [43] Joseph Redmon and Ali Farhadi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Yolo9000: better, faster, stronger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7263–7271, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [44] Joseph Redmon and Ali Farhadi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Yolov3: An incremental improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' arXiv preprint arXiv:1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='02767, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [45] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Faster r-cnn: Towards real-time object detection with region proposal networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Advances in neural information processing systems, pages 91–99, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Imagenet large scale visual recognition challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' International Journal of Computer Vision, 115(3):211–252, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [47] Usman Shahzad and Khurram Khurshid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Oriental-script text detection and extraction in videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In 2017 1st International Workshop on Arabic Script Analysis and Recognition (ASAR), pages 15–20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [48] Nabin Sharma, Umapada Pal, and Michael Blumenstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Recent advances in video based document processing: a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Document Analysis Systems (DAS), 2012 10th IAPR International Workshop on, pages 63–68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [49] Baoguang Shi, Xiang Bai, and Serge Belongie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Detecting oriented text in natural images by linking segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' arXiv preprint arXiv:1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='06520, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [50] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Shivakumara, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Phan, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Tan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' New fourier-statistical features in rgb space for video text detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Circuits Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Video Techn, pages 1520–1532, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [51] Palaiahnakote Shivakumara, Trung Quy Phan, and Chew Lim Tan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' New fourier-statistical features in rgb space for video text detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE Transactions on Circuits and Systems for Video Technology, 20(11):1520–1532, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [52] Palaiahnakote Shivakumara, Rushi Padhuman Sreedhar, Trung Quy Phan, Shijian Lu, and Chew Lim Tan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Multioriented video scene text detection through bayesian classification and boundary growing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE Transactions on Circuits and systems for Video Technology, 22(8):1227–1235, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [53] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Learning from simulated and unsupervised images through adversarial training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In CVPR, volume 2, page 5, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [54] Imran Siddiqi and Ahsen Raza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A database of artificial urdu text in video images with semi-automatic text line labeling scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In MMEDIA 2012, The Fourth International Conferences on Advances in Multimedia, pages 75–81, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [55] Karen Simonyan and Andrew Zisserman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Very deep convolutional networks for large-scale image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' arXiv preprint arXiv:1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='1556, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [56] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Going deeper with convolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 18 Cursive Caption Text Detection in Videos [57] Zhi Tian, Weilin Huang, Tong He, Pan He, and Yu Qiao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Detecting text in natural image with connectionist text proposal network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In European conference on computer vision, pages 56–72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Springer, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [58] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Selective search for object recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' International journal of computer vision, 104(2):154–171, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [59] Salahuddin Unar, Akhtar Hussain Jalbani, Muhammad Moazzam Jawaid, Mohsin Shaikh, and Asghar Ali Chandio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Artificial urdu text detection and localization from individual video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Mehran University Research Journal of Engineering and Technology, 37(2):429–438, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [60] Shupeng Wang, Chenglin Fu, and Qi Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Text detection in natural scene image: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In International Conference on Machine Learning and Intelligent Communications, pages 257–264.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Springer, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [61] Yanna Wang, Cunzhao Shi, Baihua Xiao, Chunheng Wang, and Chengzuo Qi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Crf based text detection for natural scene images using convolutional neural network and context information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Neurocomputing, 295:46–58, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [62] Christian Wolf and Jean-Michel Jolion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Object count/area graphs for the evaluation of object detection and segmentation algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' International Journal of Document Analysis and Recognition (IJDAR), 8(4):280–296, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [63] Xu Yan, Shan Siyuan, Qiu Ziming, Jia Zhipeng, Shen Zhengyang, Wang Yipei, Shi Mengfei, Eric I, and Chang Chao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' End-to-end subtitle detection and recognition for videos in east asian languages via cnn ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Signal Processing: Image Communication, 60:131–143, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [64] Qixiang Ye, Qingming Huang, Wen Gao, and Debin Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Fast and robust text detection in images and video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Image and Vision Computing, 23(6):565–576, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [65] Chucai Yi and Yingli Tian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Localizing text in scene images by boundary clustering, stroke segmentation, and string fragment classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE Transactions on Image Processing, 21(9):4256–4268, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [66] J Yi, Y Peng, and J Xiao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Color-based clustering for text detection and extraction in image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In 15th international conference on Multimedia, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=', 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [67] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Yin Yin and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Robust text detection in natural scene images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' CoRR abs/1301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content='2628.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=', 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [68] Xu-Cheng Yin, Ze-Yu Zuo, Shu Tian, and Cheng-Lin Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Text detection, tracking and recognition in video: A comprehensive survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE Transactions on Image Processing, 25(6):2752–2773, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [69] Sonia Yousfi, Sid-Ahmed Berrani, and Christophe Garcia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Arabic text detection in videos using neural and boosting-based approaches: Application to video indexing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In 2014 IEEE International Conference on Image Processing (ICIP), pages 3028–3032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [70] Oussama Zayene, Jean Hennebert, Mathias Seuret, Sameh M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Touj, Rolf Ingold, and Najoua Essoukri Ben Amara.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Text detection in arabic news video based on swt operator and convolutional auto-encoders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 2016 12th IAPR Workshop on Document Analysis Systems, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [71] Oussama Zayene, Jean Hennebert, Sameh Masmoudi Touj, Rolf Ingold, and Najoua Essoukri Ben Amara.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A dataset for arabic text detection, tracking and recognition in news videos - activ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 2015 13th International Conference on Document Analysis and Recognition (ICDAR), 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [72] Honggang Zhang, Kaili Zhao, Yi-Zhe Song, and Jun Guo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Text extraction from natural scene image: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Neurocomputing, 122:310–323, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [73] Zheng Zhang, Chengquan Zhang, Wei Shen, Cong Yao, Wenyu Liu, and Xiang Bai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Multi-oriented text detection with fully convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4159–4167, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [74] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Zhen and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Zagiqiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' A comparative study of feature selection for svm in video text detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In 2nd International symposium on Computational Intelligence and Design p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 552 - 556.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [75] Yu Zhong, Hongjiang Zhang, and Anil K Jain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Automatic caption localization in compressed video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' IEEE transactions on pattern analysis and machine intelligence, 22(4):385–392, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [76] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, and Jiajun Liang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' East: an efficient and accurate scene text detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' CVPR, pages 2642–2651, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [77] Ali Mirza, Ossama Zeshan, Muhammad Atif, Imran Siddiqi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Detection and recognition of cursive text from video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In EURASIP Journal on Image and Video Processing, pages 1–19, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' [78] Ali Mirza, Imran Siddiqi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' Recognition of cursive video text using a deep learning framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' In IET Image Processing, pages 3444–3455, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} +page_content=' 19' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE1T4oBgHgl3EQfawQW/content/2301.03164v1.pdf'} diff --git a/UNE3T4oBgHgl3EQfzwvz/content/tmp_files/2301.04732v1.pdf.txt b/UNE3T4oBgHgl3EQfzwvz/content/tmp_files/2301.04732v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..6751fc674f6b134276ad092e1b7d41989079f7d0 --- /dev/null +++ b/UNE3T4oBgHgl3EQfzwvz/content/tmp_files/2301.04732v1.pdf.txt @@ -0,0 +1,1291 @@ +arXiv:2301.04732v1 [math.QA] 11 Jan 2023 +SEMI-INFINITE CONSTRUCTION FOR THE DOUBLE YANGIAN OF +TYPE A(1) +1 +MARIJANA BUTORAC, NAIHUAN JING, SLAVEN KOˇZI´C AND FAN YANG +Abstract. We consider certain infinite dimensional modules of level 1 for the double +Yangian DY(gl2) which are based on the Iohara–Kohno realization. We show that they +possess topological bases of Feigin–Stoyanovsky-type, i.e. the bases expressed in terms +of semi-infinite monomials of certain integrable operators which stabilize and satisfy +the difference two condition. Finally, we give some applications of these bases to the +representation theory of the corresponding quantum affine vertex algebra. +1. Introduction +The integrable highest weight modules present one of the most fundamental notions +in the representation theory of affine Kac–Moody Lie algebras; see, e.g., the book by +Kac [14]. The problem of constructing different types of bases for such modules and +their various substructures, especially those which establish connection with Rogers– +Ramanujan-type identities via character formulae, has been extensively studied since the +pioneering paper of Lepowsky and Milne [16]. Our paper is motivated by the well known +Feigin–Stoyanovsky construction [6] of semi-infinite monomial bases for certain integrable +highest weight modules for the affine Lie algebra �sl2. The construction relies on the fact +that these modules can be obtained from their principal subspaces using the Weyl trans- +lation operator. At the level 1, the resulting bases consist of semi-infinite monomials +xα(r1)xα(r2) . . . in coefficients of the vertex operator xα(z) = � +r∈Z xα(r)z−r−1 associ- +ated with the positive simple root α of sl2. Their degrees r1, r2, . . . satisfy the difference +two condition rj+1 ⩾ rj + 2 for all j = 1, 2, . . . , which comes from the integrability +relation xα(z)2 = 0 of Lepowsky and Primc [17]. Moreover, these monomials stabilize, +i.e. for a sufficiently large n all degrees rn, rn+1, . . . are consecutive odd or even integers, +depending on the choice of the highest weight. Later on, the semi-infinite construction +was generalized to the case of quantum affine algebra Uq(�sl2) by Ding and B. Feigin [1] +using the realization of its integrable highest weight modules found by I. Frenkel and the +second author in [4]. +The goal of this paper is to give a semi-infinite construction for certain infinite di- +mensional modules of level 1 for the centrally extended double Yangian DY(gl2) defined +over the commutative ring C[[h]]. Their bosonic realization, which resembles the famous +Frenkel–Kac–Segal construction [5, 20] for affine Lie algebras, was given by Iohara and +Kohno in [11] for DY(gl2) and then generalized to the higher rank case by Iohara [10]. +We slightly modify the Iohara–Kohno realization as the action of the original translation +operator does not appear to be in tune with the semi-infinite construction. However, the +action of the double Yangian is still given on the same C[[h]]-module, which we denote by +Fi, i = 0, 1. In contrast with the aforementioned setting of affine Lie algebras and quan- +tum affine algebras, the general theory of integrable representations for double Yangians +has not yet been sufficiently developed. Thus, in our construction, we often need to use +1 + +different and more technical arguments which rely on the explicit formulae for the action +of the double Yangian generators on Fi. +Motivated by Ding–Feigin’s approach [1], we start by defining an auxiliary commutative +operator X(z) on Fi, i = 0, 1, which can be regarded as a Yangian counterpart of the +level 1 affine vertex operator xα(z). In particular, it satisfies the h-adic integrability +relation X(z)X(z ± h) = 0. We use its coefficients in parallel with [6, 9] to introduce +the notion of principal submodule Wi ⊂ Fi and, furthermore, to obtain the topological +basis for Wi which provides an interpretation of the sum-sides of Rogers–Ramanujan +identities. Next, we employ the action of translation operator on Wi to recover irreducible +modules Li(sl2) ⊂ Fi for the double Yangian DY(sl2), such that their classical limits +are exactly the level 1 integrable highest weight �sl2-modules L(Λi) of highest weight Λi +with i = 0, 1. Finally, we construct the Feigin–Stoyanovsky-type semi-infinite monomial +bases for Li(sl2), which is the main result of this paper. In addition, we generalize this +construction to the corresponding modules Li(gl2) for the double Yangian DY(gl2) by +using the action of its Heisenberg subalgebra, which is generated by the coefficients of +the quantum determinant and commutes with DY(sl2). +At the end of the paper, we obtain some applications of the semi-infinite construction +to the quantum vertex algebra theory. In particular, by employing the Iohara–Kohno +isomorphism [11] between two realizations of the double Yangian, we show that Li(gl2) +are naturally equipped with the structure of irreducible modules for the corresponding +Etingof–Kazhdan quantum affine vertex algebra of level 1 from [3]. +2. Preliminaries +In this section, we recall the double Yangian for the general linear Lie algebra gl2 and +the Iohara–Kohno bosonic realization of its level 1 modules. +2.1. Double Yangian for gl2. We follow the paper of Iohara and Kohno [11] to intro- +duce the centrally extended double Yangians for the Lie algebras gl2 and sl2 and recover +some of their properties. Let I be the identity and P the permutation operator on C2⊗C2. +Consider the (normalized) Yang R-matrix over the commutative ring C[[h]], +R(u) = +1 +1 + h/u +� +I + h +uP +� +∈ End C2 ⊗ End C2[[h/u]]. +The double Yangian DY(gl2) is defined as the associative algebra over the ring C[[h]] +generated by the central element C and the elements t(r) +ij , where i, j = 1, 2 and r ∈ Z. Its +defining relations are given by +R12(u − v)T ± +13(u)T ± +23(v) = T ± +23(v)T ± +13(u)R12(u − v), +(2.1) +R12(u − v − hC/2)T + +13(u)T − +23(v) = T − +23(v)T + +13(u)R12(u − v + hC/2). +(2.2) +The generator matrices T ±(u) are defined by +T ±(u) = +� +i,j=1,2 +eij ⊗ t± +ij(u), +(2.3) +where eij ∈ End C2 denote the matrix units and the power series t± +ij(u) are given by +t+ +ij(u) = δij − h +� +r⩾0 +t(r) +ij u−r−1 +and +t− +ij(u) = δij + h +� +r⩾1 +t(−r) +ij +ur−1. +(2.4) +2 + +In (2.1) and (2.2) we use the subscripts to indicate the tensor factors, i.e. we have +T ± +13(u) = +� +i,j=1,2 +eij ⊗ 1 ⊗ t± +ij(u) +and +T ± +23(u) = +� +i,j=1,2 +1 ⊗ eij ⊗ t± +ij(u). +Let us discuss the classical limit of double Yangian. Consider the affine Lie algebra +�gl2 = gl2 ⊗ C[t±1] ⊕ CK, where K is the central element and the Lie brackets are +[eij(r), ekl(s)] = δkj eil(r + s) − δilekj(r + s) + rδr+s0K (δkj δil − δij δkl) +(2.5) +for eij(r) = eij ⊗ tr. Introduce the ascending filtration over DY(gl2) by setting +deg t(r) +ij = r +for +i, j = 1, 2, r ∈ Z +and +deg C = 0. +(2.6) +The images ¯t(r) +ij and ¯C of the double Yangian generators t(r) +ij and C in the corresponding +graded algebra grDY(gl2) satisfy (2.5). Thus, the assignments eij(r) �→ ¯t(r) +ij and K �→ ¯C +define the algebra homomorphism +U(�gl2) ⊗ C[[h]] → grDY(gl2). +(2.7) +Theorem 2.1. The map (2.7) is an algebra isomorphism. +Proof. The surjectivity of the map (2.7) is clear. On the other hand, the injectivity is a +consequence of the Poincar´e–Birkhoff–Witt theorem [12, Thm. 2.2], which states that the +suitably ordered monomials in the double Yangian generators form its basis; see also [13, +Prop. 3.1] and [19, Thm. 15.3]. More specifically, although we define the double Yangian +using the normalization of the Yang R-matrix which differs from [12], the arguments from +the corresponding part of the proof of [12, Thm. 2.2] can be still carried out analogously. +It is worth noting that they rely on the Iohara–Kohno realization [11], which provides +level 1 representations of the double Yangian; see Theorem 2.3 below. +□ +Remark 2.2. The correspondence similar to (2.7), which employs the universal envelop- +ing algebra over C, can be also established by taking the classical limit DY(gl2)/hDY(gl2) +of the double Yangian. Indeed, by extracting the coefficients of the matrix entries in its +defining relations (2.1) and (2.2), one observes that the resulting top degree terms with +respect to (2.6) coincide with the terms which contain the lowest power of h. +From now on, we shall assume that the double Yangian for gl2 is h-adically completed. +Using the series (2.4) one obtains its Drinfeld generators [2] as follows: +k± +1 (u) = t± +11(u), +k± +2 (u) = t± +22(u) − t± +21(u)t± +11(u)−1t± +12(u), +(2.8) +X+(u) = t+ +11(u − hC/4)−1t+ +12(u − hC/4) − t− +11(u + hC/4)−1t− +12(u + hC/4), +(2.9) +X−(u) = t+ +21(u + hC/4)t+ +11(u + hC/4)−1 − t− +21(u − hC/4)t− +11(u − hC/4)−1. +(2.10) +The commutation relations for these generators can be found in [11, Thm. 2.1]. +The double Yangian DY(gl2) can be decomposed into two subalgebras: the double +Yangian DY(sl2), which is generated by the central element C1 := C and all coefficients +of the power series +E(u) = 1 +hX+(u + h/2), +F(u) = 1 +hX−(u + h/2), +H±(u) = k± +2 (u + h/2)k± +1 (u + h/2)−1, +(2.11) +3 + +and the Heisenberg subalgebra H, which is generated by the coefficients of the series +K±(u) = k± +1 (u − h/2)k± +2 (u + h/2) +and the central element C2 = −2C. The generators of the Heisenberg subalgebra commute +with all elements of DY(sl2) and satisfy the relations from [11, Cor. 2.2], +� +K±(u), K±(v) +� += 0, +u − v − h + hC2/4 +u − v + h + hC2/4K+(u)K−(v) = K−(v)K+(u)u − v − h − hC2/4 +u − v + h − hC2/4. +The generator series of H are of the form K±(u) = 1 ∓ hκ±(u), where +κ+(u) = +� +r⩾0 +κ(r)u−r−1 +and +κ−(u) = +� +r⩾1 +κ(−r)ur−1. +Consider the Heisenberg Lie subalgebra �h = h ⊗ C[t±1] ⊗ CK2 ⊂ �gl2, where K2 = −2K +is the central element and h = CI is the one-dimensional commutative subalgebra of gl2 +spanned by the identity matrix I = e11 + e22. By (2.5), its Lie brackets are given by +[I(r), I(s)] = rδr+s0K2, +where I(r) = I ⊗tr. Note that the restriction of the map (2.7) produces the isomorphism +U(�h) ⊗ C[[h]] → grH, +(2.12) +where grH is the corresponding graded algebra of H. It is given by I(r) �→ ¯κ(r) for all +r ∈ Z and K2 �→ ¯C2, where ¯κ(r) and ¯C2 stand for the images of Heisenberg subalgebra +generators κ(r) and C2 in the corresponding component of grH. +2.2. Iohara–Kohno realization. We follow [11] to introduce a certain realization of +level 1 modules for the double Yangian DY(gl2). Let s = Ce11 ⊕ Ce22 be the Cartan +subalgebra of gl2. Denote by εj, j = 1, 2, the linear maps s → C given by εj(ekk) = δjk. +The dual s∗ is equipped with the standard bilinear form (·, ·) determined by (εj, εk) = δjk. +Let Q = Zα with α = ε1 − ε2 be the root lattice of the simple Lie algebra sl2 and +λi = Λi − Λ0 the classical part of the i-th fundamental affine weight Λi. +Consider the Lie algebra �s generated by the central element C and the elements aj(r), +where j = 1, 2 and r ∈ Z, r ̸= 0, subject to the relations +[aj(r), ak(s)] = rδjkδr+s0C. +(2.13) +Let �s− be its (commutative) subalgebra generated by all aj(r) with j = 1, 2 and r ∈ Z<0. +Denote by C [Q] the group algebra of the root lattice Q. For any i = 0, 1 and s ∈ C set +Fis = U(�s−)[[h]] ⊗ C[Q][[h]]eλi+ s +2(ε1+ε2). +(2.14) +The tensor product in (2.14) is understood in the h-adically completed sense, so that the +C[[h]]-module Fis is topologically free. Define the action of C, aj(r), ∂εj and eεj, where +j = 1, 2 and r ̸= 0, on Fis so that for any f ⊗ eµ ∈ Fis we have +C · f ⊗ eµ = f ⊗ eµ, +aj(r) · f ⊗ eµ = +� +aj(r)f ⊗ eµ, +if r < 0, +[aj(r), f] ⊗ eµ, +if r > 0, +∂εj · f ⊗ eµ = (εj, µ)f ⊗ eµ, +eεj · f ⊗ eµ = f ⊗ eεj+µ. +4 + +Let us write X±α(u) = h−1X±(u). Introduce the following operator series on Fis: +E−(u) = exp +�� +r>0 +� +−a1(−r) +r +� +u − 3 +4h +�r ++ a2(−r) +r +� +u + h +4 +�r�� +, +E+(u) = exp +�� +r>0 +� +a1(r) − a2(r) +r +� +u + h +4 +�−r�� +, +E0(u) = eα +� +u + h +4 +�∂α +. +Finally, we recall the Iohara–Kohno realization [11, Thm. 3.1]. +Theorem 2.3. The following assignments define a structure of DY(gl2)-module on Fis: +Xα(u) �→ E−(u)E+(u)E0(u), +X−α(u) �→ E−(u + h/2)−1E+(u − h/2)−1E0(u − h/2)−1, +k+ +j (u) �→ exp +� +− +� +r>0 +aj(r) +r +�� +u + h +2 +�−r +− +� +u − h +2 +�−r�� � +1 − +h +u + h +2 +�∂εj +, j = 1, 2, +k− +j (u) �→ exp +�� +r>0 +�δ1j a2(−r) +r +((u + h)r − ur) + δ2j a1(−r) +r +(ur − (u − h)r) +�� +, j = 1, 2. +3. Semi-infinite construction +Throughout the rest of the paper, we assume that s = 0 in (2.14) and we write Fi = Fi0 +for i = 0, 1. Furthermore, from now on, we assume that the double Yangian DY(sl2) and +the Heisenberg subalgebra H, as given in Subsection 2.1, are h-adically completed. Our +goal is to construct the topological bases for certain DY(gl2)-modules in parallel with the +semi-infinite construction [6] for the affine Kac–Moody Lie algebra �sl2. +3.1. Normalized Iohara–Kohno realization. We now introduce another structure of +level 1 DY(gl2)-module over Fi by modifying the original formulae from Theorem 2.3. +Theorem 3.1. The following assignments define a structure of DY(gl2)-module on Fi: +Xα(u) �→ E−(0)−1E−(u)E+(u)E0(u)u∂α/2(u + h)∂α/2 +(u + h/4)∂α +, +X−α(u) �→ E−(0)E−(u + h/2)−1E+(u − h/2)−1E0(u − h/2)−1 +(u − h/4)∂α +(u − h/2)∂α/2(u + h/2)∂α/2 , +k+ +1 (u) �→ exp +� +− +� +r>0 +a1(r) +r +�� +u + h +2 +�−r +− +� +u − h +2 +�−r�� � u + h/4 +u + 5h/4 +�∂α/2 +, +k+ +2 (u) �→ exp +� +− +� +r>0 +a2(r) +r +�� +u + h +2 +�−r +− +� +u − h +2 +�−r�� � u + h/4 +u − 3h/4 +�∂α/2 +and the action of k− +1 (u), k− +2 (u) is given by Theorem 2.3. +Proof. As with the original Iohara–Kohno realization from Theorem 2.3, one verifies by +a direct calculation that the given operators satisfy the defining relations for double +Yangian, which are established in [11, Thm. 2.1]. As a demonstration, we shall prove that +the operators satisfy the level 1 defining relation +[Xα(u), X−α(v)] = 1 +h +� +δ(u − v − h/2)k+ +2 (u − h/4)k+ +1 (u − h/4)−1 +5 + +−δ(u − v + h/2)k− +2 (v − h/4)k− +1 (v − h/4)−1� +, +(3.1) +cf. [11, Thm. 2.1], where δ(u − v) = � +r∈Z u−r−1vr is the δ-function. Throughout the +proof, we denote by X′ +±α(u) and k +′± +j (u) the corresponding operators from Theorem 2.3 +in order to distinguish them from those given by Theorem 3.1. +First, we rewrite the left hand-side of (3.1) as +[Xα(u), X−α(v)] = +� +X′ +α(u), X′ +−α(v) +� +f(u, v), +(3.2) +where +f(u, v) = u∂α/2(u + h)∂α/2 +(u + h/4)∂α +(v − h/4)∂α +(v − h/2)∂α/2(v + h/2)∂α/2 . +Next, consider the right hand-side of (3.1). Using the properties of δ-function, we find +δ(u − v + h/2) = f(u, u + h/2)δ(u − v + h/2) = f(u, v)δ(u − v + h/2) +since f(u, u + h/2) = 1. Furthermore, we have k +′− +j (u) = k− +j (u) for j = 1, 2. Therefore, the +second summand in (3.1) can be written as +− δ(u − v + h/2)k− +2 (v − h/4)k− +1 (v − h/4)−1 += − f(u, v)δ(u − v + h/2)k +′− +2 (v − h/4)k +′− +1 (v − h/4)−1. +(3.3) +Finally, we consider the first summand on the right hand-side of (3.1). Observe that the +operators k+ +j (u) and k +′+ +j (u) are connected by the identities +k+ +1 (u) = k +′+ +1 (u) +�u + h/2 +u − h/2 +�∂ε1 � u + h/4 +u + 5h/4 +�∂α/2 +, +k+ +2 (u) = k +′+ +2 (u) +�u + h/2 +u − h/2 +�∂ε2 � u + h/4 +u − 3h/4 +�∂α/2 +. +Thus, we have the equality +δ(u − v − h/2)k+ +2 (u − h/4)k+ +1 (u − h/4)−1 += δ(u − v − h/2) +�u − 3h/4 +u + h/4 +�∂α �u + h +u − h +�∂α/2 +k +′+ +2 (u − h/4)k +′+ +1 (u − h/4)−1. +(3.4) +However, the properties of δ-function imply +δ(u − v − h/2) +�u − 3h/4 +u + h/4 +�∂α �u + h +u − h +�∂α/2 += f(u, u − h/2)δ(u − v − h/2) = f(u, v)δ(u − v − h/2), +so we conclude by (3.4) that the first summand on the right hand-side of (3.1) equals +f(u, v)δ(u − v − h/2)k +′+ +2 (u − h/4)k +′+ +1 (u − h/4)−1. +(3.5) +As the operators from Theorem 2.3 satisfy (3.1), the commutation relation (3.1) now +follows by comparing the expressions in (3.2), (3.3) and (3.5). +□ +The formula for the action of Xα(u) from Theorem 3.1 implies +Xα(u)1 ⊗ 1 ∈ 1 ⊗ eα + uF0[[u]] +(3.6) +on F0. On the other hand, (3.6) does not hold for the action of Xα(u) given by Theorem +2.3. As this property is required for the semi-infinite construction in Subsection 3.5, in the +6 + +rest of the paper we only consider the DY(gl2)-action from Theorem 3.1 and, furthermore, +we write X±α(u) and k± +j (u) for the corresponding vertex operators. +3.2. Commutative operators. In this subsection, we associate with the operators +Xα(u) from Theorem 3.1 certain commutative operators X(u) which satisfy an h-adic +version of the integrability relations which go back to Lepowsky and Primc [17]. As with +the construction of commutative operators of Ding and B. Feigin [1], which are associ- +ated with the Frenkel–Jing realization [4] of certain Uq(�sl2)-modules, we modify the term +E+(u) consisting of annihilation operators aj(r) with r > 0. However, in contrast with +the quantum affine algebra case, the term E0(u) needs to be renormalized as well. +Consider the operator series on Fi, i = 0, 1, defined by +X(u) = Xα(u)E ++(u)E +0(u), +where +E +0(u) = (1 − h/u)∂α/2, +(3.7) +the action of Xα(u) is given by Theorem 3.1 and the term E ++(u) is +E ++(u) = exp +�� +r>0 +� +a1(r) +r +� +u − 7 +4h +�−r ++ a2(r) +r +� +u + 1 +4h +�−r�� +. +Proposition 3.2. The following identities hold for operators on Fi, i = 0, 1: +X(u)X(v) = X(v)X(u), +(3.8) +X(u)X(u − h) = X(u)X(u + h) = 0. +(3.9) +Proof. By using (2.13) one easily verifies the following relations: +E+(u)E−(v) = (u − v)(u − v + h) +(u + h/4)2 +E−(v)E+(u), +(3.10) +E0(u)E0(v) = (u + h/4)2 +(v + h/4)2 E0(v)E0(u). +(3.11) +The commutativity (3.8) can be verified using (3.10), (3.11) and the identities +E ++(u)E−(v) = u − v − h +u − v +u + h/4 +u − 7h/4E−(v)E ++(u), +(3.12) +E +0(u)E0(v) = (1 − h/u) E0(v)E +0(u), +(3.13) +which also follow from (2.13). As for the equality (3.9), it is sufficient to observe that, +due to relations (3.10), (3.11), (3.12) and (3.13), we have the decomposition +X(u)X(v) = f(u, v)X(u, v), +where +f(u, v) = (u − v − h)(u − v + h), +X(u, v) = E−(0)−2E−(u)E−(v)E+(u)E ++(u)E+(v)E ++(v)e2α(u2 − h2)∂α/2 (v2 − h2)∂α/2. +By applying X(u, v) to an arbitrary element of Fi we get only finitely many negative +powers of the variables u and v modulo hn for any n ⩾ 1. Hence the formal limit v → u±h +of X(u, v) is well-defined. Therefore, the limit v → u ± h of the product X(u)X(v) is +well-defined as well. Furthermore, since f(u, u ± h) = 0, it equals zero, as required. +□ +7 + +3.3. Principal submodule W0. Let us write the operator series Xα(u) and X(u) as +Xα(u) = +� +r∈Z +x(r)u−r−1 +and +X(u) = +� +r∈Z +x(r)u−r−1. +Let 1 = 1 ⊗ 1 ∈ F0. Motivated by the notion of principal subspaces of affine Lie algebra +modules from [6,9], we define the principal submodule W0 of F0 as the h-adic completion +of the C[[h]]-module which is spanned by all +x(rn) . . . x(r1) 1, +where +n ⩾ 0 +and +r1, . . . , rn ∈ Z. +(3.14) +In this subsection, we use the monomials (3.14) to construct a topological basis for W0. +Remark 3.3. Note that W0 coincides with the h-adically completed C[[h]]-span of all +x(rn) . . . x(r1) 1, +where +n ⩾ 0 +and +r1, . . . , rn ∈ Z. +(3.15) +Indeed, the terms in (3.15) are the coefficients of u−rn−1 +n +. . . u−r1−1 +1 +in X(un) . . . X(u1) 1. +However, by using (3.12) and (3.13), along with E ++(u) 1 = E +0(u) 1 = 1, we find +X(un) . . . X(u1) 1 = F · Xα(un) . . . Xα(u1) 1 for F = +� +1⩽r 0, which implies +E+(u)± 1 = 1. As k+ +j (u)±1 1 = 1 for j = 1, 2, one can prove the next lemma analogously. +Lemma 3.8. For any integer m and j = 1, 2 we have +k+ +j (u)mL0(sl2) ⊂ L0(sl2)[[u−1]]. +By combining Lemma 3.8 and the identity (2.11) we get +Corollary 3.9. H+(u)L0(sl2) ⊂ L0(sl2)[[u−1]]. +Let us consider the remaining operators from Theorem 3.1 whose action employs the +creation operators aj(r) with r < 0 as well. First, observe that +Xα(u)ekα = u2k(u+h)2kekαXα(u) +implies +Xα(u)L0(sl2) ⊂ L0(sl2)[[u±1]]. (3.24) +Next, write E−(u) = E−(0)−1E−(u), so that, by Theorem 3.1, we have +Xα(u) = E−(u)E+(u)eαu∂α/2(u + h)∂α/2. +(3.25) +Lemma 3.10. For any integer m we have +E−(u)mL0(sl2) ⊂ L0(sl2)[[u]]. +(3.26) +Proof. Let m = 1. We can use the formulae from Theorem 3.1 and (3.10) to prove +E−(u)ekαXα(vn) . . . Xα(v1) 1 = F · ekαXα(vn) . . . Xα(v1)E−(u) 1, +(3.27) +where the factor F ∈ C[v−1 +n , . . . , v−1 +1 ][[u, h]] is given by +F = +n +� +r=1 +� +1 − u +vr +�−1 � +1 − +u +vr + h +�−1 +. +10 + +Since E+(u)eαu∂α/2(u + h)∂α/2 1 = eα 1, by (3.25) the rightmost term in (3.27) equals +E−(u) 1 = e−αE−(u)E+(u)eαu∂α/2(u + h)∂α/2 1 = e−αXα(u) 1 . +Therefore, the right hand-side of (3.27) is equal to +F · ekαXα(vn) . . . Xα(v1)e−αXα(u) 1 = G · e(k−1)αXα(vn) . . . Xα(v1)Xα(u) 1 . +(3.28) +The right hand-side of (3.28) was found by moving the operator e−α all the way to the +left, which produced the term G ∈ C[v−1 +n , . . . , v−1 +1 ][[u, h]] given by +G = F · +n +� +r=1 +v−1 +r +(vr + h)−1 = +n +� +r=1 +(vr − u)−1 (vr − u + h)−1 . +Thus, we proved that the left hand-side in (3.27) coincides with the right hand-side in +(3.28). However, it is clear that all coefficients of the right hand-side of (3.28) belong +to L0(sl2). Hence, the inclusion (3.26) for m = 1 follows as in the proof of Lemma 3.7. +Furthermore, the general case m > 1 can be again verified by induction over m. +Let m = −1. Note that E−(u) can be written as E−(u) = 1 − e−(u), where e−(u) +belongs to uU(�s−)[[h, u]]. Hence E−(u) is invertible and its inverse takes the form +E−(u)−1 = +� +1 − e−(u) +�−1 = +� +l⩾0 +e−(u)l = +� +l⩾0 +� +1 − E−(u) +�l . +(3.29) +Each summand in (3.29) is given in terms of nonnegative powers of E−(u), which satisfy +(3.26), so we conclude that E−(u)−1L0(sl2) ⊂ L0(sl2)[[u]], as required. Finally, as before, +this is generalized to any negative integer m by induction. +□ +By using (2.11) and the action of k− +j (u) from Theorem 3.1 one easily verifies the identity +H−(u − h/4) = E−(u)E−(u + h)−1 for operators on F0. Hence, by Lemma 3.10 we have +Corollary 3.11. H−(u)L0(sl2) ⊂ L0(sl2)[[u]]. +Let us turn our attention to the operator X−α(u), which takes the form +X−α(u) = E−(u + h/2)−1E+(u − h/2)−1e−α(u − h/2)−∂α/2(u + h/2)−∂α/2. +(3.30) +Lemma 3.12. X−α(u)L0(sl2) ⊂ L0(sl2)[[u±1]]. +Proof. The lemma follows by an argument which goes in parallel with the proof of Lemma +3.7. More specifically, it relies on the identity +X−α(u)ekαXα(vn) . . . Xα(v1) 1 = F · E−(u + h/2)−1e(k−1)αXα(vn) . . . Xα(v1) 1, +(3.31) +where the series F ∈ C[u−1][[vn, . . . , v1, h]] is given by +F = (u − h/2)−k (u + h/2)−k +n +� +r=1 +(u − vr − h/2)−1 (u − vr + h/2)−1 . +In addition, it employs Lemma 3.10, which implies that all coefficients of the right hand- +side of (3.31) belong to L0(sl2). As for the equality in (3.31), it is verified using the +expressions (3.25) and (3.30) for the operators X±α(u) and the relation (3.10). +□ +Finally, Corollaries 3.9 and 3.11, the inclusion in (3.24) and Lemma 3.12 imply +Theorem 3.13. The C[[h]]-module L0(sl2) is a module for the double Yangian DY(sl2). +Consider the C[[h]]-module L1(sl2) = +� +eλ1v : v ∈ L0(sl2) +� +. The next lemma is verified +by a direct calculation. +11 + +Lemma 3.14. The following commutation relations hold: +Xα(u)eλ1 = u1/2(u + h)1/2eλ1 Xα(u), +X−α(u)eλ1 = (u − h/2)−1/2(u + h/2)−1/2eλ1X−α(u), +H+(u)eλ1 = (u + 7h/4)1/2(u − h/4)−1/2eλ1 H+(u), +H−(u)eλ1 = eλ1 H−(u). +By using Lemma 3.14, one easily checks that L1(sl2) is closed under the action of the +double Yangian DY(sl2) as well, so that we have +Theorem 3.15. The C[[h]]-module L1(sl2) is a module for the double Yangian DY(sl2). +3.5. Semi-infinite monomial bases for Li(sl2). In this subsection, we construct topo- +logical bases for L0(sl2) and L1(sl2). Let us start with L0(sl2). Introduce the operator +� +X(u) = +� +r∈Z +�x(r)u−r−1 = Xα(u) (1 + h/u)−∂α/2 , +(3.32) +where the action of Xα(u) is given by Theorem 3.1. It satisfies the identity +� +X(un) . . . �X(u1) 1 = F · Xα(un) . . . Xα(u1) 1 +for +F = +� +r=2,...,n +(1 + h/ur)1−r . +(3.33) +Let �BW0 be the set of all elements �x(rn) . . . �x(r1) 1, where n ⩾ 0 and the integers r1, . . . , rn +satisfy the conditions given by (3.17). +Corollary 3.16. The set �BW0 forms a topological basis of W0. +Proof. The given set is linearly independent as its classical limit coincides with the classical +limit of the basis BW0 from Theorem 3.6. The fact that the C[[h]]-span of �BW0 is h-adically +dense in W0 is established by arguing as in the proof of Theorem 3.6. However, while the +argument therein relies on the identity (3.16), here one uses (3.33) instead. +□ +For any integer m let �BL0(sl2),m be the set of all elements emαb such that b ∈ �BW0. +Clearly, the union ∪m∈Z �BL0(sl2),m spans an h-adically dense C[[h]]-submodule of L0(sl2). +We now employ the Feigin–Stoyanovsky-type construction [6] to reduce it to a linearly +independent set. By (3.6) and (3.32) we have +�x(−1) 1 = eα 1 . +(3.34) +Furthermore, by extracting the coefficients in the relation � +X(u)e−α = e−α � +X(u)u−2, which +can be easily verified by a direct calculation, we find +�x(r)e−α = e−α �x(r − 2) +for all +r ∈ Z. +(3.35) +Let L0(sl2)m be the h-adically completed C[[h]]-span of �BL0(sl2),m. Observe that the union +∪m∈ZL0(sl2)m coincides with L0(sl2). Also, we have L0(sl2)m ⊂ L0(sl2)m−1 for all integers +m. Indeed, this is an immediate consequence of the inclusion �BL0(sl2),m ⊂ �BL0(sl2),m−1, +which can be proved by using the identities (3.34) and (3.35) as follows: +emα �x(rn) . . . �x(r1) 1 = emα �x(rn) . . . �x(r1)e−αeα 1 = emα �x(rn) . . . �x(r1)e−α �x(−1) 1 += e(m−1)α �x(rn − 2) . . . �x(r1 − 2)�x(−1) 1 ∈ �BL0(sl2),m−1. +Finally, we obtain the topological basis for L0(sl2). +12 + +Theorem 3.17. The direct limit +�BL0(sl2) = lim +−→ +�BL0(sl2),m +forms a topological basis of L0(sl2). +Proof. It is clear that the elements of �BL0(sl2) span the h-adically dense C[[h]]-submodule +of L0(sl2). On the other hand, their classical limits produce the semi-infinite basis for the +integrable highest weight �sl2-module L(Λ0) of the highest weight Λ0, established by B. +Feigin and Stoyanovsky [6], so that they are linearly independent. +□ +Consider the DY(sl2)-module L1(sl2). For any integer m let �BL1(sl2),m be the set of +all elements eλ1+mαb with b ∈ �BW0. The union ∪m∈Z �BL1(sl2),m spans an h-adically dense +C[[h]]-submodule of L1(sl2). The semi-infinite basis for L1(sl2) is established in parallel +with the case of L0(sl2). Naturally, in this case, its linear independence follows from +the observation that its classical limit produces the semi-infinite basis for the integrable +highest weight �sl2-module L(Λ1) of the highest weight Λ1 from [6]. Hence, we have +Theorem 3.18. The direct limit +�BL1(sl2) = lim +−→ +�BL1(sl2),m +forms a topological basis of L1(sl2). +Remark 3.19. In this remark, we discuss an interpretation of the bases �BLi(sl2) in terms +of semi-infinite monomials [6]. First, let us write vi,m = eλi+mα 1 for m ∈ Z and i = 0, 1 +so that, in particular, we have vi,0 = eλi 1. We can express the elements vi,0 = eλi 1 as +vi,0 = eλi 1 = eλi−αeα 1 = eλi−α�x(−1) 1 = �x(1 − i)eλi−α 1 = �x(1 − i)vi,−1. +Next, by a similar calculation, which starts with vi,−1, we get +vi,−1 = eλi−α 1 = eλi−2αeα 1 = eλi−2α�x(−1) 1 = �x(3 − i)eλi−2α 1 = �x(3 − i)vi,−2. +Combining the above equalities we find that vi,0 = �x(1 − i)�x(3 − i)vi,−2. By repeating +such calculations we find +vi,0 = �x(1 − i)�x(3 − i) . . . �x(2m − 1 − i)vi,−m +for any +m > 0. +(3.36) +Note that by (3.36) the direct limits in Theorems 3.17 and 3.18 correspond with taking +the limit m → ∞ of the elements of the form +emαbvi,0 = emαb�x(1 − i)�x(3 − i) . . . �x(2m − 1 − i)vi,−m, +where +b ∈ �BW0 +Hence, arguing as above to move the term emα to the right, we see that the elements of +the bases �BLi(sl2) can be represented as the semi-infinite monomials +�x(r1)�x(r2) . . . vi,−∞ +such that +(1) Their degrees r1, r2, . . . ∈ Z satisfy the difference two condition +rj ⩽ rj+1 − 2 +for all +j = 1, 2, . . . , +(2) For each monomial there exists an index n such that all degrees rn, rn+1, . . . are +consecutive odd (resp. even) integers if i = 0 (resp. i = 1). +13 + +3.6. Semi-infinite monomial bases for Li(gl2). Consider the DY(gl2)-modules +L0(gl2) = DY(gl2) · 1 +and +L1(gl2) = DY(gl2) · eλ1, +where, as before, the action of the double Yangian is given by Theorem 3.1. Recall that +the Heisenberg subalgebra H commutes with all elements of DY(sl2), so that we have +L0(gl2) = H·DY(sl2)·1 = DY(sl2)·H·1 +and +L1(gl2) = H·DY(sl2)·eλ1 = DY(sl2)·H·eλ1. +Consider the subalgebra H− ⊂ H generated by 1 and all elements κ(−r) with r ⩾ 1. +The algebra H− possesses the Poincar´e–Birkhoff–Witt basis +BH− = +� +κ(−rn) . . . κ(−r1) : n ⩾ 0, rn ⩾ . . . ⩾ r1 ⩾ 1 +� +. +(3.37) +Indeed, the elements of BH− span H− as all κ(−r) with r ⩾ 1 commute. On the other hand, +their linear independence is established by the map (2.12) and the Poincar´e–Birkhoff– +Witt theorem for U(�h−), where �h− stands for the Lie subalgebra of �h generated by all +I(−r) = I ⊗ t−r with r ⩾ 1. For i = 0, 1 introduce the sets +�BLi(gl2) = +� +hb : h ∈ BH−, b ∈ �BLi(sl2) +� +. +Theorem 3.20. Let i = 0, 1. The set �BLi(gl2) forms a topological basis for Li(gl2). +Proof. Theorems 3.17 and 3.18, along with the discussion preceding this theorem, imply +that the set �BLi(gl2) spans an h-adically dense C[[h]]-submodule of Li(gl2). On the other +hand, its linear independence follows from the observation that the classical limit of +Li(gl2) is equal to U(�h−) ⊗ L(Λi). +□ +4. Modules for the quantum vertex algebra Vc(gl2) +In this section, we study the underlying (quantum) vertex algebraic framework of the +semi-infinite construction. In particular, we obtain examples of irreducible modules for +the quantized universal affine vertex algebra of gl2. +4.1. Quantum affine vertex algebra Vc(gl2). The dual Yangian Y+(gl2) for gl2 is +defined as the associative algebra over the ring C[[h]] generated by the elements t(−r) +ij +, +where i, j = 1, 2 and r = 1, 2 . . . . Its defining relations are given by +R12(u − v)T − +13(u)T − +23(v) = T − +23(v)T − +13(u)R12(u − v), +where the notation is as in (2.3) and (2.4). We use the same symbols for the generators +of the dual Yangian and the corresponding generators of the double Yangian as Y+(gl2) +can be naturally regarded as a subalgebra of DY(gl2) due to the Poincar´e–Birkhoff–Witt +theorem. Moreover, for any c ∈ C the h-adic completion of the dual Yangian is naturally +equipped with the DY(gl2)-action so that the central element C acts as the scalar multipli- +cation by c. We shall denote this DY(gl2)-module by Vc(gl2). Furthermore, Vc(gl2) can be +equipped with the quantum vertex algebra structure via Etingof–Kazhdan’s construction +as follows; see [3, Thm. 2.3] for more information. +Theorem 4.1. There exists a unique quantum vertex algebra structure on Vc(gl2) so +that the unit 1 is the vacuum vector and the vertex operator map satisfies +Y (T − +1n(u1) . . . T − +n−1n(un−1), z) = T − +1n(z + u1) . . . T − +n−1n(z + un−1) +× T + +n−1n(z + un−1 − hc/2)−1 . . . T + +1n(z + u1 − hc/2)−1. +14 + +Proof. In comparison with the original result [3, Thm. 2.3], we use a different normaliza- +tion of the Yang R-matrix, which governs the relation (2.2) between the operators T ±(u). +However, the theorem can be again proved by the analogous arguments, which can be +also recovered from the proofs of [9, Thm. 2.3.8] and [12, Thm. 4.1]. +□ +Remark 4.2. The map Y (·, z) can be expressed modulo h as follows. Write +t±(u) = ±h−1(I − T ±(u)) +and +t(u) = t−(u) + t+(u). +One can prove by induction over n the identity +Y (t− +1n(u1) . . . t− +n−1n(un−1), z) = :t1n(u1) . . . tn−1n(un−1): +mod h, +where the normal-ordered product of operators is defined in a usual way: +:t(u1)t(u2): = t−(u1)t(u2) + t(u2)t+(u1) +and +:t(u1) . . . t(ur): = :t(u1) :t(u2) . . . t(ur)::. +Thus, it is easy to see that the classical limit h → 0 of the quantum vertex algebra Vc(gl2) +coincides with the universal affine vertex algebra V c(gl2) which goes back to the papers +of I. Frenkel and Zhu [7] and Lian [18]; recall Remark 2.2. +Let c2 = −2c. Denote by Vc2(h) the level c2 module for the Heisenberg subalgebra +H ⊂ DY(gl2) defined over the h-adic completion of H−. Clearly, we have Vc2(h) ⊂ Vc(gl2) +and the topological basis of Vc2(h) is given by (3.37). The generator series K±(u) of H +can be expressed as the quantum determinants of the matrices T ±(u) from the RTT- +realization of DY(gl2), so that we have K±(u) = qdetT ±(u); see [10, Thm. B.15]. Using +this observation, one obtains the following simple consequence of Theorem 4.1. +Corollary 4.3. The C[[h]]-module Vc2(h) is a quantum vertex subalgebra of Vc(gl2) for +c = −c2/2. Its vacuum vector is 1 ∈ Vc(gl2) and its vertex operator map satisfies +Y (K−(u1) . . . K−(un), z) = K−(z + u1) . . . K−(z + un) +× K+(z + un + hc2/4)−1 . . . K+(z + u1 + hc2/4)−1. +Remark 4.4. The results of this subsection are presented for gl2 in order to better fit the +setting of the paper. However, their generalization to glN with N > 2 is straightforward. +This is also true for the notion of restricted module and Theorem 4.6 which we give below. +4.2. Restricted modules for the double Yangian. A DY(gl2)-module V is said to +be restricted if it is a topologically free C[[h]]-module such that for any v ∈ V and n ⩾ 1 +the expression T +(u)v possesses only finitely many negative powers of u modulo hn. The +last requirement can be equivalently expressed as +T +(u)v ∈ End C2 ⊗ V [u−1]h +for all +v ∈ V, +(4.1) +where V [u−1]h stands for the h-adic completion of the C[[h]]-module V [u−1]. Extending +this notation, we shall also write V ((u))h for the h-adic completion of V ((u)). +Proposition 4.5. The DY(gl2)-modules Fis and Fi established by Theorems 2.3 and 3.1 +respectively are restricted. +Proof. It is clear that the underlying C[[h]]-module structure is topologically free. More- +over, by examining the explicit formulae in the aforementioned theorems we find +X±(u) ∈ Hom(F, F((u))h), +k− +j (u) ∈ Hom(F, F[[u]]), +k+ +j (u) ∈ Hom(F, F[u−1]h), +15 + +where F = Fis, Fi. We now employ the identities in (2.8)–(2.10) to prove the proposition. +First, we note that by the first equality in (2.8) we have t+ +11(u) ∈ Hom(F, F[u−1]h). Next, +from (2.10) we obtain +t+ +21(u) = X−(u − hC/4)t+ +11(u) + t− +21(u − hC/2)t− +11(u − hC/2)−1t+ +11(u), +which implies t+ +21(u) ∈ Hom(F, F[u−1]h). As for t+ +12(u), we rewrite the relation (2.9) as +t+ +11(u)−1t+ +12(u) = X+(u + hC/4) + t− +11(u + hC/2)−1t− +12(u + hC/2) +to conclude that the product t+ +11(u)−1t+ +12(u) belongs to Hom(F, F[u−1]h). Multiplying this +product by t+ +11(u) ∈ Hom(F, F[u−1]h), we obtain t+ +12(u) ∈ Hom(F, F[u−1]h), as required. +Finally, the second equality in (2.8) implies +t+ +22(u) = k+ +2 (u) + t+ +21(u)t+ +11(u)−1t+ +12(u). +As t+ +11(u)−1 ∈ Hom(F, F[u−1]h), we conclude that the remaining matrix entry t+ +22(u) of +T +(u) belongs to Hom(F, F[u−1]h), thus verifying the requirement imposed by (4.1). +□ +The next theorem was our main motivation for introducing the notion of restricted +module. Its proof relies on the RTT-realization of the double Yangian and goes in parallel +with the proof of Theorem 4.1. +Theorem 4.6. Let V be a restricted DY(gl2)-module of level c. Then there exists a +unique structure of Vc(gl2)-module over V such that for all n ⩾ 1 we have +YV (T − +1n(u1) . . . T − +n−1n(un−1), z) = T − +1n(z + u1)V . . . T − +n−1n(z + un−1)V +× T + +n−1n(z + un−1 − hc/2)−1 +V . . . T + +1n(z + u1 − hc/2)−1 +V . +The next corollary is an immediate consequence of Proposition 4.5 and Theorem 4.6. +Corollary 4.7. There exists a unique structure of V1(gl2)-module over Li = Li(gl2) with +i = 0, 1 such that for all n ⩾ 1 we have +YLi(T − +1n(u1) . . . T − +n−1n(un−1), z) = T − +1n(z + u1)Li . . . T − +n−1n(z + un−1)Li +× T + +n−1n(z + un−1 − h/2)−1 +Li . . . T + +1n(z + u1 − h/2)−1 +Li . +Consider the standard structure of bosonic Fock �h-module M(−2) of level −2. In +particular, recall that M(−2) is an irreducible �h-module which, as a vector space, coincides +with U(�h−). The tensor product Li = M(−2) ⊗ L(Λi) for i = 0, 1, where L(Λi) is the +integrable highest weight �sl2-module of highest weight Λi, is naturally equipped with the +structure of irreducible module for �gl2. Thus, Li possesses the structure of irreducible +module for the universal affine vertex algebra V 1(gl2) of level 1. On the other hand, the +classical limit of the V1(gl2)-module Li(gl2) coincides with the V 1(gl2)-module Li. +In the next corollary, we use the notion of irreducible module in the following sense. +The topologically free C[[h]]-module V is said to be irreducible with respect to the action +of associative algebra (resp. quantum vertex algebra) if it does not possess any nontrivial +topologically free C[[h]]-submodule W which is invariant under the corresponding action +of associative algebra (resp. quantum vertex algebra) and satisfies that hnv ∈ W for +n ⩾ 1 and v ∈ V implies v ∈ W. +Corollary 4.8. The C[[h]]-modules Li(gl2) are irreducible both as modules for the quan- +tum vertex algebra V1(gl2) and as level 1 modules for the double Yangian DY(gl2). +16 + +Proof. The irreducibility with respect to the action of V1(gl2) follows by the discussion +preceding the corollary. As for the action of the double Yangian, if the C[[h]]-submodule +W ⊂ Li(gl2) is DY(gl2)-invariant, by Corollary 4.7 we have +YLi(T − +1n(u1) . . . T − +n−1n(un−1), z)W ⊂ (End CN)⊗(n−1) ⊗ W[[z±1, u1, . . . , un−1]] +for all n ⩾ 1. As the coefficients of matrix entries of T − +1n(u1) . . . T − +n−1n(un−1) with n ⩾ 1 +span an h-adically dense C[[h]]-submodule of V1(gl2), it is clear that W is V1(gl2)-invariant +as well, so that the second assertion follows. +□ +Remark 4.9. Ding–Feigin’s construction of semi-infinite monomial bases [1] in the case of +quantum affine algebra Uq(�sl2) suggests that the suitable analogues of Corollaries 4.7 and +4.8 can be established for Etingof–Kazhdan’s quantum vertex algebra [3] associated with +the trigonometric R-matrix of type A(1) +1 . On the other hand, by using different approach, +the h-adic quantum vertex algebra structure over certain wide class of irreducible modules +for untwisted quantum affinization algebras was recently obtained by Kong [15]. +Acknowledgement +M.B. and S.K. would like to thank Mirko Primc for helpful discussions. This work +has been supported in part by Chinese National Natural Science Foundation grant nos. +12101261 and 12171303 and by Croatian Science Foundation under the project UIP-2019- +04-8488. +References +[1] J. Ding, B. Feigin, Commutative quantum current operators, semi-infinite construction and functional +models, Represent. Theory 4 (2000), 330–341; arXiv:q-alg/9612009. +[2] V. G. Drinfeld, A new realization of Yangians and quantized affine algebras, Soviet. Math. Dokl. 36 +(1988), 212–216. +[3] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras, V, Selecta Math. (N.S.) 6 (2000), 105–130; +arXiv:math/9808121 [math.QA]. +[4] I. B. Frenkel, N. Jing, Vertex representations of quantum affine algebras, Proc. Natl. Acad. Sci. USA +85 (1988), 9373–9377. +[5] I. Frenkel, V. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. +Math. 62 (1980/81), 23–66. +[6] A. V. Stoyanovsky, B. L. Feigin, Functional models of the representations of current algebras and semi- +infinite Schubert cells, Funktsional Anal. i Prilozhen. 28 (1994), 68–90, 96 (in Russian); translation +in Funct. Anal. Appl. 28 (1994), 55–72; arXiv:hep-th/9308079. +[7] I. B. Frenkel and Y.-C. Zhu, Vertex operator algebras associated to representations of affine and +Virasoro algebras, Duke Math. J. 66 (1992), 123–168. +[8] M. Gardini, Quantum vertex algebras, Ph.D. thesis, Sapienza – University of Rome, 2018. +[9] G. Georgiev, Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Prin- +cipal subspace, J. Pure Appl. Algebra 112 (1996), 247–286; arXiv:hep-th/9412054. +[10] K. Iohara, Bosonic representations of Yangian double DYℏ(g) with g = glN, slN, J. Phys. A 29 +(1996), 4593–4621; arXiv:q-alg/9603033. +[11] K. Iohara, M. Kohno, A central extension of DYh(gl2) and its vertex representations, Lett. Math. +Phys. 37 (1996), 319–328; arXiv:q-alg/9603032. +[12] N. Jing, S. Koˇzi´c, A. Molev, F. Yang, Center of the quantum affine vertex algebra in type A, J. +Algebra 496 (2018), 138–186; arXiv:1603.00237 [math.QA]. +[13] N. Jing, F. Yang, Center of the Yangian double in type A, arXiv:2207.01712 [math.QA]. +[14] V. G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, +1990. +[15] F. Kong, Quantum affine vertex algebras associated to untwisted quantum affinization algebras, +arXiv:2212.04888 [math.QA]. +17 + +[16] J. Lepowsky, S. Milne, Lie algebraic approaches to classical partition identities, Adv. Math. 29 +(1978), 15–59. +[17] J. Lepowsky, M. Primc, Structure of the standard modules for the affine Lie algebra A(1) +1 , Contemp. +Math. 46, Amer. Math. Soc., Providence, 1985. +[18] B.-H. Lian, On the classification of simple vertex operator algebras, Comm. Math. Phys. 163 (1994), +307–357. +[19] M. Nazarov, Double Yangian and the universal R-matrix, Jpn. J. Math 15 (2020), 169–221; +arXiv:1904.02517 [math.QA]. +[20] G. Segal, Unitary representations of some infinite-dimensional groups, Comm. Math. Phys. 80 +(1981), 301–342. +Marijana Butorac: +Faculty of Mathematics, University of Rijeka, +Radmile Matejˇci´c 2, 51000 Rijeka, Croatia +Email address: mbutorac@math.uniri.hr +Naihuan Jing: +Department of Mathematics, North Carolina State University, +Raleigh, NC 27695, USA +Email address: jing@ncsu.edu +Slaven Koˇzi´c: +Department of Mathematics, Faculty of Science, University of Zagreb, +Bijeniˇcka cesta 30, 10000 Zagreb, Croatia +Email address: kslaven@math.hr +Fan Yang: +Department of Mathematics, Jiaying University, +Meizhou, Guangdong 514000, China +Email address: 1329491781@qq.com +18 + diff --git a/UNE3T4oBgHgl3EQfzwvz/content/tmp_files/load_file.txt b/UNE3T4oBgHgl3EQfzwvz/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..dbb977c9f6a1617d1cd04cad9f20cf2dcc1464f0 --- /dev/null +++ b/UNE3T4oBgHgl3EQfzwvz/content/tmp_files/load_file.txt @@ -0,0 +1,1098 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf,len=1097 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='04732v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='QA] 11 Jan 2023 SEMI-INFINITE CONSTRUCTION FOR THE DOUBLE YANGIAN OF TYPE A(1) 1 MARIJANA BUTORAC, NAIHUAN JING, SLAVEN KOˇZI´C AND FAN YANG Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' We consider certain infinite dimensional modules of level 1 for the double Yangian DY(gl2) which are based on the Iohara–Kohno realization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' We show that they possess topological bases of Feigin–Stoyanovsky-type, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' the bases expressed in terms of semi-infinite monomials of certain integrable operators which stabilize and satisfy the difference two condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Finally, we give some applications of these bases to the representation theory of the corresponding quantum affine vertex algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Introduction The integrable highest weight modules present one of the most fundamental notions in the representation theory of affine Kac–Moody Lie algebras;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=', the book by Kac [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The problem of constructing different types of bases for such modules and their various substructures, especially those which establish connection with Rogers– Ramanujan-type identities via character formulae, has been extensively studied since the pioneering paper of Lepowsky and Milne [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Our paper is motivated by the well known Feigin–Stoyanovsky construction [6] of semi-infinite monomial bases for certain integrable highest weight modules for the affine Lie algebra �sl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The construction relies on the fact that these modules can be obtained from their principal subspaces using the Weyl trans- lation operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' At the level 1, the resulting bases consist of semi-infinite monomials xα(r1)xα(r2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' in coefficients of the vertex operator xα(z) = � r∈Z xα(r)z−r−1 associ- ated with the positive simple root α of sl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Their degrees r1, r2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' satisfy the difference two condition rj+1 ⩾ rj + 2 for all j = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' , which comes from the integrability relation xα(z)2 = 0 of Lepowsky and Primc [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Moreover, these monomials stabilize, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' for a sufficiently large n all degrees rn, rn+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' are consecutive odd or even integers, depending on the choice of the highest weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Later on, the semi-infinite construction was generalized to the case of quantum affine algebra Uq(�sl2) by Ding and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Feigin [1] using the realization of its integrable highest weight modules found by I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Frenkel and the second author in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The goal of this paper is to give a semi-infinite construction for certain infinite di- mensional modules of level 1 for the centrally extended double Yangian DY(gl2) defined over the commutative ring C[[h]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Their bosonic realization, which resembles the famous Frenkel–Kac–Segal construction [5, 20] for affine Lie algebras, was given by Iohara and Kohno in [11] for DY(gl2) and then generalized to the higher rank case by Iohara [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' We slightly modify the Iohara–Kohno realization as the action of the original translation operator does not appear to be in tune with the semi-infinite construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' However, the action of the double Yangian is still given on the same C[[h]]-module, which we denote by Fi, i = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' In contrast with the aforementioned setting of affine Lie algebras and quan- tum affine algebras, the general theory of integrable representations for double Yangians has not yet been sufficiently developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Thus, in our construction, we often need to use 1 different and more technical arguments which rely on the explicit formulae for the action of the double Yangian generators on Fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Motivated by Ding–Feigin’s approach [1], we start by defining an auxiliary commutative operator X(z) on Fi, i = 0, 1, which can be regarded as a Yangian counterpart of the level 1 affine vertex operator xα(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' In particular, it satisfies the h-adic integrability relation X(z)X(z ± h) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' We use its coefficients in parallel with [6, 9] to introduce the notion of principal submodule Wi ⊂ Fi and, furthermore, to obtain the topological basis for Wi which provides an interpretation of the sum-sides of Rogers–Ramanujan identities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Next, we employ the action of translation operator on Wi to recover irreducible modules Li(sl2) ⊂ Fi for the double Yangian DY(sl2), such that their classical limits are exactly the level 1 integrable highest weight �sl2-modules L(Λi) of highest weight Λi with i = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Finally, we construct the Feigin–Stoyanovsky-type semi-infinite monomial bases for Li(sl2), which is the main result of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' In addition, we generalize this construction to the corresponding modules Li(gl2) for the double Yangian DY(gl2) by using the action of its Heisenberg subalgebra, which is generated by the coefficients of the quantum determinant and commutes with DY(sl2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' At the end of the paper, we obtain some applications of the semi-infinite construction to the quantum vertex algebra theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' In particular, by employing the Iohara–Kohno isomorphism [11] between two realizations of the double Yangian, we show that Li(gl2) are naturally equipped with the structure of irreducible modules for the corresponding Etingof–Kazhdan quantum affine vertex algebra of level 1 from [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Preliminaries In this section, we recall the double Yangian for the general linear Lie algebra gl2 and the Iohara–Kohno bosonic realization of its level 1 modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Double Yangian for gl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' We follow the paper of Iohara and Kohno [11] to intro- duce the centrally extended double Yangians for the Lie algebras gl2 and sl2 and recover some of their properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Let I be the identity and P the permutation operator on C2⊗C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Consider the (normalized) Yang R-matrix over the commutative ring C[[h]], R(u) = 1 1 + h/u � I + h uP � ∈ End C2 ⊗ End C2[[h/u]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The double Yangian DY(gl2) is defined as the associative algebra over the ring C[[h]] generated by the central element C and the elements t(r) ij , where i, j = 1, 2 and r ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Its defining relations are given by R12(u − v)T ± 13(u)T ± 23(v) = T ± 23(v)T ± 13(u)R12(u − v), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1) R12(u − v − hC/2)T + 13(u)T − 23(v) = T − 23(v)T + 13(u)R12(u − v + hC/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2) The generator matrices T ±(u) are defined by T ±(u) = � i,j=1,2 eij ⊗ t± ij(u), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3) where eij ∈ End C2 denote the matrix units and the power series t± ij(u) are given by t+ ij(u) = δij − h � r⩾0 t(r) ij u−r−1 and t− ij(u) = δij + h � r⩾1 t(−r) ij ur−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='4) 2 In (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2) we use the subscripts to indicate the tensor factors, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' we have T ± 13(u) = � i,j=1,2 eij ⊗ 1 ⊗ t± ij(u) and T ± 23(u) = � i,j=1,2 1 ⊗ eij ⊗ t± ij(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Let us discuss the classical limit of double Yangian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Consider the affine Lie algebra �gl2 = gl2 ⊗ C[t±1] ⊕ CK, where K is the central element and the Lie brackets are [eij(r), ekl(s)] = δkj eil(r + s) − δilekj(r + s) + rδr+s0K (δkj δil − δij δkl) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='5) for eij(r) = eij ⊗ tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Introduce the ascending filtration over DY(gl2) by setting deg t(r) ij = r for i, j = 1, 2, r ∈ Z and deg C = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='6) The images ¯t(r) ij and ¯C of the double Yangian generators t(r) ij and C in the corresponding graded algebra grDY(gl2) satisfy (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Thus, the assignments eij(r) �→ ¯t(r) ij and K �→ ¯C define the algebra homomorphism U(�gl2) ⊗ C[[h]] → grDY(gl2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='7) Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The map (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='7) is an algebra isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The surjectivity of the map (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='7) is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' On the other hand, the injectivity is a consequence of the Poincar´e–Birkhoff–Witt theorem [12, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2], which states that the suitably ordered monomials in the double Yangian generators form its basis;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' see also [13, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1] and [19, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' More specifically, although we define the double Yangian using the normalization of the Yang R-matrix which differs from [12], the arguments from the corresponding part of the proof of [12, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2] can be still carried out analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' It is worth noting that they rely on the Iohara–Kohno realization [11], which provides level 1 representations of the double Yangian;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' see Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The correspondence similar to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='7), which employs the universal envelop- ing algebra over C, can be also established by taking the classical limit DY(gl2)/hDY(gl2) of the double Yangian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Indeed, by extracting the coefficients of the matrix entries in its defining relations (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2), one observes that the resulting top degree terms with respect to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='6) coincide with the terms which contain the lowest power of h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' From now on, we shall assume that the double Yangian for gl2 is h-adically completed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Using the series (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='4) one obtains its Drinfeld generators [2] as follows: k± 1 (u) = t± 11(u), k± 2 (u) = t± 22(u) − t± 21(u)t± 11(u)−1t± 12(u), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='8) X+(u) = t+ 11(u − hC/4)−1t+ 12(u − hC/4) − t− 11(u + hC/4)−1t− 12(u + hC/4), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='9) X−(u) = t+ 21(u + hC/4)t+ 11(u + hC/4)−1 − t− 21(u − hC/4)t− 11(u − hC/4)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='10) The commutation relations for these generators can be found in [11, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The double Yangian DY(gl2) can be decomposed into two subalgebras: the double Yangian DY(sl2), which is generated by the central element C1 := C and all coefficients of the power series E(u) = 1 hX+(u + h/2), F(u) = 1 hX−(u + h/2), H±(u) = k± 2 (u + h/2)k± 1 (u + h/2)−1, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='11) 3 and the Heisenberg subalgebra H, which is generated by the coefficients of the series K±(u) = k± 1 (u − h/2)k± 2 (u + h/2) and the central element C2 = −2C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The generators of the Heisenberg subalgebra commute with all elements of DY(sl2) and satisfy the relations from [11, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2], � K±(u), K±(v) � = 0, u − v − h + hC2/4 u − v + h + hC2/4K+(u)K−(v) = K−(v)K+(u)u − v − h − hC2/4 u − v + h − hC2/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The generator series of H are of the form K±(u) = 1 ∓ hκ±(u), where κ+(u) = � r⩾0 κ(r)u−r−1 and κ−(u) = � r⩾1 κ(−r)ur−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Consider the Heisenberg Lie subalgebra �h = h ⊗ C[t±1] ⊗ CK2 ⊂ �gl2, where K2 = −2K is the central element and h = CI is the one-dimensional commutative subalgebra of gl2 spanned by the identity matrix I = e11 + e22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' By (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='5), its Lie brackets are given by [I(r), I(s)] = rδr+s0K2, where I(r) = I ⊗tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Note that the restriction of the map (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='7) produces the isomorphism U(�h) ⊗ C[[h]] → grH, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='12) where grH is the corresponding graded algebra of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' It is given by I(r) �→ ¯κ(r) for all r ∈ Z and K2 �→ ¯C2, where ¯κ(r) and ¯C2 stand for the images of Heisenberg subalgebra generators κ(r) and C2 in the corresponding component of grH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Iohara–Kohno realization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' We follow [11] to introduce a certain realization of level 1 modules for the double Yangian DY(gl2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Let s = Ce11 ⊕ Ce22 be the Cartan subalgebra of gl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Denote by εj, j = 1, 2, the linear maps s → C given by εj(ekk) = δjk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The dual s∗ is equipped with the standard bilinear form (·, ·) determined by (εj, εk) = δjk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Let Q = Zα with α = ε1 − ε2 be the root lattice of the simple Lie algebra sl2 and λi = Λi − Λ0 the classical part of the i-th fundamental affine weight Λi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Consider the Lie algebra �s generated by the central element C and the elements aj(r), where j = 1, 2 and r ∈ Z, r ̸= 0, subject to the relations [aj(r), ak(s)] = rδjkδr+s0C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='13) Let �s− be its (commutative) subalgebra generated by all aj(r) with j = 1, 2 and r ∈ Z<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Denote by C [Q] the group algebra of the root lattice Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' For any i = 0, 1 and s ∈ C set Fis = U(�s−)[[h]] ⊗ C[Q][[h]]eλi+ s 2(ε1+ε2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='14) The tensor product in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='14) is understood in the h-adically completed sense, so that the C[[h]]-module Fis is topologically free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Define the action of C, aj(r), ∂εj and eεj, where j = 1, 2 and r ̸= 0, on Fis so that for any f ⊗ eµ ∈ Fis we have C · f ⊗ eµ = f ⊗ eµ, aj(r) · f ⊗ eµ = � aj(r)f ⊗ eµ, if r < 0, [aj(r), f] ⊗ eµ, if r > 0, ∂εj · f ⊗ eµ = (εj, µ)f ⊗ eµ, eεj · f ⊗ eµ = f ⊗ eεj+µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 4 Let us write X±α(u) = h−1X±(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Introduce the following operator series on Fis: E−(u) = exp �� r>0 � −a1(−r) r � u − 3 4h �r + a2(−r) r � u + h 4 �r�� , E+(u) = exp �� r>0 � a1(r) − a2(r) r � u + h 4 �−r�� , E0(u) = eα � u + h 4 �∂α .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Finally, we recall the Iohara–Kohno realization [11, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The following assignments define a structure of DY(gl2)-module on Fis: Xα(u) �→ E−(u)E+(u)E0(u), X−α(u) �→ E−(u + h/2)−1E+(u − h/2)−1E0(u − h/2)−1, k+ j (u) �→ exp � − � r>0 aj(r) r �� u + h 2 �−r − � u − h 2 �−r�� � 1 − h u + h 2 �∂εj , j = 1, 2, k− j (u) �→ exp �� r>0 �δ1j a2(−r) r ((u + h)r − ur) + δ2j a1(−r) r (ur − (u − h)r) �� , j = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Semi-infinite construction Throughout the rest of the paper, we assume that s = 0 in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='14) and we write Fi = Fi0 for i = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Furthermore, from now on, we assume that the double Yangian DY(sl2) and the Heisenberg subalgebra H, as given in Subsection 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1, are h-adically completed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Our goal is to construct the topological bases for certain DY(gl2)-modules in parallel with the semi-infinite construction [6] for the affine Kac–Moody Lie algebra �sl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Normalized Iohara–Kohno realization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' We now introduce another structure of level 1 DY(gl2)-module over Fi by modifying the original formulae from Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The following assignments define a structure of DY(gl2)-module on Fi: Xα(u) �→ E−(0)−1E−(u)E+(u)E0(u)u∂α/2(u + h)∂α/2 (u + h/4)∂α ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' X−α(u) �→ E−(0)E−(u + h/2)−1E+(u − h/2)−1E0(u − h/2)−1 (u − h/4)∂α (u − h/2)∂α/2(u + h/2)∂α/2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' k+ 1 (u) �→ exp � − � r>0 a1(r) r �� u + h 2 �−r − � u − h 2 �−r�� � u + h/4 u + 5h/4 �∂α/2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' k+ 2 (u) �→ exp � − � r>0 a2(r) r �� u + h 2 �−r − � u − h 2 �−r�� � u + h/4 u − 3h/4 �∂α/2 and the action of k− 1 (u),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' k− 2 (u) is given by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' As with the original Iohara–Kohno realization from Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3, one verifies by a direct calculation that the given operators satisfy the defining relations for double Yangian, which are established in [11, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' As a demonstration, we shall prove that the operators satisfy the level 1 defining relation [Xα(u), X−α(v)] = 1 h � δ(u − v − h/2)k+ 2 (u − h/4)k+ 1 (u − h/4)−1 5 −δ(u − v + h/2)k− 2 (v − h/4)k− 1 (v − h/4)−1� , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1) cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' [11, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1], where δ(u − v) = � r∈Z u−r−1vr is the δ-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Throughout the proof, we denote by X′ ±α(u) and k ′± j (u) the corresponding operators from Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3 in order to distinguish them from those given by Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' First, we rewrite the left hand-side of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1) as [Xα(u), X−α(v)] = � X′ α(u), X′ −α(v) � f(u, v), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2) where f(u, v) = u∂α/2(u + h)∂α/2 (u + h/4)∂α (v − h/4)∂α (v − h/2)∂α/2(v + h/2)∂α/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Next, consider the right hand-side of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Using the properties of δ-function, we find δ(u − v + h/2) = f(u, u + h/2)δ(u − v + h/2) = f(u, v)δ(u − v + h/2) since f(u, u + h/2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Furthermore, we have k ′− j (u) = k− j (u) for j = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Therefore, the second summand in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1) can be written as − δ(u − v + h/2)k− 2 (v − h/4)k− 1 (v − h/4)−1 = − f(u, v)δ(u − v + h/2)k ′− 2 (v − h/4)k ′− 1 (v − h/4)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3) Finally, we consider the first summand on the right hand-side of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Observe that the operators k+ j (u) and k ′+ j (u) are connected by the identities k+ 1 (u) = k ′+ 1 (u) �u + h/2 u − h/2 �∂ε1 � u + h/4 u + 5h/4 �∂α/2 , k+ 2 (u) = k ′+ 2 (u) �u + h/2 u − h/2 �∂ε2 � u + h/4 u − 3h/4 �∂α/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Thus, we have the equality δ(u − v − h/2)k+ 2 (u − h/4)k+ 1 (u − h/4)−1 = δ(u − v − h/2) �u − 3h/4 u + h/4 �∂α �u + h u − h �∂α/2 k ′+ 2 (u − h/4)k ′+ 1 (u − h/4)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='4) However, the properties of δ-function imply δ(u − v − h/2) �u − 3h/4 u + h/4 �∂α �u + h u − h �∂α/2 = f(u, u − h/2)δ(u − v − h/2) = f(u, v)δ(u − v − h/2), so we conclude by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='4) that the first summand on the right hand-side of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1) equals f(u, v)δ(u − v − h/2)k ′+ 2 (u − h/4)k ′+ 1 (u − h/4)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='5) As the operators from Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3 satisfy (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1), the commutation relation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1) now follows by comparing the expressions in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' □ The formula for the action of Xα(u) from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1 implies Xα(u)1 ⊗ 1 ∈ 1 ⊗ eα + uF0[[u]] (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='6) on F0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' On the other hand, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='6) does not hold for the action of Xα(u) given by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' As this property is required for the semi-infinite construction in Subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='5, in the 6 rest of the paper we only consider the DY(gl2)-action from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1 and, furthermore, we write X±α(u) and k± j (u) for the corresponding vertex operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Commutative operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' In this subsection, we associate with the operators Xα(u) from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1 certain commutative operators X(u) which satisfy an h-adic version of the integrability relations which go back to Lepowsky and Primc [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' As with the construction of commutative operators of Ding and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Feigin [1], which are associ- ated with the Frenkel–Jing realization [4] of certain Uq(�sl2)-modules, we modify the term E+(u) consisting of annihilation operators aj(r) with r > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' However, in contrast with the quantum affine algebra case, the term E0(u) needs to be renormalized as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Consider the operator series on Fi, i = 0, 1, defined by X(u) = Xα(u)E +(u)E 0(u), where E 0(u) = (1 − h/u)∂α/2, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='7) the action of Xα(u) is given by Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='1 and the term E +(u) is E +(u) = exp �� r>0 � a1(r) r � u − 7 4h �−r + a2(r) r � u + 1 4h �−r�� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' The following identities hold for operators on Fi, i = 0, 1: X(u)X(v) = X(v)X(u), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='8) X(u)X(u − h) = X(u)X(u + h) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='9) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' By using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='13) one easily verifies the following relations: E+(u)E−(v) = (u − v)(u − v + h) (u + h/4)2 E−(v)E+(u), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='10) E0(u)E0(v) = (u + h/4)2 (v + h/4)2 E0(v)E0(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='11) The commutativity (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='8) can be verified using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='10), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='11) and the identities E +(u)E−(v) = u − v − h u − v u + h/4 u − 7h/4E−(v)E +(u), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='12) E 0(u)E0(v) = (1 − h/u) E0(v)E 0(u), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='13) which also follow from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' As for the equality (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='9), it is sufficient to observe that, due to relations (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='10), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='11), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='12) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='13), we have the decomposition X(u)X(v) = f(u, v)X(u, v), where f(u, v) = (u − v − h)(u − v + h), X(u, v) = E−(0)−2E−(u)E−(v)E+(u)E +(u)E+(v)E +(v)e2α(u2 − h2)∂α/2 (v2 − h2)∂α/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' By applying X(u, v) to an arbitrary element of Fi we get only finitely many negative powers of the variables u and v modulo hn for any n ⩾ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Hence the formal limit v → u±h of X(u, v) is well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Therefore, the limit v → u ± h of the product X(u)X(v) is well-defined as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Furthermore, since f(u, u ± h) = 0, it equals zero, as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' □ 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Principal submodule W0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Let us write the operator series Xα(u) and X(u) as Xα(u) = � r∈Z x(r)u−r−1 and X(u) = � r∈Z x(r)u−r−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Let 1 = 1 ⊗ 1 ∈ F0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Motivated by the notion of principal subspaces of affine Lie algebra modules from [6,9], we define the principal submodule W0 of F0 as the h-adic completion of the C[[h]]-module which is spanned by all x(rn) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' x(r1) 1, where n ⩾ 0 and r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' , rn ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='14) In this subsection, we use the monomials (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='14) to construct a topological basis for W0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Note that W0 coincides with the h-adically completed C[[h]]-span of all x(rn) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' x(r1) 1, where n ⩾ 0 and r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' , rn ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='15) Indeed, the terms in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='15) are the coefficients of u−rn−1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' u−r1−1 1 in X(un) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' X(u1) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' However, by using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='12) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content='13), along with E +(u) 1 = E 0(u) 1 = 1, we find X(un) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' X(u1) 1 = F · Xα(un) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf'} +page_content=' Xα(u1) 1 for F = � 1⩽r 0, λ + µ ≥ 0. The pressure p satisfies the following constitutive equation in +I × Ω +p(t, x) = aργ(t, x), +(t, x) ∈ I × Ω, +for some constants a > 0, γ ≥ 1. In the case of non-barotropic fluids, that is, when the pressure is a +function of both density and temperature of the fluid, the Navier-Stokes system consists of the equation +of continuity, the momentum equation, and an additional thermal energy equation +cνρ(t, x)[θt(t, x) + u(t, x)θx(t, x)] + θ(t, x)pθ(t, x)ux(t, x) − κθxx(t, x) − (λ + 2µ)u2 +x(t, x) = 0, +where θ is the temperature of the fluid, cν is the specific heat constant, and κ is the heat conductivity +constant. For an ideal gas, Boyles law gives the pressure p(t, x) = Rρ(t, x)θ(t, x) in I × Ω with R as the +universal gas constant. See [19, Chapter 1] for more about compressible flows. +2010 Mathematics Subject Classification. 35M30, 35Q30, 76N25, 93B05, 93B07, 93C20. +Key words and phrases. Linearized compressible Navier-Stokes system, null-controllability, observability, boundary +control, Ingham-type inequalities. +†Indian Institute of Science Education and Research Kolkata, Campus road, Mohanpur, West Bengal 741246, India; +jk17ip021@iiserkol.ac.in. +1 + +1.2. The Barotropic Case. Let T > 0 be a finite time. We first consider the Navier-Stokes system +for compressible, isentropic (barotropic) fluids linearized around some constant steady state (¯ρ, ¯u) with +¯ρ > 0 and ¯u > 0 +(1.1) + + + +ρt(t, x) + ¯uρx(t, x) + ¯ρux(t, x) = 0, +in (0, T ) × (0, 2π), +ut(t, x) − µ +¯ρ uxx(t, x) + ¯uux(t, x) + aγ¯ργ−2ρx(t, x) = 0, +in (0, T ) × (0, 2π). +The initial conditions are +(1.2) +ρ(0, x) = ρ0(x), +u(0, x) = u0(x), +x ∈ (0, 2π). +We will consider two different problems, based on the act of control, by imposing any one of the following +boundary conditions on the system (1.1). +• Control in Density: +(1.3) +ρ(t, 0) = ρ(t, 2π) + p(t), +u(t, 0) = u(t, 2π), +ux(t, 0) = ux(t, 2π), +t ∈ (0, T ). +• Control in Velocity: +(1.4) +ρ(t, 0) = ρ(t, 2π), +u(t, 0) = u(t, 2π) + q(t), +ux(t, 0) = ux(t, 2π), +t ∈ (0, T ), +where p and q are boundary controls. Our main goal is to study null controllability of the system (1.1) +at a given time T > 0 with the initial condition (1.2) and one of the boundary conditions (1.3) and (1.4). +More precisely, given any initial state (ρ0, u0) in some suitable Hilbert space, we want to find a boundary +control p (resp. q) such that the solution (ρ, u) to the system (1.1)-(1.2)-(1.3) (resp. (1.1)-(1.2)-(1.4)) +satisfies +(ρ(T, x), u(T, x)) = (0, 0) in (0, 2π). +Before stating our main results, we first introduce the Sobolev space for any s > 0 +Hs +per(0, 2π) = +� +ϕ : ϕ = +� +n∈Z +cneinx, +� +n∈Z +|n|2s |cn|2 < ∞ +� +, +with the norm +∥ϕ∥Hs +per(0,2π) := +�� +n∈Z +(1 + |n|2)s |cn|2 +� 1 +2 +. +For s > 0, we denote H−s +per(0, 2π) to be the dual of the Sobolev space Hs +per(0, 2π) with respect to the +pivot space L2(0, 2π). We also define the space +˙L2(0, 2π) := +� +ϕ ∈ L2(0, 2π) : +� 2π +0 +ϕ(x)dx = 0 +� +and +˙Hs +per(0, 2π) := +� +ϕ ∈ Hs +per(0, 2π) : +� 2π +0 +ϕ(x)dx = 0 +� +. +If the system (1.1) is null controllable in time T by using a boundary control p, then integrating both +equations in (1.1), we get a compatibility condition on the initial states +aγ¯ργ−2 +� 2π +0 +ρ0(x)dx = ¯u +� 2π +0 +u0(x)dx = −aγ¯ργ−2¯u +� T +0 +p(t)dt. +If the system (1.1) is null controllable in time T by using a boundary control q, then also we will get +a similar compatibility condition on the initial states. Since every initial state (ρ0, u0) in (L2(0, 2π))2 +will not satisfy this compatibility condition, we will work on the Hilbert space ( ˙L2(0, 2π))2 to avoid this +difficulty. +When a boundary control q acts in the velocity component, it is known in [7] that the system (1.1)-(1.2)- +(1.4) is null controllable at time T > 2π +¯u provided that the initial state is regular enough, in particular, +lies in the space ˙Hs+1 +per (0, 2π) × ˙Hs +per(0, 2π) for s > 9 +2. In the first part of our article, we generalize this +result (with respect to the regularity of initial states). We also prove null controllability of the system +(1.1) when there is a boundary control p acts in the density component. We write all the statements +below. +Theorem 1.1. For any given time T > +2π +¯u +and initial state (ρ0, u0) ∈ ( ˙L2(0, 2π))2, there exists a +boundary control p ∈ L2(0, T ) such that the system (1.1)-(1.2)-(1.3) is null controllable at time T . +2 + +For small time, we have a lack of null controllability result for the system (1.1)-(1.2)-(1.3). +Proposition 1.2. For any given initial state (ρ0, u0) ∈ (L2(0, 2π))2, the system (1.1)-(1.2)-(1.3) is not +null controllable at small time 0 < T < 2π +¯u by means of any boundary control p ∈ L2(0, T ). +We have a similar null controllability result for the system (1.1) when a boundary control acts in the +velocity component. +Theorem 1.3. Let s ≥ 1. For any given time T > 2π +¯u and initial state (ρ0, u0) ∈ ˙Hs +per(0, 2π)× ˙L2(0, 2π), +there exists a boundary control q ∈ L2(0, T ) such that the system (1.1)-(1.2)-(1.4) is null controllable at +time T . +The following result shows that the null controllability of the system (1.1)-(1.2)-(1.4) at time T > 2π +¯u is +optimal in the space ˙H1 +per(0, 2π) × ˙L2(0, 2π). +Proposition 1.4. For any given initial state (ρ0, u0) ∈ Hs +per(0, 2π) × L2(0, 2π) with 0 ≤ s < 1, the +system (1.1)-(1.2)-(1.4) is not null controllable at any time T > 0. +Remark 1.5. Following the proof of Proposition 1.2, the lack of null controllability of the system (1.1)- +(1.2)-(1.4) cannot be obtained when the time is small, in particular, when 0 < T < 2π +¯u . Lack of con- +trollability at small time may be possible to obtain by constructing a Gaussian beam, as mentioned +in [31, Theorem 1.5] for the interior control case. +Remark 1.6. Null controllability of the system (1.1) at time T = +2π +¯u +is inconclusive in both cases, +whether there is a control act in density or velocity. +1.3. The Non-Barotropic Case. We next consider the Navier-Stokes system for compressible non- +barotropic fluids linearized around some constant steady state (¯ρ, ¯u, ¯θ) with ¯ρ, ¯u, ¯θ > 0 + + + + + + + + + + + + + +ρt(t, x) + ¯uρx(t, x) + ¯ρux(t, x) = 0, in (0, T ) × (0, 2π), +ut(t, x) − λ + 2µ +¯ρ +uxx(t, x) + R¯θ +¯ρ ρx(t, x) + ¯uux(t, x) + Rθx(t, x) = 0, in (0, T ) × (0, 2π), +θt(t, x) − κ +¯ρcν +θxx(t, x) + R¯θ +cν +ux(t, x) + ¯uθx(t, x) = 0, in (0, T ) × (0, 2π). +(1.5) +The initial conditions are +(1.6) +ρ(0, x) = ρ0(x), +u(0, x) = u0(x), +θ(0, x) = θ0(x), +x ∈ (0, 2π). +In this case, we will consider three different problems, based on the act of control, by imposing any one +of the following boundary conditions on the system (1.5). +• Control in Density: +(1.7) +ρ(t, 0) = ρ(t, 2π) + p(t), u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π), θ(t, 0) = θ(t, 2π), θx(t, 0) = θx(t, 2π). +• Control in Velocity: +(1.8) +ρ(t, 0) = ρ(t, 2π), u(t, 0) = u(t, 2π) + q(t), ux(t, 0) = ux(t, 2π), θ(t, 0) = θ(t, 2π), θx(t, 0) = θx(t, 2π). +• Control in Temperature: +(1.9) +ρ(t, 0) = ρ(t, 2π), u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π), θ(t, 0) = θ(t, 2π) + r(t), θx(t, 0) = θx(t, 2π). +for t ∈ (0, T ), where p, q and r are boundary controls. +In this case also, we want to prove null controllability of the system (1.5) at any given time T > 0 +depending on the act of the control. Similar to the barotropic case, we will work on the Hilbert space +( ˙L2(0, 2π))3. We denote the positive constants +λ0 := λ + 2µ +¯ρ +, +κ0 := +κ +¯ρcν +, +and define the set +(1.10) +S := +� +(λ0, κ0) : +� +λ0 +κ0 +/∈ Q +� +. +We prove the following results. +3 + +Theorem 1.7. For any given time T > 2π +¯u , (λ0, κ0) ∈ S, and initial state (ρ0, u0, θ0) ∈ ( ˙L2(0, 2π))3, +there exists a boundary control p ∈ L2(0, T ) such that the system (1.5)-(1.6)-(1.7) is null controllable at +time T . +The following proposition gives a lack of null controllability of the system (1.5)-(1.6)-(1.7) when the time +is small enough, that is, 0 < T < 2π +¯u . +Proposition 1.8. For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3, the system (1.5)-(1.6)-(1.7) is +not null controllable at a small time 0 < T < 2π +¯u using any boundary control p ∈ L2(0, T ). +Similar to the barotropic case, we have the null controllability result of the system (1.1) at time T (large +enough) when there is a boundary control acts in the velocity component. +Theorem 1.9. Let s ≥ 1. For any given time T > 2π +¯u , (λ0, κ0) ∈ S, and initial state (ρ0, u0, θ0) ∈ +˙Hs +per(0, 2π) × ( ˙L2(0, 2π))2, there exists a boundary control q ∈ L2(0, T ) such that the system (1.5)-(1.6)- +(1.8) is null controllable at time T . +The following result proves that the space ˙H1 +per(0, 2π) × ( ˙L2(0, 2π))2 is optimal for null controllability of +the system (1.5)-(1.6)-(1.8). +Proposition 1.10. For any given initial state (ρ0, u0, θ0) ∈ Hs +per(0, 2π) × (L2(0, 2π))2 with 0 ≤ s < 1, +the system (1.5)-(1.6)-(1.8) is not null controllable at any time T > 0. +We have similar result when there is a control act in temperature. +Theorem 1.11. Let s ≥ 1. For any given time T > 2π +¯u , (λ0, κ0) ∈ S and initial state (ρ0, u0, θ0) ∈ +˙Hs +per(0, 2π) × ( ˙L2(0, 2π))2, there exists a boundary control r ∈ L2(0, T ) such that the system (1.5)-(1.6)- +(1.9) is null controllable at time T . +Similar to the previous one (control acts in velocity), we have optimality of the space +˙H1 +per(0, 2π) × +( ˙L2(0, 2π))2 in the sense below. +Proposition 1.12. For any given initial state (ρ0, u0, θ0) ∈ Hs +per(0, 2π) × (L2(0, 2π))2 with 0 ≤ s < 1, +the system (1.5)-(1.6)-(1.9) is not null controllable at any time T > 0. +Remark 1.13. Following the proof of Proposition 1.8, lack of null controllability of the systems (1.5)- +(1.6)-(1.8) and (1.5)-(1.6)-(1.9) cannot be obtained when the time is small, in particular, when 0 < +T < 2π +¯u . However, this result may be possible to obtain by constructing a Gaussian beam, as mentioned +in [31, Theorem 1.5] for the interior control case. +Remark 1.14. Null controllability of the system (1.5) at time T = 2π +¯u is inconclusive in both cases, +whether there is a control act in density, velocity, or temperature. +1.4. An Ingham-Type Inequality. To prove the null controllability results for both barotropic and +non-barotropic systems, we need the following Ingham-type inequality. +Lemma 1.15 ( [3, Proposition 1.6]). Let {νh +n}n∈Z and {νp +n}n∈Z be two sequences in C with the following +properties: there is N ∈ N, such that +(H1) for all n, l ∈ Z, νh +n ̸= νh +l unless n = l; +(H2) νh +n = β + τni + en for all |n| ≥ N; +where τ > 0, β ∈ C and {en}|n|≥N ∈ ℓ2. +Also, there exists constants A0 ≥ 0, B0 ≥ δ with δ > 0 and some ǫ > 0, r > 1 for which {νp +n}n∈Z +satisfies +(P1) for all n, l ∈ Z, νp +n ̸= νp +l unless n = l; +(P2) +−ℜ(νp +n) +|ℑ(νp +n)| ≥ �c for some �c > 0 and for all |n| ≥ N; +(P3) |νp +n − νp +l | ≥ δ |nr − lr| for all n ̸= l with |n| , |l| ≥ N and +(P4) ǫ(A0 + B0nr) ≤ |νp +n| ≤ A0 + B0nr for all |n| ≥ N. +We also assume that the families are disjoint, i.e., +� +νh +n, n ∈ Z +� +∩ {νp +n, n ∈ Z} = ∅. +Then, for any time T > 2π +τ , there exists a positive constant C depending only on T such that +� T +0 +����� +� +n∈Z +aneνp +nt + +� +n∈Z +bneνh +nt +����� +2 +dt ≥ C +�� +n∈Z +|an|2e2ℜ(νp +n)T + +� +n∈Z +|bn|2 +� +, +(1.11) +4 + +for all sequences {an}n∈Z and {bn}n∈Z in ℓ2. +Notations. For any vector v, we denote its transpose by v† (instead of vT ). Throughout the article, +C > 0 denotes a generic constant that may depend on the time T . +Proving null controllability of the systems (1.1) and (1.5) using a boundary control is equivalent to +proving an observability inequality for the corresponding adjoint systems. Spectrum of the associated +linearized operators (for the adjoint systems) and the above Ingham-type inequality (1.11) plays a crucial +role to prove such observability inequalities. For the system (1.1) (barotropic fluids), spectrum of the +associated adjoint operator consists of two branches of complex eigenvalues, namely, the hyperbolic and +parabolic branches. The hyperbolic branch has eigenvalues with the real part converging to − b¯ρ +µ0 , whereas +real part of the parabolic branch diverges to −∞. We have obtained explicit expressions of eigenvalues +and eigenfunctions in terms of a Riesz basis (See Lemma 2.6 for details). For the non-barotropic fluids +(that is, system (1.5)), we get three branches of complex eigenvalues; one is of the hyperbolic type, +and two are parabolic types. +Similar to the barotropic case, the real part of the hyperbolic branch +converges to − R¯θ +λ0 and the real parts of both parabolic branches diverge to −∞. In this case, we have +obtained explicit expressions of eigenfunctions and asymptotic behavior of the eigenvalues (Lemma 3.7). +We also proved that the eigenfunctions form a Riesz basis in ( ˙L2(0, 2π))2 for the barotropic system +and ( ˙L2(0, 2π))3 for the non-barotropic system. Then, by writing the solutions to the corresponding +adjoint systems in terms of the eigenfunctions, the null controllability results have been proved using the +combined parabolic-hyperbolic Ingham type inequality (1.11). +A vast amount of literature is available on the controllability of Navier-Stokes equations for incom- +pressible fluids. For instance, one can see the works of Coron [12], Coron and Fursikov [13], Fursikov +and Imanuvilov [22, 23], Imanuvilov [26, 27], Fern´andez-Cara et al. [20, 21], Guerrero [25], Coron and +Guerrero [14], Chapouly [4], Coron and Lissy [15], Badra, Ervedoza and Guerrero [1], Coron, Marbach +and Sueur [16]. In comparison, for compressible fluids, less works are available on the Navier-Stokes +system’s controllability. In this context, we first mention the work of Ervedoza et al. [17], where the +authors established local exact controllability of one dimensional compressible Navier-Stokes system at +a large time T in the space H3(0, L) × H3(0, L) using two boundary controls. This result has been +improved in [18] where the null controllability is achieved in the space H1(0, L) × H1(0, L). +It is known in [10] that, for barotropic fluids, the one-dimensional compressible Navier-Stokes system +linearized around (¯ρ, 0) (with ¯ρ > 0) cannot be null controllable at any time T > 0 by using a boundary +control or a localized distributed control. For the linearized system around (¯ρ, ¯u) (with ¯ρ, ¯u > 0), the +authors in [8] proved null controllability of the Navier-Stokes equations (with homogeneous periodic +boundary conditions) for viscous, compressible isothermal barotropic fluids at time T (large) in the +space ˙H1 +per(0, 2π) × L2(0, 2π), when there is an interior control act only in the velocity equation. They +also proved that the space ˙H1 +per(0, 2π) × L2(0, 2π) is optimal in the sense that if we choose the initial +state from +˙Hs +per(0, 2π) × L2(0, 2π) with 0 ≤ s < 1, the linearized system cannot be null controllable +at any time T > 0. In the case of linearization around (¯ρ, ¯u) with ¯ρ, ¯u > 0, the compressible Navier- +Stokes system (1.1) is equivalent (in some sense) to the transformed system in [32]. Using a moving +distributed control, the authors in [32] proved the null controllability of a one-dimensional structurally +damped wave equation in the space Hs+2 × Hs for s > +15 +2 . There is a generalization to this result +in higher dimensions by Chaves-Silva, Rosier, and Zuazua [5]. Inspired by the work of Martin, Rosier +and Rouchon [32], Chowdhury and Mitra in [7] proved the null controllability of the same compressible +Navier-Stokes system linearized around (¯ρ, ¯u) at time T (large) by using a boundary control that acts +on the velocity component through periodic conditions, provided the initial states are regular enough, +more precisely, in the space +˙H1+s +per (0, 2π) × ˙Hs +per(0, 2π) with s > 4.5. +However, the question of null +controllability at a large time T in the space ˙H1+s +per (0, 2π)× ˙Hs +per(0, 2π) with 0 < s ≤ 4.5 was unaddressed +in [7], and up to the author’s knowledge, there has been no improvement in this result. In this article, we +have answered this question (Theorem 1.3 and Proposition 1.4). We have proved null controllability of +the linearized compressible Navier-Stokes system for barotropic fluids (1.1) at large time T in the space +˙Hs +per(0, 2π) × ˙L2(0, 2π) with s ≥ 1 by using one boundary control acting in the velocity component. We +have also proved that our result is optimal in the sense that the system cannot be null controllable by a +boundary control (acts in velocity) when the initial states belong to the space ˙Hs +per(0, 2π)× ˙L2(0, 2π) with +0 ≤ s < 1. When a control acts only in the density component through periodic boundary conditions, +we have established null controllability of the linearized system (1.1)-(1.2)-(1.3) at large time T in the +space ˙L2(0, 2π) × ˙L2(0, 2π) and that null controllability fails at small time T . +5 + +For the non-barotropic fluids, it is known in [31] that the compressible Navier-Stokes system linearized +around (¯ρ, 0, ¯θ) (with ¯ρ, ¯θ > 0) is not null controllable at any time T > 0 by using a boundary control +or a localized distributed control. For the linearization around (¯ρ, ¯u, ¯θ) with ¯ρ, ¯u, ¯θ > 0, it is only known +that the system is not null controllable at small time by a localized interior control or a boundary control +acting on the velocity component (see [31, Theorem 1.5] for instance). To the author’s knowledge, no +controllability result is known for the linearized system around (¯ρ, ¯u, ¯θ), that is, the system (1.5), when +the time is large, which is studied for the first time in this article. +The main difficulty in the linearized compressible Navier-Stokes system is the presence of transport +and parabolic coupling. The thermoelasticity system is also an example involving both transport and +parabolic effects. Lebeau and Zuazua [30] have studied distributed Controllability for thermoelasticity +systems. Following [30], Beauchard et al. in [2] proved null controllability for some coupled transport- +parabolic systems when an interior control acts. They proved null controllability at large time T in +the space L2(0, 2π) × ˙L2(0, 2π) by one interior control acts in the density equation and in the space +˙H2(0, 2π) × H2(0, 2π) when only one interior control acts in the velocity equation; see also [28]. +The main contribution of this article is that we prove the null controllability of the one-dimensional +linearized compressible Navier-Stokes system for both barotropic and non-barotropic fluids by using only +one boundary control. We consider all the possible cases of the act of control for both systems (1.1) +and (1.5). We get better regularity of the initial states for the controllability of barotropic system (1.1) +compared to [7]. In the case of non-barotropic fluids, since the transport equation does not affect the +temperature equation, it is pretty natural to obtain similar spaces of null controllability of the system +(1.5). The combined parabolic-hyperbolic Ingham type inequality (Lemma 1.15) helps us obtain each +case’s best possible results (with respect to the state space). +Our results cannot be obtained as a +consequence of interior control results by the extension method. When the boundary control acts in the +density component, we prove that both systems (1.1) and (1.5) are not null controllable at small time. +The proof is inspired from [2] and is independent of that in [31]. +The result stated in Theorem 1.1 is similar to the results in [2], showing that we can achieve the space +( ˙L2(0, 2π))2 in the case of only one boundary control (acts in density) also. Likewise the case of interior +control [8], we also obtain similar results for our boundary control case (acts in velocity) (Theorem 1.3 +and Proposition 1.4). +The rest of the article is organized as follows: +– In Section 2, we prove the null controllability of the linearized compressible Navier-Stokes system +for barotropic fluids (1.1) at a large time T using a boundary control that acts either in density +or velocity, that is, Theorem 1.1 and Theorem 1.3 respectively. +The proofs of lack of null +controllability at small time T (Proposition 1.2) and at any time T with less regular initial states +(Proposition 1.4) are also included in this section. +– In Section 3, we give all the null controllability results of linearized compressible Navier-Stokes +system for non-barotropic fluids (1.5) based on the act of the control, namely the proofs of +Theorem 1.7, Theorem 1.9 and Theorem 1.11. We have also included the proofs of lack of null +controllability results at small time T (Proposition 1.8) and at any time T when the initial states +are less regular (Proposition 1.10 and Proposition 1.12). +– In section 4, we give few comments and discuss some open problems. +– For the sake of completeness, we give the proof of well-posedness result (Lemma 3.1) for the +non-barotropic system (1.5) in Appendix A.1. +Acknowledgments. The author would like to thank his PhD supervisor Dr. Shirshendu Chowdhury +for suggesting this problem and fruitful discussions. The author would also like to thank Dr. Rajib +Dutta for careful reading and improvement of the manuscript. +This work is supported by the Prime Minister’s Research Fellowship (ref. no. 41-1/2018-TS-1/PMRF), +Government of India. +2. Controllability of Linearized Compressible Navier-Stokes System (Barotropic) +2.1. Functional Setting. We denote the positive constants +µ0 := µ +¯ρ , +b := aγ¯ργ−2. +6 + +We define the inner product in the space (L2(0, 2π))2 as follows +�� +f1 +g1 +� +, +� +f2 +g2 +�� +:= b +� 2π +0 +f1(x)f2(x)dx + ¯ρ +� 2π +0 +g1(x)g2(x)dx, +for fi, gi ∈ L2(0, 2π), i = 1, 2. We write the system (1.1) in abstract differential equation +(2.1) +U ′(t) = AU(t), +U(0) = U0, +t ∈ (0, T ), +where U := (ρ, u)†, U0 := (ρ0, u0)† and the operator A is given by +A := +� +−¯u∂x +−¯ρ∂x +−b∂x +µ0∂xx − ¯u∂x +� +with the domain +D(A) := H1 +per(0, 2π) × H2 +per(0, 2π). +The adjoint of the operator A∗ is given by +A∗ := +� +¯u∂x +¯ρ∂x +b∂x +µ0∂xx + ¯u∂x +� +with the same domain D(A∗) = D(A). The adjoint system is then given by +(2.2) + + + + + + + + + +−σt(t, x) − ¯uσx(t, x) − ¯ρvx(t, x) = 0, in (0, T ) × (0, 2π), +−vt(t, x) − µ0vxx(t, x) − ¯uvx(t, x) − bσx(t, x) = 0, in (0, T ) × (0, 2π), +σ(t, 0) = σ(t, 2π), +v(t, 0) = v(t, 2π), +vx(t, 0) = vx(t, 2π), t ∈ (0, T ), +σ(T, x) = σT (x), +v(T, x) = vT (x), +x ∈ (0, 2π). +We now write the adjoint system with source terms f and g. +(2.3) + + + + + + + + + +−σt(t, x) − ¯uσx(t, x) − ¯ρvx(t, x) = f, in (0, T ) × (0, 2π), +−vt(t, x) − µ0vxx(t, x) − ¯uvx(t, x) − bσx(t, x) = g, in (0, T ) × (0, 2π), +σ(t, 0) = σ(t, 2π), +v(t, 0) = v(t, 2π), +vx(t, 0) = vx(t, 2π), t ∈ (0, T ), +σ(T, x) = σT (x), +v(T, x) = vT (x), +x ∈ (0, 2π). +2.2. Well-Posedness of the System. This section devotes to the well-posedness of the system (1.1) +under the boundary conditions (1.3), (1.4) and the initial conditions (1.2), and the adjoint system (2.3). +When there is no control act on the system, we have the existence of solutions to the system (1.1) using +semigroups. +Lemma 2.1 ( [8, Lemma 2.1]). The operator A (resp. A∗) generates a C0-semigroup of contractions +on (L2(0, 2π))2. Moreover, for every U0 ∈ (L2(0, 2π))2 the system (2.1) admits a unique solution U in +C0([0, T ]; (L2(0, 2π))2) and +∥U(t)∥(L2(0,2π))2 ≤ C ∥U0∥(L2(0,2π))2 +for all t ≥ 0. +The following lemma shows the existence of a unique solution to the adjoint system (2.3). +Lemma 2.2 ( [24]). For any given source term (f, g) ∈ L2(0, T ; (L2(0, 2π))2), the adjoint system (2.3) +(with (σT , vT ) = (0, 0)) has a unique solution (σ, v) in the space +C0([0, T ]; L2(0, 2π)) × [C0([0, T ]; L2(0, 2π)) ∩ L2(0, T ; H1 +per(0, 2π))]. +Once we have the existence results of the homogeneous system (without any boundary control) associated +to the system (1.1), we can now guarantee the existence of a unique solution to the system (1.1) (in the +sense of transposition) when there is a boundary control p (resp. q) act in density (resp. velocity) in the +space L2(0, T ). Before writing the statements, let us first define the notion of a solution in the sense of +transposition. +7 + +Definition 2.3. +(1) For any given initial state (ρ0, u0) ∈ (L2(0, 2π))2 and boundary control p ∈ +L2(0, T ), a function (ρ, u) ∈ L2(0, T ; (L2(0, 2π))2) is a solution to the system (1.1)-(1.2)-(1.3) if +for any given (f, g) ∈ L2(0, T ; (L2(0, 2π))2), the following identity holds true: +� T +0 +� 2π +0 +ρ(t, x)f(t, x)dxdt + +� T +0 +� 2π +0 +u(t, x)g(t, x)dxdt += ⟨(ρ0(·), u0(·)), (σ(0, ·), v(0, ·))⟩L2×L2 + +� T +0 +� +¯uσ(t, 2π) + ¯ρv(t, 2π) +� +p(t)dt, +where (σ, v) is the unique weak solution to the adjoint system (2.3) with (σt, vT ) = (0, 0). +(2) For any given initial state (ρ0, u0) ∈ (L2(0, 2π))2 and boundary control q ∈ L2(0, T ), a function +(ρ, u) ∈ L2(0, T ; (H1(0, 2π))′ × L2(0, 2π)) is a solution to the system (1.1)-(1.2)-(1.4) if for any +given (f, g) ∈ L2(0, T ; H1(0, 2π) × L2(0, 2π)), the following identity holds true: +� T +0 +⟨ρ(t, ·), f(t, ·)⟩(H1)′,H1 dt + +� T +0 +� 2π +0 +u(t, x)g(t, x)dxdt += ⟨(ρ0(·), u0(·)), (σ(0, ·), v(0, ·))⟩L2×L2 + +� T +0 +� +bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π) +� +q(t)dt, +(σ, v) is the unique weak solution to the adjoint system (2.3) with (σT , vT ) = (0, 0). +Proposition 2.4 ( [3, Theorem 2.4]). For any given initial state (ρ0, u0) ∈ (L2(0, 2π))2 and boundary +control p ∈ L2(0, T ), the system (1.1)-(1.2)-(1.3) admits a unique solution (ρ, u) in the space +C0([0, T ]; L2(0, 2π)) × [C0([0, T ]; L2(0, 2π)) ∩ L2(0, T ; H1 +per(0, 2π))]. +Proposition 2.5 ( [9, Theorem 3.2]). For any given initial state (ρ0, u0) ∈ (L2(0, 2π))2 and boundary +control q ∈ L2(0, T ), the system (1.1)-(1.2)-(1.4) admits a unique solution (ρ, u) in the space +L2(0, T ; (H1 +per(0, 2π))′) × L2(0, T ; L2(0, 2π)). +Moreover, the operator q �→ (ρ, u) is linear and continuous from L2(0, T ) into L2(0, T ; (H1 +per(0, 2π))′) × +L2(0, T ; L2(0, 2π)). +2.3. Spectral Analysis of A∗. We denote the spectrum of A∗ by σ(A∗). The following lemma gives +behavior of the spectrum of the operator A∗. +Lemma 2.6. The following statements holds. +(1) ker(A∗) = span +�� +1 +1 +� +, +� +1 +−1 +�� +. +(2) sup {ℜ(ν) : ν ∈ σ(A∗), ν ̸= 0} < 0. +(3) The spectrum of A∗ consists of the eigenvalue 0 and pairs of complex eigenvalues {νh +n, νp +n}n∈Z∗ +given as +νh +n = −1 +2 +� +µ0n2 − n +� +µ2 +0n2 − 4b¯ρ − 2¯uin +� +, +(2.4) +νp +n = −1 +2 +� +µ0n2 + n +� +µ2 +0n2 − 4b¯ρ − 2¯uin +� +, +(2.5) +for all n ∈ Z∗. +(4) The eigenvalues satisfy the following properties + + + +lim|n|→∞ ℜ(νh +n) = −ω0, +lim|n|→∞ +ℜ(νp +n) +n2 += −µ0 +lim|n|→∞ +ℑ(νh +n) +n += ¯u, +lim|n|→∞ +ℑ(νp +n) +n += ¯u +with ω0 = b¯ρ +µ0 . +(5) The eigenfunctions of A∗ corresponding to νh +n and νp +n are respectively +(2.6) +Φh +n := +� +ξh +n +ηh +n +� += +� +¯ρ +νn +2 − ¯u +� +einx, +Φp +n := +� +ξp +n +ηp +n +� += +� +¯ρ +νn +1 −¯u +1 +� +einx, +for n ∈ Z, where +(2.7) +νn +1 := 1 +2 +� +µ0in + 2¯u + i +� +µ2 +0n2 − 4b¯ρ +� +, +νn +2 := 1 +2 +� +µ0in + 2¯u − i +� +µ2 +0n2 − 4b¯ρ +� +, +n ∈ Z. +8 + +(6) The eigenfunctions {Φh +n, Φp +n : n ∈ Z∗} of A∗ forms a Riesz basis of ( ˙L2(0, 2π))2. +Proof. We will prove only the parts (2), (3) and (5). Part (4) can be proved using part (2). +Let Φ = (ξ, η)† be the eigenfunction of A∗ corresponding to the eigenvalue ν ̸= 0. Then, we have +� +A∗ +� +ξ +η +� +, +� +ξ +η +�� += +� +ν +� +ξ +η +� +, +� +ξ +η +�� +, +that is, +b¯u +� 2π +0 +ξ(x)ξx(x)dx + b¯ρ +� 2π +0 +ξ(x)ηx(x)dx + µ0¯ρ +� 2π +0 +η(x)ηxx(x)dx + ¯ρ¯u +� 2π +0 +η(x)ηx(x)dx ++b¯ρ +� 2π +0 +ξx(x)η(x)dx = ν +� 2π +0 +|ξ(x)|2 dx + ν +� 2π +0 +|η(x)|2 dx. +An integration by parts yields +ℜ(ν) = − +∥ηx∥2 +L2(0,2π) +|ξ|2 +L2(0,2π) + ∥η∥2 +L2(0,2π) +< 0, +which proves part (2). +We denote +ϕn(x) := einx, +n ∈ Z. +Then the set +�� +ϕn +0 +� +, +� +0 +ϕn +�� +forms an orthogonal basis of (L2(0, 2π))2. Let us define +En := +� +ϕn +0 +0 +ϕn +� +, +and Φn := (ξn, ηn)†, +for all n ∈ Z. Then, we have the following relation +(2.8) +A∗EnΦn = inEnRnΦn, +n ∈ Z, +where the matrix Rn for n ∈ Z is given by +(2.9) +Rn := +� +¯u +¯ρ +b +µ0in + ¯u +� +, +n ∈ Z. +Thus, if (αn, νn) is an eigenpair of Rn, then (Enαn, inνn) will be an eigenpair of A∗. Therefore, it’s +remains to find the eigenvalues and eigenvectors of the matrix Rn for n ∈ Z. The characteristics equation +of Rn is +(2.10) +ν2 − (µ0in + 2¯u)ν + µ0¯uin + ¯u2 − b¯ρ = 0, +for all n ∈ Z. Therefore, the eigenvalues of the matrix Rn are +νn +1 := 1 +2 +� +µ0in + 2¯u + i +� +µ2 +0n2 − 4b¯ρ +� +, +νn +2 := 1 +2 +� +µ0in + 2¯u − i +� +µ2 +0n2 − 4b¯ρ +� +, +for all n ∈ Z. Note that, 0 and ¯u cannot be an eigenvalue of the matrix Rn for all n ∈ Z∗ and ¯u cannot +be an eigenvalue of Rn for all n ∈ Z, because b, ¯ρ, µ0, ¯u > 0. To find the eigenvectors of the matrix Rn, +we first consider the equation +Rnαh +n = νn +2 αh +n, +n ∈ Z, +where αh +n := (αn +1 , αn +2 )†, that is, +(¯u − νn +2 )αn +1 + ¯ραn +2 = 0, +(2.11) +bαn +1 + (µ0in + ¯u − νn +2 )αn +2 = 0, +(2.12) +for all n ∈ Z. One solution is given by +(2.13) +αh +n = +� +αn +1 +αn +2 +� +:= +� +¯ρ +νn +2 − ¯u +� +, +n ∈ Z. +We next consider the equation +Rnαp +n = νn +1 αp +n, +n ∈ Z, +9 + +where αp +n := (βn +1 , βn +2 )†, that is, +(¯u − νn +1 )βn +1 + ¯ρβn +2 = 0, +(2.14) +bβn +1 + (µ0in + ¯u − νn +1 )βn +2 = 0, +(2.15) +for all n ∈ Z. One solution is given by +(2.16) +αp +n = +� +βn +1 +βn +2 +� +:= +� +¯ρ +νn +1 −¯u +1 +� +, +n ∈ Z. +Thus, the eigenvectors of Rn corresponding to the eigenvalues νn +2 and νn +1 are respectively +αh +n = +� +αn +1 +αn +2 +� += +� +¯ρ +νn +2 − ¯u +� +, +αp +n = +� +βn +1 +βn +2 +� += +� +¯ρ +νn +1 −¯u +1 +� +, +n ∈ Z. +Hence, the eigenvalues of the operator A∗ are +νh +n := inνn +2 = 1 +2 +� +−µ0n2 + n +� +µ2 +0n2 − 4b¯ρ + 2¯uin +� +, νp +n := inνn +1 = 1 +2 +� +−µ0n2 − n +� +µ2 +0n2 − 4b¯ρ + 2¯uin +� +for n ∈ Z and the corresponding eigenfunctions are respectively +Φh +n := +� +ξh +n +ηh +n +� += Enαh +n = αh +neinx, +Φp +n := +� +ξp +n +ηp +n +� += Enαp +n = αp +neinx, +for all n ∈ Z and x ∈ (0, 2π). This completes the proof. +□ +Remark 2.7. Note that, for all |n| large, all the eigenvalues of A∗ are simple. There may be multiple +eigenvalues of A∗, depending on the constants ¯ρ, ¯u, µ0, b, but that would be only finitely many. Thus, +without loss of generality, we can assume that A∗ has simple eigenvalues. Indeed, for the case of finite +number of multiple eigenvalues, one can adapt a similar approach as in Section 4.2 of [8] (by considering +suitable generalized eigenfunctions) to prove the required observability inequality. One can also see [29, +Remarks, page 178] for a version of Ingham inequality in the case of repeated eigenvalues. +2.4. Observation Estimates. For any eigenvalue ν, let us denote the corresponding eigenfunction of +A∗ by Φν and let E(A∗) be the set of all eigenfunctions of A∗. We now define the observation operators +associated to the system (1.1) as follows: +B∗ +ρΦν := ¯uξ(2π) + ¯ρη(2π), +(2.17) +B∗ +uΦν := bξ(2π) + ¯uη(2π) + µ0ηx(2π), +(2.18) +for all Φν = (ξ, η, ζ) ∈ E(A∗). The following result proves that these observation terms are non-zero for +all Φ ∈ E(A∗) \ {Φ0}, and have positive lower bounds for all n ∈ Z∗. +Lemma 2.8. For all Φν ∈ E(A∗) \ {Φ0}, the observation operators satisfy B∗ +ρΦν ̸= 0 and B∗ +uΦν ̸= 0. +Moreover, we have the following estimates +��B∗ +ρΦh +n +�� ≥ C, +��B∗ +ρΦp +n +�� ≥ C, +(2.19) +��B∗ +uΦh +n +�� ≥ C +|n|, +|B∗ +uΦp +n| ≥ C |n| , +(2.20) +for some C > 0 and all n ∈ Z∗. +Proof. Note that +B∗ +ρΦh +n = ¯uξh +n(2π) + ¯ρηh +n(2π) = ¯uαn +1 + ¯ραn +2 = νn +2 αn +1 ̸= 0, +for all n ∈ Z∗, thanks to the equation (2.11). We similarly have from equation (2.14) +B∗ +ρΦp +n = ¯uξp +n(2π) + ¯ρηp +n(2π) = ¯uβn +1 + ¯ρβn +2 = νn +1 βn +1 ̸= 0, +for all n ∈ Z∗. The estimates on B∗ +ρΦh +n and B∗ +ρΦp +n are now follows directly from the above expressions. +We now compute +B∗ +uΦh +n = bξh +n(2π) + ¯uηh +n(2π) + µ0(ηh +n)x(2π) += bαn +1 + (¯u + µ0in)αn +2 = νn +2 αn +2 ̸= 0, +10 + +for all n ∈ Z∗, thanks to the equation (2.12). Since |αn +2 | ≥ +C +|n| and νn +2 is bounded for all n ∈ Z∗, the +estimate on B∗ +uΦh +n follows. For the last quantity, note that +B∗ +uΦp +n = bξp +n(2π) + ¯uηp +n(2π) + µ0(ηp +n)x(2π) += bβn +1 + (¯u + µ0in)βn +2 = νn +1 βn +2 ̸= 0, +for all n ∈ Z∗, thanks to the equation (2.15). The estimate on B∗ +uΦp +n is now follows directly as |νn +1 | ≥ C |n| +for all n ∈ Z∗. +□ +2.5. Observability Inequality. Since the eigenfunctions E(A∗)\{Φ0} form a Riesz basis in ( ˙L2(0, 2π))2, +therefore any (σT , vT ) ∈ ( ˙L2(0, 2π))2 can be written as +(σT , vT )† = +� +n∈Z∗ +� +ah +nΦh +n + ap +nΦp +n +� +, +for some (ah +n)n∈Z∗, (ap +n)n∈Z∗ ∈ ℓ2. Then the solution to the adjoint system (2.2) is +(σ(t, x), v(t, x))† = +� +n∈Z∗ +ah +neνh +n(T −t)Φh +n + +� +n∈Z∗ +ap +neνp +n(T −t)Φp +n, +for (t, x) ∈ (0, T ) × (0, 2π). Thus we get +σ(t, x) = ¯ρ +� +n∈Z∗ +ah +neνh +n(T −t)einx + +� +n∈Z∗ +ap +neνp +n(T −t) +¯ρ +νn +1 − ¯ueinx, +and +v(t, x) = +� +n∈Z∗ +ah +neνh +n(T −t)(νn +2 − ¯u)einx + +� +n∈Z∗ +ap +neνp +n(T −t)einx, +for all (t, x) ∈ (0, T ) × (0, 2π). To prove the observability inequality, we need an upper bound of the +norm of (σ(0), v(0))† and a lower bound estimate for the respective observation terms. We first estimate +the upper bounds of the norm of (σ(0), v(0))†. We have +��(σ(0), v(0))†��2 +( ˙L2(0,2π))2 +(2.21) +≤ C +� � +n∈Z∗ +��ah +n +��2 � +1 + |νn +2 − ¯u|2� +e2ℜ(νh +n)T ��einx��2 +˙L2(0,2π) + +� +n∈Z∗ +|ap +n|2 +� +1 +|νn +1 − ¯u|2 + 1 +� +e2ℜ(νp +n)T ��einx��2 +˙L2(0,2π) +� +≤ C +� � +n∈Z∗ +��ah +n +��2 + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T +� +, +since the sequences 1 + |νn +2 − ¯u|2 and 1 + +1 +|νn +1 −¯u| +2 are bounded for all n ∈ Z∗. We also have +��(σ(0), v(0))†��2 +˙H−s +per(0,2π)× ˙L2(0,2π) +(2.22) +≤ C +� � +n∈Z∗ +��ah +n +��2 � +1 + |νn +2 − ¯u|2� ��einx��2 +˙H−s +per(0,2π) + +� +n∈Z∗ +|ap +n|2 +� +1 +|νn +1 − ¯u|2 + 1 +� +e2ℜ(νp +n)T ��einx��2 +˙L2(0,2π) +� +≤ C +� � +n∈Z∗ +��ah +n +��2 +1 +|n|2s + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T +� +. +We now find the lower bounds of the respective observation terms and prove our main results for the +barotropic case. We use the Ingham-type inequality (Lemma 1.15) for the same. Note that, the eigen- +values (νh +n)n∈Z∗ satisfies hypotheses (H1)-(H2) with τ = ¯u, β = −ω0 and (νp +n)n∈Z∗ satisfies hypotheses +(P1)-(P4) with r = 2. +11 + +2.5.1. Proof of Theorem 1.1. Let T > 2π +¯u . The observability inequality is given by +(2.23) +� T +0 +|¯uσ(t, 2π) + ¯ρv(t, 2π)|2 dt ≥ C +��(σ(0), v(0))†��2 +( ˙L2(0,2π))2 , +for all (σT , vT )† ∈ D(A∗). We have the observation term +� T +0 +|σ(t, 2π) + v(t, 2π)|2 dt = +� T +0 +� � +n∈Z∗ +ah +nB∗ +ρΦh +neνh +n(T −t) + +� +n∈Z∗ +ap +nB∗ +ρΦp +neνp +n(T −t) +�2 +dt. +Using the combined parabolic-hyperbolic Ingham type inequality (Lemma 1.15) and the observation +estimates (2.19), we obtain +� T +0 +|σ(t, 2π) + v(t, 2π)|2 dt ≥ C +� � +n∈Z∗ +��ah +n +��2 ��B∗ +ρΦh +n +��2 e2ℜ(νh +n)T + +� +n∈Z∗ +|ap +n|2 ��B∗ +ρΦp +n +��2 e2ℜ(νp +n)T +� +≥ C +� � +n∈Z∗ +��ah +n +��2 + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T +� +This estimate together with the norm estimate (2.21), the observability inequality (2.23) is now follows +directly. This completes the proof. +2.5.2. Proof of Theorem 1.3. Let T > 2π +¯u . The observability inequality is given by +(2.24) +� T +0 +|bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π)|2 dt ≥ C +��(σ(0), v(0))†��2 +˙H−s +per(0,2π)× ˙L2(0,2π) , +for all (σT , vT )† ∈ D(A∗). We have +� T +0 +|bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π)|2 dt = +� T +0 +� � +n∈Z∗ +ah +kB∗ +uΦh +neνh +n(T −t) + +� +n∈Z∗ +ap +nB∗ +uΦp +neνp +n(T −t) +�2 +dt. +Using the combined parabolic-hyperbolic Ingham type inequality (Lemma 1.15), we obtain +� T +0 +|bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π)|2 dt +≥ C +� � +n∈Z∗ +��ah +n +��2 ��B∗ +uΦh +n +��2 e2ℜ(νh +n)T + +� +n∈Z∗ +|ap +n|2 |B∗ +uΦp +n|2 e2ℜ(νp +n)T +� +≥ C +� � +n∈Z∗ +��ah +n +��2 +1 +|n|2 + +� +n∈Z∗ +|ap +n|2 |n|2 e2ℜ(νp +n)T +� +, +thanks to the estimate (2.20). For s ≥ 1, we have +1 +|n|2 ≥ +1 +|n|2s for all n ∈ Z∗ and therefore +� T +0 +|bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π)|2 dt ≥ C +� � +n∈Z∗ +��ah +n +��2 +1 +|n|2s + +� +n∈Z∗ +|ap +n|2 |n|2 e2ℜ(νp +n)T +� +≥ C +��(σ(0), v(0))†�� ˙H−s +per(0,2π)× ˙L2(0,2π) . +This proves the observability inequality (2.24). +2.6. Lack of Null Controllability for Less Regular Initial States. +2.6.1. Proof of Proposition 1.4. For (σT , vT )† = Φh +n, the solution to the adjoint system (2.2) is +(σ(t, x), v(t, x))† = eνh +n(T −t)Φh +n(x), +for (t, x) ∈ (0, T ) × (0, 2π) and n ∈ Z∗. For all n ∈ Z∗, we have the following estimate +��Φh +n +�� ˙H−s +per(0,2π)× ˙L2(0,2π) ≥ C +|n|s , +and therefore +��(σ(0), v(0))†��2 +˙H−s +per× ˙L2 ≥ +C +|n|2s , +12 + +for all n ∈ Z∗. On the other hand, we have the upper bound of the observation term +� T +0 +|bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π)|2 dt ≤ +C +|n|2 , +for all n ∈ Z∗. Thus, if the observability inequality (2.24) holds, then we get +C +|n|2s ≤ +C +|n|2 =⇒ |n|2−2s ≤ C, +which is not possible since 0 ≤ s < 1. This completes the proof. +2.7. Lack of Controllability at Small Time. We prove that the system (1.5) is not null control- +lable when the time is small, that is, Proposition 1.8. We construct an approximate solution for the +corresponding transport equation. The idea of constructing an approximate solution for the transport +equation was addressed in [2], where the authors proved a lack of null controllability result at a small +time in the case of an interior control (acts in the transport equation). Very recently, in [6, Section 6], +this approach has been applied to a coupled transport-elliptic system in the case of a boundary control +(acts in density). We will follow mainly the proof given in [6] to prove our lack of null controllability +result when the time is small. +2.7.1. Proof of Proposition 1.2. Let 0 < T < 2π +¯u . Following the notations in the proof of Proposition +1.2, Consider the transport equation +(2.25) + + + + + + + + + +˜σt(t, x) + ¯u˜σx(t, x) − b¯ρ +µ0 +˜σ(t, x) = 0, +(t, x) ∈ (0, T ) × (0, 2π), +˜σ(t, 0) = ˜σ(t, 2π), +t ∈ (0, T ), +˜σ(T, x) = ˜σT (x), +x ∈ (0, 2π). +Since ¯uT < 2π, there exists a nontrivial function ˜σT ∈ C∞(0, 2π) with supp(˜σT ) ⊂ (¯uT, 2π) such that +supp(˜σ) ⊂ (0, T ) × (¯uT, 2π). Let N > 0 be a fixed integer. We define the polynomial +P N(x) := +N +� +l=−N +(x − l), +x ∈ (0, 2π) +and the function +˜σN +T := P N +� +−i d +dx +� +˜σT . +We write the terminal state as +˜σT (x) := +� +n∈Z +aneinx, +x ∈ (0, 2π). +Then, the solution to the transport equation (2.25) is +˜σN +T (x) = +� +n∈Z +an +N +� +l=−N +� +−i d +dx − l +� +einx = +� +n∈Z +an +N +� +l=−N +(n − l) einx = +� +n∈Z +anP N(n)einx, +for (t, x) ∈ (0, T ) × (0, 2π). Note that P N(n) = 0 for all |n| ≤ N and therefore +˜σN +T (x) = +� +|n|≥N+1 +anP N(n)einx. +With this ˜σN +T , let us now consider the following system +(2.26) + + + + + + + + + +˜σt(t, x) + ¯u˜σx(t, x) − b¯ρ +µ0 +˜σ(t, x) = 0, +(t, x) ∈ (0, T ) × (0, 2π), +˜σ(t, 0) = ˜σ(t, 2π), +t ∈ (0, T ), +˜σ(T, x) = ˜σN +T (x), +x ∈ (0, 2π). +13 + +Since supp(˜σN +T ) ⊂ supp(˜σT ) ⊂ (T, 2π +¯u ), the solution satisfies ˜σN(t, 0) = ˜σN(t, 2π) = 0. We now consider +the following adjoint system +(2.27) + + + + + + + + + + + + + + + +σt(t, x) + ¯uσx(t, x) + ¯ρvx(t, x) = 0, +(t, x) ∈ (0, T ) × (0, 2π), +vt(t, x) − µ0vxx(t, x) + ¯uvx(t, x) + bσx(t, x) = 0, +(t, x) ∈ (0, T ) × (0, 2π), +σ(t, 0) = σ(t, 2π), +t ∈ (0, T ), +v(t, 0) = v(t, 2π), +vx(t, 0) = vx(t, 2π), +t ∈ (0, T ), +σ(T, x) = ˜σN +T (x), +v(T, x) = vN +T (x), +x ∈ (0, 2π), +where we choose vN +T such that +(˜σN +T , vN +T )† = +� +|n|≥N+1 +˜ah +nΦh +n +with ˜ah +n¯ρ := anP N(n) for all |n| ≥ N + 1. We write the solutions to the systems (2.26) and (2.27) +respectively as +˜σN(t, x) = +� +|n|≥N+1 +anP N(n)e(¯uin− b¯ +ρ +µ0 )(T −t)einx, +(2.28) +σN(t, x) = +� +|n|≥N+1 +anP N(n)eνh +n(T −t)einx, +(2.29) +vN(t, x) = +� +|n|≥N+1 +anP N(n)νn +2 − ¯u +¯ρ +eνh +n(T −t)einx, +(2.30) +for (t, x) ∈ [0, T ]×[0, 2π]. We prove that the solution component σN of (2.27) approximates the solution +˜σN of (2.26). Indeed, +��σN(·, x) − ˜σN(·, x) +��2 +L2(0,T ) +≤ +� +|n|≥N+1 +|an|2 ��P N(n) +��2 +����eνh +n(T −t) − e +� +¯uin− b¯ +ρ +µ0 +� +(T −t) +���� +2 +L2(0,T ) +≤ +� +|n|≥N+1 +|an|2 ��P N(n) +��2 +������ +e +− µ0n +2 +� +n− +� +n2− 4b¯ +ρ +µ2 +0 +� +(T −t) +− e− b¯ +ρ +µ0 (T −t) +������ +2 +L2(0,T ) +≤ +� +|n|≥N+1 +1 +|n|2 |an|2 ��P N(n) +��2 , +for all x ∈ [0, 2π] and therefore +��σN(·, x) − ˜σN(·, x) +��2 +L2(0,T ) ≤ +C +|N|2 +� +|n|≥N+1 +|an|2 ��P N(n) +��2 , +for all x ∈ [0, 2π]. We also find L2- estimate of the solution component vN. We have for all x ∈ [0, 2π] +��vN(·, x) +��2 +L2(0,T ) ≤ +� +|n|≥N+1 +|an|2 ��P N(n) +��2 |νn +2 − ¯u|2 +¯ρ2 +���eνh +n(T −t)��� +2 +L2(0,T ) +≤ C +� +|n|≥N+1 +|an|2 ��P N(n) +��2 +1 +|n|2 +≤ +C +|N|2 +� +|n|≥N+1 +|an|2 ��P N(n) +��2 . +Let us now suppose that the following observability inequality holds +� T +0 +��¯uσN(t, 2π) + ¯ρvN(t, 2π) +��2 dt ≥ C +��(σN(0), vN(0)) +��2 +(L2(0,2π))2 . +14 + +Then, we have +��(σN(0), vN(0)) +��2 +(L2(0,2π))2 ≤ C +� T +0 +��¯uσN(t, 2π) + ¯ρvN(t, 2π) +��2 dt +≤ C +� T +0 +� +¯u2 ��(σN(t, 2π) − ˜σN(t, 2π)) +��2 + ¯u2 ��˜σN(t, 2π) +��2 + ¯ρ2 ��vN(t, 2π) +��2� +dt +≤ C +N 2 +� +|n|≥N+1 +|an|2 ��P N(n) +��2 , +as we have ˜σN(t, 0) = 0 = ˜σN(t, 2π) for all t ∈ (0, T ). Thus we get +��σN(0) +��2 +L2(0,2π) ≤ +��(σN(0), vN(0))†��2 +(L2(0,2π))2 ≤ C +N 2 +� +|n|≥N+1 +|an|2 ��P N(n) +��2 ≤ C +N 2 +��σN(0) +��2 +L2(0,2π) , +since ℜ(νh +n) is bounded. Therefore, 1 ≤ +C +N 2 for all N and hence the above inequality cannot hold. This +is a contradiction and the proof is complete. +3. Controllability of Linearized Compressible Navier-Stokes System (Non-barotropic) +We denote the positive constants +λ0 := λ + 2µ +¯ρ +, +κ0 := +κ +¯ρcν +, +and from now on-wards, we denote cν by c0 to distinguish it from the eigenvalue ν. +3.1. Functional Setting. We define the inner product in the space (L2(0, 2π))3 as follows +� + + +f1 +g1 +h1 + + + , + + + +f2 +g2 +h2 + + + +� +:= R¯θ +� 2π +0 +f1(x)f2(x)dx + ¯ρ2 +� 2π +0 +g1(x)g2(x)dx + ¯ρ2c0 +¯θ +� 2π +0 +h1(x)h2(x)dx, +for fi, gi, hi ∈ L2(0, 2π), i = 1, 2, 3. We write the system (1.5) in abstract differential equation +(3.1) +U ′(t) = AU(t), +U(0) = U0, +t ∈ (0, T ), +where U := (ρ, u, θ)†, U0 := (ρ0, u0, θ0)† and the operator A is given by +A := + + + + +−¯u∂x +−¯ρ∂x +0 +− R¯θ +¯ρ ∂x +λ0∂xx − ¯u∂x +−R∂x +0 +− R¯θ +c0 ∂x +κ0∂xx − ¯u∂x + + + + +with the domain +(3.2) +D(A) := H1 +per(0, 2π) × (H2 +per(0, 2π))2. +The adjoint of the operator A∗ is given by +A∗ := + + + + +¯u∂x +¯ρ∂x +0 +R¯θ +¯ρ ∂x +λ0∂xx + ¯u∂x +R∂x +0 +R¯θ +c0 ∂x +κ0∂xx + ¯u∂x + + + + +with the same domain D(A∗) = D(A). The adjoint system is given by +(3.3) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +−σt − ¯uσx − ¯ρvx = 0, in (0, T ) × (0, 2π), +−vt − λ0vxx − R¯θ +¯ρ σx − ¯uvx − Rϕx = 0, in (0, T ) × (0, 2π), +−ϕt − κ0ϕxx − R¯θ +c0 +vx − ¯uϕx = 0, in (0, T ) × (0, 2π), +σ(t, 0) = σ(t, 2π), +v(t, 0) = v(t, 2π), +vx(t, 0) = vx(t, 2π), +t ∈ (0, T ), +ϕ(t, 0) = ϕ(t, 2π), +ϕx(t, 0) = ϕx(t, 2π), +t ∈ (0, T ), +σ(T, x) = σT (x), +v(T, x) = vT (x), +ϕ(T, x) = ϕT (x), +x ∈ (0, 2π), +15 + +with (σT , vT , ϕT ) is a terminal state. We also write the following system with source terms f, g, and h. +(3.4) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +−σt − ¯uσx − ¯ρvx = f, in (0, T ) × (0, 2π), +−vt − λ0vxx − R¯θ +¯ρ σx − ¯uvx − Rϕx = g, in (0, T ) × (0, 2π), +−ϕt − κ0ϕxx − R¯θ +c0 +vx − ¯uϕx = h, in (0, T ) × (0, 2π), +σ(t, 0) = σ(t, 2π), +v(t, 0) = v(t, 2π), +vx(t, 0) = vx(t, 2π), +t ∈ (0, T ), +ϕ(t, 0) = ϕ(t, 2π), +ϕx(t, 0) = ϕx(t, 2π), +t ∈ (0, T ), +σ(T, x) = σT (x), +v(T, x) = vT (x), +ϕ(T, x) = ϕT (x), +x ∈ (0, 2π). +3.2. Well-Posedness of the System. +Lemma 3.1. The operator A generates a C0-semigroup of contractions on (L2(0, 2π))3. Moreover, for +every U0 ∈ (L2(0, 2π))3 the system (2.1) admits a unique solution U in C0([0, T ]; (L2(0, 2π))3) and +∥U(t)∥(L2(0,2π))3 ≤ C ∥U0∥(L2(0,2π))3 +for all t ≥ 0. +Lemma 3.2 ( [31]). For any f, g, h ∈ L2(0, T ; (L2(0, 2π))3), the adjoint system (3.4) (with (σT , vT , ϕT ) = +(0, 0, 0)) has a unique solution (σ, v, ϕ) in the space +C0([0, T ]; L2(0, 2π)) × [C0([0, T ]; L2(0, 2π)) ∩ L2(0, T ; H1 +per(0, 2π))]2. +Definition 3.3. We give the following definitions of solutions based on the act of the controls. +• For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control p ∈ L2(0, T ), we +say (ρ, u, θ) ∈ (L2(0, 2π))3 is a solution to the system (1.5)-(1.6)-(1.7) if for any (f, g, h) ∈ +L2(0, T ; (L2(0, 2π))3), the following identity holds. +� T +0 +� 1 +0 +ρ(t, x)f(t, x)dxdt + +� T +0 +� 1 +0 +u(t, x)g(t, x)dxdt + +� T +0 +� 1 +0 +θ(t, x)h(t, x)dxdt += +� 1 +0 +ρ0(x)σ(0, x)dx + +� 1 +0 +u0(x)v(0, x)dx + +� 1 +0 +θ0(x)ϕ(0, x)dx + R¯θ +� T +0 +� +¯uσ(t, 2π) + ¯ρv(t, 2π) +� +p(t)dt, +where (σ, v, ϕ) is the solution to the adjoint system (3.4) with (σT , vT , ϕT ) = (0, 0, 0). +• For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control q ∈ L2(0, T ), we +say (ρ, u, θ) ∈ L2(0, T ; (H1(0, 2π))′) × L2(0, T ; (L2(0, 2π))2) is a solution to the system (1.5)- +(1.6)-(1.8) if for any (f, g, h) ∈ L2(0, T ; H1(0, 2π))×L2(0, T ; (L2(0, 2π))2), the following identity +holds. +� T +0 +⟨ρ(t, ·), f(t, ·)⟩(H1(0,2π))′,H1(0,2π) dxdt + +� T +0 +� 1 +0 +u(t, x)g(t, x)dxdt + +� T +0 +� 1 +0 +θ(t, x)h(t, x)dxdt += +� 1 +0 +ρ0(x)σ(0, x)dx + +� 1 +0 +u0(x)v(0, x)dx + +� 1 +0 +θ0(x)ϕ(0, x)dx ++ +� T +0 +� +R¯θ¯ρσ(t, 2π) + λ0¯ρ2vx(t, 2π) + ¯ρ2¯uv(t, 2π) + R¯ρ2ϕ(t, 2π) +� +q(t)dt, +where (σ, v, ϕ) is the solution to the adjoint system (3.4) with (σT , vT , ϕT ) = (0, 0, 0). +• For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control r ∈ L2(0, T ), we +say (ρ, u, θ) ∈ L2(0, T ; (H1(0, 2π))′) × L2(0, T ; (L2(0, 2π))2) is a solution to the system (1.5)- +(1.6)-(1.8) if for any (f, g, h) ∈ L2(0, T ; H1(0, 2π))×L2(0, T ; (L2(0, 2π))2), the following identity +holds. +� T +0 +⟨ρ(t, ·), f(t, ·)⟩(H1(0,2π))′,H1(0,2π) dxdt + +� T +0 +� 1 +0 +u(t, x)g(t, x)dxdt + +� T +0 +� 1 +0 +θ(t, x)h(t, x)dxdt += +� 1 +0 +ρ0(x)σ(0, x)dx + +� 1 +0 +u0(x)v(0, x)dx + +� 1 +0 +θ0(x)ϕ(0, x)dx ++ +� T +0 +� +R¯ρ2v(t, 2π) + ¯ρ2c0¯u +¯θ +ϕ(t, 2π) + ¯ρ2c0κ0 +¯θ +ϕx(t, 2π) +� +r(t)dt, +where (σ, v, ϕ) is the solution to the adjoint system (3.4) with (σT , vT , ϕT ) = (0, 0, 0). +16 + +Proposition 3.4. For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control p ∈ +L2(0, T ), the system (1.5)-(1.6)-(1.7) admits a unique solution (ρ, u, θ) in the space +C0([0, T ]; L2(0, 2π)) × [C0([0, T ]; L2(0, 2π)) ∩ L2(0, T ; H1 +per(0, 2π))]2. +Proposition 3.5. For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control q ∈ +L2(0, T ), the system (1.5)-(1.6)-(1.8) admits a unique solution (ρ, u, θ) in the space +L2(0, T ; (H1 +per(0, 2π))′) × L2(0, T ; (L2(0, 2π))2). +Moreover, the operator q �→ (ρ, u, θ) is linear and continuous from L2(0, T ) into L2(0, T ; (H1 +per(0, 2π))′)× +L2(0, T ; (L2(0, 2π))2). +Proposition 3.6. For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control r ∈ +L2(0, T ), the system (1.5)-(1.6)-(1.9) admits a unique solution (ρ, u, θ) in the space +L2(0, T ; (H1 +per(0, 2π))′) × L2(0, T ; (L2(0, 2π))2). +Moreover, the operator r �→ (ρ, u, θ) is linear and continuous from L2(0, T ) into L2(0, T ; (H1 +per(0, 2π))′)× +L2(0, T ; (L2(0, 2π))2). +The proofs of Proposition 3.4, Proposition 3.5 and Proposition 3.6 can be done in a similar way +( [3, Theorem 2.4] and [9, Theorem 3.2]) like the barotropic case and so we skip the proofs. +3.3. Spectral Analysis of A∗. We first write the following lemma. +Lemma 3.7. The following statements hold. +(1) ker(A∗) = span + + + + + + + + +−1 +1 +1 + + + , + + + +1 +−1 +1 + + + , + + + +1 +1 +−1 + + + + + + + + +. +(2) sup {ℜ(ν) : ν ∈ σ(A∗), ν ̸= 0} < 0. +(3) The spectrum of A∗ consists of the eigenvalue 0 and three branches of complex eigenvalues +{νh +n, νp +n, νp1 +n }n∈Z∗ with the asymptotic expressions given as +νh +n = ¯uin − ¯ω + O(|n|−2), +(3.5) +νp1 +n = −λ0n2 + ¯uin + O(1), +(3.6) +νp2 +n = −κ0n2 + ¯uin + O(1), +(3.7) +for all |n| large, where ¯ω = R¯θ +λ0 . +(4) The eigenfunctions of A∗ corresponding to νh +n and νp1 +n , νp2 +n are respectively +(3.8) +Φh +n = + + + +ξh +n +ηh +n +ζh +n + + + = + + + +αn +1 +αn +2 +αn +3 + + + einx, +Φp1 +n = + + + +ξp1 +n +ηp1 +n +ζp1 +n + + + = + + + +βn +1 +βn +2 +βn +3 + + + einx, +Φp2 +n = + + + +ξp2 +n +ηp2 +n +ζp2 +n + + + = + + + +γn +1 +γn +2 +γn +3 + + + einx, +for all n ∈ Z∗, with the constants αn +i , βn +i and γn +i (i = 1, 2, 3) given as +(3.9) + + + + + + + +αn +1 = R¯ρ, +αn +2 = −R(¯u − νn +3 ), +αn +3 = (λ0in + ¯u − νn +3 )(¯u − νn +3 ) − R¯θ +βn +1 = − +R¯ρ +¯u−νn +1 , +βn +2 = R, +βn +3 = +1 +¯u−νn +1 [R¯θ − (λ0in + ¯u − νn +1 )(¯u − νn +1 )] +γn +1 = (λ0in + ¯u − νn +2 )(κ0in + ¯u − νn +2 ) − R2 ¯θ +c0 , +γn +2 = − R¯θ +¯ρ (κ0in + ¯u − νn +2 ), +γn +3 = R2 ¯θ2 +¯ρc0 , +for all n ∈ Z∗, where νn +1 , νn +2 and νn +3 are roots of the cubic polynomial +ν3 − [(λ0 + κ0)in + 3¯u]ν2 − [λ0κ0n2 − 2(λ0 + κ0)¯uin − 3¯u2 + R2¯θ +c0 ++ R¯θ]ν +(3.10) ++λ0κ0¯un2 − (λ0 + κ0)¯u2in − ¯u3 + R2¯θ +c0 +¯u + R¯θκ0in + R¯θ¯u = 0, +for all n ∈ Z∗. +(5) The eigenfunctions {Φh +n, Φp1 +n , Φp2 +n +: n ∈ Z∗} of A∗ forms a Riesz basis of ( ˙L2(0, 2π))3. +17 + +Remark 3.8. We have the asymptotic expressions of αi, βi, γi, i = 1, 2, 3 as follows. + + + + + + + +αn +1 ∼+∞ 1, +αn +2 ∼+∞ +1 +|n|, +αn +3 ∼+∞ +1 +|n|, +βn +1 ∼+∞ +1 +|n|, +βn +2 ∼+∞ 1, +βn +3 ∼+∞ +1 +|n|, +γn +1 ∼+∞ +1 +|n|, +γn +2 ∼+∞ +1 +|n|, +γn +3 ∼+∞ 1. +Proof. We will prove only the parts (2), (3) and (4). +Let Φ = (ξ, η, ζ)† be the eigenfunction of A∗ corresponding to the eigenvalue ν ̸= 0. Then, we have +� +A∗ + + + +ξ +η +ζ + + + , + + + +ξ +η +ζ + + + +� += +� +ν + + + +ξ +η +ζ + + + , + + + +ξ +η +ζ + + + +� +, +that is, +R¯θ¯u +� 2π +0 +ξ(x)ξx(x)dx + R¯θ¯ρ +� 2π +0 +ξ(x)ηx(x)dx + λ0¯ρ2 +� 2π +0 +η(x)ηxx(x)dx + ¯ρ2¯u +� 2π +0 +η(x)ηx(x)dx ++R¯θ¯ρ +� 2π +0 +ξx(x)η(x)dx + R¯ρ2 +� 2π +0 +η(x)ζx(x)dx + ¯ρ2c0 +¯θ +κ0 +� 2π +0 +η(x)ζx(x)dx + ¯ρ2c0 +¯θ +¯u +� 2π +0 +η(x)ζx(x)dx ++R¯ρ2 +� 2π +0 +ηx(x)ζ(x)dx + b¯ρ +� 2π +0 +ξx(x)η(x)dx = ν +� 2π +0 +|ξ(x)|2 dx + ν +� 2π +0 +|η(x)|2 dx + ν +� 2π +0 +|ζ(x)|2 dx. +An integration by parts yields +ℜ(ν) = − +∥ηx∥2 +L2(0,2π) + ∥ζx∥2 +L2(0,2π) +∥ξ∥2 +L2(0,2π) + ∥η∥2 +L2(0,2π) + ∥ζ∥2 +L2(0,2π) +< 0, +which proves part (2). +We denote +ϕn(x) := einx, +n ∈ Z. +Then the set + + + + + + + + +ϕn +0 +0 + + + , + + + +0 +ϕn +0 + + + , + + + +0 +0 +ϕn + + + + + + + + +forms an orthogonal basis of (L2(0, 2π))3. Let us define +En := + + + +ϕn +0 +0 +0 +ϕn +0 +0 +0 +ϕn + + + , +and Φn := (ξn, ηn, ζn)†, +for all n ∈ Z. Then, we have the following relation +(3.11) +A∗EnΦn = inEnRnΦn, +n ∈ Z, +where +(3.12) +Rn := + + + + +¯u +¯ρ +0 +R¯θ +¯ρ +λ0in + ¯u +R +0 +R¯θ +c0 +κ0in + ¯u + + + + , +n ∈ Z. +Thus, if (αn, νn) is an eigenpair of Rn, then (Enαn, inνn) will be an eigenpair of A∗. Therefore, it’s +remains to find the eigenvalues and eigenvectors of the matrix Rn for n ∈ Z. The characteristics equation +of Rn is +ν3 − [(λ0 + κ0)in + 3¯u]ν2 − [λ0κ0n2 − 2(λ0 + κ0)¯uin − 3¯u2 + R2¯θ +c0 ++ R¯θ]ν +(3.13) ++λ0κ0¯un2 − (λ0 + κ0)¯u2in − ¯u3 + R2¯θ +c0 +¯u + R¯θκ0in + R¯θ¯u = 0, +for all n ∈ Z. +Claim 1. 0 cannot be a root of the polynomial (3.13) for any n ∈ Z. +18 + +Proof of Claim 1. Let ν = 0 be a root of (3.13). Then, there exists some n ∈ Z such that +λ0κ0¯un2 − (λ0 + κ0)¯u2in − ¯u3 + R2¯θ +c0 +¯u + R¯θκ0in + R¯θ¯u = 0, +which implies +λ0κ0n2 − ¯u2 + R2¯θ +c0 ++ R¯θ = 0, and (λ0 + κ0)¯u2 = R¯θκ0. +We then have +λ0κ0n2 = ¯u2 − R2¯θ +c0 +− R¯θ = ¯u2 − R2¯θ +c0 +− +�λ0 +κ0 ++ 1 +� +¯u2 = −R2¯θ +c0 +− λ0 +κ0 +¯u2 < 0, +a contradiction. This proves our first claim. +Claim 2. ¯u cannot be a root of the polynomial (3.13) for any n ∈ Z∗. +Proof of Claim 2. Observe that ¯u is a root of (3.13) if and only if R¯θκ0in = 0. Thus, for all n ∈ Z∗, ¯u +cannot be a root of (3.13), which proves our second claim. +For fixed n ∈ Z∗, let νn +1 , νn +2 and νn +3 be the roots of this cubic polynomial. The relation between roots +and coefficients are + + + + + + + +νn +1 + νn +2 + νn +3 = (λ0 + κ0)in + 3¯u +νn +1 νn +2 + νn +2 νn +3 + νn +3 νn +1 = −[λ0κ0n2 − 2(λ0 + κ0)¯uin − 3¯u2 + R2 ¯θ +c0 + R¯θ] +νn +1 νn +2 νn +3 = −[λ0κ0¯un2 − (λ0 + κ0)¯u2in − ¯u3 + R2 ¯θ +c0 ¯u + R¯θκ0in + R¯θ¯u]. +We will find the asymptotic expressions of roots of the cubic polynomial (3.13) for large values of |n|. +The first relation between roots and coefficients tells us that ¯u is present in at least one of the roots of +the cubic polynomial (3.13). Thus, using the transformation +(3.14) +ν = ¯u + ǫn, +it is enough to find the roots of the transformed cubic equation in ǫn +(3.15) +ǫ3 +n − (λ0 + κ0)inǫ2 +n − +� +λ0κ0n2 + R2¯θ +c0 ++ R¯θ +� +ǫn + R¯θκ0in = 0 +for all n ∈ Z∗. We use the transformation ǫn = in˜ǫn, for n ∈ Z∗, to simplify the above equation and we +get +(3.16) +˜ǫ3 +n − (λ0 + κ0)˜ǫ2 +n + +� +λ0k0 + 1 +n2 +�R2¯θ +c0 ++ R¯θ +�� +˜ǫn − R¯θκ0 +n2 += 0 +for all n ∈ Z∗. We now use Rouche’s Theorem to find the roots of this polynomial. Let us first state the +Rouch´e’s Theorem, the proof of which can be found in [11]. +Theorem 3.9 (Rouch´e’s Theorem). Let Ω ⊂ C be an open connected set and f, g : Ω → C be holomorphic +on Ω. Suppose there exists a ∈ Ω and R > 0 such that B(a, R) ⊂ Ω and +|g(z) − f(z)| < |g(z)| for all z ∈ ∂B(a, R), +then f and g have the same number of zeros inside B(a, R). +We define the functions f, g : C → C by +f(z) := z3 − (λ0 + κ0)z2 + +� +λ0k0 + 1 +n2 +�R2¯θ +c0 ++ R¯θ +�� +z − R¯θκ0 +n2 +and +g(z) := z3 − (λ0 + κ0)z2 + λ0k0z +for all z ∈ C and n ∈ Z∗. The roots of g are 0, λ0 and κ0. We now choose R := 1 +2 min{λ0, κ0, |λ0 − κ0|}. +Then, we have the following estimates +|g(z) − f(z)| = +���� +1 +n2 +�R2¯θ +c0 ++ R¯θ +� +z − R¯θκ0 +n2 +���� ≤ C +n2 (|z| + 1) + + + + + + + += C +n2 (R + 1), +for all z ∈ ∂B(0, R), +≤ C +n2 (λ0 + R + 1), +for all z ∈ ∂B(λ0, R), +≤ C +n2 (κ0 + R + 1), +for all z ∈ ∂B(κ0, R), +19 + +for all n ∈ Z∗. On the other hand, the choice of R tells us that the function g does not have any root +on the sets ∂B(0, R), ∂B(λ0, R) and ∂B(κ0, R). Therefore, inf|z|=R |g(z)| > 0,inf|z−λ0|=R |g(z)| > 0 and +inf|z−κ0|=R |g(z)| > 0. This implies, for |n| large enough, we have +|g(z) − f(z)| < |g(z)| for all z ∈ ∂B(0, R) ∪ ∂B(λ0, R) ∪ ∂B(κ0, R). +Thus, the function f has a unique root inside each of the sets B(0, R), B(λ0, R) and B(κ0, R). We denote +these roots by zn +1 , zn +2 and zn +3 respectively. We now find asymptotic expressions of these roots. +Asymptotic expression of zn +1 . Since zn +1 ∈ B(0, R), we have +zn +1 = +1 +(zn +1 − λ0)(zn +1 − κ0) +�R¯θκ0 +n2 +− 1 +n2 +�R2¯θ +c0 ++ R¯θ +� +zn +1 +� +and therefore +|zn +1 | ≤ +1 +|zn +1 − λ0| |zn +1 − κ0| +����� +R¯θκ0 +n2 +���� + +���� +1 +n2 +�R2¯θ +c0 ++ R¯θ +� +zn +1 +���� +� +≤ +C +|n|2 +for |n| large enough. To find the asymptotic expression of zn +1 , we write f(zn +1 ) = 0 in the following way +zn +1 = R¯θκ0 +n2 +� +λ0κ0 − (λ0 + κ0)zn +1 + (zn +1 )2 + 1 +n2 +�R¯θ +c0 ++ R¯θ +��−1 += R¯θκ0 +n2 +1 +λ0κ0 +� +1 − (λ0 + κ0) +λ0κ0 +zn +1 + +1 +λ0κ0n2 +�R¯θ +c0 ++ R¯θ +� ++ O(|n|−4) +�−1 += ¯ω +n2 +� +1 + (λ0 + κ0) +λ0κ0 +zn +1 − +1 +λ0κ0n2 +�R¯θ +c0 ++ R¯θ +� ++ O(|n|−4) +� += ¯ω +n2 + O(|n|−4), +since |zn +1 | ≤ C +n2 for all |n| large. +Asymptotic expression of zn +2 . Since zn +2 ∈ B(λ0, R), we have +zn +2 − λ0 = +1 +zn +2 (zn +2 − κ0) +�R¯θκ0 +n2 +− 1 +n2 +�R2¯θ +c0 ++ R¯θ +� +zn +1 +� +and therefore +|zn +2 − λ0| ≤ +1 +|zn +2 | |zn +2 − κ0| +����� +R¯θκ0 +n2 +���� + +���� +1 +n2 +�R2¯θ +c0 ++ R¯θ +� +zn +1 +���� +� +≤ +C +|n|2 +for |n| large enough. Thus, we can write +zn +2 = λ0 + O(|n|−2) +for all |n| large. +Asymptotic expression of zn +3 . Following the similar approach as mentioned above, we can get +zn +3 = κ0 + O(|n|−2) +for all |n| large. +Combining all of the above, we obtain the asymptotic expressions of the roots of (3.15) as +ǫn +1 := λ0in + O(|n|−1), +ǫn +2 := κ0in + O(|n|−1), +ǫn +3 := − ¯ω +in + O(|n|−3) +for all |n| large. Therefore, eigenvalues of the matrix Rn are νn +1 , νn +2 and νn +3 with the asymptotic expressions +νn +1 = λ0in + ¯u + O(|n|−1), +(3.17) +νn +2 = κ0in + ¯u + O(|n|−1), +(3.18) +νn +3 = ¯u − ¯ω +in + O(|n|−3), +(3.19) +for all |n| large. +To find the eigenvectors of the matrix Rn, we now consider the equation +Rnαn = νn +3 αn, +n ∈ Z∗, +20 + +where αn = (αn +1 , αn +2, αn +3 )†, that is, +(¯u − νn +3 )αn +1 + ¯ραn +2 = 0, +(3.20) +R¯θ +¯ρ αn +1 + (λ0in + ¯u − νn +3 )αn +2 + Rαn +3 = 0, +(3.21) +R¯θ +c0 +αn +2 + (κ0in + ¯u − νn +3 )αn +3 = 0, +(3.22) +for all n ∈ Z∗. One solution is given by +αn +1 = R¯ρ, +αn +2 = −R(¯u − νn +3 ), +αn +3 = (λ0in + ¯u − νn +3 )(¯u − νn +3 ) − R¯θ, +n ∈ Z∗. +We next consider the equation +Rnβn = νn +1 βn, +n ∈ Z∗, +where βn = (βn +1 , βn +2 , βn +3 )†, that is, +(¯u − νn +1 )βn +1 + ¯ρβn +2 = 0, +(3.23) +R¯θ +¯ρ βn +1 + (λ0in + ¯u − νn +1 )βn +2 + Rβn +3 = 0, +(3.24) +R¯θ +c0 +βn +2 + (κ0in + ¯u − νn +1 )βn +3 = 0, +(3.25) +for all n ∈ Z∗. One solution is given by +βn +1 = − +R¯ρ +¯u − νn +1 +, +βn +2 = R, +βn +3 = +1 +¯u − νn +1 +[R¯θ − (λ0in + ¯u − νn +1 )(¯u − νn +1 )], +n ∈ Z∗. +We finally consider the equation +Rnγn = νn +2 γn, +n ∈ Z∗, +where γn = (γn +1 , γn +2 , γn +3 )†, that is, +(¯u − νn +2 )γn +1 + ¯ργn +2 = 0, +(3.26) +R¯θ +¯ρ γn +1 + (λ0in + ¯u − νn +2 )γn +2 + Rγn +3 = 0, +(3.27) +R¯θ +c0 +γn +2 + (κ0in + ¯u − νn +2 )γn +3 = 0, +(3.28) +for all n ∈ Z∗. One solution is given by +γn +1 = (λ0in + ¯u − νn +2 )(κ0in + ¯u − νn +2 ) − R2¯θ +c0 +, +γn +2 = −R¯θ +¯ρ (κ0in + ¯u − νn +2 ), +γn +3 = R2¯θ2 +¯ρc0 +, +n ∈ Z∗. +Therefore, the eigenvectors of Rn corresponding to the eigenvalues νn +3 , νn +1 and νn +2 are respectively αn, βn +and γn, where +αn = + + + +αn +1 +αn +2 +αn +3 + + + , +βn = + + + +βn +1 +βn +2 +βn +3 + + + , +γn = + + + +γn +1 +γn +2 +γn +3 + + + , +for all n ∈ Z∗. Hence, the eigenvalues of the operator A∗ are νh +n := inν3 +n, νp1 +n := inν2 +n and νp2 +n := inν1 +n +for all n ∈ Z∗ with the asymptotic expressions +νh +n = ¯uin − ¯ω + O(|n|−1), +νp1 +n = −λ0n2 + ¯uin + O(1), +νp2 +n = −κ0n2 + ¯uin + O(1), +for |n| large enough and the corresponding eigenfunctions are +Φh +n(x) := En(x)αn = αneinx, +Φp1 +n (x) := En(x)βn = βneinx, +Φp2 +n (x) := En(x)γn = γneinx, +for all n ∈ Z∗ and x ∈ (0, 2π). This completes the proof. +□ +Remark 3.10. Note that, all the eigenvalues of A∗ are simple at least for |n| large enough. Depending +on the constants ¯ρ, ¯u, ¯θ, λ0, κ0, R and c0, there may be multiple eigenvalues, but that would be only finitely +many of them. Therefore, in this case also, we assume that all the eigenvalues of A∗ are simple. +21 + +3.4. Observation Estimates. For any eigenvalue ν, let us denote the corresponding eigenfunction of +A∗ by Φν and let E(A∗) be the set of all eigenfunctions of A∗. We define the observation operator +corresponding to the system (1.5) as follows: +B∗ +ρΦ := R¯θ¯uξ(2π) + R¯θ¯ρη(2π), +(3.29) +B∗ +uΦ := R¯ρ¯θξ(2π) + ¯ρ2¯uη(2π) + λ0¯ρ2ηx(2π) + R¯ρ2ζ(2π), +(3.30) +B∗ +θΦ := R¯ρ2η(2π) + ¯ρ2c0¯u +¯θ +ζ(2π) + ¯ρ2c0κ0 +¯θ +ζx(2π), +(3.31) +for all Φ = (ξ, η, ζ)† ∈ E(A∗). Then, we have the following estimates: +Lemma 3.11. For all Φ ∈ E(A∗) \ {Φ0}, the observation operators satisfies B∗ +ρΦ ̸= 0 and B∗ +uΦ ̸= 0. +Moreover, we have the following estimates +��B∗ +ρΦh +n +�� ≥ C, +��B∗ +ρΦp1 +n +�� ≥ C, +��B∗ +ρΦp2 +n +�� ≥ C, +(3.32) +��B∗ +uΦh +n +�� ≥ C +|n|, +|B∗ +uΦp1 +n | ≥ C |n| , |B∗ +uΦp2 +n | ≥ C, +(3.33) +��B∗ +θΦh +n +�� ≥ C +|n|, +|B∗ +uΦp2 +n | ≥ C +��B∗ +ρΦp2 +n +�� ≥ C |n| , +(3.34) +for some C > 0 and all n ∈ Z∗. +Proof. Recall from the proof of Lemma 3.7 that ν1, ν2, ν3 ̸= 0 (Claim 1). We consider the following cases: +Case 1. (Control acts in density) We have +B∗ +ρΦh +n = R¯θ¯uξh +n(2π) + R¯ρ¯θηh +n(2π) = R¯θ(¯uαn +1 + ¯ραn +2) = R¯θνn +3 αn +1 ̸= 0, +for all n ∈ Z∗, thanks to the eigenvector equation (3.20). We similarly have +B∗ +ρΦp1 +n = R¯θ¯uξp1 +n (2π) + R¯ρ¯θηp1 +n (2π) = R¯θ(¯uβn +1 + ¯ρβn +2 ) = R¯θνn +1 βn +1 ̸= 0, +and +B∗ +ρΦp2 +n = R¯θ¯uξp2 +n (2π) + R¯ρ¯θηp2 +n (2π) = R¯θ(¯uγn +1 + ¯ργn +2 ) = R¯θνn +2 γn +1 ̸= 0, +for all n ∈ Z∗, thanks to the equations (3.23) and (3.26). +Case 2. (Control acts in Velocity) We have +B∗ +uΦh +n = R¯ρ¯θξh +n(2π) + λ0¯ρ2(ηh +n)x(2π) + ¯ρ2¯uηh +n(2π) + R¯ρ2ζh +n(2π) += R¯ρ¯θαn +1 + λ0¯ρ2inαn +2 + ¯ρ2¯uαn +2 + R¯ρ2αn +3 += ¯ρ2νn +3 αn +2 ̸= 0, +for all n ∈ Z∗, thanks to the equation (3.21). We similarly have +B∗ +uΦp1 +n = R¯ρ¯θξp1 +n (2π) + ν0¯ρ2(ηp1 +n )x(2π) + ¯ρ2¯uηp1 +n (2π) + R¯ρ2ζp1 +n (2π) += R¯ρ¯θβn +1 + ν0¯ρ2inβn +2 + ¯ρ2¯uβn +2 + R¯ρ2βn +3 += ¯ρ2νn +1 βn +2 ̸= 0. +and +B∗ +uΦp2 +n = R¯ρ¯θξp2 +n (2π) + λ0¯ρ2(ηp2 +n )x(2π) + ¯ρ2¯uηp2 +n (2π) + R¯ρ2ζp2 +n (2π) += R¯ρ¯θγn +1 + λ0 ¯ρ2inγn +2 + ¯ρ2¯uγn +2 + R¯ρ2γn +3 += ¯ρ2νn +2 γn +2 ̸= 0, +for all n ∈ Z∗, thanks to (3.24) and (3.27). +Case 3. (Control acts in Temperature) We have +B∗ +θΦh +n = R¯ρ2ηh +n(2π) + ¯ρ2c0¯u +¯θ +ζh +n(2π) + ¯ρ2c0κ0 +¯θ +(ζh +n)x(2π) += R¯ρ2αn +2 + ¯ρ2c0 +¯θ +(¯u + κ0in)αn +3 = ¯ρ2c0 +¯θ +νn +3 αn +3 ̸= 0, +22 + +for all n ∈ Z∗, thanks to (3.22). Similarly, we have +B∗ +θΦp1 +n = R¯ρ2ηp1 +n (2π) + ¯ρ2c0¯u +¯θ +ζp1 +n (2π) + ¯ρ2c0κ0 +¯θ +(ζp1 +n )x(2π) += R¯ρ2βn +2 + ¯ρ2c0 +¯θ +(¯u + κ0in)βn +3 = ¯ρ2c0 +¯θ +νn +1 βn +3 ̸= 0, +and +B∗ +θΦp2 +n = R¯ρ2ηp2 +n (2π) + ¯ρ2c0¯u +¯θ +ζp2 +n (2π) + ¯ρ2c0κ0 +¯θ +(ζp2 +n )x(2π) += R¯ρ2γn +2 + ¯ρ2c0 +¯θ +(¯u + κ0in)γn +3 = ¯ρ2c0 +¯θ +νn +2 γn +3 ̸= 0, +for all n ∈ Z∗, thanks to (3.25) and (3.28). The estimates on the observation terms are then follows +directly from the asymptotic expressions (3.17)-(3.18)-(3.19) and Remark 3.8. +□ +3.5. Observability Inequality. Let us rewrite the eigenvalues as {νh +n, νp +n}n∈Z∗, where +νp +n = +� +νp1 +k , +if n = 2k − 1, k ∈ Z +νp2 +k , +if n = 2k, k ∈ Z∗, +for all n ∈ Z∗ and νh +n is as defined earlier. We also denote the observation term +B∗Φp +n = +� +B∗Φp1 +k , +if n = 2k − 1, k ∈ Z, +B∗Φp2 +n , +if n = 2k, k ∈ Z∗, +for all n ∈ Z∗. Recall that, we have defined the set +S := +� +(λ0, κ0) : +� +λ0 +κ0 +/∈ Q +� +. +Then, the eigenvalues (νh +n)n∈Z∗ satisfies hypotheses (H1)-(H2) with τ = ¯u, β = −¯ω and for all (λ0, κ0) ∈ +S, the sequence (νp +n)n∈Z∗ satisfies hypotheses (P1)-(P2)-(P3)-(P4) of Lemma 1.15. +Since the eigenfunctions E(A∗)\{Φ0} of A∗ forms a Riesz basis in ( ˙L2(0, 2π))3, therefore any (σT , vT , ϕT )† ∈ +( ˙L2(0, 2π))3 can be written as +(σT , vT , ϕT )† = +� +n∈Z∗ +ah +nΦh +n + +� +n∈Z∗ +ap1 +n Φp1 +n + +� +n∈Z∗ +ap2 +n Φp2 +n , +for some (ah +n)n∈Z∗, (ap1 +n )n∈Z∗, (ap2 +n )n∈Z∗ ∈ ℓ2. Then, the solution to the adjoint system (3.3) is +(σ(t, x), v(t, x), ϕ(t, x))† = +� +n∈Z∗ +ah +neνh +n(T −t)Φh +n(x) + +� +n∈Z∗ +ap1 +n eνp1 +n (T −t)Φp1 +n (x) + +� +n∈Z∗ +ap2 +n eνp2 +n (T −t)Φp2 +n (x), +for (t, x) ∈ (0, T ) × (0, 2π), that is, +σ(t, x) = +� +n∈Z∗ +ah +neνh +n(T −t)αn +1einx + +� +n∈Z∗ +ap1 +n eνp1 +n (T −t)βn +1 einx + +� +n∈Z∗ +ap2 +n eνp2 +n (T −t)γn +1 einx, +v(t, x) = +� +n∈Z∗ +ah +neνh +n(T −t)αn +2einx + +� +n∈Z∗ +ap1 +n eνp1 +n (T −t)βn +2 einx + +� +n∈Z∗ +ap2 +n eνp2 +n (T −t)γn +2 einx, +ϕ(t, x) = +� +n∈Z∗ +ah +neνh +n(T −t)αn +3einx + +� +n∈Z∗ +ap1 +n eνp1 +n (T −t)βn +3 einx + +� +n∈Z∗ +ap2 +n eνp2 +n (T −t)γn +3 einx, +for (t, x) ∈ (0, T ) × (0, 2π). We then have +��(σ(0), v(0), ϕ(0))†��2 +( ˙L2(0,2π))3 ≤ C +� � +n∈Z∗ +��ah +n +��2 ��Φh +n +��2 +L2(0,2π) + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T ∥Φp +n∥2 +L2(0,2π) +� +(3.35) +≤ C +� � +n∈Z∗ +��ah +n +��2 + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T +� +23 + +and +��(σ(0), v(0), ϕ(0))†��2 +˙H−s +per(0,2π)×( ˙L2(0,2π))2 ≤ C +� � +n∈Z∗ +��ah +n +��2 ��Φh +n +��2 +H−s +per(0,2π) + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T ∥Φp +n∥2 +L2(0,2π) +� +(3.36) +≤ C +� � +n∈Z∗ +��ah +n +��2 +1 +|n|2s + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T +� +. +3.5.1. Proof of Theorem 1.7. Let T > 2π +¯u . The observability inequality is given by +(3.37) +� T +0 +��R¯θ¯uσ(t, 2π) + R¯θ¯ρv(t, 2π) +��2 dt ≥ C +��(σ(0), v(0), ϕ(0))†��2 +( ˙L2(0,2π))3 , +for all (σT , vT , ϕT )† ∈ ( ˙L2(0, 2π))3. We have the observation term +� T +0 +��R¯θ¯uσ(t, 2π) + R¯θ¯ρv(t, 2π) +��2 dt += +� T +0 +����� +� +n∈Z∗ +ah +nB∗ +ρΦh +neνh +n(T −t) + +� +n∈Z∗ +ap1 +n B∗ +ρΦp1 +n eνp1 +n (T −t) + +� +n∈Z∗ +ap2 +n B∗ +ρΦp2 +n eνp2 +n (T −t) +����� +2 +dt += +� T +0 +����� +� +n∈Z∗ +ah +nB∗ +ρΦh +neνh +n(T −t) + +� +n∈Z∗ +ap +nB∗ +ρΦp +neνp +n(T −t) +����� +2 +dt. +Using the combined parabolic-hyperbolic Ingham type inequality (Lemma 1.15), we have +� T +0 +��R¯θ¯uσ(t, 2π) + R¯θ¯ρv(t, 2π) +��2 dt ≥ C +� � +n∈Z∗ +��ah +n +��2 ��B∗ +ρΦh +n +��2 e2ℜ(νh +n)(T −t) + +� +n∈Z∗ +|ap +n|2 ��B∗ +ρΦp +n +��2 e2ℜ(νp +n)T +� +≥ C +� � +n∈Z∗ +��ah +n +��2 + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T +� +, +thanks to the estimate 3.32. This estimate together with the norm estimate (3.35), the observability +inequality (3.37) is now follows. This completes the proof. +3.5.2. Proof of Theorem 1.9. Let T > 2π +¯u . The observability inequality is given by +(3.38) +� T +0 +��R¯ρ¯θσ(t, 2π) + λ0¯ρ2vx(t, 2π) + ¯ρ2¯uv(t, 2π) + R¯ρ2ϕ(t, 2π) +��2 dt ≥ C +��(σ(0), v(0), ϕ(0))†��2 +˙H−s +per(0,2π)×( ˙L2(0,2π))2 , +for all (σT , vT , ϕT )† ∈ ˙H−s +per(0, 2π) × ( ˙L2(0, 2π))2. We have +� T +0 +��R¯ρ¯θσ(t, 2π) + λ0¯ρ2vx(t, 2π) + ¯ρ2¯uv(t, 2π) + R¯ρ2ϕ(t, 2π) +��2 dt += +� T +0 +����� +� +n∈Z∗ +ah +nB∗ +uΦh +neνh +n(T −t) + +� +n∈Z∗ +ap1 +n B∗ +uΦp1 +n eνp1 +n (T −t) + +� +n∈Z∗ +ap2 +n B∗ +uΦp2 +n eνp2 +n (T −t) +����� +2 +dt += +� T +0 +����� +� +n∈Z∗ +ah +nB∗ +uΦh +neνh +n(T −t) + +� +n∈Z∗ +ap +nB∗ +uΦp +neνp +n(T −t) +����� +2 +dt. +Using the combined parabolic-hyperbolic Ingham type inequality (Lemma 1.15) and the observation +estimates ((3.33)), we obtain +� T +0 +��R¯ρ¯θσ(t, 2π) + λ0 ¯ρ2vx(t, 2π) + ¯ρ2¯uv(t, 2π) + R¯ρ2ϕ(t, 2π) +��2 dt +≥ C +� � +n∈Z∗ +��ah +n +��2 ��B∗ +uΦh +n +��2 e2ℜ(νh +n)(T −t) + +� +n∈Z∗ +|ap +n|2 |B∗ +uΦp +n|2 e2ℜ(νp +n)T +� +≥ C +� � +n∈Z∗ +��ah +n +��2 +1 +|n|2 + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T +� +. +24 + +Since s ≥ 1, we have +1 +|n|2 ≥ +1 +|n|2s for all n ∈ Z∗ and therefore +� T +0 +��R¯ρ¯θσ(t, 2π) + λ0 ¯ρ2vx(t, 2π) + ¯ρ2¯uv(t, 2π) + R¯ρ2ϕ(t, 2π) +��2 dt +≥ C +� � +n∈Z∗ +��ah +n +��2 +1 +|n|2s + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T +� +≥ C +��(σ(0), v(0), ϕ(0))†�� ˙H−s +per(0,2π)×( ˙L2(0,2π))2 , +thanks to the estimate (3.35). This proves the observability inequality (3.38). +3.5.3. Proof of Theorem 1.11. Let T > 2π +¯u . The observability inequality is given by +(3.39) +� T +0 +����R¯ρ2v(t, 2π) + ¯ρ2c0¯u +¯θ +ϕ(t, 2π) + ¯ρ2c0κ0 +¯θ +ϕx(t, 2π) +���� +2 +dt ≥ C +��(σ(0), v(0), ϕ(0))†��2 +˙H−s +per(0,2π)×( ˙L2(0,2π))2 , +for all (σT , vT , ϕT )† ∈ ˙H−s +per(0, 2π) × ( ˙L2(0, 2π))2. We have +� T +0 +����R¯ρ2v(t, 2π) + ¯ρ2c0¯u +¯θ +ϕ(t, 2π) + ¯ρ2c0κ0 +¯θ +ϕx(t, 2π) +���� +2 +dt += +� T +0 +����� +� +n∈Z∗ +ah +nB∗ +θΦh +neνh +n(T −t) + +� +n∈Z∗ +ap1 +n B∗ +θΦp1 +n eνp1 +n (T −t) + +� +n∈Z∗ +ap2 +n B∗ +θΦp2 +n eνp2 +n (T −t) +����� +2 +dt += +� T +0 +����� +� +n∈Z∗ +ah +nB∗ +θΦh +neνh +n(T −t) + +� +n∈Z∗ +ap +nB∗ +θΦp +neνp +n(T −t) +����� +2 +dt. +Using the combined parabolic-hyperbolic Ingham type inequality (Lemma 1.15) and the observation +estimates ((3.34)), we have +� T +0 +����R¯ρ2v(t, 2π) + ¯ρ2c0¯u +¯θ +ϕ(t, 2π) + ¯ρ2c0κ0 +¯θ +ϕx(t, 2π) +���� +2 +dt +≥ C +� � +n∈Z∗ +��ah +n +��2 ��B∗ +θΦh +n +��2 e2ℜ(νh +n)(T −t) + +� +n∈Z∗ +|ap +n|2 |B∗ +θΦp +n|2 e2ℜ(νp +n)T +� +≥ C +� � +n∈Z∗ +��ah +n +��2 +1 +|n|2 + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T +� +Since s ≥ 1, therefore +1 +|n|2 ≥ +1 +|n|2s for all n ∈ Z∗. Thus we get +� T +0 +����R¯ρ2v(t, 2π) + ¯ρ2c0¯u +¯θ +ϕ(t, 2π) + ¯ρ2c0κ0 +¯θ +ϕx(t, 2π) +���� +2 +dt +≥ C +� � +n∈Z∗ +��ah +n +��2 +1 +|n|2s + +� +n∈Z∗ +|ap +n|2 e2ℜ(νp +n)T +� +≥ C +��(σ(0), v(0), ϕ(0))†�� ˙H−s +per(0,2π)×( ˙L2(0,2π))2 , +and the observability inequality (3.39) follows. +3.6. Lack of Null Controllability for Less Regular Initial States. +3.6.1. Proof of Proposition 1.10. For (σT , vT , ϕT )† = Φh +n, the solution to the adjoint system is +(σ(t, x), v(t, x), ϕ(t, x))† = eνh +n(T −t)Φh +n(x), +for (t, x) ∈ (0, T ) × (0, 2π). For large n, we have the following estimate +��Φh +n +�� +H−s +per(0,2π)×(L2(0,2π))2 ≥ +C +|n|s , +and therefore +��(σ(0), v(0), ϕ(0))†��2 +H−s +per(0,2π)×(L2(0,2π))2 ≥ +C +|n|2s . +25 + +We also have +� T +0 +��B∗ +uΦh +n +��2 dt ≤ +C +|n|2 . +Thus if the observability inequality (3.38) holds, then we get +C +|n|2s ≤ +C +|n|2 =⇒ |n|2−2s ≤ C, +which is not possible since 0 ≤ s < 1. This completes the proof. +Remark 3.12. Since the observation terms B∗ +θΦh +n and B∗ +uΦh +n have same upper bounds, proof of Propo- +sition 1.12 will be similar to above, so we omit the details. +3.7. Lack of Controllability at Small Time. The proof will be similar to the barotropic case, that +is, the proof of Proposition 1.2. +3.7.1. Proof of Proposition 1.8. Let 0 < T < 2π +¯u . Following the notations in the proof of Proposition 1.2, +we consider the system +(3.40) + + + + + +˜σt(t, x) + ¯u˜σx(t, x) − ¯ω˜σ(t, x) = 0, +(t, x) ∈ (0, T ) × (0, 2π), +˜σ(t, 0) = ˜σ(t, 2π), +t ∈ (0, T ), +˜σ(T, x) = ˜σN +T (x), +x ∈ (0, 2π). +Since supp(˜σN +T ) ⊂ supp(˜σT ) ⊂ (T, 2π), the solution satisfies ˜σN(t, 0) = ˜σN(t, 2π) = 0. We now consider +the adjoint to our main system +(3.41) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +−σt(t, x) − ¯uσx(t, x) − ¯ρvx(t, x) = 0, in (0, T ) × (0, 2π), +−vt(t, x) − λ0vxx(t, x) − R¯θ +¯ρ σx(t, x) − ¯uvx(t, x) − Rϕx(t, x) = 0, in (0, T ) × (0, 2π), +−ϕt(t, x) − κ0ϕxx(t, x) − R¯θ +c0 +vx(t, x) − ¯uϕx(t, x) = 0, in (0, T ) × (0, 2π), +σ(t, 0) = σ(t, 2π), +v(t, 0) = v(t, 2π), +vx(t, 0) = vx(t, 2π), +t ∈ (0, T ), +ϕ(t, 0) = ϕ(t, 2π), +ϕx(t, 0) = ϕx(t, 2π), +t ∈ (0, T ), +σ(T, x) = σN +T (x), +v(T, x) = vN +T (x), +ϕ(T, x) = ϕN +T (x), +x ∈ (0, 2π), +where we choose vN +T and ϕN +T such that +(˜σN +T , vN +T , ϕN +T )† = +� +|n|≥N+1 +˜ah +nΦh +n +with ˜ah +nαn +1 := anP N(n) for all |n| ≥ N + 1. We write the solutions to the systems (3.40) and (3.41) +respectively as +˜σN(t, x) = +� +|n|≥N+1 +anP N(n)e(¯uin−¯ω)(T −t)einx, +(3.42) +σN(t, x) = +� +|n|≥N+1 +anP N(n)eνh +n(T −t)einx, +(3.43) +vN(t, x) = +� +|n|≥N+1 +anP N(n)βn +1 +αn +1 +eνh +n(T −t)einx, +(3.44) +ϕN(t, x) = +� +|n|≥N+1 +anP N(n) γn +1 +αn +1 +eνh +n(T −t)einx, +(3.45) +26 + +for all (t, x) ∈ [0, T ] × [0, 2π]. Similar to the barotropic case, we prove that the solution component σN +approximates the solution ˜σN. Indeed, we have +��σN(·, x) − ˜σN(·, x) +��2 +L2(0,T ) ≤ +� +|n|≥N+1 +|an|2 ��P N(n) +��2 ���eνh +n(T −t) − e(¯uin−¯ω)(T −t)��� +2 +L2(0,T ) +≤ +� +|n|≥N+1 +|an|2 ��P N(n) +��2 ���e(¯uin−¯ω)(T −t)eO(|n|−1)(T −t) − 1 +��� +2 +L2(0,T ) +≤ +C +|n|2 +� +|n|≥N+1 +|an|2 ��P N(n) +��2 , +for all x ∈ [0, 2π]. We also have for all x ∈ [0, 2π] +��vN(·, x) +��2 +L2(0,T ) ≤ +� +|n|≥N+1 +|an|2 ��P N(n) +��2 |βn +1 |2 +|αn +1 |2 +���eνh +n(T −t)��� +2 +L2(0,T ) +≤ C +� +|n|≥N+1 +|an|2 ��P N(n) +��2 +1 +|n|2 +≤ +C +|N|2 +� +|n|≥N+1 +|an|2 ��P N(n) +��2 +We suppose that the following observability inequality holds +� T +0 +��R¯θ¯uσN(t, 2π) + R¯θ¯ρvN(t, 2π) +��2 dt ≥ C +��(σN(0), vN(0), ϕN(0))†��2 +(L2(0,2π))3 . +Then, we have +��(σN(0), vN(0), ϕN(0))†��2 +(L2(0,2π))3 +≤ C +� T +0 +��R¯θ¯uσN(t, 2π) + R¯θ¯ρvN(t, 2π) +��2 dt +≤ C +� T +0 +� +¯u2 ��(σN(t, 2π) − ˜σN(t, 2π)) +��2 + ¯u2 ��˜σN(t, 2π) +��2 + ¯ρ2 ��vN(t, 2π) +��2� +dt +≤ C +N 2 +� +|n|≥N+1 +|an|2 ��P N(n) +��2 , +since ˜σN(t, 0) = 0 = ˜σN(t, 2π) for all t ∈ (0, T ). Thus, we get +��σN(0) +��2 +L2(0,2π) ≤ +��(σN(0), vN(0), ϕN(0))†��2 +(L2(0,2π))3 +≤ C +N 2 +� +|n|≥N+1 +|an|2 ��P N(n) +��2 ≤ C +N 2 +��σN(0) +��2 +L2(0,2π) , +since ℜ(νh +n) is bounded. Therefore, 1 ≤ +C +N 2 for all N and hence the above inequality cannot hold. This +is a contradiction and the proof is complete. +4. Further Comments and Conclusions +4.1. Controllability Results Using Neumann Boundary Conditions. We consider the system +(1.1) with the initial state (1.2) and the boundary conditions +ρ(t, 0) = ρ(t, 2π), +u(t, 0) = u(t, 2π), +ux(t, 0) = ux(t, 2π) + q1(t), +t ∈ (0, T ), +(4.1) +where q1 is a boundary control that acts on the velocity through Neumann conditions. Since the obser- +vation terms satisfies similar estimates as in (2.20), following the proof of Theorem 1.3 and Proposition +1.4, we can obtain the null controllability of the system (1.1)-(1.2)-(4.1) at time T > 2π +¯u in the space +˙Hs +per(0, 2π) × ˙L2(0, 2π) for s ≥ 1, and the null controllability fails in the space Hs +per(0, 2π) × L2(0, 2π) +for 0 ≤ s < 1. In this case also, null controllability of the system (1.1)-(1.2)-(4.1) is inconclusive when +the time is small (0 < T ≤ 2π +¯u ). +27 + +Similar to the barotropic case, we consider the system (1.5) with the initial state (1.6) and the +boundary conditions +ρ(t, 0) = ρ(t, 2π), +u(t, 0) = u(t, 2π), +ux(t, 0) = ux(t, 2π) + q2(t), +(4.2) +θ(t, 0) = θ(t, 2π), +θx(t, 0) = θx(t, 2π), +t ∈ (0, T ). +In this case also, following the proof of Theorem 1.9 and Proposition 1.10, we get null controllability of +the system (1.5)-(1.6)-(4.2) at time T > 2π +¯u in the space ˙Hs +per(0, 2π) × ( ˙L2(0, 2π))2 for s ≥ 1, and null +controllability fails in the space Hs +per(0, 2π) × (L2(0, 2π))2 for 0 ≤ s < 1. +We next consider the system (1.5) with the initial state (1.6) and the boundary conditions +ρ(t, 0) = ρ(t, 2π), +u(t, 0) = u(t, 2π), +ux(t, 0) = ux(t, 2π), +(4.3) +θ(t, 0) = θ(t, 2π), +θx(t, 0) = θx(t, 2π) + q3(t), +t ∈ (0, T ). +Similar to the previous case, following the proof of Theorem 1.11 and Proposition 1.12, we get null +controllability of the system (1.5)-(1.6)-(4.3) at time T > 2π +¯u in the space ˙Hs +per(0, 2π) × ( ˙L2(0, 2π))2 for +s ≥ 1, and null controllability fails in the space Hs +per(0, 2π) × (L2(0, 2π))2 for 0 ≤ s < 1. +For both systems (1.5)-(1.6)-(4.2) and (1.5)-(1.6)-(4.3), null controllability is inconclusive for a small +time 0 < T ≤ 2π +¯u . +4.2. More number of controls. Adding controls in both velocity and temperature components through +periodic boundary conditions does not improve the null controllability result of the system (1.5) with +respect to the regularity of the initial states. Estimates of the observation terms remain the same as in +the control acts in velocity or temperature. +4.3. Controllability under Dirichlet Boundary Conditions. Let us consider the system (1.1) in +the interval (0, 1) with the initial state (1.2) and the following boundary conditions +(4.4) +ρ(t, 0) = p(t), +u(t, 0) = 0, +u(t, 1) = q(t), +t ∈ (0, T ), +where p and q are boundary controls. It is known in [3] that the system (1.1)-(1.2)-(4.4) (with q = 0) is +null controllability at a large time T using only one boundary control p ∈ L2(0, T ) provided the initial +states belong to the space Hs +per(0, 1) × L2(0, 1) with s > 1 +2. Null controllability of the system (1.1) using +a boundary control acts only in velocity through Dirichlet conditions (that is, p = 0 in (4.4)) is still an +open problem. +In the case of non-barotropic fluids, null controllability of the system (1.5) at large time T using only +one boundary control acts either in density, velocity or temperature through Dirichlet conditions is also +an open problem. +Appendix A. Proof of the Well-Posedness Results +A.1. Existence of semigroup: proof of Lemma 3.1. The proof is divided into several parts. +Part 1. The operator A is dissipative. Indeed, for all (ξ, η, ζ)† ∈ D(A) +ℜ ⟨AU, U⟩(L2(0,2π))3 = ℜ +� + + + + +−¯uξx − ¯ρηx +− R¯θ +¯ρ ξx + λ0ηxx − ¯uηx − Rζx +− R¯θ +c0 ηx + κ0ζxx − ¯uζx + + + + , + + + +ξ +η +ζ + + + +� +(L2(0,2π))3 += ℜ +� +−R¯θ¯u +� 2π +0 +¯ξξxdx − R¯θ¯ρ +� 2π +0 +¯ξηxdx − R¯θ¯ρ +� 2π +0 +ξx¯ηdx + λ0¯ρ2 +� 2π +0 +¯ηηxxdx − ¯ρ2¯u +� 2π +0 +¯ηηxdx +−R¯ρ2 +� 2π +0 +¯ηζxdx − R¯ρ2 +� 2π +0 +ηx¯ζdx + κ0 +¯ρ2c0 +¯θ +� 2π +0 +¯ζζxxdx − ¯u ¯ρ2c0 +¯θ +� 2π +0 +¯ζζxdx +� += −R¯θ¯u +2 +� 2π +0 +d +dx(|ξ|2)dx − λ0¯ρ2 +� 2π +0 +¯ηxηxdx − ¯ρ2¯u +2 +� 2π +0 +d +dx(|η|2)dx − κ0 +¯ρ2c0 +¯θ +� 2π +0 +¯ζxζxdx +− ¯u +2 +¯ρ2c0 +¯θ +� 2π +0 +d +dx(|ζ|2)dx − λ0¯ρ2 +� 2π +0 +|ux|2 dx − κ0 +¯ρ2c0 +¯θ +� 2π +0 +|ζx|2 dx ≤ 0. +28 + +Part 2. +The operator A is maximal. +This is equivalent to the following. +For any ν > 0 and any + + + +f +g +h + + + ∈ (L2(0, 2π))3, we can find a + + + +ξ +η +ζ + + + ∈ D(A) such that +(νI − A) + + + +ξ +η +ζ + + + = + + + +f +g +h + + + , +that is, +νξ + ¯uξx + ¯ρηx = f, +νη + R¯θ +¯ρ ξx − λ0ηxx + ¯uηx + Rζx = g, +νζ + R¯θ +c0 +ηx − κ0ζxx + ¯uζx = h. +Let ǫ > 0. Instead of solving the above problem, we will solve the following regularized problem +(A.1) + + + + + + + +νξ + ¯uξx − ǫξxx + ¯ρηx = f, +νη + R¯θ +¯ρ ξx − λ0ηxx + ¯uηx + Rζx = g, +νζ + R¯θ +c0 ηx − κ0ζxx + ¯uζx = h. +with the following boundary conditions +ξ(0) = ξ(2π), +ξx(0) = ξx(2π), +η(0) = η(2π), +ηx(0) = ηx(2π), +ζ(0) = ζ(2π), +ζx(0) = ζx(2π). +We now proceed through the following steps. +Step 1. +Using Lax-Milgram theorem, we first prove that the system (A.1) has a unique solution in +(H1 +per(0, 2π))3. Define the operator B : (H1 +per(0, 2π))3 × (H1 +per(0, 2π))3 → C by +B + + + + + + +ξ +η +ζ + + + , + + + +ξ1 +η1 +ζ1 + + + + + + += ǫ +� 2π +0 +ξx( ¯ξ1)xdx + ¯ρ +� 2π +0 +ηx ¯ξ1dx + ¯u +� 2π +0 +ξx ¯ξ1dx + ν +� 2π +0 +ξ ¯ξ1dx ++ λ0 +� 2π +0 +ηx( ¯η1)xdx + ¯u +� 2π +0 +ηx ¯η1dx + R¯θ +¯ρ +� 1 +0 +ξx ¯η1dx + R +� 2π +0 +ζx ¯η1dx + ν +� 2π +0 +η ¯η1dx ++ κ0 +� 2π +0 +ζx( ¯ζ1)xdx + ¯u +� 2π +0 +ζx ¯ζ1dx + R¯θ +c0 +� 2π +0 +ηx ¯ζ1dx + ν +� 2π +0 +ζ ¯ζ1dx, +for all + + + +ξ +η +ζ + + + , + + + +ξ1 +η1 +ζ1 + + + ∈ (H1 +per(0, 2π))3. Then, one can show that B is continuous and coercive. Thus, by +Lax-Milgram theorem, for every ǫ > 0, there exists a unique solution (ξǫ, ηǫ, ζǫ)† ∈ (H1 +per(0, 2π))3 such +that +B + + + + + + +ξǫ +ηǫ +ζǫ + + + , + + + +ξ +η +ζ + + + + + + = F + + + + + + +ξ +η +ζ + + + + + + , +∀ + + + +ξ +η +ζ + + + ∈ (H1 +per(0, 2π))3, +where F : (H1 +per(0, 2π))3 → C is the linear functional given by +F + + + + + + +ξ +η +ζ + + + + + + := +� 2π +0 +f ¯ξdx + +� 2π +0 +g¯ηdx + +� 2π +0 +h¯ζdx. +29 + +Step 2. Observe that +ℜ + + +B + + + + + + +ξǫ +ηǫ +ζǫ + + + , + + + +ξǫ +ηǫ +ζǫ + + + + + + + + + ≤ +� 2π +0 +��fξǫ�� dx + +� 2π +0 +|gηǫ| dx + +� 2π +0 +��hζǫ�� dx +≤ 1 +2 +� 2π +0 +� +|f|2 + |g|2 + |h|2� +dx + 1 +2 +� 2π +0 +���ξǫ��2 + |ηǫ|2 + +��ζǫ��2� +dx, +which yields +ǫ +� 2π +0 +|ξǫ +x|2+ν +2 +� 2π +0 +|ξǫ|2+λ0 +� 2π +0 +|ηǫ +x|2+ν +2 +� 2π +0 +|ηǫ|2+κ0 +� 2π +0 +|ζǫ +x|2+ν +2 +� 2π +0 +|ζǫ|2 ≤ 1 +2 +� 2π +0 +(|f|2+|g|2+|h|2) +This shows that the sequences (ηǫ) and (ζǫ) are bounded in H1(0, 2π) and the sequences (ξǫ) and (√ǫξǫ +x) +are bounded in L2(0, 2π). Since the spaces H1(0, 2π) and L2(0, 2π) are reflexive, there exist subsequences, +still denoted by (ηǫ), (ζǫ), (ξǫ), and functions ξ ∈ L2(0, 2π) and η ∈ H1(0, 2π) such that +ηǫ ⇀ η in H1(0, 2π), and ξǫ ⇀ ξ in L2(0, 2π). +Furthermore, we have +� 2π +0 +|ǫξǫ +x|2 = ǫ +� 1 +0 +��√ǫξǫ��2 → 0, as ǫ → 0. +Now, since B + + + + + + +ξǫ +ηǫ +ζǫ + + + , + + + +ξ +η +ζ + + + + + + = F + + + + + + +ξ +η +ζ + + + + + +, for all + + + +ξ +η +ζ + + + ∈ (H1 +per(0, 2π))3, we may take + + + +ξ1 +0 +0 + + + ∈ +(H1 +per(0, 2π))3, so that we obtain +(A.2) +ǫ +� 2π +0 +ξǫ +x( ¯ξ1)xdx + ¯ρ +� 2π +0 +ηǫ +x ¯ξ1dx + ¯u +� 2π +0 +ξǫ +x ¯ξ1dx + ν +� 2π +0 +ξǫ ¯ξ1dx = +� 2π +0 +f ¯ξ1dx. +Similarly, by taking + + + +0 +η1 +0 + + + , + + + +0 +0 +ζ1 + + + ∈ (H1 +per(0, 2π))3, we get +(A.3) λ0 +� 2π +0 +ηǫ +x( ¯η1)xdx+ ¯u +� 2π +0 +ηǫ +x ¯η1dx+ R¯θ +¯ρ +� 1 +0 +ξǫ +x ¯η1dx+R +� 2π +0 +ζǫ +x ¯η1dx+ν +� 2π +0 +ηǫ ¯η1dx = +� 2π +0 +g ¯η1dx, +and +(A.4) +κ0 +� 2π +0 +ζǫ +x( ¯ζ1)xdx + ¯u +� 2π +0 +ζǫ +x ¯ζ1dx + R¯θ +c0 +� 2π +0 +ηǫ +x ¯ζ1dx + ν +� 2π +0 +ζǫ ¯ζ1dx = +� 2π +0 +h ¯ζ1dx +Integrating by parts, we get from equation (A.2) that, +ǫ +� 2π +0 +ξǫ +x( ¯ξ1)xdx + ¯ρ +� 2π +0 +ηǫ +x ¯ξ1dx − ¯u +� 2π +0 +ξǫ( ¯ξ1)xdx + ν +� 2π +0 +ξǫ ¯ξ1dx = +� 2π +0 +f ¯ξ1dx. +Then, passing to the limit ǫ → 0, we obtain +¯ρ +� 2π +0 +ηx ¯ξ1dx + ¯u +� 2π +0 +ξx ¯ξ1dx + ν +� 2π +0 +ξ ¯ξ1dx = +� 2π +0 +f ¯ξ1dx, +and the above relation is true ∀ξ1 ∈ C∞ +c (0, 2π). As a consequence, +¯ρηx + ¯uξx + νξ = f, +in the sense of distribution and therefore ¯uξx = f − ¯ρηx − νξ ∈ L2(0, 2π); in other words, ξ ∈ H1(0, 2π). +We similarly have from identities (A.3) and (A.4) +νη + R¯θ +¯ρ ξx − λ0ηxx + ¯uηx + Rζx = g, +νζ + R¯θ +c0 +ηx − κ0ζxx + ¯uζx = h, +in the sense of distribution and therefore η, ζ ∈ H2(0, 2π). +30 + +Step 3. We now show η(0) = η(2π) and ηx(0) = ηx(2π). Since the inclusion map i : H1(0, 2π) → C0( ¯ +0, 2π) +is compact and ηǫ ⇀ η in H1(0, 2π), we obtain +ηǫ → η +in C0[0, 2π]. +Thus, (ηǫ(0), ηǫ(2π)) → (η(0), η(2π)). Since ηǫ(0) = ηǫ(2π) for all ǫ > 0, we have +η(0) = η(2π). +From (A.3), we have after passing the limit as ǫ → 0 +λ0 +� 2π +0 +ηx( ¯η1)xdx + ¯u +� 2π +0 +ηx ¯η1dx + R¯θ +¯ρ +� 1 +0 +ξx ¯η1dx + R +� 2π +0 +ζx ¯η1dx + ν +� 2π +0 +η ¯η1dx = +� 2π +0 +g ¯η1dx. +Integrating by parts, we get +−λ0 +� 2π +0 +ηxx ¯η1dx + λ0(ηx(2π) ¯η1(2π) − ηx(0) ¯η1(0)) + ¯u +� 2π +0 +ηx ¯η1dx + R¯θ +¯ρ +� 1 +0 +ξx ¯η1dx ++R +� 2π +0 +ζx ¯η1dx + ν +� 2π +0 +η ¯η1dx = +� 2π +0 +g ¯η1dx, +and therefore +ηx(2π) ¯η1(2π) − ηx(0) ¯η1(0) = 0 +that is ηx(0) = ηx(2π). In a similar way, we can obtain ζ(0) = ζ(2π) and ζx(0) = ζx(2π). +We now show ξ(0) = ξ(2π). Recall that we have after taking limit as ǫ → 0 +¯ρ +� 2π +0 +ηx ¯ξ1dx − ¯u +� 2π +0 +ξ( ¯ξ1)xdx + ν +� 2π +0 +ξ ¯ξ1dx = +� 2π +0 +f ¯ξ1dx. +Integrating by parts, we get +(A.5) +¯ρ +� 2π +0 +ηx ¯ξ1dx + ¯u +� 2π +0 +ξx ¯ξ1dx − ¯u(ξ(2π)ξ1(2π) − ξ(0)ξ1(0)) + ν +� 2π +0 +ξ ¯ξ1dx = +� 2π +0 +f ¯ξ1dx, +and therefore +ξ(0) = ξ(2π). +So, we get + + + +ξ +η +ζ + + + ∈ D(A). Hence, the operator A is maximal. +References +[1] M. Badra, S. Ervedoza, and S. Guerrero, Local controllability to trajectories for non-homogeneous incompressible +Navier-Stokes equations, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 33 (2016), pp. 529–574. +[2] K. Beauchard, A. Koenig, and K. Le Balc’h, Null-controllability of linear parabolic transport systems, J. ´Ec. +polytech. Math., 7 (2020), pp. 743–802. +[3] K. Bhandari, S. Chowdhury, R. Dutta, and J. Kumbhakar, Boundary null-controllability of 1d linearized com- +pressible navier-stokes system by one control force, https://arxiv.org/abs/2204.02375, (2022). +[4] M. Chapouly, On the global null controllability of a Navier-Stokes system with Navier slip boundary conditions, J. +Differential Equations, 247 (2009), pp. 2094–2123. +[5] F. W. Chaves-Silva, L. Rosier, and E. Zuazua, Null controllability of a system of viscoelasticity with a moving +control, J. Math. Pures Appl. (9), 101 (2014), pp. 198–222. +[6] S. Chowdhury, R. Dutta, and S. Majumdar, Boundary controllability and stabilizability of a coupled first-order +hyperbolic-elliptic system, Evolution Equations and Control Theory, (2022). +[7] S. Chowdhury and D. Mitra, Null controllability of the linearized compressible Navier-Stokes equations using mo- +ment method, J. Evol. Equ., 15 (2015), pp. 331–360. +[8] S. Chowdhury, D. Mitra, M. Ramaswamy, and M. Renardy, Null controllability of the linearized compressible +Navier Stokes system in one dimension, J. Differential Equations, 257 (2014), pp. 3813–3849. +[9] S. Chowdhury and M. Ramaswamy, Optimal control of linearized compressible Navier-Stokes equations, ESAIM +Control Optim. Calc. Var., 19 (2013), pp. 587–615. +[10] S. Chowdhury, M. Ramaswamy, and J.-P. Raymond, Controllability and stabilizability of the linearized compressible +Navier-Stokes system in one dimension, SIAM J. Control Optim., 50 (2012), pp. 2959–2987. +[11] J. B. Conway, Functions of one complex variable, vol. 11 of Graduate Texts in Mathematics, Springer-Verlag, New +York-Berlin, second ed., 1978. +[12] J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary +conditions, ESAIM Contrˆole Optim. Calc. Var., 1 (1995/96), pp. 35–75. +[13] J.-M. Coron and A. V. Fursikov, Global exact controllability of the 2D Navier-Stokes equations on a manifold +without boundary, Russian J. Math. Phys., 4 (1996), pp. 429–448. +31 + +[14] J.-M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus +with a control force having a vanishing component, J. Math. Pures Appl. (9), 92 (2009), pp. 528–545. +[15] J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed +control having two vanishing components, Invent. Math., 198 (2014), pp. 833–880. +[16] J.-M. Coron, F. Marbach, and F. Sueur, Small-time global exact controllability of the Navier-Stokes equation with +Navier slip-with-friction boundary conditions, J. Eur. Math. Soc. (JEMS), 22 (2020), pp. 1625–1673. +[17] S. Ervedoza, O. Glass, S. Guerrero, and J.-P. Puel, Local exact controllability for the one-dimensional compress- +ible Navier-Stokes equation, Arch. Ration. Mech. Anal., 206 (2012), pp. 189–238. +[18] S. Ervedoza and M. Savel, Local boundary controllability to trajectories for the 1D compressible Navier Stokes +equations, ESAIM Control Optim. Calc. Var., 24 (2018), pp. 211–235. +[19] E. Feireisl, Dynamics of viscous compressible fluids, vol. 26 of Oxford Lecture Series in Mathematics and its Appli- +cations, Oxford University Press, Oxford, 2004. +[20] E. Fern´andez-Cara, S. Guerrero, O. Y. Imanuvilov, and J.-P. Puel, Local exact controllability of the Navier- +Stokes system, J. Math. Pures Appl. (9), 83 (2004), pp. 1501–1542. +[21] E. Fern´andez-Cara, S. Guerrero, O. Y. Imanuvilov, and J.-P. Puel, Some controllability results for the N- +dimensional Navier-Stokes and Boussinesq systems with N − 1 scalar controls, SIAM J. Control Optim., 45 (2006), +pp. 146–173. +[22] A. V. Fursikov and O. Y. `Emanuilov, Exact local controllability of two-dimensional Navier-Stokes equations, Mat. +Sb., 187 (1996), pp. 103–138. +[23] +, Exact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk, 54 (1999), pp. 93–146. +[24] V. Girinon, Quelques probl`emes aux limites pour les ´equations de Navier-Stokes, 2008. DOCTORAT de l’Universit´e +Paul Sabatier Toulouse III. +[25] S. Guerrero, Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip +boundary conditions, ESAIM Control Optim. Calc. Var., 12 (2006), pp. 484–544. +[26] O. Y. Imanuvilov, On exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 3 +(1998), pp. 97–131. +[27] O. Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. +Var., 6 (2001), pp. 39–72. +[28] A. Koenig and P. Lissy, Null-controllability of underactuated linear parabolic-transport systems with constant coef- +ficients, https://arxiv.org/abs/2301.00471, (2023). +[29] V. Komornik and P. Loreti, Fourier series in control theory, Springer Monographs in Mathematics, Springer-Verlag, +New York, 2005. +[30] G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., +141 (1998), pp. 297–329. +[31] D. Maity, Some controllability results for linearized compressible Navier-Stokes system, ESAIM Control Optim. Calc. +Var., 21 (2015), pp. 1002–1028. +[32] P. Martin, L. Rosier, and P. Rouchon, Null controllability of the structurally damped wave equation with moving +control, SIAM J. Control Optim., 51 (2013), pp. 660–684. +32 + diff --git a/W9E2T4oBgHgl3EQfuggX/content/tmp_files/load_file.txt b/W9E2T4oBgHgl3EQfuggX/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..6eee4d4c09d19b2110f6b666c708e4e1c5862684 --- /dev/null +++ b/W9E2T4oBgHgl3EQfuggX/content/tmp_files/load_file.txt @@ -0,0 +1,1485 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf,len=1484 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='04080v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='AP] 10 Jan 2023 NULL CONTROLLABILITY OF ONE-DIMENSIONAL LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM IN PERIODIC SETUP USING ONE BOUNDARY CONTROL JITEN KUMBHAKAR† Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In this article, we study boundary null controllability properties of the linearized compress- ible Navier-Stokes equations in one dimension for both barotropic and non-barotropic fluids using only one boundary control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The control acts through periodic boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We prove null control- lability of the linearized compressible Navier-Stokes system (for both barotropic and non-barotropic fluids) at large time T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We also prove that our result is sharp with respect to the regularity of the initial states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Finally, for both barotropic and non-barotropic fluids, we prove a lack of controllability at small time T when a control acts in density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Introduction and Main Results 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Controllability of Linearized Compressible Navier-Stokes System (Barotropic) 6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Controllability of Linearized Compressible Navier-Stokes System (Non-barotropic) 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Further Comments and Conclusions 27 Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of the Well-Posedness Results 28 References 31 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Introduction and Main Results 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Linearized Compressible Navier-Stokes System in 1d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let I = (0, +∞) be the time interval and Ω ⊂ R be a spatial domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For a compressible, isentropic (barotropic) fluid, that is, when the pressure depends only on the density and the temperature is constant, the Navier-Stokes system in I ×Ω consists of the equation of continuity and the momentum equation ρt(t, x) + (ρu)x(t, x) = 0, ρ(t, x)[ut(t, x) + u(t, x)ux(t, x)] + px(t, x) − (λ + 2µ)uxx(t, x) = 0, where ρ denotes the density of the fluid, u is the velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The constants λ, µ are called the viscosity coefficients that satisfy µ > 0, λ + µ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The pressure p satisfies the following constitutive equation in I × Ω p(t, x) = aργ(t, x), (t, x) ∈ I × Ω, for some constants a > 0, γ ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In the case of non-barotropic fluids, that is, when the pressure is a function of both density and temperature of the fluid, the Navier-Stokes system consists of the equation of continuity, the momentum equation, and an additional thermal energy equation cνρ(t, x)[θt(t, x) + u(t, x)θx(t, x)] + θ(t, x)pθ(t, x)ux(t, x) − κθxx(t, x) − (λ + 2µ)u2 x(t, x) = 0, where θ is the temperature of the fluid, cν is the specific heat constant, and κ is the heat conductivity constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For an ideal gas, Boyles law gives the pressure p(t, x) = Rρ(t, x)θ(t, x) in I × Ω with R as the universal gas constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' See [19, Chapter 1] for more about compressible flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 35M30, 35Q30, 76N25, 93B05, 93B07, 93C20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Linearized compressible Navier-Stokes system, null-controllability, observability, boundary control, Ingham-type inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' †Indian Institute of Science Education and Research Kolkata, Campus road, Mohanpur, West Bengal 741246, India;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' jk17ip021@iiserkol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The Barotropic Case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let T > 0 be a finite time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We first consider the Navier-Stokes system for compressible, isentropic (barotropic) fluids linearized around some constant steady state (¯ρ, ¯u) with ¯ρ > 0 and ¯u > 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) \uf8f1 \uf8f2 \uf8f3 ρt(t, x) + ¯uρx(t, x) + ¯ρux(t, x) = 0, in (0, T ) × (0, 2π), ut(t, x) − µ ¯ρ uxx(t, x) + ¯uux(t, x) + aγ¯ργ−2ρx(t, x) = 0, in (0, T ) × (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The initial conditions are (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) ρ(0, x) = ρ0(x), u(0, x) = u0(x), x ∈ (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We will consider two different problems, based on the act of control, by imposing any one of the following boundary conditions on the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Control in Density: (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) ρ(t, 0) = ρ(t, 2π) + p(t), u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π), t ∈ (0, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Control in Velocity: (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) ρ(t, 0) = ρ(t, 2π), u(t, 0) = u(t, 2π) + q(t), ux(t, 0) = ux(t, 2π), t ∈ (0, T ), where p and q are boundary controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Our main goal is to study null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) at a given time T > 0 with the initial condition (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) and one of the boundary conditions (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' More precisely, given any initial state (ρ0, u0) in some suitable Hilbert space, we want to find a boundary control p (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' q) such that the solution (ρ, u) to the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4)) satisfies (ρ(T, x), u(T, x)) = (0, 0) in (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Before stating our main results, we first introduce the Sobolev space for any s > 0 Hs per(0, 2π) = � ϕ : ϕ = � n∈Z cneinx, � n∈Z |n|2s |cn|2 < ∞ � , with the norm ∥ϕ∥Hs per(0,2π) := �� n∈Z (1 + |n|2)s |cn|2 � 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For s > 0, we denote H−s per(0, 2π) to be the dual of the Sobolev space Hs per(0, 2π) with respect to the pivot space L2(0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We also define the space ˙L2(0, 2π) := � ϕ ∈ L2(0, 2π) : � 2π 0 ϕ(x)dx = 0 � and ˙Hs per(0, 2π) := � ϕ ∈ Hs per(0, 2π) : � 2π 0 ϕ(x)dx = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' If the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) is null controllable in time T by using a boundary control p, then integrating both equations in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1), we get a compatibility condition on the initial states aγ¯ργ−2 � 2π 0 ρ0(x)dx = ¯u � 2π 0 u0(x)dx = −aγ¯ργ−2¯u � T 0 p(t)dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' If the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) is null controllable in time T by using a boundary control q, then also we will get a similar compatibility condition on the initial states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since every initial state (ρ0, u0) in (L2(0, 2π))2 will not satisfy this compatibility condition, we will work on the Hilbert space ( ˙L2(0, 2π))2 to avoid this difficulty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' When a boundary control q acts in the velocity component, it is known in [7] that the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)- (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) is null controllable at time T > 2π ¯u provided that the initial state is regular enough, in particular, lies in the space ˙Hs+1 per (0, 2π) × ˙Hs per(0, 2π) for s > 9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In the first part of our article, we generalize this result (with respect to the regularity of initial states).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We also prove null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) when there is a boundary control p acts in the density component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We write all the statements below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given time T > 2π ¯u and initial state (ρ0, u0) ∈ ( ˙L2(0, 2π))2, there exists a boundary control p ∈ L2(0, T ) such that the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) is null controllable at time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2 For small time, we have a lack of null controllability result for the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0) ∈ (L2(0, 2π))2, the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) is not null controllable at small time 0 < T < 2π ¯u by means of any boundary control p ∈ L2(0, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have a similar null controllability result for the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) when a boundary control acts in the velocity component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let s ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given time T > 2π ¯u and initial state (ρ0, u0) ∈ ˙Hs per(0, 2π)× ˙L2(0, 2π), there exists a boundary control q ∈ L2(0, T ) such that the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) is null controllable at time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The following result shows that the null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) at time T > 2π ¯u is optimal in the space ˙H1 per(0, 2π) × ˙L2(0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0) ∈ Hs per(0, 2π) × L2(0, 2π) with 0 ≤ s < 1, the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) is not null controllable at any time T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Following the proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2, the lack of null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)- (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) cannot be obtained when the time is small, in particular, when 0 < T < 2π ¯u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lack of con- trollability at small time may be possible to obtain by constructing a Gaussian beam, as mentioned in [31, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5] for the interior control case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) at time T = 2π ¯u is inconclusive in both cases, whether there is a control act in density or velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The Non-Barotropic Case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We next consider the Navier-Stokes system for compressible non- barotropic fluids linearized around some constant steady state (¯ρ, ¯u, ¯θ) with ¯ρ, ¯u, ¯θ > 0 \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ρt(t, x) + ¯uρx(t, x) + ¯ρux(t, x) = 0, in (0, T ) × (0, 2π), ut(t, x) − λ + 2µ ¯ρ uxx(t, x) + R¯θ ¯ρ ρx(t, x) + ¯uux(t, x) + Rθx(t, x) = 0, in (0, T ) × (0, 2π), θt(t, x) − κ ¯ρcν θxx(t, x) + R¯θ cν ux(t, x) + ¯uθx(t, x) = 0, in (0, T ) × (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) The initial conditions are (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6) ρ(0, x) = ρ0(x), u(0, x) = u0(x), θ(0, x) = θ0(x), x ∈ (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In this case, we will consider three different problems, based on the act of control, by imposing any one of the following boundary conditions on the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Control in Density: (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7) ρ(t, 0) = ρ(t, 2π) + p(t), u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π), θ(t, 0) = θ(t, 2π), θx(t, 0) = θx(t, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Control in Velocity: (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8) ρ(t, 0) = ρ(t, 2π), u(t, 0) = u(t, 2π) + q(t), ux(t, 0) = ux(t, 2π), θ(t, 0) = θ(t, 2π), θx(t, 0) = θx(t, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Control in Temperature: (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9) ρ(t, 0) = ρ(t, 2π), u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π), θ(t, 0) = θ(t, 2π) + r(t), θx(t, 0) = θx(t, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' for t ∈ (0, T ), where p, q and r are boundary controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In this case also, we want to prove null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) at any given time T > 0 depending on the act of the control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Similar to the barotropic case, we will work on the Hilbert space ( ˙L2(0, 2π))3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We denote the positive constants λ0 := λ + 2µ ¯ρ , κ0 := κ ¯ρcν , and define the set (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='10) S := � (λ0, κ0) : � λ0 κ0 /∈ Q � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We prove the following results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3 Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given time T > 2π ¯u , (λ0, κ0) ∈ S, and initial state (ρ0, u0, θ0) ∈ ( ˙L2(0, 2π))3, there exists a boundary control p ∈ L2(0, T ) such that the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7) is null controllable at time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The following proposition gives a lack of null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7) when the time is small enough, that is, 0 < T < 2π ¯u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3, the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7) is not null controllable at a small time 0 < T < 2π ¯u using any boundary control p ∈ L2(0, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Similar to the barotropic case, we have the null controllability result of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) at time T (large enough) when there is a boundary control acts in the velocity component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let s ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given time T > 2π ¯u , (λ0, κ0) ∈ S, and initial state (ρ0, u0, θ0) ∈ ˙Hs per(0, 2π) × ( ˙L2(0, 2π))2, there exists a boundary control q ∈ L2(0, T ) such that the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)- (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8) is null controllable at time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The following result proves that the space ˙H1 per(0, 2π) × ( ˙L2(0, 2π))2 is optimal for null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0, θ0) ∈ Hs per(0, 2π) × (L2(0, 2π))2 with 0 ≤ s < 1, the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8) is not null controllable at any time T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have similar result when there is a control act in temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let s ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given time T > 2π ¯u , (λ0, κ0) ∈ S and initial state (ρ0, u0, θ0) ∈ ˙Hs per(0, 2π) × ( ˙L2(0, 2π))2, there exists a boundary control r ∈ L2(0, T ) such that the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)- (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9) is null controllable at time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Similar to the previous one (control acts in velocity), we have optimality of the space ˙H1 per(0, 2π) × ( ˙L2(0, 2π))2 in the sense below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0, θ0) ∈ Hs per(0, 2π) × (L2(0, 2π))2 with 0 ≤ s < 1, the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9) is not null controllable at any time T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Following the proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8, lack of null controllability of the systems (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)- (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9) cannot be obtained when the time is small, in particular, when 0 < T < 2π ¯u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' However, this result may be possible to obtain by constructing a Gaussian beam, as mentioned in [31, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5] for the interior control case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) at time T = 2π ¯u is inconclusive in both cases, whether there is a control act in density, velocity, or temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' An Ingham-Type Inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' To prove the null controllability results for both barotropic and non-barotropic systems, we need the following Ingham-type inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15 ( [3, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let {νh n}n∈Z and {νp n}n∈Z be two sequences in C with the following properties: there is N ∈ N, such that (H1) for all n, l ∈ Z, νh n ̸= νh l unless n = l;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (H2) νh n = β + τni + en for all |n| ≥ N;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' where τ > 0, β ∈ C and {en}|n|≥N ∈ ℓ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Also, there exists constants A0 ≥ 0, B0 ≥ δ with δ > 0 and some ǫ > 0, r > 1 for which {νp n}n∈Z satisfies (P1) for all n, l ∈ Z, νp n ̸= νp l unless n = l;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (P2) −ℜ(νp n) |ℑ(νp n)| ≥ �c for some �c > 0 and for all |n| ≥ N;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (P3) |νp n − νp l | ≥ δ |nr − lr| for all n ̸= l with |n| , |l| ≥ N and (P4) ǫ(A0 + B0nr) ≤ |νp n| ≤ A0 + B0nr for all |n| ≥ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We also assume that the families are disjoint, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', � νh n, n ∈ Z � ∩ {νp n, n ∈ Z} = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, for any time T > 2π τ , there exists a positive constant C depending only on T such that � T 0 ����� � n∈Z aneνp nt + � n∈Z bneνh nt ����� 2 dt ≥ C �� n∈Z |an|2e2ℜ(νp n)T + � n∈Z |bn|2 � , (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='11) 4 for all sequences {an}n∈Z and {bn}n∈Z in ℓ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any vector v, we denote its transpose by v† (instead of vT ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Throughout the article, C > 0 denotes a generic constant that may depend on the time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proving null controllability of the systems (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) using a boundary control is equivalent to proving an observability inequality for the corresponding adjoint systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Spectrum of the associated linearized operators (for the adjoint systems) and the above Ingham-type inequality (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='11) plays a crucial role to prove such observability inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) (barotropic fluids), spectrum of the associated adjoint operator consists of two branches of complex eigenvalues, namely, the hyperbolic and parabolic branches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The hyperbolic branch has eigenvalues with the real part converging to − b¯ρ µ0 , whereas real part of the parabolic branch diverges to −∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have obtained explicit expressions of eigenvalues and eigenfunctions in terms of a Riesz basis (See Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6 for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For the non-barotropic fluids (that is, system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)), we get three branches of complex eigenvalues;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' one is of the hyperbolic type, and two are parabolic types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Similar to the barotropic case, the real part of the hyperbolic branch converges to − R¯θ λ0 and the real parts of both parabolic branches diverge to −∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In this case, we have obtained explicit expressions of eigenfunctions and asymptotic behavior of the eigenvalues (Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We also proved that the eigenfunctions form a Riesz basis in ( ˙L2(0, 2π))2 for the barotropic system and ( ˙L2(0, 2π))3 for the non-barotropic system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, by writing the solutions to the corresponding adjoint systems in terms of the eigenfunctions, the null controllability results have been proved using the combined parabolic-hyperbolic Ingham type inequality (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' A vast amount of literature is available on the controllability of Navier-Stokes equations for incom- pressible fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For instance, one can see the works of Coron [12], Coron and Fursikov [13], Fursikov and Imanuvilov [22, 23], Imanuvilov [26, 27], Fern´andez-Cara et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [20, 21], Guerrero [25], Coron and Guerrero [14], Chapouly [4], Coron and Lissy [15], Badra, Ervedoza and Guerrero [1], Coron, Marbach and Sueur [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In comparison, for compressible fluids, less works are available on the Navier-Stokes system’s controllability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In this context, we first mention the work of Ervedoza et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [17], where the authors established local exact controllability of one dimensional compressible Navier-Stokes system at a large time T in the space H3(0, L) × H3(0, L) using two boundary controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This result has been improved in [18] where the null controllability is achieved in the space H1(0, L) × H1(0, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' It is known in [10] that, for barotropic fluids, the one-dimensional compressible Navier-Stokes system linearized around (¯ρ, 0) (with ¯ρ > 0) cannot be null controllable at any time T > 0 by using a boundary control or a localized distributed control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For the linearized system around (¯ρ, ¯u) (with ¯ρ, ¯u > 0), the authors in [8] proved null controllability of the Navier-Stokes equations (with homogeneous periodic boundary conditions) for viscous, compressible isothermal barotropic fluids at time T (large) in the space ˙H1 per(0, 2π) × L2(0, 2π), when there is an interior control act only in the velocity equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' They also proved that the space ˙H1 per(0, 2π) × L2(0, 2π) is optimal in the sense that if we choose the initial state from ˙Hs per(0, 2π) × L2(0, 2π) with 0 ≤ s < 1, the linearized system cannot be null controllable at any time T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In the case of linearization around (¯ρ, ¯u) with ¯ρ, ¯u > 0, the compressible Navier- Stokes system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) is equivalent (in some sense) to the transformed system in [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Using a moving distributed control, the authors in [32] proved the null controllability of a one-dimensional structurally damped wave equation in the space Hs+2 × Hs for s > 15 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' There is a generalization to this result in higher dimensions by Chaves-Silva, Rosier, and Zuazua [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Inspired by the work of Martin, Rosier and Rouchon [32], Chowdhury and Mitra in [7] proved the null controllability of the same compressible Navier-Stokes system linearized around (¯ρ, ¯u) at time T (large) by using a boundary control that acts on the velocity component through periodic conditions, provided the initial states are regular enough, more precisely, in the space ˙H1+s per (0, 2π) × ˙Hs per(0, 2π) with s > 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' However, the question of null controllability at a large time T in the space ˙H1+s per (0, 2π)× ˙Hs per(0, 2π) with 0 < s ≤ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5 was unaddressed in [7], and up to the author’s knowledge, there has been no improvement in this result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In this article, we have answered this question (Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3 and Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have proved null controllability of the linearized compressible Navier-Stokes system for barotropic fluids (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) at large time T in the space ˙Hs per(0, 2π) × ˙L2(0, 2π) with s ≥ 1 by using one boundary control acting in the velocity component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have also proved that our result is optimal in the sense that the system cannot be null controllable by a boundary control (acts in velocity) when the initial states belong to the space ˙Hs per(0, 2π)× ˙L2(0, 2π) with 0 ≤ s < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' When a control acts only in the density component through periodic boundary conditions, we have established null controllability of the linearized system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) at large time T in the space ˙L2(0, 2π) × ˙L2(0, 2π) and that null controllability fails at small time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 5 For the non-barotropic fluids, it is known in [31] that the compressible Navier-Stokes system linearized around (¯ρ, 0, ¯θ) (with ¯ρ, ¯θ > 0) is not null controllable at any time T > 0 by using a boundary control or a localized distributed control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For the linearization around (¯ρ, ¯u, ¯θ) with ¯ρ, ¯u, ¯θ > 0, it is only known that the system is not null controllable at small time by a localized interior control or a boundary control acting on the velocity component (see [31, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5] for instance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' To the author’s knowledge, no controllability result is known for the linearized system around (¯ρ, ¯u, ¯θ), that is, the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5), when the time is large, which is studied for the first time in this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The main difficulty in the linearized compressible Navier-Stokes system is the presence of transport and parabolic coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The thermoelasticity system is also an example involving both transport and parabolic effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lebeau and Zuazua [30] have studied distributed Controllability for thermoelasticity systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Following [30], Beauchard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' in [2] proved null controllability for some coupled transport- parabolic systems when an interior control acts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' They proved null controllability at large time T in the space L2(0, 2π) × ˙L2(0, 2π) by one interior control acts in the density equation and in the space ˙H2(0, 2π) × H2(0, 2π) when only one interior control acts in the velocity equation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' see also [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The main contribution of this article is that we prove the null controllability of the one-dimensional linearized compressible Navier-Stokes system for both barotropic and non-barotropic fluids by using only one boundary control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We consider all the possible cases of the act of control for both systems (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We get better regularity of the initial states for the controllability of barotropic system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) compared to [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In the case of non-barotropic fluids, since the transport equation does not affect the temperature equation, it is pretty natural to obtain similar spaces of null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The combined parabolic-hyperbolic Ingham type inequality (Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15) helps us obtain each case’s best possible results (with respect to the state space).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Our results cannot be obtained as a consequence of interior control results by the extension method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' When the boundary control acts in the density component, we prove that both systems (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) are not null controllable at small time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The proof is inspired from [2] and is independent of that in [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The result stated in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1 is similar to the results in [2], showing that we can achieve the space ( ˙L2(0, 2π))2 in the case of only one boundary control (acts in density) also.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Likewise the case of interior control [8], we also obtain similar results for our boundary control case (acts in velocity) (Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3 and Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The rest of the article is organized as follows: – In Section 2, we prove the null controllability of the linearized compressible Navier-Stokes system for barotropic fluids (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) at a large time T using a boundary control that acts either in density or velocity, that is, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1 and Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The proofs of lack of null controllability at small time T (Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) and at any time T with less regular initial states (Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) are also included in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' – In Section 3, we give all the null controllability results of linearized compressible Navier-Stokes system for non-barotropic fluids (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) based on the act of the control, namely the proofs of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9 and Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have also included the proofs of lack of null controllability results at small time T (Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8) and at any time T when the initial states are less regular (Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='10 and Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' – In section 4, we give few comments and discuss some open problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' – For the sake of completeness, we give the proof of well-posedness result (Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) for the non-barotropic system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The author would like to thank his PhD supervisor Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Shirshendu Chowdhury for suggesting this problem and fruitful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The author would also like to thank Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Rajib Dutta for careful reading and improvement of the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This work is supported by the Prime Minister’s Research Fellowship (ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 41-1/2018-TS-1/PMRF), Government of India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Controllability of Linearized Compressible Navier-Stokes System (Barotropic) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Functional Setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We denote the positive constants µ0 := µ ¯ρ , b := aγ¯ργ−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 6 We define the inner product in the space (L2(0, 2π))2 as follows �� f1 g1 � , � f2 g2 �� := b � 2π 0 f1(x)f2(x)dx + ¯ρ � 2π 0 g1(x)g2(x)dx, for fi, gi ∈ L2(0, 2π), i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We write the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) in abstract differential equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) U ′(t) = AU(t), U(0) = U0, t ∈ (0, T ), where U := (ρ, u)†, U0 := (ρ0, u0)† and the operator A is given by A := � −¯u∂x −¯ρ∂x −b∂x µ0∂xx − ¯u∂x � with the domain D(A) := H1 per(0, 2π) × H2 per(0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The adjoint of the operator A∗ is given by A∗ := � ¯u∂x ¯ρ∂x b∂x µ0∂xx + ¯u∂x � with the same domain D(A∗) = D(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The adjoint system is then given by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 −σt(t, x) − ¯uσx(t, x) − ¯ρvx(t, x) = 0, in (0, T ) × (0, 2π), −vt(t, x) − µ0vxx(t, x) − ¯uvx(t, x) − bσx(t, x) = 0, in (0, T ) × (0, 2π), σ(t, 0) = σ(t, 2π), v(t, 0) = v(t, 2π), vx(t, 0) = vx(t, 2π), t ∈ (0, T ), σ(T, x) = σT (x), v(T, x) = vT (x), x ∈ (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now write the adjoint system with source terms f and g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 −σt(t, x) − ¯uσx(t, x) − ¯ρvx(t, x) = f, in (0, T ) × (0, 2π), −vt(t, x) − µ0vxx(t, x) − ¯uvx(t, x) − bσx(t, x) = g, in (0, T ) × (0, 2π), σ(t, 0) = σ(t, 2π), v(t, 0) = v(t, 2π), vx(t, 0) = vx(t, 2π), t ∈ (0, T ), σ(T, x) = σT (x), v(T, x) = vT (x), x ∈ (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Well-Posedness of the System.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This section devotes to the well-posedness of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) under the boundary conditions (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) and the initial conditions (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2), and the adjoint system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' When there is no control act on the system, we have the existence of solutions to the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) using semigroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1 ( [8, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The operator A (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' A∗) generates a C0-semigroup of contractions on (L2(0, 2π))2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Moreover, for every U0 ∈ (L2(0, 2π))2 the system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) admits a unique solution U in C0([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2) and ∥U(t)∥(L2(0,2π))2 ≤ C ∥U0∥(L2(0,2π))2 for all t ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The following lemma shows the existence of a unique solution to the adjoint system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2 ( [24]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given source term (f, g) ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2), the adjoint system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) (with (σT , vT ) = (0, 0)) has a unique solution (σ, v) in the space C0([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' L2(0, 2π)) × [C0([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' L2(0, 2π)) ∩ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' H1 per(0, 2π))].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Once we have the existence results of the homogeneous system (without any boundary control) associated to the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1), we can now guarantee the existence of a unique solution to the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) (in the sense of transposition) when there is a boundary control p (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' q) act in density (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' velocity) in the space L2(0, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Before writing the statements, let us first define the notion of a solution in the sense of transposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 7 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (1) For any given initial state (ρ0, u0) ∈ (L2(0, 2π))2 and boundary control p ∈ L2(0, T ), a function (ρ, u) ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2) is a solution to the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) if for any given (f, g) ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2), the following identity holds true: � T 0 � 2π 0 ρ(t, x)f(t, x)dxdt + � T 0 � 2π 0 u(t, x)g(t, x)dxdt = ⟨(ρ0(·), u0(·)), (σ(0, ·), v(0, ·))⟩L2×L2 + � T 0 � ¯uσ(t, 2π) + ¯ρv(t, 2π) � p(t)dt, where (σ, v) is the unique weak solution to the adjoint system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) with (σt, vT ) = (0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (2) For any given initial state (ρ0, u0) ∈ (L2(0, 2π))2 and boundary control q ∈ L2(0, T ), a function (ρ, u) ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (H1(0, 2π))′ × L2(0, 2π)) is a solution to the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) if for any given (f, g) ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' H1(0, 2π) × L2(0, 2π)), the following identity holds true: � T 0 ⟨ρ(t, ·), f(t, ·)⟩(H1)′,H1 dt + � T 0 � 2π 0 u(t, x)g(t, x)dxdt = ⟨(ρ0(·), u0(·)), (σ(0, ·), v(0, ·))⟩L2×L2 + � T 0 � bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π) � q(t)dt, (σ, v) is the unique weak solution to the adjoint system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) with (σT , vT ) = (0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4 ( [3, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0) ∈ (L2(0, 2π))2 and boundary control p ∈ L2(0, T ), the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) admits a unique solution (ρ, u) in the space C0([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' L2(0, 2π)) × [C0([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' L2(0, 2π)) ∩ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' H1 per(0, 2π))].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5 ( [9, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0) ∈ (L2(0, 2π))2 and boundary control q ∈ L2(0, T ), the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) admits a unique solution (ρ, u) in the space L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (H1 per(0, 2π))′) × L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' L2(0, 2π)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Moreover, the operator q �→ (ρ, u) is linear and continuous from L2(0, T ) into L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (H1 per(0, 2π))′) × L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' L2(0, 2π)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Spectral Analysis of A∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We denote the spectrum of A∗ by σ(A∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The following lemma gives behavior of the spectrum of the operator A∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The following statements holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (1) ker(A∗) = span �� 1 1 � , � 1 −1 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (2) sup {ℜ(ν) : ν ∈ σ(A∗), ν ̸= 0} < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (3) The spectrum of A∗ consists of the eigenvalue 0 and pairs of complex eigenvalues {νh n, νp n}n∈Z∗ given as νh n = −1 2 � µ0n2 − n � µ2 0n2 − 4b¯ρ − 2¯uin � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) νp n = −1 2 � µ0n2 + n � µ2 0n2 − 4b¯ρ − 2¯uin � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (4) The eigenvalues satisfy the following properties \uf8f1 \uf8f2 \uf8f3 lim|n|→∞ ℜ(νh n) = −ω0, lim|n|→∞ ℜ(νp n) n2 = −µ0 lim|n|→∞ ℑ(νh n) n = ¯u, lim|n|→∞ ℑ(νp n) n = ¯u with ω0 = b¯ρ µ0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (5) The eigenfunctions of A∗ corresponding to νh n and νp n are respectively (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6) Φh n := � ξh n ηh n � = � ¯ρ νn 2 − ¯u � einx, Φp n := � ξp n ηp n � = � ¯ρ νn 1 −¯u 1 � einx, for n ∈ Z, where (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7) νn 1 := 1 2 � µ0in + 2¯u + i � µ2 0n2 − 4b¯ρ � , νn 2 := 1 2 � µ0in + 2¯u − i � µ2 0n2 − 4b¯ρ � , n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 8 (6) The eigenfunctions {Φh n, Φp n : n ∈ Z∗} of A∗ forms a Riesz basis of ( ˙L2(0, 2π))2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We will prove only the parts (2), (3) and (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Part (4) can be proved using part (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let Φ = (ξ, η)† be the eigenfunction of A∗ corresponding to the eigenvalue ν ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, we have � A∗ � ξ η � , � ξ η �� = � ν � ξ η � , � ξ η �� , that is, b¯u � 2π 0 ξ(x)ξx(x)dx + b¯ρ � 2π 0 ξ(x)ηx(x)dx + µ0¯ρ � 2π 0 η(x)ηxx(x)dx + ¯ρ¯u � 2π 0 η(x)ηx(x)dx +b¯ρ � 2π 0 ξx(x)η(x)dx = ν � 2π 0 |ξ(x)|2 dx + ν � 2π 0 |η(x)|2 dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' An integration by parts yields ℜ(ν) = − ∥ηx∥2 L2(0,2π) |ξ|2 L2(0,2π) + ∥η∥2 L2(0,2π) < 0, which proves part (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We denote ϕn(x) := einx, n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then the set �� ϕn 0 � , � 0 ϕn �� forms an orthogonal basis of (L2(0, 2π))2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let us define En := � ϕn 0 0 ϕn � , and Φn := (ξn, ηn)†, for all n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, we have the following relation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8) A∗EnΦn = inEnRnΦn, n ∈ Z, where the matrix Rn for n ∈ Z is given by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9) Rn := � ¯u ¯ρ b µ0in + ¯u � , n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, if (αn, νn) is an eigenpair of Rn, then (Enαn, inνn) will be an eigenpair of A∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Therefore, it’s remains to find the eigenvalues and eigenvectors of the matrix Rn for n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The characteristics equation of Rn is (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='10) ν2 − (µ0in + 2¯u)ν + µ0¯uin + ¯u2 − b¯ρ = 0, for all n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Therefore, the eigenvalues of the matrix Rn are νn 1 := 1 2 � µ0in + 2¯u + i � µ2 0n2 − 4b¯ρ � , νn 2 := 1 2 � µ0in + 2¯u − i � µ2 0n2 − 4b¯ρ � , for all n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Note that, 0 and ¯u cannot be an eigenvalue of the matrix Rn for all n ∈ Z∗ and ¯u cannot be an eigenvalue of Rn for all n ∈ Z, because b, ¯ρ, µ0, ¯u > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' To find the eigenvectors of the matrix Rn, we first consider the equation Rnαh n = νn 2 αh n, n ∈ Z, where αh n := (αn 1 , αn 2 )†, that is, (¯u − νn 2 )αn 1 + ¯ραn 2 = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='11) bαn 1 + (µ0in + ¯u − νn 2 )αn 2 = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='12) for all n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' One solution is given by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='13) αh n = � αn 1 αn 2 � := � ¯ρ νn 2 − ¯u � , n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We next consider the equation Rnαp n = νn 1 αp n, n ∈ Z, 9 where αp n := (βn 1 , βn 2 )†, that is, (¯u − νn 1 )βn 1 + ¯ρβn 2 = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='14) bβn 1 + (µ0in + ¯u − νn 1 )βn 2 = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15) for all n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' One solution is given by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='16) αp n = � βn 1 βn 2 � := � ¯ρ νn 1 −¯u 1 � , n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, the eigenvectors of Rn corresponding to the eigenvalues νn 2 and νn 1 are respectively αh n = � αn 1 αn 2 � = � ¯ρ νn 2 − ¯u � , αp n = � βn 1 βn 2 � = � ¯ρ νn 1 −¯u 1 � , n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Hence, the eigenvalues of the operator A∗ are νh n := inνn 2 = 1 2 � −µ0n2 + n � µ2 0n2 − 4b¯ρ + 2¯uin � , νp n := inνn 1 = 1 2 � −µ0n2 − n � µ2 0n2 − 4b¯ρ + 2¯uin � for n ∈ Z and the corresponding eigenfunctions are respectively Φh n := � ξh n ηh n � = Enαh n = αh neinx, Φp n := � ξp n ηp n � = Enαp n = αp neinx, for all n ∈ Z and x ∈ (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Note that, for all |n| large, all the eigenvalues of A∗ are simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' There may be multiple eigenvalues of A∗, depending on the constants ¯ρ, ¯u, µ0, b, but that would be only finitely many.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, without loss of generality, we can assume that A∗ has simple eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Indeed, for the case of finite number of multiple eigenvalues, one can adapt a similar approach as in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2 of [8] (by considering suitable generalized eigenfunctions) to prove the required observability inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' One can also see [29, Remarks, page 178] for a version of Ingham inequality in the case of repeated eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Observation Estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any eigenvalue ν, let us denote the corresponding eigenfunction of A∗ by Φν and let E(A∗) be the set of all eigenfunctions of A∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now define the observation operators associated to the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) as follows: B∗ ρΦν := ¯uξ(2π) + ¯ρη(2π), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='17) B∗ uΦν := bξ(2π) + ¯uη(2π) + µ0ηx(2π), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='18) for all Φν = (ξ, η, ζ) ∈ E(A∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The following result proves that these observation terms are non-zero for all Φ ∈ E(A∗) \\ {Φ0}, and have positive lower bounds for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For all Φν ∈ E(A∗) \\ {Φ0}, the observation operators satisfy B∗ ρΦν ̸= 0 and B∗ uΦν ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Moreover, we have the following estimates ��B∗ ρΦh n �� ≥ C, ��B∗ ρΦp n �� ≥ C, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='19) ��B∗ uΦh n �� ≥ C |n|, |B∗ uΦp n| ≥ C |n| , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='20) for some C > 0 and all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Note that B∗ ρΦh n = ¯uξh n(2π) + ¯ρηh n(2π) = ¯uαn 1 + ¯ραn 2 = νn 2 αn 1 ̸= 0, for all n ∈ Z∗, thanks to the equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We similarly have from equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='14) B∗ ρΦp n = ¯uξp n(2π) + ¯ρηp n(2π) = ¯uβn 1 + ¯ρβn 2 = νn 1 βn 1 ̸= 0, for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The estimates on B∗ ρΦh n and B∗ ρΦp n are now follows directly from the above expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now compute B∗ uΦh n = bξh n(2π) + ¯uηh n(2π) + µ0(ηh n)x(2π) = bαn 1 + (¯u + µ0in)αn 2 = νn 2 αn 2 ̸= 0, 10 for all n ∈ Z∗, thanks to the equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since |αn 2 | ≥ C |n| and νn 2 is bounded for all n ∈ Z∗, the estimate on B∗ uΦh n follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For the last quantity, note that B∗ uΦp n = bξp n(2π) + ¯uηp n(2π) + µ0(ηp n)x(2π) = bβn 1 + (¯u + µ0in)βn 2 = νn 1 βn 2 ̸= 0, for all n ∈ Z∗, thanks to the equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The estimate on B∗ uΦp n is now follows directly as |νn 1 | ≥ C |n| for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Observability Inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since the eigenfunctions E(A∗)\\{Φ0} form a Riesz basis in ( ˙L2(0, 2π))2, therefore any (σT , vT ) ∈ ( ˙L2(0, 2π))2 can be written as (σT , vT )† = � n∈Z∗ � ah nΦh n + ap nΦp n � , for some (ah n)n∈Z∗, (ap n)n∈Z∗ ∈ ℓ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then the solution to the adjoint system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) is (σ(t, x), v(t, x))† = � n∈Z∗ ah neνh n(T −t)Φh n + � n∈Z∗ ap neνp n(T −t)Φp n, for (t, x) ∈ (0, T ) × (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus we get σ(t, x) = ¯ρ � n∈Z∗ ah neνh n(T −t)einx + � n∈Z∗ ap neνp n(T −t) ¯ρ νn 1 − ¯ueinx, and v(t, x) = � n∈Z∗ ah neνh n(T −t)(νn 2 − ¯u)einx + � n∈Z∗ ap neνp n(T −t)einx, for all (t, x) ∈ (0, T ) × (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' To prove the observability inequality, we need an upper bound of the norm of (σ(0), v(0))† and a lower bound estimate for the respective observation terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We first estimate the upper bounds of the norm of (σ(0), v(0))†.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have ��(σ(0), v(0))†��2 ( ˙L2(0,2π))2 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='21) ≤ C � � n∈Z∗ ��ah n ��2 � 1 + |νn 2 − ¯u|2� e2ℜ(νh n)T ��einx��2 ˙L2(0,2π) + � n∈Z∗ |ap n|2 � 1 |νn 1 − ¯u|2 + 1 � e2ℜ(νp n)T ��einx��2 ˙L2(0,2π) � ≤ C � � n∈Z∗ ��ah n ��2 + � n∈Z∗ |ap n|2 e2ℜ(νp n)T � , since the sequences 1 + |νn 2 − ¯u|2 and 1 + 1 |νn 1 −¯u| 2 are bounded for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We also have ��(σ(0), v(0))†��2 ˙H−s per(0,2π)× ˙L2(0,2π) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='22) ≤ C � � n∈Z∗ ��ah n ��2 � 1 + |νn 2 − ¯u|2� ��einx��2 ˙H−s per(0,2π) + � n∈Z∗ |ap n|2 � 1 |νn 1 − ¯u|2 + 1 � e2ℜ(νp n)T ��einx��2 ˙L2(0,2π) � ≤ C � � n∈Z∗ ��ah n ��2 1 |n|2s + � n∈Z∗ |ap n|2 e2ℜ(νp n)T � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now find the lower bounds of the respective observation terms and prove our main results for the barotropic case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We use the Ingham-type inequality (Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15) for the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Note that, the eigen- values (νh n)n∈Z∗ satisfies hypotheses (H1)-(H2) with τ = ¯u, β = −ω0 and (νp n)n∈Z∗ satisfies hypotheses (P1)-(P4) with r = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 11 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let T > 2π ¯u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The observability inequality is given by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='23) � T 0 |¯uσ(t, 2π) + ¯ρv(t, 2π)|2 dt ≥ C ��(σ(0), v(0))†��2 ( ˙L2(0,2π))2 , for all (σT , vT )† ∈ D(A∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have the observation term � T 0 |σ(t, 2π) + v(t, 2π)|2 dt = � T 0 � � n∈Z∗ ah nB∗ ρΦh neνh n(T −t) + � n∈Z∗ ap nB∗ ρΦp neνp n(T −t) �2 dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Using the combined parabolic-hyperbolic Ingham type inequality (Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15) and the observation estimates (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='19), we obtain � T 0 |σ(t, 2π) + v(t, 2π)|2 dt ≥ C � � n∈Z∗ ��ah n ��2 ��B∗ ρΦh n ��2 e2ℜ(νh n)T + � n∈Z∗ |ap n|2 ��B∗ ρΦp n ��2 e2ℜ(νp n)T � ≥ C � � n∈Z∗ ��ah n ��2 + � n∈Z∗ |ap n|2 e2ℜ(νp n)T � This estimate together with the norm estimate (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='21), the observability inequality (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='23) is now follows directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let T > 2π ¯u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The observability inequality is given by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='24) � T 0 |bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π)|2 dt ≥ C ��(σ(0), v(0))†��2 ˙H−s per(0,2π)× ˙L2(0,2π) , for all (σT , vT )† ∈ D(A∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have � T 0 |bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π)|2 dt = � T 0 � � n∈Z∗ ah kB∗ uΦh neνh n(T −t) + � n∈Z∗ ap nB∗ uΦp neνp n(T −t) �2 dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Using the combined parabolic-hyperbolic Ingham type inequality (Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15), we obtain � T 0 |bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π)|2 dt ≥ C � � n∈Z∗ ��ah n ��2 ��B∗ uΦh n ��2 e2ℜ(νh n)T + � n∈Z∗ |ap n|2 |B∗ uΦp n|2 e2ℜ(νp n)T � ≥ C � � n∈Z∗ ��ah n ��2 1 |n|2 + � n∈Z∗ |ap n|2 |n|2 e2ℜ(νp n)T � , thanks to the estimate (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For s ≥ 1, we have 1 |n|2 ≥ 1 |n|2s for all n ∈ Z∗ and therefore � T 0 |bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π)|2 dt ≥ C � � n∈Z∗ ��ah n ��2 1 |n|2s + � n∈Z∗ |ap n|2 |n|2 e2ℜ(νp n)T � ≥ C ��(σ(0), v(0))†�� ˙H−s per(0,2π)× ˙L2(0,2π) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This proves the observability inequality (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lack of Null Controllability for Less Regular Initial States.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For (σT , vT )† = Φh n, the solution to the adjoint system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) is (σ(t, x), v(t, x))† = eνh n(T −t)Φh n(x), for (t, x) ∈ (0, T ) × (0, 2π) and n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For all n ∈ Z∗, we have the following estimate ��Φh n �� ˙H−s per(0,2π)× ˙L2(0,2π) ≥ C |n|s , and therefore ��(σ(0), v(0))†��2 ˙H−s per× ˙L2 ≥ C |n|2s , 12 for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' On the other hand, we have the upper bound of the observation term � T 0 |bσ(t, 2π) + ¯uv(t, 2π) + µ0vx(t, 2π)|2 dt ≤ C |n|2 , for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, if the observability inequality (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='24) holds, then we get C |n|2s ≤ C |n|2 =⇒ |n|2−2s ≤ C, which is not possible since 0 ≤ s < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lack of Controllability at Small Time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We prove that the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) is not null control- lable when the time is small, that is, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We construct an approximate solution for the corresponding transport equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The idea of constructing an approximate solution for the transport equation was addressed in [2], where the authors proved a lack of null controllability result at a small time in the case of an interior control (acts in the transport equation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Very recently, in [6, Section 6], this approach has been applied to a coupled transport-elliptic system in the case of a boundary control (acts in density).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We will follow mainly the proof given in [6] to prove our lack of null controllability result when the time is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let 0 < T < 2π ¯u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Following the notations in the proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2, Consider the transport equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='25) \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ˜σt(t, x) + ¯u˜σx(t, x) − b¯ρ µ0 ˜σ(t, x) = 0, (t, x) ∈ (0, T ) × (0, 2π), ˜σ(t, 0) = ˜σ(t, 2π), t ∈ (0, T ), ˜σ(T, x) = ˜σT (x), x ∈ (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since ¯uT < 2π, there exists a nontrivial function ˜σT ∈ C∞(0, 2π) with supp(˜σT ) ⊂ (¯uT, 2π) such that supp(˜σ) ⊂ (0, T ) × (¯uT, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let N > 0 be a fixed integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We define the polynomial P N(x) := N � l=−N (x − l), x ∈ (0, 2π) and the function ˜σN T := P N � −i d dx � ˜σT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We write the terminal state as ˜σT (x) := � n∈Z aneinx, x ∈ (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, the solution to the transport equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='25) is ˜σN T (x) = � n∈Z an N � l=−N � −i d dx − l � einx = � n∈Z an N � l=−N (n − l) einx = � n∈Z anP N(n)einx, for (t, x) ∈ (0, T ) × (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Note that P N(n) = 0 for all |n| ≤ N and therefore ˜σN T (x) = � |n|≥N+1 anP N(n)einx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' With this ˜σN T , let us now consider the following system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='26) \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ˜σt(t, x) + ¯u˜σx(t, x) − b¯ρ µ0 ˜σ(t, x) = 0, (t, x) ∈ (0, T ) × (0, 2π), ˜σ(t, 0) = ˜σ(t, 2π), t ∈ (0, T ), ˜σ(T, x) = ˜σN T (x), x ∈ (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 13 Since supp(˜σN T ) ⊂ supp(˜σT ) ⊂ (T, 2π ¯u ), the solution satisfies ˜σN(t, 0) = ˜σN(t, 2π) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now consider the following adjoint system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='27) \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 σt(t, x) + ¯uσx(t, x) + ¯ρvx(t, x) = 0, (t, x) ∈ (0, T ) × (0, 2π), vt(t, x) − µ0vxx(t, x) + ¯uvx(t, x) + bσx(t, x) = 0, (t, x) ∈ (0, T ) × (0, 2π), σ(t, 0) = σ(t, 2π), t ∈ (0, T ), v(t, 0) = v(t, 2π), vx(t, 0) = vx(t, 2π), t ∈ (0, T ), σ(T, x) = ˜σN T (x), v(T, x) = vN T (x), x ∈ (0, 2π), where we choose vN T such that (˜σN T , vN T )† = � |n|≥N+1 ˜ah nΦh n with ˜ah n¯ρ := anP N(n) for all |n| ≥ N + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We write the solutions to the systems (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='26) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='27) respectively as ˜σN(t, x) = � |n|≥N+1 anP N(n)e(¯uin− b¯ ρ µ0 )(T −t)einx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='28) σN(t, x) = � |n|≥N+1 anP N(n)eνh n(T −t)einx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='29) vN(t, x) = � |n|≥N+1 anP N(n)νn 2 − ¯u ¯ρ eνh n(T −t)einx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='30) for (t, x) ∈ [0, T ]×[0, 2π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We prove that the solution component σN of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='27) approximates the solution ˜σN of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Indeed, ��σN(·, x) − ˜σN(·, x) ��2 L2(0,T ) ≤ � |n|≥N+1 |an|2 ��P N(n) ��2 ����eνh n(T −t) − e � ¯uin− b¯ ρ µ0 � (T −t) ���� 2 L2(0,T ) ≤ � |n|≥N+1 |an|2 ��P N(n) ��2 ������ e − µ0n 2 � n− � n2− 4b¯ ρ µ2 0 � (T −t) − e− b¯ ρ µ0 (T −t) ������ 2 L2(0,T ) ≤ � |n|≥N+1 1 |n|2 |an|2 ��P N(n) ��2 , for all x ∈ [0, 2π] and therefore ��σN(·, x) − ˜σN(·, x) ��2 L2(0,T ) ≤ C |N|2 � |n|≥N+1 |an|2 ��P N(n) ��2 , for all x ∈ [0, 2π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We also find L2- estimate of the solution component vN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have for all x ∈ [0, 2π] ��vN(·, x) ��2 L2(0,T ) ≤ � |n|≥N+1 |an|2 ��P N(n) ��2 |νn 2 − ¯u|2 ¯ρ2 ���eνh n(T −t)��� 2 L2(0,T ) ≤ C � |n|≥N+1 |an|2 ��P N(n) ��2 1 |n|2 ≤ C |N|2 � |n|≥N+1 |an|2 ��P N(n) ��2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let us now suppose that the following observability inequality holds � T 0 ��¯uσN(t, 2π) + ¯ρvN(t, 2π) ��2 dt ≥ C ��(σN(0), vN(0)) ��2 (L2(0,2π))2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 14 Then, we have ��(σN(0), vN(0)) ��2 (L2(0,2π))2 ≤ C � T 0 ��¯uσN(t, 2π) + ¯ρvN(t, 2π) ��2 dt ≤ C � T 0 � ¯u2 ��(σN(t, 2π) − ˜σN(t, 2π)) ��2 + ¯u2 ��˜σN(t, 2π) ��2 + ¯ρ2 ��vN(t, 2π) ��2� dt ≤ C N 2 � |n|≥N+1 |an|2 ��P N(n) ��2 , as we have ˜σN(t, 0) = 0 = ˜σN(t, 2π) for all t ∈ (0, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus we get ��σN(0) ��2 L2(0,2π) ≤ ��(σN(0), vN(0))†��2 (L2(0,2π))2 ≤ C N 2 � |n|≥N+1 |an|2 ��P N(n) ��2 ≤ C N 2 ��σN(0) ��2 L2(0,2π) , since ℜ(νh n) is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Therefore, 1 ≤ C N 2 for all N and hence the above inequality cannot hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This is a contradiction and the proof is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Controllability of Linearized Compressible Navier-Stokes System (Non-barotropic) We denote the positive constants λ0 := λ + 2µ ¯ρ , κ0 := κ ¯ρcν , and from now on-wards, we denote cν by c0 to distinguish it from the eigenvalue ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Functional Setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We define the inner product in the space (L2(0, 2π))3 as follows �\uf8eb \uf8ec \uf8ed f1 g1 h1 \uf8f6 \uf8f7 \uf8f8 , \uf8eb \uf8ec \uf8ed f2 g2 h2 \uf8f6 \uf8f7 \uf8f8 � := R¯θ � 2π 0 f1(x)f2(x)dx + ¯ρ2 � 2π 0 g1(x)g2(x)dx + ¯ρ2c0 ¯θ � 2π 0 h1(x)h2(x)dx, for fi, gi, hi ∈ L2(0, 2π), i = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We write the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) in abstract differential equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) U ′(t) = AU(t), U(0) = U0, t ∈ (0, T ), where U := (ρ, u, θ)†, U0 := (ρ0, u0, θ0)† and the operator A is given by A := \uf8eb \uf8ec \uf8ec \uf8ed −¯u∂x −¯ρ∂x 0 − R¯θ ¯ρ ∂x λ0∂xx − ¯u∂x −R∂x 0 − R¯θ c0 ∂x κ0∂xx − ¯u∂x \uf8f6 \uf8f7 \uf8f7 \uf8f8 with the domain (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) D(A) := H1 per(0, 2π) × (H2 per(0, 2π))2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The adjoint of the operator A∗ is given by A∗ := \uf8eb \uf8ec \uf8ec \uf8ed ¯u∂x ¯ρ∂x 0 R¯θ ¯ρ ∂x λ0∂xx + ¯u∂x R∂x 0 R¯θ c0 ∂x κ0∂xx + ¯u∂x \uf8f6 \uf8f7 \uf8f7 \uf8f8 with the same domain D(A∗) = D(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The adjoint system is given by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 −σt − ¯uσx − ¯ρvx = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' in (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ) × (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' −vt − λ0vxx − R¯θ ¯ρ σx − ¯uvx − Rϕx = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' in (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ) × (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' −ϕt − κ0ϕxx − R¯θ c0 vx − ¯uϕx = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' in (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ) × (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' σ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 0) = σ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' v(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 0) = v(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' vx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 0) = vx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' t ∈ (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ϕ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 0) = ϕ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ϕx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 0) = ϕx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' t ∈ (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' σ(T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = σT (x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' v(T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = vT (x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ϕ(T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = ϕT (x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x ∈ (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 15 with (σT ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' vT ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ϕT ) is a terminal state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We also write the following system with source terms f, g, and h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 −σt − ¯uσx − ¯ρvx = f, in (0, T ) × (0, 2π), −vt − λ0vxx − R¯θ ¯ρ σx − ¯uvx − Rϕx = g, in (0, T ) × (0, 2π), −ϕt − κ0ϕxx − R¯θ c0 vx − ¯uϕx = h, in (0, T ) × (0, 2π), σ(t, 0) = σ(t, 2π), v(t, 0) = v(t, 2π), vx(t, 0) = vx(t, 2π), t ∈ (0, T ), ϕ(t, 0) = ϕ(t, 2π), ϕx(t, 0) = ϕx(t, 2π), t ∈ (0, T ), σ(T, x) = σT (x), v(T, x) = vT (x), ϕ(T, x) = ϕT (x), x ∈ (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Well-Posedness of the System.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The operator A generates a C0-semigroup of contractions on (L2(0, 2π))3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Moreover, for every U0 ∈ (L2(0, 2π))3 the system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) admits a unique solution U in C0([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))3) and ∥U(t)∥(L2(0,2π))3 ≤ C ∥U0∥(L2(0,2π))3 for all t ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2 ( [31]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any f, g, h ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))3), the adjoint system (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) (with (σT , vT , ϕT ) = (0, 0, 0)) has a unique solution (σ, v, ϕ) in the space C0([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' L2(0, 2π)) × [C0([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' L2(0, 2π)) ∩ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' H1 per(0, 2π))]2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We give the following definitions of solutions based on the act of the controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control p ∈ L2(0, T ), we say (ρ, u, θ) ∈ (L2(0, 2π))3 is a solution to the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7) if for any (f, g, h) ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))3), the following identity holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' � T 0 � 1 0 ρ(t, x)f(t, x)dxdt + � T 0 � 1 0 u(t, x)g(t, x)dxdt + � T 0 � 1 0 θ(t, x)h(t, x)dxdt = � 1 0 ρ0(x)σ(0, x)dx + � 1 0 u0(x)v(0, x)dx + � 1 0 θ0(x)ϕ(0, x)dx + R¯θ � T 0 � ¯uσ(t, 2π) + ¯ρv(t, 2π) � p(t)dt, where (σ, v, ϕ) is the solution to the adjoint system (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) with (σT , vT , ϕT ) = (0, 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control q ∈ L2(0, T ), we say (ρ, u, θ) ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (H1(0, 2π))′) × L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2) is a solution to the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)- (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8) if for any (f, g, h) ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' H1(0, 2π))×L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2), the following identity holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' � T 0 ⟨ρ(t, ·), f(t, ·)⟩(H1(0,2π))′,H1(0,2π) dxdt + � T 0 � 1 0 u(t, x)g(t, x)dxdt + � T 0 � 1 0 θ(t, x)h(t, x)dxdt = � 1 0 ρ0(x)σ(0, x)dx + � 1 0 u0(x)v(0, x)dx + � 1 0 θ0(x)ϕ(0, x)dx + � T 0 � R¯θ¯ρσ(t, 2π) + λ0¯ρ2vx(t, 2π) + ¯ρ2¯uv(t, 2π) + R¯ρ2ϕ(t, 2π) � q(t)dt, where (σ, v, ϕ) is the solution to the adjoint system (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) with (σT , vT , ϕT ) = (0, 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control r ∈ L2(0, T ), we say (ρ, u, θ) ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (H1(0, 2π))′) × L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2) is a solution to the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)- (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8) if for any (f, g, h) ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' H1(0, 2π))×L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2), the following identity holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' � T 0 ⟨ρ(t, ·), f(t, ·)⟩(H1(0,2π))′,H1(0,2π) dxdt + � T 0 � 1 0 u(t, x)g(t, x)dxdt + � T 0 � 1 0 θ(t, x)h(t, x)dxdt = � 1 0 ρ0(x)σ(0, x)dx + � 1 0 u0(x)v(0, x)dx + � 1 0 θ0(x)ϕ(0, x)dx + � T 0 � R¯ρ2v(t, 2π) + ¯ρ2c0¯u ¯θ ϕ(t, 2π) + ¯ρ2c0κ0 ¯θ ϕx(t, 2π) � r(t)dt, where (σ, v, ϕ) is the solution to the adjoint system (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) with (σT , vT , ϕT ) = (0, 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 16 Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control p ∈ L2(0, T ), the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7) admits a unique solution (ρ, u, θ) in the space C0([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' L2(0, 2π)) × [C0([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' L2(0, 2π)) ∩ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' H1 per(0, 2π))]2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control q ∈ L2(0, T ), the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8) admits a unique solution (ρ, u, θ) in the space L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (H1 per(0, 2π))′) × L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Moreover, the operator q �→ (ρ, u, θ) is linear and continuous from L2(0, T ) into L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (H1 per(0, 2π))′)× L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any given initial state (ρ0, u0, θ0) ∈ (L2(0, 2π))3 and boundary control r ∈ L2(0, T ), the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9) admits a unique solution (ρ, u, θ) in the space L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (H1 per(0, 2π))′) × L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Moreover, the operator r �→ (ρ, u, θ) is linear and continuous from L2(0, T ) into L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (H1 per(0, 2π))′)× L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (L2(0, 2π))2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The proofs of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5 and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6 can be done in a similar way ( [3, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4] and [9, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2]) like the barotropic case and so we skip the proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Spectral Analysis of A∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We first write the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The following statements hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (1) ker(A∗) = span \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 \uf8eb \uf8ec \uf8ed −1 1 1 \uf8f6 \uf8f7 \uf8f8 , \uf8eb \uf8ec \uf8ed 1 −1 1 \uf8f6 \uf8f7 \uf8f8 , \uf8eb \uf8ec \uf8ed 1 1 −1 \uf8f6 \uf8f7 \uf8f8 \uf8fc \uf8f4 \uf8fd \uf8f4 \uf8fe .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (2) sup {ℜ(ν) : ν ∈ σ(A∗), ν ̸= 0} < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (3) The spectrum of A∗ consists of the eigenvalue 0 and three branches of complex eigenvalues {νh n, νp n, νp1 n }n∈Z∗ with the asymptotic expressions given as νh n = ¯uin − ¯ω + O(|n|−2), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) νp1 n = −λ0n2 + ¯uin + O(1), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6) νp2 n = −κ0n2 + ¯uin + O(1), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7) for all |n| large, where ¯ω = R¯θ λ0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (4) The eigenfunctions of A∗ corresponding to νh n and νp1 n , νp2 n are respectively (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8) Φh n = \uf8eb \uf8ec \uf8ed ξh n ηh n ζh n \uf8f6 \uf8f7 \uf8f8 = \uf8eb \uf8ec \uf8ed αn 1 αn 2 αn 3 \uf8f6 \uf8f7 \uf8f8 einx, Φp1 n = \uf8eb \uf8ec \uf8ed ξp1 n ηp1 n ζp1 n \uf8f6 \uf8f7 \uf8f8 = \uf8eb \uf8ec \uf8ed βn 1 βn 2 βn 3 \uf8f6 \uf8f7 \uf8f8 einx, Φp2 n = \uf8eb \uf8ec \uf8ed ξp2 n ηp2 n ζp2 n \uf8f6 \uf8f7 \uf8f8 = \uf8eb \uf8ec \uf8ed γn 1 γn 2 γn 3 \uf8f6 \uf8f7 \uf8f8 einx, for all n ∈ Z∗, with the constants αn i , βn i and γn i (i = 1, 2, 3) given as (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9) \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 αn 1 = R¯ρ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' αn 2 = −R(¯u − νn 3 ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' αn 3 = (λ0in + ¯u − νn 3 )(¯u − νn 3 ) − R¯θ βn 1 = − R¯ρ ¯u−νn 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' βn 2 = R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' βn 3 = 1 ¯u−νn 1 [R¯θ − (λ0in + ¯u − νn 1 )(¯u − νn 1 )] γn 1 = (λ0in + ¯u − νn 2 )(κ0in + ¯u − νn 2 ) − R2 ¯θ c0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' γn 2 = − R¯θ ¯ρ (κ0in + ¯u − νn 2 ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' γn 3 = R2 ¯θ2 ¯ρc0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' for all n ∈ Z∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' where νn 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' νn 2 and νn 3 are roots of the cubic polynomial ν3 − [(λ0 + κ0)in + 3¯u]ν2 − [λ0κ0n2 − 2(λ0 + κ0)¯uin − 3¯u2 + R2¯θ c0 + R¯θ]ν (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='10) +λ0κ0¯un2 − (λ0 + κ0)¯u2in − ¯u3 + R2¯θ c0 ¯u + R¯θκ0in + R¯θ¯u = 0, for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (5) The eigenfunctions {Φh n, Φp1 n , Φp2 n : n ∈ Z∗} of A∗ forms a Riesz basis of ( ˙L2(0, 2π))3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 17 Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have the asymptotic expressions of αi, βi, γi, i = 1, 2, 3 as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 αn 1 ∼+∞ 1, αn 2 ∼+∞ 1 |n|, αn 3 ∼+∞ 1 |n|, βn 1 ∼+∞ 1 |n|, βn 2 ∼+∞ 1, βn 3 ∼+∞ 1 |n|, γn 1 ∼+∞ 1 |n|, γn 2 ∼+∞ 1 |n|, γn 3 ∼+∞ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We will prove only the parts (2), (3) and (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let Φ = (ξ, η, ζ)† be the eigenfunction of A∗ corresponding to the eigenvalue ν ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' we have � A∗ \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 � = � ν \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' that is,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' R¯θ¯u � 2π 0 ξ(x)ξx(x)dx + R¯θ¯ρ � 2π 0 ξ(x)ηx(x)dx + λ0¯ρ2 � 2π 0 η(x)ηxx(x)dx + ¯ρ2¯u � 2π 0 η(x)ηx(x)dx +R¯θ¯ρ � 2π 0 ξx(x)η(x)dx + R¯ρ2 � 2π 0 η(x)ζx(x)dx + ¯ρ2c0 ¯θ κ0 � 2π 0 η(x)ζx(x)dx + ¯ρ2c0 ¯θ ¯u � 2π 0 η(x)ζx(x)dx +R¯ρ2 � 2π 0 ηx(x)ζ(x)dx + b¯ρ � 2π 0 ξx(x)η(x)dx = ν � 2π 0 |ξ(x)|2 dx + ν � 2π 0 |η(x)|2 dx + ν � 2π 0 |ζ(x)|2 dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' An integration by parts yields ℜ(ν) = − ∥ηx∥2 L2(0,2π) + ∥ζx∥2 L2(0,2π) ∥ξ∥2 L2(0,2π) + ∥η∥2 L2(0,2π) + ∥ζ∥2 L2(0,2π) < 0, which proves part (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We denote ϕn(x) := einx, n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then the set \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 \uf8eb \uf8ec \uf8ed ϕn 0 0 \uf8f6 \uf8f7 \uf8f8 , \uf8eb \uf8ec \uf8ed 0 ϕn 0 \uf8f6 \uf8f7 \uf8f8 , \uf8eb \uf8ec \uf8ed 0 0 ϕn \uf8f6 \uf8f7 \uf8f8 \uf8fc \uf8f4 \uf8fd \uf8f4 \uf8fe forms an orthogonal basis of (L2(0, 2π))3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let us define En := \uf8eb \uf8ec \uf8ed ϕn 0 0 0 ϕn 0 0 0 ϕn \uf8f6 \uf8f7 \uf8f8 , and Φn := (ξn, ηn, ζn)†, for all n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, we have the following relation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='11) A∗EnΦn = inEnRnΦn, n ∈ Z, where (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='12) Rn := \uf8eb \uf8ec \uf8ec \uf8ed ¯u ¯ρ 0 R¯θ ¯ρ λ0in + ¯u R 0 R¯θ c0 κ0in + ¯u \uf8f6 \uf8f7 \uf8f7 \uf8f8 , n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, if (αn, νn) is an eigenpair of Rn, then (Enαn, inνn) will be an eigenpair of A∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Therefore, it’s remains to find the eigenvalues and eigenvectors of the matrix Rn for n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The characteristics equation of Rn is ν3 − [(λ0 + κ0)in + 3¯u]ν2 − [λ0κ0n2 − 2(λ0 + κ0)¯uin − 3¯u2 + R2¯θ c0 + R¯θ]ν (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='13) +λ0κ0¯un2 − (λ0 + κ0)¯u2in − ¯u3 + R2¯θ c0 ¯u + R¯θκ0in + R¯θ¯u = 0, for all n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Claim 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 0 cannot be a root of the polynomial (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='13) for any n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 18 Proof of Claim 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let ν = 0 be a root of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, there exists some n ∈ Z such that λ0κ0¯un2 − (λ0 + κ0)¯u2in − ¯u3 + R2¯θ c0 ¯u + R¯θκ0in + R¯θ¯u = 0, which implies λ0κ0n2 − ¯u2 + R2¯θ c0 + R¯θ = 0, and (λ0 + κ0)¯u2 = R¯θκ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We then have λ0κ0n2 = ¯u2 − R2¯θ c0 − R¯θ = ¯u2 − R2¯θ c0 − �λ0 κ0 + 1 � ¯u2 = −R2¯θ c0 − λ0 κ0 ¯u2 < 0, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This proves our first claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Claim 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ¯u cannot be a root of the polynomial (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='13) for any n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of Claim 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Observe that ¯u is a root of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='13) if and only if R¯θκ0in = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, for all n ∈ Z∗, ¯u cannot be a root of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='13), which proves our second claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For fixed n ∈ Z∗, let νn 1 , νn 2 and νn 3 be the roots of this cubic polynomial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The relation between roots and coefficients are \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 νn 1 + νn 2 + νn 3 = (λ0 + κ0)in + 3¯u νn 1 νn 2 + νn 2 νn 3 + νn 3 νn 1 = −[λ0κ0n2 − 2(λ0 + κ0)¯uin − 3¯u2 + R2 ¯θ c0 + R¯θ] νn 1 νn 2 νn 3 = −[λ0κ0¯un2 − (λ0 + κ0)¯u2in − ¯u3 + R2 ¯θ c0 ¯u + R¯θκ0in + R¯θ¯u].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We will find the asymptotic expressions of roots of the cubic polynomial (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='13) for large values of |n|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The first relation between roots and coefficients tells us that ¯u is present in at least one of the roots of the cubic polynomial (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, using the transformation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='14) ν = ¯u + ǫn, it is enough to find the roots of the transformed cubic equation in ǫn (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15) ǫ3 n − (λ0 + κ0)inǫ2 n − � λ0κ0n2 + R2¯θ c0 + R¯θ � ǫn + R¯θκ0in = 0 for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We use the transformation ǫn = in˜ǫn, for n ∈ Z∗, to simplify the above equation and we get (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='16) ˜ǫ3 n − (λ0 + κ0)˜ǫ2 n + � λ0k0 + 1 n2 �R2¯θ c0 + R¯θ �� ˜ǫn − R¯θκ0 n2 = 0 for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now use Rouche’s Theorem to find the roots of this polynomial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let us first state the Rouch´e’s Theorem, the proof of which can be found in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9 (Rouch´e’s Theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let Ω ⊂ C be an open connected set and f, g : Ω → C be holomorphic on Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Suppose there exists a ∈ Ω and R > 0 such that B(a, R) ⊂ Ω and |g(z) − f(z)| < |g(z)| for all z ∈ ∂B(a, R), then f and g have the same number of zeros inside B(a, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We define the functions f, g : C → C by f(z) := z3 − (λ0 + κ0)z2 + � λ0k0 + 1 n2 �R2¯θ c0 + R¯θ �� z − R¯θκ0 n2 and g(z) := z3 − (λ0 + κ0)z2 + λ0k0z for all z ∈ C and n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The roots of g are 0, λ0 and κ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now choose R := 1 2 min{λ0, κ0, |λ0 − κ0|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, we have the following estimates |g(z) − f(z)| = ���� 1 n2 �R2¯θ c0 + R¯θ � z − R¯θκ0 n2 ���� ≤ C n2 (|z| + 1) \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 = C n2 (R + 1), for all z ∈ ∂B(0, R), ≤ C n2 (λ0 + R + 1), for all z ∈ ∂B(λ0, R), ≤ C n2 (κ0 + R + 1), for all z ∈ ∂B(κ0, R), 19 for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' On the other hand, the choice of R tells us that the function g does not have any root on the sets ∂B(0, R), ∂B(λ0, R) and ∂B(κ0, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Therefore, inf|z|=R |g(z)| > 0,inf|z−λ0|=R |g(z)| > 0 and inf|z−κ0|=R |g(z)| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This implies, for |n| large enough, we have |g(z) − f(z)| < |g(z)| for all z ∈ ∂B(0, R) ∪ ∂B(λ0, R) ∪ ∂B(κ0, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, the function f has a unique root inside each of the sets B(0, R), B(λ0, R) and B(κ0, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We denote these roots by zn 1 , zn 2 and zn 3 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now find asymptotic expressions of these roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Asymptotic expression of zn 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since zn 1 ∈ B(0, R), we have zn 1 = 1 (zn 1 − λ0)(zn 1 − κ0) �R¯θκ0 n2 − 1 n2 �R2¯θ c0 + R¯θ � zn 1 � and therefore |zn 1 | ≤ 1 |zn 1 − λ0| |zn 1 − κ0| ����� R¯θκ0 n2 ���� + ���� 1 n2 �R2¯θ c0 + R¯θ � zn 1 ���� � ≤ C |n|2 for |n| large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' To find the asymptotic expression of zn 1 , we write f(zn 1 ) = 0 in the following way zn 1 = R¯θκ0 n2 � λ0κ0 − (λ0 + κ0)zn 1 + (zn 1 )2 + 1 n2 �R¯θ c0 + R¯θ ��−1 = R¯θκ0 n2 1 λ0κ0 � 1 − (λ0 + κ0) λ0κ0 zn 1 + 1 λ0κ0n2 �R¯θ c0 + R¯θ � + O(|n|−4) �−1 = ¯ω n2 � 1 + (λ0 + κ0) λ0κ0 zn 1 − 1 λ0κ0n2 �R¯θ c0 + R¯θ � + O(|n|−4) � = ¯ω n2 + O(|n|−4), since |zn 1 | ≤ C n2 for all |n| large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Asymptotic expression of zn 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since zn 2 ∈ B(λ0, R), we have zn 2 − λ0 = 1 zn 2 (zn 2 − κ0) �R¯θκ0 n2 − 1 n2 �R2¯θ c0 + R¯θ � zn 1 � and therefore |zn 2 − λ0| ≤ 1 |zn 2 | |zn 2 − κ0| ����� R¯θκ0 n2 ���� + ���� 1 n2 �R2¯θ c0 + R¯θ � zn 1 ���� � ≤ C |n|2 for |n| large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, we can write zn 2 = λ0 + O(|n|−2) for all |n| large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Asymptotic expression of zn 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Following the similar approach as mentioned above, we can get zn 3 = κ0 + O(|n|−2) for all |n| large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Combining all of the above, we obtain the asymptotic expressions of the roots of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15) as ǫn 1 := λ0in + O(|n|−1), ǫn 2 := κ0in + O(|n|−1), ǫn 3 := − ¯ω in + O(|n|−3) for all |n| large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Therefore, eigenvalues of the matrix Rn are νn 1 , νn 2 and νn 3 with the asymptotic expressions νn 1 = λ0in + ¯u + O(|n|−1), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='17) νn 2 = κ0in + ¯u + O(|n|−1), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='18) νn 3 = ¯u − ¯ω in + O(|n|−3), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='19) for all |n| large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' To find the eigenvectors of the matrix Rn, we now consider the equation Rnαn = νn 3 αn, n ∈ Z∗, 20 where αn = (αn 1 , αn 2, αn 3 )†, that is, (¯u − νn 3 )αn 1 + ¯ραn 2 = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='20) R¯θ ¯ρ αn 1 + (λ0in + ¯u − νn 3 )αn 2 + Rαn 3 = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='21) R¯θ c0 αn 2 + (κ0in + ¯u − νn 3 )αn 3 = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='22) for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' One solution is given by αn 1 = R¯ρ, αn 2 = −R(¯u − νn 3 ), αn 3 = (λ0in + ¯u − νn 3 )(¯u − νn 3 ) − R¯θ, n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We next consider the equation Rnβn = νn 1 βn, n ∈ Z∗, where βn = (βn 1 , βn 2 , βn 3 )†, that is, (¯u − νn 1 )βn 1 + ¯ρβn 2 = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='23) R¯θ ¯ρ βn 1 + (λ0in + ¯u − νn 1 )βn 2 + Rβn 3 = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='24) R¯θ c0 βn 2 + (κ0in + ¯u − νn 1 )βn 3 = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='25) for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' One solution is given by βn 1 = − R¯ρ ¯u − νn 1 , βn 2 = R, βn 3 = 1 ¯u − νn 1 [R¯θ − (λ0in + ¯u − νn 1 )(¯u − νn 1 )], n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We finally consider the equation Rnγn = νn 2 γn, n ∈ Z∗, where γn = (γn 1 , γn 2 , γn 3 )†, that is, (¯u − νn 2 )γn 1 + ¯ργn 2 = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='26) R¯θ ¯ρ γn 1 + (λ0in + ¯u − νn 2 )γn 2 + Rγn 3 = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='27) R¯θ c0 γn 2 + (κ0in + ¯u − νn 2 )γn 3 = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='28) for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' One solution is given by γn 1 = (λ0in + ¯u − νn 2 )(κ0in + ¯u − νn 2 ) − R2¯θ c0 , γn 2 = −R¯θ ¯ρ (κ0in + ¯u − νn 2 ), γn 3 = R2¯θ2 ¯ρc0 , n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Therefore, the eigenvectors of Rn corresponding to the eigenvalues νn 3 , νn 1 and νn 2 are respectively αn, βn and γn, where αn = \uf8eb \uf8ec \uf8ed αn 1 αn 2 αn 3 \uf8f6 \uf8f7 \uf8f8 , βn = \uf8eb \uf8ec \uf8ed βn 1 βn 2 βn 3 \uf8f6 \uf8f7 \uf8f8 , γn = \uf8eb \uf8ec \uf8ed γn 1 γn 2 γn 3 \uf8f6 \uf8f7 \uf8f8 , for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Hence, the eigenvalues of the operator A∗ are νh n := inν3 n, νp1 n := inν2 n and νp2 n := inν1 n for all n ∈ Z∗ with the asymptotic expressions νh n = ¯uin − ¯ω + O(|n|−1), νp1 n = −λ0n2 + ¯uin + O(1), νp2 n = −κ0n2 + ¯uin + O(1), for |n| large enough and the corresponding eigenfunctions are Φh n(x) := En(x)αn = αneinx, Φp1 n (x) := En(x)βn = βneinx, Φp2 n (x) := En(x)γn = γneinx, for all n ∈ Z∗ and x ∈ (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Note that, all the eigenvalues of A∗ are simple at least for |n| large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Depending on the constants ¯ρ, ¯u, ¯θ, λ0, κ0, R and c0, there may be multiple eigenvalues, but that would be only finitely many of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Therefore, in this case also, we assume that all the eigenvalues of A∗ are simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 21 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Observation Estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any eigenvalue ν, let us denote the corresponding eigenfunction of A∗ by Φν and let E(A∗) be the set of all eigenfunctions of A∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We define the observation operator corresponding to the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) as follows: B∗ ρΦ := R¯θ¯uξ(2π) + R¯θ¯ρη(2π), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='29) B∗ uΦ := R¯ρ¯θξ(2π) + ¯ρ2¯uη(2π) + λ0¯ρ2ηx(2π) + R¯ρ2ζ(2π), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='30) B∗ θΦ := R¯ρ2η(2π) + ¯ρ2c0¯u ¯θ ζ(2π) + ¯ρ2c0κ0 ¯θ ζx(2π), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='31) for all Φ = (ξ, η, ζ)† ∈ E(A∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, we have the following estimates: Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For all Φ ∈ E(A∗) \\ {Φ0}, the observation operators satisfies B∗ ρΦ ̸= 0 and B∗ uΦ ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Moreover, we have the following estimates ��B∗ ρΦh n �� ≥ C, ��B∗ ρΦp1 n �� ≥ C, ��B∗ ρΦp2 n �� ≥ C, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='32) ��B∗ uΦh n �� ≥ C |n|, |B∗ uΦp1 n | ≥ C |n| , |B∗ uΦp2 n | ≥ C, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='33) ��B∗ θΦh n �� ≥ C |n|, |B∗ uΦp2 n | ≥ C ��B∗ ρΦp2 n �� ≥ C |n| , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='34) for some C > 0 and all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Recall from the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7 that ν1, ν2, ν3 ̸= 0 (Claim 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We consider the following cases: Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (Control acts in density) We have B∗ ρΦh n = R¯θ¯uξh n(2π) + R¯ρ¯θηh n(2π) = R¯θ(¯uαn 1 + ¯ραn 2) = R¯θνn 3 αn 1 ̸= 0, for all n ∈ Z∗, thanks to the eigenvector equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We similarly have B∗ ρΦp1 n = R¯θ¯uξp1 n (2π) + R¯ρ¯θηp1 n (2π) = R¯θ(¯uβn 1 + ¯ρβn 2 ) = R¯θνn 1 βn 1 ̸= 0, and B∗ ρΦp2 n = R¯θ¯uξp2 n (2π) + R¯ρ¯θηp2 n (2π) = R¯θ(¯uγn 1 + ¯ργn 2 ) = R¯θνn 2 γn 1 ̸= 0, for all n ∈ Z∗, thanks to the equations (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='23) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (Control acts in Velocity) We have B∗ uΦh n = R¯ρ¯θξh n(2π) + λ0¯ρ2(ηh n)x(2π) + ¯ρ2¯uηh n(2π) + R¯ρ2ζh n(2π) = R¯ρ¯θαn 1 + λ0¯ρ2inαn 2 + ¯ρ2¯uαn 2 + R¯ρ2αn 3 = ¯ρ2νn 3 αn 2 ̸= 0, for all n ∈ Z∗, thanks to the equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We similarly have B∗ uΦp1 n = R¯ρ¯θξp1 n (2π) + ν0¯ρ2(ηp1 n )x(2π) + ¯ρ2¯uηp1 n (2π) + R¯ρ2ζp1 n (2π) = R¯ρ¯θβn 1 + ν0¯ρ2inβn 2 + ¯ρ2¯uβn 2 + R¯ρ2βn 3 = ¯ρ2νn 1 βn 2 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' and B∗ uΦp2 n = R¯ρ¯θξp2 n (2π) + λ0¯ρ2(ηp2 n )x(2π) + ¯ρ2¯uηp2 n (2π) + R¯ρ2ζp2 n (2π) = R¯ρ¯θγn 1 + λ0 ¯ρ2inγn 2 + ¯ρ2¯uγn 2 + R¯ρ2γn 3 = ¯ρ2νn 2 γn 2 ̸= 0, for all n ∈ Z∗, thanks to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='24) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Case 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (Control acts in Temperature) We have B∗ θΦh n = R¯ρ2ηh n(2π) + ¯ρ2c0¯u ¯θ ζh n(2π) + ¯ρ2c0κ0 ¯θ (ζh n)x(2π) = R¯ρ2αn 2 + ¯ρ2c0 ¯θ (¯u + κ0in)αn 3 = ¯ρ2c0 ¯θ νn 3 αn 3 ̸= 0, 22 for all n ∈ Z∗, thanks to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Similarly, we have B∗ θΦp1 n = R¯ρ2ηp1 n (2π) + ¯ρ2c0¯u ¯θ ζp1 n (2π) + ¯ρ2c0κ0 ¯θ (ζp1 n )x(2π) = R¯ρ2βn 2 + ¯ρ2c0 ¯θ (¯u + κ0in)βn 3 = ¯ρ2c0 ¯θ νn 1 βn 3 ̸= 0, and B∗ θΦp2 n = R¯ρ2ηp2 n (2π) + ¯ρ2c0¯u ¯θ ζp2 n (2π) + ¯ρ2c0κ0 ¯θ (ζp2 n )x(2π) = R¯ρ2γn 2 + ¯ρ2c0 ¯θ (¯u + κ0in)γn 3 = ¯ρ2c0 ¯θ νn 2 γn 3 ̸= 0, for all n ∈ Z∗, thanks to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='25) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The estimates on the observation terms are then follows directly from the asymptotic expressions (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='17)-(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='18)-(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='19) and Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Observability Inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let us rewrite the eigenvalues as {νh n, νp n}n∈Z∗, where νp n = � νp1 k , if n = 2k − 1, k ∈ Z νp2 k , if n = 2k, k ∈ Z∗, for all n ∈ Z∗ and νh n is as defined earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We also denote the observation term B∗Φp n = � B∗Φp1 k , if n = 2k − 1, k ∈ Z, B∗Φp2 n , if n = 2k, k ∈ Z∗, for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Recall that, we have defined the set S := � (λ0, κ0) : � λ0 κ0 /∈ Q � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, the eigenvalues (νh n)n∈Z∗ satisfies hypotheses (H1)-(H2) with τ = ¯u, β = −¯ω and for all (λ0, κ0) ∈ S, the sequence (νp n)n∈Z∗ satisfies hypotheses (P1)-(P2)-(P3)-(P4) of Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since the eigenfunctions E(A∗)\\{Φ0} of A∗ forms a Riesz basis in ( ˙L2(0, 2π))3, therefore any (σT , vT , ϕT )† ∈ ( ˙L2(0, 2π))3 can be written as (σT , vT , ϕT )† = � n∈Z∗ ah nΦh n + � n∈Z∗ ap1 n Φp1 n + � n∈Z∗ ap2 n Φp2 n , for some (ah n)n∈Z∗, (ap1 n )n∈Z∗, (ap2 n )n∈Z∗ ∈ ℓ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, the solution to the adjoint system (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) is (σ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' v(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ϕ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x))† = � n∈Z∗ ah neνh n(T −t)Φh n(x) + � n∈Z∗ ap1 n eνp1 n (T −t)Φp1 n (x) + � n∈Z∗ ap2 n eνp2 n (T −t)Φp2 n (x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' for (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) ∈ (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ) × (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' that is,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' σ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = � n∈Z∗ ah neνh n(T −t)αn 1einx + � n∈Z∗ ap1 n eνp1 n (T −t)βn 1 einx + � n∈Z∗ ap2 n eνp2 n (T −t)γn 1 einx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' v(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = � n∈Z∗ ah neνh n(T −t)αn 2einx + � n∈Z∗ ap1 n eνp1 n (T −t)βn 2 einx + � n∈Z∗ ap2 n eνp2 n (T −t)γn 2 einx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ϕ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = � n∈Z∗ ah neνh n(T −t)αn 3einx + � n∈Z∗ ap1 n eνp1 n (T −t)βn 3 einx + � n∈Z∗ ap2 n eνp2 n (T −t)γn 3 einx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' for (t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) ∈ (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ) × (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We then have ��(σ(0), v(0), ϕ(0))†��2 ( ˙L2(0,2π))3 ≤ C � � n∈Z∗ ��ah n ��2 ��Φh n ��2 L2(0,2π) + � n∈Z∗ |ap n|2 e2ℜ(νp n)T ∥Φp n∥2 L2(0,2π) � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='35) ≤ C � � n∈Z∗ ��ah n ��2 + � n∈Z∗ |ap n|2 e2ℜ(νp n)T � 23 and ��(σ(0), v(0), ϕ(0))†��2 ˙H−s per(0,2π)×( ˙L2(0,2π))2 ≤ C � � n∈Z∗ ��ah n ��2 ��Φh n ��2 H−s per(0,2π) + � n∈Z∗ |ap n|2 e2ℜ(νp n)T ∥Φp n∥2 L2(0,2π) � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='36) ≤ C � � n∈Z∗ ��ah n ��2 1 |n|2s + � n∈Z∗ |ap n|2 e2ℜ(νp n)T � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let T > 2π ¯u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The observability inequality is given by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='37) � T 0 ��R¯θ¯uσ(t, 2π) + R¯θ¯ρv(t, 2π) ��2 dt ≥ C ��(σ(0), v(0), ϕ(0))†��2 ( ˙L2(0,2π))3 , for all (σT , vT , ϕT )† ∈ ( ˙L2(0, 2π))3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have the observation term � T 0 ��R¯θ¯uσ(t, 2π) + R¯θ¯ρv(t, 2π) ��2 dt = � T 0 ����� � n∈Z∗ ah nB∗ ρΦh neνh n(T −t) + � n∈Z∗ ap1 n B∗ ρΦp1 n eνp1 n (T −t) + � n∈Z∗ ap2 n B∗ ρΦp2 n eνp2 n (T −t) ����� 2 dt = � T 0 ����� � n∈Z∗ ah nB∗ ρΦh neνh n(T −t) + � n∈Z∗ ap nB∗ ρΦp neνp n(T −t) ����� 2 dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Using the combined parabolic-hyperbolic Ingham type inequality (Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15), we have � T 0 ��R¯θ¯uσ(t, 2π) + R¯θ¯ρv(t, 2π) ��2 dt ≥ C � � n∈Z∗ ��ah n ��2 ��B∗ ρΦh n ��2 e2ℜ(νh n)(T −t) + � n∈Z∗ |ap n|2 ��B∗ ρΦp n ��2 e2ℜ(νp n)T � ≥ C � � n∈Z∗ ��ah n ��2 + � n∈Z∗ |ap n|2 e2ℜ(νp n)T � , thanks to the estimate 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This estimate together with the norm estimate (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='35), the observability inequality (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='37) is now follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let T > 2π ¯u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The observability inequality is given by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='38) � T 0 ��R¯ρ¯θσ(t, 2π) + λ0¯ρ2vx(t, 2π) + ¯ρ2¯uv(t, 2π) + R¯ρ2ϕ(t, 2π) ��2 dt ≥ C ��(σ(0), v(0), ϕ(0))†��2 ˙H−s per(0,2π)×( ˙L2(0,2π))2 , for all (σT , vT , ϕT )† ∈ ˙H−s per(0, 2π) × ( ˙L2(0, 2π))2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have � T 0 ��R¯ρ¯θσ(t, 2π) + λ0¯ρ2vx(t, 2π) + ¯ρ2¯uv(t, 2π) + R¯ρ2ϕ(t, 2π) ��2 dt = � T 0 ����� � n∈Z∗ ah nB∗ uΦh neνh n(T −t) + � n∈Z∗ ap1 n B∗ uΦp1 n eνp1 n (T −t) + � n∈Z∗ ap2 n B∗ uΦp2 n eνp2 n (T −t) ����� 2 dt = � T 0 ����� � n∈Z∗ ah nB∗ uΦh neνh n(T −t) + � n∈Z∗ ap nB∗ uΦp neνp n(T −t) ����� 2 dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Using the combined parabolic-hyperbolic Ingham type inequality (Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15) and the observation estimates ((3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='33)), we obtain � T 0 ��R¯ρ¯θσ(t, 2π) + λ0 ¯ρ2vx(t, 2π) + ¯ρ2¯uv(t, 2π) + R¯ρ2ϕ(t, 2π) ��2 dt ≥ C � � n∈Z∗ ��ah n ��2 ��B∗ uΦh n ��2 e2ℜ(νh n)(T −t) + � n∈Z∗ |ap n|2 |B∗ uΦp n|2 e2ℜ(νp n)T � ≥ C � � n∈Z∗ ��ah n ��2 1 |n|2 + � n∈Z∗ |ap n|2 e2ℜ(νp n)T � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 24 Since s ≥ 1, we have 1 |n|2 ≥ 1 |n|2s for all n ∈ Z∗ and therefore � T 0 ��R¯ρ¯θσ(t, 2π) + λ0 ¯ρ2vx(t, 2π) + ¯ρ2¯uv(t, 2π) + R¯ρ2ϕ(t, 2π) ��2 dt ≥ C � � n∈Z∗ ��ah n ��2 1 |n|2s + � n∈Z∗ |ap n|2 e2ℜ(νp n)T � ≥ C ��(σ(0), v(0), ϕ(0))†�� ˙H−s per(0,2π)×( ˙L2(0,2π))2 , thanks to the estimate (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This proves the observability inequality (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='38).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let T > 2π ¯u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The observability inequality is given by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='39) � T 0 ����R¯ρ2v(t, 2π) + ¯ρ2c0¯u ¯θ ϕ(t, 2π) + ¯ρ2c0κ0 ¯θ ϕx(t, 2π) ���� 2 dt ≥ C ��(σ(0), v(0), ϕ(0))†��2 ˙H−s per(0,2π)×( ˙L2(0,2π))2 , for all (σT , vT , ϕT )† ∈ ˙H−s per(0, 2π) × ( ˙L2(0, 2π))2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We have � T 0 ����R¯ρ2v(t, 2π) + ¯ρ2c0¯u ¯θ ϕ(t, 2π) + ¯ρ2c0κ0 ¯θ ϕx(t, 2π) ���� 2 dt = � T 0 ����� � n∈Z∗ ah nB∗ θΦh neνh n(T −t) + � n∈Z∗ ap1 n B∗ θΦp1 n eνp1 n (T −t) + � n∈Z∗ ap2 n B∗ θΦp2 n eνp2 n (T −t) ����� 2 dt = � T 0 ����� � n∈Z∗ ah nB∗ θΦh neνh n(T −t) + � n∈Z∗ ap nB∗ θΦp neνp n(T −t) ����� 2 dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Using the combined parabolic-hyperbolic Ingham type inequality (Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='15) and the observation estimates ((3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='34)), we have � T 0 ����R¯ρ2v(t, 2π) + ¯ρ2c0¯u ¯θ ϕ(t, 2π) + ¯ρ2c0κ0 ¯θ ϕx(t, 2π) ���� 2 dt ≥ C � � n∈Z∗ ��ah n ��2 ��B∗ θΦh n ��2 e2ℜ(νh n)(T −t) + � n∈Z∗ |ap n|2 |B∗ θΦp n|2 e2ℜ(νp n)T � ≥ C � � n∈Z∗ ��ah n ��2 1 |n|2 + � n∈Z∗ |ap n|2 e2ℜ(νp n)T � Since s ≥ 1, therefore 1 |n|2 ≥ 1 |n|2s for all n ∈ Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus we get � T 0 ����R¯ρ2v(t, 2π) + ¯ρ2c0¯u ¯θ ϕ(t, 2π) + ¯ρ2c0κ0 ¯θ ϕx(t, 2π) ���� 2 dt ≥ C � � n∈Z∗ ��ah n ��2 1 |n|2s + � n∈Z∗ |ap n|2 e2ℜ(νp n)T � ≥ C ��(σ(0), v(0), ϕ(0))†�� ˙H−s per(0,2π)×( ˙L2(0,2π))2 , and the observability inequality (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='39) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lack of Null Controllability for Less Regular Initial States.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For (σT , vT , ϕT )† = Φh n, the solution to the adjoint system is (σ(t, x), v(t, x), ϕ(t, x))† = eνh n(T −t)Φh n(x), for (t, x) ∈ (0, T ) × (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For large n, we have the following estimate ��Φh n �� H−s per(0,2π)×(L2(0,2π))2 ≥ C |n|s , and therefore ��(σ(0), v(0), ϕ(0))†��2 H−s per(0,2π)×(L2(0,2π))2 ≥ C |n|2s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 25 We also have � T 0 ��B∗ uΦh n ��2 dt ≤ C |n|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus if the observability inequality (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='38) holds, then we get C |n|2s ≤ C |n|2 =⇒ |n|2−2s ≤ C, which is not possible since 0 ≤ s < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since the observation terms B∗ θΦh n and B∗ uΦh n have same upper bounds, proof of Propo- sition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='12 will be similar to above, so we omit the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lack of Controllability at Small Time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The proof will be similar to the barotropic case, that is, the proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let 0 < T < 2π ¯u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Following the notations in the proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2, we consider the system (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='40) \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 ˜σt(t, x) + ¯u˜σx(t, x) − ¯ω˜σ(t, x) = 0, (t, x) ∈ (0, T ) × (0, 2π), ˜σ(t, 0) = ˜σ(t, 2π), t ∈ (0, T ), ˜σ(T, x) = ˜σN T (x), x ∈ (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since supp(˜σN T ) ⊂ supp(˜σT ) ⊂ (T, 2π), the solution satisfies ˜σN(t, 0) = ˜σN(t, 2π) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now consider the adjoint to our main system (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='41) \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 −σt(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) − ¯uσx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) − ¯ρvx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' in (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ) × (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' −vt(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) − λ0vxx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) − R¯θ ¯ρ σx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) − ¯uvx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) − Rϕx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' in (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ) × (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' −ϕt(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) − κ0ϕxx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) − R¯θ c0 vx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) − ¯uϕx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' in (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ) × (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' σ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 0) = σ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' v(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 0) = v(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' vx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 0) = vx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' t ∈ (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ϕ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 0) = ϕ(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ϕx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 0) = ϕx(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' t ∈ (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' T ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' σ(T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = σN T (x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' v(T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = vN T (x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ϕ(T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x) = ϕN T (x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' x ∈ (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' where we choose vN T and ϕN T such that (˜σN T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' vN T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ϕN T )† = � |n|≥N+1 ˜ah nΦh n with ˜ah nαn 1 := anP N(n) for all |n| ≥ N + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We write the solutions to the systems (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='40) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='41) respectively as ˜σN(t, x) = � |n|≥N+1 anP N(n)e(¯uin−¯ω)(T −t)einx, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='42) σN(t, x) = � |n|≥N+1 anP N(n)eνh n(T −t)einx, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='43) vN(t, x) = � |n|≥N+1 anP N(n)βn 1 αn 1 eνh n(T −t)einx, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='44) ϕN(t, x) = � |n|≥N+1 anP N(n) γn 1 αn 1 eνh n(T −t)einx, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='45) 26 for all (t, x) ∈ [0, T ] × [0, 2π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Similar to the barotropic case, we prove that the solution component σN approximates the solution ˜σN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Indeed, we have ��σN(·, x) − ˜σN(·, x) ��2 L2(0,T ) ≤ � |n|≥N+1 |an|2 ��P N(n) ��2 ���eνh n(T −t) − e(¯uin−¯ω)(T −t)��� 2 L2(0,T ) ≤ � |n|≥N+1 |an|2 ��P N(n) ��2 ���e(¯uin−¯ω)(T −t)eO(|n|−1)(T −t) − 1 ��� 2 L2(0,T ) ≤ C |n|2 � |n|≥N+1 |an|2 ��P N(n) ��2 , for all x ∈ [0, 2π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We also have for all x ∈ [0, 2π] ��vN(·, x) ��2 L2(0,T ) ≤ � |n|≥N+1 |an|2 ��P N(n) ��2 |βn 1 |2 |αn 1 |2 ���eνh n(T −t)��� 2 L2(0,T ) ≤ C � |n|≥N+1 |an|2 ��P N(n) ��2 1 |n|2 ≤ C |N|2 � |n|≥N+1 |an|2 ��P N(n) ��2 We suppose that the following observability inequality holds � T 0 ��R¯θ¯uσN(t, 2π) + R¯θ¯ρvN(t, 2π) ��2 dt ≥ C ��(σN(0), vN(0), ϕN(0))†��2 (L2(0,2π))3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, we have ��(σN(0), vN(0), ϕN(0))†��2 (L2(0,2π))3 ≤ C � T 0 ��R¯θ¯uσN(t, 2π) + R¯θ¯ρvN(t, 2π) ��2 dt ≤ C � T 0 � ¯u2 ��(σN(t, 2π) − ˜σN(t, 2π)) ��2 + ¯u2 ��˜σN(t, 2π) ��2 + ¯ρ2 ��vN(t, 2π) ��2� dt ≤ C N 2 � |n|≥N+1 |an|2 ��P N(n) ��2 , since ˜σN(t, 0) = 0 = ˜σN(t, 2π) for all t ∈ (0, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, we get ��σN(0) ��2 L2(0,2π) ≤ ��(σN(0), vN(0), ϕN(0))†��2 (L2(0,2π))3 ≤ C N 2 � |n|≥N+1 |an|2 ��P N(n) ��2 ≤ C N 2 ��σN(0) ��2 L2(0,2π) , since ℜ(νh n) is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Therefore, 1 ≤ C N 2 for all N and hence the above inequality cannot hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This is a contradiction and the proof is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Further Comments and Conclusions 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Controllability Results Using Neumann Boundary Conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We consider the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) with the initial state (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) and the boundary conditions ρ(t, 0) = ρ(t, 2π), u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π) + q1(t), t ∈ (0, T ), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) where q1 is a boundary control that acts on the velocity through Neumann conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since the obser- vation terms satisfies similar estimates as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='20), following the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3 and Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4, we can obtain the null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) at time T > 2π ¯u in the space ˙Hs per(0, 2π) × ˙L2(0, 2π) for s ≥ 1, and the null controllability fails in the space Hs per(0, 2π) × L2(0, 2π) for 0 ≤ s < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In this case also, null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) is inconclusive when the time is small (0 < T ≤ 2π ¯u ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 27 Similar to the barotropic case, we consider the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) with the initial state (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6) and the boundary conditions ρ(t, 0) = ρ(t, 2π), u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π) + q2(t), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) θ(t, 0) = θ(t, 2π), θx(t, 0) = θx(t, 2π), t ∈ (0, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In this case also, following the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='9 and Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='10, we get null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) at time T > 2π ¯u in the space ˙Hs per(0, 2π) × ( ˙L2(0, 2π))2 for s ≥ 1, and null controllability fails in the space Hs per(0, 2π) × (L2(0, 2π))2 for 0 ≤ s < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We next consider the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) with the initial state (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6) and the boundary conditions ρ(t, 0) = ρ(t, 2π), u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) θ(t, 0) = θ(t, 2π), θx(t, 0) = θx(t, 2π) + q3(t), t ∈ (0, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Similar to the previous case, following the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='11 and Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='12, we get null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) at time T > 2π ¯u in the space ˙Hs per(0, 2π) × ( ˙L2(0, 2π))2 for s ≥ 1, and null controllability fails in the space Hs per(0, 2π) × (L2(0, 2π))2 for 0 ≤ s < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For both systems (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='6)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3), null controllability is inconclusive for a small time 0 < T ≤ 2π ¯u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' More number of controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Adding controls in both velocity and temperature components through periodic boundary conditions does not improve the null controllability result of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) with respect to the regularity of the initial states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Estimates of the observation terms remain the same as in the control acts in velocity or temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Controllability under Dirichlet Boundary Conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let us consider the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) in the interval (0, 1) with the initial state (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) and the following boundary conditions (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) ρ(t, 0) = p(t), u(t, 0) = 0, u(t, 1) = q(t), t ∈ (0, T ), where p and q are boundary controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' It is known in [3] that the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) (with q = 0) is null controllability at a large time T using only one boundary control p ∈ L2(0, T ) provided the initial states belong to the space Hs per(0, 1) × L2(0, 1) with s > 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) using a boundary control acts only in velocity through Dirichlet conditions (that is, p = 0 in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4)) is still an open problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In the case of non-barotropic fluids, null controllability of the system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) at large time T using only one boundary control acts either in density, velocity or temperature through Dirichlet conditions is also an open problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Proof of the Well-Posedness Results A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Existence of semigroup: proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The proof is divided into several parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Part 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The operator A is dissipative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Indeed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' for all (ξ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' η,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ζ)† ∈ D(A) ℜ ⟨AU,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' U⟩(L2(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2π))3 = ℜ � \uf8eb \uf8ec \uf8ec \uf8ed −¯uξx − ¯ρηx − R¯θ ¯ρ ξx + λ0ηxx − ¯uηx − Rζx − R¯θ c0 ηx + κ0ζxx − ¯uζx \uf8f6 \uf8f7 \uf8f7 \uf8f8 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 � (L2(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2π))3 = ℜ � −R¯θ¯u � 2π 0 ¯ξξxdx − R¯θ¯ρ � 2π 0 ¯ξηxdx − R¯θ¯ρ � 2π 0 ξx¯ηdx + λ0¯ρ2 � 2π 0 ¯ηηxxdx − ¯ρ2¯u � 2π 0 ¯ηηxdx −R¯ρ2 � 2π 0 ¯ηζxdx − R¯ρ2 � 2π 0 ηx¯ζdx + κ0 ¯ρ2c0 ¯θ � 2π 0 ¯ζζxxdx − ¯u ¯ρ2c0 ¯θ � 2π 0 ¯ζζxdx � = −R¯θ¯u 2 � 2π 0 d dx(|ξ|2)dx − λ0¯ρ2 � 2π 0 ¯ηxηxdx − ¯ρ2¯u 2 � 2π 0 d dx(|η|2)dx − κ0 ¯ρ2c0 ¯θ � 2π 0 ¯ζxζxdx − ¯u 2 ¯ρ2c0 ¯θ � 2π 0 d dx(|ζ|2)dx − λ0¯ρ2 � 2π 0 |ux|2 dx − κ0 ¯ρ2c0 ¯θ � 2π 0 |ζx|2 dx ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 28 Part 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' The operator A is maximal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' This is equivalent to the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' For any ν > 0 and any \uf8eb \uf8ec \uf8ed f g h \uf8f6 \uf8f7 \uf8f8 ∈ (L2(0, 2π))3, we can find a \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 ∈ D(A) such that (νI − A) \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 = \uf8eb \uf8ec \uf8ed f g h \uf8f6 \uf8f7 \uf8f8 , that is, νξ + ¯uξx + ¯ρηx = f, νη + R¯θ ¯ρ ξx − λ0ηxx + ¯uηx + Rζx = g, νζ + R¯θ c0 ηx − κ0ζxx + ¯uζx = h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Let ǫ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Instead of solving the above problem, we will solve the following regularized problem (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 νξ + ¯uξx − ǫξxx + ¯ρηx = f, νη + R¯θ ¯ρ ξx − λ0ηxx + ¯uηx + Rζx = g, νζ + R¯θ c0 ηx − κ0ζxx + ¯uζx = h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' with the following boundary conditions ξ(0) = ξ(2π), ξx(0) = ξx(2π), η(0) = η(2π), ηx(0) = ηx(2π), ζ(0) = ζ(2π), ζx(0) = ζx(2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now proceed through the following steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Using Lax-Milgram theorem, we first prove that the system (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='1) has a unique solution in (H1 per(0, 2π))3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Define the operator B : (H1 per(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π))3 × (H1 per(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π))3 → C by B \uf8eb \uf8ec \uf8ed \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' \uf8eb \uf8ec \uf8ed ξ1 η1 ζ1 \uf8f6 \uf8f7 \uf8f8 \uf8f6 \uf8f7 \uf8f8 = ǫ � 2π 0 ξx( ¯ξ1)xdx + ¯ρ � 2π 0 ηx ¯ξ1dx + ¯u � 2π 0 ξx ¯ξ1dx + ν � 2π 0 ξ ¯ξ1dx + λ0 � 2π 0 ηx( ¯η1)xdx + ¯u � 2π 0 ηx ¯η1dx + R¯θ ¯ρ � 1 0 ξx ¯η1dx + R � 2π 0 ζx ¯η1dx + ν � 2π 0 η ¯η1dx + κ0 � 2π 0 ζx( ¯ζ1)xdx + ¯u � 2π 0 ζx ¯ζ1dx + R¯θ c0 � 2π 0 ηx ¯ζ1dx + ν � 2π 0 ζ ¯ζ1dx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' for all \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' \uf8eb \uf8ec \uf8ed ξ1 η1 ζ1 \uf8f6 \uf8f7 \uf8f8 ∈ (H1 per(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π))3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, one can show that B is continuous and coercive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, by Lax-Milgram theorem, for every ǫ > 0, there exists a unique solution (ξǫ, ηǫ, ζǫ)† ∈ (H1 per(0, 2π))3 such that B \uf8eb \uf8ec \uf8ed \uf8eb \uf8ec \uf8ed ξǫ ηǫ ζǫ \uf8f6 \uf8f7 \uf8f8 , \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 \uf8f6 \uf8f7 \uf8f8 = F \uf8eb \uf8ec \uf8ed \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 \uf8f6 \uf8f7 \uf8f8 , ∀ \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 ∈ (H1 per(0, 2π))3, where F : (H1 per(0, 2π))3 → C is the linear functional given by F \uf8eb \uf8ec \uf8ed \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 \uf8f6 \uf8f7 \uf8f8 := � 2π 0 f ¯ξdx + � 2π 0 g¯ηdx + � 2π 0 h¯ζdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 29 Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Observe that ℜ \uf8eb \uf8ec \uf8edB \uf8eb \uf8ec \uf8ed \uf8eb \uf8ec \uf8ed ξǫ ηǫ ζǫ \uf8f6 \uf8f7 \uf8f8 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' \uf8eb \uf8ec \uf8ed ξǫ ηǫ ζǫ \uf8f6 \uf8f7 \uf8f8 \uf8f6 \uf8f7 \uf8f8 \uf8f6 \uf8f7 \uf8f8 ≤ � 2π 0 ��fξǫ�� dx + � 2π 0 |gηǫ| dx + � 2π 0 ��hζǫ�� dx ≤ 1 2 � 2π 0 � |f|2 + |g|2 + |h|2� dx + 1 2 � 2π 0 ���ξǫ��2 + |ηǫ|2 + ��ζǫ��2� dx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' which yields ǫ � 2π 0 |ξǫ x|2+ν 2 � 2π 0 |ξǫ|2+λ0 � 2π 0 |ηǫ x|2+ν 2 � 2π 0 |ηǫ|2+κ0 � 2π 0 |ζǫ x|2+ν 2 � 2π 0 |ζǫ|2 ≤ 1 2 � 2π 0 (|f|2+|g|2+|h|2) This shows that the sequences (ηǫ) and (ζǫ) are bounded in H1(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π) and the sequences (ξǫ) and (√ǫξǫ x) are bounded in L2(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since the spaces H1(0, 2π) and L2(0, 2π) are reflexive, there exist subsequences, still denoted by (ηǫ), (ζǫ), (ξǫ), and functions ξ ∈ L2(0, 2π) and η ∈ H1(0, 2π) such that ηǫ ⇀ η in H1(0, 2π), and ξǫ ⇀ ξ in L2(0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Furthermore, we have � 2π 0 |ǫξǫ x|2 = ǫ � 1 0 ��√ǫξǫ��2 → 0, as ǫ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Now, since B \uf8eb \uf8ec \uf8ed \uf8eb \uf8ec \uf8ed ξǫ ηǫ ζǫ \uf8f6 \uf8f7 \uf8f8 , \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 \uf8f6 \uf8f7 \uf8f8 = F \uf8eb \uf8ec \uf8ed \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 \uf8f6 \uf8f7 \uf8f8, for all \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 ∈ (H1 per(0, 2π))3, we may take \uf8eb \uf8ec \uf8ed ξ1 0 0 \uf8f6 \uf8f7 \uf8f8 ∈ (H1 per(0, 2π))3, so that we obtain (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) ǫ � 2π 0 ξǫ x( ¯ξ1)xdx + ¯ρ � 2π 0 ηǫ x ¯ξ1dx + ¯u � 2π 0 ξǫ x ¯ξ1dx + ν � 2π 0 ξǫ ¯ξ1dx = � 2π 0 f ¯ξ1dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Similarly, by taking \uf8eb \uf8ec \uf8ed 0 η1 0 \uf8f6 \uf8f7 \uf8f8 , \uf8eb \uf8ec \uf8ed 0 0 ζ1 \uf8f6 \uf8f7 \uf8f8 ∈ (H1 per(0, 2π))3, we get (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) λ0 � 2π 0 ηǫ x( ¯η1)xdx+ ¯u � 2π 0 ηǫ x ¯η1dx+ R¯θ ¯ρ � 1 0 ξǫ x ¯η1dx+R � 2π 0 ζǫ x ¯η1dx+ν � 2π 0 ηǫ ¯η1dx = � 2π 0 g ¯η1dx, and (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) κ0 � 2π 0 ζǫ x( ¯ζ1)xdx + ¯u � 2π 0 ζǫ x ¯ζ1dx + R¯θ c0 � 2π 0 ηǫ x ¯ζ1dx + ν � 2π 0 ζǫ ¯ζ1dx = � 2π 0 h ¯ζ1dx Integrating by parts, we get from equation (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='2) that, ǫ � 2π 0 ξǫ x( ¯ξ1)xdx + ¯ρ � 2π 0 ηǫ x ¯ξ1dx − ¯u � 2π 0 ξǫ( ¯ξ1)xdx + ν � 2π 0 ξǫ ¯ξ1dx = � 2π 0 f ¯ξ1dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Then, passing to the limit ǫ → 0, we obtain ¯ρ � 2π 0 ηx ¯ξ1dx + ¯u � 2π 0 ξx ¯ξ1dx + ν � 2π 0 ξ ¯ξ1dx = � 2π 0 f ¯ξ1dx, and the above relation is true ∀ξ1 ∈ C∞ c (0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' As a consequence, ¯ρηx + ¯uξx + νξ = f, in the sense of distribution and therefore ¯uξx = f − ¯ρηx − νξ ∈ L2(0, 2π);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' in other words, ξ ∈ H1(0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We similarly have from identities (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3) and (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='4) νη + R¯θ ¯ρ ξx − λ0ηxx + ¯uηx + Rζx = g, νζ + R¯θ c0 ηx − κ0ζxx + ¯uζx = h, in the sense of distribution and therefore η, ζ ∈ H2(0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 30 Step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now show η(0) = η(2π) and ηx(0) = ηx(2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since the inclusion map i : H1(0, 2π) → C0( ¯ 0, 2π) is compact and ηǫ ⇀ η in H1(0, 2π), we obtain ηǫ → η in C0[0, 2π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Thus, (ηǫ(0), ηǫ(2π)) → (η(0), η(2π)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Since ηǫ(0) = ηǫ(2π) for all ǫ > 0, we have η(0) = η(2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' From (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='3), we have after passing the limit as ǫ → 0 λ0 � 2π 0 ηx( ¯η1)xdx + ¯u � 2π 0 ηx ¯η1dx + R¯θ ¯ρ � 1 0 ξx ¯η1dx + R � 2π 0 ζx ¯η1dx + ν � 2π 0 η ¯η1dx = � 2π 0 g ¯η1dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Integrating by parts, we get −λ0 � 2π 0 ηxx ¯η1dx + λ0(ηx(2π) ¯η1(2π) − ηx(0) ¯η1(0)) + ¯u � 2π 0 ηx ¯η1dx + R¯θ ¯ρ � 1 0 ξx ¯η1dx +R � 2π 0 ζx ¯η1dx + ν � 2π 0 η ¯η1dx = � 2π 0 g ¯η1dx, and therefore ηx(2π) ¯η1(2π) − ηx(0) ¯η1(0) = 0 that is ηx(0) = ηx(2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' In a similar way, we can obtain ζ(0) = ζ(2π) and ζx(0) = ζx(2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' We now show ξ(0) = ξ(2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Recall that we have after taking limit as ǫ → 0 ¯ρ � 2π 0 ηx ¯ξ1dx − ¯u � 2π 0 ξ( ¯ξ1)xdx + ν � 2π 0 ξ ¯ξ1dx = � 2π 0 f ¯ξ1dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Integrating by parts, we get (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='5) ¯ρ � 2π 0 ηx ¯ξ1dx + ¯u � 2π 0 ξx ¯ξ1dx − ¯u(ξ(2π)ξ1(2π) − ξ(0)ξ1(0)) + ν � 2π 0 ξ ¯ξ1dx = � 2π 0 f ¯ξ1dx, and therefore ξ(0) = ξ(2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' So, we get \uf8eb \uf8ec \uf8ed ξ η ζ \uf8f6 \uf8f7 \uf8f8 ∈ D(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Hence, the operator A is maximal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' References [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Badra, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Ervedoza, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Guerrero, Local controllability to trajectories for non-homogeneous incompressible Navier-Stokes equations, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Poincar´e Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Non Lin´eaire, 33 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 529–574.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [2] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Beauchard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Koenig, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Le Balc’h, Null-controllability of linear parabolic transport systems, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' ´Ec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' polytech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 7 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 743–802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [3] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Bhandari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Chowdhury, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Dutta, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Kumbhakar, Boundary null-controllability of 1d linearized com- pressible navier-stokes system by one control force, https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='org/abs/2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='02375, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Chapouly, On the global null controllability of a Navier-Stokes system with Navier slip boundary conditions, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Differential Equations, 247 (2009), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2094–2123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [5] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Chaves-Silva, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Rosier, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Zuazua, Null controllability of a system of viscoelasticity with a moving control, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Pures Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (9), 101 (2014), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 198–222.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Chowdhury, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Dutta, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Majumdar, Boundary controllability and stabilizability of a coupled first-order hyperbolic-elliptic system, Evolution Equations and Control Theory, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Chowdhury and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Mitra, Null controllability of the linearized compressible Navier-Stokes equations using mo- ment method, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Evol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Equ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 15 (2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 331–360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Chowdhury, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Mitra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Ramaswamy, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Renardy, Null controllability of the linearized compressible Navier Stokes system in one dimension, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Differential Equations, 257 (2014), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 3813–3849.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Chowdhury and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Ramaswamy, Optimal control of linearized compressible Navier-Stokes equations, ESAIM Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Calc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 19 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 587–615.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Chowdhury, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Ramaswamy, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Raymond, Controllability and stabilizability of the linearized compressible Navier-Stokes system in one dimension, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 50 (2012), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 2959–2987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Conway, Functions of one complex variable, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 11 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, second ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrˆole Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Calc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 1 (1995/96), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 35–75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Coron and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Fursikov, Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary, Russian J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 4 (1996), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 429–448.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 31 [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Coron and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Pures Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (9), 92 (2009), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 528–545.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Coron and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 198 (2014), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 833–880.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Coron, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Marbach, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Sueur, Small-time global exact controllability of the Navier-Stokes equation with Navier slip-with-friction boundary conditions, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (JEMS), 22 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 1625–1673.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Ervedoza, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Glass, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Guerrero, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Puel, Local exact controllability for the one-dimensional compress- ible Navier-Stokes equation, Arch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Ration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 206 (2012), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 189–238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [18] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Ervedoza and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Savel, Local boundary controllability to trajectories for the 1D compressible Navier Stokes equations, ESAIM Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Calc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 24 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 211–235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [19] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Feireisl, Dynamics of viscous compressible fluids, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 26 of Oxford Lecture Series in Mathematics and its Appli- cations, Oxford University Press, Oxford, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [20] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Fern´andez-Cara, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Guerrero, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Imanuvilov, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Puel, Local exact controllability of the Navier- Stokes system, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Pures Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' (9), 83 (2004), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 1501–1542.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Fern´andez-Cara, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Guerrero, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Imanuvilov, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Puel, Some controllability results for the N- dimensional Navier-Stokes and Boussinesq systems with N − 1 scalar controls, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 45 (2006), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 146–173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Fursikov and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' `Emanuilov, Exact local controllability of two-dimensional Navier-Stokes equations, Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Sb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 187 (1996), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 103–138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [23] , Exact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Nauk, 54 (1999), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 93–146.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [24] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Girinon, Quelques probl`emes aux limites pour les ´equations de Navier-Stokes, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' DOCTORAT de l’Universit´e Paul Sabatier Toulouse III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [25] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Guerrero, Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions, ESAIM Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Calc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 12 (2006), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 484–544.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [26] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Imanuvilov, On exact controllability for the Navier-Stokes equations, ESAIM Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Calc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 3 (1998), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 97–131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [27] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Calc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 6 (2001), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 39–72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Koenig and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lissy, Null-controllability of underactuated linear parabolic-transport systems with constant coef- ficients, https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='org/abs/2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content='00471, (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [29] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Komornik and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Loreti, Fourier series in control theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [30] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Lebeau and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Zuazua, Null-controllability of a system of linear thermoelasticity, Arch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Rational Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 141 (1998), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 297–329.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [31] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Maity, Some controllability results for linearized compressible Navier-Stokes system, ESAIM Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Calc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 21 (2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 1002–1028.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' [32] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Martin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Rosier, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Rouchon, Null controllability of the structurally damped wave equation with moving control, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' Control Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=', 51 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 660–684.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} +page_content=' 32' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E2T4oBgHgl3EQfuggX/content/2301.04080v1.pdf'} diff --git a/X9AyT4oBgHgl3EQfWfd0/content/2301.00164v1.pdf b/X9AyT4oBgHgl3EQfWfd0/content/2301.00164v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..1d0eb19aa45839709c5aacd9fe3734a5f56db264 --- /dev/null +++ b/X9AyT4oBgHgl3EQfWfd0/content/2301.00164v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:97b88d95c91321741df964d18d224ae04de9f2f7788c08414e1841d5de69dcfe +size 359984 diff --git a/X9AyT4oBgHgl3EQfWfd0/vector_store/index.faiss b/X9AyT4oBgHgl3EQfWfd0/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..05d03f15e9904f20746685df929a70ff6d0545c8 --- /dev/null +++ b/X9AyT4oBgHgl3EQfWfd0/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9a853f961dff7cefd55d7616655034350182a4f324eb1e5123dfcefccdb33a63 +size 3866669 diff --git a/X9AyT4oBgHgl3EQfWfd0/vector_store/index.pkl b/X9AyT4oBgHgl3EQfWfd0/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..0b52f4ef75763d098440f340135f1b4812d5ca08 --- /dev/null +++ b/X9AyT4oBgHgl3EQfWfd0/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dc130d41fbc485fce620551a4726a3f68977ae3d00df0a372f7a5ab31ae6c8a1 +size 146211 diff --git a/XNAyT4oBgHgl3EQf9PpX/vector_store/index.faiss b/XNAyT4oBgHgl3EQf9PpX/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..ba12df9acedf9741133ea689dd9748783d4c8d99 --- /dev/null +++ b/XNAyT4oBgHgl3EQf9PpX/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4e5b88d30db16a6329592c9221b8365383b774b911d4d732e618c4ee0535b369 +size 4390957 diff --git a/YNFOT4oBgHgl3EQf9jQ2/vector_store/index.pkl b/YNFOT4oBgHgl3EQf9jQ2/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..174247e50ab6acab9fd6269bdcf47125aaacce40 --- /dev/null +++ b/YNFOT4oBgHgl3EQf9jQ2/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3f4a5b04c3dca33fe8f0b6ee2bbfc31a0bcf9e8ac7d7ad2526b41da97846691b +size 303638 diff --git a/YdE2T4oBgHgl3EQfEQZV/content/2301.03633v1.pdf b/YdE2T4oBgHgl3EQfEQZV/content/2301.03633v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9d3be4541fe48d1d89826ea2e6c8221e65e0bfe5 --- /dev/null +++ b/YdE2T4oBgHgl3EQfEQZV/content/2301.03633v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3faeb503acee51c6da60e2a538380bbbaa09c4bef92157cef487fc9b41bff8c7 +size 765673 diff --git a/YdE2T4oBgHgl3EQfEQZV/vector_store/index.pkl b/YdE2T4oBgHgl3EQfEQZV/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..505a9532ea3a1110bc0cdc064a7d48ff1e69cdf3 --- /dev/null +++ b/YdE2T4oBgHgl3EQfEQZV/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b582a5de28514236ec766e13b43fb2703bcda43dad5576bc626d9f0a0db0f144 +size 553037 diff --git a/Z9FJT4oBgHgl3EQf7y3s/vector_store/index.faiss b/Z9FJT4oBgHgl3EQf7y3s/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..0737ddb374e2153d4830057132a7176e9fde0016 --- /dev/null +++ b/Z9FJT4oBgHgl3EQf7y3s/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fbb647470e604b29b06c380b9621b3ea07cdfe0929bafa7fbb6f41fccf9d1e99 +size 4325421 diff --git a/_9AyT4oBgHgl3EQfRfam/content/2301.00068v1.pdf b/_9AyT4oBgHgl3EQfRfam/content/2301.00068v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3c3ea6a75ae93d5a72c13aaa494b98b8b9843156 --- /dev/null +++ b/_9AyT4oBgHgl3EQfRfam/content/2301.00068v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5d3adb3947c5387a62f926384e355f72dc4c1f12e8652badeffd4ee6cd5a9d60 +size 418906 diff --git a/_9AyT4oBgHgl3EQfRfam/vector_store/index.faiss b/_9AyT4oBgHgl3EQfRfam/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..c6d68979830a7136771f0aff479aaf7d0bac9f29 --- /dev/null +++ b/_9AyT4oBgHgl3EQfRfam/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:eea710878d3a70e40cee2312575240498c466dff8b8795069d313c48f0e86cd1 +size 917549 diff --git a/_9AyT4oBgHgl3EQfRfam/vector_store/index.pkl b/_9AyT4oBgHgl3EQfRfam/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..7c9ebbeb6c8f6adb62e8f20f953da42e94c9c520 --- /dev/null +++ b/_9AyT4oBgHgl3EQfRfam/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:789dd10a3c64376d6cd3ec0b5990cad8b1b8cb13c49b12ee1b3ab52ffc993321 +size 38484 diff --git a/_NE4T4oBgHgl3EQfEAug/content/tmp_files/2301.04874v1.pdf.txt b/_NE4T4oBgHgl3EQfEAug/content/tmp_files/2301.04874v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..2f3feb0ff075de5d2fc84a9bb09e25c18d6833a5 --- /dev/null +++ b/_NE4T4oBgHgl3EQfEAug/content/tmp_files/2301.04874v1.pdf.txt @@ -0,0 +1,1393 @@ +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +AMEDEO ALTAVILLA, EDOARDO BALLICO, AND MARIA CHIARA BRAMBILLA +Abstract. We study surfaces of bidegree (1, d) contained in the flag threefold under +the action of the twistor projection. First, we prove that there is no integral surfaces of +bidegree (1, d) containing d + 2 twistor fibers such that three of them are not collinear. +Then, fixed any union of 0 ≤ n ≤ d + 1 non-three-by-three collinear twistor fibers, we +show that there is an integral (1, d)-surface containing them and no other twistor fibers. +The result is also true for d + 2 twistor fibers with additional suitable hypotheses. Later, +we focus on surfaces of low bidegrees and prove that, for any set of 0 ≤ n ≤ 3 (resp. n = 4) +twistor fibers, there is a smooth (resp. integral) surface of bidegree (1, 2) containing them +and no other twistor fiber. Finally, we prove that there is no integral (1, d)-surface, for +d = 2, 3, containing d + 3 twistor fibers. +Contents +1. +Introduction +1 +2. +Preliminaries and first results +3 +2.1. +Curves in F and smooth conics +4 +2.2. +Surfaces of bidegree (1, 0) and (0, 1) +6 +2.3. +Surfaces of bidegree (0, d) and (1, d) +7 +2.4. +Non-collinear smooth conics +8 +3. +Surfaces of bidegree (1, d) +10 +4. +Surfaces of bidegree (1, 2) and (1, 3) +15 +4.1. +Surfaces of bidegree (1, 2) containing 0 ≤ n ≤ 4 twistor fibers +15 +4.2. +Non existence results for surfaces of bidegree (1, 2) and (1, 3) +22 +References +24 +1. Introduction +The flag threefold F can be seen as the twistor space of the complex projective plane +P2 endowed with all its standard structures except for its orientation which, in this case, +is the opposite of the usual one [6, 11], +π : F → P2. +The study of the twistor geometry of the flag is motivated by the search of Riemannian 4- +manifolds admitting several integrable complex structures compatible with the prescribed +metric (see e.g. [8, 12, 13]). In this context, a recent trend is that of study particular cases, +in order to find explicit examples [1, 2, 5, 7, 9]. +In [4] we have started a detailed analysis of the geometry of the algebraic curves and +surfaces contained in F, in relation with the twistor projection. In particular, twistor fibers +are smooth integral curves of bidegree (1,1) (called smooth conics). In [3] we gave a first +bound on the maximum number of smooth conics contained in a smooth surface S ⊂ F. +2010 Mathematics Subject Classification. Primary: 32L25, 14M15; Secondary: 14D21, 14J26. +Key words and phrases. flag threefold, twistor projection, twistor fiber, surfaces, bidegree. +All the authors are partially supported by GNSAGA. The first named author is partially supported by +the INdAM project ‘Teoria delle funzioni ipercomplesse e applicazioni’. +1 +arXiv:2301.04874v1 [math.AG] 12 Jan 2023 + +2 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +Here, by focusing our attention to a specific family of surfaces, we obtain more precise +results. In fact we analyze the case of bidegree (1, d) surfaces in F and study the number +and the arrangements of twistor fibers contained in them. +In order to explain in details our results, we need to clarify some definitions. The flag +threefold can be defined as +F := {(p, ℓ) ∈ P2 × P2 | pℓ = 0}, +where p = [p0 : p1, p2], ℓ = [ℓ0 : ℓ1 : ℓ2] ∈ P2 and pℓ = p0ℓ0 + p1ℓ1 + p2ℓ2. The notation +(p, ℓ), would recall a couple (point,line), and the condition pℓ = 0 translates as p belongs +to ℓ. In order to simplify the notation, we identify the second factor P2∨ with P2. +We have three projection maps: π1, π2, π : F → P2, defined as +π1(p, ℓ) = p, +π2(p, ℓ) = ℓ, +π(p, ℓ) = p × ℓ = [p1ℓ2 − p2ℓ1, p2ℓ0 − p0ℓ2, p0ℓ1 + p1ℓ0], +where the third one is the twistor map. The fibers of such three maps are the object of +our investigation. +Being embedded in P2 × P2, it is possible to define a natural notion of bidegree for +surfaces and a (bit less natural) one for curves in F (see Definition 2.1). In particular, for +any q ∈ P2, the three fibers π−1 +1 (q), π−1 +2 (q) and π−1(q) are curves of bidegree (0, 1), (1, 0) +and (1, 1), respectively. While the fibers of π1 and π2 exhaust the family of bidegrees (1, 0) +and (0, 1) curves, twistor fibers are only a (non-open Zariski dense) subset of those of +bidegree (1, 1). Since the curves of bidegree (1, 1) are rational, we call them conics. There +are only two types of bidegree (1, 1) curves: the reducible ones (union of a bidegree (1, 0) +and of a bidegree (0, 1) curves intersecting at a point), or smooth conics. All of them can +be described as +Lq,m := {(p, ℓ) ∈ F | pm = 0, qℓ = 0}, +where q, m ∈ P2 and, the reducible and smooth cases are obtained for qm = 0 or qm ̸= 0, +respectively. +In twistor theory there is an antiholomorphic involution without fixed points that plays +important roles in identifying twistor fibers [6, 11]. In our case, this map can be defined +as j : F2 → F2, where +j(p, ℓ) = (ℓ, p). +A smooth conic Lq,m is a twistor fiber if and only if j(Lq,m) = Lq,m if and only if m = q. +As explained in [6], the geometry of F as twistor space does not change if we consider a +conformal copy of its base space P2. Therefore, it is natural to classify objects in F up to +conformal transformations, which, in this case, means up to projective transformations of +F coming from the lift via π of a conformal transformation of P2. It is possible to see that +such transformations of F are exactly those which commute with j (see [4] for the case of +the flag manifold). Hence, in particular, the number of twistor fibers contained in a given +surface and their arrangement are conformal invariants. +In order to state our main results we need some more notation. We denote by C(1) = C +the set of smooth conics in F and by C(n), n ≥ 2, the set of n pairwise disjoint smooth +conics. In an analogous way we define T (1) = T ⊂ C as the set of twistor fibers and +T (n) ⊂ C(n), n ≥ 2, as the set of n pairwise disjoint twistor fibers. +We will see in Remark 2.5 that for any couple of different smooth conics, there is a +unique bidegree (1, 0) curve L = π−1 +2 (q2) and a unique bidegree (0, 1) curve R = π−1 +1 (q1) +such that L and R intersect both smooth conics. In the case of a couple of twistor fibers +we also have R = j(L). We say that three or more smooth conics are collinear if there is +a (1, 0) curve L which intersects all of them. To be collinear, for three or more smooth +conics, is a Zariski closed condition. +To be more precise, in Definition 2.7, we define the set C∗(n) which parametrizes all +A ∈ C(n) such that #(L ∩ A) ≤ 2 for all curves L of bidegree (1, 0). Clearly C∗(1) = C(1), +and C∗(2) = C(2), while for n ≥ 3 the open set C∗(n) is given by the set of disjoint smooth + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +3 +conics such that no three of them are collinear. +Moreover, we set T ∗(n) := T (n) ∩ C∗(n). +In Theorem 2.19 we characterize the elements A ∈ C∗(d + 1) to be those which do not +obstruct the linear system |IA(1, d)|. +We now summarize the main results of the paper. In Section 3, we study surfaces of +bidegree (1, d) containing a certain number of smooth conics or twistor fibers, and we +prove the following two theorems. +Theorem 1.1. For any d ∈ N and A ∈ T ∗(d + 2), there is no integral surfaces of bidegree +(1, d) containing A. +Theorem 1.2. Fix integer d ≥ 1 and 0 ≤ n ≤ d + 2. There is an integral S ∈ |OF(1, d)| +containing exactly n twistor fibers. +We also show, in Theorem 3.4, that the first result is sharp. Indeed, for any A ∈ T ∗(n), +with 0 ≤ n ≤ d + 1, we are able to find an integral surface of bidegree (1, d) containing A +and no other twistor fibers. This last issue requires some effort and the proof is divided +into several particular case. +Theorem 1.2 is a consequence of Theorem 3.4 and Theorem 3.8. More precisely, in +Theorem 3.4, for 0 ≤ n ≤ d + 1, we prove that fixed any union A of 0 ≤ n ≤ d + 1 +non-three-by-three collinear twistor fibers, there is an integral (1, d)-surface containing A +and no other twistor fibers. The extremal case n = d + 2 is considered in Theorem 3.8, +where we prove that given d + 2 general collinear twistor fibers there is an integral surface +of bidegree (1, d) containing them. +In Section 4, we focus on surfaces of bidegree (1, 2) and (1, 3). The main results are +summarized by the following statements: +Theorem 1.3. Fix 0 ≤ n ≤ 3. There is a smooth S ∈ |OF(1, 2)| containing exactly n +twistor fibers. Moreover, there exists a bidegree (1, 2) integral surface containing exactly 4 +twistor fibers. +Theorem 1.4. There is no integral S ∈ |OF(1, 2)| containing at least 5 twistor fibers. +Theorem 1.5. There is no integral S ∈ |OF(1, 3)| containing at least 6 twistor fibers. +The first existence result (Theorem 1.3) follows from Theorem 4.6, for 0 ≤ n ≤ 3, and +Theorem 4.10, for the case n = 4. In the extremal case n = 4, we will also show that the +surfaces are singular along a line. +The two non-existence results (Theorems 1.4 and 1.5) are proved in the last Section +4.2. +An essential tool is Lemma 4.11 which states that if a surface of bidegree (1, d) +contains d + 3 or more collinear twistor fibers, then this surface is reducible and one of its +components is a surface of bidegree (1, 1) containing 4 of the prescribed twistor fibers. +We conclude here with a comparison with the other (smooth) algebraic twistor space of +a Riemannian 4-manifold, which is the complex projective space. This is the twistor space +of the standard 4-sphere [11]. In this case, surfaces of degree 2 and 3 were studied in some +details. In particular, analogously to our case of surfaces of bidegree (1, 1), surfaces of +degree 2 in P3 might contain 0, 1 or 2 twistor fibers. If a surface of degree 2 contains more +than 2 twistor fibers, then it contains infinitely many of them [13]. For degree 3 surfaces, +such a maximum is realized for 5 twistor fibers [5] which is more than our maximum of 4 +for surfaces of bidegree (1, 2). This difference could be explained by observing a certain +unbalancedness of the case of “total degree” 3 in the flag threefold. On the other hand, +this particular unbalancedness allows us to compute all the Betti numbers in the next +section as well as the use of the geometry of the Hirzebruch surfaces. +2. Preliminaries and first results +In this section, we collect some known results about algebraic curves and surfaces in +the flag. Then, we give first results on the space of bidegree (0, d) and (1, d) surfaces + +4 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +containing a certain amounts of twistor fibers. In particular, we introduce the concept of +collinear smooth conics and give a topological characterization in terms of cohomology of +certain ideal sheaves. +For most of the known material about F, we refer mainly to [4] and to [3, Section 2]. +However, we recall here some basic notion and results in order to be as more self-contained +as possible. +Let us consider the multi projective space P2 × P2; an element (p, ℓ) ∈ P2 × P2 will +be a couple written in the following form p = [p0 : p1 : p2], ℓ = [ℓ0 : ℓ1 : ℓ2]⊤, so that +pℓ = p0ℓ0 + p1ℓ1 + p2ℓ2. Even if it is classically embedded in P2 × P2∨, we might see +F := {(p, ℓ) ∈ P2 × P2 | pℓ = 0} as a hypersurface of bidegree (1, 1) of P2 × P2. We denote +by Π1 and Π2 the two standard projections of P2×P2 and we will use small letters for their +restrictions, i.e. πi = Πi|F, i = 1, 2. Thus, the two natural projections define a natural +notion of bidegree for algebraic surfaces in F. Moreover, for all (a, b) ∈ Z2 we have the +following natural exact sequence +(1) +0 → OP2×P2(a − 1, b − 1) → OP2×P2(a, b) → OF(a, b) → 0, +and, for any (a, b) ∈ N2, we get (see e.g. [4, Lemma 2.3]) +(2) +h0(OF(a, b)) = (a + 1)(b + 1)(a + b + 2) +2 +and +h1(OF(a, b)) = 0. +It will be useful to recall from [4, Proposition 3.11] the multiplication rules in the Chow +ring: +OF(1, 0) · OF(1, 0) · OF(1, 0) = 0, +OF(1, 0) · OF(0, 1) · OF(1, 0) = 1, +OF(0, 1) · OF(1, 0) · OF(0, 1) = 1, +OF(0, 1) · OF(0, 1) · OF(0, 1) = 0. +(3) +2.1. Curves in F and smooth conics. Let us recall a notion of bidegree for the family +of algebraic curves in F already given in [4, 3]. +Definition 2.1. Let C ⊂ F be an integral algebraic curve. We define the bidegree of C +as the couple of positive integer numbers (d1, d2), where di = 0 if πi(C) = {x}, otherwise +di = deg(πi(C)) deg(πi|C). +If a curve D has irreducible components C1, . . . , Cs then the bidegree of D is taken to +be the sum of the bidegrees of C1, . . . , Cs. +Recall from [3, Remark 2.4] that if a curve C is such that C · OF(1, 0) = d1 and +C · OF(0, 1) = d2, then it has bidegree (d1, d2). +From the previous table of multiplication, we can easily derive the following formula. +Lemma 2.2. For any choice of non-negative integers a, b, c, d, the one-dimensional cycle +OF(a, b) · OF(c, d) has bidegree +(ad + b(c + d), a(c + d) + bc). +Proof. We have OF(a, b) · OF(c, d) = acOF(1, 0) · OF(1, 0) + (ad + bc)OF(1, 0) · OF(0, 1) + +bdOF(0, 1)·OF(0, 1). Hence the thesis is easily obtained by recalling that OF(1, 0)·OF(1, 0) +(resp. OF(1, 0) · OF(0, 1), resp. OF(0, 1) · OF(0, 1)) is a one-dimensional cycle of bidegree +(0, 1) (resp. bidegree (1, 1), resp. bidegree (1, 0)). +□ +Remark 2.3. Notice that the fibers of π1 are algebraic curves of bidegree (0, 1), while +those of π2 have bidegree (1, 0) (see, e.g. [4, Section 3]). +Moreover, all bidegree (0, 1) +curves can be seen as complete intersections between two different (1, 0) surfaces (and +analogously for bidegree (1, 0) curves). +Among all algebraic curves in F we focus our attention on the family of bidegree (1, 1) +curves. These are geometrically described in [4, Section 3.1] and are parameterized by + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +5 +(q, m) ∈ P2 × P2. In fact, as anticipated in the introduction, any of these curves can be +written as +Lq,m := {(p, ℓ) ∈ F | p ∈ m, ℓ ∋ q} = {(p, ℓ) ∈ F | qℓ = 0, pm = 0}. +There are two types of these curves: the smooth and irreducible ones (when qm ̸= 0) and +the union of a (1, 0) and of a (0, 1) intersecting at a point (when qm = 0, i.e. (q, m) ∈ F). +In any case, each bidegree (1, 1) curve can be seen as the complete intersection of a surface +of bidegree (1, 0) with one of bidegree (0, 1). As already mentioned in the introduction, +the 4-dimensional family of smooth irreducible (1, 1) curves will be denoted by C. The +elements of C will be called smooth conics. +Remark 2.4. From the very definition of smooth integral conics, it is clear that, for any +C ∈ C we have that πi(C) is a line in P2. +Remark 2.5. Notice that for any two different elements Lq,m, Lq′,m′ ∈ C there exist a +unique curve L of bidegree (1, 0) and a unique R of bidegree (0, 1) such that L and R +meets both Lq,m and Lq′,m′ at a point (see Figure 1). +From the analysis made in [4, +Section 3.1] it is easy to see that L = π−1 +2 (q × q′) and R = π−1 +1 (m × m′), where × +stands for the standard (formal) cross product. Equivalently, L = π−1 +2 (Sing(π2(A)) and +R = π−1 +1 (Sing(π1(A)). +We say that three disjoint smooth conics are collinear if they +Figure 1. Any two smooth conics are connected by a curve of bidegree +(1, 0) and by a curve of (0, 1). +intersect the same (1, 0) curve L. +The fibers of the twistor projection π : F → P2 (see [4, Section 5]) form a subset T +of the family of conics C. The twistor fibers are also characterized to be the irreducible +elements in C that are fixed by the anti-holomorphic involution j : F → F defined as +j(p, ℓ) = (ℓ, p). +Being the set of fixed point of j, a curve Lq,m belongs to T if and only if m = q. Moreover, +the set T is a Zariski dense in C (see, e.g. [3, Section 4]). +Remark 2.6. If L is the curve of bidegree (1, 0) connecting two different twistor fibers +(see Remark 2.5), then the curve of bidegree (0, 1) connecting them is exactly R = j(L). +Hence if three twistor fibers are collinear, then they intersect the same (1, 0) curve and +the same (0, 1) curve. +Recall from the introduction that, for any positive integer n, C(n) denotes the 4n- +dimensional set of n pairwise disjoint elements of C and T (n) the set of n pairwise disjoint +elements of T . As before, T (n) is a Zariski dense in C(n) (see again [3, Section 4]). We +now introduce the following crucial definition. + +R +L +q,m +q",m6 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +Definition 2.7. For any n ≥ 1 let C∗(n) be the set of all A ∈ C(n) such that for any curve +L of bidegree (1, 0), it holds #(L ∩ D) ≤ 2. Set T ∗(n) := T (n) ∩ C∗(n). +Clearly we have C∗(n) = C(n) and T ∗(n) = T (n), for n = 1, 2. For n ≥ 3 the set +C(n) \ C∗(n) parametrizes unions of n disjoint smooth conics such that at least three of +them are collinear, hence C∗(n) is an open Zariski dense in C(n), as well as T ∗(n) in T (n). +Therefore, for any n ≥ 1, all the following inclusions are Zariski dense: T ∗(n) ⊂ T (n) ⊂ +C(n), T ∗(n) ⊂ C∗(n) ⊂ C(n). +2.2. Surfaces of bidegree (1, 0) and (0, 1). We now turn our attention back to sur- +faces. We recall from [4, Section 3.2] and [3, Section 2] that (1, 0) and (0, 1) surfaces are +Hirzebruch surfaces of first type. In particular, a surface X of bidegree (1, 0) can be seen +as the lift, via π1 of a line (and analogously for a bidegree (0, 1) surface Y ). Using this +description, it is easy to see that any of these surfaces represent the blow up of P2 at a +point. Let F1 be a Hirzebruch surface of type 1; we now describe the relation between the +generators of the Picard group of F1 and the family of curves in F previously described. +We recall that Pic(F1) = Zh ⊕ Zf, where +h2 = −1, +f2 = 0, +hf = 1. +Notation 2.8. For the following analysis and the rest of the paper X will denote a surface +of bidegree (1, 0), while Y one of bidegree (0, 1). +Identifying a surface X with F1 we obtain that OX(1, 0) ≃ OF1(f) which in turn corre- +sponds to the set of curves in F of bidegree (0,1) contained in X. On the other hand we +have that OX(0, 1) ≃ OF1(h + f) which corresponds to elements of C. +Hence, for any a, b ∈ Z and for any α, β ∈ Z, we obtain the following two relations +(4) +OX(a, b) ∼= OF1(bh + (a + b)f), +and +OF1(αh + βf) ∼= OX(β − α, α). +For a surface Y of bidegree (0, 1) we can derive similar formulæ: +(5) +OY (a, b) ∼= OF1(ah + (a + b)f), +and +OF1(αh + βf) ∼= OY (α, β − α), +for any a, b ∈ Z and for any α, β ∈ Z. +Remark 2.9. Let X be a surface of bidegree (1, 0). Then X does not contain any element +of C(2). In fact, any element of C in X corresponds to an element of OF1(h + f) and any +two elements of type h + f meets. +The same holds for surfaces Y of bidegree (0, 1). +In particular, for each bidegree (1, 0) or (0, 1) surface there is exactly one twistor fiber +contained in it. +We now recall from [3, Lemma 2.5] that, for any a, b ≥ 0, using the exact sequence +0 → OF(a − 1, b) → OF(a, b) → OX(a, b) → 0, +and its analogous for Y , we have that +h0(OX(a, b)) = a(b + 1) + +�b + 2 +2 +� +, +h0(OY (a, b)) = b(a + 1) + +�a + 2 +2 +� +, +while +h1(OX(a, b)) = h1(OY (a, b)) = 0. +Moreover, if a > 0, b > 0, the line bundles OX(a, b) and OY (a, b) are very ample. + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +7 +2.3. Surfaces of bidegree (0, d) and (1, d). We now pass to study higher bidegree sur- +faces. We start with some consideration about bidegree (0, d) surfaces. +Remark 2.10. As described in [4, Section 3.3], any integral surface S of bidegree (0, d) +is equal to π−1 +1 (C) for some degree d integral curve C. Therefore, for d ≥ 2, no integral +S ∈ |OF(0, d)| contains a smooth conic. Otherwise, thanks to Remark 2.4, πi(S) would +contain a line, but π1(S) is an integral curve of degree d. +For n ≥ 2 we now compute how many (non integral) bidegree (0, d) surfaces contain a +fixed element of C(n). First we set the following notation. +Notation 2.11. We will denote by IU,V the ideal sheaf of a scheme U contained in a +projective variety V ; whenever V = F we will omit it. So, in particular, if A ∈ C(n) we +will write IA := IA,F. +Lemma 2.12. Fix d ≥ 0, n ≥ 1, and A ∈ C(n). We have +h0(IA(0, d)) = (d − n + 2)(d − n + 1) +2 +and +h1(IA(0, d)) = +� n(n−1) +2 +if n ≤ d + 1 +n(d + 1) − (d+2)(d+1) +2 +if n ≥ d + 1. +Proof. Recall that OF(0, d) = π∗ +1(OP2(d)), and IA(0, d) = π∗ +1(IT,P2(d)) where T = π1(A) +is a union of n distinct lines in P2. In general, we have that: +h0(OF(0, d)) = +�d + 2 +2 +� +, +h0(IA(0, d)) = +�d + 2 − n +2 +� +, +h0(OA(0, d)) = n(d + 1), +hence, using the exact sequence +0 → IA(0, d) → OF(0, d) → OA(0, d) → 0, +since h1(OF(0, d)) = 0 and +�d+2−n +2 +� += 0 if n ≥ d + 1, we get the result. +□ +Remark 2.13. As a direct consequence of the previous lemma, we can state that, for any +C ∈ C, there is only one surface Y in |IC(0, 1)| and, analogously, only one surface X in +|IC(1, 0)|. +Remark 2.14. If A ∈ C(n), we consider the following exact sequence: +0 → IA(a, b) → OF(a, b) → OA(a, b) → 0. +Since the conics in A are all disjoint, we have that for any (a, b) ∈ N2 +(6) +h0(OA(a, b)) = n(a + b + 1), +(see, e.g. [3, Sequence (7) and proof of Theorem 4.4]). +Recall from Formula (2) that +h0(OF(a, b)) = (a+1)(b+1)(a+b+2) +2 +. Therefore, as h1(OA(a, b)) = h1(OF(a, b)) = 0, for any +A ∈ C(n) and d ≥ 0, we have +(7) +χ(IA(1, d)) = h0(IA(1, d)) − h1(IA(1, d)) = (d + 1)(d + 3) − n(d + 2). +Hence, if n = d + 2, we have h0(OA(1, d)) = (d + 2)2 and so +(8) +h0(OF(1, d)) = (d + 1)(d + 3) = (d + 2)2 − 1 = h0(OA(1, d)) − 1 +and, if n = d + 1: +h0(OF(1, d)) = h0(OA(1, d)) + d + 1. +In the following we will implicitly make use of the following simple observation. + +8 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +Remark 2.15. Since the elements of T (1) are the fibers of a map, the twistor map, each +p ∈ F is contained in a unique element, C, of T . Since j(C) = C, j(p) ∈ C. Analogously, +note that p is contained in a unique curve of bidegree (1, 0) and a unique curve of bidegree +(0, 1), π−1 +2 (π2(p)) and π−1 +1 (π1(p)). +The following remark will be used several times in the next pages. +Remark 2.16. Fix a positive integer d and an integral S ∈ |OF(1, d)|. +Since π1|X is +birational onto its image, S is rational. By B´ezout Theorem, for any p ∈ P2, the bidegree +(1, 0) curve π−1 +2 (p) either is contained in S, or intersects S in a single point (scheme- +theoretically). +We close this subsection with a technical result that will be used in the next pages. +In [3, Proposition 4.1] we proved that there exists at most one surface of bidegree (a, b) +containing a number equal or greater than a2 + ab + b2 of smooth conics. We will now +generalize this result to a more general context. +Proposition 2.17. Fix (a, b, c, d) ∈ N4 such that (a, b) ̸= (0, 0), c > 0, d > 0. Take +A ∈ C(n). Assume the existence of an integral S ∈ |OF(a, b)| containing A and assume +one of the following conditions: +(1) ad + b(c + d) < n; +(2) a(c + d) + bc < n; +(3) ad + b(c + d) = a(c + d) + bc = n. +Then each element of |IA(c, d)| contains S and in particular c ≥ a and d ≥ b. +Proof. Assume by contradiction the existence of S′ ∈ |IA(c, d)| such that S′ ⊉ S. We have +OF(a, b) · OF(c, d) =acOF(1, 0) · OF(1, 0) + (ad + bc)OF(1, 0) · OF(0, 1) ++ bdOF(0, 1) · OF(0, 1). +Since S′ ⊉ S, the intersection S ∩ S′ is a curve of bidegree (ad + b(c + d), a(c + d) + bc) +(see Lemma 2.2). Since c > 0 and d > 0, then OF(c, d) is ample. Moreover, since S is +irreducible, A has bidegree (n, n) and A is not connected, then the intersection contains +some more component in addition to A. Hence, either ad+bc+bd > n and ac+ad+bc ≥ n +or ad + bc + bd ≥ n and ac + ad + bc > n. +□ +2.4. Non-collinear smooth conics. We now want to characterize the conics in C∗(n) in +terms of cohomology. We start showing that the vanishing of certain cohomology groups +implies that an element A ∈ C(n) lies in C∗(n). +Lemma 2.18. Fix d ≥ 0, 3 ≤ n ≤ d+1 and A ∈ C(n). If h1(IA(1, d)) = 0 then A ∈ C∗(n). +Proof. Assume, by contradiction, that there exists a curve L of bidegree (1, 0) such that +#(L ∩ A) ≥ 3 and consider the exact sequence defining IA: +(9) +0 → IA(1, d) → OF(1, d) → OA(1, d) → 0. +We will prove that the restriction map H0(OF(1, d)) → H0(OA(1, d)) is not surjective, +which implies that h1(IA(1, d)) > 0. In fact, assume that it is surjective. Then, consider +the following diagram +OF(1, d) +OL(1, d) +OA(1, d) +OL∩A(1, d) +...................................................................................... +....................................................................................... ............ +....................................................................... ............ +...................................................................................... +. +As the vertical maps are surjective, then the map H0(OF(1, d)) → H0(OA∩L(1, d)), induced +by the composition, is surjective too and hence of rank at least 3 (since L∩A has cardinality +at least 3 and the irreducible components of A are pairwise disjoint). On the other hand the + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +9 +restriction map H0(OF(1, d)) → H0(OL(1, d)) has rank 2 and this gives a contradiction. +□ +Before completing the characterization of the conics in C∗(d + 1), we expose a general +construction that will be used in several following discussions. Let A ∈ C(n) and let C be +any connected component of A. Set B := A \ C. Then, for any a, b ≥ 0, if Y ∈ |OC(0, 1)|, +we have the following residual exact sequence +0 → IResY (A)(a, b − 1) → IA(a, b) → IA∩Y,Y (a, b) → 0, +but as ResY (A) = B and A ∩ Y = (B ∩ Y ) ∪ C, we have +(10) +0 → IB(a, b − 1) → IA(a, b) → I(B∩Y )∪C,Y (a, b) → 0. +Clearly an analogous sequence can be written for X ∈ |OC(1, 0)|. +Theorem 2.19. Fix d ≥ 0 and A ∈ C(d + 1). We have A ∈ C∗(d + 1) if and only if +h1(IA(1, d)) = 0. +Proof. By the previous lemma we need only to prove that A ∈ C∗(d+1) satisfies h1(IA(1, d)) = +0. We use induction on d ≥ 0. The case d = 0 is true by Lemma 2.12. Therefore, we +may assume d > 0 and use induction on d. Let C be a connected component of A, set +B := A \ C and cal Y the only element of |IC(0, 1)|. Consider the residual exact sequence +(10), with a = 1 and b = d. Since A ∈ C(d + 1), C ∩ B = ∅ and B ∩ Y is formed by d +different points, up to the identification of D with F1 we have +I(B∩Y )∪C,Y (1, d) ∼= I(B∩Y )∪C,F1(1, d)(h + (d + 1)f) ∼= IB∩Y,F1(df) . +Using (10) and induction we are left to prove that h1(IB∩Y,F1(df)) = 0 if and only if +A ∈ C∗(d + 1). +Consider now the following exact sequence +(11) +0 → IB∩Y,F1(df) → OF1(df) → OB∩Y (df) → 0. +Since h0(OF1(df)) = d + 1 and h0(OB∩Y (df)) = d, we have h1(IB∩Y,F1(df)) > 0 if +and only if h0(IB∩Y,F1(df)) ≥ 2. The last inequality means that there exist at least two +different sets of d fibers containing the set of d points B ∩Y . This is equivalent to the fact +that there exists a fiber L ∈ |f| such that #(B ∩ L) ≥ 2. Since L is a curve of bidegree +(1, 0) in F, then L · Y = 0 in the intersection ring of F, therefore L ⊂ Y and hence we get +L ∩ C ̸= ∅. Thus #(L ∩ A) ≥ 3, which means that A ̸∈ C∗(d + 1). +□ +Corollary 2.20. Fix d ≥ 0, 0 ≤ n ≤ d + 1 and A ∈ C∗(n). Then h1(IA(1, d)) = 0. In +particular, for n = 0, 1, 2 and for any A ∈ C(n), we have +h1(IA(1, 1)) = 0 +and +h0(IA(1, 1)) = 8 − 3n. +Proof. By using [3, Remark 4.3], we easily get the first part of the statement. The second +one, follows from Formula (7). +□ +We point out that since T (n) is a Zariski dense of C(n), then the characterization given +by Theorem 2.19 also holds for the set T ∗(n). +Lemma 2.21. Fix an integer d ≥ 0 and A ∈ C∗(d + 2). Then h1(IA(1, d)) ≤ 1. +Proof. The lemma is true for d = 0, because h0(IA(1, 0)) = 0 (see Remark 2.9). We assume +d > 0 and use induction on d. Let C be a connected component of A, set B := A \ C +and call Y the only element of |IC(0, 1)|. Consider the residual exact sequence (10), with +a = 1 and b = d. Since A ∈ C(d + 2), C ∩ B = ∅ and B ∩ Y is formed by d + 1 different +points, up to the identification of D with F1 we have +I(B∩Y )∪C,Y (1, d) ∼= I(B∩Y )∪C,F1(1, d)(h + (d + 1)f) ∼= IB∩Y,F1(df) . +Using (10) and induction we are left to prove that h1(IB∩Y,F1(df)) = 0 if A ∈ C∗(d + 2). + +10 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +Consider now the following exact sequence +(12) +0 → IB∩Y,F1(df) → OF1(df) → OB∩Y (df) → 0 . +Since h0(OF1(df)) = d + 1 and h0(OB∩Y (df)) = d + 1, we have h1(IB∩Y,F1) > 0 if and +only if h0(IB∩Y,F1(df)) > 0. This is equivalent to the fact that there exists a fiber L ∈ |f| +such that #(B ∩ L) ≥ 2. Since L is a curve of bidegree (1, 0) in F, then L · Y = 0 in the +intersection ring of F, therefore L ⊂ Y and hence we get L ∩ C ̸= ∅. Thus #(L ∩ A) ≥ 3, +which means that A ̸∈ C∗(d + 2). +□ +As said in Remark 2.5, for any element A ∈ C(2), there is a unique curve L of bidegree +(1, 0) and a unique R of bidegree (0, 1) such that both intersect the elements of A at a +point. As described in the following result, it turns out that A ∪ L ∪ R is the base locus +of |IA(1, 1)|. +Proposition 2.22. For any A ∈ C(2), we have that +(1) the general element in |IA(1, 1)| is integral; +(2) the base locus B of |IA(1, 1)| is A∪L∪R, where L is and R are the curves described +in Remark 2.5. +Proof. Since A ∈ C(2), by Corollary 2.20 we have h1(IA(1, 1)) = 0 and h0(IA(1, 1)) = 2. +Call C1 and C2 the connected components of A. Denote by Xi the only element of |OF(1, 0)| +containing Ci and by Yi the only element of |OF(0, 1)| containing Ci. The surfaces X1 ∪Y2 +and X2 ∪ Y1 are the only reducible elements of |IA(1, 1)| and hence, the general element +in |IA(1, 1)| is irreducible and (1) is proved. +To prove (2) we analyze the base locus B of |IA(1, 1)|. If S, S′ ∈ |IA(1, 1)| are irreducible +and S ̸= S′, then the one-dimensional cycle S ∩ S′ has bidegree (3, 3) and it contains A, +which has bidegree (2, 2). Take R := X1 ∩ X2 and L := Y1 ∩ Y2, where Xi and Yi are the +surfaces defined in the first part of this proof. The curves L and R are exactly the ones +stated in Remark 2.5. In particular, #(L ∩ A) = #(R ∩ A) = 2 and hence, by B´ezout and +Remark 2.16, L∪R ⊂ B. Moreover, recall that the reducible surfaces, X1 ∪Y2 and X2 ∪Y1 +belong to |IA(1, 1)| and their intersection (X1 ∪ Y2) ∩ (X2 ∪ Y1) is A ∪ L ∪ R. Hence the +base locus of |IA(1, 1)| is exactly B = A ∪ L ∪ R. +□ +Remark 2.23. By generalizing the proof of Proposition 2.22 we can say something about +the base locus of IA(1, d), for A ∈ C(n). Fix integers d > 0 and n ≥ 2 and take any +A ∈ C(n). Then, the base locus B of IA(1, d) contains all curves L of bidegree (1, 0) such +that #(L ∩ A) ≥ 2. If A ∈ C∗(n), then there are exactly +�n +2 +� +such curves L (the number of +lines joining two points in a set of n general points). If A ∈ T (n), then #(j(L) ∩ A) ≥ 2 +for all L such that #(L ∩ A) ≥ 2, since j(A) = A. +3. Surfaces of bidegree (1, d) +In this section we prove Theorems 1.1 and 1.2. In particular, we give several results for +the case of a surface of bidegree (1, d). Later, in the following section, we will specialize +to the cases d = 2, 3. The case d = 1 was studied in many details in [4] and here we add +a simple lemma useful for what follows. +Lemma 3.1. For any A ∈ T ∗(3), there is no integral surfaces of bidegree (1, 1) containing +A. +Proof. Assume the existence of an integral surface M of bidegree (1, 1) containing A ∈ +T ∗(3). +First of all, thanks to [4, Corollary 8.4], we have that M = j(M). +Then, as +explained at the beginning of Section 7.1 in [4], either M is smooth or reducible. But if +M is a smooth j-invariant surface of bidegree (1, 1) containing 3 twistor fibers, then it +contains infinitely many of them and these are parametrized by a circle (see [4, Theorem +7.2]). However, smooth surfaces of bidegree (1, 1) can be seen as the blow-up of P2 at three + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +11 +points both via π1 and π2. In particular, up to unitary transformation it is possible to +write M as the set {([p0 : p1 : p2], [ℓ0 : ℓ1 : ℓ2]) ∈ F | p1ℓ1 + λp2ℓ2}, with λ ∈ R \ {0, 1}. In +these coordinates, M contains π−1 +µ ([1 : 0 : 0]), π−1 +µ ([0 : 1 : 0]), π−1 +µ ([0 : 0 : 1]), for µ = 1, 2 +and, the family of twistor fibers π−1([q0 : q1 : q2]) defined by: +� +� +� +� +� +q0 = 0 and |q1|2λ + |q2|2 = 0 +if λ < 0 , +q1 = 0 and |q2|2 − |q0|2(λ − 1) = 0 +if λ > 1 , +q2 = 0 and |q1|2λ + |q0|2(λ − 1) = 0 +if 0 < λ < 1 . +Take for instance λ < 0, then any twistor fiber in M intersects the line L = π−1 +2 ([1 : 0 : 0]) +of bidegree (1, 0). An analogous consideration holds if 0 < λ < 1 or λ > 1. Hence we get +a contradiction. +□ +In the previous lemma we show that an integral (1, 1) surface cannot contain three +general twistor fibers. +On the other hand if M is a (1, 1) surface containing a given +A ∈ T (3) \ T ∗(3), then by [4, Corollary 8.3] we have that M is j-invariant, hence either it +is smooth or reducible. Moreover, if M contains infinitely many twistor fibers, then all of +them intersect a bidegree (1, 0) curve L and its associated (0, 1) curve R = j(L). +Remark 3.2. In [4, Section 8.1] we gave examples of bidegree (1, 1) smooth surfaces +containing exactly 0, 1 or 2 twistor fibers. +Remark 3.3. As a smooth surface of bidegree (1, 1) is a Del Pezzo surface of degree 6, +then this is characterized either by the three bidegree (1, 0) curves that contains or by the +three bidegree (0, 1) curves that contains. In fact, recall that these surfaces represent the +blow-up of P2 at three points with respect to either π1 or π2. We notice that if a smooth +surface of bidegree (1, 1) is j-invariant, then, this is uniquely determined by three twistor +fibers contained in it and not by the curves L and R = j(L) (of bidegree (1, 0) and (0, 1), +respectively), which intersect all the twistor fibers. In fact, in [4], we proved that these +kind of surfaces are uniquely determined by the “circle” defined by the infinite family of +twistor fibers contained in it and, such a “circle” is properly contained in in the (1, 0) line +L which intersects all fibers. +Thanks to these first considerations about bidegree (1, 1) surfaces, we are ready to give +the proof of our first main theorem. +Proof of Theorem 1.1: Thanks to Remark 2.9 and Lemma 3.1, the result is true for d = 0 +and d = 1. +Assume now that d ≥ 2 and, by contradiction, that S is an integral (1, d) surface +containing A ∈ T ∗(d+2). Call C a connected component of A and set B := A\C. Call Y +the only (by Lemma 3.2) element of |IC(0, 1)| and consider the following exact sequence +(which is a particular case of the one in Formula (10)): +(13) +0 → IB(1, d − 1) → IA(1, d) → I(B∩Y )∪C,Y (1, d) → 0. +From Formulæ (6) and (8), we have h0(OA(1, d)) = (d+2)2 = h0(OF(1, d))+1. Clearly, +we have that B ∩ Y is formed by d + 1 points, and, up to the identification of Y with F1 +given in Formula (5), as the curve C corresponds to an element of type h+f in F1, we can +write I(B∩Y )∪C,Y (1, d) ∼= I(B∩Y )∪C,F1(h + (d + 1)f) ∼=IB∩Y,F1(df). Since A ∈ T ∗(d + 2) +and every element of |f| meets C (indeed (h + f)f = 1), the restriction to B ∩ Y of the +ruling morphism D → P1 associated to |f| is injective. Thus, h1(Y, IA∩Y,Y (1, d)) = 0 and +the exact sequence (13) gives h1(IB(1, d−1)) ≥ h1(IA(1, d)) ≥ 2, where the last is greater +or equal than 2 because χ(IA(1, d)) = −1 (see Formula (7)), and we are assuming that +h0(IA(1, d)) ≥ 1. Thus, we also have h0(IB(1, d − 1)) > 0. +Recall that B ∈ T ∗(d+1) and hence, by the inductive assumption, B is not contained in +any integral E ∈ |OF(1, d − 1)|. Therefore, thanks to Remarks 2.9 and 2.10, there must be + +12 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +an integral M ∈ |OF(1, 1)| containing at least 3 connected components of B, say B′ ⊂ M +with B′ of bidegree (3, 3). Hence, by Lemma 3.1, there is a curve L of bidegree (1, 0) such +that #(L ∩ B′) = 3. Thus A /∈ T ∗(d + 2), a contradiction. +□ +Having proved that an integral bidegree (1, d) surface cannot contains d + 2 (or more) +non collinear twistor fibers, we now pass to prove that all the other cases can actually +arise. In particular, we prove in the following result a stronger version of Theorem 1.2 in +the case n ≤ d + 1. +Theorem 3.4. Fix integers d ≥ 1 and 0 ≤ n ≤ d + 1. Then, for any A ∈ T ∗(n) there is +an integral S ∈ |OF(1, d)| containing A. Moreover, the general S ∈ |IA(1, d)| contains no +other twistor fibers. +Proof. We use induction on the integer d. If d = 1 the statement is true by Remark 3.2. +Assume now d ≥ 2 and take an element A ∈ T ∗(n). Since T ∗(n) is Zariski dense in +C(n), A has the bigraded Hilbert function of a general element of C(n). Thus, thanks to +Corollary 2.20, we have that h1(IA(1, d)) = 0 and, by Formula (7) +h0(IA(1, d)) = (d + 1)(d + 3) − n(d + 2) =: Nn + 1. +Fix a connected component C of A and set B := A \ C. +If Y denotes be the only +(0, 1) surface containing C, Corollary 2.20 entails that h1(IB(1, d − 1)) = 0 and, again by +Formula 7 +h0(IB(1, d − 1)) = d(d + 2) − (n − 1)(d + 1). +By the inductive assumption, we know that |IB(1, d − 1)| ̸= ∅ and a general W ∈ +|IB(1, d − 1)| is irreducible. +Thus Y ∪ W ∈ |IA(1, d)| and Y ∪ W has 2 irreducible +components, one of them having bidegree (1, d − 1). +Let us denote by C1, . . . , Cn the connected components of A, by Bi := A \ Ci and by Yi +the unique element in |ICi(0, 1)|. The set of all the reducible surfaces W ∪ Yi ∈ |IA(1, d)|, +where W ∈ |IBi(1, d − 1)|, is the union of e projective spaces (one for each choice of +Ci), each of them of codimension h0(IA(1, d)) − h0(IB(1, d − 1)) = d + 2 − n > 0 in +|IA(1, d)|= PNn (in particular of codimension 1 if n = d+1). Therefore, they do not cover +all |IA(1, d)|. +We now want to exclude other possible splittings. In particular, we consider reducible +surfaces of the form W1 ∪ D1 with W1 integral, D1 possible reducible of bidegree (0, x) for +some x ≥ 2 and hence W1 of bidegree (1, d − x). Remark 2.10 shows that only irreducible +components of D1 of bidegree (0, 1) may contain some component of A. We obtain that +the surface is of the form W1 ∪D2 ∪D3 with W1 ∪D2 of bidegree (1, d−1), but, as showed +before, these kind of surfaces do not cover all |IA(1, d)|, hence we have the thesis. +Now we prove that a general S ∈ |IA(1, d)| contains no other twistor fibers. We start +by analyzing the case d = 2 and discussing the cases n = 1, 2, 3 separately. +Assume n = 1. Fix C ∈ T (1). Let CC(1) denote the set of all B ∈ C(1) such that B∩C = +∅. Note that T (1) \ {C} = CC(1) ∩ T (1). For any B ∈ CC(1) we have h1(IC∪B(1, 2)) = 0 +and hence h0(IC∪B(1, 2)) = h0(IC(1, 2)) − 4. Let XC be the set of all smooth and integral +surfaces of bidegree (1, 2) containing C. It is a non-empty Zariski open subset of |IC(1, 2)|. +For any B ∈ CC(1) the set of all S ∈ XC containing B has complex codimension 4 and +hence real codimension 8 as real manifolds. Since T (1) has real dimension 4, a general +S ∈ XC contains no other twistor fiber. +Let now n = 2. Fix A ∈ T (2) and let CA(1) denote the set of all B ∈ C(1) such that +B∩A = ∅ and B∪A ∈ C∗(3). Note that h1(IA∪B(1, 2)) = 0. So as in the previous step, we +get that a sufficiently general S ∈ |IA(1, 2)| contains no element of TA(1). Assume that S +contains B ∈ T (1) such that there is a curve of bidegree (1, 0) intersecting each connected +component of A ∪ B. Note that L is uniquely determined by A. Let C(A, L) denote the +set of all B ∈ C(1) such that B ∩ A = ∅ and L meets B and set T (A, L) := C(A, L) ∩ T (1). + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +13 +For any o ∈ L \ (L ∩ C) the set of all B ∈ C(A, L) containing o is a non-empty family of +complex dimension 1, while there is a unique twistor fiber containing o. The set C(A, L) is +a complex manifold of dimension 2, while h1(IA∪B(1, 2)) = 1 and hence h0(IA∪B(1, 2)) = +h0(IA(1, 2)) − 3. Since dim C(A, L) = 2, a general S ∈ |IA(1, 2)| contains no element of +C(A, L). Hence, there is no twistor fiber B such that A ∪ B ∈ T ∗(3). +Assume now that n = 3. Start by considering a general A ∈ T ∗(3). Then we have +h1(IA(1, 2)) = 0 and h0(IA(1, 2)) = 3. For any x ∈ {0, 1, 2, 3} let C(A, x) denote the set of +all C ∈ C(1) such that A∩C = ∅ and h0(IA∪C(1, 2)) = x and set T (A, x) := C(A, x)∩T (1). +For a general D ∈ C(4) we have h0(ID(1, 1)) = 0 (but h1(ID(1, 1)) = 1). Fix C ∈ C(1) +such that C ∩ A = ∅, call Y the only element of |IC(0, 1)|. Since C ∩ A = ∅, no connected +component of A is contained in Y and Y ∩ A is formed by 3 points, all of them in Y \ C. +We easily deal with the case x = 0 as any curve C ∈ C(A, 0) is not contained in any +element of |IA(1, 2)|. We have OY (1, 2)(−C) ∼= OF1(2f) and hence C ∈ C(A, 0) if no curve +of bidegree (1, 0) L ∈ |f| intersects 2 of the components of A (since h1(IA(1, 1)) = 1 the +last statement is only an “if” and not an “if and only if”). A necessary condition for +being C ∈ C(A, 2) is that L intersects all connected components of A, but this is excluded +because A ∈ T ∗(3). Since A ∈ T ∗(3) there are exactly 3 curves L1, L2, L3 of bidegree (1, 0) +intersecting 2 of the connected components of A. We claim that a general S ∈ |IA(1, 2)| +contains no C ∈ C(1) such that C ∩ A = ∅. The family of smooth conics which intersect +Li has complex dimension 2, while the family of twistor fibers intersecting Li has real +dimension 2. As the general S ∈ |IA(1, 2)| has only finitely many conics, it only has a +finite number of elements in C(A, 1) and, for the general, none of them is a twistor fiber. +We now pass to analyze the case d ≥ 3. Assume the general surface of |IA(1, d)| contains +the twistor fiber C ⊈ A. Thus A∩C = ∅. Set A′ := A∪C. Take Y ∈ |OY (0, 1)| containing +C and consider the residual exact sequence +(14) +0 → IA(1, d − 1) → IA′(1, d) → I(Y ∩A)∪C,Y (1, d) → 0. +We have IC,Y (1, d) ∼= OF1(df). +Assume first n ≤ d. If A′ ∈ T ∗(n + 1), then h1(I′ +A(1, d)) = 0 and hence h0(I′ +A(1, d)) = +h0(IA(1, d)) − d − 2. Since dim C(1) = 4, for d ≥ 3 the general S ∈ |IA(1, d)| contains no +C such that A ∪ C ∈ T ∗(n + 1). +Now assume A′ /∈ T ∗(n+1). Thus there are connected components C′ and C′′ of A such +that C ∪ C′ ∪ C′′ /∈ T ∗(3), i.e. C intersects the unique line L meeting C′ and C′′. Since +dim L = 1, to exclude this case it is sufficient to prove that h0(IB(1, d)) ≤ h0(IA(1, d))−2, +i.e. +h0(F1, IA∩Y (df)) ≤ d. +But since h0(OF1(df)) = d + 1, then OF1(df) is globally +generated and A ∩ Y ̸= ∅, therefore h0(F1, IA∩Y (df)) ≤ d. +Assume now n = d+1 and that A′ ∈ C∗(d+2). By Lemma 2.21 we have h1(IA′(1, d)) ≤ 1 +and hence h0(IA′(1, d)) ≤ h0(IA(1, d)) − d − 1. Now assume A′ /∈ C∗(d + 2). We need +h0(F1, IA∩Y (df)) ≤ d − 1. Let π : F1 → P1 denote the ruling of F1. Since OP1(d) is very +ample, h0(F1, IA∩Y (df)) ≤ d − 1 if and only if #π(A ∩ Y ) ≥ 2, which is true because +#(A∩Y ) = d+1 ≥ 3 and (since A ∈ C∗(d+1) no fiber F of π contains at least 3 points of +A). The only remaining case is now d = 3 and n = 4, which can be dealt just by adapting +the previous argument for d = 2 and n = 3. +□ +Having proved Theorem 1.2 in the case n ≤ d + 1 for non collinear twistor fibers, we +focus now to the case n = d + 2. In this setting we need some preliminary results. +Lemma 3.5. Fix d > 0, n ≤ d+2 and consider a general A ∈ T (n). Then h1(IA(1, d)) = +0. +Proof. Since T (n) is Zariski dense in C(n), it is sufficient to prove the statement for a +general A ∈ C(n). Clearly, it is sufficient to prove the case n = d + 2. Take a connected +component C of A and set B := A \ C and Y ∈ |IC(0, 1)|. Consider the residual exact + +14 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +sequence of Y , as in Formula (13). Recall the correspondence Y ∼= F1 given in Formula (5) +and let ρ : Y → P1 denote its ruling. Since A is general #ρ(A ∩ Y ) = d + 1 and hence +hi(F1, IB∩Y (df)) = 0, for i = 0, 1. Therefore h1(IA(1, d)) = 0. +□ +By Theorem 1.1, we already know that an integral (1, d) surface may contain a union of +d + 2 twistor fibers only if it belongs to T (d + 2) \ T ∗(d + 2). Therefore, we introduce the +following notation for sets of disjoint smooth conics which are collinear. Given a curve L +of bidegree (1, 0) and an integer n > 0, let C(n, L) denote the set of all A ∈ C(n) such that +each connected component of A meets L. The set C(n, L) is isomorphic (as real algebraic +variety) to the set S(L, n) of all subsets of L with cardinality n and hence it is irreducible. +An analogous definition and observation can be done for a curve R of bidegree (0, 1) and, +of course, for the family T instead of C. +Lemma 3.6. Fix integers n ≥ 3 and d ≥ 1 and take any A ∈ T (n, L). Then, +h1(IA(1, d)) ≥ n − 2 + max{0, n − (d + 1)}. +Proof. Call C1, . . . , Cn the connected component of A. Let Si ⊂ Ci be any union of d + 2 +distinct points on each conic and S := S1 ∪ · · · ∪ Sn. Since Ci is a smooth rational curve, +the restriction map H0(OCi(1, d)) → H0(OSi(1, d)) is bijective. Thus, the restriction map +H0(OA(1, d)) → H0(OS(1, d)) is bijective and χ(OA(1, d)) = χ(OS(1, d)). Thus we get +χ(IA(1, d)) = χ(IS(1, d)). +Since A ∈ T (n, L), we know that there exists L of bidegree (1, 0) which intersects each +conic in A (and the (0, 1) curve j(L) does the same). Hence we can choose S such that n +points are on L and n points are on j(L). In other words we assume (A∩L)∪(A∩j(L)) ⊆ S. +By using B´ezout and the fact that the bidegree is (1, d), we get that (n − 2) + max{0, n − +(d + 1)} of these points may be omitted without changing the set |IS(1, d)|, and hence +H0(IS(1, d)). It follows that h1(IA(1, d)) ≥ n − 2 + max{0, n − (d + 1)}. +□ +Remark 3.7. Thanks to the previous lemma, if A ∈ T (3, L), for some bidegree (1, 0) +curve L, then h1(IA(1, 1)) ≥ 2, and hence h0(IA(1, 1)) ≥ 1. However, since no surface of +bidegree (1, 0) or (0, 1) contains an element of T (2), then every S ∈ |IA(1, 1)| is irreducible. +Therefore, Proposition 2.17 gives that |IA(1, 1)| = {S} and so, thanks to Formula (7), +h1(IA(1, 1)) = 2. +Finally, the following result completes the proof of Theorem 1.2, in the case of d + 2 +twistor fibers. +Theorem 3.8. Fix an integer d ≥ 2 and take a general A ∈ T (d+2, L). Then h0(IA(1, d)) ≥ +d and the general S ∈ |IA(1, d)| is integral. +Proof. By applying Lemma 3.6 with n = d + 2, we get h1(IA(1, d)) ≥ d + 1. +Since +χ(IA(1, d)) = (d+1)(d+3)−(d+2)2 = −1, we get h0(IA(1, d)) ≥ d and hence, |IA(1, d)| ̸= +∅. +We now prove that a general element in |IA(1, d)| is integral. +Take S ∈ |IA(1, d)|. +Every surface of bidegree (1, 0) or (0, 1) contains at most one connected component of A. +Therefore, S cannot be the union of a surface of bidegree (1, 0) and d of bidegree (0, 1). +No integral surface of bidegree (0, x), for x ≥ 2, contains a twistor fiber. If d = 2, then +h0(IA(1, 2)) ≥ 2. However, thanks to Remark 3.7, for every choice of C ∈ A, there is only +one M ∈ |I(A\C)(1, 1)|. Since we have considered all the possible reducible elements of +|IA(1, 2)|, we get the thesis. +Now assume d > 2. Since A has finitely many components, it is sufficient to prove that +for any x ∈ {3, . . . , d−1}, any union E of x connected components of A and any connected +component C of A \ E we have +(15) +h0(IE(1, x − 2)) < h0(IE∪C(1, x − 1)), + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +15 +and then proceed as in the proof of Theorem 3.4. +Let Y be the only element of |OF(0, 1)| containing C. The exact sequence in Formula (10) +gives h0(IE(1, x−2)) ≤ h0(IE∪C(1, x−1)) and equality holds if and only if Y is in the base +locus B of |IE∪C(1, x − 1)|. Call C1, . . . , Cx the components of E and Yi the only surface +of bidegree (0, 1) containing Ci. By Remark 2.13 the irreducible surfaces Y, Y1, . . . , Yx are +all different one eachother. For a general A we get that each integer h0(IE(1, x−2)) is the +same for all union of x connected components of A. Thus if the inequality is false, then B +contains the surface Y ∪ Y1 ∪ · · · ∪ Yx of bidegree (0, x + 1), which is a contradiction. +□ +4. Surfaces of bidegree (1, 2) and (1, 3) +In this section we specialize our study to the case of surfaces of bidegree (1, 2) and (1, 3). +In particular, we will prove Theorems 1.3, 1.4 and 1.5. +Recall, from Formula (7), that for any A ∈ C(n), we have χ(IA(1, 2)) = 15 − 4n, and +hence, if n ≤ 3, we get h0(IA(1, 2)) > 0. We also recall that a general S ∈ |OF(1, 2)| +contains finitely many smooth conics and, thanks to Theorem 2.19, for every B ∈ C(2) we +have h1(IB(1, 1)) = 0. +4.1. Surfaces of bidegree (1, 2) containing 0 ≤ n ≤ 4 twistor fibers. In this section, +we show the existence of a smooth surface of bidegree (1, 2) containing exactly 0, 1, 2, 3 or +4 twistor fibers. In order to analyze the space |IA(1, 2)| when A is in C(n) (or in T (n)), +for 0 ≤ n ≤ 4, we will need some preliminary results. Note that the extremal case, when +n = 4, will be treated in a different way. +We start by considering (1, 2)-surfaces containing three disjoint smooth conics. +Proposition 4.1. Take A ∈ C(3) such that h0(IA(1, 1)) > 0. Then +(1) there exists a curve L of bidegree (1, 0) and a curve R of bidegree (0, 1) such that +A ∈ C(3, L) and A ∈ C(3, R) +(2) there is an integral element in |IA(1, 2)|; +(3) h1(IA(1, 2)) = 1; +(4) the base locus B of |IA(1, 2)| is A ∪ L ∪ R, where L is and R are the curves defined +in (1). +Proof. We start arguing as in Remark 3.7. Thanks to Remark 2.9, each surface of bide- +gree (1, 0) or (0, 1) does not contain any element of C(2), hence, as A ∈ C(3), any ele- +ment in |IA(1, 1)| is irreducible. Proposition 2.17 (with a = b = c = d = 1) gives that +h0(IA(1, 1)) = 1 and hence we set |IA(1, 1)| = {M} and by Formula (7) we compute +h1(IA(1, 1)) = 2. +We prove now the first statement. Let C be a connected component of A, set B := A\C +and denote by X the only element of |IC(1, 0)|. Performing the same construction that +leads to Formula (10), we have +0 → IB(0, 1) → IA(1, 1) → IA∩X,X(1, 1) → 0. +Since h0(IB(0, 1)) = 0 and h0(IA(1, 1)) = 1, the previous residual exact sequence gives +(16) +h0(IA∩X,X(1, 1)) ≥ 1. +Thanks to Formula (4), we have that OX(1, 1) ≃ OF1(h + 2f); moreover, recall from +Remark 2.9 that C is identified with an element of |OF1(h + f)|. Since A ∩ X is the union +of C and the two points B ∩X, there is a fiber L ∈ |f| of the ruling of F1 containing B ∩X. +Since f(h + f) = 1, we have that L meets C. Thus L meets each connected component of +A. Taking instead of X the only element of |IC(0, 1)| we get the existence of R. +We now prove (2). +We will show that there is an integral element in |IA(1, 2)| by +showing that the possible reducible cases do not cover the whole family. Remark 2.10 +shows that A is not contained in a surface of bidegree (1, 2) with an irreducible component + +16 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +of bidegree (0, 2). By Remark 2.9, a bidegree (0, 1) or (0, 1) surface does not contain any +element of C(n), with n ≥ 2. Hence, there are only finitely many elements of |OF(1, 2)| +with at least 3 irreducible components. +Since h0(OF(0, 1)) = 3, the set of all reducible elements of |OF(1, 2)| with an irreducible +component of bidegree (1, 1) containing A is isomorphic to P2. Thus, in order to prove the +existence of an integral element in |IA(1, 2)|, it is sufficient to prove that h0(IA(1, 2)) ≥ 4. +But, using the exact sequence (9), this is equivalent to prove that h1(IA(1, 2)) ≥ 1, and +the last inequality is true, by Theorem 2.19 because #(L ∩ A) = 3. +To prove (3), i.e. h1(IA(1, 2)) = 1, it is sufficient to prove that h1(IA(1, 2)) ≤ 1. As +before, take a connected component C of A and set B = A\C. Let Y be the only element +of |IC(0, 1)|. In the identification (5) of Y with F1 we have +I(B∩Y )∪C,Y (1, 2) ∼= I(B∩Y )∪C,F1(h + 3f) ∼= O(B∩Y ),F1(2f). +Since #(B ∩ Y ) = 2 and OF1(2f) is globally generated, h1(F1, IB∩Y,F1(2f)) ≤ 1. We have +ResY (A) = B. Thanks to Theorem 2.19, we have h1(IB(1, 1)) = 0, and the residual exact +sequence of Y +0 → IB(1, 1) → IA(1, 2) → I(B∩Y )∪C,Y (1, 2) → 0, +gives h1(IA(1, 2)) ≤ 1. +Finally, we discuss the base locus of |IA(1, 2)| in order to prove (4). First of all, for any +surface S ∈ |IA(1, 2)|, we clearly have A ⊂ S. Moreover, as #(L∩A) = 3 and #(R∩A) = 3, +then by B´ezout, both curves are contained in S: in fact, thanks to Remark 2.3 and +Formula (3), the general intersection between a curve of bidegree (1, 0) and S consists of +one point while the intersection of a curve of bidegree (0, 1) and S consists of two points +(see also Remark 2.16). Therefore, L ∪ R ⊂ S and A ∪ L ∪ R ⊂ B. +We now prove that B ⊂ A∪L∪R. Fix p ∈ B\(A∪L∪R). Take a connected component Ci, +i = 1, 2, 3, of A and set Bi := A\Ci. Let Yi be the only element of |OF(0, 1)| containing Ci. +By Proposition 2.22 Bi ∪L∪R is the base locus of |IBi(1, 1)|. Thus there is Si ∈ |IBi(1, 1)| +such that p /∈ Si. If p /∈ Yi, then p /∈ B. Since S1∩S2∩S3 = L∪R, we may take i ∈ {1, 2, 3} +such that p /∈ Yi. Thus B = A ∪ L ∪ R. +□ +The following remark shows that if A ∈ C(3) satisfies the condition (1) of Theorem 4.1, +then the existence of a (1, 1)-surface containing A is granted. In particular, there exists a +(1, 1)-surface containing any triplets of collinear twistor fibers. +Remark 4.2. Take A ∈ C(3) and assume the existence of curves L of bidegree (1, 0) and +R of bidegree (0, 1) intersecting each connected component of A. By adapting the proof of +Lemma 3.6, since #(L ∩ A) = 3 and #(R ∩ A) = 3, we have that h1(IA(1, 1)) ≥ 2. Thus +h0(IA(1, 1)) ≥ 1 and A satisfies the assumptions of Proposition 4.1. +We can even be more specific and say that if A ∈ C(3) (with no assumption on L or R), +then h0(IA(1, 1)) ≤ 1 and if |IA(1, 1)| ̸= ∅, then the only element of |IA(1, 1)| is integral. +This is true because, thanks to Remark 2.9, any reducible element of |OF(1, 1)| contains +at most 2 disjoint smooth conics. +Note that if A ∈ T (3) and L exists, then we may take R := j(L). Thus if A ∈ T (3) to +get h0(IA(1, 1)) > 0 it is sufficient to assume A /∈ T ∗(3). +The following lemma is a sort of vice versa of the previous remark. +Lemma 4.3. Take A ∈ C∗(3). Then h0(IA(1, 1)) = 0 and h1(IA(1, 1)) = 1. +Proof. If A ∈ C(3), thanks to Formula (7), χ(IA(1, 1)) = −1. Hence h0(IA(1, 1)) = 0 if +and only if h1(IA(1, 1)) = 1. We assume h0(IA(1, 1)) ̸= 0 and will prove that A /∈ C∗(3). +Let B ⊂ A be the union of 2 connected components of A and set C := A \ B. Let L and +R be the curves defined in Remark 2.5 for B ∈ C(2). Take any element D ∈ |IB(1, 1)|. + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +17 +Since #(B ∩ (L ∪ R)) = 2, B ⊂ D and D has bidegree (1, 1), then B´ezout theorem implies +L ∪ R ⊂ D. +By Theorem 2.19 and Proposition 2.22, we have h1(IB(1, 1)) = 0, h0(IB(1, 1)) = 2, and +the general element M in |IB(1, 1)| is integral. Since h0(IB(1, 1)) = 2 and M is general, +C ⊈ M. Consider the following residual exact sequence: +(17) +0 → IC → IA(1, 1) → IB∪(M∩C),M(1, 1) → 0 +Since M ∈ |IB(1, 1)| and h1(OF) = 0, the exact sequence +0 → OF → IB(1, 1) → IB,M(1, 1) → 0 +gives h0(M, IB,M(1, 1)) = 1. Moreover, h0(IC) = 0, and so the sequence (17) and the +assumption h0(IA(1, 1)) ≥ 1 imply h0(M, IB∪(M∩C),M(1, 1)) ≥ 1. By Proposition 2.22, the +curve A∪L∪R is the base locus of |IB(1, 1)| and hence the base locus of H0(M, IB,M(1, 1)) +is the curve B ∪ L ∪ R. Since B ∩ C = ∅, the degree 2 scheme C ∩ M is contained in +L ∪ R. To get A /∈ C∗(3) we need to prove that C ∩ L ̸= ∅. It is sufficient to observe that +deg(C ∩ T) ≤ 1 for any curve T of bidegree (0, 1). Indeed, this is true by Remark 2.3 and +the fact that C is the intersection of a surface of bidegree (1, 0) and a surface of bidegree +(0, 1). +□ +We now discuss the case of A ∈ C(2) contained in a smooth bidegree (1, 1) surface. In +this case we will also prove smoothness for the general element in |IA(1, 2)|. +Proposition 4.4. Take any A ∈ C(2) contained in a smooth element of |OF(1, 1)|. Then +we have: +(1) h1(IA(1, 2)) = 0 and h0(IA(1, 2)) = 7; +(2) the set A ∪ L is contained in the base locus B of |IA(1, 2)|, where L is the bidegree +(1, 0) curve described in Remark 2.5; +(3) a general S ∈ |IA(1, 2)| is smooth. +Proof. To prove (1) it is sufficient to apply Corollary 2.20 giving h1(IA(1, 2)) = 0 and +Formula (7), which entails h0(IA(1, 2)) = 7. +We now pass to point (2). Take L and R as in Remark 2.5. Since OF(0, 1) is globally +generated, B ⊆ A ∪ L ∪ R; moreover, thanks to Remark 2.16 we also have A ∪ L ⊆ B. +We are left to prove (3). +By Bertini’s theorem Sing(S) ⊆ A ∪ L ∪ R for a general +S ∈ |IA(1, 2)|. Fix a smooth M ∈ |IA(1, 1)|. Take a general Y ′ ∈ |OF(0, 1)|. Since Y ′ +is general L ∩ Y ′ = ∅ (and hence it is not singular at any p ∈ L). Thus, up to small +deformation, we can say that S (which is general) is smooth in a neighborhood of L. We +are left to exclude the case Sing(S) ⊆ A∪R. Fix p ∈ A∪R and let 2p be the 0-dimensional +scheme of F defined by the ideal I2 +p,F. S is singular at p if and only if S ∈ |I2p∪A(1, 2)|. +To conclude our proof we need to prove that +h0(I2p∪A(1, 2)) = h0(IA(1, 2)) − 2, +for all p ∈ (A ∪ R) \ A ∩ R and that, for p ∈ A ∩ R, h0(I2p∪A(1, 2)) < h0(IA(1, 2)). These +two statements give the thesis because (A ∪ R) \ A ∩ R and A ∩ R are 1-dimensional and +0-dimensional, respectively, and we are saying that the set of bidegree (1, 2) surfaces con- +taining A and a singular points has codimension 2 in the first case and positive codimension +in the second one. +Let us start by taking p ∈ (A ∪ R) \ A ∩ R. +Since p is a smooth point of A ∪ R, +deg(2p ∩ (A ∪ R)) = 2. Consider the exact sequence +(18) +0 → I(A∪R)∪2p(1, 2) → IA∪R(1, 2) → IA∪R ⊗ O2p(1, 2) → 0. + +18 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +Since deg(2p) = 4 and A is smooth, we have h0(IA∪R ⊗ O2p(1, 2)) = 2 if p ∈ A ∪ R and +h0(IA ⊗ O2p(1, 2)) = 4 if p ∈ R. Hence it is sufficient to prove that +h1(I(A∪R)∪2p(1, 2)) = 0. +First of all, assume that p ∈ A \ R. Let C be the connected component of A containing +p. Set the following notation E := A \ C. As R is in the base locus of IA(1, 1) we have +that h0(IA(1, 1)) = h0(IA∪R(1, 1)) (see [3, proof of Theorem 1.1]). Moreover, thanks to +part (1) and to [3, Remark 4.3], we have h0(IA∪R(1, 1)) = h0(IA(1, 1)) = h0(IE(1, 1)) − 3. +Thus p is not in the base locus of |IE(1, 1)|. Fix M ∈ |IE(1, 1)| such that p /∈ S. Let +Y be the surface of |OF(0, 1)| containing C and consider the residual exact sequence with +respect to Y : +(19) +0 → IE∪p(1, 1) → IA∪2p(1, 2) → I(E∩Y )∪C∪(2p∩Y ),Y (1, 2) → 0. +Now we prove that +(20) +h1(IE∪p(1, 1)) = 0. +Recall that A = E ∪ C and p ∈ C, hence we have the exact sequence +0 → IA(1, 1) → IE∪p(1, 1) → Ip,C(2) → 0. +Thanks to Theorem 2.19 we have that h1(IA(1, 1)) = 0; on the other hand, since C is a +smooth rational curve, we have h1(Ip,C(2)) = h1(OC(1)) = 0 and this proves (20). +In order to conclude it is sufficient to prove now that +(21) +h1(I(E∩Y )∪C∪(2p∩Y ),Y (1, 2)) = 0. +Note that IC,Y (1, 2) ∼= OF1(2f) ∼= OY (0, 1), hence, by [3, Remark 2.11], we know that +IC,Y (1, 2) is very ample. Therefore we get h1(IC∪(2p∩Y ),Y (1, 2)) = 0. Since E ∩ Y consists +of a point we conclude that (21) holds. +Thus the exact sequence (19) gives h1(IA∪2p,F(1, 2)) = 0, concluding the proof in the +case p ∈ A \ R. +Fix p ∈ R \ (A ∩ R) and ecall that we need to prove that h0(IA∪2p(1, 2)) = 5. Fix +a general Y ′ ∈ |Ip(0, 1)|. Since Y ′ is general, R ⊈ Y ′ (and also L ⊈ Y ′). Since Y ′ is +smooth, Y ′ ∩ 2p = (2p, Y ′) is a degree 3 scheme and ResY ′(2p) = {p}. As p ∈ R, we have +that h0(IA∪{p}(1, 1)) = h0(IA(1, 1)) = 2. Thus, by the residual exact sequence of Y ′ it is +sufficient to prove that +h0(Y ′, I(A∩Y ′)∪(2p,Y ′)(1, 2)) ≤ 3. +Since OY ′(1, 2) is very ample, we have h0(Y ′, I(2p,Y ′)(1, 2)) = h0(Y ′, OY ′(1, 2)) − 3 = +4. Thus it is sufficient to prove that A ∩ Y ′ is not contained in the base locus, B′, of +|O(2p,Y ′)(1, 2)|. In the identification between Y ′ and F1 we have OY ′(1, 2) ∼= OF1(h + 3f). +Let N be the only element of |f| containing p. We have N ∼= P1 and h1(N, I2p∩N(1, 2)) = 0, +but N ⊆ B′. Since OF1(h + 2f) is very ample, Ip(h + 2f) has only p in its base locus. +Thus B′ = N and so, since R ⊈ Y ′ (and also L ⊈ Y ′), B′ cannot contain both points of +A ∩ Y ′. +The last case is p ∈ A ∩ R. To prove our claim, i.e. that h0(I2p∪A(1, 2)) < h0(IA(1, 2)), +it is sufficient to use (18). Hence, a general S is smooth. +□ +The following result is analogous to Proposition 4.1, when we choose the conics to be +twistor fibers. +Proposition 4.5. Take A ∈ T (3) such that h0(IA(1, 1)) = 0. Then we have the following: +(1) h1(IA(1, 2)) = 0 and hence h0(IA(1, 2)) = 3; +(2) there is an integral S ∈ |IA(1, 2)|; +(3) the base locus of |IA(1, 2)| is contained in the union of A and 3 distinct curves of +bidegree (1, 0); + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +19 +(4) for a sufficiently general A (contained in a dense euclidean open subset of T (3)), +we may take a smooth S ∈ |IA(1, 2)|. +Thanks to Lemma 3.1, the hypothesis A ∈ T (3) such that h0(IA(1, 1)) = 0 in the +previous statement, implies that the conics in A do not belong to any infinite family of +twistor fibers contained in a smooth j-invariant surface of bidegree (1, 1). +Proof. We start by proving (1). +Fix a connected component C of A and call D the +only element of |IC(0, 1)|. +Set B := A \ C. +To get h1(IA(1, 2)) = 0 mimicking the +proof of Proposition 4.1 it is sufficient to prove that h1(F1, IB∩D(2f)) = 0. +Assume +h1(F1, IB∩D(2f)) > 0, i.e. assume the existence of T ∈ |OF1(f)| containing the 2 points +B ∩ D. Since C ∈ |OF1(h + f)|, C ∩ T ̸= ∅. Thus T meets each connected component of +A. Remark 4.2 gives h0(IA(1, 1)) > 0, a contradiction. +To prove (2) it is sufficient to show that the reducible cases do not cover the whole +|IA(1, 2)|. In fact, reasoning as in the proof of Proposition 4.1, the only possible splitting +are of the form (1, 0) + (0, 1) + (0, 1), which are in a finite number, or (1, 1) + (0, 1), where +the bidegree (1, 1) component contains 2 connected components of A and the remainder +bidegree (0, 1) part is uniquely determined. +Now, h0(IB(1, 1)) = 2, so, the set of all +reducible elements of |IA(1, 2)| with an irreducible component of bidegree (1, 1) does not +cover |IA(1, 2)|. +We now prove (3) and (4). Since h0(IA(1, 1)) = 0 and A is j-invariant, neither π1(A) nor +π2(A) has a triple points (both have 3 double points). Set L1∪L2∪L3 := π−1 +2 (Sing(π2(A))) +and R1 ∪ R2 ∪ R3 := π−1 +1 (Sing(π1(A))). Since #(Li ∩ A) = #(Ri ∩ A) = 2, L1 ∪ L2 ∪ L3 +are in the base locus of |IA(1, 2)| and each Li and each Ri meets exactly 2 connected +components of A. +To prove the existence of a smooth element, it is sufficient to reason as in the proof of +Proposition 4.4 case (3). +□ +We are now ready to prove the first part of Theorem 1.3. +Theorem 4.6. Fix n ∈ {0, 1, 2, 3}. There is a smooth S ∈ |OF(1, 2)| containing exactly n +twistor fibers. +Proof. A general S ∈ |OF(1, 2)| contains only finitely many smooth conics. Since the set +of all twistor fibers has real codimension 4 in the space of all smooth conics, a general +S ∈ |OF(1, 2)| contains no twistor fiber. +Now we prove the case n = 1. Fix a twistor fiber C and take a general S ∈ |IC(1, 2)|. As- +sume that S contains another twistor fiber, E. We have h1(IC(1, 2)) = h1(IC∪E(1, 2)) = 0 +(Theorem 2.19 and Remark 2.14). Thus |IC∪E(1, 2)| is a 4-codimensional complex projec- +tive subspace of |IC(1, 2)| (this is explained by the equality h0(IC∪E(1, 2)) = h0(IC(1, 2))− +4 contained in [3, proof of Theorem 1.1]). However T (1) is a real 4-dimensional space. So +a general S ∈ |IC(1, 2)| contains no other twistor fiber. +Note that C is the base locus of |IC(1, 2)|. By Bertini theorem a general S ∈ |IC(1, 2)| +is smooth outside C. Fix p ∈ C and let 2p the closed subscheme of F with (Ip)2 as its +ideal sheaf. Recall that 2p ⊂ S if and only if p ∈ Sing(S). Since dim C = 1 to get that S +is smooth it is sufficient to prove that h0(I2p∪C(1, 2)) ≤ h0(IC(1, 2)) − 2 = 9. This follows +from the proof of Proposition 4.4 case (3). +The case n = 2 is true by Proposition 4.4 with T (2) instead of C(2). +The case n = 3 is true by Proposition 4.5. +□ +In the remainder of the section, we will construct a smooth (1, 2)-surface containing 4 +twistor fibers. The following lemma, in the case d = 2, says that if an integral (1, 2)-surface +contains 4 disjoint smooth conics, then these conics are not general, because three of them +must be collinear. + +20 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +Lemma 4.7. Let d ≥ 2 and A ∈ C(d + 2). If there is an integral S ∈ |OF(1, d)|, then +A /∈ C∗(d + 2) +Proof. We prove the lemma by induction on d. We start with the case d = 2. Assume +that A ∈ C∗(4), i.e. there is no union B of 3 of the connected components of A such that +#(L ∩ B) = 3 for some curve L of bidegree (1, 0). Fix a connected component C of A and +set B := A \ C. Call Y the only element of |IC(0, 1)|. Remark 2.9 gives ResY (A) = B. By +assumption and Lemma 4.3, h0(IB(1, 1)) = 0. Since h0(IA(1, 2)) ̸= 0, the residual exact +sequence +0 → IB(1, 1) → IA(1, 2) → IA∩Y,Y (1, 2) → 0 , +gives h0(Y, IA∩Y,Y (1, 2)) > 0 (otherwise |IA(1, 2)| = ∅). The scheme A∩Y is the union of C +and the 3 points B ∩Y . In the identification of Y with F1 the line bundle OY (1, 2) goes to +the line bundle OF1(h+3f) and C goes to an element of |h+f|. Thus h0(F1, IB∩Y,F1(2f)) > +0. Hence at least 2 of the 3 points B ∩ Y are in the same fiber ˆL of the ruling |f| of F1. +Since ˆL ∩ C ̸= ∅, ˆL is a curve of bidegree (1, 0) meeting at least 3 connected components +of A. Call B′ a union of 3 components of A intersecting ˆL. The curves B′ and ˆL give a +contradiction. +Assume now that the result is true for d+1. Notice that, as a byproduct of the previous +part, if B ∈ C∗(d + 1), then h0(IB(1, d − 1)) = 0. +Assume A ∈ C∗(d + 2) and that there is an integral S ∈ |OF(1, d)|. Fix a connected +component C of A and set B := A \ C. Take a surface Y of bidegree (0, 1) containing +C. By means of the sequence in Formula (10), we either have h0(IB(1, d − 1)) > 0 or +h0(Y, IA∩Y,Y (1, d)) > 0. Since A ∈ C∗(d + 2), B ∈ C∗(d + 1) and hence, thanks to the +inductive assumption, we have h0(IB(1, d − 1)) = 0. The scheme A ∩ Y is the union of +C and the scheme B ∩ Y with A ∩ B ∩ Y = ∅. Up to the identification of Y and F1 we +have OY (1, d)(−C) ∼= OF1(df). Since Y has bidegree (0, 1) each connected component of +B is either contained in Y or it intersects transversely Y at a unique point. By Remark +2.9, the set B ∩ Y is formed by d + 1 points. Thus IA∩Y,Y (1, d) ∼= IB∩Y (df). We saw +h0(Y, IA∩Y,Y (1, d)) > 0 and this is true if and only if there are u1, . . . ud+1 ∈ B ∩ Y and +F ∈ |f| such that that ui ̸= uj, for i ̸= j and {u1, . . . , ud+1} ⊂ F. The set F ∩ C is a +unique point, o, and o /∈ {u1, . . . , ud+1}, because B ∩ C = ∅. The curve F has bidegree +(0, 1) and hence A /∈ C∗(d + 2), a contradiction. +□ +Thanks to the previous result, if an integral (1, 2)-surface contains 4 disjoint smooth +conics, then these are in special position. We now show that if these 4 conics are twistor +fibers, then their position is very special. We begin by introducing the following notation. +For n ≥ 4, we denote by C(n)− the set of elements A ∈ C(n) for which there exists a +bidegree (1, 0) curve L such that A ∈ C(n, L). The set C(n)− parametrizes the families of +n collinear disjoint smooth conics. For n ≥ 4 we also write T (n)− := T (n) ∩ C(n)−. The +families C(n)− and T (n)− are Zariski closed in C(n) and T (n), respectively. +The following lemma shows that if an integral (1, 2)-surface contains 4 twistor fibers, +then they are all collinear. +Lemma 4.8. Take an integral S ∈ |OF(1, 2)| containing A ∈ T (4). Then A ∈ T (4)− +Proof. Assume the existence of an integral S ∈ |OF(1, 2)| containing A ∈ T (4). By Lemma +4.7 there is a union B of 3 of the connected components of A such that B ∈ T (3) \ T ∗(3), +i.e., there exists a bidegree (1, 0) curve L, such that B ∈ T (3, L) and hence, thanks to +Remark 3.7 h0(IB(1, 1)) > 0. However, the same remark tells us that h0(IB(1, 1)) = 1, +h1(IB(1, 1)) = 2 and that the only element M of |IB(1, 1)| is integral. +As usual, set C := A \ B. +As in Remark 4.2 since L of bidegree (1, 0) meets each +connected components of B, then R := j(L), of bidegree (0, 1), do the same. + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +21 +Thanks to Remark 2.16 we get B ∪ L ∪ R ⊂ M. Since S and M are integral, thanks +to Lemma 2.2, the one-dimensional scheme S ∩ M has bidegree (5, 4). Since B ∪ L ∪ R +has bidegree (4, 4), then C ⊈ M. Let Y be only element of |IC(0, 1)|. Since B ⊂ M ∪ Y , +then M ∪ Y ∈ |IA(1, 2)|. Moreover, as S is irreducible, then S ̸= M ∪ Y , and hence +h0(IA(1, 2)) ≥ 2, i.e. h1(IA(1, 2)) ≥ 3. Since h1(IB(1, 1)) = 2, the residual exact sequence +0 → IB(1, 1) → IA(1, 2) → IA∩Y,Y (1, 2) → 0, +gives h1(Y, IA∩Y,Y (1, 2)) > 0. +As in the proof of Lemma 4.7 we obtain the following +inequality h1(F1, IB∩Y (2f)) > 0, i.e. there is a curve ˆL ∈ |f| of bidegree (1, 0) intersecting +at least 2 of the connected components of B. +Call B′ the union of 2 of the connected components of B intersecting ˆL. Since ˆL∩C ̸= ∅ +and B′ ∪ C is j-invariant, each connected component of B′ ∪ C meets j(ˆL). Remark 4.2, +Proposition 4.1 and B´ezout imply the existence of an integral surface M′ of bidegree (1, 1) +containing B′ ∪ C ∪ ˆL ∪ j(ˆL). Since B′ ⊂ M′, ˆL and j(ˆL) contain at least 2 points of +M′, then B′ ∪ ˆL ∪ j(ˆL) ⊂ M. But by Remark 2.5 there is a unique curve of bidegree +(1, 0) intersecting two different smooth conics, hence ˆL = L and both L and j(L) intersect +each connected component of B. Thus L intersects each connected component of A, i.e. +A ∈ C(4)−. +□ +As a byproduct of the proof of the previous result, we get the following lemma. It +essentially says that there are infinitely many integral (1, 2)-surfaces containing 4 collinear +twistor fibers. +Lemma 4.9. Take A ∈ T (4)− and assume that A is not contained in a surface of bidegree +(1, 1). +Then dim |IA(1, 2)| = 1 and |IA(1, 2)| contains exactly 4 reducible elements of +|OF(1, 2)|. +Proof. Call L the curve of bidegree (1, 0) intersecting each connected component of A. +Since each connected component of A is j-invariant, j(L) intersects each connected com- +ponent of A. In the proof of Lemma 4.8 we showed that h0(IA(1, 2)) ≥ 2. From the lines of +that proof, it is possible to derive that only 4 elements in |IA(1, 2)| are reducible and they +are all obtained fixing a connected component C of A and taking the union of the unique +surface MC of bidegree (1, 1) containing A\C and the unique surface YC of bidegree (0, 1) +containing C. To conclude the proof it is sufficient to prove that h0(IA(1, 2)) ≤ 2. Take a +connected component C of A and consider the residual exact sequence +(22) +0 → IC(0, 1) → IA(1, 2) → IMC∩A,MC(1, 2) → 0. +We have h0(IC(0, 1)) = 1, because the intersection of 2 different elements of |OY (0, 1)| is +a curve of bidegree (1, 0). Thus by (22) to conclude the proof it is sufficient to prove that +the image V of H0(IA(1, 2)) in H0(MC, IMC∩A,MC(1, 2)) has dimension at most 1. Bez´out +gives that A ∪ L ∪ j(L) is contained in the base locus of |IB,MC(1, 2)|. Every D ∈ |V| +has bidegree (5, 4) as a curve of F and hence a general D ∈ |V| is the union (counting +multiplicities as divisors of the smooth surface MC) of A ∪ L ∪ j(L) and a curve E of +bidegree (1, 0)) as a curve of F. Recall that MC is the blow up of P2 at 3 non collinear +points and that these 3 exceptional divisors are the only curve of MC with bidegree (1, 0). +Since MC has only finitely many curves of bidegree (1, 0), D is the same for all non-zero +elements of V and hence dim V = 1. +□ +The following result completes the proof of Theorem 1.3. +Theorem 4.10. There are integral S ∈ |OF(1, 2)| containing exactly 4 twistor fibers and +for any such S and A ∈ T (4) with A ⊂ S, there is a curve L of bidegree (1, 0) intersecting +each connected component of A. Moreover, h0(IA(1, 2)) = 2 and each S ∈ |IA(1, 2)| is +singular along L. + +22 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +Proof. By Theorem 1.4 no integral surface of bidegree (1, 2) contains at least 5 twistor +fiber. The curve L exists by Lemma 4.8. Now we reverse the construction. We start with +A ∈ T (4, L)−. Let 2L denote the closed subscheme of the “double line”. To prove that +each S ∈ |IA(1, 2)| is singular at each point of L it is sufficient to prove that h0(IA(1, 2)) = +h0(IA∪2L(1, 2)). Lemma 4.9 gives h0(IA(1, 2)) = 2. Hence, it is sufficient to prove that +h0(IA∪2L(1, 2)) > 1. For any connected component C of A let MC the only surface of +bidegree (1, 1) containing A \ C and let YC the only surface of bidegree (0, 1). +Since +C ∩ L ̸= ∅, L ∩ YC ̸= ∅. Since YC has bidegree (0, 1) and L bidegree (1, 0), we get L ⊂ YC. +Thus L ⊆ MC ∩ YC and hence |IA∪2L(1, 2)| contains at least the 4 reducible elements of +|IA(1, 2)|. Hence h0(IA∪2L(1, 2)) > 1. +□ +4.2. Non existence results for surfaces of bidegree (1, 2) and (1, 3). In this last +part, we prove our two last main results, i.e. Theorems 1.4 and 1.5. +For any A ∈ T (n)−, n ≥ 4, let us call L and R := j(L) the curves of bidegree (1, 0) e +(0, 1), respectively, intersecting all the connected components of A. +In view of our goal, we need to discuss the reducibility of some surfaces containing a +certain amount of twistor fibers. First of all, fix an integer n ≥ 2, take B ∈ T (4) such that +h0(IB(1, 1)) > 0 and call M the unique (see e.g. Remark 4.2) surface of bidegree (1, 1) +containing B. Since each element of C(1) is contained in an element of |OF(0, 1)| for each +E ∈ T (n − 1) there is a reducible element W ∈ |OF(1, k)|, union of M and n − 1 surfaces +of bidegree (0, 1) such that B ∪ E ⊂ W. The following lemma is a sort of viceversa of this +remark. Moreover, it will be a key tool in the last two proofs. +Lemma 4.11. If d ≥ 2 and A ∈ T (d + 3)− is such that h0(IA(1, d)) > 0, then each +element of |IA(1, d)| has an irreducible component M of bidegree (1, 1) containing at least +4 connected components of A. +In particular, for any n ≥ d + 3, there is no integral +S ∈ |OF(1, d)| containing A ∈ T (n)−. +Proof. In order to prove the last statement, it is sufficient to do the case n = d + 3 and +thus it is sufficient to prove the first assertion. +We use induction on d ≥ 2. Let us assume first d = 2. Take A ∈ T (5)− and let L and +j(L) be the curves of bidegree (1, 0) and (0, 1) intersecting all the connected components +of A. Fix a connected component C of A and set B := A \ C. Since C ∩ L ̸= ∅, the curve +C ∪ L is a connected and nodal curve of bidegree (2, 1) with arithmetic genus 0. Hence +h0(OC∪L(0, 1)) = 2. Thus there is Y ∈ |IC∪L(0, 1)| and such a Y is unique. Since any two +smooth conics of Y meet, no component of B is contained in Y . Hence B ∩ Y is formed +by 4 points of L \ (L ∩ C). Recall that OY (1, 2) ∼= OF1(h + 3f) and that C ∈ |OF1(h + f)| +and thus IA∩Y,Y ∼= IB∩L,Y (2f). Since each element of |f| contains a unique point of L we +have that h0(D, IA∩Y,Y (1, 2)) = 0. The residual exact sequence of Y +0 → IB(1, 1) → IA(1, 2) → IA∩Y,Y (1, 2) → 0, +gives an isomorphism ϕ : H0(IB(1, 1)) → H0(IA(1, 2)). If h0(IB(1, 1)) = 0, then h0(IA(1, 2)) = +0. Now assume h0(IB(1, 1)) ̸= 0. The isomorphism ϕ says that each W ∈ |IA(1, 2)| has Y +as an irreducible component, say W = Y ∪ W1 with W1 ∈ |IB(1, 1)|, and hence we have +the thesis. +Assume now d ≥ 3 and use induction on d. By reasoning as in the base case, take +A ∈ T (d + 3)− and use the exact sequence +0 → IB(1, d − 1) → IA(1, d) → IA∩Y,Y (1, d) → 0, +to prove that h0(Y, IA∩Y,Y (1, d)) = 0 and hence that there is an isomorphism ϕ : H0(IB(1, d− +1)) → H0(IA(1, d)). Now, again, if h0(IB(1, d − 1)) = 0, then h0(IA(1, d)) = 0. Hence, +assume h0(IB(1, d − 1)) ̸= 0. The isomorphism ϕ says that each S ∈ |IA(1, d)| has Y +as an irreducible component, i.e. S = D ∪ S1 with S1 ∈ |IB(1, d − 1)|. The inductive + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +23 +assumption says that S1 has an irreducible component M of bidegree (1, 1) containing at +least 4 components of B. +□ +We now have all the ingredients to prove Theorems 1.4 and 1.5. First we prove that no +integral surface of bidegree (1, 2) contains 5 twistor fibers. +Proof of Theorem 1.4. Assume the existence of an integral S ∈ |OF(1, 2)| containing A ∈ +T (5). Lemma 4.8 shows that for any union A′ ⊂ A of 4 components of A there is a union +A′′ ⊂ A′ of 3 connected components intersecting some L of bidegree (1, 0). Let L be a +curve of bidegree (1, 0) intersecting the maximal number, z, of components of A. Clearly +z ≥ 3. By Lemma 4.11 to get a contradiction it is sufficient to prove that z ≥ 5. +Assume z ∈ {3, 4}. Take any ordering C1, . . . , C5 of the connected components of A +and set Bi := π1(Ci), 1 ≤ i ≤ 5. Each Bi is a line of P2. Since any two conics contained +in an element of |OF(1, 0)| meet, B1, . . . , B5 are 5 different lines of P2. For any i < j < h, +there is a curve T of bidegree (1, 0) intersecting Ci, Cj and Ch if and only if Bh contains +the point Bi ∩ Bj and in this case L = π−1 +1 (Ci ∩ Cj). With no loss of generality we may +assume that L meets C1, . . . , Cz. +(a) Assume z = 3 and hence B1 ∩B2 ∈ B3. Applying Lemma 4.8 to C1 ∪C2 ∪C4 ∪C5 +we have one of the following mutually esclusive relations: +B1 ∩ B2 ∩ B4 ̸= ∅, +B1 ∩ B2 ∩ B5 ̸= ∅, +B1 ∩ B4 ∩ B5 ̸= ∅, +B2 ∩ B4 ∩ B5 ̸= ∅. +Since B1 ∩ B2 ∈ B3 and z = 3, we can exclude the first two cases, i.e. we have +B1 ∩ B2 ∩ B4 = B1 ∩ B2 ∩ B5 = ∅. +Thus, either B1 ∩ B4 ∩ B5 ̸= ∅ or B2 ∩ B4 ∩ B5 ̸= ∅. Exchanging if necessary C1 and C2 +we may assume B1 ∩ B4 ∩ B5 ̸= ∅, i.e. B4 ∩ B5 ∈ B1, and hence B2 ∩ B4 ∩ B5 = ∅. Since +B2 ∩ B4 ∩ B5 = ∅, applying Lemma 4.8 to C2 ∪ C3 ∪ C4 ∪ C5 we have one of the following +mutually esclusive relations +B2 ∩ B3 ∩ B4 ̸= ∅, +B2 ∩ B3 ∩ B5 ̸= ∅, +B3 ∩ B4 ∩ B5 ̸= ∅. +Since B4 ∩ B5 ∈ B1 and z = 3, B3 ∩ B4 ∩ B5 = ∅. Since B2 ∩ B3 ∈ B1 and z = 3, +B2 ∩ B3 ∩ B5 = B2 ∩ B3 ∩ B4 = ∅, a contradiction. +(b) Assume z = 4. Since C1 ∩ L ̸= ∅, the curve C1 ∪ L is a connected and nodal +curve of arithmetic genus 0 and bidegree (2, 1). Thus h0(OC1∪L(0, 1)) = 2. Thus there is +Y ∈ |IC1∪L(0, 1)|. Since S is irreducible, Y is not an irreducible component of S. Thus +the residual exact sequence of Y +0 → IB(1, 1) → IA(1, 2) → IA∩Y,Y (1, 2) → 0, +gives h0(Y, IA∩Y,Y (1, 2)) ̸= 0. +Up to the isomorphism of Y and F1 we have L = h, +C1 ∈ |OF1(h + f)| and OY (1, 2) ∼= OF1(h + 3f). Since (A \ C1) ∩ C1 = ∅, IA∩Y,Y (1, 3) ∼= +I(A\C1)∩D,D(2f). Since L meets C1, . . . , C4, (A \ C1) ∩ D contains a set F ⊂ L such that +#F = 3. Since each element of |f| contains a unique point of L, h0(Y, IA\C)∩Y,Y (2f)) = 0, +a contradiction. +□ +We now conclude our paper with the proof of Theorem 1.5 which concerns surfaces of +bidegree (1, 3). +Proof of Theorem 1.5: Assume the existence of A ∈ T (6) and of an integral S ∈ |OF(1, 3)| +containing A. By Lemma 4.11 to get a contradiction it is sufficient to prove the existence +of a curve L of bidegree (1, 0) such that all the components of A intersects L. By Lemma +4.7 for any union A′ ⊂ A of 5 components of A there is a union A′′ ⊂ A′ of 3 connected +components intersecting some L of bidegree (1, 0). Let L be a curve of bidegree (1, 0) +intersecting the maximal number, z, of components of A. We have that z ≥ 3. Hence, by + +24 +A. ALTAVILLA, E. BALLICO, AND M. C. BRAMBILLA +Lemma 4.11 it is sufficient to prove that z ≥ 6. Assume then that z ≤ 5. We will now +exclude all the cases z = 3, 4, 5. +For any connected component C of A, Lemma 4.7 tells us that there is a curve L of +bidegree (1, 0) intersecting at least 3 connected components of A \ C. In particular there +is an integral M ∈ |OF(1, 1)| containing at least 3 components of A (see Remark 4.2). +Note that j(M) = M. We may take M with the additional condition that it contains +the maximal number e of components of A. Let E be the union of the components of A +contained in M. Thus 3 ≤ e ≤ z ≤ 5. +Since each twistor fiber is j-invariant, j(L) meets each connected component of E. +B´ezout gives L ∪ j(L) ⊂ M and L ⊂ S. If e ≥ 4 B´ezout gives j(L) ⊂ S. However, +the one-dimensional cycle M ∩ S has bidegree (7, 5) and thus e ≤ 4. Set Σ := S ∩ M +(as a scheme-theoretic intersection). Since the one-dimensional scheme Σ is the complete +intersection of F with 2 very ample divisors, h0(OΣ) = 1. Set F := A \ E. +(a) Assume e = 4. +Hence E ∪ L ∪ j(L) ⊂ Σ. +Since E ∪ L ∪ j(L) has bidegree +(5, 5) and h0(OΣ) = 1, Σ is the union of E ∪ L ∪ j(L) and a multiple structure on L. +Note that Σ ∈ |OF(1, 3)| and that Σ contains E ∪ j(L) with multiplicity 1 and L with +multiplicity 3 (as divisors of the smooth surface M). +Since Σ has multidegree (7, 5), +Σ = 3L ∪ j(L) ∪ E. Note that Σ contains the degree 4 zero-dimensional scheme F ∩ M. +Since F ∩ E = ∅, F ∩ (j(L) ∪ L) ̸= ∅. Thus at least one irreducible component, T, of +F meets L ∪ j(L). Since j(T) = T, T ∩ L ̸= ∅. Thus z = 5. Let C be a component +of E. Since C ∩ L ̸= ∅, C ∪ L is a connected and nodal curve of bidegree (2, 1) with +arithmetic genus 0. +Thus h0(OC∪L(0, 1)) = 2. +Thus there is Y ∈ |IC∪L(0, 1)| ̸= 0. +Since S is irreducible, Y is not an irreducible component of S. Thus the residual exact +sequence of Y gives h0(Y, IA∩Y,Y (1, 3)) ̸= 0. +Up to the isomorphism of Y and F1 we +have L = h, C ∈ |OF1(h + f)| and OY (1, 3) ∼= OF1(h + 4f). Since (A \ C) ∩ C = ∅, +IA∩Y,Y (1, 3) ∼= I(A\C)∩Y,Y (3f). Since z = 5, (A \ C) ∩ Y contains a set H ⊂ L such that +#H = 4. Since each element of |f| contains a unique point of L, h0(Y, IA\C)∩Y,Y (3f)) = 0, +a contradiction. +(b) Assume e = 3. Fix a connected component C of E and set B := A \ C. Set +{Y } := |IC(0, 1)|. As in step (a) we have that L ⊂ Y . The following exact sequence +(23) +0 → IB(1, 2) → IA(1, 3) → IC∪(B∩Y ),Y (1, 3) → 0 +is the residual exact sequence of Y . Since Y is not an irreducible component of S, we have +h0(Y, IC∪(B∩Y ),Y (1, 3)) > 0. As in step (a) we have IC∪(B∩Y ),Y (1, 3) ∼= IB∩Y,F1(3f). We +now have two possibilities: either h0(IB(1, 2)) = 0 or h0(IB(1, 2)) > 0. +(b1) Assume for the moment h0(IB(1, 2)) = 0. Thus h0(Y, IC∪(B∩Y ),Y (1, 3)) ≥ 2 and +h1(Y, IC∪(B∩Y ),Y (1, 3)) ≥ 3. Up to the identification of Y and F1 we have IC,Y (1, 3) ∼= +OF1(3f). +Hence the 5 points B ∩ Y give at most one condition to the linear system +|OF1(3f)|. Thus there is J ∈ |OF1(f)| such that B ∩ Y ⊂ J. Note that J is a curve of +bidegree (1, 0). The maximality of the integer e gives a contradiction. +(b2) Assume that h0(IB(1, 2)) > 0. By Theorem 1.4 any surface containing B is re- +ducible, say M1∪Y with M1 irreducible of bidegree (1, 1) containing at least 4 components +of B. Thus e ≥ 4, a contradiction. +□ +References +[1] A. Altavilla, E. Ballico. Twistor lines on algebraic surfaces. Ann. Global Anal. Geom. 55 (2019), no. +3, 555–573. +[2] A. Altavilla, G. Sarfatti. Slice-polynomial functions and twistor geometry of ruled surfaces in CP3. +Math. Z. 291 (2019), no. 3-4, 1059–1092. +[3] A. Altavilla, E. Ballico, M. C. Brambilla. Surfaces in the flag threefold containing smooth conics and +twistor fibers. Mediterr. J. Math. 19, 281 (2022). https://doi.org/10.1007/s00009-022-02202-3 + +TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD +25 +[4] A. Altavilla, E. Ballico, M. C. Brambilla, S. Salamon. Twistor geometry of the Flag manifold. Math. +Z. 303, 24 (2023). https://doi.org/10.1007/s00209-022-03161-x +[5] J. Armstrong, M. Povero, S. Salamon. Twistor lines on cubic surfaces. Rend. Semin. Mat. Univ. +Politec. Torino 71 (2013), no. 3-4, 317–338. +[6] M. F. Atiyah, N. J. Hitchin, I. M. Singer. Self-duality in four-dimensional Riemannian geometry. Proc. +Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461. +[7] E. M. Chirka. Orthogonal complex structures in R4. (Russian) Uspekhi Mat. Nauk 73 (2018), no. +1(439), 99–172; translation in Russian Math. Surveys 73 (2018), no. 1, 91–159 +[8] A. Fujiki, M. Pontecorvo. Twistors and bi-Hermitian surfaces of non-K¨ahler type. SIGMA Symmetry +Integrability Geom. Methods Appl. 10 (2014), Paper 042, 13 pp. +[9] G. Gentili, S. Salamon, C. Stoppato. Twistor transforms of quaternionic functions and orthogonal +complex structures. J. Eur. Math. Soc. (JEMS) 16 (2014), no. 11, 2323–2353. +[10] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1977. +[11] N. J. Hitchin. K¨ahlerian twistor spaces. Proc. London Math. Soc. (3) 43 (1981), no. 1, 133–150. +[12] M. Pontecorvo. Complex structures on Riemannian four-manifolds. Math. Ann. 309 (1997), no. 1, +159–177. +[13] S. Salamon, J. Viaclovsky. Orthogonal complex structures on domains in R4. Math. Ann. 343 (2009), +no. 4, 853–899. +Dipartimento di Matematica, Universit`a degli Studi di Bari ‘Aldo Moro’, via Edoardo +Orabona, 4, 70125, Bari, Italia +Email address: amedeo.altavilla@uniba.it +Dipartimento Di Matematica, Universit`a di Trento, Via Sommarive 14, 38123, Povo, Trento, +Italia +Email address: edoardo.ballico@unitn.it +Universit`a Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona, Italia +Email address: brambilla@dipmat.univpm.it + diff --git a/_NE4T4oBgHgl3EQfEAug/content/tmp_files/load_file.txt b/_NE4T4oBgHgl3EQfEAug/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..8b8999d1193fef0a49c7cbcfe0695de454f2f682 --- /dev/null +++ b/_NE4T4oBgHgl3EQfEAug/content/tmp_files/load_file.txt @@ -0,0 +1,1581 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf,len=1580 +page_content='TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD AMEDEO ALTAVILLA, EDOARDO BALLICO, AND MARIA CHIARA BRAMBILLA Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We study surfaces of bidegree (1, d) contained in the flag threefold under the action of the twistor projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' First, we prove that there is no integral surfaces of bidegree (1, d) containing d + 2 twistor fibers such that three of them are not collinear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then, fixed any union of 0 ≤ n ≤ d + 1 non-three-by-three collinear twistor fibers, we show that there is an integral (1, d)-surface containing them and no other twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The result is also true for d + 2 twistor fibers with additional suitable hypotheses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Later, we focus on surfaces of low bidegrees and prove that, for any set of 0 ≤ n ≤ 3 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' n = 4) twistor fibers, there is a smooth (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' integral) surface of bidegree (1, 2) containing them and no other twistor fiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Finally, we prove that there is no integral (1, d)-surface, for d = 2, 3, containing d + 3 twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Introduction 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Preliminaries and first results 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Curves in F and smooth conics 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surfaces of bidegree (1, 0) and (0, 1) 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surfaces of bidegree (0, d) and (1, d) 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Non-collinear smooth conics 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surfaces of bidegree (1, d) 10 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surfaces of bidegree (1, 2) and (1, 3) 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surfaces of bidegree (1, 2) containing 0 ≤ n ≤ 4 twistor fibers 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Non existence results for surfaces of bidegree (1, 2) and (1, 3) 22 References 24 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Introduction The flag threefold F can be seen as the twistor space of the complex projective plane P2 endowed with all its standard structures except for its orientation which, in this case, is the opposite of the usual one [6, 11], π : F → P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The study of the twistor geometry of the flag is motivated by the search of Riemannian 4- manifolds admitting several integrable complex structures compatible with the prescribed metric (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [8, 12, 13]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In this context, a recent trend is that of study particular cases, in order to find explicit examples [1, 2, 5, 7, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In [4] we have started a detailed analysis of the geometry of the algebraic curves and surfaces contained in F, in relation with the twistor projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, twistor fibers are smooth integral curves of bidegree (1,1) (called smooth conics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In [3] we gave a first bound on the maximum number of smooth conics contained in a smooth surface S ⊂ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Primary: 32L25, 14M15;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Secondary: 14D21, 14J26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' flag threefold, twistor projection, twistor fiber, surfaces, bidegree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' All the authors are partially supported by GNSAGA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The first named author is partially supported by the INdAM project ‘Teoria delle funzioni ipercomplesse e applicazioni’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='04874v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='AG] 12 Jan 2023 2 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA Here, by focusing our attention to a specific family of surfaces, we obtain more precise results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In fact we analyze the case of bidegree (1, d) surfaces in F and study the number and the arrangements of twistor fibers contained in them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In order to explain in details our results, we need to clarify some definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The flag threefold can be defined as F := {(p, ℓ) ∈ P2 × P2 | pℓ = 0}, where p = [p0 : p1, p2], ℓ = [ℓ0 : ℓ1 : ℓ2] ∈ P2 and pℓ = p0ℓ0 + p1ℓ1 + p2ℓ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The notation (p, ℓ), would recall a couple (point,line), and the condition pℓ = 0 translates as p belongs to ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In order to simplify the notation, we identify the second factor P2∨ with P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have three projection maps: π1, π2, π : F → P2, defined as π1(p, ℓ) = p, π2(p, ℓ) = ℓ, π(p, ℓ) = p × ℓ = [p1ℓ2 − p2ℓ1, p2ℓ0 − p0ℓ2, p0ℓ1 + p1ℓ0], where the third one is the twistor map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The fibers of such three maps are the object of our investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Being embedded in P2 × P2, it is possible to define a natural notion of bidegree for surfaces and a (bit less natural) one for curves in F (see Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, for any q ∈ P2, the three fibers π−1 1 (q), π−1 2 (q) and π−1(q) are curves of bidegree (0, 1), (1, 0) and (1, 1), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' While the fibers of π1 and π2 exhaust the family of bidegrees (1, 0) and (0, 1) curves, twistor fibers are only a (non-open Zariski dense) subset of those of bidegree (1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since the curves of bidegree (1, 1) are rational, we call them conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' There are only two types of bidegree (1, 1) curves: the reducible ones (union of a bidegree (1, 0) and of a bidegree (0, 1) curves intersecting at a point), or smooth conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' All of them can be described as Lq,m := {(p, ℓ) ∈ F | pm = 0, qℓ = 0}, where q, m ∈ P2 and, the reducible and smooth cases are obtained for qm = 0 or qm ̸= 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In twistor theory there is an antiholomorphic involution without fixed points that plays important roles in identifying twistor fibers [6, 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In our case, this map can be defined as j : F2 → F2, where j(p, ℓ) = (ℓ, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' A smooth conic Lq,m is a twistor fiber if and only if j(Lq,m) = Lq,m if and only if m = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As explained in [6], the geometry of F as twistor space does not change if we consider a conformal copy of its base space P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore, it is natural to classify objects in F up to conformal transformations, which, in this case, means up to projective transformations of F coming from the lift via π of a conformal transformation of P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' It is possible to see that such transformations of F are exactly those which commute with j (see [4] for the case of the flag manifold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence, in particular, the number of twistor fibers contained in a given surface and their arrangement are conformal invariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In order to state our main results we need some more notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We denote by C(1) = C the set of smooth conics in F and by C(n), n ≥ 2, the set of n pairwise disjoint smooth conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In an analogous way we define T (1) = T ⊂ C as the set of twistor fibers and T (n) ⊂ C(n), n ≥ 2, as the set of n pairwise disjoint twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We will see in Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5 that for any couple of different smooth conics, there is a unique bidegree (1, 0) curve L = π−1 2 (q2) and a unique bidegree (0, 1) curve R = π−1 1 (q1) such that L and R intersect both smooth conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In the case of a couple of twistor fibers we also have R = j(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We say that three or more smooth conics are collinear if there is a (1, 0) curve L which intersects all of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To be collinear, for three or more smooth conics, is a Zariski closed condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To be more precise, in Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='7, we define the set C∗(n) which parametrizes all A ∈ C(n) such that #(L ∩ A) ≤ 2 for all curves L of bidegree (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Clearly C∗(1) = C(1), and C∗(2) = C(2), while for n ≥ 3 the open set C∗(n) is given by the set of disjoint smooth TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 3 conics such that no three of them are collinear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, we set T ∗(n) := T (n) ∩ C∗(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='19 we characterize the elements A ∈ C∗(d + 1) to be those which do not obstruct the linear system |IA(1, d)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now summarize the main results of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In Section 3, we study surfaces of bidegree (1, d) containing a certain number of smooth conics or twistor fibers, and we prove the following two theorems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any d ∈ N and A ∈ T ∗(d + 2), there is no integral surfaces of bidegree (1, d) containing A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix integer d ≥ 1 and 0 ≤ n ≤ d + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' There is an integral S ∈ |OF(1, d)| containing exactly n twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We also show, in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4, that the first result is sharp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Indeed, for any A ∈ T ∗(n), with 0 ≤ n ≤ d + 1, we are able to find an integral surface of bidegree (1, d) containing A and no other twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' This last issue requires some effort and the proof is divided into several particular case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2 is a consequence of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4 and Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' More precisely, in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4, for 0 ≤ n ≤ d + 1, we prove that fixed any union A of 0 ≤ n ≤ d + 1 non-three-by-three collinear twistor fibers, there is an integral (1, d)-surface containing A and no other twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The extremal case n = d + 2 is considered in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='8, where we prove that given d + 2 general collinear twistor fibers there is an integral surface of bidegree (1, d) containing them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In Section 4, we focus on surfaces of bidegree (1, 2) and (1, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The main results are summarized by the following statements: Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix 0 ≤ n ≤ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' There is a smooth S ∈ |OF(1, 2)| containing exactly n twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, there exists a bidegree (1, 2) integral surface containing exactly 4 twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' There is no integral S ∈ |OF(1, 2)| containing at least 5 twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' There is no integral S ∈ |OF(1, 3)| containing at least 6 twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The first existence result (Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3) follows from Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='6, for 0 ≤ n ≤ 3, and Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='10, for the case n = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In the extremal case n = 4, we will also show that the surfaces are singular along a line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The two non-existence results (Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5) are proved in the last Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' An essential tool is Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='11 which states that if a surface of bidegree (1, d) contains d + 3 or more collinear twistor fibers, then this surface is reducible and one of its components is a surface of bidegree (1, 1) containing 4 of the prescribed twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We conclude here with a comparison with the other (smooth) algebraic twistor space of a Riemannian 4-manifold, which is the complex projective space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' This is the twistor space of the standard 4-sphere [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In this case, surfaces of degree 2 and 3 were studied in some details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, analogously to our case of surfaces of bidegree (1, 1), surfaces of degree 2 in P3 might contain 0, 1 or 2 twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If a surface of degree 2 contains more than 2 twistor fibers, then it contains infinitely many of them [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For degree 3 surfaces, such a maximum is realized for 5 twistor fibers [5] which is more than our maximum of 4 for surfaces of bidegree (1, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' This difference could be explained by observing a certain unbalancedness of the case of “total degree” 3 in the flag threefold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' On the other hand, this particular unbalancedness allows us to compute all the Betti numbers in the next section as well as the use of the geometry of the Hirzebruch surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Preliminaries and first results In this section, we collect some known results about algebraic curves and surfaces in the flag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then, we give first results on the space of bidegree (0, d) and (1, d) surfaces 4 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA containing a certain amounts of twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, we introduce the concept of collinear smooth conics and give a topological characterization in terms of cohomology of certain ideal sheaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For most of the known material about F, we refer mainly to [4] and to [3, Section 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' However, we recall here some basic notion and results in order to be as more self-contained as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let us consider the multi projective space P2 × P2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' an element (p, ℓ) ∈ P2 × P2 will be a couple written in the following form p = [p0 : p1 : p2], ℓ = [ℓ0 : ℓ1 : ℓ2]⊤, so that pℓ = p0ℓ0 + p1ℓ1 + p2ℓ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Even if it is classically embedded in P2 × P2∨, we might see F := {(p, ℓ) ∈ P2 × P2 | pℓ = 0} as a hypersurface of bidegree (1, 1) of P2 × P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We denote by Π1 and Π2 the two standard projections of P2×P2 and we will use small letters for their restrictions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' πi = Πi|F, i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus, the two natural projections define a natural notion of bidegree for algebraic surfaces in F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, for all (a, b) ∈ Z2 we have the following natural exact sequence (1) 0 → OP2×P2(a − 1, b − 1) → OP2×P2(a, b) → OF(a, b) → 0, and, for any (a, b) ∈ N2, we get (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [4, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3]) (2) h0(OF(a, b)) = (a + 1)(b + 1)(a + b + 2) 2 and h1(OF(a, b)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' It will be useful to recall from [4, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='11] the multiplication rules in the Chow ring: OF(1, 0) · OF(1, 0) · OF(1, 0) = 0, OF(1, 0) · OF(0, 1) · OF(1, 0) = 1, OF(0, 1) · OF(1, 0) · OF(0, 1) = 1, OF(0, 1) · OF(0, 1) · OF(0, 1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (3) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Curves in F and smooth conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let us recall a notion of bidegree for the family of algebraic curves in F already given in [4, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let C ⊂ F be an integral algebraic curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We define the bidegree of C as the couple of positive integer numbers (d1, d2), where di = 0 if πi(C) = {x}, otherwise di = deg(πi(C)) deg(πi|C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If a curve D has irreducible components C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , Cs then the bidegree of D is taken to be the sum of the bidegrees of C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , Cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Recall from [3, Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4] that if a curve C is such that C · OF(1, 0) = d1 and C · OF(0, 1) = d2, then it has bidegree (d1, d2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' From the previous table of multiplication, we can easily derive the following formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any choice of non-negative integers a, b, c, d, the one-dimensional cycle OF(a, b) · OF(c, d) has bidegree (ad + b(c + d), a(c + d) + bc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have OF(a, b) · OF(c, d) = acOF(1, 0) · OF(1, 0) + (ad + bc)OF(1, 0) · OF(0, 1) + bdOF(0, 1)·OF(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence the thesis is easily obtained by recalling that OF(1, 0)·OF(1, 0) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' OF(1, 0) · OF(0, 1), resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' OF(0, 1) · OF(0, 1)) is a one-dimensional cycle of bidegree (0, 1) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' bidegree (1, 1), resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' bidegree (1, 0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Notice that the fibers of π1 are algebraic curves of bidegree (0, 1), while those of π2 have bidegree (1, 0) (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [4, Section 3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, all bidegree (0, 1) curves can be seen as complete intersections between two different (1, 0) surfaces (and analogously for bidegree (1, 0) curves).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Among all algebraic curves in F we focus our attention on the family of bidegree (1, 1) curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' These are geometrically described in [4, Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1] and are parameterized by TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 5 (q, m) ∈ P2 × P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In fact, as anticipated in the introduction, any of these curves can be written as Lq,m := {(p, ℓ) ∈ F | p ∈ m, ℓ ∋ q} = {(p, ℓ) ∈ F | qℓ = 0, pm = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' There are two types of these curves: the smooth and irreducible ones (when qm ̸= 0) and the union of a (1, 0) and of a (0, 1) intersecting at a point (when qm = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (q, m) ∈ F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In any case, each bidegree (1, 1) curve can be seen as the complete intersection of a surface of bidegree (1, 0) with one of bidegree (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As already mentioned in the introduction, the 4-dimensional family of smooth irreducible (1, 1) curves will be denoted by C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The elements of C will be called smooth conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' From the very definition of smooth integral conics, it is clear that, for any C ∈ C we have that πi(C) is a line in P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Notice that for any two different elements Lq,m, Lq′,m′ ∈ C there exist a unique curve L of bidegree (1, 0) and a unique R of bidegree (0, 1) such that L and R meets both Lq,m and Lq′,m′ at a point (see Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' From the analysis made in [4, Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1] it is easy to see that L = π−1 2 (q × q′) and R = π−1 1 (m × m′), where × stands for the standard (formal) cross product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Equivalently, L = π−1 2 (Sing(π2(A)) and R = π−1 1 (Sing(π1(A)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We say that three disjoint smooth conics are collinear if they Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Any two smooth conics are connected by a curve of bidegree (1, 0) and by a curve of (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' intersect the same (1, 0) curve L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The fibers of the twistor projection π : F → P2 (see [4, Section 5]) form a subset T of the family of conics C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The twistor fibers are also characterized to be the irreducible elements in C that are fixed by the anti-holomorphic involution j : F → F defined as j(p, ℓ) = (ℓ, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Being the set of fixed point of j, a curve Lq,m belongs to T if and only if m = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, the set T is a Zariski dense in C (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [3, Section 4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If L is the curve of bidegree (1, 0) connecting two different twistor fibers (see Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5), then the curve of bidegree (0, 1) connecting them is exactly R = j(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence if three twistor fibers are collinear, then they intersect the same (1, 0) curve and the same (0, 1) curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Recall from the introduction that, for any positive integer n, C(n) denotes the 4n- dimensional set of n pairwise disjoint elements of C and T (n) the set of n pairwise disjoint elements of T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As before, T (n) is a Zariski dense in C(n) (see again [3, Section 4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now introduce the following crucial definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' R L q,m q",m6 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any n ≥ 1 let C∗(n) be the set of all A ∈ C(n) such that for any curve L of bidegree (1, 0), it holds #(L ∩ D) ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Set T ∗(n) := T (n) ∩ C∗(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Clearly we have C∗(n) = C(n) and T ∗(n) = T (n), for n = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For n ≥ 3 the set C(n) \\ C∗(n) parametrizes unions of n disjoint smooth conics such that at least three of them are collinear, hence C∗(n) is an open Zariski dense in C(n), as well as T ∗(n) in T (n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore, for any n ≥ 1, all the following inclusions are Zariski dense: T ∗(n) ⊂ T (n) ⊂ C(n), T ∗(n) ⊂ C∗(n) ⊂ C(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surfaces of bidegree (1, 0) and (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now turn our attention back to sur- faces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We recall from [4, Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2] and [3, Section 2] that (1, 0) and (0, 1) surfaces are Hirzebruch surfaces of first type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, a surface X of bidegree (1, 0) can be seen as the lift, via π1 of a line (and analogously for a bidegree (0, 1) surface Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Using this description, it is easy to see that any of these surfaces represent the blow up of P2 at a point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let F1 be a Hirzebruch surface of type 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' we now describe the relation between the generators of the Picard group of F1 and the family of curves in F previously described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We recall that Pic(F1) = Zh ⊕ Zf, where h2 = −1, f2 = 0, hf = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For the following analysis and the rest of the paper X will denote a surface of bidegree (1, 0), while Y one of bidegree (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Identifying a surface X with F1 we obtain that OX(1, 0) ≃ OF1(f) which in turn corre- sponds to the set of curves in F of bidegree (0,1) contained in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' On the other hand we have that OX(0, 1) ≃ OF1(h + f) which corresponds to elements of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence, for any a, b ∈ Z and for any α, β ∈ Z, we obtain the following two relations (4) OX(a, b) ∼= OF1(bh + (a + b)f), and OF1(αh + βf) ∼= OX(β − α, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For a surface Y of bidegree (0, 1) we can derive similar formulæ: (5) OY (a, b) ∼= OF1(ah + (a + b)f), and OF1(αh + βf) ∼= OY (α, β − α), for any a, b ∈ Z and for any α, β ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let X be a surface of bidegree (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then X does not contain any element of C(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In fact, any element of C in X corresponds to an element of OF1(h + f) and any two elements of type h + f meets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The same holds for surfaces Y of bidegree (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, for each bidegree (1, 0) or (0, 1) surface there is exactly one twistor fiber contained in it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now recall from [3, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5] that, for any a, b ≥ 0, using the exact sequence 0 → OF(a − 1, b) → OF(a, b) → OX(a, b) → 0, and its analogous for Y , we have that h0(OX(a, b)) = a(b + 1) + �b + 2 2 � , h0(OY (a, b)) = b(a + 1) + �a + 2 2 � , while h1(OX(a, b)) = h1(OY (a, b)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, if a > 0, b > 0, the line bundles OX(a, b) and OY (a, b) are very ample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surfaces of bidegree (0, d) and (1, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now pass to study higher bidegree sur- faces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We start with some consideration about bidegree (0, d) surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As described in [4, Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3], any integral surface S of bidegree (0, d) is equal to π−1 1 (C) for some degree d integral curve C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore, for d ≥ 2, no integral S ∈ |OF(0, d)| contains a smooth conic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Otherwise, thanks to Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4, πi(S) would contain a line, but π1(S) is an integral curve of degree d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For n ≥ 2 we now compute how many (non integral) bidegree (0, d) surfaces contain a fixed element of C(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' First we set the following notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We will denote by IU,V the ideal sheaf of a scheme U contained in a projective variety V ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' whenever V = F we will omit it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' So, in particular, if A ∈ C(n) we will write IA := IA,F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix d ≥ 0, n ≥ 1, and A ∈ C(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have h0(IA(0, d)) = (d − n + 2)(d − n + 1) 2 and h1(IA(0, d)) = � n(n−1) 2 if n ≤ d + 1 n(d + 1) − (d+2)(d+1) 2 if n ≥ d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Recall that OF(0, d) = π∗ 1(OP2(d)), and IA(0, d) = π∗ 1(IT,P2(d)) where T = π1(A) is a union of n distinct lines in P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In general, we have that: h0(OF(0, d)) = �d + 2 2 � , h0(IA(0, d)) = �d + 2 − n 2 � , h0(OA(0, d)) = n(d + 1), hence, using the exact sequence 0 → IA(0, d) → OF(0, d) → OA(0, d) → 0, since h1(OF(0, d)) = 0 and �d+2−n 2 � = 0 if n ≥ d + 1, we get the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As a direct consequence of the previous lemma, we can state that, for any C ∈ C, there is only one surface Y in |IC(0, 1)| and, analogously, only one surface X in |IC(1, 0)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If A ∈ C(n), we consider the following exact sequence: 0 → IA(a, b) → OF(a, b) → OA(a, b) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since the conics in A are all disjoint, we have that for any (a, b) ∈ N2 (6) h0(OA(a, b)) = n(a + b + 1), (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [3, Sequence (7) and proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Recall from Formula (2) that h0(OF(a, b)) = (a+1)(b+1)(a+b+2) 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore, as h1(OA(a, b)) = h1(OF(a, b)) = 0, for any A ∈ C(n) and d ≥ 0, we have (7) χ(IA(1, d)) = h0(IA(1, d)) − h1(IA(1, d)) = (d + 1)(d + 3) − n(d + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence, if n = d + 2, we have h0(OA(1, d)) = (d + 2)2 and so (8) h0(OF(1, d)) = (d + 1)(d + 3) = (d + 2)2 − 1 = h0(OA(1, d)) − 1 and, if n = d + 1: h0(OF(1, d)) = h0(OA(1, d)) + d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In the following we will implicitly make use of the following simple observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 8 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since the elements of T (1) are the fibers of a map, the twistor map, each p ∈ F is contained in a unique element, C, of T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since j(C) = C, j(p) ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Analogously, note that p is contained in a unique curve of bidegree (1, 0) and a unique curve of bidegree (0, 1), π−1 2 (π2(p)) and π−1 1 (π1(p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The following remark will be used several times in the next pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix a positive integer d and an integral S ∈ |OF(1, d)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since π1|X is birational onto its image, S is rational.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By B´ezout Theorem, for any p ∈ P2, the bidegree (1, 0) curve π−1 2 (p) either is contained in S, or intersects S in a single point (scheme- theoretically).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We close this subsection with a technical result that will be used in the next pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In [3, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1] we proved that there exists at most one surface of bidegree (a, b) containing a number equal or greater than a2 + ab + b2 of smooth conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We will now generalize this result to a more general context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix (a, b, c, d) ∈ N4 such that (a, b) ̸= (0, 0), c > 0, d > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take A ∈ C(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume the existence of an integral S ∈ |OF(a, b)| containing A and assume one of the following conditions: (1) ad + b(c + d) < n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (2) a(c + d) + bc < n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (3) ad + b(c + d) = a(c + d) + bc = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then each element of |IA(c, d)| contains S and in particular c ≥ a and d ≥ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume by contradiction the existence of S′ ∈ |IA(c, d)| such that S′ ⊉ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have OF(a, b) · OF(c, d) =acOF(1, 0) · OF(1, 0) + (ad + bc)OF(1, 0) · OF(0, 1) + bdOF(0, 1) · OF(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since S′ ⊉ S, the intersection S ∩ S′ is a curve of bidegree (ad + b(c + d), a(c + d) + bc) (see Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since c > 0 and d > 0, then OF(c, d) is ample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, since S is irreducible, A has bidegree (n, n) and A is not connected, then the intersection contains some more component in addition to A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence, either ad+bc+bd > n and ac+ad+bc ≥ n or ad + bc + bd ≥ n and ac + ad + bc > n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Non-collinear smooth conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now want to characterize the conics in C∗(n) in terms of cohomology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We start showing that the vanishing of certain cohomology groups implies that an element A ∈ C(n) lies in C∗(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix d ≥ 0, 3 ≤ n ≤ d+1 and A ∈ C(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If h1(IA(1, d)) = 0 then A ∈ C∗(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume, by contradiction, that there exists a curve L of bidegree (1, 0) such that #(L ∩ A) ≥ 3 and consider the exact sequence defining IA: (9) 0 → IA(1, d) → OF(1, d) → OA(1, d) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We will prove that the restriction map H0(OF(1, d)) → H0(OA(1, d)) is not surjective, which implies that h1(IA(1, d)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In fact, assume that it is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then, consider the following diagram OF(1, d) OL(1, d) OA(1, d) OL∩A(1, d) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='. .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='. .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='. .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='. .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As the vertical maps are surjective, then the map H0(OF(1, d)) → H0(OA∩L(1, d)), induced by the composition, is surjective too and hence of rank at least 3 (since L∩A has cardinality at least 3 and the irreducible components of A are pairwise disjoint).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' On the other hand the TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 9 restriction map H0(OF(1, d)) → H0(OL(1, d)) has rank 2 and this gives a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ Before completing the characterization of the conics in C∗(d + 1), we expose a general construction that will be used in several following discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let A ∈ C(n) and let C be any connected component of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Set B := A \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then, for any a, b ≥ 0, if Y ∈ |OC(0, 1)|, we have the following residual exact sequence 0 → IResY (A)(a, b − 1) → IA(a, b) → IA∩Y,Y (a, b) → 0, but as ResY (A) = B and A ∩ Y = (B ∩ Y ) ∪ C, we have (10) 0 → IB(a, b − 1) → IA(a, b) → I(B∩Y )∪C,Y (a, b) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Clearly an analogous sequence can be written for X ∈ |OC(1, 0)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix d ≥ 0 and A ∈ C(d + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have A ∈ C∗(d + 1) if and only if h1(IA(1, d)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By the previous lemma we need only to prove that A ∈ C∗(d+1) satisfies h1(IA(1, d)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We use induction on d ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The case d = 0 is true by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore, we may assume d > 0 and use induction on d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let C be a connected component of A, set B := A \\ C and cal Y the only element of |IC(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Consider the residual exact sequence (10), with a = 1 and b = d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since A ∈ C(d + 1), C ∩ B = ∅ and B ∩ Y is formed by d different points, up to the identification of D with F1 we have I(B∩Y )∪C,Y (1, d) ∼= I(B∩Y )∪C,F1(1, d)(h + (d + 1)f) ∼= IB∩Y,F1(df) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Using (10) and induction we are left to prove that h1(IB∩Y,F1(df)) = 0 if and only if A ∈ C∗(d + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Consider now the following exact sequence (11) 0 → IB∩Y,F1(df) → OF1(df) → OB∩Y (df) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since h0(OF1(df)) = d + 1 and h0(OB∩Y (df)) = d, we have h1(IB∩Y,F1(df)) > 0 if and only if h0(IB∩Y,F1(df)) ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The last inequality means that there exist at least two different sets of d fibers containing the set of d points B ∩Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' This is equivalent to the fact that there exists a fiber L ∈ |f| such that #(B ∩ L) ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since L is a curve of bidegree (1, 0) in F, then L · Y = 0 in the intersection ring of F, therefore L ⊂ Y and hence we get L ∩ C ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus #(L ∩ A) ≥ 3, which means that A ̸∈ C∗(d + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix d ≥ 0, 0 ≤ n ≤ d + 1 and A ∈ C∗(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then h1(IA(1, d)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, for n = 0, 1, 2 and for any A ∈ C(n), we have h1(IA(1, 1)) = 0 and h0(IA(1, 1)) = 8 − 3n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By using [3, Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3], we easily get the first part of the statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The second one, follows from Formula (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ We point out that since T (n) is a Zariski dense of C(n), then the characterization given by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='19 also holds for the set T ∗(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix an integer d ≥ 0 and A ∈ C∗(d + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then h1(IA(1, d)) ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The lemma is true for d = 0, because h0(IA(1, 0)) = 0 (see Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We assume d > 0 and use induction on d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let C be a connected component of A, set B := A \\ C and call Y the only element of |IC(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Consider the residual exact sequence (10), with a = 1 and b = d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since A ∈ C(d + 2), C ∩ B = ∅ and B ∩ Y is formed by d + 1 different points, up to the identification of D with F1 we have I(B∩Y )∪C,Y (1, d) ∼= I(B∩Y )∪C,F1(1, d)(h + (d + 1)f) ∼= IB∩Y,F1(df) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Using (10) and induction we are left to prove that h1(IB∩Y,F1(df)) = 0 if A ∈ C∗(d + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 10 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA Consider now the following exact sequence (12) 0 → IB∩Y,F1(df) → OF1(df) → OB∩Y (df) → 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since h0(OF1(df)) = d + 1 and h0(OB∩Y (df)) = d + 1, we have h1(IB∩Y,F1) > 0 if and only if h0(IB∩Y,F1(df)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' This is equivalent to the fact that there exists a fiber L ∈ |f| such that #(B ∩ L) ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since L is a curve of bidegree (1, 0) in F, then L · Y = 0 in the intersection ring of F, therefore L ⊂ Y and hence we get L ∩ C ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus #(L ∩ A) ≥ 3, which means that A ̸∈ C∗(d + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ As said in Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5, for any element A ∈ C(2), there is a unique curve L of bidegree (1, 0) and a unique R of bidegree (0, 1) such that both intersect the elements of A at a point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As described in the following result, it turns out that A ∪ L ∪ R is the base locus of |IA(1, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any A ∈ C(2), we have that (1) the general element in |IA(1, 1)| is integral;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (2) the base locus B of |IA(1, 1)| is A∪L∪R, where L is and R are the curves described in Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since A ∈ C(2), by Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='20 we have h1(IA(1, 1)) = 0 and h0(IA(1, 1)) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Call C1 and C2 the connected components of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Denote by Xi the only element of |OF(1, 0)| containing Ci and by Yi the only element of |OF(0, 1)| containing Ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The surfaces X1 ∪Y2 and X2 ∪ Y1 are the only reducible elements of |IA(1, 1)| and hence, the general element in |IA(1, 1)| is irreducible and (1) is proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To prove (2) we analyze the base locus B of |IA(1, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If S, S′ ∈ |IA(1, 1)| are irreducible and S ̸= S′, then the one-dimensional cycle S ∩ S′ has bidegree (3, 3) and it contains A, which has bidegree (2, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take R := X1 ∩ X2 and L := Y1 ∩ Y2, where Xi and Yi are the surfaces defined in the first part of this proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The curves L and R are exactly the ones stated in Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, #(L ∩ A) = #(R ∩ A) = 2 and hence, by B´ezout and Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='16, L∪R ⊂ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, recall that the reducible surfaces, X1 ∪Y2 and X2 ∪Y1 belong to |IA(1, 1)| and their intersection (X1 ∪ Y2) ∩ (X2 ∪ Y1) is A ∪ L ∪ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence the base locus of |IA(1, 1)| is exactly B = A ∪ L ∪ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By generalizing the proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='22 we can say something about the base locus of IA(1, d), for A ∈ C(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix integers d > 0 and n ≥ 2 and take any A ∈ C(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then, the base locus B of IA(1, d) contains all curves L of bidegree (1, 0) such that #(L ∩ A) ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If A ∈ C∗(n), then there are exactly �n 2 � such curves L (the number of lines joining two points in a set of n general points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If A ∈ T (n), then #(j(L) ∩ A) ≥ 2 for all L such that #(L ∩ A) ≥ 2, since j(A) = A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surfaces of bidegree (1, d) In this section we prove Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, we give several results for the case of a surface of bidegree (1, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Later, in the following section, we will specialize to the cases d = 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The case d = 1 was studied in many details in [4] and here we add a simple lemma useful for what follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any A ∈ T ∗(3), there is no integral surfaces of bidegree (1, 1) containing A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume the existence of an integral surface M of bidegree (1, 1) containing A ∈ T ∗(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' First of all, thanks to [4, Corollary 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4], we have that M = j(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then, as explained at the beginning of Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1 in [4], either M is smooth or reducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' But if M is a smooth j-invariant surface of bidegree (1, 1) containing 3 twistor fibers, then it contains infinitely many of them and these are parametrized by a circle (see [4, Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' However, smooth surfaces of bidegree (1, 1) can be seen as the blow-up of P2 at three TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 11 points both via π1 and π2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, up to unitary transformation it is possible to write M as the set {([p0 : p1 : p2], [ℓ0 : ℓ1 : ℓ2]) ∈ F | p1ℓ1 + λp2ℓ2}, with λ ∈ R \\ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In these coordinates, M contains π−1 µ ([1 : 0 : 0]), π−1 µ ([0 : 1 : 0]), π−1 µ ([0 : 0 : 1]), for µ = 1, 2 and, the family of twistor fibers π−1([q0 : q1 : q2]) defined by: � � � � � q0 = 0 and |q1|2λ + |q2|2 = 0 if λ < 0 , q1 = 0 and |q2|2 − |q0|2(λ − 1) = 0 if λ > 1 , q2 = 0 and |q1|2λ + |q0|2(λ − 1) = 0 if 0 < λ < 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take for instance λ < 0, then any twistor fiber in M intersects the line L = π−1 2 ([1 : 0 : 0]) of bidegree (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' An analogous consideration holds if 0 < λ < 1 or λ > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence we get a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ In the previous lemma we show that an integral (1, 1) surface cannot contain three general twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' On the other hand if M is a (1, 1) surface containing a given A ∈ T (3) \\ T ∗(3), then by [4, Corollary 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3] we have that M is j-invariant, hence either it is smooth or reducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, if M contains infinitely many twistor fibers, then all of them intersect a bidegree (1, 0) curve L and its associated (0, 1) curve R = j(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In [4, Section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1] we gave examples of bidegree (1, 1) smooth surfaces containing exactly 0, 1 or 2 twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As a smooth surface of bidegree (1, 1) is a Del Pezzo surface of degree 6, then this is characterized either by the three bidegree (1, 0) curves that contains or by the three bidegree (0, 1) curves that contains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In fact, recall that these surfaces represent the blow-up of P2 at three points with respect to either π1 or π2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We notice that if a smooth surface of bidegree (1, 1) is j-invariant, then, this is uniquely determined by three twistor fibers contained in it and not by the curves L and R = j(L) (of bidegree (1, 0) and (0, 1), respectively), which intersect all the twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In fact, in [4], we proved that these kind of surfaces are uniquely determined by the “circle” defined by the infinite family of twistor fibers contained in it and, such a “circle” is properly contained in in the (1, 0) line L which intersects all fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thanks to these first considerations about bidegree (1, 1) surfaces, we are ready to give the proof of our first main theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1: Thanks to Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9 and Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1, the result is true for d = 0 and d = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume now that d ≥ 2 and, by contradiction, that S is an integral (1, d) surface containing A ∈ T ∗(d+2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Call C a connected component of A and set B := A\\C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Call Y the only (by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2) element of |IC(0, 1)| and consider the following exact sequence (which is a particular case of the one in Formula (10)): (13) 0 → IB(1, d − 1) → IA(1, d) → I(B∩Y )∪C,Y (1, d) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' From Formulæ (6) and (8), we have h0(OA(1, d)) = (d+2)2 = h0(OF(1, d))+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Clearly, we have that B ∩ Y is formed by d + 1 points, and, up to the identification of Y with F1 given in Formula (5), as the curve C corresponds to an element of type h+f in F1, we can write I(B∩Y )∪C,Y (1, d) ∼= I(B∩Y )∪C,F1(h + (d + 1)f) ∼=IB∩Y,F1(df).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since A ∈ T ∗(d + 2) and every element of |f| meets C (indeed (h + f)f = 1), the restriction to B ∩ Y of the ruling morphism D → P1 associated to |f| is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus, h1(Y, IA∩Y,Y (1, d)) = 0 and the exact sequence (13) gives h1(IB(1, d−1)) ≥ h1(IA(1, d)) ≥ 2, where the last is greater or equal than 2 because χ(IA(1, d)) = −1 (see Formula (7)), and we are assuming that h0(IA(1, d)) ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus, we also have h0(IB(1, d − 1)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Recall that B ∈ T ∗(d+1) and hence, by the inductive assumption, B is not contained in any integral E ∈ |OF(1, d − 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore, thanks to Remarks 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='10, there must be 12 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA an integral M ∈ |OF(1, 1)| containing at least 3 connected components of B, say B′ ⊂ M with B′ of bidegree (3, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence, by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1, there is a curve L of bidegree (1, 0) such that #(L ∩ B′) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus A /∈ T ∗(d + 2), a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ Having proved that an integral bidegree (1, d) surface cannot contains d + 2 (or more) non collinear twistor fibers, we now pass to prove that all the other cases can actually arise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, we prove in the following result a stronger version of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2 in the case n ≤ d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix integers d ≥ 1 and 0 ≤ n ≤ d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then, for any A ∈ T ∗(n) there is an integral S ∈ |OF(1, d)| containing A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, the general S ∈ |IA(1, d)| contains no other twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We use induction on the integer d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If d = 1 the statement is true by Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume now d ≥ 2 and take an element A ∈ T ∗(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since T ∗(n) is Zariski dense in C(n), A has the bigraded Hilbert function of a general element of C(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus, thanks to Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='20, we have that h1(IA(1, d)) = 0 and, by Formula (7) h0(IA(1, d)) = (d + 1)(d + 3) − n(d + 2) =: Nn + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix a connected component C of A and set B := A \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If Y denotes be the only (0, 1) surface containing C, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='20 entails that h1(IB(1, d − 1)) = 0 and, again by Formula 7 h0(IB(1, d − 1)) = d(d + 2) − (n − 1)(d + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By the inductive assumption, we know that |IB(1, d − 1)| ̸= ∅ and a general W ∈ |IB(1, d − 1)| is irreducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus Y ∪ W ∈ |IA(1, d)| and Y ∪ W has 2 irreducible components, one of them having bidegree (1, d − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let us denote by C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , Cn the connected components of A, by Bi := A \\ Ci and by Yi the unique element in |ICi(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The set of all the reducible surfaces W ∪ Yi ∈ |IA(1, d)|, where W ∈ |IBi(1, d − 1)|, is the union of e projective spaces (one for each choice of Ci), each of them of codimension h0(IA(1, d)) − h0(IB(1, d − 1)) = d + 2 − n > 0 in |IA(1, d)|= PNn (in particular of codimension 1 if n = d+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore, they do not cover all |IA(1, d)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now want to exclude other possible splittings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, we consider reducible surfaces of the form W1 ∪ D1 with W1 integral, D1 possible reducible of bidegree (0, x) for some x ≥ 2 and hence W1 of bidegree (1, d − x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='10 shows that only irreducible components of D1 of bidegree (0, 1) may contain some component of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We obtain that the surface is of the form W1 ∪D2 ∪D3 with W1 ∪D2 of bidegree (1, d−1), but, as showed before, these kind of surfaces do not cover all |IA(1, d)|, hence we have the thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Now we prove that a general S ∈ |IA(1, d)| contains no other twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We start by analyzing the case d = 2 and discussing the cases n = 1, 2, 3 separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix C ∈ T (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let CC(1) denote the set of all B ∈ C(1) such that B∩C = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Note that T (1) \\ {C} = CC(1) ∩ T (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any B ∈ CC(1) we have h1(IC∪B(1, 2)) = 0 and hence h0(IC∪B(1, 2)) = h0(IC(1, 2)) − 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let XC be the set of all smooth and integral surfaces of bidegree (1, 2) containing C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' It is a non-empty Zariski open subset of |IC(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any B ∈ CC(1) the set of all S ∈ XC containing B has complex codimension 4 and hence real codimension 8 as real manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since T (1) has real dimension 4, a general S ∈ XC contains no other twistor fiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let now n = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix A ∈ T (2) and let CA(1) denote the set of all B ∈ C(1) such that B∩A = ∅ and B∪A ∈ C∗(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Note that h1(IA∪B(1, 2)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' So as in the previous step, we get that a sufficiently general S ∈ |IA(1, 2)| contains no element of TA(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume that S contains B ∈ T (1) such that there is a curve of bidegree (1, 0) intersecting each connected component of A ∪ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Note that L is uniquely determined by A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let C(A, L) denote the set of all B ∈ C(1) such that B ∩ A = ∅ and L meets B and set T (A, L) := C(A, L) ∩ T (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 13 For any o ∈ L \\ (L ∩ C) the set of all B ∈ C(A, L) containing o is a non-empty family of complex dimension 1, while there is a unique twistor fiber containing o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The set C(A, L) is a complex manifold of dimension 2, while h1(IA∪B(1, 2)) = 1 and hence h0(IA∪B(1, 2)) = h0(IA(1, 2)) − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since dim C(A, L) = 2, a general S ∈ |IA(1, 2)| contains no element of C(A, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence, there is no twistor fiber B such that A ∪ B ∈ T ∗(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume now that n = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Start by considering a general A ∈ T ∗(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then we have h1(IA(1, 2)) = 0 and h0(IA(1, 2)) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any x ∈ {0, 1, 2, 3} let C(A, x) denote the set of all C ∈ C(1) such that A∩C = ∅ and h0(IA∪C(1, 2)) = x and set T (A, x) := C(A, x)∩T (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For a general D ∈ C(4) we have h0(ID(1, 1)) = 0 (but h1(ID(1, 1)) = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix C ∈ C(1) such that C ∩ A = ∅, call Y the only element of |IC(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since C ∩ A = ∅, no connected component of A is contained in Y and Y ∩ A is formed by 3 points, all of them in Y \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We easily deal with the case x = 0 as any curve C ∈ C(A, 0) is not contained in any element of |IA(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have OY (1, 2)(−C) ∼= OF1(2f) and hence C ∈ C(A, 0) if no curve of bidegree (1, 0) L ∈ |f| intersects 2 of the components of A (since h1(IA(1, 1)) = 1 the last statement is only an “if” and not an “if and only if”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' A necessary condition for being C ∈ C(A, 2) is that L intersects all connected components of A, but this is excluded because A ∈ T ∗(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since A ∈ T ∗(3) there are exactly 3 curves L1, L2, L3 of bidegree (1, 0) intersecting 2 of the connected components of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We claim that a general S ∈ |IA(1, 2)| contains no C ∈ C(1) such that C ∩ A = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The family of smooth conics which intersect Li has complex dimension 2, while the family of twistor fibers intersecting Li has real dimension 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As the general S ∈ |IA(1, 2)| has only finitely many conics, it only has a finite number of elements in C(A, 1) and, for the general, none of them is a twistor fiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now pass to analyze the case d ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume the general surface of |IA(1, d)| contains the twistor fiber C ⊈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus A∩C = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Set A′ := A∪C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take Y ∈ |OY (0, 1)| containing C and consider the residual exact sequence (14) 0 → IA(1, d − 1) → IA′(1, d) → I(Y ∩A)∪C,Y (1, d) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have IC,Y (1, d) ∼= OF1(df).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume first n ≤ d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If A′ ∈ T ∗(n + 1), then h1(I′ A(1, d)) = 0 and hence h0(I′ A(1, d)) = h0(IA(1, d)) − d − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since dim C(1) = 4, for d ≥ 3 the general S ∈ |IA(1, d)| contains no C such that A ∪ C ∈ T ∗(n + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Now assume A′ /∈ T ∗(n+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus there are connected components C′ and C′′ of A such that C ∪ C′ ∪ C′′ /∈ T ∗(3), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C intersects the unique line L meeting C′ and C′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since dim L = 1, to exclude this case it is sufficient to prove that h0(IB(1, d)) ≤ h0(IA(1, d))−2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' h0(F1, IA∩Y (df)) ≤ d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' But since h0(OF1(df)) = d + 1, then OF1(df) is globally generated and A ∩ Y ̸= ∅, therefore h0(F1, IA∩Y (df)) ≤ d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume now n = d+1 and that A′ ∈ C∗(d+2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='21 we have h1(IA′(1, d)) ≤ 1 and hence h0(IA′(1, d)) ≤ h0(IA(1, d)) − d − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Now assume A′ /∈ C∗(d + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We need h0(F1, IA∩Y (df)) ≤ d − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let π : F1 → P1 denote the ruling of F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since OP1(d) is very ample, h0(F1, IA∩Y (df)) ≤ d − 1 if and only if #π(A ∩ Y ) ≥ 2, which is true because #(A∩Y ) = d+1 ≥ 3 and (since A ∈ C∗(d+1) no fiber F of π contains at least 3 points of A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The only remaining case is now d = 3 and n = 4, which can be dealt just by adapting the previous argument for d = 2 and n = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ Having proved Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2 in the case n ≤ d + 1 for non collinear twistor fibers, we focus now to the case n = d + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In this setting we need some preliminary results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix d > 0, n ≤ d+2 and consider a general A ∈ T (n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then h1(IA(1, d)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since T (n) is Zariski dense in C(n), it is sufficient to prove the statement for a general A ∈ C(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Clearly, it is sufficient to prove the case n = d + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take a connected component C of A and set B := A \\ C and Y ∈ |IC(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Consider the residual exact 14 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA sequence of Y , as in Formula (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Recall the correspondence Y ∼= F1 given in Formula (5) and let ρ : Y → P1 denote its ruling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since A is general #ρ(A ∩ Y ) = d + 1 and hence hi(F1, IB∩Y (df)) = 0, for i = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore h1(IA(1, d)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ By Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1, we already know that an integral (1, d) surface may contain a union of d + 2 twistor fibers only if it belongs to T (d + 2) \\ T ∗(d + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore, we introduce the following notation for sets of disjoint smooth conics which are collinear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Given a curve L of bidegree (1, 0) and an integer n > 0, let C(n, L) denote the set of all A ∈ C(n) such that each connected component of A meets L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The set C(n, L) is isomorphic (as real algebraic variety) to the set S(L, n) of all subsets of L with cardinality n and hence it is irreducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' An analogous definition and observation can be done for a curve R of bidegree (0, 1) and, of course, for the family T instead of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix integers n ≥ 3 and d ≥ 1 and take any A ∈ T (n, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then, h1(IA(1, d)) ≥ n − 2 + max{0, n − (d + 1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Call C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , Cn the connected component of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let Si ⊂ Ci be any union of d + 2 distinct points on each conic and S := S1 ∪ · · · ∪ Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since Ci is a smooth rational curve, the restriction map H0(OCi(1, d)) → H0(OSi(1, d)) is bijective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus, the restriction map H0(OA(1, d)) → H0(OS(1, d)) is bijective and χ(OA(1, d)) = χ(OS(1, d)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus we get χ(IA(1, d)) = χ(IS(1, d)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since A ∈ T (n, L), we know that there exists L of bidegree (1, 0) which intersects each conic in A (and the (0, 1) curve j(L) does the same).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence we can choose S such that n points are on L and n points are on j(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In other words we assume (A∩L)∪(A∩j(L)) ⊆ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By using B´ezout and the fact that the bidegree is (1, d), we get that (n − 2) + max{0, n − (d + 1)} of these points may be omitted without changing the set |IS(1, d)|, and hence H0(IS(1, d)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' It follows that h1(IA(1, d)) ≥ n − 2 + max{0, n − (d + 1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thanks to the previous lemma, if A ∈ T (3, L), for some bidegree (1, 0) curve L, then h1(IA(1, 1)) ≥ 2, and hence h0(IA(1, 1)) ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' However, since no surface of bidegree (1, 0) or (0, 1) contains an element of T (2), then every S ∈ |IA(1, 1)| is irreducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='17 gives that |IA(1, 1)| = {S} and so, thanks to Formula (7), h1(IA(1, 1)) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Finally, the following result completes the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2, in the case of d + 2 twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix an integer d ≥ 2 and take a general A ∈ T (d+2, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then h0(IA(1, d)) ≥ d and the general S ∈ |IA(1, d)| is integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By applying Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='6 with n = d + 2, we get h1(IA(1, d)) ≥ d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since χ(IA(1, d)) = (d+1)(d+3)−(d+2)2 = −1, we get h0(IA(1, d)) ≥ d and hence, |IA(1, d)| ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now prove that a general element in |IA(1, d)| is integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take S ∈ |IA(1, d)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Every surface of bidegree (1, 0) or (0, 1) contains at most one connected component of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore, S cannot be the union of a surface of bidegree (1, 0) and d of bidegree (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' No integral surface of bidegree (0, x), for x ≥ 2, contains a twistor fiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If d = 2, then h0(IA(1, 2)) ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' However, thanks to Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='7, for every choice of C ∈ A, there is only one M ∈ |I(A\\C)(1, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since we have considered all the possible reducible elements of |IA(1, 2)|, we get the thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Now assume d > 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since A has finitely many components, it is sufficient to prove that for any x ∈ {3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , d−1}, any union E of x connected components of A and any connected component C of A \\ E we have (15) h0(IE(1, x − 2)) < h0(IE∪C(1, x − 1)), TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 15 and then proceed as in the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let Y be the only element of |OF(0, 1)| containing C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The exact sequence in Formula (10) gives h0(IE(1, x−2)) ≤ h0(IE∪C(1, x−1)) and equality holds if and only if Y is in the base locus B of |IE∪C(1, x − 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Call C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , Cx the components of E and Yi the only surface of bidegree (0, 1) containing Ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='13 the irreducible surfaces Y, Y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , Yx are all different one eachother.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For a general A we get that each integer h0(IE(1, x−2)) is the same for all union of x connected components of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus if the inequality is false, then B contains the surface Y ∪ Y1 ∪ · · · ∪ Yx of bidegree (0, x + 1), which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surfaces of bidegree (1, 2) and (1, 3) In this section we specialize our study to the case of surfaces of bidegree (1, 2) and (1, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, we will prove Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Recall, from Formula (7), that for any A ∈ C(n), we have χ(IA(1, 2)) = 15 − 4n, and hence, if n ≤ 3, we get h0(IA(1, 2)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We also recall that a general S ∈ |OF(1, 2)| contains finitely many smooth conics and, thanks to Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='19, for every B ∈ C(2) we have h1(IB(1, 1)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surfaces of bidegree (1, 2) containing 0 ≤ n ≤ 4 twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In this section, we show the existence of a smooth surface of bidegree (1, 2) containing exactly 0, 1, 2, 3 or 4 twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In order to analyze the space |IA(1, 2)| when A is in C(n) (or in T (n)), for 0 ≤ n ≤ 4, we will need some preliminary results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Note that the extremal case, when n = 4, will be treated in a different way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We start by considering (1, 2)-surfaces containing three disjoint smooth conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take A ∈ C(3) such that h0(IA(1, 1)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then (1) there exists a curve L of bidegree (1, 0) and a curve R of bidegree (0, 1) such that A ∈ C(3, L) and A ∈ C(3, R) (2) there is an integral element in |IA(1, 2)|;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (3) h1(IA(1, 2)) = 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (4) the base locus B of |IA(1, 2)| is A ∪ L ∪ R, where L is and R are the curves defined in (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We start arguing as in Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thanks to Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9, each surface of bide- gree (1, 0) or (0, 1) does not contain any element of C(2), hence, as A ∈ C(3), any ele- ment in |IA(1, 1)| is irreducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='17 (with a = b = c = d = 1) gives that h0(IA(1, 1)) = 1 and hence we set |IA(1, 1)| = {M} and by Formula (7) we compute h1(IA(1, 1)) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We prove now the first statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let C be a connected component of A, set B := A\\C and denote by X the only element of |IC(1, 0)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Performing the same construction that leads to Formula (10), we have 0 → IB(0, 1) → IA(1, 1) → IA∩X,X(1, 1) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since h0(IB(0, 1)) = 0 and h0(IA(1, 1)) = 1, the previous residual exact sequence gives (16) h0(IA∩X,X(1, 1)) ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thanks to Formula (4), we have that OX(1, 1) ≃ OF1(h + 2f);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' moreover, recall from Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9 that C is identified with an element of |OF1(h + f)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since A ∩ X is the union of C and the two points B ∩X, there is a fiber L ∈ |f| of the ruling of F1 containing B ∩X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since f(h + f) = 1, we have that L meets C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus L meets each connected component of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Taking instead of X the only element of |IC(0, 1)| we get the existence of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now prove (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We will show that there is an integral element in |IA(1, 2)| by showing that the possible reducible cases do not cover the whole family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='10 shows that A is not contained in a surface of bidegree (1, 2) with an irreducible component 16 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA of bidegree (0, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9, a bidegree (0, 1) or (0, 1) surface does not contain any element of C(n), with n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence, there are only finitely many elements of |OF(1, 2)| with at least 3 irreducible components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since h0(OF(0, 1)) = 3, the set of all reducible elements of |OF(1, 2)| with an irreducible component of bidegree (1, 1) containing A is isomorphic to P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus, in order to prove the existence of an integral element in |IA(1, 2)|, it is sufficient to prove that h0(IA(1, 2)) ≥ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' But, using the exact sequence (9), this is equivalent to prove that h1(IA(1, 2)) ≥ 1, and the last inequality is true, by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='19 because #(L ∩ A) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To prove (3), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' h1(IA(1, 2)) = 1, it is sufficient to prove that h1(IA(1, 2)) ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As before, take a connected component C of A and set B = A\\C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let Y be the only element of |IC(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In the identification (5) of Y with F1 we have I(B∩Y )∪C,Y (1, 2) ∼= I(B∩Y )∪C,F1(h + 3f) ∼= O(B∩Y ),F1(2f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since #(B ∩ Y ) = 2 and OF1(2f) is globally generated, h1(F1, IB∩Y,F1(2f)) ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have ResY (A) = B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thanks to Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='19, we have h1(IB(1, 1)) = 0, and the residual exact sequence of Y 0 → IB(1, 1) → IA(1, 2) → I(B∩Y )∪C,Y (1, 2) → 0, gives h1(IA(1, 2)) ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Finally, we discuss the base locus of |IA(1, 2)| in order to prove (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' First of all, for any surface S ∈ |IA(1, 2)|, we clearly have A ⊂ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, as #(L∩A) = 3 and #(R∩A) = 3, then by B´ezout, both curves are contained in S: in fact, thanks to Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3 and Formula (3), the general intersection between a curve of bidegree (1, 0) and S consists of one point while the intersection of a curve of bidegree (0, 1) and S consists of two points (see also Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore, L ∪ R ⊂ S and A ∪ L ∪ R ⊂ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now prove that B ⊂ A∪L∪R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix p ∈ B\\(A∪L∪R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take a connected component Ci, i = 1, 2, 3, of A and set Bi := A\\Ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let Yi be the only element of |OF(0, 1)| containing Ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='22 Bi ∪L∪R is the base locus of |IBi(1, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus there is Si ∈ |IBi(1, 1)| such that p /∈ Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If p /∈ Yi, then p /∈ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since S1∩S2∩S3 = L∪R, we may take i ∈ {1, 2, 3} such that p /∈ Yi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus B = A ∪ L ∪ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ The following remark shows that if A ∈ C(3) satisfies the condition (1) of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1, then the existence of a (1, 1)-surface containing A is granted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, there exists a (1, 1)-surface containing any triplets of collinear twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take A ∈ C(3) and assume the existence of curves L of bidegree (1, 0) and R of bidegree (0, 1) intersecting each connected component of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By adapting the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='6, since #(L ∩ A) = 3 and #(R ∩ A) = 3, we have that h1(IA(1, 1)) ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus h0(IA(1, 1)) ≥ 1 and A satisfies the assumptions of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We can even be more specific and say that if A ∈ C(3) (with no assumption on L or R), then h0(IA(1, 1)) ≤ 1 and if |IA(1, 1)| ̸= ∅, then the only element of |IA(1, 1)| is integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' This is true because, thanks to Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9, any reducible element of |OF(1, 1)| contains at most 2 disjoint smooth conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Note that if A ∈ T (3) and L exists, then we may take R := j(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus if A ∈ T (3) to get h0(IA(1, 1)) > 0 it is sufficient to assume A /∈ T ∗(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The following lemma is a sort of vice versa of the previous remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take A ∈ C∗(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then h0(IA(1, 1)) = 0 and h1(IA(1, 1)) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If A ∈ C(3), thanks to Formula (7), χ(IA(1, 1)) = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence h0(IA(1, 1)) = 0 if and only if h1(IA(1, 1)) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We assume h0(IA(1, 1)) ̸= 0 and will prove that A /∈ C∗(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let B ⊂ A be the union of 2 connected components of A and set C := A \\ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let L and R be the curves defined in Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5 for B ∈ C(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take any element D ∈ |IB(1, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 17 Since #(B ∩ (L ∪ R)) = 2, B ⊂ D and D has bidegree (1, 1), then B´ezout theorem implies L ∪ R ⊂ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='19 and Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='22, we have h1(IB(1, 1)) = 0, h0(IB(1, 1)) = 2, and the general element M in |IB(1, 1)| is integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since h0(IB(1, 1)) = 2 and M is general, C ⊈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Consider the following residual exact sequence: (17) 0 → IC → IA(1, 1) → IB∪(M∩C),M(1, 1) → 0 Since M ∈ |IB(1, 1)| and h1(OF) = 0, the exact sequence 0 → OF → IB(1, 1) → IB,M(1, 1) → 0 gives h0(M, IB,M(1, 1)) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, h0(IC) = 0, and so the sequence (17) and the assumption h0(IA(1, 1)) ≥ 1 imply h0(M, IB∪(M∩C),M(1, 1)) ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='22, the curve A∪L∪R is the base locus of |IB(1, 1)| and hence the base locus of H0(M, IB,M(1, 1)) is the curve B ∪ L ∪ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since B ∩ C = ∅, the degree 2 scheme C ∩ M is contained in L ∪ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To get A /∈ C∗(3) we need to prove that C ∩ L ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' It is sufficient to observe that deg(C ∩ T) ≤ 1 for any curve T of bidegree (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Indeed, this is true by Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3 and the fact that C is the intersection of a surface of bidegree (1, 0) and a surface of bidegree (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ We now discuss the case of A ∈ C(2) contained in a smooth bidegree (1, 1) surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In this case we will also prove smoothness for the general element in |IA(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take any A ∈ C(2) contained in a smooth element of |OF(1, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then we have: (1) h1(IA(1, 2)) = 0 and h0(IA(1, 2)) = 7;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (2) the set A ∪ L is contained in the base locus B of |IA(1, 2)|, where L is the bidegree (1, 0) curve described in Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (3) a general S ∈ |IA(1, 2)| is smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To prove (1) it is sufficient to apply Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='20 giving h1(IA(1, 2)) = 0 and Formula (7), which entails h0(IA(1, 2)) = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now pass to point (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take L and R as in Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since OF(0, 1) is globally generated, B ⊆ A ∪ L ∪ R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' moreover, thanks to Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='16 we also have A ∪ L ⊆ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We are left to prove (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Bertini’s theorem Sing(S) ⊆ A ∪ L ∪ R for a general S ∈ |IA(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix a smooth M ∈ |IA(1, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take a general Y ′ ∈ |OF(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since Y ′ is general L ∩ Y ′ = ∅ (and hence it is not singular at any p ∈ L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus, up to small deformation, we can say that S (which is general) is smooth in a neighborhood of L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We are left to exclude the case Sing(S) ⊆ A∪R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix p ∈ A∪R and let 2p be the 0-dimensional scheme of F defined by the ideal I2 p,F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' S is singular at p if and only if S ∈ |I2p∪A(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To conclude our proof we need to prove that h0(I2p∪A(1, 2)) = h0(IA(1, 2)) − 2, for all p ∈ (A ∪ R) \\ A ∩ R and that, for p ∈ A ∩ R, h0(I2p∪A(1, 2)) < h0(IA(1, 2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' These two statements give the thesis because (A ∪ R) \\ A ∩ R and A ∩ R are 1-dimensional and 0-dimensional, respectively, and we are saying that the set of bidegree (1, 2) surfaces con- taining A and a singular points has codimension 2 in the first case and positive codimension in the second one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let us start by taking p ∈ (A ∪ R) \\ A ∩ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since p is a smooth point of A ∪ R, deg(2p ∩ (A ∪ R)) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Consider the exact sequence (18) 0 → I(A∪R)∪2p(1, 2) → IA∪R(1, 2) → IA∪R ⊗ O2p(1, 2) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 18 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA Since deg(2p) = 4 and A is smooth, we have h0(IA∪R ⊗ O2p(1, 2)) = 2 if p ∈ A ∪ R and h0(IA ⊗ O2p(1, 2)) = 4 if p ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence it is sufficient to prove that h1(I(A∪R)∪2p(1, 2)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' First of all, assume that p ∈ A \\ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let C be the connected component of A containing p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Set the following notation E := A \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As R is in the base locus of IA(1, 1) we have that h0(IA(1, 1)) = h0(IA∪R(1, 1)) (see [3, proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, thanks to part (1) and to [3, Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3], we have h0(IA∪R(1, 1)) = h0(IA(1, 1)) = h0(IE(1, 1)) − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus p is not in the base locus of |IE(1, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix M ∈ |IE(1, 1)| such that p /∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let Y be the surface of |OF(0, 1)| containing C and consider the residual exact sequence with respect to Y : (19) 0 → IE∪p(1, 1) → IA∪2p(1, 2) → I(E∩Y )∪C∪(2p∩Y ),Y (1, 2) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Now we prove that (20) h1(IE∪p(1, 1)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Recall that A = E ∪ C and p ∈ C, hence we have the exact sequence 0 → IA(1, 1) → IE∪p(1, 1) → Ip,C(2) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thanks to Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='19 we have that h1(IA(1, 1)) = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' on the other hand, since C is a smooth rational curve, we have h1(Ip,C(2)) = h1(OC(1)) = 0 and this proves (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In order to conclude it is sufficient to prove now that (21) h1(I(E∩Y )∪C∪(2p∩Y ),Y (1, 2)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Note that IC,Y (1, 2) ∼= OF1(2f) ∼= OY (0, 1), hence, by [3, Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='11], we know that IC,Y (1, 2) is very ample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Therefore we get h1(IC∪(2p∩Y ),Y (1, 2)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since E ∩ Y consists of a point we conclude that (21) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus the exact sequence (19) gives h1(IA∪2p,F(1, 2)) = 0, concluding the proof in the case p ∈ A \\ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix p ∈ R \\ (A ∩ R) and ecall that we need to prove that h0(IA∪2p(1, 2)) = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix a general Y ′ ∈ |Ip(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since Y ′ is general, R ⊈ Y ′ (and also L ⊈ Y ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since Y ′ is smooth, Y ′ ∩ 2p = (2p, Y ′) is a degree 3 scheme and ResY ′(2p) = {p}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As p ∈ R, we have that h0(IA∪{p}(1, 1)) = h0(IA(1, 1)) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus, by the residual exact sequence of Y ′ it is sufficient to prove that h0(Y ′, I(A∩Y ′)∪(2p,Y ′)(1, 2)) ≤ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since OY ′(1, 2) is very ample, we have h0(Y ′, I(2p,Y ′)(1, 2)) = h0(Y ′, OY ′(1, 2)) − 3 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus it is sufficient to prove that A ∩ Y ′ is not contained in the base locus, B′, of |O(2p,Y ′)(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In the identification between Y ′ and F1 we have OY ′(1, 2) ∼= OF1(h + 3f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let N be the only element of |f| containing p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have N ∼= P1 and h1(N, I2p∩N(1, 2)) = 0, but N ⊆ B′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since OF1(h + 2f) is very ample, Ip(h + 2f) has only p in its base locus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus B′ = N and so, since R ⊈ Y ′ (and also L ⊈ Y ′), B′ cannot contain both points of A ∩ Y ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The last case is p ∈ A ∩ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To prove our claim, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' that h0(I2p∪A(1, 2)) < h0(IA(1, 2)), it is sufficient to use (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence, a general S is smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ The following result is analogous to Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1, when we choose the conics to be twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take A ∈ T (3) such that h0(IA(1, 1)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then we have the following: (1) h1(IA(1, 2)) = 0 and hence h0(IA(1, 2)) = 3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (2) there is an integral S ∈ |IA(1, 2)|;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (3) the base locus of |IA(1, 2)| is contained in the union of A and 3 distinct curves of bidegree (1, 0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 19 (4) for a sufficiently general A (contained in a dense euclidean open subset of T (3)), we may take a smooth S ∈ |IA(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thanks to Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1, the hypothesis A ∈ T (3) such that h0(IA(1, 1)) = 0 in the previous statement, implies that the conics in A do not belong to any infinite family of twistor fibers contained in a smooth j-invariant surface of bidegree (1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We start by proving (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix a connected component C of A and call D the only element of |IC(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Set B := A \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To get h1(IA(1, 2)) = 0 mimicking the proof of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1 it is sufficient to prove that h1(F1, IB∩D(2f)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume h1(F1, IB∩D(2f)) > 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' assume the existence of T ∈ |OF1(f)| containing the 2 points B ∩ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since C ∈ |OF1(h + f)|, C ∩ T ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus T meets each connected component of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2 gives h0(IA(1, 1)) > 0, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To prove (2) it is sufficient to show that the reducible cases do not cover the whole |IA(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In fact, reasoning as in the proof of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1, the only possible splitting are of the form (1, 0) + (0, 1) + (0, 1), which are in a finite number, or (1, 1) + (0, 1), where the bidegree (1, 1) component contains 2 connected components of A and the remainder bidegree (0, 1) part is uniquely determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Now, h0(IB(1, 1)) = 2, so, the set of all reducible elements of |IA(1, 2)| with an irreducible component of bidegree (1, 1) does not cover |IA(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now prove (3) and (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since h0(IA(1, 1)) = 0 and A is j-invariant, neither π1(A) nor π2(A) has a triple points (both have 3 double points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Set L1∪L2∪L3 := π−1 2 (Sing(π2(A))) and R1 ∪ R2 ∪ R3 := π−1 1 (Sing(π1(A))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since #(Li ∩ A) = #(Ri ∩ A) = 2, L1 ∪ L2 ∪ L3 are in the base locus of |IA(1, 2)| and each Li and each Ri meets exactly 2 connected components of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To prove the existence of a smooth element, it is sufficient to reason as in the proof of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4 case (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ We are now ready to prove the first part of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix n ∈ {0, 1, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' There is a smooth S ∈ |OF(1, 2)| containing exactly n twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' A general S ∈ |OF(1, 2)| contains only finitely many smooth conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since the set of all twistor fibers has real codimension 4 in the space of all smooth conics, a general S ∈ |OF(1, 2)| contains no twistor fiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Now we prove the case n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix a twistor fiber C and take a general S ∈ |IC(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As- sume that S contains another twistor fiber, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have h1(IC(1, 2)) = h1(IC∪E(1, 2)) = 0 (Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='19 and Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus |IC∪E(1, 2)| is a 4-codimensional complex projec- tive subspace of |IC(1, 2)| (this is explained by the equality h0(IC∪E(1, 2)) = h0(IC(1, 2))− 4 contained in [3, proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' However T (1) is a real 4-dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' So a general S ∈ |IC(1, 2)| contains no other twistor fiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Note that C is the base locus of |IC(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Bertini theorem a general S ∈ |IC(1, 2)| is smooth outside C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix p ∈ C and let 2p the closed subscheme of F with (Ip)2 as its ideal sheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Recall that 2p ⊂ S if and only if p ∈ Sing(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since dim C = 1 to get that S is smooth it is sufficient to prove that h0(I2p∪C(1, 2)) ≤ h0(IC(1, 2)) − 2 = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' This follows from the proof of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4 case (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The case n = 2 is true by Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4 with T (2) instead of C(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The case n = 3 is true by Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ In the remainder of the section, we will construct a smooth (1, 2)-surface containing 4 twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The following lemma, in the case d = 2, says that if an integral (1, 2)-surface contains 4 disjoint smooth conics, then these conics are not general, because three of them must be collinear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 20 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let d ≥ 2 and A ∈ C(d + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If there is an integral S ∈ |OF(1, d)|, then A /∈ C∗(d + 2) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We prove the lemma by induction on d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We start with the case d = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume that A ∈ C∗(4), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' there is no union B of 3 of the connected components of A such that #(L ∩ B) = 3 for some curve L of bidegree (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix a connected component C of A and set B := A \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Call Y the only element of |IC(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9 gives ResY (A) = B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By assumption and Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3, h0(IB(1, 1)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since h0(IA(1, 2)) ̸= 0, the residual exact sequence 0 → IB(1, 1) → IA(1, 2) → IA∩Y,Y (1, 2) → 0 , gives h0(Y, IA∩Y,Y (1, 2)) > 0 (otherwise |IA(1, 2)| = ∅).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The scheme A∩Y is the union of C and the 3 points B ∩Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In the identification of Y with F1 the line bundle OY (1, 2) goes to the line bundle OF1(h+3f) and C goes to an element of |h+f|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus h0(F1, IB∩Y,F1(2f)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence at least 2 of the 3 points B ∩ Y are in the same fiber ˆL of the ruling |f| of F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since ˆL ∩ C ̸= ∅, ˆL is a curve of bidegree (1, 0) meeting at least 3 connected components of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Call B′ a union of 3 components of A intersecting ˆL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The curves B′ and ˆL give a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume now that the result is true for d+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Notice that, as a byproduct of the previous part, if B ∈ C∗(d + 1), then h0(IB(1, d − 1)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume A ∈ C∗(d + 2) and that there is an integral S ∈ |OF(1, d)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix a connected component C of A and set B := A \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take a surface Y of bidegree (0, 1) containing C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By means of the sequence in Formula (10), we either have h0(IB(1, d − 1)) > 0 or h0(Y, IA∩Y,Y (1, d)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since A ∈ C∗(d + 2), B ∈ C∗(d + 1) and hence, thanks to the inductive assumption, we have h0(IB(1, d − 1)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The scheme A ∩ Y is the union of C and the scheme B ∩ Y with A ∩ B ∩ Y = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Up to the identification of Y and F1 we have OY (1, d)(−C) ∼= OF1(df).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since Y has bidegree (0, 1) each connected component of B is either contained in Y or it intersects transversely Y at a unique point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9, the set B ∩ Y is formed by d + 1 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus IA∩Y,Y (1, d) ∼= IB∩Y (df).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We saw h0(Y, IA∩Y,Y (1, d)) > 0 and this is true if and only if there are u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ud+1 ∈ B ∩ Y and F ∈ |f| such that that ui ̸= uj, for i ̸= j and {u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , ud+1} ⊂ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The set F ∩ C is a unique point, o, and o /∈ {u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , ud+1}, because B ∩ C = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The curve F has bidegree (0, 1) and hence A /∈ C∗(d + 2), a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ Thanks to the previous result, if an integral (1, 2)-surface contains 4 disjoint smooth conics, then these are in special position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now show that if these 4 conics are twistor fibers, then their position is very special.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We begin by introducing the following notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For n ≥ 4, we denote by C(n)− the set of elements A ∈ C(n) for which there exists a bidegree (1, 0) curve L such that A ∈ C(n, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The set C(n)− parametrizes the families of n collinear disjoint smooth conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For n ≥ 4 we also write T (n)− := T (n) ∩ C(n)−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The families C(n)− and T (n)− are Zariski closed in C(n) and T (n), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The following lemma shows that if an integral (1, 2)-surface contains 4 twistor fibers, then they are all collinear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take an integral S ∈ |OF(1, 2)| containing A ∈ T (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then A ∈ T (4)− Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume the existence of an integral S ∈ |OF(1, 2)| containing A ∈ T (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='7 there is a union B of 3 of the connected components of A such that B ∈ T (3) \\ T ∗(3), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=', there exists a bidegree (1, 0) curve L, such that B ∈ T (3, L) and hence, thanks to Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='7 h0(IB(1, 1)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' However, the same remark tells us that h0(IB(1, 1)) = 1, h1(IB(1, 1)) = 2 and that the only element M of |IB(1, 1)| is integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As usual, set C := A \\ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As in Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2 since L of bidegree (1, 0) meets each connected components of B, then R := j(L), of bidegree (0, 1), do the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 21 Thanks to Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='16 we get B ∪ L ∪ R ⊂ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since S and M are integral, thanks to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2, the one-dimensional scheme S ∩ M has bidegree (5, 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since B ∪ L ∪ R has bidegree (4, 4), then C ⊈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let Y be only element of |IC(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since B ⊂ M ∪ Y , then M ∪ Y ∈ |IA(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, as S is irreducible, then S ̸= M ∪ Y , and hence h0(IA(1, 2)) ≥ 2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' h1(IA(1, 2)) ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since h1(IB(1, 1)) = 2, the residual exact sequence 0 → IB(1, 1) → IA(1, 2) → IA∩Y,Y (1, 2) → 0, gives h1(Y, IA∩Y,Y (1, 2)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As in the proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='7 we obtain the following inequality h1(F1, IB∩Y (2f)) > 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' there is a curve ˆL ∈ |f| of bidegree (1, 0) intersecting at least 2 of the connected components of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Call B′ the union of 2 of the connected components of B intersecting ˆL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since ˆL∩C ̸= ∅ and B′ ∪ C is j-invariant, each connected component of B′ ∪ C meets j(ˆL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1 and B´ezout imply the existence of an integral surface M′ of bidegree (1, 1) containing B′ ∪ C ∪ ˆL ∪ j(ˆL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since B′ ⊂ M′, ˆL and j(ˆL) contain at least 2 points of M′, then B′ ∪ ˆL ∪ j(ˆL) ⊂ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' But by Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5 there is a unique curve of bidegree (1, 0) intersecting two different smooth conics, hence ˆL = L and both L and j(L) intersect each connected component of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus L intersects each connected component of A, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' A ∈ C(4)−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ As a byproduct of the proof of the previous result, we get the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' It essentially says that there are infinitely many integral (1, 2)-surfaces containing 4 collinear twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take A ∈ T (4)− and assume that A is not contained in a surface of bidegree (1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Then dim |IA(1, 2)| = 1 and |IA(1, 2)| contains exactly 4 reducible elements of |OF(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Call L the curve of bidegree (1, 0) intersecting each connected component of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since each connected component of A is j-invariant, j(L) intersects each connected com- ponent of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In the proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='8 we showed that h0(IA(1, 2)) ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' From the lines of that proof, it is possible to derive that only 4 elements in |IA(1, 2)| are reducible and they are all obtained fixing a connected component C of A and taking the union of the unique surface MC of bidegree (1, 1) containing A\\C and the unique surface YC of bidegree (0, 1) containing C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To conclude the proof it is sufficient to prove that h0(IA(1, 2)) ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take a connected component C of A and consider the residual exact sequence (22) 0 → IC(0, 1) → IA(1, 2) → IMC∩A,MC(1, 2) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have h0(IC(0, 1)) = 1, because the intersection of 2 different elements of |OY (0, 1)| is a curve of bidegree (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus by (22) to conclude the proof it is sufficient to prove that the image V of H0(IA(1, 2)) in H0(MC, IMC∩A,MC(1, 2)) has dimension at most 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Bez´out gives that A ∪ L ∪ j(L) is contained in the base locus of |IB,MC(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Every D ∈ |V| has bidegree (5, 4) as a curve of F and hence a general D ∈ |V| is the union (counting multiplicities as divisors of the smooth surface MC) of A ∪ L ∪ j(L) and a curve E of bidegree (1, 0)) as a curve of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Recall that MC is the blow up of P2 at 3 non collinear points and that these 3 exceptional divisors are the only curve of MC with bidegree (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since MC has only finitely many curves of bidegree (1, 0), D is the same for all non-zero elements of V and hence dim V = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ The following result completes the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' There are integral S ∈ |OF(1, 2)| containing exactly 4 twistor fibers and for any such S and A ∈ T (4) with A ⊂ S, there is a curve L of bidegree (1, 0) intersecting each connected component of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, h0(IA(1, 2)) = 2 and each S ∈ |IA(1, 2)| is singular along L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 22 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4 no integral surface of bidegree (1, 2) contains at least 5 twistor fiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The curve L exists by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Now we reverse the construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We start with A ∈ T (4, L)−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let 2L denote the closed subscheme of the “double line”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' To prove that each S ∈ |IA(1, 2)| is singular at each point of L it is sufficient to prove that h0(IA(1, 2)) = h0(IA∪2L(1, 2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='9 gives h0(IA(1, 2)) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence, it is sufficient to prove that h0(IA∪2L(1, 2)) > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any connected component C of A let MC the only surface of bidegree (1, 1) containing A \\ C and let YC the only surface of bidegree (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since C ∩ L ̸= ∅, L ∩ YC ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since YC has bidegree (0, 1) and L bidegree (1, 0), we get L ⊂ YC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus L ⊆ MC ∩ YC and hence |IA∪2L(1, 2)| contains at least the 4 reducible elements of |IA(1, 2)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence h0(IA∪2L(1, 2)) > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Non existence results for surfaces of bidegree (1, 2) and (1, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In this last part, we prove our two last main results, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any A ∈ T (n)−, n ≥ 4, let us call L and R := j(L) the curves of bidegree (1, 0) e (0, 1), respectively, intersecting all the connected components of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In view of our goal, we need to discuss the reducibility of some surfaces containing a certain amount of twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' First of all, fix an integer n ≥ 2, take B ∈ T (4) such that h0(IB(1, 1)) > 0 and call M the unique (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2) surface of bidegree (1, 1) containing B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since each element of C(1) is contained in an element of |OF(0, 1)| for each E ∈ T (n − 1) there is a reducible element W ∈ |OF(1, k)|, union of M and n − 1 surfaces of bidegree (0, 1) such that B ∪ E ⊂ W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The following lemma is a sort of viceversa of this remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Moreover, it will be a key tool in the last two proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If d ≥ 2 and A ∈ T (d + 3)− is such that h0(IA(1, d)) > 0, then each element of |IA(1, d)| has an irreducible component M of bidegree (1, 1) containing at least 4 connected components of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular, for any n ≥ d + 3, there is no integral S ∈ |OF(1, d)| containing A ∈ T (n)−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In order to prove the last statement, it is sufficient to do the case n = d + 3 and thus it is sufficient to prove the first assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We use induction on d ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let us assume first d = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take A ∈ T (5)− and let L and j(L) be the curves of bidegree (1, 0) and (0, 1) intersecting all the connected components of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix a connected component C of A and set B := A \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since C ∩ L ̸= ∅, the curve C ∪ L is a connected and nodal curve of bidegree (2, 1) with arithmetic genus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence h0(OC∪L(0, 1)) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus there is Y ∈ |IC∪L(0, 1)| and such a Y is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since any two smooth conics of Y meet, no component of B is contained in Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence B ∩ Y is formed by 4 points of L \\ (L ∩ C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Recall that OY (1, 2) ∼= OF1(h + 3f) and that C ∈ |OF1(h + f)| and thus IA∩Y,Y ∼= IB∩L,Y (2f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since each element of |f| contains a unique point of L we have that h0(D, IA∩Y,Y (1, 2)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The residual exact sequence of Y 0 → IB(1, 1) → IA(1, 2) → IA∩Y,Y (1, 2) → 0, gives an isomorphism ϕ : H0(IB(1, 1)) → H0(IA(1, 2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If h0(IB(1, 1)) = 0, then h0(IA(1, 2)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Now assume h0(IB(1, 1)) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The isomorphism ϕ says that each W ∈ |IA(1, 2)| has Y as an irreducible component, say W = Y ∪ W1 with W1 ∈ |IB(1, 1)|, and hence we have the thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume now d ≥ 3 and use induction on d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By reasoning as in the base case, take A ∈ T (d + 3)− and use the exact sequence 0 → IB(1, d − 1) → IA(1, d) → IA∩Y,Y (1, d) → 0, to prove that h0(Y, IA∩Y,Y (1, d)) = 0 and hence that there is an isomorphism ϕ : H0(IB(1, d− 1)) → H0(IA(1, d)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Now, again, if h0(IB(1, d − 1)) = 0, then h0(IA(1, d)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence, assume h0(IB(1, d − 1)) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The isomorphism ϕ says that each S ∈ |IA(1, d)| has Y as an irreducible component, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' S = D ∪ S1 with S1 ∈ |IB(1, d − 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The inductive TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 23 assumption says that S1 has an irreducible component M of bidegree (1, 1) containing at least 4 components of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ We now have all the ingredients to prove Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' First we prove that no integral surface of bidegree (1, 2) contains 5 twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume the existence of an integral S ∈ |OF(1, 2)| containing A ∈ T (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='8 shows that for any union A′ ⊂ A of 4 components of A there is a union A′′ ⊂ A′ of 3 connected components intersecting some L of bidegree (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let L be a curve of bidegree (1, 0) intersecting the maximal number, z, of components of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Clearly z ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='11 to get a contradiction it is sufficient to prove that z ≥ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume z ∈ {3, 4}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Take any ordering C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , C5 of the connected components of A and set Bi := π1(Ci), 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Each Bi is a line of P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since any two conics contained in an element of |OF(1, 0)| meet, B1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , B5 are 5 different lines of P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any i < j < h, there is a curve T of bidegree (1, 0) intersecting Ci, Cj and Ch if and only if Bh contains the point Bi ∩ Bj and in this case L = π−1 1 (Ci ∩ Cj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' With no loss of generality we may assume that L meets C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , Cz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (a) Assume z = 3 and hence B1 ∩B2 ∈ B3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Applying Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='8 to C1 ∪C2 ∪C4 ∪C5 we have one of the following mutually esclusive relations: B1 ∩ B2 ∩ B4 ̸= ∅, B1 ∩ B2 ∩ B5 ̸= ∅, B1 ∩ B4 ∩ B5 ̸= ∅, B2 ∩ B4 ∩ B5 ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since B1 ∩ B2 ∈ B3 and z = 3, we can exclude the first two cases, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' we have B1 ∩ B2 ∩ B4 = B1 ∩ B2 ∩ B5 = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus, either B1 ∩ B4 ∩ B5 ̸= ∅ or B2 ∩ B4 ∩ B5 ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Exchanging if necessary C1 and C2 we may assume B1 ∩ B4 ∩ B5 ̸= ∅, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' B4 ∩ B5 ∈ B1, and hence B2 ∩ B4 ∩ B5 = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since B2 ∩ B4 ∩ B5 = ∅, applying Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='8 to C2 ∪ C3 ∪ C4 ∪ C5 we have one of the following mutually esclusive relations B2 ∩ B3 ∩ B4 ̸= ∅, B2 ∩ B3 ∩ B5 ̸= ∅, B3 ∩ B4 ∩ B5 ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since B4 ∩ B5 ∈ B1 and z = 3, B3 ∩ B4 ∩ B5 = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since B2 ∩ B3 ∈ B1 and z = 3, B2 ∩ B3 ∩ B5 = B2 ∩ B3 ∩ B4 = ∅, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (b) Assume z = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since C1 ∩ L ̸= ∅, the curve C1 ∪ L is a connected and nodal curve of arithmetic genus 0 and bidegree (2, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus h0(OC1∪L(0, 1)) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus there is Y ∈ |IC1∪L(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since S is irreducible, Y is not an irreducible component of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus the residual exact sequence of Y 0 → IB(1, 1) → IA(1, 2) → IA∩Y,Y (1, 2) → 0, gives h0(Y, IA∩Y,Y (1, 2)) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Up to the isomorphism of Y and F1 we have L = h, C1 ∈ |OF1(h + f)| and OY (1, 2) ∼= OF1(h + 3f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since (A \\ C1) ∩ C1 = ∅, IA∩Y,Y (1, 3) ∼= I(A\\C1)∩D,D(2f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since L meets C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' , C4, (A \\ C1) ∩ D contains a set F ⊂ L such that #F = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since each element of |f| contains a unique point of L, h0(Y, IA\\C)∩Y,Y (2f)) = 0, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ We now conclude our paper with the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5 which concerns surfaces of bidegree (1, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='5: Assume the existence of A ∈ T (6) and of an integral S ∈ |OF(1, 3)| containing A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='11 to get a contradiction it is sufficient to prove the existence of a curve L of bidegree (1, 0) such that all the components of A intersects L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='7 for any union A′ ⊂ A of 5 components of A there is a union A′′ ⊂ A′ of 3 connected components intersecting some L of bidegree (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let L be a curve of bidegree (1, 0) intersecting the maximal number, z, of components of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We have that z ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence, by 24 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' ALTAVILLA, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BALLICO, AND M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' BRAMBILLA Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='11 it is sufficient to prove that z ≥ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Assume then that z ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We will now exclude all the cases z = 3, 4, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' For any connected component C of A, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='7 tells us that there is a curve L of bidegree (1, 0) intersecting at least 3 connected components of A \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' In particular there is an integral M ∈ |OF(1, 1)| containing at least 3 components of A (see Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Note that j(M) = M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We may take M with the additional condition that it contains the maximal number e of components of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let E be the union of the components of A contained in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus 3 ≤ e ≤ z ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since each twistor fiber is j-invariant, j(L) meets each connected component of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' B´ezout gives L ∪ j(L) ⊂ M and L ⊂ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' If e ≥ 4 B´ezout gives j(L) ⊂ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' However, the one-dimensional cycle M ∩ S has bidegree (7, 5) and thus e ≤ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Set Σ := S ∩ M (as a scheme-theoretic intersection).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since the one-dimensional scheme Σ is the complete intersection of F with 2 very ample divisors, h0(OΣ) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Set F := A \\ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (a) Assume e = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence E ∪ L ∪ j(L) ⊂ Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since E ∪ L ∪ j(L) has bidegree (5, 5) and h0(OΣ) = 1, Σ is the union of E ∪ L ∪ j(L) and a multiple structure on L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Note that Σ ∈ |OF(1, 3)| and that Σ contains E ∪ j(L) with multiplicity 1 and L with multiplicity 3 (as divisors of the smooth surface M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since Σ has multidegree (7, 5), Σ = 3L ∪ j(L) ∪ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Note that Σ contains the degree 4 zero-dimensional scheme F ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since F ∩ E = ∅, F ∩ (j(L) ∪ L) ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus at least one irreducible component, T, of F meets L ∪ j(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since j(T) = T, T ∩ L ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus z = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Let C be a component of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since C ∩ L ̸= ∅, C ∪ L is a connected and nodal curve of bidegree (2, 1) with arithmetic genus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus h0(OC∪L(0, 1)) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus there is Y ∈ |IC∪L(0, 1)| ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since S is irreducible, Y is not an irreducible component of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus the residual exact sequence of Y gives h0(Y, IA∩Y,Y (1, 3)) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Up to the isomorphism of Y and F1 we have L = h, C ∈ |OF1(h + f)| and OY (1, 3) ∼= OF1(h + 4f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since (A \\ C) ∩ C = ∅, IA∩Y,Y (1, 3) ∼= I(A\\C)∩Y,Y (3f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since z = 5, (A \\ C) ∩ Y contains a set H ⊂ L such that #H = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since each element of |f| contains a unique point of L, h0(Y, IA\\C)∩Y,Y (3f)) = 0, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (b) Assume e = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fix a connected component C of E and set B := A \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Set {Y } := |IC(0, 1)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As in step (a) we have that L ⊂ Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The following exact sequence (23) 0 → IB(1, 2) → IA(1, 3) → IC∪(B∩Y ),Y (1, 3) → 0 is the residual exact sequence of Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Since Y is not an irreducible component of S, we have h0(Y, IC∪(B∩Y ),Y (1, 3)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' As in step (a) we have IC∪(B∩Y ),Y (1, 3) ∼= IB∩Y,F1(3f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' We now have two possibilities: either h0(IB(1, 2)) = 0 or h0(IB(1, 2)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (b1) Assume for the moment h0(IB(1, 2)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus h0(Y, IC∪(B∩Y ),Y (1, 3)) ≥ 2 and h1(Y, IC∪(B∩Y ),Y (1, 3)) ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Up to the identification of Y and F1 we have IC,Y (1, 3) ∼= OF1(3f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hence the 5 points B ∩ Y give at most one condition to the linear system |OF1(3f)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus there is J ∈ |OF1(f)| such that B ∩ Y ⊂ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Note that J is a curve of bidegree (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' The maximality of the integer e gives a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (b2) Assume that h0(IB(1, 2)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' By Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='4 any surface containing B is re- ducible, say M1∪Y with M1 irreducible of bidegree (1, 1) containing at least 4 components of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Thus e ≥ 4, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' □ References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Altavilla, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Ballico.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Twistor lines on algebraic surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Global Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 55 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 3, 555–573.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Altavilla, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Sarfatti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Slice-polynomial functions and twistor geometry of ruled surfaces in CP3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 291 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 3-4, 1059–1092.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Altavilla, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Ballico, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Brambilla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surfaces in the flag threefold containing smooth conics and twistor fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Mediterr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 19, 281 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1007/s00009-022-02202-3 TWISTOR FIBERS IN (1, d)-SURFACES OF THE FLAG THREEFOLD 25 [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Altavilla, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Ballico, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Brambilla, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Salamon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Twistor geometry of the Flag manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 303, 24 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='1007/s00209-022-03161-x [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Armstrong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Povero, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Salamon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Twistor lines on cubic surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Rend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Semin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Politec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Torino 71 (2013), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 3-4, 317–338.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Atiyah, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hitchin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Singer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Self-duality in four-dimensional Riemannian geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' London Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' A 362 (1978), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 1711, 425–461.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [7] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Chirka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Orthogonal complex structures in R4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (Russian) Uspekhi Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Nauk 73 (2018), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 1(439), 99–172;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' translation in Russian Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Surveys 73 (2018), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 1, 91–159 [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Fujiki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Pontecorvo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Twistors and bi-Hermitian surfaces of non-K¨ahler type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' SIGMA Symmetry Integrability Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Methods Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 10 (2014), Paper 042, 13 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [9] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Gentili, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Salamon, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Stoppato.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Twistor transforms of quaternionic functions and orthogonal complex structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (JEMS) 16 (2014), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 11, 2323–2353.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [11] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Hitchin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' K¨ahlerian twistor spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' (3) 43 (1981), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 1, 133–150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Pontecorvo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Complex structures on Riemannian four-manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 309 (1997), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 1, 159–177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Salamon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Viaclovsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Orthogonal complex structures on domains in R4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 343 (2009), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' 4, 853–899.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content=' Dipartimento di Matematica, Universit`a degli Studi di Bari ‘Aldo Moro’, via Edoardo Orabona, 4, 70125, Bari, Italia Email address: amedeo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='altavilla@uniba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='it Dipartimento Di Matematica, Universit`a di Trento, Via Sommarive 14, 38123, Povo, Trento, Italia Email address: edoardo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='ballico@unitn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='it Universit`a Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona, Italia Email address: brambilla@dipmat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='univpm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} +page_content='it' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE4T4oBgHgl3EQfEAug/content/2301.04874v1.pdf'} diff --git a/_dA0T4oBgHgl3EQfPf96/content/2301.02176v1.pdf b/_dA0T4oBgHgl3EQfPf96/content/2301.02176v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d6b686cc5c6b7a9b988bc0a392056dba345a41ad --- /dev/null +++ b/_dA0T4oBgHgl3EQfPf96/content/2301.02176v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:41102b098ca91108c8e160f32231fd19ac256da74909b821c75d52042d291f7d +size 1018378 diff --git a/_dA0T4oBgHgl3EQfPf96/vector_store/index.pkl b/_dA0T4oBgHgl3EQfPf96/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..89df9084aebc685b5b0e6dc6f4f89c0248ffc4a6 --- /dev/null +++ b/_dA0T4oBgHgl3EQfPf96/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5c599748811080c97b58027a3fec796c8b5bf2af8ae1f0952927cb8dc7c698bd +size 154141 diff --git a/_dAyT4oBgHgl3EQfdvdN/vector_store/index.faiss b/_dAyT4oBgHgl3EQfdvdN/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..8a2c6372c7ab6aab5ce4cad6890b3e58ed37505f --- /dev/null +++ b/_dAyT4oBgHgl3EQfdvdN/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4bec4fa3f0e290a22807c2ed4c61d2ac8bb1db44f1a81b50ca98818dcd16acb5 +size 3211309 diff --git a/_dAyT4oBgHgl3EQfdvdN/vector_store/index.pkl b/_dAyT4oBgHgl3EQfdvdN/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f53490e4c38e60cebafc87773b71a039777edad1 --- /dev/null +++ b/_dAyT4oBgHgl3EQfdvdN/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:860c5b909a6035f5357e14c2c1364e3ea627d34032e344d06051e2ef9f9eeaf2 +size 107575 diff --git a/atAyT4oBgHgl3EQf9_py/vector_store/index.faiss b/atAyT4oBgHgl3EQf9_py/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..70ca224684830b20fb45f1befaeae5c7a1fd5523 --- /dev/null +++ b/atAyT4oBgHgl3EQf9_py/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:548026839aba3a20fead41991ed862c72c7350767de3656b46269189a78ffcc0 +size 1966125 diff --git a/atAyT4oBgHgl3EQf9_py/vector_store/index.pkl b/atAyT4oBgHgl3EQf9_py/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..91bf196bf047141d64044b0323d53ab1de4d0dfa --- /dev/null +++ b/atAyT4oBgHgl3EQf9_py/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6185695e2cf2beefcb1997ef062d788a108d8c4ca8911a695a4ddbabc849398d +size 78814 diff --git a/atFQT4oBgHgl3EQfgDa2/content/2301.13342v1.pdf b/atFQT4oBgHgl3EQfgDa2/content/2301.13342v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..7eac723f1c9fc40a76883fc15c60542918589c38 --- /dev/null +++ b/atFQT4oBgHgl3EQfgDa2/content/2301.13342v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a0245e4a8fcfa2dbb7f525bd19c71534dce4a1c01ed5dbd5c95e9cd208566de3 +size 10224871 diff --git a/btE2T4oBgHgl3EQfaQc9/content/tmp_files/2301.03872v1.pdf.txt b/btE2T4oBgHgl3EQfaQc9/content/tmp_files/2301.03872v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..34f0352186ac51405cedff66e5546c134ed30333 --- /dev/null +++ b/btE2T4oBgHgl3EQfaQc9/content/tmp_files/2301.03872v1.pdf.txt @@ -0,0 +1,1026 @@ +arXiv:2301.03872v1 [cs.IT] 10 Jan 2023 +Towards Quantum Annealing for Multi-user +NOMA-based Networks +Eldar Gabdulsattarov, #Khaled Rabie, ◦Xingwang Li, and Galymzhan Nauryzbayev +� +School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Z05H0K4, Kazakhstan +#Department of Engineering, Manchester Metropolitan University, Manchester, M15 6BH, UK +◦School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China +Email: {eldar.gabdulsattarov, galymzhan.nauryzbayev}@nu.edu.kz, #k.rabie@mmu.ac.uk, ◦lixingwang@hpu.edu.cn +Abstract—Quantum Annealing (QA) uses quantum fluctuations +to search for a global minimum of an optimization-type problem +faster than classical computers. To meet the demand for future +internet traffic and mitigate the spectrum scarcity, this work +presents the QA-aided maximum likelihood (ML) decoder for +multi-user non-orthogonal multiple access (NOMA) networks as +an alternative to the successive interference cancellation (SIC) +method. The practical system parameters such as channel ran- +domness and possible transmit power levels are taken into account +for all individual signals of all involved users. The brute force (BF) +and SIC signal detection methods are taken as benchmarks in the +analysis. The QA-assisted ML decoder results in the same BER +performance as the BF method outperforming the SIC technique, +but the execution of QA takes more time than BF and SIC. +The parallelization technique can be a potential aid to fasten +the execution process. This will pave the way to fully realize the +potential of QA decoders in NOMA systems. +Index Terms—Quantum annealing, non-orthogonal multiple +access (NOMA), maximum likelihood (ML). +I. INTRODUCTION +There has been a drastic rise in the traffic of advanced +multimedia applications such as real-time conferencing, online +video gaming and virtual reality in recent years. Moreover, +according to the Cisco Annual Report, the total number of +internet users will reach 5.3 billion by 2023 [1]. To meet this +ever-growing demand on traffic, it is crucial to consider some +optimization improvements in the quality of data transmission +in terms of the bandwidth, error rate, and delay. One of the +actions that can be taken into account is to implement Quantum +Annealing (QA) technologies to solve NP-hard optimization +problems in wireless communication. +The authors in [2]–[5] suggested the centralized radio access +network (C-RAN) as a promising and cost-effective design +architecture for future wireless networks, where multiple base +stations (BSs) are interconnected with a centralized data center. +The C-RAN’s data centers support most of the BSs’ signal +processing operations. It is envisioned that the QA comput- +ers placed at the C-RAN centers can facilitate optimization +problems, paving the way for full integration of the presented +methodologies in real-world communication systems. +One of the computational complex problems in wireless +networks is to obtain an optimal scheduling in multi-user +(MU) systems, which can help one effectively employ network +resources. The authors in [6] introduced the QA approach to +find an optimal solution for the time-division multiple access +(TDMA) transmission scheduling problem in a wireless sensor +network using a tree topology. The results revealed that QA +outperforms the other scheduling solutions in terms of the +runtime and proximity to the optimal solution. +An essential part of cellular base-band processing that can +enhance the quality of communication is the error correction +code (ECC), which mitigates the errors in received bit-streams +caused by the noise in a wireless environment. However, the +error correction code protocols with exceptional performance +require significant computational resources for the decoding +process at the receiver. For this reason, the implementation of +QA computers was proposed in [2] for efficient decoding of +low-density parity-check codes in uplink systems. The method +achieved a bit error rate (BER) of 10−8 at the signal-to-noise +ratio (SNR) of 2.5-3.5 dB lower than the standard algorithm for +decoding ECCs on a field-programmable gate array (FPGA). +Another key aspect in the performance of wireless communi- +cation systems is a signal detection. To achieve the full potential +of multi-user systems, BSs have to efficiently decode superim- +posed data streams received from different users. Maximum +likelihood (ML) usually ends up with an optimum solution for +decoding the received signals, but it is an NP-hard problem. The +computational cost of ML rises exponentially with the number +of users and data rate [3]. For large-scale networks, the ML +decoding process might last expiration of acknowledgement +timeout. The authors in [3]–[5] employed a QA approach to +speed up this process. Particularly, [3] presented the QuAMax +approach for ML decoding in MU MIMO systems using QA. +The performance of the solution was tested on the quantum +annealer with 2048 qubits considering different modulation +schemes and multiple users. The method achieves the same +BER as ZF does, but with significantly lower computation time +in the case of binary phase-shift keying (BPSK) and quadrature +phase-shift keying (QPSK) modulation types. Moreover, the +QA approach outperforms the conventional decoders in terms of +the computable size of ML problems. For instance, the work in +[3] was extended by [4], where an experiment on the recently +released QA hardware with 5640 qubits was performed. The +results revealed that the new computer is able to provide better +scaling for embedding the ML MIMO decoding problem. In +addition, the study showed that today’s QA machines can +achieve identical BER as the ML sphere decoder for 4 × 4 +MIMO using 16-QAM (quadrature amplitude modulation). + +The current communication technologies support multiple +users using orthogonal multiple access (OMA) techniques such +as TDMA, frequency- and code-division multiple access (i.e., +FDMA and CDMA) schemes. However, all these techniques +have certain shortcomings such as precise time synchronization, +limited frequency carriers and code length. These drawbacks +get more perceptible for a large number of users [7]. Non- +orthogonal multiple access (NOMA) is a technology that al- +lows all users in a cell operate in the common time and +frequency, that, in turn, improve the spectral efficiency (SE). +The successive interference cancellation (SIC) is considered +as a promising decoding technique for NOMA that decodes +symbol-by-symbol until the desired one is detected. However, +the high computational cost, latency and error propagation of +SIC make it impractical to implement NOMA in the current +wireless communication systems [7], [8]. The traditional ML +decoder supports high-quality decoding but suffers from high +computation time. To address this issue, a NOMA-ML decoder +based on QA was proposed in [5] for a two-user system model, +with a BPSK modulation and constant channel gains. +In contrast to the previous studies, in this work, we consider +the NOMA-based uplink network comprising multiple users +under practical scenarios and different modulation types. The +NOMA-ML decoding problem was firstly reformulated into +a QUBO model for multiple modulation schemes including +BPSK, QPSK, 16−QAM and 64−QAM. Moreover, the gen- +eralized QUBO expressions of the proposed system model are +derived for the multi-user network under the previously defined +modulation types. We have investigated how the number of +users in a cell affects the signal decoding performance. Fur- +thermore, the QA-assisted ML decoder was compared with SIC +and Brute Force (BF) techniques in terms of BER performance +and simulation time. Finally, the influence of the parallelization +method on the execution time of the QA machine is examined. +II. SYSTEM MODEL +The system model considered here represents an uplink +NOMA-based network scenario (depicted in Fig. 1) compris- +ing BS and N end-users, denoted by Uk, with k ∈ A = +{1, 2, . . ., N}. It is assumed that all nodes are deployed with a +single antenna. The channel between the user of interest and BS +is given by ˜hk and assumed to be independent and identically +distributed random variables (RVs) following Rayleigh fading. +A. Non-orthogonal Multiple Access +Due to the considered uplink mode of communication, all +end-users simultaneously transmit their individual messages to +BS while ensuring the NOMA principle to be true through the +path loss associated with their corresponding distances1. Hence, +the received signal at BS can be written as +y = +N +� +k=1 +skhk + n, +(1) +1Note that the similar assumption can be made using the principle of +messages’ priorities. +0 +U1 +50 +U2 +50N +N−1 +U3 +50(N+1) +N−1 +UN +100 +m +h1 +h2 +h3 +hN +... +... +Fig. 1. An illustration of uplink NOMA with N users. +where sk is the transmitted message of user k, with the transmit +power defined as E{sks∗ +k} = Pk. For the sake of simplicity, +we assume that all end-users transmit with the same power +levels, i.e., P = P1 = P2 = . . . = PN. hk is modelled as +hk = ˜hk/ +� +dτ +k, where dk and τ indicate the corresponding +distance and path-loss exponent. n is an additive white Gaussian +noise (AWGN) term, with zero mean and variance σ2 +n. +B. Maximum Likelihood Detection +The receiver implements the ML detection as a decoding +method, which output, given by an optimal symbol vector ˆsML, +is formulated as +ˆsML = arg min +ˆs1,ˆs2,...ˆsN +|y − shT|2, +(2) +where y is the received signal, s and h are the 1 × N vectors +representing the transmit symbols and channel gains of end- +users, respectively. +C. Quantum Annealing +Quantum computing implements the concepts of quantum +mechanics to solve high-computational problems faster than +classical computers. There are several types of quantum com- +puters. If the quantum circuit model controls the qubits using +quantum logic gates to solve a wide range of problems, QA +is an effective tool to solve optimization problems with given +objective functions. Specifically, the quantum processing unit +(QPU) uses quantum fluctuations to search for the global +minimum solution. However, modern quantum computers are +not that perfect yet and QA might end up with a local minimum +solution due to the analogue noises in the device [9]. To +mitigate the internal errors in QPU, the annealing parameters +could be modified based on the specifics of the problem. To +minimize these errors, QA can be simulated many times, and +the optimal solution will be the answer with the lowest energy +level and most frequent occurrences. The annealing parameter +that controls the number of samples per simulation is the +number of reads (R), it was decided to set it to 1000. Another +annealing parameter that could impact the performance of the +QA machine is the single-sample annealing time (Ta), which +was set to 20 µs without any pausing time [10]. +D. Quadratic Unconstrained Binary Optimization +To solve an optimization problem by a means of QA, the +objective function should be reformulated in a form of the +quadratic unconstrained binary optimization (QUBO) model or +the Ising model. These formulations can be used interchange- +ably, and it is easy to switch from one to another. At the end + +a +7a +5a +3a +a +3a +5a +7a +-b +-3b +-b +-3b +1 +-1 +j +-j +Im +Re +BPSK +64-QAM +16-QAM +QPSK +Fig. 2. Constellations of different modulation types. +of annealing process, the best solution is given by the qubit +sequence with a minimum energy state. The model is given by +an upper-diagonal matrix Q with a size of M × M +ˆq1, ˆq2, . . . , ˆqM = arg min +q1,q2,...qM +M +� +i≤j +Qijqiqj, +(3) +where M denotes the number of qubits, and each variable qi +takes binary numbers. By applying the property q2 +i = qiqi = qi, +and substituting the symbols in (2) by the corresponding binary +equivalent form, it becomes feasible to formulate the NOMA +ML problem in terms of the QUBO form. The corresponding di- +agonal Qii and non-diagonal Qij terms of the QUBO model are +represented by linear and quadratic coefficients, accordingly. +To implement the obtained QUBO model on QPU, the matrix +coefficients have to be mapped into physical qubits of a QA +chip. The linear coefficients define the qubit biases, while +quadratic coefficients represent the coupling strengths [11]. +However, QPU’s physical qubits are not fully connected, in the +Chimera graph each qubit has six neighbours, and, in Pegasus +topology, each qubit is connected with 15 neighbour qubits +[12]. Therefore, sometimes it is not possible to directly apply +the QUBO model onto real QA machine. +III. FORMULATION OF NOMA ML PROBLEM IN A QUBO +MODEL +The ML expression in (2) should be described by a QUBO +model to solve it with QA. Taking into account (1) and the +complex numbers due to the broadcast transmission, we split +the received signal y and channel coefficients into real and +imaginary parts as follows: y = yR + jyI and hk = hk,R + +jhk,I. Each symbol, denoted by sk, can be transformed into +the qubit form. The methodology for representing symbols in +terms of the binary variables depends on the modulation type. +The considered modulations are presented in Fig. 2. +1) BPSK: The BPSK symbols of a form sk ∈ {±1}, can +be reformulated into the QUBO form by sk = 2qk − 1. In this +case, M in (3) takes a value of the number of users, N. +2 +3 +4 +5 +6 +7 +8 +9 +10 +10 +-4 +10 +-3 +10 +-2 +BER +No. of users per cell + User 1 + User 2 + User 3 + User 4 + User 5 + User 6 + User 7 + User 8 + User 9 + User 10 + Average BER +Fig. 3. BER vs. the number of users per cell under BPSK. +2) QPSK: As shown in Fig. 2, the QPSK symbols, sk ∈ +{ ±1±j +√ +2 }, reside on a unit circle with 90◦ phase difference +between two consecutive symbols. They can be represented by +two qubits; therefore, the term M in (3) becomes the double +of a number of users, 2N. Finally, the QPSK symbols can be +expressed as sk = [(2q2k−1 − 1) + j (2q2k − 1)] / +√ +2. +3) 16-QAM: The 16-QAM modulation encodes four in- +formation bits into a complex symbol and correspondingly +includes 16 constellation points. The symbols sk ∈ {±b ± +jb, ±b ± j3b, ±3b ± jb, ±3b ± j3b}, where b = 1/(3 +√ +2), +require four qubits to be adapted for the QUBO model, i.e., +sk = [(4q4k−3 + 2q4k−2 − 3) + j (4q4k−1 + 2q4k − 3)] /3 +√ +2. +M in (3) becomes the quadruple of a number of users, 4N. +4) 64-QAM: On the other hand, the 64-QAM modulation +returns a complex symbol by encoding 16 information bits. +As shown in Fig. 2, the constellation points are defined as +per Fig. 2 and require six qubits to be adopted for the +QUBO model; therefore, the term M in (3) becomes the +sixtuple of a number of users, 6N. These symbols can be +re-expressed as sk = a (8q6k−5 + 4q6k−4 + 2q6k−3 − 7) + +ja (8q6k−2 + 4q6k−1 + 2q6k − 7). +IV. IMPLEMENTATION AND RESULTS DISCUSSION +A. Implementation +The system model considered in the analysis represents a N- +end user uplink NOMA system that employs BPSK modulation. +As illustrated in Fig. 1, the base station is located at a coordinate +0. We assume that the first and the farthest users are located +50 and 100 m away from the base station, respectively, while +the other intermediate nodes are evenly distributed in-between. +For practical purposes, we apply the standardized scenarios +described in [13] and [14]. The performance of the exploited +solvers (i.e., BF, SIC and QA) were examined by varying the +transmit power from −40 dBm to 24 dBm. Moreover, the +environment of data transmission is considered to be a free +space with line-of-sight propagation which relates to the path- +loss exponent τ = 2 [15]. + +-40 +-30 +-20 +-10 +0 +10 +20 +10 +-2 +10 +-1 +10 +0 +BF +Bit error rate +Transmit power, dBm + U +1 + U +2 + U +3 + QA +SIC +Fig. 4. The BER performance vs. the transmit power for a three- +user NOMA scenario, with different decoding techniques. +15.07 +15.07 +15.07 +15.07 +20.00 +20.00 +20.00 +20.00 +84.94 +89.19 +84.39 +86.06 +20.54 +20.54 +20.54 +20.54 +4.07 +4.74 +5.51 +5.02 +1.51 +1.37 +1.49 +1.74 +4.74 +4.65 +5.50 +5.38 +9.00 +9.32 +8.81 +8.89 +QA: + +p + + T +D + T +R + T +A + T +p +14 +10 +-10 +-30 +Transmit power, dBm + SIC + BF +Fig. 5. Comparison between the decoding techniques in terms +of simulation time for five (5) samples (in ms). +The QA method was implemented on the proposed system +model using D-Wave’s Advantage QPU [12]. It is important +to mention that the parallelization procedure was used to save +the simulation time on the QA computer [3], i.e., 5 instances +of the problem were run at the same time on QPU. Since +the 3-user BPSK problem requires only 3 logical qubits, 5 +instances would occupy 15 logical qubits. In the analysis of +simulation time, the following terms are used as follows. QPU +Programming Time (Tp) is the time taken for programming +the couplers and biases of the chip in accordance with the +QUBO model. QPU Sampling Time (Ts) is the total time for +simulation of R samples and consists of the annealing time +(Ta), the readout time (Tr), and the delay time (Td) for every +single sample [16]. For the sake of simplicity, we declare the +following terms: the total QPU Annealing Time (TA = R ·Ta), +the total QPU Readout Time (TR = R · Tr), and the QPU +Delay Time (TD = R · Td). Tp, Ts, QPU Access Overhead +Table I. Simulation time (in ms) of the decoding techniques. +Technique +for 5 samples +for 1 sample +SIC +5.066 +3.958 +BF +9.006 +4.535 +QA +QPU Service Time +148.116 +107.984 +Tp +15.069 +15.068 +TA +20 +20 +TR +86.145 +46.68 +TD +20.54 +20.54 +∆ +4.835 +3.86 +∆p +1.527 +1.836 +Time (∆) and Post-processing Overhead Time (∆p) constitute +QPU Service Time, which is considered as the total time taken +for the QA simulation excluding internet delay. +B. Discussion +In Fig. 3, we examine the influence of the number of +users per cell on the BER performance in the NOMA system. +Particularly, the transmit power and the AWGN power were +set to 10 dBm and −60 dBm, respectively. As expected, the +average BER performance degrades with the increase in the +number of users per cell. It is seen from the plot that, for the +number of users greater than 6, the difference between the BER +curves becomes quite similar to each other. Therefore, we apply +the 3-user NOMA scenario in the further analysis. +In Figs. 4 and 5, we compare the SIC, BF and QA decoding +techniques in terms of the BER performance and simulation +time, with the noise power set to σ2 +n = −30 dBm. QA +was simulated for particular transmit power levels, i.e., P = +{−30, −10, 10, 14} dBm. The number of QA simulations per +power level was taken to ensure a 1% accuracy with respect +to the BER performance of BF. Overall, about 380 simulations +(with 5 problems at a time) were performed on QPU. +Fig. 4 illustrates the BER performances of each decoding +method. The BER curves can be characterized by different +behaviour. It can be seen from the U1’s curve, the SIC and +BF performances coincide up to −5 dBm, and then SIC starts +outperforming BF over a short transmit power range (i.e., +from −5 dBm to 10 dBm). However, afterwards, SIC starts +experiencing noticeable performance degradation. At the same +time, U2 has identical BER for SIC and BF up to 10 dBm. +After this point, there is a slight improvement of the SIC curve, +but, in general, its performance is much worse than that of BF. +What stands out for U3 is the equal performance of SIC and BF +for transmit power less than 5 dBm, thereafter, the difference +between them begins to grow considerably. The performance +of BF improves remarkably after 5 dBm, whereas the SIC +curve enhances minimally until 15 dBm with the following +saturation after this point. In general, the QA, BF and SIC +curves follow the same trend till 10 dBm, but after this level, +the SIC performance degrades substantially, while the BER +result of QA is approximately the same as BF. The reason +for the SIC’s low performance could be insufficient differences +between the end-users’ power levels. +Fig. 5 presents the timing data for each technique. As +can be seen from the histogram plot, SIC shows the fastest + +execution among the presented techniques. As expected, the +second fastest technique is BF, since it needs to iterate over all +possible combinations. The QA execution time interval consists +of several timing sub-intervals. While Tp, TA and TD are the +same for all cases, TR shows a slight variation, since the reading +time depends on the position of exploited physical qubits on the +chip and on the number of used qubits (more time is needed +for a larger number of qubits) [16]. The dependence on the +number of qubits could be noticed in Table I, i.e., TR for 1 +sample is twice as fast as TR for 5 samples. Overall, the total +time taken for QA execution is about 30 times more than the +SIC simulation. However, it is important to mention that QA +needs to simulate the same problem R number of times (in +our case it is set to 1000). Furthermore, the problem could be +addressed by the parallelization method. From Table I, it is +clearly noticeable that the execution of 5 instances in parallel +is more than 3 times faster than executing the same number of +samples in a sequential order. Therefore, one could potentially +conclude that the overall QA simulation time can be decreased +by simulating multiple problem instances at the same time. +V. CONCLUSION +To mitigate the problem of spectrum scarcity and present +an alternative for SIC, this work aims at evaluating the per- +formance of QA-aided ML detection for NOMA systems. The +ML problem was firstly described in terms of the QUBO model +to enable the integration of the problem with QPU. For 3-user +NOMA under BPSK modulation, the BER performance of QA +is approximately the same as the BF method, but QA takes +longer time to execute due to the current hardware specifics. +The parallelization method seems to be a potential solution +that could decrease the execution time of QA. Additionally, +the analogous noises in QA could be suppressed with coming +of the next-generation QA hardware, and the time taken for +error alleviation would be reduced. This will pave the way for +computing time-dependent operations on QA including the QA- +assisted ML decoding technique for future NOMA systems. +VI. ACKNOWLEDGEMENT +This work was supported by the Nazarbayev University (NU) +Social Policy grant, the NU FDCRP Grant no. 240919FD3935 +and the NU CRP Grant no. 11022021CRP1513. +APPENDIX A +QUBO MODEL COEFFICIENTS +In this section, we present the coefficients for the QUBO +model for different modulation types2. +1) BPSK: The corresponding QB +ij values can be found as +QB +ii = P +� +−4hi,R +� N +� +l=1 +hl,R−hi,R +� +−4hi,I +� N +� +l=1 +hl,I−hi,I +�� +− +√ +P (4yRhi,R + 4yIhi,I) , +(A.1) +QB +ij = P (8hi,Rhj,R + 8hi,Ihj,I) . +(A.2) +2Note that the equations involving the positive integer variables i and j must +satisfy the condition i < j. +2) QPSK: The QQ +ij values can be found using (A.3), (A.4) +and the equations given below +QQ +(2i−1),(2i) = 0, +∀i ≥ 1, +(A.5) +QQ +(2i−1),(2j−1) = QQ +(2i),(2j) = P +2 (8hi,Rhj,R + 8hi,Ihj,I) , +(A.6) +QQ +(2i−1),(2j) = P +2 (8hi,Ihj,R − 8hi,Rhj,I) , +(A.7) +QQ +(2i),(2j−1) = P +2 (−8hi,Ihj,R + 8hi,Rhj,I) . +(A.8) +3) 16-QAM: The Q16Q +ij +values can be found using +Q16Q +(4i−3),(4i−1) = Q16Q +(4i−3),(4i) += Q16Q +(4i−2),(4i−1) = Q16Q +(4i−2),(4i) = 0, +(A.13) +Q16Q +(4i−3),(4i−2) = Q16Q +(4i−1),(4i) = 8P +9 +� +|hi,R|2 + |hi,I|2� +, +(A.14) +Q16Q +(4i−3),(4j−2) = Q16Q +(4i−2),(4j−3) = Q16Q +(4i),(4j−1) += Q16Q +(4i−1),(4j) = P +9 (8hi,Rhj,R + 8hi,Ihj,I) , +(A.15) +Q16Q +(4i−2),(4j−2) = Q16Q +(4i),(4j) = P +9 (4hi,Rhj,R + 4hi,Ihj,I) , +(A.16) +Q16Q +(4i−1),(4j−1) = Q16Q +(4i−3),(4j−3) += P +9 (16hi,Rhj,R + 16hi,Ihj,I) , +(A.17) +Q16Q +(4i−2),(4j−1) = Q16Q +(4i−3),(4j) = 8P +9 (−hi,Rhj,I + hi,Ihj,R) , +(A.18) +Q16Q +(4i−1),(4j−2) = Q16Q +(4i),(4j−3) += P +9 (−8hi,Ihj,R + 8hi,Rhj,I) , +(A.19) +Q16Q +(4i−2),(4j) = P +9 (−4hi,Rhj,I + 4hi,Ihj,R) , +(A.20) +Q16Q +(4i),(4j−2) = P +9 (−4hi,Ihj,R + 4hi,Rhj,I) , +(A.21) +Q16Q +(4i−1),(4j−3) = P +9 (−16hi,Ihj,R + 16hi,Rhj,I) , +(A.22) +Q16Q +(4i−3),(4j−1) = P +9 (−16hi,Rhj,I + 16hi,Ihj,R) . +(A.23) +4) 64-QAM: The derivations of Q64Q +ij +values are omitted +due to the submission page limit and will be included in the +extended version, if accepted. +REFERENCES +[1] “Cisco +Annual +Internet +Report +- +Cisco +Annual +Internet +Report +(2018–2023) +White +Paper,” +Cisco, +March +2020, +[Online]. +Available: +https://www.cisco.com/c/en/us/solutions/collateral/executive- +perspectives/annual-internet-report/white-paper-c11-741490.html. +[2] S. Kasi and K. Jamieson, “Towards quantum belief propagation for LDPC +decoding in wireless networks,” 26th Annu. Int. Conf. Mobile Comput. +Netw., London, UK, pp. 1-14, Sep. 2020. + +QQ +(2i−1),(2i−1) = P +2 +� +−4hi,R +�� N +� +l=1 +hl,R − hi,R +� +− +� N +� +l=1 +hl,I − hi,I +�� +− 4hi,I +�� N +� +l=1 +hl,R − hi,R +� ++ +� N +� +l=1 +hl,I − hi,I +��� +− +√ +2P (2yRhi,R + 2yIhi,I) +(A.3) +QQ +(2i),(2i) = P +2 +� +−4hi,R +�� N +� +l=1 +hl,R − hi,R +� ++ +� N +� +l=1 +hl,I − hi,I +�� +− 4hi,I +� +− +� N +� +l=1 +hl,R − hi,R +� ++ +� N +� +l=1 +hl,I − hi,I +��� +− +√ +2P (−2yRhi,I + 2yIhi,R) +(A.4) +Q16Q +(4i−3),(4i−3) = P +9 +� +−4hi,R +� +hi,R + 3 +�� N +� +k=1 +hk,R − hi,R +� +− +� N +� +k=1 +hk,I − hi,I +��� +−4hi,I +� +hi,I + 3 +�� N +� +k=1 +hk,R − hi,R +� ++ +� N +� +k=1 +hk,I − hi,I +���� +− +√ +2P +3 +(4yRhi,R + 4yIhi,I) +(A.9) +Q16Q +(4i−2),(4i−2) = P +9 +� +−4hi,R +� +hi,R + 3 +2 +�� N +� +k=1 +hk,R − hi,R +� +− +� N +� +k=1 +hk,I − hi,I +��� +−4hi,I +� +hi,I + 3 +2 +�� N +� +k=1 +hk,R − hi,R +� ++ +� N +� +k=1 +hk,I − hi,I +���� +− +√ +2P +3 +(2yRhi,R + 2yIhi,I) +(A.10) +Q16Q +(4i−1),(4i−1) = P +9 +� +−4hi,R +� +hi,R + 3 +�� N +� +k=1 +hk,R − hi,R +� ++ +� N +� +k=1 +hk,I − hi,I +��� +−4hi,I +� +hi,I + 3 +� +− +� N +� +k=1 +hk,R − hi,R +� ++ +� N +� +k=1 +hk,I − hi,I +���� +− +√ +2P +3 +(−4yRhi,I + 4yIhi,R) +(A.11) +Q16Q +(4i),(4i) = P +9 +� +−4hi,R +� +hi,R + 3 +2 +�� N +� +k=1 +hk,R − hi,R +� ++ +� N +� +k=1 +hk,I − hi,I +��� +−4hi,I +� +hi,I + 3 +2 +� +− +� N +� +k=1 +hk,R − hi,R +� ++ +� N +� +k=1 +hk,I − hi,I +���� +− +√ +2P +3 +(−2yRhi,I + 2yIhi,R) +(A.12) +[3] M. Kim, D. Venturelli, and K. Jamieson, “Leveraging Quantum Annealing +for Large MIMO Processing in Centralized Radio Access Networks,” in +Proc. of the ACM Special Interest Group on Data Communication, pp. +241-255, Aug. 2019. +[4] Z. I. Tabi et al., “Evaluation of Quantum Annealer Performance via the +Massive MIMO Problem,” IEEE Access, vol. 9, pp. 131658-131671, 2021. +[5] R. C. Kizilirmak, “Quantum Annealing Approach to NOMA Signal +Detection,” 12th Int. Symp. Commun. Syst. Netw. Digital Signal Process. +(CSNDSP), Porto, Portugal, pp. 1-5, Jul. 2020. +[6] F. Ishizaki, “Computational Method Using Quantum Annealing for +TDMA Scheduling Problem in Wireless Sensor Networks,” 13th Int. Conf. +Signal Process. Commun. Syst. (ICSPCS), Australia, pp. 1-9, Dec. 2019. +[7] R. C. Kizilirmak, “Non-Orthogonal Multiple Access (NOMA) for 5G +Networks”, Towards 5G Wireless Networks - A Physical Layer Perspec- +tive. London, United Kingdom: IntechOpen, 2016 [Online]. Available: +https://www.intechopen.com/chapters/52822 +[8] B. Makki et al., “A Survey of NOMA: Current Status and Open Research +Challenges,” IEEE Open J. Commun. Soc., vol. 1, pp. 179-189, 2020. +[9] “Error +Sources +for +Problem +Representation” +D-Wave +System +Documentation, +2021 +[Online]. +Available: +https://docs.dwavesys.com/docs/latest/c qpu ice.html +[Accessed +Apr. +2022]. +[10] “Solver +Parameters,” +D-Wave +System +Doc- +umentation, +2021 +[Online]. +Available: +https://docs.dwavesys.com/docs/latest/c solver parameters.html +[Accessed Apr. 2022]. +[11] “Constraints +Example: +Minor-Embedding” +D-Wave +System +Documentation, +2021 +[Online]. +Available: +https://docs.dwavesys.com/docs/latest/c gs 7.html[Accessed Apr. 2022]. +[12] “D-Wave +QPU +Architecture: +Topologies” +D-Wave +System +Documentation, +2021 +[Online]. +Available: +https://docs.dwavesys.com/docs/latest/c gs 7.html[Accessed Apr. 2022]. +[13] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Sta- +tion (BS) radio transmission and reception (3GPP TS 36.104 version 9.4.0 +Release 9),” ETSI, France, Tech. Specification. RTS/TSGR-0436104v940, +Jul. 2010. +[14] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User +Equipment (UE) radio transmission and reception (3GPP TS 36.101 ver- +sion 14.3.0 Release 14),” ETSI, France, Tech. Specification. RTS/TSGR- +0436101ve30, Apr. 2017. +[15] T. Rappaport, “Mobile Radio Propagation: Large-Scale Path Loss,” Wire- +less Communications Principles and Practice, 2nd ed., Prentice Hall, +2001, pp. 69-138. +[16] “Operation and Timing” in D-Wave System Documentation, 2021 [On- +line]. Available: https://docs.dwavesys.com/docs/latest/c qpu timing.html +[Accessed 5 Apr. 2022]. + diff --git a/btE2T4oBgHgl3EQfaQc9/content/tmp_files/load_file.txt b/btE2T4oBgHgl3EQfaQc9/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..cd34790d1f5809accacb12c1db545a67ade6fea3 --- /dev/null +++ b/btE2T4oBgHgl3EQfaQc9/content/tmp_files/load_file.txt @@ -0,0 +1,432 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf,len=431 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='03872v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='IT] 10 Jan 2023 Towards Quantum Annealing for Multi-user NOMA-based Networks Eldar Gabdulsattarov, #Khaled Rabie, ◦Xingwang Li, and Galymzhan Nauryzbayev � School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Z05H0K4, Kazakhstan #Department of Engineering, Manchester Metropolitan University, Manchester, M15 6BH, UK School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China Email: {eldar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='gabdulsattarov, galymzhan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='nauryzbayev}@nu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='kz, #k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='rabie@mmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='uk, ◦lixingwang@hpu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='cn Abstract—Quantum Annealing (QA) uses quantum fluctuations to search for a global minimum of an optimization-type problem faster than classical computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' To meet the demand for future internet traffic and mitigate the spectrum scarcity, this work presents the QA-aided maximum likelihood (ML) decoder for multi-user non-orthogonal multiple access (NOMA) networks as an alternative to the successive interference cancellation (SIC) method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The practical system parameters such as channel ran- domness and possible transmit power levels are taken into account for all individual signals of all involved users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The brute force (BF) and SIC signal detection methods are taken as benchmarks in the analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The QA-assisted ML decoder results in the same BER performance as the BF method outperforming the SIC technique, but the execution of QA takes more time than BF and SIC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The parallelization technique can be a potential aid to fasten the execution process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' This will pave the way to fully realize the potential of QA decoders in NOMA systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Index Terms—Quantum annealing, non-orthogonal multiple access (NOMA), maximum likelihood (ML).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' INTRODUCTION There has been a drastic rise in the traffic of advanced multimedia applications such as real-time conferencing, online video gaming and virtual reality in recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Moreover, according to the Cisco Annual Report, the total number of internet users will reach 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='3 billion by 2023 [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' To meet this ever-growing demand on traffic, it is crucial to consider some optimization improvements in the quality of data transmission in terms of the bandwidth, error rate, and delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' One of the actions that can be taken into account is to implement Quantum Annealing (QA) technologies to solve NP-hard optimization problems in wireless communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The authors in [2]–[5] suggested the centralized radio access network (C-RAN) as a promising and cost-effective design architecture for future wireless networks, where multiple base stations (BSs) are interconnected with a centralized data center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The C-RAN’s data centers support most of the BSs’ signal processing operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' It is envisioned that the QA comput- ers placed at the C-RAN centers can facilitate optimization problems, paving the way for full integration of the presented methodologies in real-world communication systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' One of the computational complex problems in wireless networks is to obtain an optimal scheduling in multi-user (MU) systems, which can help one effectively employ network resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The authors in [6] introduced the QA approach to find an optimal solution for the time-division multiple access (TDMA) transmission scheduling problem in a wireless sensor network using a tree topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The results revealed that QA outperforms the other scheduling solutions in terms of the runtime and proximity to the optimal solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' An essential part of cellular base-band processing that can enhance the quality of communication is the error correction code (ECC), which mitigates the errors in received bit-streams caused by the noise in a wireless environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' However, the error correction code protocols with exceptional performance require significant computational resources for the decoding process at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' For this reason, the implementation of QA computers was proposed in [2] for efficient decoding of low-density parity-check codes in uplink systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The method achieved a bit error rate (BER) of 10−8 at the signal-to-noise ratio (SNR) of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='5-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='5 dB lower than the standard algorithm for decoding ECCs on a field-programmable gate array (FPGA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Another key aspect in the performance of wireless communi- cation systems is a signal detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' To achieve the full potential of multi-user systems, BSs have to efficiently decode superim- posed data streams received from different users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Maximum likelihood (ML) usually ends up with an optimum solution for decoding the received signals, but it is an NP-hard problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The computational cost of ML rises exponentially with the number of users and data rate [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' For large-scale networks, the ML decoding process might last expiration of acknowledgement timeout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The authors in [3]–[5] employed a QA approach to speed up this process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Particularly, [3] presented the QuAMax approach for ML decoding in MU MIMO systems using QA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The performance of the solution was tested on the quantum annealer with 2048 qubits considering different modulation schemes and multiple users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The method achieves the same BER as ZF does, but with significantly lower computation time in the case of binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK) modulation types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Moreover, the QA approach outperforms the conventional decoders in terms of the computable size of ML problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' For instance, the work in [3] was extended by [4], where an experiment on the recently released QA hardware with 5640 qubits was performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The results revealed that the new computer is able to provide better scaling for embedding the ML MIMO decoding problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' In addition, the study showed that today’s QA machines can achieve identical BER as the ML sphere decoder for 4 × 4 MIMO using 16-QAM (quadrature amplitude modulation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The current communication technologies support multiple users using orthogonal multiple access (OMA) techniques such as TDMA, frequency- and code-division multiple access (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', FDMA and CDMA) schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' However, all these techniques have certain shortcomings such as precise time synchronization, limited frequency carriers and code length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' These drawbacks get more perceptible for a large number of users [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Non- orthogonal multiple access (NOMA) is a technology that al- lows all users in a cell operate in the common time and frequency, that, in turn, improve the spectral efficiency (SE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The successive interference cancellation (SIC) is considered as a promising decoding technique for NOMA that decodes symbol-by-symbol until the desired one is detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' However, the high computational cost, latency and error propagation of SIC make it impractical to implement NOMA in the current wireless communication systems [7], [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The traditional ML decoder supports high-quality decoding but suffers from high computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' To address this issue, a NOMA-ML decoder based on QA was proposed in [5] for a two-user system model, with a BPSK modulation and constant channel gains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' In contrast to the previous studies, in this work, we consider the NOMA-based uplink network comprising multiple users under practical scenarios and different modulation types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The NOMA-ML decoding problem was firstly reformulated into a QUBO model for multiple modulation schemes including BPSK, QPSK, 16−QAM and 64−QAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Moreover, the gen- eralized QUBO expressions of the proposed system model are derived for the multi-user network under the previously defined modulation types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' We have investigated how the number of users in a cell affects the signal decoding performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Fur- thermore, the QA-assisted ML decoder was compared with SIC and Brute Force (BF) techniques in terms of BER performance and simulation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Finally, the influence of the parallelization method on the execution time of the QA machine is examined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' SYSTEM MODEL The system model considered here represents an uplink NOMA-based network scenario (depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 1) compris- ing BS and N end-users, denoted by Uk, with k ∈ A = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' It is assumed that all nodes are deployed with a single antenna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The channel between the user of interest and BS is given by ˜hk and assumed to be independent and identically distributed random variables (RVs) following Rayleigh fading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Non-orthogonal Multiple Access Due to the considered uplink mode of communication, all end-users simultaneously transmit their individual messages to BS while ensuring the NOMA principle to be true through the path loss associated with their corresponding distances1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Hence, the received signal at BS can be written as y = N � k=1 skhk + n, (1) 1Note that the similar assumption can be made using the principle of messages’ priorities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 0 U1 50 U2 50N N−1 U3 50(N+1) N−1 UN 100 m h1 h2 h3 hN .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' An illustration of uplink NOMA with N users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' where sk is the transmitted message of user k, with the transmit power defined as E{sks∗ k} = Pk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' For the sake of simplicity, we assume that all end-users transmit with the same power levels, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', P = P1 = P2 = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' = PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' hk is modelled as hk = ˜hk/ � dτ k, where dk and τ indicate the corresponding distance and path-loss exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' n is an additive white Gaussian noise (AWGN) term, with zero mean and variance σ2 n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Maximum Likelihood Detection The receiver implements the ML detection as a decoding method, which output, given by an optimal symbol vector ˆsML, is formulated as ˆsML = arg min ˆs1,ˆs2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='ˆsN |y − shT|2, (2) where y is the received signal, s and h are the 1 × N vectors representing the transmit symbols and channel gains of end- users, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Quantum Annealing Quantum computing implements the concepts of quantum mechanics to solve high-computational problems faster than classical computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' There are several types of quantum com- puters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' If the quantum circuit model controls the qubits using quantum logic gates to solve a wide range of problems, QA is an effective tool to solve optimization problems with given objective functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Specifically, the quantum processing unit (QPU) uses quantum fluctuations to search for the global minimum solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' However, modern quantum computers are not that perfect yet and QA might end up with a local minimum solution due to the analogue noises in the device [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' To mitigate the internal errors in QPU, the annealing parameters could be modified based on the specifics of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' To minimize these errors, QA can be simulated many times, and the optimal solution will be the answer with the lowest energy level and most frequent occurrences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The annealing parameter that controls the number of samples per simulation is the number of reads (R), it was decided to set it to 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Another annealing parameter that could impact the performance of the QA machine is the single-sample annealing time (Ta), which was set to 20 µs without any pausing time [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Quadratic Unconstrained Binary Optimization To solve an optimization problem by a means of QA, the objective function should be reformulated in a form of the quadratic unconstrained binary optimization (QUBO) model or the Ising model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' These formulations can be used interchange- ably, and it is easy to switch from one to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' At the end a 7a 5a 3a a 3a 5a 7a b 3b b 3b 1 1 j j Im Re BPSK 64-QAM 16-QAM QPSK Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Constellations of different modulation types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' of annealing process, the best solution is given by the qubit sequence with a minimum energy state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The model is given by an upper-diagonal matrix Q with a size of M × M ˆq1, ˆq2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' , ˆqM = arg min q1,q2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='qM M � i≤j Qijqiqj, (3) where M denotes the number of qubits, and each variable qi takes binary numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' By applying the property q2 i = qiqi = qi, and substituting the symbols in (2) by the corresponding binary equivalent form, it becomes feasible to formulate the NOMA ML problem in terms of the QUBO form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The corresponding di- agonal Qii and non-diagonal Qij terms of the QUBO model are represented by linear and quadratic coefficients, accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' To implement the obtained QUBO model on QPU, the matrix coefficients have to be mapped into physical qubits of a QA chip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The linear coefficients define the qubit biases, while quadratic coefficients represent the coupling strengths [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' However, QPU’s physical qubits are not fully connected, in the Chimera graph each qubit has six neighbours, and, in Pegasus topology, each qubit is connected with 15 neighbour qubits [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Therefore, sometimes it is not possible to directly apply the QUBO model onto real QA machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' FORMULATION OF NOMA ML PROBLEM IN A QUBO MODEL The ML expression in (2) should be described by a QUBO model to solve it with QA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Taking into account (1) and the complex numbers due to the broadcast transmission, we split the received signal y and channel coefficients into real and imaginary parts as follows: y = yR + jyI and hk = hk,R + jhk,I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Each symbol, denoted by sk, can be transformed into the qubit form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The methodology for representing symbols in terms of the binary variables depends on the modulation type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The considered modulations are presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 1) BPSK: The BPSK symbols of a form sk ∈ {±1}, can be reformulated into the QUBO form by sk = 2qk − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' In this case, M in (3) takes a value of the number of users, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2 3 4 5 6 7 8 9 10 10 4 10 3 10 2 BER No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' of users per cell User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Average BER Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' BER vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' the number of users per cell under BPSK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2) QPSK: As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2, the QPSK symbols, sk ∈ { ±1±j √ 2 }, reside on a unit circle with 90◦ phase difference between two consecutive symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' They can be represented by two qubits;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' therefore, the term M in (3) becomes the double of a number of users, 2N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Finally, the QPSK symbols can be expressed as sk = [(2q2k−1 − 1) + j (2q2k − 1)] / √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 3) 16-QAM: The 16-QAM modulation encodes four in- formation bits into a complex symbol and correspondingly includes 16 constellation points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The symbols sk ∈ {±b ± jb, ±b ± j3b, ±3b ± jb, ±3b ± j3b}, where b = 1/(3 √ 2), require four qubits to be adapted for the QUBO model, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', sk = [(4q4k−3 + 2q4k−2 − 3) + j (4q4k−1 + 2q4k − 3)] /3 √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' M in (3) becomes the quadruple of a number of users, 4N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 4) 64-QAM: On the other hand, the 64-QAM modulation returns a complex symbol by encoding 16 information bits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2, the constellation points are defined as per Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2 and require six qubits to be adopted for the QUBO model;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' therefore, the term M in (3) becomes the sixtuple of a number of users, 6N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' These symbols can be re-expressed as sk = a (8q6k−5 + 4q6k−4 + 2q6k−3 − 7) + ja (8q6k−2 + 4q6k−1 + 2q6k − 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' IMPLEMENTATION AND RESULTS DISCUSSION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Implementation The system model considered in the analysis represents a N- end user uplink NOMA system that employs BPSK modulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' As illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 1, the base station is located at a coordinate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' We assume that the first and the farthest users are located 50 and 100 m away from the base station, respectively, while the other intermediate nodes are evenly distributed in-between.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' For practical purposes, we apply the standardized scenarios described in [13] and [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The performance of the exploited solvers (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', BF, SIC and QA) were examined by varying the transmit power from −40 dBm to 24 dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Moreover, the environment of data transmission is considered to be a free space with line-of-sight propagation which relates to the path- loss exponent τ = 2 [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 40 30 20 10 0 10 20 10 2 10 1 10 0 BF Bit error rate Transmit power, dBm U 1 U 2 U 3 QA SIC Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The BER performance vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' the transmit power for a three- user NOMA scenario, with different decoding techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='07 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='07 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='07 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='07 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='00 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='00 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='00 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='00 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='94 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='19 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='39 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='06 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='54 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='54 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='54 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='54 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='07 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='74 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='51 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='51 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='37 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='49 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='74 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='74 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='65 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='50 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='38 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='00 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='32 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='81 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='89 QA: p T D T R T A T p 14 10 10 30 Transmit power, dBm SIC BF Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Comparison between the decoding techniques in terms of simulation time for five (5) samples (in ms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The QA method was implemented on the proposed system model using D-Wave’s Advantage QPU [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' It is important to mention that the parallelization procedure was used to save the simulation time on the QA computer [3], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', 5 instances of the problem were run at the same time on QPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Since the 3-user BPSK problem requires only 3 logical qubits, 5 instances would occupy 15 logical qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' In the analysis of simulation time, the following terms are used as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' QPU Programming Time (Tp) is the time taken for programming the couplers and biases of the chip in accordance with the QUBO model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' QPU Sampling Time (Ts) is the total time for simulation of R samples and consists of the annealing time (Ta), the readout time (Tr), and the delay time (Td) for every single sample [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' For the sake of simplicity, we declare the following terms: the total QPU Annealing Time (TA = R ·Ta), the total QPU Readout Time (TR = R · Tr), and the QPU Delay Time (TD = R · Td).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Tp, Ts, QPU Access Overhead Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Simulation time (in ms) of the decoding techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Technique for 5 samples for 1 sample SIC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='066 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='958 BF 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='006 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='535 QA QPU Service Time 148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='116 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='984 Tp 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='069 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='068 TA 20 20 TR 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='145 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='68 TD 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='54 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='54 ∆ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='835 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='86 ∆p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='527 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='836 Time (∆) and Post-processing Overhead Time (∆p) constitute QPU Service Time, which is considered as the total time taken for the QA simulation excluding internet delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Discussion In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 3, we examine the influence of the number of users per cell on the BER performance in the NOMA system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Particularly, the transmit power and the AWGN power were set to 10 dBm and −60 dBm, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' As expected, the average BER performance degrades with the increase in the number of users per cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' It is seen from the plot that, for the number of users greater than 6, the difference between the BER curves becomes quite similar to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Therefore, we apply the 3-user NOMA scenario in the further analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' In Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 4 and 5, we compare the SIC, BF and QA decoding techniques in terms of the BER performance and simulation time, with the noise power set to σ2 n = −30 dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' QA was simulated for particular transmit power levels, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', P = {−30, −10, 10, 14} dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The number of QA simulations per power level was taken to ensure a 1% accuracy with respect to the BER performance of BF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Overall, about 380 simulations (with 5 problems at a time) were performed on QPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 4 illustrates the BER performances of each decoding method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The BER curves can be characterized by different behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' It can be seen from the U1’s curve, the SIC and BF performances coincide up to −5 dBm, and then SIC starts outperforming BF over a short transmit power range (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', from −5 dBm to 10 dBm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' However, afterwards, SIC starts experiencing noticeable performance degradation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' At the same time, U2 has identical BER for SIC and BF up to 10 dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' After this point, there is a slight improvement of the SIC curve, but, in general, its performance is much worse than that of BF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' What stands out for U3 is the equal performance of SIC and BF for transmit power less than 5 dBm, thereafter, the difference between them begins to grow considerably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The performance of BF improves remarkably after 5 dBm, whereas the SIC curve enhances minimally until 15 dBm with the following saturation after this point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' In general, the QA, BF and SIC curves follow the same trend till 10 dBm, but after this level, the SIC performance degrades substantially, while the BER result of QA is approximately the same as BF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The reason for the SIC’s low performance could be insufficient differences between the end-users’ power levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 5 presents the timing data for each technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' As can be seen from the histogram plot, SIC shows the fastest execution among the presented techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' As expected, the second fastest technique is BF, since it needs to iterate over all possible combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The QA execution time interval consists of several timing sub-intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' While Tp, TA and TD are the same for all cases, TR shows a slight variation, since the reading time depends on the position of exploited physical qubits on the chip and on the number of used qubits (more time is needed for a larger number of qubits) [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The dependence on the number of qubits could be noticed in Table I, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', TR for 1 sample is twice as fast as TR for 5 samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Overall, the total time taken for QA execution is about 30 times more than the SIC simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' However, it is important to mention that QA needs to simulate the same problem R number of times (in our case it is set to 1000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Furthermore, the problem could be addressed by the parallelization method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' From Table I, it is clearly noticeable that the execution of 5 instances in parallel is more than 3 times faster than executing the same number of samples in a sequential order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Therefore, one could potentially conclude that the overall QA simulation time can be decreased by simulating multiple problem instances at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' CONCLUSION To mitigate the problem of spectrum scarcity and present an alternative for SIC, this work aims at evaluating the per- formance of QA-aided ML detection for NOMA systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The ML problem was firstly described in terms of the QUBO model to enable the integration of the problem with QPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' For 3-user NOMA under BPSK modulation, the BER performance of QA is approximately the same as the BF method, but QA takes longer time to execute due to the current hardware specifics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' The parallelization method seems to be a potential solution that could decrease the execution time of QA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Additionally, the analogous noises in QA could be suppressed with coming of the next-generation QA hardware, and the time taken for error alleviation would be reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' This will pave the way for computing time-dependent operations on QA including the QA- assisted ML decoding technique for future NOMA systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' ACKNOWLEDGEMENT This work was supported by the Nazarbayev University (NU) Social Policy grant, the NU FDCRP Grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 240919FD3935 and the NU CRP Grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 11022021CRP1513.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' APPENDIX A QUBO MODEL COEFFICIENTS In this section, we present the coefficients for the QUBO model for different modulation types2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 1) BPSK: The corresponding QB ij values can be found as QB ii = P � −4hi,R � N � l=1 hl,R−hi,R � −4hi,I � N � l=1 hl,I−hi,I �� − √ P (4yRhi,R + 4yIhi,I) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='1) QB ij = P (8hi,Rhj,R + 8hi,Ihj,I) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='2) 2Note that the equations involving the positive integer variables i and j must satisfy the condition i < j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2) QPSK: The QQ ij values can be found using (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='3), (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='4) and the equations given below QQ (2i−1),(2i) = 0, ∀i ≥ 1, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='5) QQ (2i−1),(2j−1) = QQ (2i),(2j) = P 2 (8hi,Rhj,R + 8hi,Ihj,I) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='6) QQ (2i−1),(2j) = P 2 (8hi,Ihj,R − 8hi,Rhj,I) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='7) QQ (2i),(2j−1) = P 2 (−8hi,Ihj,R + 8hi,Rhj,I) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='8) 3) 16-QAM: The Q16Q ij values can be found using Q16Q (4i−3),(4i−1) = Q16Q (4i−3),(4i) = Q16Q (4i−2),(4i−1) = Q16Q (4i−2),(4i) = 0, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='13) Q16Q (4i−3),(4i−2) = Q16Q (4i−1),(4i) = 8P 9 � |hi,R|2 + |hi,I|2� , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='14) Q16Q (4i−3),(4j−2) = Q16Q (4i−2),(4j−3) = Q16Q (4i),(4j−1) = Q16Q (4i−1),(4j) = P 9 (8hi,Rhj,R + 8hi,Ihj,I) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='15) Q16Q (4i−2),(4j−2) = Q16Q (4i),(4j) = P 9 (4hi,Rhj,R + 4hi,Ihj,I) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='16) Q16Q (4i−1),(4j−1) = Q16Q (4i−3),(4j−3) = P 9 (16hi,Rhj,R + 16hi,Ihj,I) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='17) Q16Q (4i−2),(4j−1) = Q16Q (4i−3),(4j) = 8P 9 (−hi,Rhj,I + hi,Ihj,R) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='18) Q16Q (4i−1),(4j−2) = Q16Q (4i),(4j−3) = P 9 (−8hi,Ihj,R + 8hi,Rhj,I) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='19) Q16Q (4i−2),(4j) = P 9 (−4hi,Rhj,I + 4hi,Ihj,R) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='20) Q16Q (4i),(4j−2) = P 9 (−4hi,Ihj,R + 4hi,Rhj,I) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='21) Q16Q (4i−1),(4j−3) = P 9 (−16hi,Ihj,R + 16hi,Rhj,I) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='22) Q16Q (4i−3),(4j−1) = P 9 (−16hi,Rhj,I + 16hi,Ihj,R) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='23) 4) 64-QAM: The derivations of Q64Q ij values are omitted due to the submission page limit and will be included in the extended version, if accepted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' REFERENCES [1] “Cisco Annual Internet Report Cisco Annual Internet Report (2018–2023) White Paper,” Cisco, March 2020, [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='cisco.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='com/c/en/us/solutions/collateral/executive- perspectives/annual-internet-report/white-paper-c11-741490.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Kasi and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Jamieson, “Towards quantum belief propagation for LDPC decoding in wireless networks,” 26th Annu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Mobile Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', London, UK, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 1-14, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' QQ (2i−1),(2i−1) = P 2 � −4hi,R �� N � l=1 hl,R − hi,R � − � N � l=1 hl,I − hi,I �� − 4hi,I �� N � l=1 hl,R − hi,R � + � N � l=1 hl,I − hi,I ��� − √ 2P (2yRhi,R + 2yIhi,I) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='3) QQ (2i),(2i) = P 2 � −4hi,R �� N � l=1 hl,R − hi,R � + � N � l=1 hl,I − hi,I �� − 4hi,I � − � N � l=1 hl,R − hi,R � + � N � l=1 hl,I − hi,I ��� − √ 2P (−2yRhi,I + 2yIhi,R) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='4) Q16Q (4i−3),(4i−3) = P 9 � −4hi,R � hi,R + 3 �� N � k=1 hk,R − hi,R � − � N � k=1 hk,I − hi,I ��� −4hi,I � hi,I + 3 �� N � k=1 hk,R − hi,R � + � N � k=1 hk,I − hi,I ���� − √ 2P 3 (4yRhi,R + 4yIhi,I) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='9) Q16Q (4i−2),(4i−2) = P 9 � −4hi,R � hi,R + 3 2 �� N � k=1 hk,R − hi,R � − � N � k=1 hk,I − hi,I ��� −4hi,I � hi,I + 3 2 �� N � k=1 hk,R − hi,R � + � N � k=1 hk,I − hi,I ���� − √ 2P 3 (2yRhi,R + 2yIhi,I) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='10) Q16Q (4i−1),(4i−1) = P 9 � −4hi,R � hi,R + 3 �� N � k=1 hk,R − hi,R � + � N � k=1 hk,I − hi,I ��� −4hi,I � hi,I + 3 � − � N � k=1 hk,R − hi,R � + � N � k=1 hk,I − hi,I ���� − √ 2P 3 (−4yRhi,I + 4yIhi,R) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='11) Q16Q (4i),(4i) = P 9 � −4hi,R � hi,R + 3 2 �� N � k=1 hk,R − hi,R � + � N � k=1 hk,I − hi,I ��� −4hi,I � hi,I + 3 2 � − � N � k=1 hk,R − hi,R � + � N � k=1 hk,I − hi,I ���� − √ 2P 3 (−2yRhi,I + 2yIhi,R) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='12) [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Kim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Venturelli, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Jamieson, “Leveraging Quantum Annealing for Large MIMO Processing in Centralized Radio Access Networks,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' of the ACM Special Interest Group on Data Communication, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 241-255, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [4] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Tabi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', “Evaluation of Quantum Annealer Performance via the Massive MIMO Problem,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 131658-131671, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Kizilirmak, “Quantum Annealing Approach to NOMA Signal Detection,” 12th Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Digital Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' (CSNDSP), Porto, Portugal, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 1-5, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [6] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Ishizaki, “Computational Method Using Quantum Annealing for TDMA Scheduling Problem in Wireless Sensor Networks,” 13th Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' (ICSPCS), Australia, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 1-9, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Kizilirmak, “Non-Orthogonal Multiple Access (NOMA) for 5G Networks”, Towards 5G Wireless Networks - A Physical Layer Perspec- tive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' London, United Kingdom: IntechOpen, 2016 [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='intechopen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='com/chapters/52822 [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Makki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', “A Survey of NOMA: Current Status and Open Research Challenges,” IEEE Open J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 179-189, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [9] “Error Sources for Problem Representation” D-Wave System Documentation, 2021 [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Available: https://docs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='dwavesys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='com/docs/latest/c qpu ice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='html [Accessed Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [10] “Solver Parameters,” D-Wave System Doc- umentation, 2021 [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Available: https://docs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='dwavesys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='com/docs/latest/c solver parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='html [Accessed Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [11] “Constraints Example: Minor-Embedding” D-Wave System Documentation, 2021 [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Available: https://docs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='dwavesys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='com/docs/latest/c gs 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='html[Accessed Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [12] “D-Wave QPU Architecture: Topologies” D-Wave System Documentation, 2021 [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Available: https://docs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='dwavesys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='com/docs/latest/c gs 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='html[Accessed Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [13] “LTE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Evolved Universal Terrestrial Radio Access (E-UTRA);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Base Sta- tion (BS) radio transmission and reception (3GPP TS 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='104 version 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='0 Release 9),” ETSI, France, Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' RTS/TSGR-0436104v940, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [14] “LTE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Evolved Universal Terrestrial Radio Access (E-UTRA);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' User Equipment (UE) radio transmission and reception (3GPP TS 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='101 ver- sion 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='0 Release 14),” ETSI, France, Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' RTS/TSGR- 0436101ve30, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Rappaport, “Mobile Radio Propagation: Large-Scale Path Loss,” Wire- less Communications Principles and Practice, 2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=', Prentice Hall, 2001, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 69-138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' [16] “Operation and Timing” in D-Wave System Documentation, 2021 [On- line].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' Available: https://docs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='dwavesys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='com/docs/latest/c qpu timing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content='html [Accessed 5 Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} +page_content=' 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE2T4oBgHgl3EQfaQc9/content/2301.03872v1.pdf'} diff --git a/cdAzT4oBgHgl3EQfLfvk/content/tmp_files/2301.01117v1.pdf.txt b/cdAzT4oBgHgl3EQfLfvk/content/tmp_files/2301.01117v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..410af7055a12050b6847c065d0c438d2e4914aa2 --- /dev/null +++ b/cdAzT4oBgHgl3EQfLfvk/content/tmp_files/2301.01117v1.pdf.txt @@ -0,0 +1,992 @@ +arXiv:2301.01117v1 [math.AG] 3 Jan 2023 +CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A +GIVEN CURVE +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +Abstract. In the present note we construct new families of free plane curves +starting from a curve C and adding high order inflectional tangent lines of C, +lines joining the singularities of the curve C, or lines in the tangent cone of some +singularities of C. +These lines L have in common that the intersection C ∩ L +consists of a small number of points. We introduce the notion of a supersolvable +plane curve and conjecture that such curves are always free, as in the known case of +line arrangements. Some evidence for this conjecture is given as well, both in terms +of a general result in the case of quasi homogeneous singularities and in terms of +specific examples. +1. Introduction +Our goal in this paper is to construct new free or nearly curves by adding inflec- +tional tangents or lines passing through the singularities of a given plane projective +curve. Sometimes, when high order inflectional tangents are missing, lines in the +tangent cones of the singularities may replace them successfully. The use of tangent +cones is a must when we want to get supersolvable curves with the modular point +belonging to a non-linear irreducible component, see Definition 1.9. +To determine the existence of inflectional tangents, we start by recalling some +facts about inflection points. Let C : F = 0 be a reduced plane curve in the complex +projective plane P2 which is defined by a homogeneous polynomial F ∈ S = C[x, y, z] +of degree d ≥ 2. The Hessian of F is given by the following well-known formula +(1.1) +H = det + + +Fxx +Fxy +Fxz +Fxy +Fyy +Fyz +Fxz +Fyz +Fzz + + . +Let HC : H = 0 be the Hessian curve associated to C. It is known that the inter- +section XC = C ∩ HC consists exactly of the set of inflection points IC of C union +with the set of singular points YC of C. Recall that if p ∈ C is a smooth point of +this curve, and TpC denotes the projective line tangent to C at p, then the inflection +2010 Mathematics Subject Classification. Primary 14H50; Secondary 14B05, 13D02, 32S22. +Key words and phrases. plane curve. +A. Dimca was partially supported by the Romanian Ministry of Research and Innovation, CNCS - +UEFISCDI, Grant PN-III-P4-ID-PCE-2020-0029, within PNCDI III. +P. Pokora was partially supported by the National Science Center (Poland) Sonata Grant Nr +2018/31/D/ST1/00177. +1 + +2 +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +order of p is by definition +(1.2) +ιp(C) = (C, TpC)p − 2, +where (C, TpC)p denotes the intersection multiplicity of the curves C and TpC at the +common point p. Moreover, we say that p is an inflection point of C, i.e., p ∈ IC, if +and only if ιp(C) > 0. +The intersection multiplicity (C, HC)p of the curves C and HC at the point p is a +key invariant in understanding the geometry of the plane curve C. When p ∈ IC is +an inflection point, then the relation between the inflection order ιp(C) of p and the +intersection multiplicity (C, HC)p is well-known, see for instance [14, Theorem 9.7 +and Corollary 9.10]. +Theorem 1.1. For any reduced plane curve C of degree d ≥ 2 and any smooth point +p ∈ C, one has +ιp(C) = (C, HC)p. +It is clear that ιp(C) ≤ d − 2, except the case when p sits on a line L = TpC which +is an irreducible component of C. In the later case, one has ιp(C) = ∞, and it is easy +to check that the line L is also an irreducible component of the Hessian curve HC. +From now on, while searching for the inflection points, we assume that no irreducible +component of C is a line. +When p ∈ YC is a singular point, then the description of the intersection multi- +plicity (C, HC)p is more subtle. Let TCp(C) be the reduced projective tangent cone +of the curve C at p. For any line L ∈ TCp(C) we define the corresponding tangential +multiplicity +mL(C) = (L, CL)p, +where (CL, p) is the union of all branches of the singularity (C, p) whose tangent line +at p coincides with L. With this notation, one has the following general result, which +is a user-friendly reformulation of [13, Proposition 25]. +Theorem 1.2. Assume that C is a reduced plane curve and that p ∈ C is any +singular point. Then one has +(C, HC)p = 3µp(C) + mp(C) − 3 + +� +L∈TCp(C) +mL(C), +where µp(C) is the Milnor number and mp(C) is the multiplicity of the singularity +(C, p). +The case when (C, p) is irreducible is also stated in [16, Theorem 2.1.9]. Indeed, in +this case, one has µp(C) = 2δp(C) with δp(C) being the δ-invariant of the singularity +(C, p). We discuss in detail the statement of Theorem 1.2 and give some examples +in the next section. +Our new results are the following. Consider the case when (C, p) is an ordinary +k-multiple point, that is there are k smooth branches C1, . . . , Ck at p, with distinct +tangent lines L1, . . . , Lk. If we set mj = (Cj, Lj)p ≥ 2 for j ∈ {1, . . . , k}, then we +call (C, p) an ordinary k-multiple point of type (m1, . . . , mk). Moreover, we say that +(C, p) is an ordinary simple k-multiple point if mj = 2 for all j ∈ {1, . . . , k}. + +CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE +3 +Theorem 1.3. For any reduced plane curve C of degree d ≥ 3 and any singular +point p ∈ C with multiplicity mp(C) = k, one has +(C, HC)p ≥ 3k(k − 1), +and equality holds if and only if (C, p) is an ordinary simple k-multiple point. +Corollary 1.4. For any reduced plane curve C of degree d ≥ 3 and having s singular +points, one has +i(C) ≤ 3d(d − 2) − 6s. +More precisely, if nk denotes the number of singular points of C of multiplicity k, +then +i(C) ≤ 3d(d − 2) − +� +k +3k(k − 1)nk. +The equality occurs if and only if all the singularities of C are ordinary simple k- +multiple points for various k. +This result is a significant improvement of the inequality +� +p∈IC +ιp ≤ 3d(d − 2) − s +which is given in [14, Corollary 9.9]. Our next result is a general construction of free +curves by adding inflectional tangents and lines passing through the singularities of +the initial curve C, which is a curve of Thom-Sebastiani type. Let m ≥ 2 be a +positive integer and let ℓj(x, y) with j ∈ {1, . . . , m} be m distinct linear forms in x +and y. Consider the curve +C : F = +m +� +j=1 +ℓj(x, y)kj − zd = 0, +in P2, where kj ≥ 1 are positive integers such that � kj = d, and the family of lines +Lj : ℓj(x, y) = 0. The line Lj is the inflectional tangent at pj if kj = 1, and it is the +reduced tangent cone at the singularity pj when kj > 1. +Theorem 1.5. With the notation as above, the curve +C′ = C ∪ +m +� +j=1 +Lj : +F ′ = F · +m +� +j=1 +ℓj = 0 +of degree d + m is free with the exponents (m − 1, d). Moreover, if L : z = 0 is the +line passing through all the points pj of C, then the curve +C′′ = C′ ∪ L : +F ′′ = zF · +m +� +j=1 +ℓj = 0 +of degree d + m + 1 is free with the exponents (m − 1, d + 1). + +4 +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +Starting with a smooth Fermat type curve and adding all of its inflectional tangents +and the 3 coordinate axes, one gets again a free curve, as the following result shows. +Consider the Fermat curve C : xd + yd + zd = 0. Let ǫ be any root of the equation +td+1 = 0 in C. Then the line Lǫ : y = ǫx intersects C only at the point pǫ = (1 : ǫ : 0). +Hence pǫ is an inflection point of the maximal order and hence i(Lǫ) = d − 2, i.e., +one has the equality in (2.9). In this way, we get d inflection points, which are just +the intersection of C with the line z = 0. Cyclically permuting x, y, z, we get all the +3d inflection points of this type, and these are all the inflection points of C by (2.7). +The following result is a special case of Theorem 1.5, when kj = 1 for all j. +Corollary 1.6. The union C′ : F ′ = (xd + yd)F = 0 of the smooth Fermat curve +C : F = xd + yd + zd = 0 of degree d with the d inflectional tangents Lǫ meeting at +one point, is a free curve of degree 2d and the exponents are (d − 1, d). When d = 3, +the curve C′ is maximizing of degree 6. The union C′′ : F ′′ = zF ′ = 0 of the curve +C′ with the line L : z = 0 passing through all the flex points pǫ of C, is a free curve +of degree 2d + 1 and the exponents are (d − 1, d). When d = 3, then the curve C′ is +maximizing of degree 7. +Note that if we continue to add just inflectional tangents, the resulting curve is no +longer a free curve. For instance, the curve +C′′ : F ′′ = (x3 + y3 + z3)(x3 + y3)(y3 + z3) = 0 +is nearly free with the exponents (4, 5), and the curve +C′′′ : F ′′′ = (x3 + y3 + z3)(x3 + y3)(y3 + z3)(x3 + z3) = 0 +is not even nearly free. However, we have the following general result. +Theorem 1.7. The smooth Fermat curve C : F = xd + yd + zd = 0 has exactly 3d +inflectional tangents and their union forms the following line arrangement +A : (xd + yd)(yd + zd)(xd + zd) = 0. +The union of the curve C, the lines in A, and the 3 coordinate axes produce a new +curve +C′ : F ′ = xyz(xd + yd)(yd + zd)(xd + zd)(xd + yd + zd) = 0 +of degree 4d + 3, which is free with the exponents (2d + 1, 2d + 1). Moreover, the +curve C′′ ⊂ C′ given by +C′′ : F ′′ = xy(yd + zd)(xd + zd)(xd + yd + zd) = 0 +has degree 3d + 2 and it is free with the exponents (d + 1, 2d). +When d = 2, then the curve C′′ is maximizing of degree 8. +It is easy to prove that the curve +C : F = xmym + ymzm + xmzm = 0 +has no infection points using Theorem 1.2, see Example 6.3 below. To get a free +curve from C, we may add two of the three tangent cones, or just one tangent cone +and two lines joining singular points. Indeed, one has the following result. + +CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE +5 +Theorem 1.8. The curve +C′ : F ′ = (xmym + ymzm + xmzm)(xm + ym)(ym + zm) = 0 +has degree 4m and it is free with exponents (2m − 1, 2m) for any m ≥ 2. The curve +C′′ : F ′′ = yz(xmym + ymzm + xmzm)(ym + zm) = 0 +has degree 3m + 2 and it is free with exponents (m + 1, 2m) for any m ≥ 2. +Definition 1.9. Given a reduced plane curve C, we say that p ∈ C is a modular +point for C if the central projection +πp : P2 \ {p} → P1 +induces a locally trivial fibration of the complement M(C) = P2 \ C. We say that a +reduced plane curve C is supersolvable if it has at least one modular point. +The map induced by πp is a locally trivial fibration if and only if for any line Lp +passing through p and not an irreducible component of C, one has +(C, Lp)p = multp(C) and (C, Lp)q = 1 for any q ∈ C ∩ Lp, q ̸= p. +This fibration has as base and as fiber a projective line P1 with a number of points +deleted, and hence the complement M(C) is a K(π, 1) space. +When C is a line +arrangement, this definition of a modular point coincides with the usual one, and a +line arrangement is supersolvable by definition if it has a modular point. In particular, +the existence of a modular point for a line arrangement C implies that C is free, see +for all these well known facts [2, 17]. We venture to make the following. +Conjecture 1.10. A supersolvable plane curve C is free. +One setting where this conjecture holds is the following. +Theorem 1.11. Let C0 be a reduced plane curve, let p ∈ M(C0) be a point and let +A be the set of lines L passing through p such that there is a point q ∈ L ∩ C0 with +(C0, L)q > 1. Assume that all the singularities of the curve C obtained by adding all +the lines in A to C0 are quasi homogeneous. Then C is supersolvable and free. In +particular, this holds when all the singularities s of C0 have multiplicity 2, and p is +not on any tangent cone TCs(C0) for (C0, s) a singularity with µ(C0, 0) ≥ 3. +When C0 is a plane curve having only nodes A1 and cusps A2 as singularities, and +in addition p is a generic point, this result is known, see [3, Theorem 1.12]. Moreover, +it is easy to see that the free curves C′ and C′′ constructed above in Theorem 1.5 +are special cases of the construction in Theorem 1.11. The free curve C′′ constructed +above in Theorem 1.8 is of a different nature, since in this case p ∈ C0 and the curve +C has not only quasi homogeneous singularities. It is interesting that it gives new +examples where Conjecture 1.10 holds, in view of the following result. +Proposition 1.12. The free curve C′′ constructed in Theorem 1.8 is supersolvable. +In particular, the associated complement M(C′′) is a K(π, 1) space. + +6 +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +We explain in Example 4.11 that the other free curves constructed above in The- +orems 1.7 and 1.8 are not supersolvable. +The organization of the paper goes as follows. In Section 2, we discuss the proof +of Theorem 1.2 explaining all the necessary details. In Section 3 we recall basic facts +on the free, nearly free and maximizing curves. +In Section 4 we deliver our proofs of Theorems 1.3, 1.5, 1.7, 1.8 and 1.11, and of +Proposition 1.12. Then, in Section 5, we describe all smooth plane quartic curves +admitting the maximal possible number of flexes of maximal order, i.e., flexes of order +2. There are two such curves, and only one of them, the Fermat curve, yields free +curves as in Corollary 1.6 and in Theorem 1.7. In the final section we discuss some +singular plane curves and the free curves obtained from them, which are sometimes +supersolvable as well, given rise to supersolvable free curves not covered by our +general Theorem 1.11. +2. Discussion on Theorem 1.2 and some examples +The paper [13] uses rather heavy notations, and perhaps due to this fact has a +smaller impact than it deserves. Let us introduce some notation. For a reduced +plane curve C : F = 0 and any point q = (α : β : γ) ∈ P2, we define the polar ∆q(C) +of C with respect to q by the equation +(2.1) +∆q(C) : αFx + βFy + γFz = 0. +For a property P, the authors of [13] use the notation 1P to denote 1 if P is true +and 0 otherwise, see the discussion before Theorem 2 in [13]. The first equality in +[13, Proposition 25] gives the expression of the intersection multiplicity (C, ∆q(C))p +for any singular point p ∈ C and any point q ∈ P2. Using our discussion above, +we see that for q ̸= p, q not on any line L in the tangent cone TCp(C), this mul- +tiplicity (C, ∆q(C))p is given by a double sum S, i.e., the second sum involving the +characteristic functions 1P vanishes. With this observation, the second equality in +[13, Proposition 25] can be stated as +(2.2) +(C, HC)p = 3(C, ∆q(C))p + Ip, +where Ip = � +i∈I(i(i) +p − 2). Here I is a set of indices parametrizing the pro-branches +of (C, p) and i(i) +p +is the tangential intersection number of the pro-branch Bi, see [13, +Definition 22]. Recall that any branch B of a plane curve singularity (C, 0) at the +origin of C2, such that x = 0 is not a tangent line, can be defined by a Weierstrass +polynomial +ΓB(x, y) = +� +j=1,mB +(y − φB,j(x)) +where mB is the multiplicity of the branch B and there is an analytic function +φB(x) ∈ C{x} such that +φB,j(x) = φB(exp(2πij/mB)x +1 +mB ). +With this notation, the branch B has mB associated pro-branches +Bj : y − φB,j(x) = 0 + +CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE +7 +and the corresponding tangential intersection number is given by +i +Bj +0 += ord(φB,j(x) − φ′ +B,j(0)x) ∈ Q. +It follows that i +Bj +0 += iBk +0 +for any 0 ≤ j ≤ k ≤ mB and hence +mBi +Bj +0 += (L, CL)0, +for any j, with L the tangent line to B and CL = B. This discussion implies that +one has +(2.3) +Ip = +� +i∈I +(i(i) +p − 2) = +� +L∈TCp(C) +mL(C) − 2mp(C), +since clearly |I| = mp(C), each branch having exactly a number of pro-branches given +by the multiplicity of that branch. Next, we return to the intersection multiplicity +(C, ∆q(C))p. We can assume that p = (0 : 0 : 1) and set f(x, y) = F(x, y, 1), then +one has +fx(x, y) = Fx(x, y, 1), fy(x, y) = Fy(x, y, 1), and xfx + yfy + Fz(x, y, 1) = f. +If we define the generic local polar variety of the singularity +(C, 0) : f(x, y) = 0 +by the equation +∆0(C) : α′fx + β′fy = 0, +with (α′ : β′) ∈ P1 being a generic point, it is easy to see that +(2.4) +(C, ∆0(C))0 = (C, ∆q(C))p. +In fact, the line L′ : z = 0 is clearly not in the tangent cone TCp(C) since p /∈ L′, +and hence we may take γ = 0 and (α : β) ∈ P1 generic in the formula (2.1). In order +to compute this local intersection number +κ0(C) = (C, ∆0(C))0, +which is also called the κ-invariant of the singularity (C, 0), we can use for instance +[12, Proposition 3.38] and get +(2.5) +κ0(C) = µ(C, 0) + m0(C, 0) − 1. +If we use this formula for the singularity (C, p), we get from (2.2) and (2.3) the +following equality +(C, HC)p = 3(µp(C) + mp(C) − 1) + +� +L∈TCp(C) +mL(C) − 2mp(C) = += 3µp(C) + mp(C) − 3 + +� +L∈TCp(C) +mL(C). +This proves our reformulation of [13, Proposition 25] in Theorem 1.2. + +8 +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +In order to construct free plane curves starting with a curve C of degree d, by +adding lines, in particular inflectional tangents, we have to look for lines L such that +the sum +(2.6) +i(L) = +� +p∈L∩IC, TpC=L +ιp(C) +is as large as possible with respect to the degree d. Given a curve C, first we use +Theorem 1.2 to count the total number of inflection points of C, namely +(2.7) +i(C) = +� +p∈IC +ιp(C) = 3d(d − 2) − +� +p∈YC +(C, HC)p. +One clearly has for any line L +(2.8) +i(L) ≤ i(C), +and the equality holds if and only if for any point p ∈ IC one has TpC = L. Moreover, +(2.9) +i(L) ≤ +� +p∈L∩C +((C, L)p − 2) = d − 2|L ∩ C|, +and the equality holds if and only if for any point p ∈ L ∩ C one has TpC = L. +Example 2.1. Let us consider the case when (C, p) is a node A1, that is there are +two smooth branches (C1, p) and (C2, p) meeting transversally at p. Let T1 = TpC1 +and T2 = TpC2 be the associated tangent lines and define the type of the node (C, p) +to be the pair of integers +(m1, m2) = ((C1, T1)p, (C2, T2)p). +It is clear that mj ≥ 2 for j = 1, 2. When m1 = m2 = 2, then (C, p) is said to be a +simple node, and one knows that (C, HC)p = 6, see [11, pp. 68–69]. In the general +situation, Theorem 1.2 gives the equality +(C, HC)p = 3 + 2 − 3 + m1 + m2 = m1 + m2 + 2. +More generally, consider the case when (C, p) is an ordinary m-multiple point, that +is there are m smooth branches C1, . . . , Cm with distinct tangent lines L1, . . . , Lm. +If we set mj = (Cj, Lj)p for j = 1, . . . , m, then Theorem 1.2 gives the equality +(C, HC)p = 3(m − 1)2 + m − 3 + +� +j=1,m +mj = m(3m − 5) + +� +j=1,m +mj. +Example 2.2. Let us consider the case when (C, p) is a singularity A2m−1 with +m ≥ 2. Then there are two tangent smooth branches with a common tangent line +L. If we set mL = (C, L)p, then Theorem 1.2 gives the equality +(C, HC)p = 3(2m − 1) + 2 − 3 + mL = 2(3m − 2) + mL. +Example 2.3. Let us consider the case when (C, p) is a singularity A2m with m ≥ 1. +Then there is a unique branch, with a tangent line L. If we set mL = (C, L)p, then +Theorem 1.2 gives the equality +(C, HC)p = 3(2m) + 2 − 3 + mL = 6m − 1 + mL. + +CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE +9 +When (C, p) is a cusp A2, only the value mL = 3 is possible, and hence (C, HC)p = 8 +in this case. +3. Free, nearly free and maximizing curves +In this section we recall some basic facts on free, nearly free and, maximizing +curves in P2 following [6, 7]. +Let +Der(S) = {∂ := a · ∂x + b · ∂y + c · ∂z, a, b, c ∈ S} +be the free S-module of C-linear derivations of the polynomial ring S. For a reduced +curve C : F = 0, we introduce +D(F) = {∂ ∈ Der(S) : ∂ F ∈ ⟨F⟩}, +the graded S-module of derivations preserving the ideal ⟨F⟩. We have the following +decomposition +D(F) = D0(F) ⊕ S · δE, +where δE = x∂x + y∂y + z∂z is the Euler derivation and +D0(F) = {∂ ∈ Der(S) : ∂ F = 0} +is the set of all C-linear derivations of S killing the polynomial F. +Definition 3.1. We say that a reduced curve C : F = 0 is free if D(F), or equiv- +alently D0(F), is a free graded S-module. The exponents (d1, d2) of a free curve C +are the degrees of a basis for the free graded S-module D0(F) which rank 2. +Remark 3.2. The exponents (d1, d2) of a free curve C : F = 0 of degree d are known +to satisfy d1 +d2 = d−1. Conversely, if there are two elements r1, r2 ∈ D0(F), which +are S-linearly independent and satisfy +d1 + d2 = d − 1 +then the curve C is free with exponents (d1, d2), see [18, 19]. +Definition 3.3. The minimal degree of derivations killing F, or of Jacobian syzygies +involving the partial derivatives of F, is defined as +mdr(F) = min{r ∈ N : D0(F)r ̸= 0}. +To check whether a given plane curve is free, one may use the following result by +du Plessis and Wall [9]. +Theorem 3.4. Let C : F = 0 be a reduced plane curve of degree d and let r = +mdr(F). Then the following two cases hold. +a) If r < d/2, then τ(C) ≤ τ(d, r)max = (d − 1)2 − r(d − r − 1) and the equality +holds if and only if the curve C is free. +b) If d/2 ≤ r ≤ d − 1, then τ(C) ≤ τ(d, r)′ +max, where, in this case, we set +τ(d, r)′ +max = τ(d, r)max − +�2r − d + 2 +2 +� +. + +10 +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +Definition 3.5. A reduced curve C : F = 0 of degree d is nearly free if either +mdr(F) < d/2 and τ(C) = τ(d, r)max − 1, or mdr(F) = d/2 and τ(C) = τ(d, r)max. +In addition, the exponents of a nearly free curve C : F = 0 of degree d are given by +the pair (mdr F, d − mdr F). +Definition 3.6. A curve C : F = 0 of degree d having only ADE-singularities is +maximizing if either d = 2m and τ(C) = 3m(m − 1) + 1, or d = 2m + 1 and +τ(C) = 3m2 + 1. +The relation between maximizing curves and free curves is the following, see [6]. +Theorem 3.7. A curve C : F = 0 of degree d having only ADE-singularities is +maximizing if and only if either d = 2m and C is a free curve with the exponents +(m − 1, m), or d = 2m + 1 and C is a free curve with the exponents (m − 1, m + 1). +In the sequel we need the following version of [3, Theorem 1.10]. +Theorem 3.8. Let C : F = 0 be a reduced plane curve of degree d and let p be any +point of C. Let A be the union of the irreducible components of C which are lines +passing through p, and let C′ : G = 0 be the union of the other irreducible components +of C. We assume that p ∈ C′. Let m = |A| and e = deg G. Then r = mdr(F) can +be in one of the following cases. +a) r = e; +b) r = m − 1 and C is free with exponents (m − 1, e); +c) m ≤ r ≤ e − 1. +The only difference of this result with respect to [3, Theorem 1.10] is that here +p ∈ C′. +Proof. The key part of the proof of [3, Theorem 1.10] is contained in [3, Lemma 4.3], +where a Jacobian syzygy +ρ : aFx + bFy + cFz = 0 +is constructed using a differential 2-form ω, and it is shown that this syzygy is +primitive, that is there is no common factor for a, b, c ∈ S. It is in this latter part +that the condition p /∈ C′ was used. If we assume that p = (0 : 0 : 1), it is easy to +see that the Jacobian relation ρ constructed there is still a Jacobian syzygy in our +situation. Moreover, it is a primitive syzygy if and only if G and Gz have no common +factor. Let M ∈ S be an irreducible polynomial which is a common factor for G and +Gz. Note that M cannot involve only x and y, since this would correspond to a line +in C′ passing through p, which is impossible by the definition of C′. It follows that +Mz ̸= 0. If G = MN, then Gz = MzN + MNz, which implies that either M divides +N or M divides Mz. But M cannot divide N, since C′ is reduced. And M cannot +divide Mz, since the degree of Mz as a polynomial in z is strictly smaller than the +corresponding degree of M. This contradiction proves our claim. +□ +4. The proofs of our main results +4.1. Proof of Theorem 1.3. We can assume that p = (0 : 0 : 1) and set f(x, y) = +F(x, y, 1), g(x, y) = jkf(x, y) the initial form of f. Let n be the number of distinct + +CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE +11 +factors of g. If n = k, then using Example 2.1 we have +(C, HC)p = k(3k − 5) + +� +j=1,k +mj ≥ 3k(k − 1), +since mj ≥ 2. Moreover, it is obvious that the equality holds if and only if (C, p) is +an ordinary simple k-multiple point. +Assume now that n < k and let +g(x, y) = ℓa1 +1 · ... · ℓan +n +be the decomposition of g as a product of linear factors. Recall that for two isolated +plane curve singularities (X, 0) and (Y, 0) with no common component one has +(4.1) +µ(X ∪ Y, 0) = µ(X, 0) + µ(Y, 0) + 2(X, Y )0 − 1, +see [20, Theorem 6.5.1]. Let Cj : fj = 0 be the union of the branches of (C, p) +which are tangent to the line Lj : ℓj = 0 with j ∈ {1, . . . , n}. +Then (C, p) = +(C1, p) ∪ ... ∪ (Cn, p) and we estimate µp(C) = µ(C, p) using the above formula. To +start with, note that since jajfj = ℓ +aj +j it follows that +µ(Cj, 0) ≥ aj(aj − 1). +Assume that for some m < n one has +µ((C1, p) ∪ ... ∪ (Cm, p)) ≥ (a1 + . . . + am)2 − (a1 + . . . + am) − m + 1. +Then it follows that +µ((C1, p) ∪ ... ∪ (Cm, p) ∪ (Cm+1, p)) ≥ ((a1 + . . . + am)2 − (a1 + . . . + am) − m + 1)+ ++am+1(am+1 − 1) + 2am+1(a1 + . . . + am) − 1 = += (a1 + . . . + am+1)2 − (a1 + . . . + am+1) − m. +Since a1 + . . . + an = k, this yields the inequality +µ(C, p) ≥ k2 − k − n + 1. +On the other hand, one has +mLj = (Cj, Lj)p ≥ aj + 1 +and hence +� +j +mLj ≥ k + n. +Using Theorem 1.2 we get +(C, HC)p ≥ 3(k2 − k − n + 1) + k − 3 + k + n = 3k(k − 1) + 2(k − n) > 3k(k − 1), +since we have assumed n < k. This completes the proof of Theorem 1.3. +Corollary 1.4 is an obvious consequence of Theorem 1.3. + +12 +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +4.2. Proof of Theorem 1.5. The curve C was studied in [8, Example 4.5] and it +was shown that the minimal degree of a Jacobian relation for C is given by +mdr(F) = m − 1. +Since the minimal degree of a Jacobian relation can only increase when one adds +lines to a given curve, see [5, Proposition 3.1], it follows that +mdr(F ′) ≥ mdr(F) = m − 1. +The curve C has m inflection points and singularities on the line z = 0, locally +given by equations ukj − vd = 0, located at the points pj = (aj : bj : 0), with +ℓj(aj, bj) = 0 for j ∈ {1, . . . , m}. When we add the line Lj, we get at the point pj +a weighted homogeneous singularity of degree dj = 1 with respect to the weights +w1 = wt(uj) = +1 +kj+1 and w2 = wt(z) = +kj +d(kj+1), where uj = ℓj is a local coordinate +at pj on the line Lj. It follows the following equality involving Tjurina and Milnor +numbers: +τ(C′, pj) = µ(C′, pj) = (1 − w1)(1 − w2) +w1w2 += (d − 1)kj + d. +Hence the total Tjurina number of C′ is +τ(C′) = d(d − 1) + md + (m − 1)2, +since clearly +τ(C′, p) = µ(C′, p) = (m − 1)2. +Now a curve of degree d′ = d + m with r′ = mdr(F ′) satisfies the inequality +τ(C′) ≤ τ(d′, r′)max +where the function +τ(d′, r′)max = (d′ − 1)2 − r′(d′ − 1 − r′) +is a decreasing function of r′ for 2r′ < d′ which follows from Theorem 3.4, and +the equality τ(C′) = τ(d′, r′)max implies that 2r′ < d′ and that C′ is free with the +exponents (r′, d′ − r′ − 1). In our case, we get +τ(d′, m − 1)max = (d + m − 1)2 − d(m − 1) = τ(C′), +and this proves our claim. The proof of the second claim goes analogously. +Remark 4.3. One can check that the curve C′, resp. C′′, can be regarded as a +special case of the curve C constructed in Theorem 1.11, starting from the curve +C0 : F = 0 and p = (0 : 0 : 1) for C′, resp. C0 : zF = 0 and p = (0 : 0 : 1) for C′′. +This is an alternative way to proving Theorem 1.5. + +CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE +13 +4.4. Proof of Theorem 1.7. We start with the following. +Lemma 4.5. Consider the line arrangement +B : g = xyz(xd + yd)(yd + zd)(xd + zd) = 0. +Then mdr(g) = 2d + 1. +Proof. We consider first the subarrangement of B given by +B0 : g0 = xyz(xd + yd)(yd + zd) = 0. +Note that in this arrangement B0 there are two points of multiplicity d+2, connected +by the line y = 0. All the lines pass through one of these two points, and the other +intersection points are all double points. It follows that B0 is a line arrangement of +type ˆL(d + 2, d + 2) as in [4, Definition 4.9], and +mdr(g0) = d + 1, +see [4, Example 4.11]. To get the arrangement B from B0, we have to add the d lines +L1, ..., Ld given by xd + zd = 0. At the stage k, where 1 ≤ k ≤ d, we have to add the +line Lk to the arrangement +Bk = B0 ∪ L1 ∪ ... ∪ Lk−1. +Note that the intersection of Lk and Bk consists of exactly 2d + 2 points. If Bk is +given by the reduced equation fk = 0, for 1 ≤ k ≤ d, it follows from [5, Corollary +6.4] that one has +mdr(fk) = mdr(fk−1) + 1 +for all 1 ≤ k ≤ d. Hence +mdr(g) = mdr(fd) = d + 1 + d = 2d + 1. +□ +Using [5, Theorem 5.1 (b)] we see that mdr(F ′) ≥ 2d + 1. We compute now the +total Tjurina number of the curve C′. This curve has 3d2 nodes A1 and 3 points with +local equation uv(ud + vd) coming from the double points of the line arrangement B +not situated on xyz = 0 and the 3 points of multiplicity d + 2. The line x = 0 in B +contains d double points of this line arrangement, which are precisely the inflection +points of order d − 2 of the Fermat curve C situated on this line. The corresponding +inflectional tangents are the lines given by yd + zd = 0. Therefore, when we add C, +each of these d points becomes a singularity of type D2d+2. Similar remarks apply +to the lines y = 0 and z = 0. It follows that +τ(C′) = 3d2 + 3(d + 1)2 + 3d(2d + 2) = 12d2 + 12d + 3. +On the other hand, we have +τ(4d + 3, 2d + 1)max = (4d + 2)2 − (2d + 1)2 = 12d2 + 12d + 3. +The equality +τ(C′) = τ(4d + 3, 2d + 1)max + +14 +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +implies as above that r′ = mdr(F ′) = 2d + 1 and that C′ is a free curve with the +exponents (2d + 1, 2d + 1). The claims for the curve C′′ are proved in a similar way. +The line arrangement +B′ : g′ = xy(yd + zd)(xd + zd) = 0 +satisfies mdr(g′) = d+1, see [4, Proposition 4.10]. The lines x = 0 and y = 0 contain +each d points of type D2d+2 as above. Besides these points, the line arrangement B′ +has two points of multiplicity d + 1 and d2 + 1 double points. It follows that +τ(C′′) = 2d(2d + 2) + 2d2 + (d2 + 1) = 7d2 + 4d + 1 = τ(3d + 2, d + 1)max. +Remark 4.6. It is interesting to note that the line arrangement formed by the +corresponding 3d inflectional tangent lines is the arrangement +(xd + yd)(yd + zd)(xd + zd) = 0, +which is far from being free. On the other hand, the line dual to the inflection point +pǫ = (1 : ǫ : 0) is L′ +ǫ : x + ǫy = 0, and the union of all these d dual lines obtained +when ǫ varies, is given by xd − yd = 0 when d is odd. Therefore, for d odd, the line +arrangement formed by the corresponding 3d dual lines is precisely the free monomial +(or Fermat) line arrangement +(xd − yd)(yd − zd)(xd − zd) = 0. +The case d = 3 is of course well-known. +4.7. Proof of Theorem 1.8. First we consider the curve C′. The reader can check +the following Jacobian relations r1, r2 ∈ D0(F ′) +r1 : zm−1(xm + ym)F ′ +x − xm−1(ym + zm)F ′ +z = 0 +and +r2 : xym−1(2xm + 3ym)F ′ +x − (2F + y2m)F ′ +y + zym−1(2zm + 3ym)F ′ +z = 0, +where F = xmym + ymzm + xmzm. Since +deg r1 + deg r2 = (2m − 1) + 2m = deg F ′ − 1, +our claim is proved by Remark 3.2. +We consider now the curve C′′. First we show that mdr F ′′ = m + 1. To do this, +we first determine a minimal degree Jacobian syzygy r1 for F. One has for instance +r1 : a1Fx + b1Fy + c1Fz = 0, +where a1 = x(ym − zm), b1 = −y(ym + zm) and c1 = z(ym + zm). Now we apply [5, +Theorem 3.3] and see that if we add a line L0 to C given by an equation ℓ = sy+ty = 0 +such that ℓ divides +sb1 + tc1 = (−sy + tz)(ym + zm) +the resulting curve C0 = C ∪ L0 : F0 = ℓF = 0 has again +mdr F0 = mdr F = m + 1. + +CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE +15 +Moreover, the coefficients of a minimal degree syzygy for F0 can be obtained from +the discussion just before [5, Theorem 3.3]. It follows that one can add one by one +all the lines in the arrangement +yz(ym + zm) = 0 +and get at the end mdr F ′′ = mdr F = m + 1 as we have claimed. To show now that +C′′ is free with the given exponents it is enough to apply Theorem 3.8. +Remark 4.8. If one likes to use Theorem 3.4 as above to prove that the curve +C′ is free, one needs to compute the total Tjurina number τ(C′). +This in turn +is complicated, since the singularities of C′ at the points p1 = (1 : 0 : 0) and +p3 = (0 : 0 : 1) are no longer quasi homogeneous, and hence τ(C′′, pj) < µ(C′′, pj), +for j = 1 and j = 3. In fact, our Theorem 1.8 combined with Theorem 3.4 implies +that +τ(C′′, p1) = τ(C′′, p3) = 5m2 − 2m, +maybe a result not easy to prove otherwise. +4.9. The proof of Theorem 1.11. By its very construction, it is clear that p is a +modular point for C. Let e = deg C0 and m = |A| = multp(C). Hence d = deg(C) = +e + m. Then the fibration +πp : M(C) → B +induced by the central projection with center p has as fiber F the projective line P1 +minus e + 1 points, and as base B the projective line P1 minus m points. It follows +that the Euler number E(M(C)) of the complement M(C) is given by +E(M(C)) = E(F)E(B) = (1 − e)(2 − m). +On the other hand, we know that +E(M(C)) = E(P2) − E(C) = 3 − (µ(C) − d(d − 3)), +where µ(C) is the total Milnor number of C. The above two equations give +µ(C) = (e + m)2 − em − 2m − e + 1. +Since all the singularities of C are supposed to be quasi homogeneous, we get +τ(C) = µ(C) = (e + m)2 − em − 2m − e + 1. +To show that C : F = 0 is free we apply [3, Theorem 1.10]. It follows that r = mdr F +satisfies one of the following properties. +a) r = e. Then +τ(e + m, e)max = (e + m − 1)2 − e(m − 1) = τ(C), +which implies that e < m and C is free with exponents (e, m − 1) using +Theorem 3.4. +b) r = m − 1. Then +τ(e + m, m − 1)max = (e + m − 1)2 − (m − 1)e = τ(C), +which implies that m ≤ e and C is free with exponents (m − 1, e) again by +Theorem 3.4. + +16 +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +c) m ≤ r < e. This case is impossible, since it implies +τ(C) ≤ τ(e + m, r)max < τ(e + m, m − 1)max = τ(C). +The first inequality follows from Theorem 3.4, and the second one by the fact +that the function t �→ τ(e + m, t)max is decreasing for 2t < e + m. +To prove the last claim in Theorem 1.11, first notice that the possible non quasi +homogeneous singularities of C may occur only at the intersection s = L∩C0, where +s is a singular point of C0 and L is a line in A. If mults C0 = 2 and L is not in +the corresponding tangent cone TCs(C0) as we have assumed, then mults C = 3 and +the 3-jet j3g of a local equation (C, s) : g = 0 is a binary cubic form with at least +2 distinct factors. It follows from the classification of singularities, see for instance +[1], that such a singularity has type Dk, for some k ≥ 4, and in particular it is quasi +homogeneous. If µ(C0, s) = 1 and L is in the corresponding tangent cone TCs(C0), +then (C0, s) is a node A1, and the same argument as above works, namely (C, s) is +a Dk singularity. Finally, when µ(C0, s) = 2 and L is in the corresponding tangent +cone TCs(C0), then (C0, s) is a cusp A2, and the new singularity (C, s) is easily seen +to be of type E7, hence again quasi homogeneous. +4.10. The proof of Proposition 1.12. The point p = (1 : 0 : 0) is a modular point +in this case, since any line Lp through p, not an irreducible component for C′′, is +given by z = ty with t ̸= 0 and tm + 1 ̸= 0. The intersection Lp ∩ C′′ is described by +the equation +ty2(xmym + tmy2m + tmxmym)(ym + tmym) = t(tm + 1)y2m+2((1 + tm)xm + tmym) = 0. +The solution y = 0 corresponds to the point p, which has multiplicity 2m + 2 on +C′′, and there are m = deg F ′′ − (2m + 2) other intersection points coming from the +solutions of (1 + tm)xm + tmym = 0. +Example 4.11. Here we show first that the free curves C′ and C′′ coming from The- +orem 1.7 are not supersolvable. For the curve C′, it is clear that the only candidates +for modular points are the point p = (0 : 0 : 1) and the 2 other points obtained +from p by permutation of coordinates. Indeed, a modular point has to contain all +the tangents to the Fermat curve issued from it. Now the point p is not a modular +point for C′, since the line Lp : y − x = 0 is not an irreducible component of C′ and +it satisfies +2d+2 = |Lp ∩C′| < |L′ ∩C′| = deg C′ −multp(C′)+1 = 4d+3−(d+2)+1 = 3d+2. +The same line Lp : y − x = 0 shows that the point p is not a modular point for C′′ +either. The point p′ = (1 : 0 : 0) is also not a modular point, as the choice of the +line Lp′ : z = 0 shows. The point p′′ = (0 : 1 : 0) has the same property, as our curve +is invariant under the coordinate change x �→ y and y �→ x. To show that the free +curve C′ coming from Theorem 1.8 is not supersolvable, we use the same approach as +above, the lines Lp to use in this case are given by x = 0, y = 0 or z = 0 respectively. + +CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE +17 +5. Examples: the case of smooth quartic curves +In this section we discuss examples of smooth quartic curves having the maximal +possible number of flexes of high order. +Let us recall that by Theorem 1.2 the +maximal possible number of flex points of order 2 for smooth quartics is 12. It is +natural to wonder whether there exists a complete classification of smooth quartics +which have exactly 12 flexes of order 2. In order to do so, we discuss interesting +properties of the following pencil of quartics which was studied by Ciani in the 19th +century. +Let us define +(5.1) +Cλ : x4 + y4 + z4 + λ · (y2z2 + z2x2 + x2y2) = 0. +It is easy to observe that each curve in the pencil is invariant under the natural +action of an octahedral group of collineations. +There are some values of λ which lead to special members of the pencil, namely +• λ = 0 gives us the Fermat quartic curve, or Dyck’s curve, which has a group +of 96 collineations; +• if λ is a root of λ2 + 3λ + 18 = 0, then we get the Klein quartic curve having +a group of 168 collineations. +In the case of the Fermat quartic, by a discussion presented above, we know that +it has exactly 12 flexes of order 2, so the maximal possible number in the class of +smooth quartics. In the case of the Klein quartic curve, we know that this curve has +only flex points of order 1, so exactly 24 flexes. Now we pass to another interesting +element in the pencil of quartics by taking λ = 3. The resulting quartic C3 is smooth +and it has the group of collineations of order 24. It was verified directly by Edge in +[10] that the curve C3 admits exactly 12 flexes of order 2 and he provided both the +coordinates of these points and the equations of the associated tangent lines. Now +we recover Edge’s calculations. Looking precisely on the Hessian H of C3, which is +H = 2x6 + x4(3z2 + 3y2) + x2(8y2z2 + 3z4 + 3y4) + 2z6 + 2y6 + 3z4y2 + 3z2y4, +one can show that flexes of order 2 are just the intersection points of the curve C3 +with the 6 lines given by the linear factors of +(5.2) +F = (x2 + y2)(y2 + z2)(z2 + x2). +The flex points have the following coordinates: +P1 : (i : 1 : −1), +P2 : (−i : 1 : −1), +P3 : (−1 : i : 1), +P4 : (−1 : −i : 1), +P5 : (1 : −1 : i), +P6 : (1 : −1 : −i), +P7 : (−i : 1 : 1), +P8 : (i : 1 : 1), +P9 : (1 : −i : 1), +P10 : (1 : i : 1), +P11 : (1 : 1 : −i), +P12 : (1 : 1 : i). +Observe that these 12 flexes of order 2 are uniformly distributed, four on each of the +lines defined by F. +Up to now we described exactly two smooth quartics having the maximal possible +number of flexes of order 2. However, as it turns out by a result due to Kuribayashi + +18 +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +and Komiya [15], these are the only smooth plane quartic curves having 12 flexes of +order 2, and this is rather surprising. +Remark 5.1. We have seen in Theorem 1.7 that if we add to the Fermat quartic +its 12 inflectional tangents of order 2 and the triangle ∆ : xyz = 0 determined by +the inflection points, then we get a free curve of degree 19. If we try to apply the +same construction to the quartic curve C3, the resulting curves are far from being +free. One explanation for this fact may be the following. The union AF of the 12 +inflectional tangents of the Fermat quartic is a line arrangement having 3 points of +multiplicity 4. On the other hand, the union A3 of the 12 inflectional tangents of +the quartic C3 is a line arrangement having only double points, and hence the total +Tjurina number τ(A3) is much smaller than τ(AF). If we add the triangle ∆ to +AF, we get a line arrangement having 3 points of multiplicity 6. On the other hand, +if we add to A3 the 6 lines determined by (5.2), we get a line arrangement having +only points of multiplicity 2 and 3, and hence having small total Tjurina number +compared with respect to its degree. +6. Examples: the case of singular curves +Example 6.1. Any nodal cubic is projectively equivalent to the cubic +C : F = xyz + x3 + y3 = 0. +The corresponding Hessian is H = −2(3(x3 + y3) − xyz). Hence the intersection +C ∩ HC consists of the following 4 points: +p1 = (0 : 0 : 1) and pj = (1 : j : 0), +where j3 + 1 = 0. The point p1 is a simple node, and the points pj give rise to 3 +inflection points of order 1. This is reflected in the equality +(C, HC)p1 + +� +j +(C, HC)pj = 6 + 1 + 1 + 1 = 9, +recall Example 2.1. The 3 inflectional tangents Lk for k = 1, 2, 3 are given by the +equations Lk : 3x+3j3 +ky+jkz = 0, where jk are the 3 roots of the equation j3+1 = 0. +It follows that these 3 inflectional tangents Lk are not concurrent, so their addition +to C will not give free curves as in Remark 5.1 above. On the other hand, if we add +to C the tangent cone at the singular point, we obtain the curve +C′ : F ′ = xy(xyz + x3 + y3) = 0, +which is free with exponents (2, 2) as a direct computation with SINGULAR shows. +Moreover, this curve C′ is supersolvable, since clearly p1 is a modular point for C′. +Any cuspidal cubic is projectively equivalent to the cubic +C : F = x2z + y3 = 0. +The corresponding Hessian is H = −24x2y. Hence the intersection C ∩ HC consists +of the following 2 points +p1 = (0 : 0 : 1) and p2 = (1 : 0 : 0). + +CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE +19 +The point p1 is a cusp A2, and the point p2 is an inflection point of order 1. This is +reflected in the equality +(C, HC)p1 + (C, HC)p2 = 8 + 1 = 9, +recall Example 2.3. This is a special case of Theorem 1.5, and gives rise to two free +curves by adding one or two lines, as explained there. +Example 6.2. In this example we consider some plane quartic curves. +Consider the quartic C : F = (x3 + y3)z + x4 + y4 = 0, which has a D4-singularity +at p1 = (0 : 0 : 1). The corresponding Hessian is +H = −54(xyz(x3 + y3) + 2x2y2(x2 + y2)). +The point p1 is an ordinary simple singularity of multiplicity k = 3, and hence +(C, HC)p1 = 18 by Theorem 1.3. There are in addition 6 inflection points of order +1, with are the points (1 : 0 : −1), (0 : 1 : −1) and the 4 points (u : v : w), where +(u : v) is coming from the 4 solutions of the equation +u4 + v4 − 2uv(u2 + v2) = 0 +in P1 and w = −(u4 +v4)/(u3 +v3). If we add the tangent cone of the singular point, +namely the lines x3 + y3 = 0, we get a free curve +C′ : F ′ = (x3 + y3)F = 0, +of degree 7 and exponents (3, 3). Moreover, this curve C′ is supersolvable, since +clearly p1 is a modular point for C′. +Next, consider the quartic +C : F = x2y2 + y2z2 + x2z2 = 0, +which has 3 nodes. It is easy to see that all of them have type (3, 3), and hence C +has no inflection points by Example 2.1. The corresponding Hessian is +H = −24(x4y2 + x2y4 + y4z2 + y2z4 + x4z2 + x2z4 − 6x2y2z2). +If we add to C one tangent line at each of the 3 nodes, namely the lines +(x + iy)(y + iz)(z + ix) = 0, +we get a free curve of degree 7 with exponents (3, 3). All the singularities of this +curve are simple, but this curve is not maximizing, recall our discussion in Section 3 +on these curves. Finally the quartic +C : F = x2y2 + y2z2 + x2z2 − 2xyz(x + y + z) = 0, +which has 3 cusps A2. +Hence C has no inflection points by Example 2.3. +The +corresponding Hessian is +H = 144(x3y3 + y3z3 + x3z3 − x3(y2z + yz2) − y3(x2z + xz2) − z3(x2y + xy2). +Let L1, L2 and L3 be the 3 lines which are the reduced tangent cones corresponding +to the 3 cusps, which are given up to an order by the equations x − y = 0, y − z = 0 +and z − x = 0. Then the curves +C1 = C ∪ L1, C2 = C1 ∪ L2 and C3 = C2 ∪ L3 + +20 +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +are all free, with exponents respectively +(2, 2), (2, 3) and (2, 4). +We get in this way a free curve C1 of degree 5 and maximizing curves C2 and C3, of +degree 6 and 7, respectively, as already pointed out in [6]. It is interesting to note +that the curve C3 is supersolvable, and the point p = (1 : 1 : 1) is a modular point for +it. Indeed, the lines joining p to the singularities of C are already in C3. It remains +to show that any line Lp through p, different from L1, L2, L3 meets C in exactly 4 +points, that is Lp is not a tangent line to C. If q = (u : v : w) ∈ C is a smooth point +such that the tangent line TqC passes through p, then we have +Fx(q) + Fy(q) + Fz(q) = 0. +A direct computation shows that +Fx(q) + Fy(q) + Fz(q) = −12uvw +and hence at least one of the coordinates of q vanishes. But then q ∈ C implies that +2 coordinates vanish, and therefore q is a singularity of C, a contradiction. Note that +the curve C3 is an example of curve satisfying both the first assumption in Theorem +1.11, since all of its singularities are quasi homogeneous, and the second assumption, +even if p belongs to the tangent cones TCs(C) of the three cusps, as they have Milnor +numbers equal to 2. +Example 6.3. In this example we consider the curve +C : F = xmym + ymzm + xmzm = 0 +of degree d = 2m ≥ 4. This curve has 3 ordinary m multiple points +p1 = (1 : 0 : 0), p2 = (0 : 1 : 0) and p3 = (0 : 0 : 1) +which have type (m + 1, . . . , m + 1) +� +�� +� +m times +. These singularities are easily seen to be quasi- +homogeneous and hence +µ(C, pj) = τ(C, pj) = (m − 1)2, +for j ∈ {1, 2, 3}. It follows by Theorem 1.2 that +(C, HC)pj = 3(m − 1)2 + m − 3 + m(m + 1) = 4m(m − 1). +The equality (2.7) implies that C has no inflection points. The reader can check that +this curve C is not even nearly free, e.g. for m = 3. On the other hand, we show +now that the curve +C′ : F ′ = xyzF = 0 +is free with exponents (m + 1, m + 1). In order to show this we note first that the +only singularities of C′ are again the points pj for j ∈ {1, 2, 3}, which are ordinary +quasihomogeneous singularities of multiplicity (m + 2). For the last claim one can +use [1, Exercise (7.33)]. It follows that +τ(C′) = 3(m + 1)2. + +CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE +21 +The equality +x(ym − zm)Fx − y(ym + zm)Fy + z(ym + zm)Fz = 0 +shows that mdr(F) = m + 1. This implies that one has mdr F ′ ≥ mdr F = m + 1 +and +τ(2m + 3, m + 1)max = (2m + 2)2 − (m + 1)2 = τ(C′). +This equality implies our claim by Theorem 3.4. +References +[1] A. Dimca, Topics on real and complex singularities. An introduction. Advanced Lectures in +Mathematics. Braunschweig/Wiesbaden: Friedr. Vieweg & Sohn. (1987). 4.9, 6.3 +[2] A. Dimca, Hyperplane Arrangements: An Introduction, Universitext, Springer-Verlag, 2017. 1 +[3] A. Dimca, Curve arrangements, pencils, and Jacobian syzygies, Michigan Math. J. 66 (2017), +347–365. 1, 3, 3, 4.9 +[4] A. Dimca, D. Ibadula, A. M˘acinic, Numerical invariants and moduli spaces for line arrange- +ments. Osaka J. Math. 57: 847 – 870 (2020). 4.4 +[5] A. Dimca, G. Ilardi, G. Sticlaru, Addition-deletion results for the minimal degree of a Jacobian +syzygy of a union of two curves. J. Algebra 615(1): 77 – 102 (2023). 4.2, 4.4, 4.7 +[6] A. Dimca and P. Pokora, Maximizing curves viewed as free curves. arXiv:2208.13399. 3, 3, +6.2 +[7] A. Dimca and G. Sticlaru, Free and Nearly Free Curves vs. Rational Cuspidal Plane Curves. +Publ. Res. Inst. Math. Sci. 54: 163 – 179 (2018). 3 +[8] A. Dimca and G. Sticlaru, Plane curves with three syzygies, minimal Tjurina curves, and +nearly cuspidal curves. Geom. Dedicata: 207: 29 – 49 (2020). 4.2 +[9] A. A. Du Plessis and C. T. C. Wall, Application of the theory of the discriminant to highly +singular plane curves. Math. Proc. Camb. Philos. Soc. 126(2): 259 – 266 (1999). 3 +[10] W.L. Edge, A plane quartic curve with twelve undulations. Edinburgh Math. Notes 35: 10 – +13 (1945). 5 +[11] G. Fischer, Ebene algebraische Kurven. Vieweg, 1994. 2.1 +[12] G.-M. Greuel, C. Lossen and E. Shustin, Introduction to Singularities and Deformations. +Springer (2007). 2 +[13] A. Josse and F. P`ene, On the degree of caustics of reflection. Comm. Algebra 42: 2442 – 2475 +(2014). 1, 2, 2, 2, 2 +[14] E. Kunz, Introduction to Plane Algebraic Curves, Birkh¨auser, 2005. 1, 1 +[15] A. Kuribayashi and K. Komiya, On Weierstrass points and automorphisms of curves of genus +three. Algebraic geometry, Proc. Summer Meet., Copenh. 1978, Lect. Notes Math. 732: 253 – +299 (1979). 5 +[16] T. K. Moe, Cuspidal curves on Hirzebruch surfaces. PhD thesis, University of Oslo, 2013, pp. +xx+154. 1 +[17] P. Orlik, H. Terao, Arrangements of Hyperplanes, Springer-Verlag, Berlin Heidelberg New +York, 1992. 1 +[18] A. Simis, S.O. Toh˘aneanu, Homology of homogeneous divisors, Israel J. Math. 200 (2014), +449-487. 3.2 +[19] S. O. Toh˘aneanu, On freeness of divisors on P2, Communications in Algebra, 41 (2013), 2916– +2932. 3.2 +[20] C. T. C. Wall, Singular Points of Plane Curves. Cambridge University Press, 2004. + +22 +ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU +Universit´e Cˆote d’Azur, CNRS, LJAD, France and Simion Stoilow Institute of +Mathematics, P.O. Box 1-764, RO-014700 Bucharest, Romania +Email address: dimca@unice.fr +Dipartimento Matematica Ed Applicazioni “R. Caccioppoli” Universit`a Degli Studi +Di Napoli “Federico II” Via Cintia - Complesso Universitario Di Monte S. Angelo +80126 - Napoli - Italia +Email address: giovanna.ilardi@unina.it +Department of Mathematics, Pedagogical University of Krakow, Podchora¸˙zych +2, PL-30-084 Krak´ow, Poland. +Email address: piotr.pokora@up.krakow.pl +Faculty of Mathematics and Informatics, Ovidius University Bd. +Mamaia 124, +900527 Constanta, Romania +Email address: gabriel.sticlaru@gmail.com + diff --git a/cdAzT4oBgHgl3EQfLfvk/content/tmp_files/load_file.txt b/cdAzT4oBgHgl3EQfLfvk/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..d8f87b57b99ff839204d03f999268ea9147d3d2a --- /dev/null +++ b/cdAzT4oBgHgl3EQfLfvk/content/tmp_files/load_file.txt @@ -0,0 +1,793 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf,len=792 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='01117v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='AG] 3 Jan 2023 CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In the present note we construct new families of free plane curves starting from a curve C and adding high order inflectional tangent lines of C, lines joining the singularities of the curve C, or lines in the tangent cone of some singularities of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' These lines L have in common that the intersection C ∩ L consists of a small number of points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We introduce the notion of a supersolvable plane curve and conjecture that such curves are always free, as in the known case of line arrangements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Some evidence for this conjecture is given as well, both in terms of a general result in the case of quasi homogeneous singularities and in terms of specific examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Introduction Our goal in this paper is to construct new free or nearly curves by adding inflec- tional tangents or lines passing through the singularities of a given plane projective curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Sometimes, when high order inflectional tangents are missing, lines in the tangent cones of the singularities may replace them successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The use of tangent cones is a must when we want to get supersolvable curves with the modular point belonging to a non-linear irreducible component, see Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' To determine the existence of inflectional tangents, we start by recalling some facts about inflection points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let C : F = 0 be a reduced plane curve in the complex projective plane P2 which is defined by a homogeneous polynomial F ∈ S = C[x, y, z] of degree d ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The Hessian of F is given by the following well-known formula (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1) H = det \uf8eb \uf8ed Fxx Fxy Fxz Fxy Fyy Fyz Fxz Fyz Fzz \uf8f6 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let HC : H = 0 be the Hessian curve associated to C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It is known that the inter- section XC = C ∩ HC consists exactly of the set of inflection points IC of C union with the set of singular points YC of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Recall that if p ∈ C is a smooth point of this curve, and TpC denotes the projective line tangent to C at p, then the inflection 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Primary 14H50;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Secondary 14B05, 13D02, 32S22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' plane curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Dimca was partially supported by the Romanian Ministry of Research and Innovation, CNCS - UEFISCDI, Grant PN-III-P4-ID-PCE-2020-0029, within PNCDI III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Pokora was partially supported by the National Science Center (Poland) Sonata Grant Nr 2018/31/D/ST1/00177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 1 2 ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU order of p is by definition (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2) ιp(C) = (C, TpC)p − 2, where (C, TpC)p denotes the intersection multiplicity of the curves C and TpC at the common point p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Moreover, we say that p is an inflection point of C, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=', p ∈ IC, if and only if ιp(C) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The intersection multiplicity (C, HC)p of the curves C and HC at the point p is a key invariant in understanding the geometry of the plane curve C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' When p ∈ IC is an inflection point, then the relation between the inflection order ιp(C) of p and the intersection multiplicity (C, HC)p is well-known, see for instance [14, Theorem 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7 and Corollary 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' For any reduced plane curve C of degree d ≥ 2 and any smooth point p ∈ C, one has ιp(C) = (C, HC)p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It is clear that ιp(C) ≤ d − 2, except the case when p sits on a line L = TpC which is an irreducible component of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In the later case, one has ιp(C) = ∞, and it is easy to check that the line L is also an irreducible component of the Hessian curve HC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' From now on, while searching for the inflection points, we assume that no irreducible component of C is a line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' When p ∈ YC is a singular point, then the description of the intersection multi- plicity (C, HC)p is more subtle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let TCp(C) be the reduced projective tangent cone of the curve C at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' For any line L ∈ TCp(C) we define the corresponding tangential multiplicity mL(C) = (L, CL)p, where (CL, p) is the union of all branches of the singularity (C, p) whose tangent line at p coincides with L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' With this notation, one has the following general result, which is a user-friendly reformulation of [13, Proposition 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Assume that C is a reduced plane curve and that p ∈ C is any singular point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then one has (C, HC)p = 3µp(C) + mp(C) − 3 + � L∈TCp(C) mL(C), where µp(C) is the Milnor number and mp(C) is the multiplicity of the singularity (C, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The case when (C, p) is irreducible is also stated in [16, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Indeed, in this case, one has µp(C) = 2δp(C) with δp(C) being the δ-invariant of the singularity (C, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We discuss in detail the statement of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 and give some examples in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Our new results are the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Consider the case when (C, p) is an ordinary k-multiple point, that is there are k smooth branches C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , Ck at p, with distinct tangent lines L1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , Lk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If we set mj = (Cj, Lj)p ≥ 2 for j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , k}, then we call (C, p) an ordinary k-multiple point of type (m1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , mk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Moreover, we say that (C, p) is an ordinary simple k-multiple point if mj = 2 for all j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE 3 Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' For any reduced plane curve C of degree d ≥ 3 and any singular point p ∈ C with multiplicity mp(C) = k, one has (C, HC)p ≥ 3k(k − 1), and equality holds if and only if (C, p) is an ordinary simple k-multiple point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' For any reduced plane curve C of degree d ≥ 3 and having s singular points, one has i(C) ≤ 3d(d − 2) − 6s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' More precisely, if nk denotes the number of singular points of C of multiplicity k, then i(C) ≤ 3d(d − 2) − � k 3k(k − 1)nk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The equality occurs if and only if all the singularities of C are ordinary simple k- multiple points for various k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This result is a significant improvement of the inequality � p∈IC ιp ≤ 3d(d − 2) − s which is given in [14, Corollary 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Our next result is a general construction of free curves by adding inflectional tangents and lines passing through the singularities of the initial curve C, which is a curve of Thom-Sebastiani type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let m ≥ 2 be a positive integer and let ℓj(x, y) with j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , m} be m distinct linear forms in x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Consider the curve C : F = m � j=1 ℓj(x, y)kj − zd = 0, in P2, where kj ≥ 1 are positive integers such that � kj = d, and the family of lines Lj : ℓj(x, y) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The line Lj is the inflectional tangent at pj if kj = 1, and it is the reduced tangent cone at the singularity pj when kj > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' With the notation as above, the curve C′ = C ∪ m � j=1 Lj : F ′ = F · m � j=1 ℓj = 0 of degree d + m is free with the exponents (m − 1, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Moreover, if L : z = 0 is the line passing through all the points pj of C, then the curve C′′ = C′ ∪ L : F ′′ = zF · m � j=1 ℓj = 0 of degree d + m + 1 is free with the exponents (m − 1, d + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 4 ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU Starting with a smooth Fermat type curve and adding all of its inflectional tangents and the 3 coordinate axes, one gets again a free curve, as the following result shows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Consider the Fermat curve C : xd + yd + zd = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let ǫ be any root of the equation td+1 = 0 in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then the line Lǫ : y = ǫx intersects C only at the point pǫ = (1 : ǫ : 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Hence pǫ is an inflection point of the maximal order and hence i(Lǫ) = d − 2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=', one has the equality in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In this way, we get d inflection points, which are just the intersection of C with the line z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Cyclically permuting x, y, z, we get all the 3d inflection points of this type, and these are all the inflection points of C by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The following result is a special case of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5, when kj = 1 for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The union C′ : F ′ = (xd + yd)F = 0 of the smooth Fermat curve C : F = xd + yd + zd = 0 of degree d with the d inflectional tangents Lǫ meeting at one point, is a free curve of degree 2d and the exponents are (d − 1, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' When d = 3, the curve C′ is maximizing of degree 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The union C′′ : F ′′ = zF ′ = 0 of the curve C′ with the line L : z = 0 passing through all the flex points pǫ of C, is a free curve of degree 2d + 1 and the exponents are (d − 1, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' When d = 3, then the curve C′ is maximizing of degree 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Note that if we continue to add just inflectional tangents, the resulting curve is no longer a free curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' For instance, the curve C′′ : F ′′ = (x3 + y3 + z3)(x3 + y3)(y3 + z3) = 0 is nearly free with the exponents (4, 5), and the curve C′′′ : F ′′′ = (x3 + y3 + z3)(x3 + y3)(y3 + z3)(x3 + z3) = 0 is not even nearly free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' However, we have the following general result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The smooth Fermat curve C : F = xd + yd + zd = 0 has exactly 3d inflectional tangents and their union forms the following line arrangement A : (xd + yd)(yd + zd)(xd + zd) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The union of the curve C, the lines in A, and the 3 coordinate axes produce a new curve C′ : F ′ = xyz(xd + yd)(yd + zd)(xd + zd)(xd + yd + zd) = 0 of degree 4d + 3, which is free with the exponents (2d + 1, 2d + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Moreover, the curve C′′ ⊂ C′ given by C′′ : F ′′ = xy(yd + zd)(xd + zd)(xd + yd + zd) = 0 has degree 3d + 2 and it is free with the exponents (d + 1, 2d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' When d = 2, then the curve C′′ is maximizing of degree 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It is easy to prove that the curve C : F = xmym + ymzm + xmzm = 0 has no infection points using Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2, see Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' To get a free curve from C, we may add two of the three tangent cones, or just one tangent cone and two lines joining singular points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Indeed, one has the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE 5 Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The curve C′ : F ′ = (xmym + ymzm + xmzm)(xm + ym)(ym + zm) = 0 has degree 4m and it is free with exponents (2m − 1, 2m) for any m ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The curve C′′ : F ′′ = yz(xmym + ymzm + xmzm)(ym + zm) = 0 has degree 3m + 2 and it is free with exponents (m + 1, 2m) for any m ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Given a reduced plane curve C, we say that p ∈ C is a modular point for C if the central projection πp : P2 \\ {p} → P1 induces a locally trivial fibration of the complement M(C) = P2 \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We say that a reduced plane curve C is supersolvable if it has at least one modular point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The map induced by πp is a locally trivial fibration if and only if for any line Lp passing through p and not an irreducible component of C, one has (C, Lp)p = multp(C) and (C, Lp)q = 1 for any q ∈ C ∩ Lp, q ̸= p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This fibration has as base and as fiber a projective line P1 with a number of points deleted, and hence the complement M(C) is a K(π, 1) space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' When C is a line arrangement, this definition of a modular point coincides with the usual one, and a line arrangement is supersolvable by definition if it has a modular point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In particular, the existence of a modular point for a line arrangement C implies that C is free, see for all these well known facts [2, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We venture to make the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' A supersolvable plane curve C is free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' One setting where this conjecture holds is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let C0 be a reduced plane curve, let p ∈ M(C0) be a point and let A be the set of lines L passing through p such that there is a point q ∈ L ∩ C0 with (C0, L)q > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Assume that all the singularities of the curve C obtained by adding all the lines in A to C0 are quasi homogeneous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then C is supersolvable and free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In particular, this holds when all the singularities s of C0 have multiplicity 2, and p is not on any tangent cone TCs(C0) for (C0, s) a singularity with µ(C0, 0) ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' When C0 is a plane curve having only nodes A1 and cusps A2 as singularities, and in addition p is a generic point, this result is known, see [3, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Moreover, it is easy to see that the free curves C′ and C′′ constructed above in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5 are special cases of the construction in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The free curve C′′ constructed above in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8 is of a different nature, since in this case p ∈ C0 and the curve C has not only quasi homogeneous singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It is interesting that it gives new examples where Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='10 holds, in view of the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The free curve C′′ constructed in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8 is supersolvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In particular, the associated complement M(C′′) is a K(π, 1) space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 6 ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU We explain in Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='11 that the other free curves constructed above in The- orems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8 are not supersolvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The organization of the paper goes as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In Section 2, we discuss the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 explaining all the necessary details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In Section 3 we recall basic facts on the free, nearly free and maximizing curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In Section 4 we deliver our proofs of Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='11, and of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then, in Section 5, we describe all smooth plane quartic curves admitting the maximal possible number of flexes of maximal order, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=', flexes of order 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' There are two such curves, and only one of them, the Fermat curve, yields free curves as in Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='6 and in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In the final section we discuss some singular plane curves and the free curves obtained from them, which are sometimes supersolvable as well, given rise to supersolvable free curves not covered by our general Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Discussion on Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 and some examples The paper [13] uses rather heavy notations, and perhaps due to this fact has a smaller impact than it deserves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let us introduce some notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' For a reduced plane curve C : F = 0 and any point q = (α : β : γ) ∈ P2, we define the polar ∆q(C) of C with respect to q by the equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1) ∆q(C) : αFx + βFy + γFz = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' For a property P, the authors of [13] use the notation 1P to denote 1 if P is true and 0 otherwise, see the discussion before Theorem 2 in [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The first equality in [13, Proposition 25] gives the expression of the intersection multiplicity (C, ∆q(C))p for any singular point p ∈ C and any point q ∈ P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Using our discussion above, we see that for q ̸= p, q not on any line L in the tangent cone TCp(C), this mul- tiplicity (C, ∆q(C))p is given by a double sum S, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=', the second sum involving the characteristic functions 1P vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' With this observation, the second equality in [13, Proposition 25] can be stated as (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2) (C, HC)p = 3(C, ∆q(C))p + Ip, where Ip = � i∈I(i(i) p − 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Here I is a set of indices parametrizing the pro-branches of (C, p) and i(i) p is the tangential intersection number of the pro-branch Bi, see [13, Definition 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Recall that any branch B of a plane curve singularity (C, 0) at the origin of C2, such that x = 0 is not a tangent line, can be defined by a Weierstrass polynomial ΓB(x, y) = � j=1,mB (y − φB,j(x)) where mB is the multiplicity of the branch B and there is an analytic function φB(x) ∈ C{x} such that φB,j(x) = φB(exp(2πij/mB)x 1 mB ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' With this notation, the branch B has mB associated pro-branches Bj : y − φB,j(x) = 0 CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE 7 and the corresponding tangential intersection number is given by i Bj 0 = ord(φB,j(x) − φ′ B,j(0)x) ∈ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows that i Bj 0 = iBk 0 for any 0 ≤ j ≤ k ≤ mB and hence mBi Bj 0 = (L, CL)0, for any j, with L the tangent line to B and CL = B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This discussion implies that one has (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3) Ip = � i∈I (i(i) p − 2) = � L∈TCp(C) mL(C) − 2mp(C), since clearly |I| = mp(C), each branch having exactly a number of pro-branches given by the multiplicity of that branch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Next, we return to the intersection multiplicity (C, ∆q(C))p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We can assume that p = (0 : 0 : 1) and set f(x, y) = F(x, y, 1), then one has fx(x, y) = Fx(x, y, 1), fy(x, y) = Fy(x, y, 1), and xfx + yfy + Fz(x, y, 1) = f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If we define the generic local polar variety of the singularity (C, 0) : f(x, y) = 0 by the equation ∆0(C) : α′fx + β′fy = 0, with (α′ : β′) ∈ P1 being a generic point, it is easy to see that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4) (C, ∆0(C))0 = (C, ∆q(C))p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In fact, the line L′ : z = 0 is clearly not in the tangent cone TCp(C) since p /∈ L′, and hence we may take γ = 0 and (α : β) ∈ P1 generic in the formula (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In order to compute this local intersection number κ0(C) = (C, ∆0(C))0, which is also called the κ-invariant of the singularity (C, 0), we can use for instance [12, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='38] and get (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5) κ0(C) = µ(C, 0) + m0(C, 0) − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If we use this formula for the singularity (C, p), we get from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3) the following equality (C, HC)p = 3(µp(C) + mp(C) − 1) + � L∈TCp(C) mL(C) − 2mp(C) = = 3µp(C) + mp(C) − 3 + � L∈TCp(C) mL(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This proves our reformulation of [13, Proposition 25] in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 8 ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU In order to construct free plane curves starting with a curve C of degree d, by adding lines, in particular inflectional tangents, we have to look for lines L such that the sum (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='6) i(L) = � p∈L∩IC, TpC=L ιp(C) is as large as possible with respect to the degree d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Given a curve C, first we use Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 to count the total number of inflection points of C, namely (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7) i(C) = � p∈IC ιp(C) = 3d(d − 2) − � p∈YC (C, HC)p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' One clearly has for any line L (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8) i(L) ≤ i(C), and the equality holds if and only if for any point p ∈ IC one has TpC = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Moreover, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='9) i(L) ≤ � p∈L∩C ((C, L)p − 2) = d − 2|L ∩ C|, and the equality holds if and only if for any point p ∈ L ∩ C one has TpC = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let us consider the case when (C, p) is a node A1, that is there are two smooth branches (C1, p) and (C2, p) meeting transversally at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let T1 = TpC1 and T2 = TpC2 be the associated tangent lines and define the type of the node (C, p) to be the pair of integers (m1, m2) = ((C1, T1)p, (C2, T2)p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It is clear that mj ≥ 2 for j = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' When m1 = m2 = 2, then (C, p) is said to be a simple node, and one knows that (C, HC)p = 6, see [11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 68–69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In the general situation, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 gives the equality (C, HC)p = 3 + 2 − 3 + m1 + m2 = m1 + m2 + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' More generally, consider the case when (C, p) is an ordinary m-multiple point, that is there are m smooth branches C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , Cm with distinct tangent lines L1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , Lm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If we set mj = (Cj, Lj)p for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , m, then Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 gives the equality (C, HC)p = 3(m − 1)2 + m − 3 + � j=1,m mj = m(3m − 5) + � j=1,m mj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let us consider the case when (C, p) is a singularity A2m−1 with m ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then there are two tangent smooth branches with a common tangent line L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If we set mL = (C, L)p, then Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 gives the equality (C, HC)p = 3(2m − 1) + 2 − 3 + mL = 2(3m − 2) + mL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let us consider the case when (C, p) is a singularity A2m with m ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then there is a unique branch, with a tangent line L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If we set mL = (C, L)p, then Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 gives the equality (C, HC)p = 3(2m) + 2 − 3 + mL = 6m − 1 + mL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE 9 When (C, p) is a cusp A2, only the value mL = 3 is possible, and hence (C, HC)p = 8 in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Free, nearly free and maximizing curves In this section we recall some basic facts on free, nearly free and, maximizing curves in P2 following [6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let Der(S) = {∂ := a · ∂x + b · ∂y + c · ∂z, a, b, c ∈ S} be the free S-module of C-linear derivations of the polynomial ring S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' For a reduced curve C : F = 0, we introduce D(F) = {∂ ∈ Der(S) : ∂ F ∈ ⟨F⟩}, the graded S-module of derivations preserving the ideal ⟨F⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We have the following decomposition D(F) = D0(F) ⊕ S · δE, where δE = x∂x + y∂y + z∂z is the Euler derivation and D0(F) = {∂ ∈ Der(S) : ∂ F = 0} is the set of all C-linear derivations of S killing the polynomial F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We say that a reduced curve C : F = 0 is free if D(F), or equiv- alently D0(F), is a free graded S-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The exponents (d1, d2) of a free curve C are the degrees of a basis for the free graded S-module D0(F) which rank 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The exponents (d1, d2) of a free curve C : F = 0 of degree d are known to satisfy d1 +d2 = d−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Conversely, if there are two elements r1, r2 ∈ D0(F), which are S-linearly independent and satisfy d1 + d2 = d − 1 then the curve C is free with exponents (d1, d2), see [18, 19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The minimal degree of derivations killing F, or of Jacobian syzygies involving the partial derivatives of F, is defined as mdr(F) = min{r ∈ N : D0(F)r ̸= 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' To check whether a given plane curve is free, one may use the following result by du Plessis and Wall [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let C : F = 0 be a reduced plane curve of degree d and let r = mdr(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then the following two cases hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' a) If r < d/2, then τ(C) ≤ τ(d, r)max = (d − 1)2 − r(d − r − 1) and the equality holds if and only if the curve C is free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' b) If d/2 ≤ r ≤ d − 1, then τ(C) ≤ τ(d, r)′ max, where, in this case, we set τ(d, r)′ max = τ(d, r)max − �2r − d + 2 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 10 ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' A reduced curve C : F = 0 of degree d is nearly free if either mdr(F) < d/2 and τ(C) = τ(d, r)max − 1, or mdr(F) = d/2 and τ(C) = τ(d, r)max.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In addition, the exponents of a nearly free curve C : F = 0 of degree d are given by the pair (mdr F, d − mdr F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' A curve C : F = 0 of degree d having only ADE-singularities is maximizing if either d = 2m and τ(C) = 3m(m − 1) + 1, or d = 2m + 1 and τ(C) = 3m2 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The relation between maximizing curves and free curves is the following, see [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' A curve C : F = 0 of degree d having only ADE-singularities is maximizing if and only if either d = 2m and C is a free curve with the exponents (m − 1, m), or d = 2m + 1 and C is a free curve with the exponents (m − 1, m + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In the sequel we need the following version of [3, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let C : F = 0 be a reduced plane curve of degree d and let p be any point of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let A be the union of the irreducible components of C which are lines passing through p, and let C′ : G = 0 be the union of the other irreducible components of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We assume that p ∈ C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let m = |A| and e = deg G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then r = mdr(F) can be in one of the following cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' a) r = e;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' b) r = m − 1 and C is free with exponents (m − 1, e);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' c) m ≤ r ≤ e − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The only difference of this result with respect to [3, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='10] is that here p ∈ C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The key part of the proof of [3, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='10] is contained in [3, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3], where a Jacobian syzygy ρ : aFx + bFy + cFz = 0 is constructed using a differential 2-form ω, and it is shown that this syzygy is primitive, that is there is no common factor for a, b, c ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It is in this latter part that the condition p /∈ C′ was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If we assume that p = (0 : 0 : 1), it is easy to see that the Jacobian relation ρ constructed there is still a Jacobian syzygy in our situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Moreover, it is a primitive syzygy if and only if G and Gz have no common factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let M ∈ S be an irreducible polynomial which is a common factor for G and Gz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Note that M cannot involve only x and y, since this would correspond to a line in C′ passing through p, which is impossible by the definition of C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows that Mz ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If G = MN, then Gz = MzN + MNz, which implies that either M divides N or M divides Mz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' But M cannot divide N, since C′ is reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' And M cannot divide Mz, since the degree of Mz as a polynomial in z is strictly smaller than the corresponding degree of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This contradiction proves our claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The proofs of our main results 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We can assume that p = (0 : 0 : 1) and set f(x, y) = F(x, y, 1), g(x, y) = jkf(x, y) the initial form of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let n be the number of distinct CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE 11 factors of g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If n = k, then using Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1 we have (C, HC)p = k(3k − 5) + � j=1,k mj ≥ 3k(k − 1), since mj ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Moreover, it is obvious that the equality holds if and only if (C, p) is an ordinary simple k-multiple point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Assume now that n < k and let g(x, y) = ℓa1 1 · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' · ℓan n be the decomposition of g as a product of linear factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Recall that for two isolated plane curve singularities (X, 0) and (Y, 0) with no common component one has (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1) µ(X ∪ Y, 0) = µ(X, 0) + µ(Y, 0) + 2(X, Y )0 − 1, see [20, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let Cj : fj = 0 be the union of the branches of (C, p) which are tangent to the line Lj : ℓj = 0 with j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then (C, p) = (C1, p) ∪ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' ∪ (Cn, p) and we estimate µp(C) = µ(C, p) using the above formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' To start with, note that since jajfj = ℓ aj j it follows that µ(Cj, 0) ≥ aj(aj − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Assume that for some m < n one has µ((C1, p) ∪ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' ∪ (Cm, p)) ≥ (a1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' + am)2 − (a1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' + am) − m + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then it follows that µ((C1, p) ∪ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' ∪ (Cm, p) ∪ (Cm+1, p)) ≥ ((a1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' + am)2 − (a1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' + am) − m + 1)+ +am+1(am+1 − 1) + 2am+1(a1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' + am) − 1 = = (a1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' + am+1)2 − (a1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' + am+1) − m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Since a1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' + an = k, this yields the inequality µ(C, p) ≥ k2 − k − n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' On the other hand, one has mLj = (Cj, Lj)p ≥ aj + 1 and hence � j mLj ≥ k + n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Using Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 we get (C, HC)p ≥ 3(k2 − k − n + 1) + k − 3 + k + n = 3k(k − 1) + 2(k − n) > 3k(k − 1), since we have assumed n < k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This completes the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4 is an obvious consequence of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 12 ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The curve C was studied in [8, Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5] and it was shown that the minimal degree of a Jacobian relation for C is given by mdr(F) = m − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Since the minimal degree of a Jacobian relation can only increase when one adds lines to a given curve, see [5, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1], it follows that mdr(F ′) ≥ mdr(F) = m − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The curve C has m inflection points and singularities on the line z = 0, locally given by equations ukj − vd = 0, located at the points pj = (aj : bj : 0), with ℓj(aj, bj) = 0 for j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , m}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' When we add the line Lj, we get at the point pj a weighted homogeneous singularity of degree dj = 1 with respect to the weights w1 = wt(uj) = 1 kj+1 and w2 = wt(z) = kj d(kj+1), where uj = ℓj is a local coordinate at pj on the line Lj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows the following equality involving Tjurina and Milnor numbers: τ(C′, pj) = µ(C′, pj) = (1 − w1)(1 − w2) w1w2 = (d − 1)kj + d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Hence the total Tjurina number of C′ is τ(C′) = d(d − 1) + md + (m − 1)2, since clearly τ(C′, p) = µ(C′, p) = (m − 1)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Now a curve of degree d′ = d + m with r′ = mdr(F ′) satisfies the inequality τ(C′) ≤ τ(d′, r′)max where the function τ(d′, r′)max = (d′ − 1)2 − r′(d′ − 1 − r′) is a decreasing function of r′ for 2r′ < d′ which follows from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4, and the equality τ(C′) = τ(d′, r′)max implies that 2r′ < d′ and that C′ is free with the exponents (r′, d′ − r′ − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In our case, we get τ(d′, m − 1)max = (d + m − 1)2 − d(m − 1) = τ(C′), and this proves our claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The proof of the second claim goes analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' One can check that the curve C′, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' C′′, can be regarded as a special case of the curve C constructed in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='11, starting from the curve C0 : F = 0 and p = (0 : 0 : 1) for C′, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' C0 : zF = 0 and p = (0 : 0 : 1) for C′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This is an alternative way to proving Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE 13 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We start with the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Consider the line arrangement B : g = xyz(xd + yd)(yd + zd)(xd + zd) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then mdr(g) = 2d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We consider first the subarrangement of B given by B0 : g0 = xyz(xd + yd)(yd + zd) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Note that in this arrangement B0 there are two points of multiplicity d+2, connected by the line y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' All the lines pass through one of these two points, and the other intersection points are all double points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows that B0 is a line arrangement of type ˆL(d + 2, d + 2) as in [4, Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='9], and mdr(g0) = d + 1, see [4, Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' To get the arrangement B from B0, we have to add the d lines L1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=', Ld given by xd + zd = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' At the stage k, where 1 ≤ k ≤ d, we have to add the line Lk to the arrangement Bk = B0 ∪ L1 ∪ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' ∪ Lk−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Note that the intersection of Lk and Bk consists of exactly 2d + 2 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If Bk is given by the reduced equation fk = 0, for 1 ≤ k ≤ d, it follows from [5, Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4] that one has mdr(fk) = mdr(fk−1) + 1 for all 1 ≤ k ≤ d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Hence mdr(g) = mdr(fd) = d + 1 + d = 2d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' □ Using [5, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1 (b)] we see that mdr(F ′) ≥ 2d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We compute now the total Tjurina number of the curve C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This curve has 3d2 nodes A1 and 3 points with local equation uv(ud + vd) coming from the double points of the line arrangement B not situated on xyz = 0 and the 3 points of multiplicity d + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The line x = 0 in B contains d double points of this line arrangement, which are precisely the inflection points of order d − 2 of the Fermat curve C situated on this line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The corresponding inflectional tangents are the lines given by yd + zd = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Therefore, when we add C, each of these d points becomes a singularity of type D2d+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Similar remarks apply to the lines y = 0 and z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows that τ(C′) = 3d2 + 3(d + 1)2 + 3d(2d + 2) = 12d2 + 12d + 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' On the other hand, we have τ(4d + 3, 2d + 1)max = (4d + 2)2 − (2d + 1)2 = 12d2 + 12d + 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The equality τ(C′) = τ(4d + 3, 2d + 1)max 14 ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU implies as above that r′ = mdr(F ′) = 2d + 1 and that C′ is a free curve with the exponents (2d + 1, 2d + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The claims for the curve C′′ are proved in a similar way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The line arrangement B′ : g′ = xy(yd + zd)(xd + zd) = 0 satisfies mdr(g′) = d+1, see [4, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The lines x = 0 and y = 0 contain each d points of type D2d+2 as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Besides these points, the line arrangement B′ has two points of multiplicity d + 1 and d2 + 1 double points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows that τ(C′′) = 2d(2d + 2) + 2d2 + (d2 + 1) = 7d2 + 4d + 1 = τ(3d + 2, d + 1)max.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It is interesting to note that the line arrangement formed by the corresponding 3d inflectional tangent lines is the arrangement (xd + yd)(yd + zd)(xd + zd) = 0, which is far from being free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' On the other hand, the line dual to the inflection point pǫ = (1 : ǫ : 0) is L′ ǫ : x + ǫy = 0, and the union of all these d dual lines obtained when ǫ varies, is given by xd − yd = 0 when d is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Therefore, for d odd, the line arrangement formed by the corresponding 3d dual lines is precisely the free monomial (or Fermat) line arrangement (xd − yd)(yd − zd)(xd − zd) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The case d = 3 is of course well-known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' First we consider the curve C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The reader can check the following Jacobian relations r1, r2 ∈ D0(F ′) r1 : zm−1(xm + ym)F ′ x − xm−1(ym + zm)F ′ z = 0 and r2 : xym−1(2xm + 3ym)F ′ x − (2F + y2m)F ′ y + zym−1(2zm + 3ym)F ′ z = 0, where F = xmym + ymzm + xmzm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Since deg r1 + deg r2 = (2m − 1) + 2m = deg F ′ − 1, our claim is proved by Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We consider now the curve C′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' First we show that mdr F ′′ = m + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' To do this, we first determine a minimal degree Jacobian syzygy r1 for F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' One has for instance r1 : a1Fx + b1Fy + c1Fz = 0, where a1 = x(ym − zm), b1 = −y(ym + zm) and c1 = z(ym + zm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Now we apply [5, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3] and see that if we add a line L0 to C given by an equation ℓ = sy+ty = 0 such that ℓ divides sb1 + tc1 = (−sy + tz)(ym + zm) the resulting curve C0 = C ∪ L0 : F0 = ℓF = 0 has again mdr F0 = mdr F = m + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE 15 Moreover, the coefficients of a minimal degree syzygy for F0 can be obtained from the discussion just before [5, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows that one can add one by one all the lines in the arrangement yz(ym + zm) = 0 and get at the end mdr F ′′ = mdr F = m + 1 as we have claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' To show now that C′′ is free with the given exponents it is enough to apply Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If one likes to use Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4 as above to prove that the curve C′ is free, one needs to compute the total Tjurina number τ(C′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This in turn is complicated, since the singularities of C′ at the points p1 = (1 : 0 : 0) and p3 = (0 : 0 : 1) are no longer quasi homogeneous, and hence τ(C′′, pj) < µ(C′′, pj), for j = 1 and j = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In fact, our Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8 combined with Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4 implies that τ(C′′, p1) = τ(C′′, p3) = 5m2 − 2m, maybe a result not easy to prove otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' By its very construction, it is clear that p is a modular point for C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let e = deg C0 and m = |A| = multp(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Hence d = deg(C) = e + m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then the fibration πp : M(C) → B induced by the central projection with center p has as fiber F the projective line P1 minus e + 1 points, and as base B the projective line P1 minus m points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows that the Euler number E(M(C)) of the complement M(C) is given by E(M(C)) = E(F)E(B) = (1 − e)(2 − m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' On the other hand, we know that E(M(C)) = E(P2) − E(C) = 3 − (µ(C) − d(d − 3)), where µ(C) is the total Milnor number of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The above two equations give µ(C) = (e + m)2 − em − 2m − e + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Since all the singularities of C are supposed to be quasi homogeneous, we get τ(C) = µ(C) = (e + m)2 − em − 2m − e + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' To show that C : F = 0 is free we apply [3, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows that r = mdr F satisfies one of the following properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' a) r = e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then τ(e + m, e)max = (e + m − 1)2 − e(m − 1) = τ(C), which implies that e < m and C is free with exponents (e, m − 1) using Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' b) r = m − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then τ(e + m, m − 1)max = (e + m − 1)2 − (m − 1)e = τ(C), which implies that m ≤ e and C is free with exponents (m − 1, e) again by Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 16 ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU c) m ≤ r < e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This case is impossible, since it implies τ(C) ≤ τ(e + m, r)max < τ(e + m, m − 1)max = τ(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The first inequality follows from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4, and the second one by the fact that the function t �→ τ(e + m, t)max is decreasing for 2t < e + m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' To prove the last claim in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='11, first notice that the possible non quasi homogeneous singularities of C may occur only at the intersection s = L∩C0, where s is a singular point of C0 and L is a line in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If mults C0 = 2 and L is not in the corresponding tangent cone TCs(C0) as we have assumed, then mults C = 3 and the 3-jet j3g of a local equation (C, s) : g = 0 is a binary cubic form with at least 2 distinct factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows from the classification of singularities, see for instance [1], that such a singularity has type Dk, for some k ≥ 4, and in particular it is quasi homogeneous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If µ(C0, s) = 1 and L is in the corresponding tangent cone TCs(C0), then (C0, s) is a node A1, and the same argument as above works, namely (C, s) is a Dk singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Finally, when µ(C0, s) = 2 and L is in the corresponding tangent cone TCs(C0), then (C0, s) is a cusp A2, and the new singularity (C, s) is easily seen to be of type E7, hence again quasi homogeneous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The point p = (1 : 0 : 0) is a modular point in this case, since any line Lp through p, not an irreducible component for C′′, is given by z = ty with t ̸= 0 and tm + 1 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The intersection Lp ∩ C′′ is described by the equation ty2(xmym + tmy2m + tmxmym)(ym + tmym) = t(tm + 1)y2m+2((1 + tm)xm + tmym) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The solution y = 0 corresponds to the point p, which has multiplicity 2m + 2 on C′′, and there are m = deg F ′′ − (2m + 2) other intersection points coming from the solutions of (1 + tm)xm + tmym = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Here we show first that the free curves C′ and C′′ coming from The- orem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7 are not supersolvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' For the curve C′, it is clear that the only candidates for modular points are the point p = (0 : 0 : 1) and the 2 other points obtained from p by permutation of coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Indeed, a modular point has to contain all the tangents to the Fermat curve issued from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Now the point p is not a modular point for C′, since the line Lp : y − x = 0 is not an irreducible component of C′ and it satisfies 2d+2 = |Lp ∩C′| < |L′ ∩C′| = deg C′ −multp(C′)+1 = 4d+3−(d+2)+1 = 3d+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The same line Lp : y − x = 0 shows that the point p is not a modular point for C′′ either.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The point p′ = (1 : 0 : 0) is also not a modular point, as the choice of the line Lp′ : z = 0 shows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The point p′′ = (0 : 1 : 0) has the same property, as our curve is invariant under the coordinate change x �→ y and y �→ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' To show that the free curve C′ coming from Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='8 is not supersolvable, we use the same approach as above, the lines Lp to use in this case are given by x = 0, y = 0 or z = 0 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE 17 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Examples: the case of smooth quartic curves In this section we discuss examples of smooth quartic curves having the maximal possible number of flexes of high order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let us recall that by Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 the maximal possible number of flex points of order 2 for smooth quartics is 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It is natural to wonder whether there exists a complete classification of smooth quartics which have exactly 12 flexes of order 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In order to do so, we discuss interesting properties of the following pencil of quartics which was studied by Ciani in the 19th century.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let us define (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1) Cλ : x4 + y4 + z4 + λ · (y2z2 + z2x2 + x2y2) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It is easy to observe that each curve in the pencil is invariant under the natural action of an octahedral group of collineations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' There are some values of λ which lead to special members of the pencil, namely λ = 0 gives us the Fermat quartic curve, or Dyck’s curve, which has a group of 96 collineations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' if λ is a root of λ2 + 3λ + 18 = 0, then we get the Klein quartic curve having a group of 168 collineations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In the case of the Fermat quartic, by a discussion presented above, we know that it has exactly 12 flexes of order 2, so the maximal possible number in the class of smooth quartics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In the case of the Klein quartic curve, we know that this curve has only flex points of order 1, so exactly 24 flexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Now we pass to another interesting element in the pencil of quartics by taking λ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The resulting quartic C3 is smooth and it has the group of collineations of order 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It was verified directly by Edge in [10] that the curve C3 admits exactly 12 flexes of order 2 and he provided both the coordinates of these points and the equations of the associated tangent lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Now we recover Edge’s calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Looking precisely on the Hessian H of C3, which is H = 2x6 + x4(3z2 + 3y2) + x2(8y2z2 + 3z4 + 3y4) + 2z6 + 2y6 + 3z4y2 + 3z2y4, one can show that flexes of order 2 are just the intersection points of the curve C3 with the 6 lines given by the linear factors of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2) F = (x2 + y2)(y2 + z2)(z2 + x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The flex points have the following coordinates: P1 : (i : 1 : −1), P2 : (−i : 1 : −1), P3 : (−1 : i : 1), P4 : (−1 : −i : 1), P5 : (1 : −1 : i), P6 : (1 : −1 : −i), P7 : (−i : 1 : 1), P8 : (i : 1 : 1), P9 : (1 : −i : 1), P10 : (1 : i : 1), P11 : (1 : 1 : −i), P12 : (1 : 1 : i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Observe that these 12 flexes of order 2 are uniformly distributed, four on each of the lines defined by F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Up to now we described exactly two smooth quartics having the maximal possible number of flexes of order 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' However, as it turns out by a result due to Kuribayashi 18 ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU and Komiya [15], these are the only smooth plane quartic curves having 12 flexes of order 2, and this is rather surprising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We have seen in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7 that if we add to the Fermat quartic its 12 inflectional tangents of order 2 and the triangle ∆ : xyz = 0 determined by the inflection points, then we get a free curve of degree 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If we try to apply the same construction to the quartic curve C3, the resulting curves are far from being free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' One explanation for this fact may be the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The union AF of the 12 inflectional tangents of the Fermat quartic is a line arrangement having 3 points of multiplicity 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' On the other hand, the union A3 of the 12 inflectional tangents of the quartic C3 is a line arrangement having only double points, and hence the total Tjurina number τ(A3) is much smaller than τ(AF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If we add the triangle ∆ to AF, we get a line arrangement having 3 points of multiplicity 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' On the other hand, if we add to A3 the 6 lines determined by (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2), we get a line arrangement having only points of multiplicity 2 and 3, and hence having small total Tjurina number compared with respect to its degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Examples: the case of singular curves Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Any nodal cubic is projectively equivalent to the cubic C : F = xyz + x3 + y3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The corresponding Hessian is H = −2(3(x3 + y3) − xyz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Hence the intersection C ∩ HC consists of the following 4 points: p1 = (0 : 0 : 1) and pj = (1 : j : 0), where j3 + 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The point p1 is a simple node, and the points pj give rise to 3 inflection points of order 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This is reflected in the equality (C, HC)p1 + � j (C, HC)pj = 6 + 1 + 1 + 1 = 9, recall Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The 3 inflectional tangents Lk for k = 1, 2, 3 are given by the equations Lk : 3x+3j3 ky+jkz = 0, where jk are the 3 roots of the equation j3+1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows that these 3 inflectional tangents Lk are not concurrent, so their addition to C will not give free curves as in Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1 above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' On the other hand, if we add to C the tangent cone at the singular point, we obtain the curve C′ : F ′ = xy(xyz + x3 + y3) = 0, which is free with exponents (2, 2) as a direct computation with SINGULAR shows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Moreover, this curve C′ is supersolvable, since clearly p1 is a modular point for C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Any cuspidal cubic is projectively equivalent to the cubic C : F = x2z + y3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The corresponding Hessian is H = −24x2y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Hence the intersection C ∩ HC consists of the following 2 points p1 = (0 : 0 : 1) and p2 = (1 : 0 : 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE 19 The point p1 is a cusp A2, and the point p2 is an inflection point of order 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This is reflected in the equality (C, HC)p1 + (C, HC)p2 = 8 + 1 = 9, recall Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This is a special case of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='5, and gives rise to two free curves by adding one or two lines, as explained there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In this example we consider some plane quartic curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Consider the quartic C : F = (x3 + y3)z + x4 + y4 = 0, which has a D4-singularity at p1 = (0 : 0 : 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The corresponding Hessian is H = −54(xyz(x3 + y3) + 2x2y2(x2 + y2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The point p1 is an ordinary simple singularity of multiplicity k = 3, and hence (C, HC)p1 = 18 by Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' There are in addition 6 inflection points of order 1, with are the points (1 : 0 : −1), (0 : 1 : −1) and the 4 points (u : v : w), where (u : v) is coming from the 4 solutions of the equation u4 + v4 − 2uv(u2 + v2) = 0 in P1 and w = −(u4 +v4)/(u3 +v3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If we add the tangent cone of the singular point, namely the lines x3 + y3 = 0, we get a free curve C′ : F ′ = (x3 + y3)F = 0, of degree 7 and exponents (3, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Moreover, this curve C′ is supersolvable, since clearly p1 is a modular point for C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Next, consider the quartic C : F = x2y2 + y2z2 + x2z2 = 0, which has 3 nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It is easy to see that all of them have type (3, 3), and hence C has no inflection points by Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The corresponding Hessian is H = −24(x4y2 + x2y4 + y4z2 + y2z4 + x4z2 + x2z4 − 6x2y2z2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If we add to C one tangent line at each of the 3 nodes, namely the lines (x + iy)(y + iz)(z + ix) = 0, we get a free curve of degree 7 with exponents (3, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' All the singularities of this curve are simple, but this curve is not maximizing, recall our discussion in Section 3 on these curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Finally the quartic C : F = x2y2 + y2z2 + x2z2 − 2xyz(x + y + z) = 0, which has 3 cusps A2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Hence C has no inflection points by Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The corresponding Hessian is H = 144(x3y3 + y3z3 + x3z3 − x3(y2z + yz2) − y3(x2z + xz2) − z3(x2y + xy2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Let L1, L2 and L3 be the 3 lines which are the reduced tangent cones corresponding to the 3 cusps, which are given up to an order by the equations x − y = 0, y − z = 0 and z − x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Then the curves C1 = C ∪ L1, C2 = C1 ∪ L2 and C3 = C2 ∪ L3 20 ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU are all free, with exponents respectively (2, 2), (2, 3) and (2, 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' We get in this way a free curve C1 of degree 5 and maximizing curves C2 and C3, of degree 6 and 7, respectively, as already pointed out in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It is interesting to note that the curve C3 is supersolvable, and the point p = (1 : 1 : 1) is a modular point for it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Indeed, the lines joining p to the singularities of C are already in C3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It remains to show that any line Lp through p, different from L1, L2, L3 meets C in exactly 4 points, that is Lp is not a tangent line to C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' If q = (u : v : w) ∈ C is a smooth point such that the tangent line TqC passes through p, then we have Fx(q) + Fy(q) + Fz(q) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' A direct computation shows that Fx(q) + Fy(q) + Fz(q) = −12uvw and hence at least one of the coordinates of q vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' But then q ∈ C implies that 2 coordinates vanish, and therefore q is a singularity of C, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Note that the curve C3 is an example of curve satisfying both the first assumption in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='11, since all of its singularities are quasi homogeneous, and the second assumption, even if p belongs to the tangent cones TCs(C) of the three cusps, as they have Milnor numbers equal to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In this example we consider the curve C : F = xmym + ymzm + xmzm = 0 of degree d = 2m ≥ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This curve has 3 ordinary m multiple points p1 = (1 : 0 : 0), p2 = (0 : 1 : 0) and p3 = (0 : 0 : 1) which have type (m + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' , m + 1) � �� � m times .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' These singularities are easily seen to be quasi- homogeneous and hence µ(C, pj) = τ(C, pj) = (m − 1)2, for j ∈ {1, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows by Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 that (C, HC)pj = 3(m − 1)2 + m − 3 + m(m + 1) = 4m(m − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The equality (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7) implies that C has no inflection points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' The reader can check that this curve C is not even nearly free, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' for m = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' On the other hand, we show now that the curve C′ : F ′ = xyzF = 0 is free with exponents (m + 1, m + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' In order to show this we note first that the only singularities of C′ are again the points pj for j ∈ {1, 2, 3}, which are ordinary quasihomogeneous singularities of multiplicity (m + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' For the last claim one can use [1, Exercise (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='33)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' It follows that τ(C′) = 3(m + 1)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' CONSTRUCTION OF FREE CURVES BY ADDING LINES TO A GIVEN CURVE 21 The equality x(ym − zm)Fx − y(ym + zm)Fy + z(ym + zm)Fz = 0 shows that mdr(F) = m + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This implies that one has mdr F ′ ≥ mdr F = m + 1 and τ(2m + 3, m + 1)max = (2m + 2)2 − (m + 1)2 = τ(C′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' This equality implies our claim by Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Dimca, Topics on real and complex singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' An introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Advanced Lectures in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Braunschweig/Wiesbaden: Friedr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Vieweg & Sohn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='9, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='3 [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Dimca, Hyperplane Arrangements: An Introduction, Universitext, Springer-Verlag, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 1 [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Dimca, Curve arrangements, pencils, and Jacobian syzygies, Michigan Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 66 (2017), 347–365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 1, 3, 3, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='9 [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Dimca, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Ibadula, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' M˘acinic, Numerical invariants and moduli spaces for line arrange- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Osaka J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 57: 847 – 870 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4 [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Dimca, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Ilardi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Sticlaru, Addition-deletion results for the minimal degree of a Jacobian syzygy of a union of two curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Algebra 615(1): 77 – 102 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='4, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='7 [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Dimca and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Pokora, Maximizing curves viewed as free curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='13399.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 3, 3, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Dimca and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Sticlaru, Free and Nearly Free Curves vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Rational Cuspidal Plane Curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 54: 163 – 179 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 3 [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Dimca and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Sticlaru, Plane curves with three syzygies, minimal Tjurina curves, and nearly cuspidal curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Dedicata: 207: 29 – 49 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Du Plessis and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Wall, Application of the theory of the discriminant to highly singular plane curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Camb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 126(2): 259 – 266 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 3 [10] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Edge, A plane quartic curve with twelve undulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Edinburgh Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Notes 35: 10 – 13 (1945).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 5 [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Fischer, Ebene algebraische Kurven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Vieweg, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='1 [12] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Greuel, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Lossen and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Shustin, Introduction to Singularities and Deformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Springer (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 2 [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Josse and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' P`ene, On the degree of caustics of reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Algebra 42: 2442 – 2475 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 1, 2, 2, 2, 2 [14] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Kunz, Introduction to Plane Algebraic Curves, Birkh¨auser, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 1, 1 [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Kuribayashi and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Komiya, On Weierstrass points and automorphisms of curves of genus three.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Algebraic geometry, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Summer Meet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=', Copenh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 1978, Lect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Notes Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 732: 253 – 299 (1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 5 [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Moe, Cuspidal curves on Hirzebruch surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' PhD thesis, University of Oslo, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' xx+154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 1 [17] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Orlik, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Terao, Arrangements of Hyperplanes, Springer-Verlag, Berlin Heidelberg New York, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 1 [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Simis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Toh˘aneanu, Homology of homogeneous divisors, Israel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 200 (2014), 449-487.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 [19] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Toh˘aneanu, On freeness of divisors on P2, Communications in Algebra, 41 (2013), 2916– 2932.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='2 [20] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Wall, Singular Points of Plane Curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Cambridge University Press, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' 22 ALEXANDRU DIMCA, GIOVANNA ILARDI, PIOTR POKORA, AND GABRIEL STICLARU Universit´e Cˆote d’Azur, CNRS, LJAD, France and Simion Stoilow Institute of Mathematics, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Box 1-764, RO-014700 Bucharest, Romania Email address: dimca@unice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='fr Dipartimento Matematica Ed Applicazioni “R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Caccioppoli” Universit`a Degli Studi Di Napoli “Federico II” Via Cintia - Complesso Universitario Di Monte S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Angelo 80126 - Napoli - Italia Email address: giovanna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='ilardi@unina.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='it Department of Mathematics, Pedagogical University of Krakow, Podchora¸˙zych 2, PL-30-084 Krak´ow, Poland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Email address: piotr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='pokora@up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='krakow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='pl Faculty of Mathematics and Informatics, Ovidius University Bd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content=' Mamaia 124, 900527 Constanta, Romania Email address: gabriel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='sticlaru@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} +page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf'} diff --git a/ddAyT4oBgHgl3EQfwvlY/content/tmp_files/2301.00653v1.pdf.txt b/ddAyT4oBgHgl3EQfwvlY/content/tmp_files/2301.00653v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..93776331b00d1d2e2ba5e6335c043342c15318e3 --- /dev/null +++ b/ddAyT4oBgHgl3EQfwvlY/content/tmp_files/2301.00653v1.pdf.txt @@ -0,0 +1,1748 @@ + +1 +The original Gibbs paradox is the consequence +of the erroneous identification of non-identical functions +Volodymyr Ihnatovych +Igor Sikorsky Kyiv Polytechnic Institute +e-mail: v.ihnatovych@kpi.ua + +Abstract +This article presents the results of research into the causes of the Gibbs paradox in the +formulation discussed by J. W. Gibbs himself. In this formulation, we are talking about an +inexplicable (paradoxical) jump in the entropy of mixing of two ideal gases during the transition +from mixing different to mixing identical gases. +It is shown that the entropy of mixing of different ideal gases and the entropy of mixing +of identical ideal gases are different (non-identical) functions of the same gas parameters. That, +called a paradoxical jump in the entropy of mixing, is not a jump in the value of some function, +but is the difference in the values of various functions, on condition that the variables and +parameters on which these functions depend remain constant. Those who were looking for an +explanation of the original Gibbs paradox did not notice this and tried to solve an unsolvable +falsely posed problem: to find a parameter that change during the transition from different to +identical gases caused the difference in the values of non-identical functions. + +I. Introduction +The Gibbs Paradox is one of the most mysterious physical paradoxes. It has been known +for over a hundred years. It was explained or discussed by J. W. Gibbs, M. Planck, J. D. van der +Waals, H. A. Lorentz, A. Sommerfeld, E. Schrödinger, P. W. Bridgman and other well-known +physicists (see, e.g. [1–6]). Various explanations to this paradox have long been outlined in +textbooks (see, e.g. [2,3,7–9]), but papers devoted to it appear again and again (see, e.g., [5,10– +19]). +There are several formulations (versions, kinds) of the Gibbs paradox. The formulation, +which we, following the example of J. van Lith ([16]), call the original Gibbs paradox, arises +when considering in the framework of classical thermodynamics the question of the value of the +entropy of mixing of two ideal gases separated an initially by impenetrable partition. + + +2 +By reasoning, there is the following conclusion that the entropy of mixing of various ideal +gases with the same temperatures and pressures is not equal to zero and does not depend on the +properties of the gases being mixed. Also, by reasoning, there is an obtained conclusion that the +entropy of mixing of identical ideal gases with the same temperatures and pressures is equal to +zero. Thus, if we assume that there is a mixing of gases that are increasingly similar in properties +and are with the same temperatures and pressures, then the entropy of mixing remains constant +as long as there remains any, even vanishingly small, difference between the mixed gases. When +a transition to identical ideal gases occurs, the entropy mixing turns to zero by a jump, and the +magnitude of the jump does not depend on what and how much different these gases were. This +behavior of the entropy of mixing is paradoxical: a quantity that does not depend on the degree +of difference in properties of the gases suddenly vanishes when the difference in the properties +disappears. This formulation is also called the thermodynamic version of the Gibbs paradox +[13,17], the Gibbs paradox of the second kind [14], the discontinuity puzzle [18], the first Gibbs +paradox [19]. +The jump in the entropy of mixing looks especially paradoxical because the entropy of +mixing, like the entropy of gases, is a function of the properties of gases, i.e., a quantity that +depends on other quantities. The value of a function cannot change if the quantities on which it +depends have not changed. Consequently, the change in the entropy of mixing in the transition +from mixing different to mixing identical gases must be the result of a change in the value of +some variable or parameter. But in the case of the specified jump in the entropy of mixing, it is +not clear which quantity changes to cause such a change in this function. Therefore, those who +were looking for an explanation for this behavior of the entropy of mixing tried to find this +quantity. +For more than 100 years, many explanations of the Gibbs paradox in this formulation have +been proposed (see, e. g., [2–4, 7, 11, 13, 17]), but there is no one that would not cause +reasonable objections, and which could be called the final or generally accepted. +A common feature of all works devoted to this formulation of the Gibbs paradox is that +their authors did not take into account the fact that the conclusion about a paradoxical jump in +the entropy of mixing is not based on processing of empirical data, but arises as a result of +reasoning based on some premises. They did not analyze this reasoning and did not notice that +the conclusion about a paradoxical jump in the entropy of mixing is made by comparing the +values of non-identical functions, which are erroneously considered identical. To demonstrate +this, we derive a number of equations and consider the question: why do the values of the +entropy of mixing of different and identical ideal gases differ? + + +3 +II. Derivation of equations for the entropy of mixing of ideal gases, initially +separated by a partition, and obtaining a conclusion about a paradoxical +jump +When deriving equations for the entropy of mixing of different and identical ideal gases, +we will use as initial equations the well-known equations for the entropy of an ideal gas, systems +of ideal gases and change in entropy with change in the state of a thermodynamic system: + + + + + + + + + +i +i +i +i +Vi +i +i +i +i +i +s +n +V +R +T +c +n +T +V +n +S +0 +ln +ln +) +, +, +( +, +(1) +) +, +, +( +) +, +, +( +) +, +, +, +, +, +( +2 +2 +2 +2 +1 +1 +1 +1 +2 +2 +2 +1 +1 +1 +T +V +n +S +T +V +n +S +T +V +n +T +V +n +S b + + +, +(2) +) +, +, +( +) +, +, +( +) +, +, +, +( +2 +2 +1 +1 +2 +1 +T +V +n +S +T +V +n +S +T +V +n +n +S m + + +, +(3) +I +II +S +S +S + + + +, +(4) +i +i +i +i +RT +n +V +p + +, +(5) +where +) +, +, +( +i +i +i +i +T +V +n +S + is the entropy of +in moles of the ith ideal gas, its volume is +iV and temperature +is +iT ; +Vi +c is the molar heat capacity of the ith ideal gas at a constant volume, which depends on +the nature of the gas; R is universal gas constant; +is0 is a constant, which depends on the nature +of the gas; +) +, +, +, +, +, +( +2 +2 +2 +1 +1 +1 +T +V +n +T +V +n +Sb + is the entropy of a system consisting of two ideal gases +separated by an impermeable partition, the quantities of which are +1n and +2 +n moles, the volumes +are +1 +V and +2 +V , and the temperatures are 1T и +2T ; +) +, +, +, +( +2 +1 +T +V +n +n +Sm + is the entropy of a mixture of +1n +and +2 +n moles of different ideal gases, its volume is V and temperature is T; ΔS is change in the +entropy of the system during its transition from initial state I to final state II; +IS is the entropy of +the system in the initial state, +II +S is the entropy of the system in the final state; +ip is the pressure +of the ith ideal gas. +The equation (3) expresses the Gibbs’ theorem on the entropy of a mixture of ideal gases +(see e. g. [7,8]). +The equations (1)–(5) or equivalent equations are used by other authors who considered +the Gibbs paradox (see, e.g. [1–3,7–10,12,16]). +Function designations in Eqs. (1)–(3) contain variables on which these functions depend. +In what follows, the designations of various functions will also indicate the variables on which +they depend. The values related to systems of different gases will be denoted by superscripts d, +and the values related to systems of identical ideal gases will be denoted by superscripts i. + + +4 +In order not to be distracted by details that have nothing to do with the paradoxical jump +in the entropy of mixing, we consider the mixing of ideal gases with the same temperatures and +pressures. Since the gases are ideal, the temperature of the system after mixing will be equal to +the temperature in the initial state. Note: Gibbs considered the case of mixing ideal gases with +the same temperatures, pressures and volumes [1]. Many authors consider the case of mixing +one and one mole of ideal gases with the same temperatures, pressures and volumes. We will +consider a more general case — mixing +1n and +2 +n moles of ideal gases that have the same initial +temperatures and pressures. +Suppose that +1n and +2 +n moles of different ideal gases 1 and 2, that temperatures are equal +to T, and the volumes are +1 +V and +2 +V , are separated by an impermeable partition. The next +equation for the entropy of this system follows from Eqs. (1) and (2): +02 +2 +01 +1 +2 +2 +2 +1 +1 +1 +2 +2 +1 +1 +2 +2 +1 +1 +ln +ln +ln +) +( +) +, +, +, +, +( +s +n +s +n +n +V +n +n +V +n +R +T +c +n +c +n +T +V +n +V +n +S +V +V +d +b + + + + + + + + + + + + +. (6) +After removing the partition, a mixture of +1n and +2 +n moles of ideal gases 1 and 2 of +volume +2 +1 +V +V  + is formed. The next equation for the entropy of this mixture follows from Eqs. +(1) and (3): +02 +2 +01 +1 +2 +2 +1 +2 +1 +2 +1 +1 +2 +2 +1 +1 +2 +1 +2 +1 +ln +ln +ln +) +( +) +, +, +, +( +s +n +s +n +n +V +V +n +n +V +V +n +R +T +c +n +c +n +T +V +V +n +n +S +V +V +m + + + + + + + + + + + + + + + +. (7) +The next equation for the entropy of mixing of different ideal gases 1 and 2 with equal +initial temperatures follows from Eqs. (4), (6), (7), taking into account that +) +, +, +, +, +( +2 +2 +1 +1 +T +V +n +V +n +S +S +d +b +d +I  + and +) +, +, +, +( +2 +1 +2 +1 +T +V +V +n +n +S +S +m +d +II + + +: + + + + + + + + + + + + + + + + + + + +2 +2 +2 +1 +1 +1 +2 +2 +1 +2 +1 +2 +1 +1 +2 +2 +1 +1 +ln +ln +ln +ln +) +, +, +, +( +n +V +n +n +V +n +R +n +V +V +n +n +V +V +n +R +V +n +V +n +S d +. +(8) +If ideal gases have the same temperature and pressure, then it follows from Eq. (5): +2 +1 +2 +1 +2 +2 +1 +1 +n +n +V +V +n +V +n +V + + + + +. +(9) +The equation (8) can be converted to: +)] +ln +ln +( +) +ln( +) +[( +ln +ln +ln +) +( +) +, +, +, +( +2 +2 +1 +1 +2 +1 +2 +1 +2 +2 +2 +1 +1 +1 +2 +1 +2 +1 +2 +1 +2 +2 +1 +1 +n +n +n +n +n +n +n +n +R +n +V +n +n +V +n +R +n +n +V +V +n +n +R +V +n +V +n +S d + + + + + + + + + + + + + + + + + + + + +(10) +From (9) and (10) follows the equation for the entropy of mixing of different ideal gases +with the same temperatures and pressures: + + +5 +)] +ln +ln +( +) +ln( +) +[( +) +, +( +2 +2 +1 +1 +2 +1 +2 +1 +2 +1 +n +n +n +n +n +n +n +n +R +n +n +S d + + + + + + +. +(11) +If also +n +n +n + + +2 +1 +, then from (11) it follows: +2 +ln +2 +) +, +( +2 +1 +Rn +n +n +S d + + +. +(12) +If also +1 +2 +1 + + n +n +, then from (11) it follows: +2 +ln +2 +) +, +( +2 +1 +R +n +n +S d + + +. +(13) +Now let us consider the case of mixing of identical ideal gases with the same temperatures. +Suppose, +1n and +2 +n moles of identical gases 3 and 3, that temperatures are equal to T, and +the volumes are +1 +V and +2 +V , are separated by an impenetrable partition. The next equation for the +entropy of this system follows from Eqs. (1) and (2): +03 +2 +1 +2 +2 +2 +1 +1 +1 +3 +2 +1 +2 +2 +1 +1 +) +( +ln +ln +ln +) +( +) +, +, +, +( +s +n +n +n +V +n +n +V +n +R +T +c +n +n +V +n +V +n +S +V +i +b + + + + + + + + + + + + +. +(14) +After removing the partition, +2 +1 +n +n  + moles of pure ideal gas 3 of volume +2 +1 +V +V  + are +formed, that entropy according to Eq. (1) is: +03 +2 +1 +2 +1 +2 +1 +2 +1 +3 +2 +1 +2 +1 +2 +1 +3 +) +( +ln +) +( +ln +) +( +) +, +, +( +s +n +n +n +n +V +V +n +n +R +T +c +n +n +T +V +V +n +n +S +V + + + + + + + + + + +. +(15) +The next equation for the entropy of mixing of identical ideal gases with equal initial +temperatures follows from Eqs. (4), (14), (15), taking into account that +) +, +, +, +, +( +2 +2 +1 +1 +T +V +n +V +n +S +S +i +b +i +I  + +and +) +, +, +( +2 +1 +2 +1 +3 +T +V +V +n +n +S +S i +II + + + +: + + + + + + + + + + + + + +2 +2 +2 +1 +1 +1 +2 +1 +2 +1 +2 +1 +2 +2 +1 +1 +ln +ln +ln +) +( +) +, +, +, +( +n +V +n +n +V +n +R +n +n +V +V +n +n +R +V +n +V +n +S i +. +(16) +From (16) and (11) follows the equation for the entropy of mixing of identical ideal gases +with the same temperatures and pressures: +0 +) +, +( +2 +1 + + +n +n +S i +. +(17) +Based on Eqs. (11) and (17), we obtain a conclusion about the paradoxical behavior of the +entropy of mixing in the transition from mixing different to mixing identical gases. The entropy +of mixing +1n and +2 +n moles of different ideal gases with the same temperatures and pressures +) +, +( +2 +1 n +n +S d + +, according to Eq. (11), is not equal to zero, it depends only on the quantities of gases +1n and +2 +n and does not depend on gases properties. The entropy of mixing +1n and +2 +n moles of +identical ideal gases with the same temperatures and pressures +) +, +( +2 +1 n +n +S i + +, according to Eq. +(17), is equal to zero. Let us assume that the quantities of mixed gases do not change, and the + + +6 +properties of gases 1 and 2 approach the properties of gas 3 and, in the limit, gases 1 and 2 +become identical to gas 3. The entropy of mixing, according to Eq. (11), remains constant as +long as the gases are different. When gases 1 and 2 become identical to gas 3, their entropy of +mixing, according to Eq. (17), is equal to zero. Thus, during the transition from mixing different +ideal gases to mixing identical ideal gases, the entropy of mixing turns to zero by a jump. +In the same way, by comparing the values of +) +, +( +2 +1 n +n +S i + + and +) +, +( +2 +1 n +n +S d + + for cases of +mixing different and identical ideal gases with the same temperatures and pressures, other +authors also obtain a conclusion on the paradoxical jump in the entropy of mixing (see, e.g. [1– +3,7–10,12,16]). The conclusion about the paradoxical jump in the entropy of mixing seems +absolutely reliable. This conclusion follows from a comparison of Eq. (17) with Eqs. (11)–(13). +Eqs. (11)–(13), (17) are obtained on the basis of generally accepted initial equations by +mathematical derivations given above. The correctness of the derivation of each of these +equations can be easily verified. All the initial equations and all the assumptions used in +obtaining each equation are given above. When obtaining each intermediate equation, it is +indicated from which initial and intermediate equations it follows. + +III. Identification of the error, the consequence of which is the conclusion +about the paradoxical jump in the entropy of mixing +Consider the question: what causes the difference in the values of the entropy of mixing +of the same quantities of different and identical ideal gases, i.e., the difference in the values of +the functions +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S d + + and +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S i + +? +To find the answer to this question, we obtain a equation for the difference in values +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S d + + and +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S i + +. It follows from (10) and (16): +)] +ln +ln +( +) +ln( +) +[( +) +, +, +, +( +) +, +, +, +( +2 +2 +1 +1 +2 +1 +2 +1 +2 +2 +1 +1 +2 +2 +1 +1 +n +n +n +n +n +n +n +n +R +V +n +V +n +S +V +n +V +n +S +i +d + + + + + + + + + +(18) +It follows from (18): +)] +ln +ln +( +) +ln( +) +[( +) +, +, +, +( +) +, +, +, +( +2 +2 +1 +1 +2 +1 +2 +1 +2 +2 +1 +1 +i +2 +2 +1 +1 +n +n +n +n +n +n +n +n +R +V +n +V +n +S +V +n +V +n +S d + + + + + + + + + (19) +It follows from Eq. (19) that the function called the entropy of mixing of different ideal +gases +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S d + + is equal to the sum of two functions: the function called the entropy of +mixing +of +identical +ideal +gases +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S i + + +and +the +function +)] +ln +ln +( +) +ln( +) +([ +2 +2 +1 +1 +2 +1 +2 +1 +n +n +n +n +n +n +n +n +R + + + + +. Therefore, the function called the entropy of +mixing of different ideal gases +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S d + + is not identical to the function called the + + +7 +entropy of mixing of identical ideal gases +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S i + +. As a result, these functions have +different values even if the variables and parameters on which these functions depend, namely +1n , +2 +n , +1 +V , +2 +V , have the same values. The value +)] +ln +ln +( +) +ln( +) +([ +2 +2 +1 +1 +2 +1 +2 +1 +n +n +n +n +n +n +n +n +R + + + + + +called the magnitude of the jump in the entropy of mixing ideal gases during the transition from +mixing different to mixing identical gases, is not a change in the value of some function, but is +the difference in the values of various functions. The difference of this value from zero is due +precisely to the difference in the functions +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S d + + and +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S i + +. +However, the authors who, following Gibbs, draw the conclusion about a paradoxical +jump in the entropy of mixing to zero in the transition from mixing different to mixing identical +gases, erroneously believe that the quantities +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S d + +, that is expressed by Eq. (10), +and +) +, +, +, +( +2 +2 +1 +1 +V +n +V +n +S i + +, that is expressed by Eq. (16), are different values of the same function +— the entropy of mixing of ideal gases. But a function cannot have different values if the values +of the parameters and variables on that it depends do not change. Therefore, those who are +looking for the reason for this jump face the problem of finding the parameter of gases, due to +which, +when +changing +from +different +to +identical +gases, +the +function +)] +ln +ln +( +) +ln( +) +([ +2 +2 +1 +1 +2 +1 +2 +1 +n +n +n +n +n +n +n +n +R + + + + + turns to zero, on condition that +1 +n and +2 +n do not +change. This problem arises due to the erroneous identification of non-identical functions and +is unsolvable. Therefore, no one has solved it for more than a hundred years. + +IV. Conclusions +The appearance of original Gibbs paradox in the formulation of the conclusion on a +paradoxical jump in the entropy of mixing of ideal gases during the transition from mixing of +different gases to mixing of identical gases is due to the erroneous identification of non-identical +functions: the entropy of mixing of different ideal gases and the entropy of mixing of identical +ideal gases, the first of which is the sum of the second and the function +)] +ln +ln +( +) +ln( +) +([ +2 +2 +1 +1 +2 +1 +2 +1 +n +n +n +n +n +n +n +n +R + + + + +. This error entails a completely unsolvable +problem: to find an parameter of ideal gas different from +1 +n and +2 +n , changing when passing +from +different +gases +to +identical +ones +and +causing +the +function +)] +ln +ln +( +) +ln( +) +([ +2 +2 +1 +1 +2 +1 +2 +1 +n +n +n +n +n +n +n +n +R + + + + + turns to zero. +If this error is not made and it is recognized that the function called the entropy of mixing +of different ideal gases is not identical to the function called the entropy of mixing of identical + + +8 +ideal gases, then the difference in their values will become impossible to interpret as a change +(jump) in the value of some function, and the original formulation Gibbs paradox will not arise. + +Acknowledgements +The author is grateful to professor Oleksandr Andriiko, senior lecturer Vasiliy +Pikhorovich and the late associate professor Viktor Haidey for helpful discussions and +comments. + +References +[1] Gibbs J W 1928 The Collected Works Vol 1 Thermodynamics (New York: Longmans) +[2] Planck M 1903 Treatise on Thermodynamics (New York: Longmans) +[3] Sommerfeld A 1956 Thermodynamics and Statistical Mechanics (New York: Academic +Press) +[4] Khaytun S D 2010 The History of the Gibbs Paradox 3th edition (Moscow: KomKniga) (in +Russian) +[5] Gibbs paradox and its resolutions / Compiled by S-K Lin [Internet]; 2009 Nov 7 [cited 2022 +Dec 12]; [about 1 screen]. Available from: http://www.mdpi.org/lin/entropy/gibbs- +paradox.htm +[6] Darrigol O 2018 The Gibbs Paradox: Early History and Solutions Entropy 20, 443 +[7] Bazarov I P 1991 Thermodynamics 4th edition, rev and enl (Moscow: Vysshaya Shkola) (in +Russian) +[8] Zemansky M W and Dittman R H 1997Heat and Thermodynamics (7th edition) (New York: +McGraw-Hill) +[9] Kondepudi D and Prigogine I 1998 Modern thermodynamics: From heat engines to +dissipative structures (New York: Wiley) +[10] Gelfer Ya M, Luboshitz V L, and Podgoretskii M I 1975 Gibbs Paradox and Identity of +Particles in Quantum Mechanics (Nauka, Moscow) (in Russian) +[11] Denbigh K G and Redhead M L G 1989 Gibbs’ paradox and non-uniform convergence +Synthese 81 283–312 +[12] Urusov V S Gibbs paradox and symmetrization of a multicomponent system 2007 Dokl +Phys Chem 417 337–41 +[13] Ainsworth P M 2012 The Gibbs Paradox and the Definition of Entropy in Statistical +Mechanics Philos Sci 79 542–60 + + +9 +[14] Peters H 2014 Demonstration and resolution of the Gibbs paradox of the first kind Eur J +Phys 35, 015023 +[15] Murashita Y and Ueda M 2017Gibbs Paradox Revisited from the Fluctuation Theorem with +Absolute Irreversibility Phys Rev Lett 118 060601 +[16] van Lith J 2018 The Gibbs Paradox Lessons from Thermodynamics Entropy 20 328 +[17] Dieks D 2018 The Gibbs Paradox and Particle Individuality Entropy 20 466 +[18] Saunders S 2018 The Gibbs Paradox Entropy 20 552 +[19] Swendsen R H 2018Probability, Entropy, and Gibbs’ Paradox(es) Entropy 20 450 + diff --git a/ddAyT4oBgHgl3EQfwvlY/content/tmp_files/load_file.txt b/ddAyT4oBgHgl3EQfwvlY/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..f9b449de8af187bec3d137cfce74ce2c543a4b5b --- /dev/null +++ b/ddAyT4oBgHgl3EQfwvlY/content/tmp_files/load_file.txt @@ -0,0 +1,198 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf,len=197 +page_content='1 The original Gibbs paradox is the consequence of the erroneous identification of non-identical functions Volodymyr Ihnatovych Igor Sikorsky Kyiv Polytechnic Institute e-mail: v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='ihnatovych@kpi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='ua Abstract This article presents the results of research into the causes of the Gibbs paradox in the formulation discussed by J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Gibbs himself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' In this formulation, we are talking about an inexplicable (paradoxical) jump in the entropy of mixing of two ideal gases during the transition from mixing different to mixing identical gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' It is shown that the entropy of mixing of different ideal gases and the entropy of mixing of identical ideal gases are different (non-identical) functions of the same gas parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' That, called a paradoxical jump in the entropy of mixing, is not a jump in the value of some function, but is the difference in the values of various functions, on condition that the variables and parameters on which these functions depend remain constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Those who were looking for an explanation of the original Gibbs paradox did not notice this and tried to solve an unsolvable falsely posed problem: to find a parameter that change during the transition from different to identical gases caused the difference in the values of non-identical functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Introduction The Gibbs Paradox is one of the most mysterious physical paradoxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' It has been known for over a hundred years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' It was explained or discussed by J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Gibbs, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Planck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' van der Waals, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Lorentz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Sommerfeld, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Schrödinger, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Bridgman and other well-known physicists (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' [1–6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Various explanations to this paradox have long been outlined in textbooks (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' [2,3,7–9]), but papers devoted to it appear again and again (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=', [5,10– 19]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' There are several formulations (versions, kinds) of the Gibbs paradox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The formulation, which we, following the example of J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' van Lith ([16]), call the original Gibbs paradox, arises when considering in the framework of classical thermodynamics the question of the value of the entropy of mixing of two ideal gases separated an initially by impenetrable partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' 2 By reasoning, there is the following conclusion that the entropy of mixing of various ideal gases with the same temperatures and pressures is not equal to zero and does not depend on the properties of the gases being mixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Also, by reasoning, there is an obtained conclusion that the entropy of mixing of identical ideal gases with the same temperatures and pressures is equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Thus, if we assume that there is a mixing of gases that are increasingly similar in properties and are with the same temperatures and pressures, then the entropy of mixing remains constant as long as there remains any, even vanishingly small, difference between the mixed gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' When a transition to identical ideal gases occurs, the entropy mixing turns to zero by a jump, and the magnitude of the jump does not depend on what and how much different these gases were.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' This behavior of the entropy of mixing is paradoxical: a quantity that does not depend on the degree of difference in properties of the gases suddenly vanishes when the difference in the properties disappears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' This formulation is also called the thermodynamic version of the Gibbs paradox [13,17], the Gibbs paradox of the second kind [14], the discontinuity puzzle [18], the first Gibbs paradox [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The jump in the entropy of mixing looks especially paradoxical because the entropy of mixing, like the entropy of gases, is a function of the properties of gases, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=', a quantity that depends on other quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The value of a function cannot change if the quantities on which it depends have not changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Consequently, the change in the entropy of mixing in the transition from mixing different to mixing identical gases must be the result of a change in the value of some variable or parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' But in the case of the specified jump in the entropy of mixing, it is not clear which quantity changes to cause such a change in this function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Therefore, those who were looking for an explanation for this behavior of the entropy of mixing tried to find this quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' For more than 100 years, many explanations of the Gibbs paradox in this formulation have been proposed (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=', [2–4, 7, 11, 13, 17]), but there is no one that would not cause reasonable objections, and which could be called the final or generally accepted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' A common feature of all works devoted to this formulation of the Gibbs paradox is that their authors did not take into account the fact that the conclusion about a paradoxical jump in the entropy of mixing is not based on processing of empirical data, but arises as a result of reasoning based on some premises.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' They did not analyze this reasoning and did not notice that the conclusion about a paradoxical jump in the entropy of mixing is made by comparing the values of non-identical functions, which are erroneously considered identical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' To demonstrate this, we derive a number of equations and consider the question: why do the values of the entropy of mixing of different and identical ideal gases differ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' 3 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Derivation of equations for the entropy of mixing of ideal gases,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' initially separated by a partition,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' and obtaining a conclusion about a paradoxical jump When deriving equations for the entropy of mixing of different and identical ideal gases,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' we will use as initial equations the well-known equations for the entropy of an ideal gas,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' systems of ideal gases and change in entropy with change in the state of a thermodynamic system: \uf0f7\uf0f7 \uf0f8 \uf0f6 \uf0e7\uf0e7 \uf0e8 \uf0e6 \uf02b \uf02b \uf03d i i i i Vi i i i i i s n V R T c n T V n S 0 ln ln ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ( ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (1) ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ( ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ( ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ( 2 2 2 2 1 1 1 1 2 2 2 1 1 1 T V n S T V n S T V n T V n S b \uf02b \uf03d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (2) ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ( ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ( ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ( 2 2 1 1 2 1 T V n S T V n S T V n n S m \uf02b \uf03d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (3) I II S S S \uf02d \uf03d \uf044 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (4) i i i i RT n V p \uf03d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (5) where ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ( i i i i T V n S is the entropy of in moles of the ith ideal gas,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' its volume is iV and temperature is iT ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Vi c is the molar heat capacity of the ith ideal gas at a constant volume, which depends on the nature of the gas;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' R is universal gas constant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' is0 is a constant, which depends on the nature of the gas;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ) , , , , , ( 2 2 2 1 1 1 T V n T V n Sb is the entropy of a system consisting of two ideal gases separated by an impermeable partition, the quantities of which are 1n and 2 n moles, the volumes are 1 V and 2 V , and the temperatures are 1T и 2T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ) , , , ( 2 1 T V n n Sm is the entropy of a mixture of 1n and 2 n moles of different ideal gases, its volume is V and temperature is T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ΔS is change in the entropy of the system during its transition from initial state I to final state II;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' IS is the entropy of the system in the initial state, II S is the entropy of the system in the final state;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ip is the pressure of the ith ideal gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The equation (3) expresses the Gibbs’ theorem on the entropy of a mixture of ideal gases (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' [7,8]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The equations (1)–(5) or equivalent equations are used by other authors who considered the Gibbs paradox (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' [1–3,7–10,12,16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Function designations in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (1)–(3) contain variables on which these functions depend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' In what follows, the designations of various functions will also indicate the variables on which they depend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The values related to systems of different gases will be denoted by superscripts d, and the values related to systems of identical ideal gases will be denoted by superscripts i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' 4 In order not to be distracted by details that have nothing to do with the paradoxical jump in the entropy of mixing, we consider the mixing of ideal gases with the same temperatures and pressures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Since the gases are ideal, the temperature of the system after mixing will be equal to the temperature in the initial state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Note: Gibbs considered the case of mixing ideal gases with the same temperatures, pressures and volumes [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Many authors consider the case of mixing one and one mole of ideal gases with the same temperatures, pressures and volumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' We will consider a more general case — mixing 1n and 2 n moles of ideal gases that have the same initial temperatures and pressures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Suppose that 1n and 2 n moles of different ideal gases 1 and 2, that temperatures are equal to T, and the volumes are 1 V and 2 V , are separated by an impermeable partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The next equation for the entropy of this system follows from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (1) and (2): 02 2 01 1 2 2 2 1 1 1 2 2 1 1 2 2 1 1 ln ln ln ) ( ) , , , , ( s n s n n V n n V n R T c n c n T V n V n S V V d b \uf02b \uf02b \uf0f7\uf0f7 \uf0f8 \uf0f6 \uf0e7\uf0e7 \uf0e8 \uf0e6 \uf02b \uf02b \uf02b \uf03d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (6) After removing the partition, a mixture of 1n and 2 n moles of ideal gases 1 and 2 of volume 2 1 V V \uf02b is formed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The next equation for the entropy of this mixture follows from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (1) and (3): 02 2 01 1 2 2 1 2 1 2 1 1 2 2 1 1 2 1 2 1 ln ln ln ) ( ) , , , ( s n s n n V V n n V V n R T c n c n T V V n n S V V m \uf02b \uf02b \uf0f7\uf0f7 \uf0f8 \uf0f6 \uf0e7\uf0e7 \uf0e8 \uf0e6 \uf02b \uf02b \uf02b \uf02b \uf02b \uf03d \uf02b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (7) The next equation for the entropy of mixing of different ideal gases 1 and 2 with equal initial temperatures follows from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (4), (6), (7), taking into account that ) , , , , ( 2 2 1 1 T V n V n S S d b d I \uf03d and ) , , , ( 2 1 2 1 T V V n n S S m d II \uf02b \uf03d : \uf0f7\uf0f7 \uf0f8 \uf0f6 \uf0e7\uf0e7 \uf0e8 \uf0e6 \uf02b \uf02d \uf0f7\uf0f7 \uf0f8 \uf0f6 \uf0e7\uf0e7 \uf0e8 \uf0e6 \uf02b \uf02b \uf02b \uf03d \uf044 2 2 2 1 1 1 2 2 1 2 1 2 1 1 2 2 1 1 ln ln ln ln ) , , , ( n V n n V n R n V V n n V V n R V n V n S d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (8) If ideal gases have the same temperature and pressure, then it follows from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (5): 2 1 2 1 2 2 1 1 n n V V n V n V \uf02b \uf02b \uf03d \uf03d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (9) The equation (8) can be converted to: )] ln ln ( ) ln( ) [( ln ln ln ) ( ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ( 2 2 1 1 2 1 2 1 2 2 2 1 1 1 2 1 2 1 2 1 2 2 1 1 n n n n n n n n R n V n n V n R n n V V n n R V n V n S d \uf02b \uf02d \uf02b \uf02b \uf02b \uf02b \uf0f7\uf0f7 \uf0f8 \uf0f6 \uf0e7\uf0e7 \uf0e8 \uf0e6 \uf02b \uf02d \uf02b \uf02b \uf02b \uf03d \uf044 (10) From (9) and (10) follows the equation for the entropy of mixing of different ideal gases with the same temperatures and pressures: 5 )] ln ln ( ) ln( ) [( ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' ( 2 2 1 1 2 1 2 1 2 1 n n n n n n n n R n n S d \uf02b \uf02d \uf02b \uf02b \uf03d \uf044 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (11) If also n n n \uf03d \uf03d 2 1 , then from (11) it follows: 2 ln 2 ) , ( 2 1 Rn n n S d \uf03d \uf044 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (12) If also 1 2 1 \uf03d \uf03d n n , then from (11) it follows: 2 ln 2 ) , ( 2 1 R n n S d \uf03d \uf044 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (13) Now let us consider the case of mixing of identical ideal gases with the same temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Suppose, 1n and 2 n moles of identical gases 3 and 3, that temperatures are equal to T, and the volumes are 1 V and 2 V , are separated by an impenetrable partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The next equation for the entropy of this system follows from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (1) and (2): 03 2 1 2 2 2 1 1 1 3 2 1 2 2 1 1 ) ( ln ln ln ) ( ) , , , ( s n n n V n n V n R T c n n V n V n S V i b \uf02b \uf02b \uf0f7\uf0f7 \uf0f8 \uf0f6 \uf0e7\uf0e7 \uf0e8 \uf0e6 \uf02b \uf02b \uf02b \uf03d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (14) After removing the partition, 2 1 n n \uf02b moles of pure ideal gas 3 of volume 2 1 V V \uf02b are formed, that entropy according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (1) is: 03 2 1 2 1 2 1 2 1 3 2 1 2 1 2 1 3 ) ( ln ) ( ln ) ( ) , , ( s n n n n V V n n R T c n n T V V n n S V \uf02b \uf02b \uf02b \uf02b \uf02b \uf02b \uf02b \uf03d \uf02b \uf02b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (15) The next equation for the entropy of mixing of identical ideal gases with equal initial temperatures follows from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (4), (14), (15), taking into account that ) , , , , ( 2 2 1 1 T V n V n S S i b i I \uf03d and ) , , ( 2 1 2 1 3 T V V n n S S i II \uf02b \uf02b \uf03d : \uf0f7\uf0f7 \uf0f8 \uf0f6 \uf0e7\uf0e7 \uf0e8 \uf0e6 \uf02b \uf02d \uf02b \uf02b \uf02b \uf03d \uf044 2 2 2 1 1 1 2 1 2 1 2 1 2 2 1 1 ln ln ln ) ( ) , , , ( n V n n V n R n n V V n n R V n V n S i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (16) From (16) and (11) follows the equation for the entropy of mixing of identical ideal gases with the same temperatures and pressures: 0 ) , ( 2 1 \uf03d \uf044 n n S i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (17) Based on Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (11) and (17), we obtain a conclusion about the paradoxical behavior of the entropy of mixing in the transition from mixing different to mixing identical gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The entropy of mixing 1n and 2 n moles of different ideal gases with the same temperatures and pressures ) , ( 2 1 n n S d \uf044 , according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (11), is not equal to zero, it depends only on the quantities of gases 1n and 2 n and does not depend on gases properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The entropy of mixing 1n and 2 n moles of identical ideal gases with the same temperatures and pressures ) , ( 2 1 n n S i \uf044 , according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (17), is equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Let us assume that the quantities of mixed gases do not change, and the 6 properties of gases 1 and 2 approach the properties of gas 3 and, in the limit, gases 1 and 2 become identical to gas 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The entropy of mixing, according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (11), remains constant as long as the gases are different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' When gases 1 and 2 become identical to gas 3, their entropy of mixing, according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (17), is equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Thus, during the transition from mixing different ideal gases to mixing identical ideal gases, the entropy of mixing turns to zero by a jump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' In the same way, by comparing the values of ) , ( 2 1 n n S i \uf044 and ) , ( 2 1 n n S d \uf044 for cases of mixing different and identical ideal gases with the same temperatures and pressures, other authors also obtain a conclusion on the paradoxical jump in the entropy of mixing (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' [1– 3,7–10,12,16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The conclusion about the paradoxical jump in the entropy of mixing seems absolutely reliable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' This conclusion follows from a comparison of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (17) with Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (11)–(13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (11)–(13), (17) are obtained on the basis of generally accepted initial equations by mathematical derivations given above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The correctness of the derivation of each of these equations can be easily verified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' All the initial equations and all the assumptions used in obtaining each equation are given above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' When obtaining each intermediate equation, it is indicated from which initial and intermediate equations it follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Identification of the error, the consequence of which is the conclusion about the paradoxical jump in the entropy of mixing Consider the question: what causes the difference in the values of the entropy of mixing of the same quantities of different and identical ideal gases, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=', the difference in the values of the functions ) , , , ( 2 2 1 1 V n V n S d \uf044 and ) , , , ( 2 2 1 1 V n V n S i \uf044 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' To find the answer to this question, we obtain a equation for the difference in values ) , , , ( 2 2 1 1 V n V n S d \uf044 and ) , , , ( 2 2 1 1 V n V n S i \uf044 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' It follows from (10) and (16): )] ln ln ( ) ln( ) [( ) , , , ( ) , , , ( 2 2 1 1 2 1 2 1 2 2 1 1 2 2 1 1 n n n n n n n n R V n V n S V n V n S i d \uf02b \uf02d \uf02b \uf02b \uf03d \uf044 \uf02d \uf044 (18) It follows from (18): )] ln ln ( ) ln( ) [( ) , , , ( ) , , , ( 2 2 1 1 2 1 2 1 2 2 1 1 i 2 2 1 1 n n n n n n n n R V n V n S V n V n S d \uf02b \uf02d \uf02b \uf02b \uf02b \uf044 \uf03d \uf044 (19) It follows from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (19) that the function called the entropy of mixing of different ideal gases ) , , , ( 2 2 1 1 V n V n S d \uf044 is equal to the sum of two functions: the function called the entropy of mixing of identical ideal gases ) , , , ( 2 2 1 1 V n V n S i \uf044 and the function )] ln ln ( ) ln( ) ([ 2 2 1 1 2 1 2 1 n n n n n n n n R \uf02b \uf02d \uf02b \uf02b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Therefore, the function called the entropy of mixing of different ideal gases ) , , , ( 2 2 1 1 V n V n S d \uf044 is not identical to the function called the 7 entropy of mixing of identical ideal gases ) , , , ( 2 2 1 1 V n V n S i \uf044 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' As a result, these functions have different values even if the variables and parameters on which these functions depend, namely 1n , 2 n , 1 V , 2 V , have the same values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The value )] ln ln ( ) ln( ) ([ 2 2 1 1 2 1 2 1 n n n n n n n n R \uf02b \uf02d \uf02b \uf02b called the magnitude of the jump in the entropy of mixing ideal gases during the transition from mixing different to mixing identical gases, is not a change in the value of some function, but is the difference in the values of various functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' The difference of this value from zero is due precisely to the difference in the functions ) , , , ( 2 2 1 1 V n V n S d \uf044 and ) , , , ( 2 2 1 1 V n V n S i \uf044 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' However, the authors who, following Gibbs, draw the conclusion about a paradoxical jump in the entropy of mixing to zero in the transition from mixing different to mixing identical gases, erroneously believe that the quantities ) , , , ( 2 2 1 1 V n V n S d \uf044 , that is expressed by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (10), and ) , , , ( 2 2 1 1 V n V n S i \uf044 , that is expressed by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' (16), are different values of the same function — the entropy of mixing of ideal gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' But a function cannot have different values if the values of the parameters and variables on that it depends do not change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Therefore, those who are looking for the reason for this jump face the problem of finding the parameter of gases, due to which, when changing from different to identical gases, the function )] ln ln ( ) ln( ) ([ 2 2 1 1 2 1 2 1 n n n n n n n n R \uf02b \uf02d \uf02b \uf02b turns to zero, on condition that 1 n and 2 n do not change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' This problem arises due to the erroneous identification of non-identical functions and is unsolvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Therefore, no one has solved it for more than a hundred years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Conclusions The appearance of original Gibbs paradox in the formulation of the conclusion on a paradoxical jump in the entropy of mixing of ideal gases during the transition from mixing of different gases to mixing of identical gases is due to the erroneous identification of non-identical functions: the entropy of mixing of different ideal gases and the entropy of mixing of identical ideal gases,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' the first of which is the sum of the second and the function )] ln ln ( ) ln( ) ([ 2 2 1 1 2 1 2 1 n n n n n n n n R \uf02b \uf02d \uf02b \uf02b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' This error entails a completely unsolvable problem: to find an parameter of ideal gas different from 1 n and 2 n , changing when passing from different gases to identical ones and causing the function )] ln ln ( ) ln( ) ([ 2 2 1 1 2 1 2 1 n n n n n n n n R \uf02b \uf02d \uf02b \uf02b turns to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' If this error is not made and it is recognized that the function called the entropy of mixing of different ideal gases is not identical to the function called the entropy of mixing of identical 8 ideal gases, then the difference in their values will become impossible to interpret as a change (jump) in the value of some function, and the original formulation Gibbs paradox will not arise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Acknowledgements The author is grateful to professor Oleksandr Andriiko, senior lecturer Vasiliy Pikhorovich and the late associate professor Viktor Haidey for helpful discussions and comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' References [1] Gibbs J W 1928 The Collected Works Vol 1 Thermodynamics (New York: Longmans) [2] Planck M 1903 Treatise on Thermodynamics (New York: Longmans) [3] Sommerfeld A 1956 Thermodynamics and Statistical Mechanics (New York: Academic Press) [4] Khaytun S D 2010 The History of the Gibbs Paradox 3th edition (Moscow: KomKniga) (in Russian) [5] Gibbs paradox and its resolutions / Compiled by S-K Lin [Internet];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' 2009 Nov 7 [cited 2022 Dec 12];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' [about 1 screen].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Available from: http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='mdpi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='org/lin/entropy/gibbs- paradox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content='htm [6] Darrigol O 2018 The Gibbs Paradox: Early History and Solutions Entropy 20,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' 443 [7] Bazarov I P 1991 Thermodynamics 4th edition,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' rev and enl (Moscow: Vysshaya Shkola) (in Russian) [8] Zemansky M W and Dittman R H 1997Heat and Thermodynamics (7th edition) (New York: McGraw-Hill) [9] Kondepudi D and Prigogine I 1998 Modern thermodynamics: From heat engines to dissipative structures (New York: Wiley) [10] Gelfer Ya M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Luboshitz V L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' and Podgoretskii M I 1975 Gibbs Paradox and Identity of Particles in Quantum Mechanics (Nauka,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Moscow) (in Russian) [11] Denbigh K G and Redhead M L G 1989 Gibbs’ paradox and non-uniform convergence Synthese 81 283–312 [12] Urusov V S Gibbs paradox and symmetrization of a multicomponent system 2007 Dokl Phys Chem 417 337–41 [13] Ainsworth P M 2012 The Gibbs Paradox and the Definition of Entropy in Statistical Mechanics Philos Sci 79 542–60 9 [14] Peters H 2014 Demonstration and resolution of the Gibbs paradox of the first kind Eur J Phys 35,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' 015023 [15] Murashita Y and Ueda M 2017Gibbs Paradox Revisited from the Fluctuation Theorem with Absolute Irreversibility Phys Rev Lett 118 060601 [16] van Lith J 2018 The Gibbs Paradox Lessons from Thermodynamics Entropy 20 328 [17] Dieks D 2018 The Gibbs Paradox and Particle Individuality Entropy 20 466 [18] Saunders S 2018 The Gibbs Paradox Entropy 20 552 [19] Swendsen R H 2018Probability,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' Entropy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} +page_content=' and Gibbs’ Paradox(es) Entropy 20 450' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAyT4oBgHgl3EQfwvlY/content/2301.00653v1.pdf'} diff --git a/edE0T4oBgHgl3EQfogFH/content/tmp_files/2301.02526v1.pdf.txt b/edE0T4oBgHgl3EQfogFH/content/tmp_files/2301.02526v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..147699ee85fe4ea13c2563458817843e24ed02aa --- /dev/null +++ b/edE0T4oBgHgl3EQfogFH/content/tmp_files/2301.02526v1.pdf.txt @@ -0,0 +1,1337 @@ +Acoustic circular dichroism in a three-dimensional chiral metamaterial +Qing Tong,1 Jensen Li,2 and Shubo Wang1, ∗ +1Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China +2Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China +(Dated: January 9, 2023) +Circular dichroism (CD) is an intriguing chiroptical phenomenon associated with the interaction +of chiral structures with circularly polarized lights. Although the CD effect has been extensively +studied in optics, it has not yet been demonstrated in acoustic systems. +Here, we demonstrate +the acoustic CD effect in a three-dimensional chiral metamaterial supporting circularly polarized +transverse sound. +We find that the effect is negligible in the lossy metamaterial possessing C4 +rotational symmetry but can be strongly enhanced in the C2-symmetric system with inhomogeneous +loss. The phenomena can be understood based on the properties of the metamaterial’s complex +band structure and the quality factors of its eigenmodes. We show that the enhanced CD in the +C2-symmetric system is attributed to the polarization bandgaps and the non-Hermitian exceptional +points appearing near the Brillouin-zone center and boundaries. +The results contribute to the +understanding of chiral sound-matter interactions and can find applications in acoustic sensing of +chiral structures and sound manipulations based on its vector properties. +I. +INTRODUCTION +Chiral structures have novel properties deriving from +the mirror-symmetry breaking [1, 2] and are extensively +employed to realize polarization conversion [3, 4], un- +usual optical forces [5–7], and synthetic gauge fields[8]. +The interaction between chiral structures and chiral light, +i.e., light carrying spin and/or orbital angular momentum +(OAM), can give rise to circular dichroism (CD) [2, 9, 10] +and helical (or vortical) dichroism [11, 12], correspond- +ing to the differential absorption of lights with opposite +chirality. The CD effect has been investigated in vari- +ous optical structures, ranging from bilayer chiral struc- +tures [13, 14], nonplanar three-dimensional (3D) chiral +structures [15], to gyroid structures [16, 17]. Recent re- +search has uncovered the subtle relations between CD +and the Ohmic dissipation of meta-atoms [18] as well as +the bound states in the continuum [19], enabling a pro- +found understanding of chiral light-matter interactions. +The CD effect has been widely applied to analyze molecu- +lar structures [20, 21] and to achieve chiral discrimination +[22, 23]. +It is well known that sound can carry OAM in the +form of vortices [24–26]. The acoustic OAM can induce +chiral sound-matter interactions and give rise to intrigu- +ing phenomena such as acoustic geometric phases [27] +and the acoustic orbital Hall effect [28, 29]. +The chi- +ral sound-matter interactions can enable rich manipula- +tions of sound vortices, including asymmetric transmis- +sion/reflection [30], reversal of orbital angular momen- +tum [31], and acoustic helical dichroism [32]. +In ad- +dition, the chiral sound-matter interactions can be ap- +plied to manipulate matter, leading to acoustic levitation +[33, 34], acoustic tweezers [35–37], and acoustic torque +[38, 39]. While airborne sound is a longitudinal wave, +∗ shubwang@cityu.edu.hk +it was shown that inhomogeneous sound fields can carry +nonzero acoustic spin density characterized by rotating +velocity vector fields [40, 41]. Remarkably, spin-1 trans- +verse sound can emerge in a micropolar metamaterial +supporting synthetic shear forces in air [42]. In contrast +to the conventional longitudinal sound, the transverse +sound carries full vector properties similar to electro- +magnetic waves. +In particular, it can carry both spin +and OAM with intriguing spin-orbit interactions. Explo- +ration of this new type of sound and its counter-intuitive +properties can generate new functionalities for acoustic +applications. +Here, for the first time, we demonstrate the acoustic +CD effect in a 3D chiral metamaterial that supports cir- +cularly polarized transverse sound. Using full-wave nu- +merical simulations, we calculate the absorption of left- +handed circularly polarized (LCP) and right-handed cir- +cularly polarized (RCP) sound in the lossy metamaterial. +We find that the CD effect strongly depends on the ro- +tational symmetry of the metamaterial. The CD effect +is negligible in the metamaterial with homogeneous loss +satisfying the C4 rotational symmetry. +In contrast, it +is strongly enhanced in the metamaterial with inhomo- +geneous loss satisfying the C2 rotational symmetry. By +studying the complex band structure of the metamate- +rial and the quality factors of its eigenmodes, we find that +these properties originate from the polarization bandgaps +and the non-Hermitian exceptional points (EPs) of the +metamaterial. +We organize the article as follows. In Section II, we +introduce the acoustic chiral metamaterial and discuss +its eigenmode properties. In Section III, we show the nu- +merical results for the absorption of the LCP and RCP +sound in two types of lossy metamaterial obeying the +C4 and C2 rotational symmetry, respectively. Section IV +presents the complex band structures of the lossy meta- +materials, where we discuss the polarization bandgaps +and the EPs to understand the CD effect. We draw the +conclusion in Section V. +arXiv:2301.02526v1 [physics.app-ph] 6 Jan 2023 + +2 +II. +THE CHIRAL METAMATERIAL +We consider a 3D metamaterial with the cubical unit +cell shown in Figure 1(a). The unit cell comprises three +chiral resonators mutually connected by tubes, and it +obeys the C4 rotational symmetry with respect to the +x, y, and z axes. +Figure 1(b) shows a half of the chi- +ral resonator, where the radius is R = 5 cm, and the +height is h = 1 cm. The orange blades are connected +to the center post, and the gray blades are connected to +the outer shell of the resonator. We assume that air is +filled inside the resonator and all air-material interfaces +are hard boundaries. In the considered range of frequen- +cies, each resonator support subwavelength resonances. +These resonances endow the metamaterial with intrigu- +ing macroscopic acoustic properties. +We first calculate the band structure of the metama- +terial by using a finite-element package COMSOL Mul- +tiphysics. +The result is shown in Figure 1(c) for the +wavevector in z direction. The 4th to 9th bands (count- +ing from bottom) correspond to the eigenmodes domi- +nated by the dipole resonances of the chiral resonators. +Here, we focus on the bands labeled as B4, B6, B7, and +B9. The eigenmodes of these bands are circularly polar- +ized transverse sound [42], and their pressure fields are +shown in Fig. 1(d) for ka/π = 0.2. As seen, the fields +represent acoustic dipoles oscillating in a direction per- +pendicular to the axis of the resonators. The arrowed cir- +cles denote the rotation direction of the eigen fields. The +red and blue arrowed circles correspond to the right circu- +larly polarized (RCP) states and left circularly polarized +(LCP) states, respectively. The velocity field averaged +over the unit cell also circulates in the same direction. +The collective motion of the acoustic dipoles gives rise +to circularly-polarized transverse sound macroscopically. +The transverse sound of the bands B4 and B6 (B7 and +B9) have opposite handedness and carry opposite spin +angular momentum. +To demonstrate the emergence of circularly polarized +transverse sound, we consider the metamaterial with 15 +unit cells in z direction, as shown in Fig. 2(a). Peri- +odic boundary conditions are applied in x and y direc- +tions. To excite the system, we set four input ports at +the four tubes on the left side of the unit in Fig. 2(a) +with the phases 0, 0.5π, π, and 1.5π, respectively. The +azimuthal gradient of the phase decides the handedness +(LCP or RCP) of the excited circularly-polarized trans- +verse sound. +In addition, we set another four output +ports on the right side of the metamaterial to determine +the transmission. We consider two frequencies, 0.625 kHz +and 0.79 kHz corresponding to the frequencies marked by +the dashed lines in Fig. 1(c), where four eigenstates (two +are of LCP and two are of RCP) can be excited. To visu- +alize the transverse sounds, we average the velocity field +over each unit cell and plot the averaged velocity vec- +tors (denoted by the red and blue arrows) for the 15 unit +cells in Fig. 2(b)-(e). We observe that the velocity vec- +tors indeed rotate in the xy plane, corresponding to spin +a +h +R +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +0.0 +0.2 +0.4 +0.6 +0.8 + B4 + B6 + B7 + B9 +ka/π +Frequency (kHz) +0.790 +0.625 ++ ++ +- +- +(a) +(c) +(b) +(d) ++ +Z +B4 +Z +B6 +B7 +Z +Z +B9 +- +x +y +z +x +y +z +FIG. 1. +(a) Unit cell of the 3D acoustic metamaterial. (b) +Internal structure of the resonators. The geometry parame- +ters are R = 5 cm, h = 1cm, a = 12.1 cm. (c) Band structure +of the metamaterial. B4, B6, B7, and B9 denote the lowest +four bands with circularly polarized eigenstates. (d) Pressure +fields at ka/π = 0.2 for B4, B6, B7, and B9. The blue and red +arrows denote the circulating direction of the eigen pressure +fields for the LCP and RCP states, respectively. +angular momentum in the longitudinal direction (i.e., z +direction). The arrowed yellow circles denote the tem- +poral evolution of the velocity vectors, with the arrows +indicating the circulation direction. At either frequency, +the two transverse sounds carry opposite spins, allowing +the exploration of their different absorption inside the +metamaterial. +III. +ACOUSTIC CIRCULAR DICHROISM +We now consider the metamaterial with loss to inves- +tigate the CD effect of the transverse sound. As shown +in Fig. +3(a), we employ a three-layer sandwich struc- +ture: the bottom and top layers are lossless, while the +middle layer (highlighted in blue) contains loss. The loss +is introduced into the unit cells by adding an imaginary +part to the sound speed v(1 + iα) with α characterizing +the loss strength. We apply ports to excite the system +(same as in Fig. 2) from the bottom of the lattice. The +excited transverse sound propagates through the middle +lossy layer and is measured in the top layer to determine +its transmission. This directly maps to the usual config- +uration of optical CD, where an optical structure is sand- + +3 +x +y +z +(b) +(a) +(d) +(c) +(e) +FIG. 2. (a) The metamaterial with 15 units in z direction and +periodic in x and y directions. The transverse sound is excited +by ports on the left end of the metamaterial. (b-e) Averaged +velocity vectors in the metamaterial at the frequency f = +0.625 kHz (b,c) and 0.79 kHz (d,e). The yellow circles with +the arrow show the circulating direction of the velocity field +on the xy−plane. +wiched by air and reflection/transmission is measured in +air. We apply COMSOL to simulate the system and cal- +culate the reflection (R±) and transmission (T±) of the +incident sound. The absorptions can then be determined +as: +A± = 1 − R± − T±, +(1) +∆A = |A+ − A−| , +(2) +where “+” (“−”) denotes the RCP (LCP) state and ∆A +is the differential absorption of the RCP and LCP sounds. +We first consider the case with loss uniformly added to +all the chiral resonators in the middle blue-colored layer. +Figure 3(b) shows the numerical results of the reflections +(solid lines) and transmissions (dashed lines). The inset +shows the unit cell with the blue-colored regions contain- +ing loss α = 0.006 , which has C4 rotational symmetry. +As seen, the reflection R+ is nearly identical to R−, and +there is a tiny difference between the transmissions T+ +and T−. +The absorptions calculated using Eq.(1) are +shown in Fig. 3(c) as the solid blue and red lines. We +notice that the absorptions of LCP and RCP sounds are +almost equal. As a result, the CD effect is negligible in +this case with homogeneous loss. Figure 3(d) shows the +absorption of the LCP and RCP sound as a function of +the loss strength α at f = 0.65 kHz. We notice that the +absorption A+ and A− are almost identical. The differ- +ential absorption ∆A is less than 0.01 with the maximum +appears at α = 0.006, as shown by the orange dashed line +which has been multiplied by a factor of 10. +The optical CD effect strongly depends on the rota- +tional symmetry of the structures [43, 44]. To explore +this symmetry dependence for acoustic CD, we break the +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +0.0 +0.5 +1.0 +Frequency (kHz) + R+ + R- + T+ + T- + Reflection / +Transmission +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +0.0 +0.4 +0.8 + + A+ + A- +Frequency (kHz) +Absorption +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +0.0 +0.5 +1.0 +Absorption +α + A+ + A- + 10 |A+ - A-| +(a) +(b) +(c) +(d) +x +y +z + Reflection / +Transmission +FIG. 3. +(a) The 3-layer metamaterial with loss uniformly +added to the middle layer (colored in yellow). (b) Reflection, +transmission, and (c) absorption as a function of frequency +for the RCP (+) and LCP (-) sounds with α = 0.006. The +inset in (b) shows the regions containing loss (blue colored), +which satisfies the C4 symmetry. (d) Absorption of the LCP +and RCP sounds as a function of the loss α at 0.65 kHz. In +(c) and (d), the absorption difference (∆A) is multiplied by +ten for easy visualization. +C4 symmetry of the metamaterial by selectively adding +loss to the unit cells. As shown in the inset of Fig. 4(a), +we only add loss to the side resonator (i.e., two oppos- +ing half resonators highlighted in blue) with the center +axis in x-direction, reducing the symmetry of the meta- +material from C4 to C2. We numerically calculated the +transmission and reflection of this C2 system, and the re- +sults are shown in Fig. 4(a) for loss α = 0.1. We observe +large differences in the transmissions and reflections of +the LCP and RCP sound in the frequency range [0.600 +kHz, 0.825 kHz], corresponding to the considered bands +in Fig. 1(c). The absorptions calculated with Eq. (1) are +shown in Fig. 4(b). As noticed, there is a significant dif- +ference between the absorption of RCP sound (A+) and +the absorption of RCP sound (A−). The differential ab- +sorption ∆A (denoted by the orange dashed line) is much +larger than the case of Fig. 3 and has two local maxima +of about 0.5 appearing at 0.65 kHz and 0.80 kHz. This +demonstrates the strong CD phenomena in the C2 meta- +material. We also investigate the dependence of the CD +on the loss magnitude α, and the results are shown in + +000004 +Fig. 4(c) for f = 0.65 kHz. The trends of A+ and A− +are similar to those of the C4 system, but the absorp- +tion difference ∆A (denoted by the dashed orange line) +is much larger with a maximum value of 0.46 at α = 0.3 +(marked by the dashed line). +The CD characterizes the different absorption of LCP +and RCP sounds at the same frequency. We note that +the LCP and RCP sounds have different wavelengths in- +side the chiral metamaterial at the same frequency due +to their different dispersions. +It is thus interesting to +compare their absorption for the same wavelength (or +wavenumber) inside the metamaterial. Figure 4(d) shows +the absorption of the transverse sound corresponding to +the four bands B4, B6, B7, and B9 in Fig. 1(c). We +only consider the range of 0 ≤ ka/π ≤ 0.2 where the ef- +fective wavelength is well defined, and the excited state +is RCP for band B4 and LCP for band B7 due to their +negative group velocity in this range. As seen, the RCP +sounds (corresponding to the solid and dashed red lines) +generally have larger absorption compared with the LCP +sounds (corresponding to the solid and dashed blue lines). +This indicates that a strong CD effect also happens to +the circularly polarized transverse sounds with the same +wavelength (but not necessarily the same frequency). +To intuitively understand the different absorption of +LCP and RCP sounds, we then study the averaged ve- +locity fields (averaged over one unit cell) in the 3-layer +metamaterial with C2 symmetry. +Figure 5(a) shows a +side view of the metamaterial, where loss is added to the +middle layers consisting of 5 unit cells (the blue color +marks the resonators containing loss). The red and blue +helical curves in the bottom layer denote the temporal +trajectories of the velocity vectors of the incident RCP +and LCP sounds, respectively. The helical curves in the +upper layer denote the temporal trajectories of the ve- +locity vectors of the transmitted sounds, which are in +general elliptically polarized due to the coupling between +the LCP and RCP sounds in the C2 absorptive layer. Fig- +ure 5(b) and (c) show the numerical results of the trans- +mitted velocity fields under the incidence of the RCP +and LCP sounds, respectively, for f = 0.635 kHz and +α = 0.1. +The larger arrowed circles denote the time- +evolution trajectories of the incident velocity fields, while +the smaller ellipses denote the time-evolution trajecto- +ries of the transmitted velocity fields. Figure 5(d) shows +a comparison between the transmitted velocity fields un- +der the incidence of LCP and RCP sounds (corresponding +to a zoom-in of the results in Fig. 5(b) and (c)), which +are different in both amplitude and ellipticity. Similar +property also exists in the reflected fields. +IV. +COMPLEX BAND STRUCTURE AND +EXCEPTIONAL POINTS +We investigate the complex band structures of the sys- +tems to uncover the origins of the acoustic CD and the +different properties of the C2 and C4 systems. Figure 6(a) +(a) +(b) +(c) +(d) +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +0.0 +0.5 +1.0 +Frequency (kHz) + R+ + R- + T+ + T- +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +0.0 +0.5 +1.0 + A+ + A- + |A+ - A-| +Frequency (kHz) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +0.0 +0.5 +1.0 +α = 0.3 +α ++ + A+ + A- + |A - A-| +Absorption +0.00 +0.05 +0.10 +0.15 +0.20 +0.6 +0.8 +1.0 +0.4 + A+-B4 + A+-B6 + A--B7 + A--B9 +Absorption +ka/π + Reflection / +Transmission +Absorption +FIG. 4. (a) Reflection, transmission, and (b) absorption of the +RCP (+) and LCP (-) sounds for α = 0.1. The inset in (a) +shows the regions with loss (blue colored), which satisfies the +C2 symmetry. (c) Absorption of the LCP and RCP sounds as +a function of the loss parameter α at 0.65 kHz. (d) Absorption +of the LCP and RCP sounds as a function of the normalized +wavenumber ka/π for the bands B4, B6, B7, and B9. +and (b) show the real and imaginary parts of the complex +band structure for the C4 system with loss α = 0.006 +(corresponding to the case of Fig. 3). The imaginary +parts take positive values due to the time convention eiωt +adopted in COMSOL. The insets (labeled as A, B, C, +and D) on the right side show the zoom-ins of the bands +enclosed by the dashed rectangles. +The insets A and +B depict the bands near the Brillouin zone centers and + +5 +RCP +LCP +(a) +(b) +(c) +(d) +𝑡 +𝑡 +𝑡 +𝑡 +x +z +x +y +Absorption layer +FIG. 5. (a) Schematics of the CD effect in the acoustic meta- +material. The red and blue helical curves denote the tempo- +ral trajectories of the velocity vectors for the RCP and LCP +sounds on the incident side (bottom) and the transmission +side (top). (b, c) Larger (smaller) circles denote the evolu- +tion trajectories of velocity field for the incident (transmitted) +RCP and LCP sounds. The transmitted sounds are ellipti- +cally polarized. (d) A zoom-in comparison of the transmitted +velocity field’s trajectories under the incidence of RCP (red) +and LCP (blue) sound. We set the frequency f = 0.635 kHz +and loss α = 0.1. +boundaries, respectively, for B4 and B6. +Likewise, in- +sets C and D show the bands closed to the Brillouin zone +centers and boundaries, respectively, for B7 and B9. We +notice that the band degeneracies are not affected by the +loss due to the protection of the C4 symmetry. +Figure 7 shows the complex band structure for the C2 +system with the same loss α = 0.006 for comparison with +the C4 system. Interestingly, at the Brillouin zone cen- +ter and boundaries, the real parts of the bands remain +degenerate in a finite range of k values while the imagi- +nary parts bifurcate in the same range, as shown in the +insets on the right side. +This indicates the emergence +of non-Hermitian exceptional points [45–47]. Obviously, +these EPs derive from the diabolic points of the origi- +nal lossless system in Fig. +1 (c). +While the phenom- +ena here is similar to the EPs spawn from Dirac points +in two-dimensional photonic crystals [45], the underlying +physical mechanism is different. The emergence of these +EPs is attributed to the coupling and loss difference of +the LCP and RCP transverse dipole modes induced by +the breaking of C4 symmetry. We will elaborate on this +point with an analytical model later. +Figure 8(a) and (b) show the complex band structure +for the C2 system with a larger loss α = 0.1, correspond- +ing to the case of Fig. 4(a) and (b) with a much stronger +CD effect. We notice that the EP features remain at the +center and boundaries of the Brillouin zone. At the same +time, small partial gaps appear at the frequencies of the +EPs, as marked by the blue and red ribbons in the insets +(a) +(b) +Numerical Data +-1.0 +-0.5 +0.0 +0.5 +1.0 +0.0 +0.2 +0.4 +0.6 +0.8 +0.95 +1.00 +1.05 +0.75 +0.76 +0.77 +-0.05 0.00 +0.05 +0.80 +0.81 +0.95 +1.00 +1.05 +0.64 +0.65 +-0.05 0.00 +0.05 +0.616 +0.624 +B +A +D +B +D +ka/π +Re (f) (kHz) + B4 + B6 + B7 + B9 +Re (f) (kHz) +ka/π +C +A +B +C +D +Fitting +-1.0 +-0.5 +0.0 +0.5 +1.0 +0 +1 +2 +3 +4 +5 +0.95 +1.00 +1.05 +4.5 +4.6 +-0.05 0.00 +0.05 +4.80 +4.85 +0.95 +1.00 +1.05 +3.9 +-0.05 0.00 0.05 +3.68 +3.72 +D +D +C +B +ka/π +Im (f) (Hz) + B4 + B6 + B7 + B9 +Im (f) (Hz) +ka/π +A +B +Numerical Data +Fitting +A +B +C +D +FIG. 6. The real (a) and imaginary (b) parts of the complex +band structure for the C4 system at α = 0.006. Insets on the +right side show the zoom-ins of the bands near the zone center +and boundaries, corresponding to the dashed rectangles in (a) +and (b). The solid lines in the insets denote the analytical +fitting results. +of Fig. 8(a). At the frequencies of the blue-ribbon (red- +ribbon) region, only LCP (RCP) sound can propagate +through the metamaterial [16, 47]. Thus, at the frequen- +cies f = 0.62 kHz and f = 0.76 kHz, the RCP sound +cannot propagate through the metamaterial. Similarly, +at the frequencies of f = 0.65 kHz and f = 0.80 kHz, the +LCP sound cannot propagate through the metamaterial. +However, this does not necessarily indicate a large differ- +ence in the reflection of LCP and RCP sounds at these +frequencies due to the non-Hermitian nature of the meta- +material. Whether strong reflection will appear at the +partial polarization gaps depends on the damping of the +corresponding eigenmodes. In the following, we will show +that the eigenmodes’ damping property strongly affects +the reflection and the CD effect. + +6 +(a) +(b) +-1.0 +-0.5 +0.0 +0.5 +1.0 +0.0 +0.2 +0.4 +0.6 +0.8 +0.99 +1.00 +1.01 +0.758 +0.760 +-0.04 +0.00 +0.04 +0.800 +0.805 +0.96 +1.00 +1.04 +0.64 +0.65 +-0.04 +0.00 +0.04 +0.615 +0.620 +C +D +B +D +D +B +C +A +ka/π +Re (f) (kHz) +ka/π + B4 + B6 + B7 + B9 +Re (f) (kHz) +B +A +Numerical Data +Fitting +-1 +0 +1 +0 +1 +2 +0.99 +1.00 +1.01 +1.0 +1.5 +-0.04 +0.00 +0.04 +0 +1 +2 +0.96 +1.00 +1.04 +0.0 +1.5 +-0.04 +0.00 +0.04 +0.8 +1.6 +D +B +B +C +D +B +ka/π +Im (f) (Hz) + B4 + B6 + B7 + B9 +Im (f) (Hz) +ka/π +A +C +D +A +Numerical Data +Fitting +FIG. 7. The real (a) and imaginary (b) parts of complex band +structure for the C2 system at α = 0.006. The insets on the +right side show the zoom-ins of the bands near the zone center +and boundaries, corresponding to the dashed rectangles in (a) +and shaded rectangles in (b). +The solid lines in the insets +denote the analytical fitting results. +To understand the damping of the eigenmodes, we in- +vestigate the modes’ quality factor Q corresponding to +the bands B4, B6, B7, and B9, for both the C4 and C2 +systems. The quality factor is calculated as Q = +Re(f) +2Im(f) +[48]. The results are shown in Fig. 9(a) and (b) as a +function of the real part of the eigenfrequency. We note +that the eigenmode of each band can be either LCP or +RCP, depending on the sign of its group velocity with +respect to the phase velocity. Consequently, the quality +factor Q of each band can be divided into two parts for +the LCP (“−”) and RCP (“+”) states, respectively. As +shown in Fig. 9(a), all eigenmodes of the C4 system have +approximately the same quality factor. This explains the +negligible CD effect in the C4 system with homogenous +loss. In contrast, the quality factors of the LCP and RCP +modes in the C2 system have a large difference, particu- +(b) +(a) +-1.0 +-0.5 +0.0 +0.5 +1.0 +0.0 +0.2 +0.4 +0.6 +0.8 +0.9 +1.0 +1.1 +0.75 +0.78 +-0.2 +0.0 +0.2 +0.78 +0.80 +0.8 +1.0 +1.2 +0.64 +0.68 +-0.2 +0.0 +0.2 +0.62 +0.63 +ka/π +ka/π +Re (f) (kHz) +Re (f) (kHz) +C +D +D +B +A + B4 + B6 + B7 + B9 +B +A +B +C +D +Numerical Data +Fitting +-1.0 +-0.5 +0.0 +0.5 +1.0 +0 +10 +20 +30 +40 +0.9 +1.0 +1.1 +16 +24 +-0.2 +0.0 +0.2 +0 +25 +0.8 +1.0 +1.2 +0 +20 +-0.2 +0.0 +0.2 +10 +20 +ka/π +ka/π +B +A +D +D +B +Im (f) (Hz) + B4 + B6 + B7 + B9 +Im (f) (Hz) +C +A +B +C +D +Numerical Data +Fitting +FIG. 8. The real (a) and imaginary (b) parts of complex band +structures for the C2 system at α = 0.1. The right insets show +the zoom-ins of the bands near the Brillouin zone centers and +boundaries, corresponding to the dashed rectangles in (a) and +shaded rectangles in (b). The ribbons in the insets denote +the partial bandgaps. The solid lines in the insets denote the +analytical fitting results. +larly in the vicinity of the polarization bandgaps marked +by the red ribbons. The large difference in quality fac- +tor indicates a large difference in the damping of LCP +and RCP modes and thus explains the strong CD effect +near the polarization bandgaps, in agreement with the +numerical results in Fig. 4(b). For the LCP and RCP +modes near the blue-ribbon band gaps, their quality fac- +tors are much smaller than the modes near the red-ribbon +bands, and the difference of their quality factors are also +much smaller. Therefore, both LCP and RCP sounds at +the frequencies of the blue-ribbon region are strongly ab- +sorbed, and their reflections are small, leading to a weak +CD effect, as confirmed by the numerical results in Fig. +4(b). + +7 +(a) +(b) +0.6 +0.7 +0.8 +80 +82 +84 +Quality factor +Re (f) (kHz) + Q4(+) + Q4(-) + Q6(+) + Q6(-) + Q7(-) + Q7(+) + Q9(-) + Q9(+) +A +0.6 +0.7 +0.8 +10 +100 +1000 +C +D +B +0.803 kHz + Q4(+) + Q4(-) + Q6(+) + Q6(-) + Q7(-) + Q7(+) + Q9(-) + Q9(+) +Quality factor +Re (f) (kHz) +0.645 kHz +FIG. 9. The quality factor Q of the eigenmodes in the (a) +C4 and (b) C2 systems, corresponding the cases of Fig. +6 +and Fig. 8, respectively. The blue and red ribbons denote +polarization bandgaps. +To understand the emergence of the EPs in the C2 +system, we exploit an effective Hamiltonian to describe +the coupling of the LCP and RCP modes near the Bril- +louin zone center [45, 46, 49, 50]. As for the C4 system +with homogenous loss, the effective Hamiltonian can be +expressed as: +HC4 = +� +ω0 − iγ +(vR + ivI)k +(vR + ivI)k +ω0 − iγ +� +(3) +which has the complex eigenvalues: +ω = ω0 − iγ ± k(vR + ivI). +(4) +Here, ω0 is the eigenfrequency at k = 0, where the LCP +and RCP modes are degenerate; vR and vI are the real +and the imaginary parts of the complex group velocities, +respectively; γ denotes the loss. +In the C2 system, loss is selectively added to only one +resonator in each unit cell. The breaking of C4 symmetry +opens a gap at k = 0, which can be characterized by a +perturbation term δ/2 in the Hamiltonian. The LCP and +RCP modes at k = 0 now have different loss γ1 and γ2 +(γ1 ̸= γ2): +HC2 = +� +ω0 − iγ1 + δ +2 +(vR + ivI)k +(vR + ivI)k +ω0 − iγ2 − δ +2 +� +, +(5) +which has the complex eigenvalues: +ω =ω0 − i(γ1 + γ2) +2 +± 1 +2 +� +[δ − i(γ1 − γ2)]2 − 4k2(vI − ivR)2. +(6) +These analytical expressions of the complex eigenval- +ues in Eq.(4) and (6) are employed to fit the numeri- +cal results for both the real and the imaginary parts. +The fitting results are shown as the solid lines in the +insets of Figs. 6-8, accordingly. We notice good quanti- +tative agreements between the analytical and numerical +results. In particular, the effective Hamiltonian correctly +captures the EP features in the C2 systems. The fitting +parameters for both C4 and C2 systems with different +losses are summarized in Table I. We note that the mode +damping parameters γ1,2 take negative values due to the +time convention eiωt adopted in COMSOL. +TABLE I. Fitting parameters for C4 and C2 systems +System +α +ω0 +γ +vR +vI +Inset +C4 +0.006 +617.61 +-3.71 +2.96 0.018 +A (Fig. 6) +803.5 +-4.82 +4.97 +0.03 +C (Fig. 6) +C2 +α +ω0 +γ1 +γ2 +vR +vI +δ +Inset +0.006 +617.12 -1.53 +-0.33 2.96 0.0011 0.036 A (Fig. 7) +803.66 -0.01 +-2.30 4.99 -0.013 0.0075 C (Fig. 7) +0.1 +622.12 -24.87 -5.13 2.98 +0.03 +4.77 +A (Fig. 8) +800.40 -0.22 -39.12 4.98 -0.21 +4.22 +C (Fig. 8) +The above effective Hamiltonians well explain the +emergence of the EPs and the enhancement of CD by +the EPs. In the C4 system, the LCP mode of the B4 +band and the RCP mode of the B6 band are orthogonal +at k = 0 with vanished coupling. The damping of the +LCP and RCP modes at the same excitation frequency +are approximately equal due to homogeneous loss added +to all resonators of the unit cell. +Thus, their quality +factors are almost equal (corresponding to the results in +Fig. 9(a)). In the C2 system, the inhomogeneous loss +breaks the C4 rotational symmetry and induces coupling +between the original LCP and RCP modes at k = 0, +which gives rise to the polarization bandgaps. In addi- +tion, the two modes have different dampings due to the +inhomogeneous material loss. These together give rise to +the EPs and the bifurcation of the imaginary parts of the +eigenfrequencies, leading to enlarged damping contrast +of the LCP and RCP modes at the same excitation fre- +quency and thus larger difference in their quality factors +(corresponding to the results in Fig. 9(b)). Therefore, +the strong CD effect in the C2 system is attributed to +both the polarization bandgaps and the EPs. +V. +CONCLUSION +In conclusion, we demonstrate the acoustic CD effect +in a 3D chiral metamaterial supporting circularly polar- + +8 +ized transverse sound. We have investigated the effect +in two types of systems with C4 and C2 rotational sym- +metry, respectively. In the C4 system with loss homo- +geneously added to all resonators of the unit cell, we +observe a negligible acoustic CD effect. +On the other +hand, by selectively adding loss to part of the unit cell, +reducing the system’s rotational symmetry from C4 to +C2, the CD effect is enhanced strongly. With analysis of +their complex band structures and quality factors of the +eigenmodes, we uncover that the strong acoustic CD in +the C2 system is attributed to polarization bandgaps and +the emergence of non-Hermitian EPs. The polarization +bandgaps induce selective transmission and absorption +of the circularly polarized transverse sound with a par- +ticular handedness. The EPs give rise to bifurcations of +the imaginary parts of the eigen frequencies. These to- +gether enhance the CD effect in the C2 system. It will be +interesting to experimentally demonstrate the discussed +phenomena. The metamaterial structures can be fabri- +cated using 3D printing. Loss can be introduced into the +structures by adding sponges. The transverse sound can +be excited by using an array of speakers, and the reflec- +tion/refraction can be measured with a microphone. The +acoustic CD effect can find applications in sound manip- +ulations based on its vector degrees of freedom and in +acoustic sensing of chiral structures. +The results con- +tribute to the understanding of chiral sound-matter in- +teractions in metamaterials and phononic crystals. +ACKNOWLEDGMENTS +The work described in this paper was supported by +grants from the Research Grants Council of the Hong +Kong Special Administrative Region, China (No. CityU +21302018 and No. C6013-18G). +[1] M. Hentschel, M. Sch¨aferling, X. Duan, H. Giessen, and +N. Liu, Chiral plasmonics, Sci. Adv. 3, e1602735 (2017). +[2] J. Mun, M. Kim, Y. Yang, T. Badloe, J. Ni, Y. Chen, +C.-W. Qiu, and J. Rho, Electromagnetic chirality: from +fundamentals to nontraditional chiroptical phenomena, +Light: Sci. Appl. 9, 139 (2020). +[3] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, +V. Saile, G. von Freymann, S. Linden, and M. Wegener, +Gold helix photonic metamaterial as broadband circular +polarizer, Science 325, 1513 (2009). +[4] C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, +Metallic helix array as a broadband wave plate, Phys. +Rev. Lett. 107, 177401 (2011). +[5] S. B. Wang and C. T. Chan, Lateral optical force on +chiral particles near a surface, Nat. Commun. 5, 3307 +(2014). +[6] A. Hayat, J. P. B. Mueller, and F. Capasso, Lateral +chirality-sorting optical forces, Proc. Natl. Acad. Sci. +U.S.A. 112, 13190 (2015). +[7] A. Rahimzadegan, M. Fruhnert, R. Alaee, I. Fernandez- +Corbaton, and C. Rockstuhl, Optical force and torque +on dipolar dual chiral particles, Phys. Rev. B 94, 125123 +(2016). +[8] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, +D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Sza- +meit, Photonic floquet topological insulators, Nature +(London) 496, 196 (2013). +[9] S. S. Oh and O. Hess, Chiral metamaterials: enhance- +ment and control of optical activity and circular dichro- +ism, Nano Convergence 2, 24 (2015). +[10] V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, +Chirality and Chiroptical Effects in Plasmonic Nanos- +tructures: Fundamentals, Recent Progress, and Outlook, +Adv. Mater. 25, 2517 (2013). +[11] W. Brullot, M. K. Vanbel, T. Swusten, and T. Verbiest, +Resolving enantiomers using the optical angular momen- +tum of twisted light, Sci. Adv. 2, e1501349 (2016). +[12] K. A. Forbes and D. L. Andrews, Optical orbital angular +momentum: twisted light and chirality, Opt. Lett. 43, +435 (2018). +[13] A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and +N. I. Zheludev, Giant Gyrotropy due to Electromagnetic- +Field Coupling in a Bilayered Chiral Structure, Phys. +Rev. Lett. 97, 177401 (2006). +[14] Y. Cheng, F. Chen, and H. Luo, Multi-band giant circular +dichroism based on conjugated bilayer twisted-semicircle +nanostructure at optical frequency, Phys. Lett. A 384, +126398 (2020). +[15] B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, Non- +planar chiral metamaterials with negative index, Appl. +Phys. Lett. 94, 151112 (2009). +[16] M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, +K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and +G. E. Schr¨oder-Turk, Circular Dichroism in Biological +Photonic Crystals and Cubic Chiral Nets, Phys. Rev. +Lett. 106, 103902 (2011). +[17] C. Kilchoer, N. Abdollahi, J. A. Dolan, D. Abdelrahman, +M. Saba, U. Wiesner, U. Steiner, I. Gunkel, and B. D. +Wilts, Strong Circular Dichroism in Single Gyroid Opti- +cal Metamaterials, Adv. Opt. Mater. 8, 1902131 (2020). +[18] A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, +F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, +M. A. Belkin, and G. Shvets, Experimental demonstra- +tion of the microscopic origin of circular dichroism in +two-dimensional metamaterials, Nat. Commun. 7, 12045 +(2016). +[19] T. Shi, Z.-L. Deng, G. Geng, X. Zeng, Y. Zeng, G. Hu, +A. Overvig, J. Li, C.-W. Qiu, A. Al`u, Y. S. Kivshar, +and X. Li, Planar chiral metasurfaces with maximal and +tunable chiroptical response driven by bound states in +the continuum, Nat. Commun. 13, 4111 (2022). +[20] N. Berova, K. Nakanishi, and R. W. Woody, Circu- +lar Dichroism: Principles and Applications (Wiley, New +York, 2000). +[21] A. Micsonai, F. Wien, L. Kernya, Y.-H. Lee, Y. Goto, +M. R´efr´egiers, and J. Kardos, Accurate secondary struc- +ture prediction and fold recognition for circular dichroism +spectroscopy, Proc. Natl. Acad. Sci. U.S.A. 112, E3095 + +9 +(2015). +[22] E. Vinegrad, D. Vestler, A. Ben-Moshe, A. R. Barnea, +G. Markovich, and O. Cheshnovsky, Circular dichroism +of single particles, ACS Photonics 5, 2151 (2018). +[23] S. Jia, J. Peng, Y. Cheng, and S. Wang, Chiral discrim- +ination by polarization singularities of a metal sphere, +Phys. Rev. A 105, 033513 (2022). +[24] X. Jiang, Y. Li, B. Liang, J.-c. Cheng, and L. Zhang, +Convert Acoustic Resonances to Orbital Angular Mo- +mentum, Phys. Rev. Lett. 117, 034301 (2016). +[25] H. Esfahlani, H. Lissek, and J. R. Mosig, Generation +of acoustic helical wavefronts using metasurfaces, Phys. +Rev. B 95, 024312 (2017). +[26] H. Zhou, J. Li, K. Guo, and Z. Guo, Generation of acous- +tic vortex beams with designed fermat’s spiral diffraction +grating, J. Acoust. Soc. Am. 146, 4237 (2019). +[27] S. Wang, G. Ma, and C. T. Chan, Topological transport +of sound mediated by spin-redirection geometric phase, +Sci. Adv. 4, eaaq1475 (2018). +[28] W. Wang, Y. Tan, B. Liang, G. Ma, S. Wang, and +J. Cheng, Generalized momentum conservation and +Fedorov-Imbert linear shift of acoustic vortex beams at +a metasurface, Phys. Rev. B 104, 174301 (2021). +[29] X.-D. Fan and L. Zhang, Acoustic orbital angular mo- +mentum Hall effect and realization using a metasurface, +Phys. Rev. Research 3, 013251 (2021). +[30] Y. Fu, C. Shen, X. Zhu, J. Li, Y. Liu, S. A. Cummer, and +Y. Xu, Sound vortex diffraction via topological charge +in phase gradient metagratings, Sci. Adv. 6, eaba9876 +(2020). +[31] Z. Zou, R. Lirette, and L. Zhang, Orbital Angular Mo- +mentum Reversal and Asymmetry in Acoustic Vortex +Beam Reflection, Phys. Rev. Lett. 125, 074301 (2020). +[32] Q. Tong and S. Wang, Acoustic helical dichroism in a +one-dimensional lattice of chiral resonators, Phys. Rev. +B 105, 024111 (2022). +[33] Z. Y. Hong, J. F. Yin, W. Zhai, N. Yan, W. L. Wang, +J. Zhang, and B. W. Drinkwater, Dynamics of levitated +objects in acoustic vortex fields, Sci. Rep. 7, 7093 (2017). +[34] Z. Y. Hong, J. F. Yin, B. W. Zhang, and N. Yan, Vortex- +field acoustic levitation in tubes, J. Appl. Phys. 128, +104901 (2020). +[35] A. Marzo, M. Caleap, and B. W. Drinkwater, Acoustic +Virtual Vortices with Tunable Orbital Angular Momen- +tum for Trapping of Mie Particles, Phys. Rev. Lett. 120, +044301 (2018). +[36] M. Baudoin, J.-C. Gerbedoen, A. Riaud, O. B. Matar, +N. Smagin, and J.-L. Thomas, Folding a focalized acous- +tical vortex on a flat holographic transducer: Miniatur- +ized selective acoustical tweezers, Sci. Adv. 5, eaav1967 +(2019). +[37] W.-C. Lo, C.-H. Fan, Y.-J. Ho, C.-W. Lin, and C.-K. +Yeh, Tornado-inspired acoustic vortex tweezer for trap- +ping and manipulating microbubbles, Proc. Natl. Acad. +Sci. U.S.A. 118, e2023188118 (2021). +[38] Y. Li, G. Guo, J. Tu, Q. Ma, X. Guo, D. Zhang, and O. A. +Sapozhnikov, Acoustic radiation torque of an acoustic- +vortex spanner exerted on axisymmetric objects, Appl. +Phys. Lett. 112, 254101 (2018). +[39] R. Wunenburger, J. I. V. Lozano, and E. Brasselet, +Acoustic orbital angular momentum transfer to matter +by chiral scattering, New J. Phys. 17, 103022 (2015). +[40] K. Y. Bliokh and F. Nori, Spin and orbital angular +momenta of acoustic beams, Phys. Rev. B 99, 174310 +(2019). +[41] Y. Long, D. Zhang, C. Yang, J. Ge, H. Chen, and J. Ren, +Realization of acoustic spin transport in metasurface +waveguides, Nat. Commun. 11, 4716 (2020). +[42] S. Wang, G. Zhang, X. Wang, Q. Tong, J. Li, and G. Ma, +Spin-orbit interactions of transverse sound, Nat. Com- +mun. 12, 6125 (2021). +[43] M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and +M. Wegener, Twisted split-ring-resonator photonic meta- +material with huge optical activity, Opt. Lett. 35, 1593 +(2010). +[44] B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and +Y. S. Kivshar, Circular dichroism induced by fano reso- +nances in planar chiral oligomers, Laser Photonics Rev. +10, 137 (2015). +[45] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, +A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljaˇci´c, +Spawning rings of exceptional points out of dirac cones, +Nature (London) 525, 354 (2015). +[46] M.-A. Miri and A. Al`u, Exceptional points in optics and +photonics, Science 363, eaar7709 (2019). +[47] J. C. W. Lee and C. T. Chan, Polarization gaps in spiral +photonic crystals, Opt. Express 13, 8083 (2005). +[48] T. Christopoulos, O. Tsilipakos, G. Sinatkas, and E. E. +Kriezis, On the calculation of the quality factor in con- +temporary photonic resonant structures, Opt. Express +27, 14505 (2019). +[49] L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, +From electromagnetically induced transparency to super- +scattering with a single structure: A coupled-mode the- +ory for doubly resonant structures, Phys. Rev. Lett. 108, +083902 (2012). +[50] J. Gear, F. Liu, S. T. Chu, S. Rotter, and J. Li, Parity- +time symmetry from stacking purely dielectric and mag- +netic slabs, Phys. Rev. A 91, 033825 (2015). + diff --git a/edE0T4oBgHgl3EQfogFH/content/tmp_files/load_file.txt b/edE0T4oBgHgl3EQfogFH/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a98c92ee4cf6c22f9e9bde5a48b4ec943e6617f0 --- /dev/null +++ b/edE0T4oBgHgl3EQfogFH/content/tmp_files/load_file.txt @@ -0,0 +1,1085 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf,len=1084 +page_content='Acoustic circular dichroism in a three-dimensional chiral metamaterial Qing Tong,1 Jensen Li,2 and Shubo Wang1, ∗ 1Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China 2Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China (Dated: January 9, 2023) Circular dichroism (CD) is an intriguing chiroptical phenomenon associated with the interaction of chiral structures with circularly polarized lights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Although the CD effect has been extensively studied in optics, it has not yet been demonstrated in acoustic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Here, we demonstrate the acoustic CD effect in a three-dimensional chiral metamaterial supporting circularly polarized transverse sound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We find that the effect is negligible in the lossy metamaterial possessing C4 rotational symmetry but can be strongly enhanced in the C2-symmetric system with inhomogeneous loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The phenomena can be understood based on the properties of the metamaterial’s complex band structure and the quality factors of its eigenmodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We show that the enhanced CD in the C2-symmetric system is attributed to the polarization bandgaps and the non-Hermitian exceptional points appearing near the Brillouin-zone center and boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The results contribute to the understanding of chiral sound-matter interactions and can find applications in acoustic sensing of chiral structures and sound manipulations based on its vector properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' INTRODUCTION Chiral structures have novel properties deriving from the mirror-symmetry breaking [1, 2] and are extensively employed to realize polarization conversion [3, 4], un- usual optical forces [5–7], and synthetic gauge fields[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The interaction between chiral structures and chiral light, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=', light carrying spin and/or orbital angular momentum (OAM), can give rise to circular dichroism (CD) [2, 9, 10] and helical (or vortical) dichroism [11, 12], correspond- ing to the differential absorption of lights with opposite chirality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The CD effect has been investigated in vari- ous optical structures, ranging from bilayer chiral struc- tures [13, 14], nonplanar three-dimensional (3D) chiral structures [15], to gyroid structures [16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Recent re- search has uncovered the subtle relations between CD and the Ohmic dissipation of meta-atoms [18] as well as the bound states in the continuum [19], enabling a pro- found understanding of chiral light-matter interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The CD effect has been widely applied to analyze molecu- lar structures [20, 21] and to achieve chiral discrimination [22, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' It is well known that sound can carry OAM in the form of vortices [24–26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The acoustic OAM can induce chiral sound-matter interactions and give rise to intrigu- ing phenomena such as acoustic geometric phases [27] and the acoustic orbital Hall effect [28, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The chi- ral sound-matter interactions can enable rich manipula- tions of sound vortices, including asymmetric transmis- sion/reflection [30], reversal of orbital angular momen- tum [31], and acoustic helical dichroism [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In ad- dition, the chiral sound-matter interactions can be ap- plied to manipulate matter, leading to acoustic levitation [33, 34], acoustic tweezers [35–37], and acoustic torque [38, 39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' While airborne sound is a longitudinal wave, ∗ shubwang@cityu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='hk it was shown that inhomogeneous sound fields can carry nonzero acoustic spin density characterized by rotating velocity vector fields [40, 41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Remarkably, spin-1 trans- verse sound can emerge in a micropolar metamaterial supporting synthetic shear forces in air [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In contrast to the conventional longitudinal sound, the transverse sound carries full vector properties similar to electro- magnetic waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In particular, it can carry both spin and OAM with intriguing spin-orbit interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Explo- ration of this new type of sound and its counter-intuitive properties can generate new functionalities for acoustic applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Here, for the first time, we demonstrate the acoustic CD effect in a 3D chiral metamaterial that supports cir- cularly polarized transverse sound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Using full-wave nu- merical simulations, we calculate the absorption of left- handed circularly polarized (LCP) and right-handed cir- cularly polarized (RCP) sound in the lossy metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We find that the CD effect strongly depends on the ro- tational symmetry of the metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The CD effect is negligible in the metamaterial with homogeneous loss satisfying the C4 rotational symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In contrast, it is strongly enhanced in the metamaterial with inhomo- geneous loss satisfying the C2 rotational symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' By studying the complex band structure of the metamate- rial and the quality factors of its eigenmodes, we find that these properties originate from the polarization bandgaps and the non-Hermitian exceptional points (EPs) of the metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We organize the article as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In Section II, we introduce the acoustic chiral metamaterial and discuss its eigenmode properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In Section III, we show the nu- merical results for the absorption of the LCP and RCP sound in two types of lossy metamaterial obeying the C4 and C2 rotational symmetry, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Section IV presents the complex band structures of the lossy meta- materials, where we discuss the polarization bandgaps and the EPs to understand the CD effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We draw the conclusion in Section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='02526v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='app-ph] 6 Jan 2023 2 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' THE CHIRAL METAMATERIAL We consider a 3D metamaterial with the cubical unit cell shown in Figure 1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The unit cell comprises three chiral resonators mutually connected by tubes, and it obeys the C4 rotational symmetry with respect to the x, y, and z axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Figure 1(b) shows a half of the chi- ral resonator, where the radius is R = 5 cm, and the height is h = 1 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The orange blades are connected to the center post, and the gray blades are connected to the outer shell of the resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We assume that air is filled inside the resonator and all air-material interfaces are hard boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In the considered range of frequen- cies, each resonator support subwavelength resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' These resonances endow the metamaterial with intrigu- ing macroscopic acoustic properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We first calculate the band structure of the metama- terial by using a finite-element package COMSOL Mul- tiphysics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The result is shown in Figure 1(c) for the wavevector in z direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The 4th to 9th bands (count- ing from bottom) correspond to the eigenmodes domi- nated by the dipole resonances of the chiral resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Here, we focus on the bands labeled as B4, B6, B7, and B9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The eigenmodes of these bands are circularly polar- ized transverse sound [42], and their pressure fields are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 1(d) for ka/π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' As seen, the fields represent acoustic dipoles oscillating in a direction per- pendicular to the axis of the resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The arrowed cir- cles denote the rotation direction of the eigen fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The red and blue arrowed circles correspond to the right circu- larly polarized (RCP) states and left circularly polarized (LCP) states, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The velocity field averaged over the unit cell also circulates in the same direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The collective motion of the acoustic dipoles gives rise to circularly-polarized transverse sound macroscopically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The transverse sound of the bands B4 and B6 (B7 and B9) have opposite handedness and carry opposite spin angular momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' To demonstrate the emergence of circularly polarized transverse sound, we consider the metamaterial with 15 unit cells in z direction, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Peri- odic boundary conditions are applied in x and y direc- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' To excite the system, we set four input ports at the four tubes on the left side of the unit in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 2(a) with the phases 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5π, π, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5π, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The azimuthal gradient of the phase decides the handedness (LCP or RCP) of the excited circularly-polarized trans- verse sound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In addition, we set another four output ports on the right side of the metamaterial to determine the transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We consider two frequencies, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='625 kHz and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='79 kHz corresponding to the frequencies marked by the dashed lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 1(c), where four eigenstates (two are of LCP and two are of RCP) can be excited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' To visu- alize the transverse sounds, we average the velocity field over each unit cell and plot the averaged velocity vec- tors (denoted by the red and blue arrows) for the 15 unit cells in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 2(b)-(e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We observe that the velocity vec- tors indeed rotate in the xy plane, corresponding to spin a h R 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 B4 B6 B7 B9 ka/π Frequency (kHz) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='790 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='625 + + - - (a) (c) (b) (d) + Z B4 Z B6 B7 Z Z B9 - x y z x y z FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (a) Unit cell of the 3D acoustic metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (b) Internal structure of the resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The geometry parame- ters are R = 5 cm, h = 1cm, a = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='1 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (c) Band structure of the metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' B4, B6, B7, and B9 denote the lowest four bands with circularly polarized eigenstates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (d) Pressure fields at ka/π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 for B4, B6, B7, and B9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The blue and red arrows denote the circulating direction of the eigen pressure fields for the LCP and RCP states, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' angular momentum in the longitudinal direction (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=', z direction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The arrowed yellow circles denote the tem- poral evolution of the velocity vectors, with the arrows indicating the circulation direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' At either frequency, the two transverse sounds carry opposite spins, allowing the exploration of their different absorption inside the metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' ACOUSTIC CIRCULAR DICHROISM We now consider the metamaterial with loss to inves- tigate the CD effect of the transverse sound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 3(a), we employ a three-layer sandwich struc- ture: the bottom and top layers are lossless, while the middle layer (highlighted in blue) contains loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The loss is introduced into the unit cells by adding an imaginary part to the sound speed v(1 + iα) with α characterizing the loss strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We apply ports to excite the system (same as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 2) from the bottom of the lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The excited transverse sound propagates through the middle lossy layer and is measured in the top layer to determine its transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' This directly maps to the usual config- uration of optical CD, where an optical structure is sand- 3 x y z (b) (a) (d) (c) (e) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (a) The metamaterial with 15 units in z direction and periodic in x and y directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The transverse sound is excited by ports on the left end of the metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (b-e) Averaged velocity vectors in the metamaterial at the frequency f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='625 kHz (b,c) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='79 kHz (d,e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The yellow circles with the arrow show the circulating direction of the velocity field on the xy−plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' wiched by air and reflection/transmission is measured in air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We apply COMSOL to simulate the system and cal- culate the reflection (R±) and transmission (T±) of the incident sound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The absorptions can then be determined as: A± = 1 − R± − T±, (1) ∆A = |A+ − A−| , (2) where “+” (“−”) denotes the RCP (LCP) state and ∆A is the differential absorption of the RCP and LCP sounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We first consider the case with loss uniformly added to all the chiral resonators in the middle blue-colored layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Figure 3(b) shows the numerical results of the reflections (solid lines) and transmissions (dashed lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The inset shows the unit cell with the blue-colored regions contain- ing loss α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='006 , which has C4 rotational symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' As seen, the reflection R+ is nearly identical to R−, and there is a tiny difference between the transmissions T+ and T−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The absorptions calculated using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (1) are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 3(c) as the solid blue and red lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We notice that the absorptions of LCP and RCP sounds are almost equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' As a result, the CD effect is negligible in this case with homogeneous loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Figure 3(d) shows the absorption of the LCP and RCP sound as a function of the loss strength α at f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='65 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We notice that the absorption A+ and A− are almost identical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The differ- ential absorption ∆A is less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='01 with the maximum appears at α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='006, as shown by the orange dashed line which has been multiplied by a factor of 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The optical CD effect strongly depends on the rota- tional symmetry of the structures [43, 44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' To explore this symmetry dependence for acoustic CD, we break the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 Frequency (kHz) R+ R- T+ T- Reflection / Transmission 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 A+ A- Frequency (kHz) Absorption 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 Absorption α A+ A- 10 |A+ - A-| (a) (b) (c) (d) x y z Reflection / Transmission FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (a) The 3-layer metamaterial with loss uniformly added to the middle layer (colored in yellow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (b) Reflection, transmission, and (c) absorption as a function of frequency for the RCP (+) and LCP (-) sounds with α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The inset in (b) shows the regions containing loss (blue colored), which satisfies the C4 symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (d) Absorption of the LCP and RCP sounds as a function of the loss α at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='65 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In (c) and (d), the absorption difference (∆A) is multiplied by ten for easy visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' C4 symmetry of the metamaterial by selectively adding loss to the unit cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' As shown in the inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 4(a), we only add loss to the side resonator (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=', two oppos- ing half resonators highlighted in blue) with the center axis in x-direction, reducing the symmetry of the meta- material from C4 to C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We numerically calculated the transmission and reflection of this C2 system, and the re- sults are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 4(a) for loss α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We observe large differences in the transmissions and reflections of the LCP and RCP sound in the frequency range [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='600 kHz, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='825 kHz], corresponding to the considered bands in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 1(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The absorptions calculated with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (1) are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 4(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' As noticed, there is a significant dif- ference between the absorption of RCP sound (A+) and the absorption of RCP sound (A−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The differential ab- sorption ∆A (denoted by the orange dashed line) is much larger than the case of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 3 and has two local maxima of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 appearing at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='65 kHz and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='80 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' This demonstrates the strong CD phenomena in the C2 meta- material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We also investigate the dependence of the CD on the loss magnitude α, and the results are shown in 000004 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 4(c) for f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='65 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The trends of A+ and A− are similar to those of the C4 system, but the absorp- tion difference ∆A (denoted by the dashed orange line) is much larger with a maximum value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='46 at α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='3 (marked by the dashed line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The CD characterizes the different absorption of LCP and RCP sounds at the same frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We note that the LCP and RCP sounds have different wavelengths in- side the chiral metamaterial at the same frequency due to their different dispersions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' It is thus interesting to compare their absorption for the same wavelength (or wavenumber) inside the metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Figure 4(d) shows the absorption of the transverse sound corresponding to the four bands B4, B6, B7, and B9 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 1(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We only consider the range of 0 ≤ ka/π ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 where the ef- fective wavelength is well defined, and the excited state is RCP for band B4 and LCP for band B7 due to their negative group velocity in this range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' As seen, the RCP sounds (corresponding to the solid and dashed red lines) generally have larger absorption compared with the LCP sounds (corresponding to the solid and dashed blue lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' This indicates that a strong CD effect also happens to the circularly polarized transverse sounds with the same wavelength (but not necessarily the same frequency).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' To intuitively understand the different absorption of LCP and RCP sounds, we then study the averaged ve- locity fields (averaged over one unit cell) in the 3-layer metamaterial with C2 symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Figure 5(a) shows a side view of the metamaterial, where loss is added to the middle layers consisting of 5 unit cells (the blue color marks the resonators containing loss).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The red and blue helical curves in the bottom layer denote the temporal trajectories of the velocity vectors of the incident RCP and LCP sounds, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The helical curves in the upper layer denote the temporal trajectories of the ve- locity vectors of the transmitted sounds, which are in general elliptically polarized due to the coupling between the LCP and RCP sounds in the C2 absorptive layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Fig- ure 5(b) and (c) show the numerical results of the trans- mitted velocity fields under the incidence of the RCP and LCP sounds, respectively, for f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='635 kHz and α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The larger arrowed circles denote the time- evolution trajectories of the incident velocity fields, while the smaller ellipses denote the time-evolution trajecto- ries of the transmitted velocity fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Figure 5(d) shows a comparison between the transmitted velocity fields un- der the incidence of LCP and RCP sounds (corresponding to a zoom-in of the results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 5(b) and (c)), which are different in both amplitude and ellipticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Similar property also exists in the reflected fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' COMPLEX BAND STRUCTURE AND EXCEPTIONAL POINTS We investigate the complex band structures of the sys- tems to uncover the origins of the acoustic CD and the different properties of the C2 and C4 systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Figure 6(a) (a) (b) (c) (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 Frequency (kHz) R+ R- T+ T- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 A+ A- |A+ - A-| Frequency (kHz) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='3 α + A+ A- |A - A-| Absorption 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='4 A+-B4 A+-B6 A--B7 A--B9 Absorption ka/π Reflection / Transmission Absorption FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (a) Reflection, transmission, and (b) absorption of the RCP (+) and LCP (-) sounds for α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The inset in (a) shows the regions with loss (blue colored), which satisfies the C2 symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (c) Absorption of the LCP and RCP sounds as a function of the loss parameter α at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='65 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (d) Absorption of the LCP and RCP sounds as a function of the normalized wavenumber ka/π for the bands B4, B6, B7, and B9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' and (b) show the real and imaginary parts of the complex band structure for the C4 system with loss α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='006 (corresponding to the case of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The imaginary parts take positive values due to the time convention eiωt adopted in COMSOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The insets (labeled as A, B, C, and D) on the right side show the zoom-ins of the bands enclosed by the dashed rectangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The insets A and B depict the bands near the Brillouin zone centers and 5 RCP LCP (a) (b) (c) (d) 𝑡 𝑡 𝑡 𝑡 x z x y Absorption layer FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (a) Schematics of the CD effect in the acoustic meta- material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The red and blue helical curves denote the tempo- ral trajectories of the velocity vectors for the RCP and LCP sounds on the incident side (bottom) and the transmission side (top).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (b, c) Larger (smaller) circles denote the evolu- tion trajectories of velocity field for the incident (transmitted) RCP and LCP sounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The transmitted sounds are ellipti- cally polarized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (d) A zoom-in comparison of the transmitted velocity field’s trajectories under the incidence of RCP (red) and LCP (blue) sound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We set the frequency f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='635 kHz and loss α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' boundaries, respectively, for B4 and B6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Likewise, in- sets C and D show the bands closed to the Brillouin zone centers and boundaries, respectively, for B7 and B9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We notice that the band degeneracies are not affected by the loss due to the protection of the C4 symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Figure 7 shows the complex band structure for the C2 system with the same loss α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='006 for comparison with the C4 system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Interestingly, at the Brillouin zone cen- ter and boundaries, the real parts of the bands remain degenerate in a finite range of k values while the imagi- nary parts bifurcate in the same range, as shown in the insets on the right side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' This indicates the emergence of non-Hermitian exceptional points [45–47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Obviously, these EPs derive from the diabolic points of the origi- nal lossless system in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 1 (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' While the phenom- ena here is similar to the EPs spawn from Dirac points in two-dimensional photonic crystals [45], the underlying physical mechanism is different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The emergence of these EPs is attributed to the coupling and loss difference of the LCP and RCP transverse dipole modes induced by the breaking of C4 symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We will elaborate on this point with an analytical model later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Figure 8(a) and (b) show the complex band structure for the C2 system with a larger loss α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='1, correspond- ing to the case of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 4(a) and (b) with a much stronger CD effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We notice that the EP features remain at the center and boundaries of the Brillouin zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' At the same time, small partial gaps appear at the frequencies of the EPs, as marked by the blue and red ribbons in the insets (a) (b) Numerical Data 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='616 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='624 B A D B D ka/π Re (f) (kHz) B4 B6 B7 B9 Re (f) (kHz) ka/π C A B C D Fitting 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0 1 2 3 4 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='80 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='05 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='68 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='72 D D C B ka/π Im (f) (Hz) B4 B6 B7 B9 Im (f) (Hz) ka/π A B Numerical Data Fitting A B C D FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The real (a) and imaginary (b) parts of the complex band structure for the C4 system at α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Insets on the right side show the zoom-ins of the bands near the zone center and boundaries, corresponding to the dashed rectangles in (a) and (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The solid lines in the insets denote the analytical fitting results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 8(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' At the frequencies of the blue-ribbon (red- ribbon) region, only LCP (RCP) sound can propagate through the metamaterial [16, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Thus, at the frequen- cies f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='62 kHz and f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='76 kHz, the RCP sound cannot propagate through the metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Similarly, at the frequencies of f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='65 kHz and f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='80 kHz, the LCP sound cannot propagate through the metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' However, this does not necessarily indicate a large differ- ence in the reflection of LCP and RCP sounds at these frequencies due to the non-Hermitian nature of the meta- material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Whether strong reflection will appear at the partial polarization gaps depends on the damping of the corresponding eigenmodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In the following, we will show that the eigenmodes’ damping property strongly affects the reflection and the CD effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 6 (a) (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='99 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='758 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='805 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='96 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='615 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='620 C D B D D B C A ka/π Re (f) (kHz) ka/π B4 B6 B7 B9 Re (f) (kHz) B A Numerical Data Fitting 1 0 1 0 1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='99 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='04 0 1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='96 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 D B B C D B ka/π Im (f) (Hz) B4 B6 B7 B9 Im (f) (Hz) ka/π A C D A Numerical Data Fitting FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The real (a) and imaginary (b) parts of complex band structure for the C2 system at α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The insets on the right side show the zoom-ins of the bands near the zone center and boundaries, corresponding to the dashed rectangles in (a) and shaded rectangles in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The solid lines in the insets denote the analytical fitting results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' To understand the damping of the eigenmodes, we in- vestigate the modes’ quality factor Q corresponding to the bands B4, B6, B7, and B9, for both the C4 and C2 systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The quality factor is calculated as Q = Re(f) 2Im(f) [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The results are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 9(a) and (b) as a function of the real part of the eigenfrequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We note that the eigenmode of each band can be either LCP or RCP, depending on the sign of its group velocity with respect to the phase velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Consequently, the quality factor Q of each band can be divided into two parts for the LCP (“−”) and RCP (“+”) states, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 9(a), all eigenmodes of the C4 system have approximately the same quality factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' This explains the negligible CD effect in the C4 system with homogenous loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In contrast, the quality factors of the LCP and RCP modes in the C2 system have a large difference, particu- (b) (a) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='63 ka/π ka/π Re (f) (kHz) Re (f) (kHz) C D D B A B4 B6 B7 B9 B A B C D Numerical Data Fitting 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0 10 20 30 40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='1 16 24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0 25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='2 10 20 ka/π ka/π B A D D B Im (f) (Hz) B4 B6 B7 B9 Im (f) (Hz) C A B C D Numerical Data Fitting FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The real (a) and imaginary (b) parts of complex band structures for the C2 system at α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The right insets show the zoom-ins of the bands near the Brillouin zone centers and boundaries, corresponding to the dashed rectangles in (a) and shaded rectangles in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The ribbons in the insets denote the partial bandgaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The solid lines in the insets denote the analytical fitting results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' larly in the vicinity of the polarization bandgaps marked by the red ribbons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The large difference in quality fac- tor indicates a large difference in the damping of LCP and RCP modes and thus explains the strong CD effect near the polarization bandgaps, in agreement with the numerical results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 4(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' For the LCP and RCP modes near the blue-ribbon band gaps, their quality fac- tors are much smaller than the modes near the red-ribbon bands, and the difference of their quality factors are also much smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Therefore, both LCP and RCP sounds at the frequencies of the blue-ribbon region are strongly ab- sorbed, and their reflections are small, leading to a weak CD effect, as confirmed by the numerical results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 4(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 7 (a) (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 80 82 84 Quality factor Re (f) (kHz) Q4(+) Q4(-) Q6(+) Q6(-) Q7(-) Q7(+) Q9(-) Q9(+) A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='8 10 100 1000 C D B 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='803 kHz Q4(+) Q4(-) Q6(+) Q6(-) Q7(-) Q7(+) Q9(-) Q9(+) Quality factor Re (f) (kHz) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='645 kHz FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The quality factor Q of the eigenmodes in the (a) C4 and (b) C2 systems, corresponding the cases of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 6 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 8, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The blue and red ribbons denote polarization bandgaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' To understand the emergence of the EPs in the C2 system, we exploit an effective Hamiltonian to describe the coupling of the LCP and RCP modes near the Bril- louin zone center [45, 46, 49, 50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' As for the C4 system with homogenous loss, the effective Hamiltonian can be expressed as: HC4 = � ω0 − iγ (vR + ivI)k (vR + ivI)k ω0 − iγ � (3) which has the complex eigenvalues: ω = ω0 − iγ ± k(vR + ivI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (4) Here, ω0 is the eigenfrequency at k = 0, where the LCP and RCP modes are degenerate;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' vR and vI are the real and the imaginary parts of the complex group velocities, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' γ denotes the loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In the C2 system, loss is selectively added to only one resonator in each unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The breaking of C4 symmetry opens a gap at k = 0, which can be characterized by a perturbation term δ/2 in the Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The LCP and RCP modes at k = 0 now have different loss γ1 and γ2 (γ1 ̸= γ2): HC2 = � ω0 − iγ1 + δ 2 (vR + ivI)k (vR + ivI)k ω0 − iγ2 − δ 2 � , (5) which has the complex eigenvalues: ω =ω0 − i(γ1 + γ2) 2 ± 1 2 � [δ − i(γ1 − γ2)]2 − 4k2(vI − ivR)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (6) These analytical expressions of the complex eigenval- ues in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' (4) and (6) are employed to fit the numeri- cal results for both the real and the imaginary parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The fitting results are shown as the solid lines in the insets of Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 6-8, accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We notice good quanti- tative agreements between the analytical and numerical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In particular, the effective Hamiltonian correctly captures the EP features in the C2 systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The fitting parameters for both C4 and C2 systems with different losses are summarized in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We note that the mode damping parameters γ1,2 take negative values due to the time convention eiωt adopted in COMSOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Fitting parameters for C4 and C2 systems System α ω0 γ vR vI Inset C4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='006 617.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='61 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='71 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='018 A (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 6) 803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='82 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='03 C (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 6) C2 α ω0 γ1 γ2 vR vI δ Inset 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='006 617.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='12 -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='33 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='036 A (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 7) 803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='66 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='01 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='30 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='99 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='013 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='0075 C (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 7) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='1 622.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='12 -24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='87 -5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='13 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='03 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='77 A (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 8) 800.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='40 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='22 -39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='12 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='98 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='21 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='22 C (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 8) The above effective Hamiltonians well explain the emergence of the EPs and the enhancement of CD by the EPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In the C4 system, the LCP mode of the B4 band and the RCP mode of the B6 band are orthogonal at k = 0 with vanished coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The damping of the LCP and RCP modes at the same excitation frequency are approximately equal due to homogeneous loss added to all resonators of the unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Thus, their quality factors are almost equal (corresponding to the results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 9(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In the C2 system, the inhomogeneous loss breaks the C4 rotational symmetry and induces coupling between the original LCP and RCP modes at k = 0, which gives rise to the polarization bandgaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In addi- tion, the two modes have different dampings due to the inhomogeneous material loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' These together give rise to the EPs and the bifurcation of the imaginary parts of the eigenfrequencies, leading to enlarged damping contrast of the LCP and RCP modes at the same excitation fre- quency and thus larger difference in their quality factors (corresponding to the results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 9(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Therefore, the strong CD effect in the C2 system is attributed to both the polarization bandgaps and the EPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' CONCLUSION In conclusion, we demonstrate the acoustic CD effect in a 3D chiral metamaterial supporting circularly polar- 8 ized transverse sound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' We have investigated the effect in two types of systems with C4 and C2 rotational sym- metry, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' In the C4 system with loss homo- geneously added to all resonators of the unit cell, we observe a negligible acoustic CD effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' On the other hand, by selectively adding loss to part of the unit cell, reducing the system’s rotational symmetry from C4 to C2, the CD effect is enhanced strongly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' With analysis of their complex band structures and quality factors of the eigenmodes, we uncover that the strong acoustic CD in the C2 system is attributed to polarization bandgaps and the emergence of non-Hermitian EPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The polarization bandgaps induce selective transmission and absorption of the circularly polarized transverse sound with a par- ticular handedness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The EPs give rise to bifurcations of the imaginary parts of the eigen frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' These to- gether enhance the CD effect in the C2 system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' It will be interesting to experimentally demonstrate the discussed phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The metamaterial structures can be fabri- cated using 3D printing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Loss can be introduced into the structures by adding sponges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The transverse sound can be excited by using an array of speakers, and the reflec- tion/refraction can be measured with a microphone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The acoustic CD effect can find applications in sound manip- ulations based on its vector degrees of freedom and in acoustic sensing of chiral structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' The results con- tribute to the understanding of chiral sound-matter in- teractions in metamaterials and phononic crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' ACKNOWLEDGMENTS The work described in this paper was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' CityU 21302018 and No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' C6013-18G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Hentschel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Sch¨aferling, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Duan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Giessen, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Liu, Chiral plasmonics, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 3, e1602735 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Mun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Kim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Yang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Badloe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Ni, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Qiu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rho, Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena, Light: Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 9, 139 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Gansel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Thiel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rill, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Decker, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Bade, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Saile, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' von Freymann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Linden, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wegener, Gold helix photonic metamaterial as broadband circular polarizer, Science 325, 1513 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Yu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Chen, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Chan, Metallic helix array as a broadband wave plate, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 107, 177401 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wang and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Chan, Lateral optical force on chiral particles near a surface, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 5, 3307 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Hayat, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Mueller, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Capasso, Lateral chirality-sorting optical forces, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 112, 13190 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rahimzadegan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Fruhnert, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Alaee, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Fernandez- Corbaton, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rockstuhl, Optical force and torque on dipolar dual chiral particles, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' B 94, 125123 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rechtsman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zeuner, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Plotnik, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lumer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Podolsky, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Dreisow, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Nolte, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Segev, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Sza- meit, Photonic floquet topological insulators, Nature (London) 496, 196 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Oh and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Hess, Chiral metamaterials: enhance- ment and control of optical activity and circular dichro- ism, Nano Convergence 2, 24 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [10] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Valev, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Baumberg, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Sibilia, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Verbiest, Chirality and Chiroptical Effects in Plasmonic Nanos- tructures: Fundamentals, Recent Progress, and Outlook, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 25, 2517 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [11] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Brullot, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Vanbel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Swusten, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Verbiest, Resolving enantiomers using the optical angular momen- tum of twisted light, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 2, e1501349 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [12] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Forbes and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Andrews, Optical orbital angular momentum: twisted light and chirality, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 43, 435 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rogacheva, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Fedotov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Schwanecke, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zheludev, Giant Gyrotropy due to Electromagnetic- Field Coupling in a Bilayered Chiral Structure, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 97, 177401 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Cheng, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Chen, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Luo, Multi-band giant circular dichroism based on conjugated bilayer twisted-semicircle nanostructure at optical frequency, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' A 384, 126398 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [15] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Koschny, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Soukoulis, Non- planar chiral metamaterials with negative index, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 94, 151112 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Saba, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Thiel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Turner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Hyde, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Gu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Grosse-Brauckmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Neshev, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Mecke, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Schr¨oder-Turk, Circular Dichroism in Biological Photonic Crystals and Cubic Chiral Nets, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 106, 103902 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Kilchoer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Abdollahi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Dolan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Abdelrahman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Saba, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wiesner, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Steiner, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Gunkel, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wilts, Strong Circular Dichroism in Single Gyroid Opti- cal Metamaterials, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 8, 1902131 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Khanikaev, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Arju, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Fan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Purtseladze, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lee, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Sarriugarte, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Schnell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Hillenbrand, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Belkin, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Shvets, Experimental demonstra- tion of the microscopic origin of circular dichroism in two-dimensional metamaterials, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 7, 12045 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [19] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Shi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Deng, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Geng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zeng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zeng, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Hu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Overvig, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Qiu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Al`u, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Kivshar, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Li, Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 13, 4111 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [20] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Berova, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Nakanishi, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Woody, Circu- lar Dichroism: Principles and Applications (Wiley, New York, 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Micsonai, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wien, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Kernya, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lee, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Goto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' R´efr´egiers, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Kardos, Accurate secondary struc- ture prediction and fold recognition for circular dichroism spectroscopy, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 112, E3095 9 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [22] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Vinegrad, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Vestler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Ben-Moshe, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Barnea, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Markovich, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Cheshnovsky, Circular dichroism of single particles, ACS Photonics 5, 2151 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Jia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Peng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Cheng, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wang, Chiral discrim- ination by polarization singularities of a metal sphere, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' A 105, 033513 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [24] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Jiang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Liang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Cheng, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhang, Convert Acoustic Resonances to Orbital Angular Mo- mentum, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 117, 034301 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [25] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Esfahlani, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lissek, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Mosig, Generation of acoustic helical wavefronts using metasurfaces, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' B 95, 024312 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [26] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Guo, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Guo, Generation of acous- tic vortex beams with designed fermat’s spiral diffraction grating, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Acoust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 146, 4237 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [27] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Ma, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Chan, Topological transport of sound mediated by spin-redirection geometric phase, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 4, eaaq1475 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [28] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Tan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Liang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Cheng, Generalized momentum conservation and Fedorov-Imbert linear shift of acoustic vortex beams at a metasurface, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' B 104, 174301 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [29] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Fan and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhang, Acoustic orbital angular mo- mentum Hall effect and realization using a metasurface, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Research 3, 013251 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [30] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Fu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Shen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Cummer, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Xu, Sound vortex diffraction via topological charge in phase gradient metagratings, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 6, eaba9876 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [31] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zou, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lirette, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhang, Orbital Angular Mo- mentum Reversal and Asymmetry in Acoustic Vortex Beam Reflection, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 125, 074301 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [32] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Tong and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wang, Acoustic helical dichroism in a one-dimensional lattice of chiral resonators, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' B 105, 024111 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [33] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Hong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Yin, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhai, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Yan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhang, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Drinkwater, Dynamics of levitated objects in acoustic vortex fields, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 7, 7093 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [34] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Hong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Yin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhang, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Yan, Vortex- field acoustic levitation in tubes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 128, 104901 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Marzo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Caleap, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Drinkwater, Acoustic Virtual Vortices with Tunable Orbital Angular Momen- tum for Trapping of Mie Particles, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 120, 044301 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Baudoin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Gerbedoen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Riaud, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Matar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Smagin, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Thomas, Folding a focalized acous- tical vortex on a flat holographic transducer: Miniatur- ized selective acoustical tweezers, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 5, eaav1967 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [37] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Fan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Ho, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lin, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Yeh, Tornado-inspired acoustic vortex tweezer for trap- ping and manipulating microbubbles, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 118, e2023188118 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [38] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Li, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Guo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Tu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Ma, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Guo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhang, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Sapozhnikov, Acoustic radiation torque of an acoustic- vortex spanner exerted on axisymmetric objects, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 112, 254101 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [39] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wunenburger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lozano, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Brasselet, Acoustic orbital angular momentum transfer to matter by chiral scattering, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 17, 103022 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [40] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Bliokh and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Nori, Spin and orbital angular momenta of acoustic beams, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' B 99, 174310 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [41] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Long, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Ge, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Chen, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Ren, Realization of acoustic spin transport in metasurface waveguides, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 11, 4716 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [42] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Tong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Li, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Ma, Spin-orbit interactions of transverse sound, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Com- mun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 12, 6125 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [43] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Decker, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Soukoulis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Linden, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Wegener, Twisted split-ring-resonator photonic meta- material with huge optical activity, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 35, 1593 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [44] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Hopkins, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Poddubny, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Miroshnichenko, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Kivshar, Circular dichroism induced by fano reso- nances in planar chiral oligomers, Laser Photonics Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 10, 137 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [45] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Zhen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Hsu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Igarashi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lu, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Kaminer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Pick, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Chua, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Joannopoulos, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Soljaˇci´c, Spawning rings of exceptional points out of dirac cones, Nature (London) 525, 354 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [46] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Miri and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Al`u, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [47] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lee and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Chan, Polarization gaps in spiral photonic crystals, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Express 13, 8083 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [48] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Christopoulos, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Tsilipakos, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Sinatkas, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Kriezis, On the calculation of the quality factor in con- temporary photonic resonant structures, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Express 27, 14505 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [49] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Verslegers, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Yu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Ruan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Catrysse, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Fan, From electromagnetically induced transparency to super- scattering with a single structure: A coupled-mode the- ory for doubly resonant structures, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' 108, 083902 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' [50] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Gear, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Chu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rotter, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Li, Parity- time symmetry from stacking purely dielectric and mag- netic slabs, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} +page_content=' A 91, 033825 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE0T4oBgHgl3EQfogFH/content/2301.02526v1.pdf'} diff --git a/gNAyT4oBgHgl3EQfj_gw/content/tmp_files/2301.00423v1.pdf.txt b/gNAyT4oBgHgl3EQfj_gw/content/tmp_files/2301.00423v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..c4ec643c56299fa54fb3c19758fde963f22add5b --- /dev/null +++ b/gNAyT4oBgHgl3EQfj_gw/content/tmp_files/2301.00423v1.pdf.txt @@ -0,0 +1,2765 @@ +arXiv:2301.00423v1 [math.OC] 1 Jan 2023 +Difference-of-Convex Reformulation for Chance Constrained +Programs +Peng Wang∗ +Rujun Jiang† +Qingyuan Kong‡ +Laura Balzano§ +January 3, 2023 +Abstract +Chance constrained programming refers to a type of optimization problem with uncertain +constraints that are satisfied with at least a prescribed probability level. +In this work, +we study the sample average approximation of a class of chance constrained programs, in +which the objective function is a difference-of-convex (DC) function and the functions in the +chance constraint are all convex. Utilizing the empirical quantile of the chance constraint, +we reformulate it into a DC constrained DC program. We propose a proximal DC algorithm +(pDCA) for solving the reformulation. Moreover, we prove the global convergence of the +proposed algorithm based on the Kurdyka-�Lojasiewicz property and derive the iteration +complexity for finding an approximate KKT point. We point out that the proposed pDCA +and its associated analysis apply to any DC constrained DC programs, which may be of +independent interests. To support and complement our theoretical development, we show +via numerical experiments that the proposed approach is competitive with a host of existing +approaches. +1 +Introduction +Chance constrained programming is a powerful modeling paradigm for optimization problems +with uncertain parameters, which has found wide applications in diverse fields, such as finance +[10, 54], power systems [8, 75], and supply chain [67, 42], to name a few; see, e.g., [36] and +the references therein for more applications. +In general, the chance constrained program is +to minimize a targeted loss subject to the probability of violating uncertain constraints being +within a prespecified risk level. In this work, we consider a chance constrained program of the +form +min +x∈X {f(x) : P (ci(x, ξ) ≤ 0, i ∈ {1, . . . , m}) ≥ 1 − α} , +(1) +∗Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA. +(pengwa@umich.edu). +†Corresponding author. School of Data Science, Fudan University, Shanghai, China. (rjjiang@fudan.edu.cn). +‡School of Data Science, Fudan University, Shanghai, China. (qykong21@m.fudan.edu.cn). +§Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA. +(girasole@umich.edu.) +1 + +where the vector x ∈ Rn denotes the decision variables, the functions f : Rn → R and ci : +Rn × Rd → R for all i ∈ {1, . . . , m} are real-valued, the set X ⊆ Rn is deterministic, and +ξ ∈ Rd is a random vector with its probability distribution supported on some set Ξ ⊆ Rd, +and α ∈ (0, 1) is a given risk parameter. This problem is known as a single chance constrained +program if m = 1, and a joint chance constrained program otherwise. Throughout this paper, +we make the following assumptions for this problem. +Assumption 1. (a) The function f takes the form of f = g − h, where g and h are continuous +and convex (possibly non-smooth) functions defined on an open set that contains X. The func- +tion g is ρ-strongly convex for some ρ ≥ 01. +(b) The set X is non-empty, closed, and convex. +(c) The functions ci(x, ξ) : Rn × Ξ → R for i = 1, . . . , m are convex and continuously differen- +tiable in x for every ξ ∈ Ξ. +In general, Problem (1) is highly intractable due to the chance constraint. +Indeed, the +feasible region formed by the chance constraint may be non-convex despite that ci(x, ξ) for +all i ∈ {1, . . . , m} are convex. For example, even if ci(x, ξ) for i ∈ {1, . . . , m} are all linear +in x and X is a polyhedron, the resulting feasible region defined by the chance constraint +may not be convex [50]. Moreover, it is generally impossible to compute the probability of +satisfying the constraint for a given x ∈ X when the distribution of ξ is unknown. In this work, +we study Problem (1) in the data-driven setting, i.e., a set of independently and identically +distributed (i.i.d.) samples {ˆξi}N +i=1 generated according to the distribution of ξ is available, +while its distribution is unknown. Motivated by the recent work on chance constrained programs +[1, 49, 55, 58], we consider a sample average approximation (SAA) of Problem (1) over the +samples {ˆξi}N +i=1, which takes the form of +min +x∈X +� +f(x) : +1 +N +N +� +i=1 +1{C(x, ˆξi)≤0} ≥ 1 − α +� +, +(2) +where C(x, ξ) := max {ci(x, ξ) : i = 1, . . . , m}, and where +1A is the indicator of event A. We +should mention that Problem (2) also includes the scenario where the distribution is finite +and discrete, and each event appears with probability 1/N. In particular, it has been shown +in [49, 55] that solving Problem (2) can return a good approximate solution of Problem (1). +However, Problem (2) is hard to optimize due to the discreteness of the constraint. +Note +that we assume that the objective function f in Problem (2) is a difference-of-convex (DC) +function and all the functions ci(·, ξ) in the constraint are convex in Assumption 1. Then, a +natural question is whether we can utilize these structures to develop an effective algorithmic +framework for solving Problem (2). In this work, we answer this question in the affirmative. +Exploiting these structures, we reformulate Problem (2) into a DC constrained DC problem and +propose a proximal DC algorithm for solving the reformulation. In the literature, the existing +approaches for solving Problem (2) generally can only prove subsequential convergence and +have no iteration complexity analysis. In contrast with these results, we not only prove the +1If ρ = 0, g is a general convex function. +2 + +subsequential and entire convergence to a Karush-Kuhn-Tucker (KKT) point of the proposed +algorithm but also derive the iteration complexity for finding an approximate KKT point. +1.1 +Related Works +We first review some popular methods for solving chance constrained programs and then briefly +talk about some DC algorithms closely related to our work. Since the first appearance of chance +constrained programs in [15, 16], various algorithms for solving chance constrained problems +under different settings have been proposed in a substantial body of literature over the past +years. One well-known approach for solving Problem (1) is to reformulate the chance constraint +into a convex constraint when the distribution of ξ is available. +For example, Henrion [25, +Lemma 2.2] showed that the chance constraint can be reformulated into a second-order cone +if C(x, ξ) = ⟨ξ, x⟩ − b, ξ has an elliptical symmetric distribution, and b is a scalar. We refer +the reader to [24, 39, 12, 26, 61] for more results on the convexity of the feasible region formed +by chance constraints. These convex reformulations generally require a special distribution on +random vector ξ, such as Gaussian or log-concave distributions. +However, in practice, sometimes only a few random samples from the distribution of ξ are +available while the distribution of ξ is unknown. To handle this scenario, one popular approach +is to consider the SAA of the problem (see Problem (2)), which is obtained by replacing the +true distribution with an empirical distribution corresponding to random samples. Luedtke +and Ahmed [49] showed that the SAA with a risk level smaller than the required risk level can +obtain a solution satisfying a chance constraint with high probability under suitable conditions. +Later, Pagnoncelli et al. [55] showed that a solution of the SAA problem converges to that +of the original problem with probability approaching one as N goes to infinity. Despite the +fact that it possesses nice convergence properties, the SAA problem (2) is generally difficult to +optimize due to its discrete nature. To solve it, many different approaches have been proposed +in the literature. For example, Ahmed and Shapiro [1] proposed a mixed-integer programming +(MIP) reformulation for the SAA problem; see also [36, 49, 50, 64] and the references therein. +Curtis et al. [19] proposed a sequential algorithm, which minimizes quadratic subproblems with +linear cardinality constraints iteratively. +Bai et al. [5] proposed an augmented Lagrangian +decomposition method for solving Problem (1) when ξ has a finite discrete distribution and +cj(·, ξ) for j = 1, . . . , m are all affine. Recently, Pe˜na-Ordieres et al. [58] proposed a smoothing +non-linear approximation of Problem (2) based on the empirical quantile of the chance constraint +and developed a Sℓ1QP-type trust-region method to solve the approximation problem. Using +a similar idea, Shen et al. [65] proposed a neural network model to approximate the empirical +quantile of the chance constraint and employed a simulated annealing algorithm for solving +the approximation problem. In general, some methods, such as [65], are heuristic in nature, +and some other works, such as [5, 19, 58], only establish subsequential convergence for their +proposed methods and have no iteration complexity analysis. +The scenario approximation +approach proposed by Calafiore and Campi [11], Nemirovski and Shapiro [52] is another well- +known sample-based approach for solving Problem (1). This approach is simple and easy to +implement, but it suffers from the solution becoming more and more conservative as the sample +3 + +size increases. +Another notable approach for solving Problem (1) is to consider its conservative and tractable +approximations. Among these approximations, the most famous one is the condition value-at- +risk (CVaR) approximation proposed by Nemirovski and Shapiro [53], which is based on a +conservative and convex approximation of the indication function. In particular, Hong and Liu +[28] proposed a gradient-based Monte Carlo method for solving the CVaR approximation. To +avoid overly conservative solutions, Hong et al. [29] studied a DC approximation of the chance +constraint and tackled it by solving a sequence of convex approximations. +Xie and Ahmed +[71] proposed a bicriteria approximation for solving chance constrained covering problems and +proved a constant factor approximation guarantee. More recently, Jiang and Xie [32] proposed +a convex approximation named ALSO-X that always outperforms the CVaR approximation +when uncertain constraints are convex. There are also other approximations based on different +techniques in the literature; see, e.g., [14, 23]. +DC constrained DC programs2 refer to optimization problems that minimize a DC function +subject to constraints defined by DC functions. Such problems have been extensively studied +in the literature for decades [60, 30, 40]. One of the most popular methods for solving DC +programs is the DC algorithm and its variants, which solve a sequence of convex subproblems +by linearizing the second component of DC functions [29, 47, 59]. Le Thi et al. [41] proposed a +penalty method and a DC algorithm using slack variables and showed that every accumulation +point of the generated sequence is a KKT point of the considered problem. Later, Pang et al. [56] +studied the proximal linearized method for DC programs and showed that every accumulation +point of the generated sequence is a Bouligand-stationary point. Recently, van Ackooij et al. [68] +developed a proximal bundle method for addressing DC programs and analyzed its convergence +under different settings. Lu et al. [48] proposed penalty and augmented Lagrangian methods for +solving DC programs, and established strong convergence guarantees for the proposed methods. +1.2 +Our Contributions +In this work, we study the SAA of the chance constrained program when the distribution of +ξ is unknown but a set of i.i.d. +samples {ˆξi}N +i=1 generated according to its distribution is +available. First, we reformulate the SAA (i.e., Problem (2)) of the chance constrained program +(i.e., Problem (1)) into a DC constrained DC program by utilizing Assumption 1 and the +empirical quantile function of C(x, ξ) over the samples {ˆξi}N +i=1. Second, we propose a proximal +DC algorithm (pDCA) for solving the reformulation, which proceeds by solving a sequence of +convex subproblems by linearizing the second component of the obtained DC functions and +adding a proximal term to the objective function. In particular, we show that it is easy to +compute the required subgradients by using the structure of the DC functions. Moreover, the +obtained subproblem can be rewritten in a form that is suitable for off-the-shelf solvers. Finally, +we analyze the convergence and iteration complexity of the proposed method. Specifically, we +show that any accumulation point of the sequence generated by the proposed method is a +2For simplicity, we also call it DC programs. +4 + +KKT point of the reformulated problem under a constraint qualification. Then, we establish +the convergence and convergence rate of the entire sequence by using the Kurdyka-�Lojasiewicz +(K�L) inequality with the associated exponent. Moreover, we further show that the obtained +DC program is equivalent to a convex constrained problem with a concave objective, which +is amenable to the Frank-Wolfe (FW) method. By further showing the equivalence between +proximal DC iterations for solving the DC program and modified FW iterations for solving +the equivalent problem, we derive the iteration complexity of the pDCA for computing an +approximate KKT point. In particular, in contrast to the standard iteration complexity of the +FW method O(1/ +√ +k) (see, e.g., [38]), the iteration complexity of our considered FW method +is improved to O(1/k) by utilizing the DC structure, where k is the number of iterations. +The rest of this paper is organized as follows. In Section 2, we reformulate Problem (2) into +a DC constrained DC program and introduce the proposed pDCA. In Section 3, we analyze the +convergence and iteration complexity of the proposed method. In Section 4, we discuss some +extensions of our approach. In Section 5, we report the experimental results of the proposed +method and other existing methods. We end the paper with some conclusions in Section 6. +1.3 +Notation and Definitions +Besides the notation introduced earlier, we shall use the following notation throughout the +paper. We write matrices in bold capital letters like A, vectors in bold lower-case letters like a, +and scalars in plain letters like a. Given a matrix A ∈ Rm×n, we use aij to denote its (i, j)-th +element. Given a vector x ∈ Rn, we use ∥x∥ to denote its Euclidean norm, xi its i-th element, +and x[M] its M-th smallest element. We use 1 and 0 to denote the all-one vector and all-zero +vector, respectively. +Next, we introduce some concepts in non-smooth analysis that will be needed in our sub- +sequent development. The details can be found in [63]. Let ϕ : Rn → (−∞, ∞] be a given +function. We say that the function ϕ is proper if dom(ϕ) := {x ∈ Rn : ϕ(x) < ∞} ̸= ∅. A +vector s ∈ Rn is said to be a Fr´echet subgradient of ϕ at x ∈ dom(ϕ) if +lim inf +y→x,y̸=x +ϕ(y) − ϕ(x) − ⟨s, y − x⟩ +∥y − x∥2 +≥ 0. +(3) +The set of vectors s ∈ Rn satisfying (3) is called the Fr´echet subdifferential of f at x ∈ dom(ϕ) +and denoted by �∂ϕ(x). The limiting subdifferential, or simply the subdifferential, of ϕ at x ∈ +dom(ϕ) is defined as +∂ϕ(x) = +� +s ∈ Rn : ∃xk → x, sk → v with ϕ(xk) → ϕ(x), sk ∈ �∂ϕ(xk) +� +. +When ϕ is proper and convex, thanks to [63, Proposition 8.12], the limiting subdifferential of +ϕ at x ∈ dom(ϕ) coincides with the classic subdifferential defined as +∂ϕ(x) = {s ∈ Rn : ϕ(y) ≥ ϕ(x) + ⟨s, y − x⟩, for all y ∈ Rn} . +(4) +5 + +For a non-empty set S ⊆ Rn, its indicator function δS : Rn → {0, +∞} is defined as +δS(x) = + + + +0, +if x ∈ S, ++∞, +otherwise. +Its normal cone (resp. regular normal cone) at x ∈ S is defined as NS(x) := ∂δS(x) (reps. +� +NS(x) := �∂δS(x)). Given a point x ∈ Rn, its distance to S is defined as dist(x, S) = infy∈S ∥x− +y∥. We say that S is regular at one of its points x if it is locally closed and satisfies NS(x) = +� +NS(x). In addition, we say that a function ϕ is regular at x if ϕ(x) is finite and its epigraph +epi(ϕ) is regular at (x, ϕ(x)). Suppose that ϕ is a convex function. The directional derivative +of ϕ at x ∈ Rn in the direction d ∈ Rn is defined by +ϕ′(x, d) = lim +tց0 +ϕ(x + td) − ϕ(x) +t +. +In particular, it holds that +ϕ′(x, d) = sup {⟨s, d⟩ : s ∈ ∂ϕ(x)} . +(5) +We say that a set valued mapping F : Rn → Rm is outer semi-continuous if for any sequence +such that xk → x∗, yk → y∗ and yk ∈ F(xk), we have y∗ ∈ F(x∗). We next introduce the K�L +property with the associated exponent; see, e.g., [2, 3, 4, 37]. +Definition 1 (K�L property and exponent). Suppose that ϕ : Rn → (−∞, ∞] is proper and lower +semicontinuous. The function ϕ is said to satisfy the K�L property at ¯x ∈ {x ∈ Rn : ∂ϕ(x) ̸= ∅} +if there exist a constant η ∈ (0, ∞], a neighborhood U of ¯x, and a continuous concave function +ψ : [0, η) → R+ with ψ(0) = 0, ψ being continuously differentiable on (0, η), and ψ′(s) > 0 for +s ∈ (0, η) such that +ψ′ (ϕ(x) − ϕ(¯x)) dist(0, ∂ϕ(x)) ≥ 1 +(6) +for all x ∈ U satisfying ϕ(¯x) < ϕ(x) < ϕ(¯x) + η. In particular, if ψ(s) = cs1−θ for some c > 0 +and θ ∈ (0, 1), then ϕ is said to satisfy the K�L property at ¯x with exponent θ. +It is worth mentioning that a wide range of functions arising in applications satisfy the K�L +property, such as proper and lower semicontinuous semialgebraic functions [3]. +2 +A Proximal DC Algorithm for Chance Constrained Programs +In this section, we first reformulate Problem (2) into a DC constrained DC program based on +the empirical quantile. Then, we propose a pDCA for solving the reformulation. To proceed, +we introduce some further notions that will be used in the sequel. Let +C(x, ξ) := max {ci(x, ξ) : i = 1, . . . , m} . +(7) +Given a set of samples {ˆξi}N +i=1, let +�C(x) := +� +C(x, ˆξ1), . . . , C(x, ˆξN) +� +∈ RN. +(8) +6 + +We define the p-th empirical quantile of C(x, ξ) over the samples {ˆξi}N +i=1 for a probability +p ∈ (0, 1) by +ˆQc(p) := inf +� +y ∈ R : 1 +N +N +� +i=1 +1{C(x, ˆξi)≤y} ≥ p +� +. +Throughout this section, let +M := ⌈(1 − α)N⌉. +(9) +2.1 +DC Reformulation of the Chance Constraint +In this subsection, we reformulate the sample-based chance constraint in Problem (2) into a DC +constraint using the empirical quantile function of C(x, ξ) over the samples {ˆξi}N +i=1. To begin, +according to [69, Chapter 21.2], the (1 − α)-th empirical quantile of C(x, ξ) over the samples +{ˆξi}N +i=1 for α ∈ (0, 1) is +ˆQc(1 − α) = �C[M](x), +where �C[M](x) denotes the M-th smallest element of �C(x). This allows us to get an equivalent +form of Problem (2) as follows: +min +x∈X +� +f(x) : +�C[M](x) ≤ 0 +� +. +(10) +We should mention that the same empirical quantile-based problem has been considered in the +literature. For example, Pe˜na-Ordieres et al. [58], Shen et al. [65] considered approximations of +the quantile constraint, and Cui et al. [17] simplified the value at risk constraint of the loss of +a portfolio, which is exactly the quantile constraint, by introducing new variables. By contrast, +we directly handle the empirical quantile constraint by reformulating it into a DC form. To +simplify our development, we denote the above constraint set by +ZM := +� +x ∈ Rn : �C[M](x) ≤ 0 +� +. +(11) +Remark that if M = N, this constraint requires C(x, ˆξi) ≤ 0 for all i ∈ [N]. This, together with +Assumption 1(c) and (7), implies that the constraint set ZN is convex. For this case, Problem +(10) minimizes a DC objective function subject to convex constraints, and many algorithms in +the literature have been proposed to solve this problem; see, e.g., [60] and the references therein. +To avoid this case, we assume that M ≤ N − 1 throughout this paper. Using the structure +of the function �C(·) and the convexity of ci(·, ξ), we show that the above constraint is a DC +constraint. +Lemma 1. Suppose that M ≤ N − 1. Let +G(x) := +N +� +i=M +�C[i](x), H(x) := +N +� +i=M+1 +�C[i](x). +(12) +Then, G and H are both continuous and convex functions, and the chance constraint in (11) is +equivalent to a DC constraint +G(x) − H(x) ≤ 0. +(13) +7 + +Proof. The continuity of G and H follows from (7), (8), and Assumption 1(c). Since H(x) +denotes the sum of T largest components of �C(x), we rewrite it as +H(x) = max +�N−M +� +t=1 +�Cit(x) : 1 ≤ i1 < i2 < · · · < iN−M ≤ N +� +. +(14) +According to the convexity of cj(x, ˆξi) for all i = 1, . . . , N and j = 1, . . . , m due to Assumption +1(c) and the fact that the pointwise maximum of convex functions is still convex ([27, Proposition +2.1.2]), we see that C(x, ˆξi) for all i = 1, . . . , N are convex. This, together with (14), the fact +that the sum of convex functions is convex, and the fact that the pointwise maximum of convex +functions is still convex, implies that H(x) is convex. By the same argument, we show that +G(x) is convex. Given z ∈ RN and M ≤ N − 1, we decompose z[M] as +z[M] = +N +� +i=M +z[i] − +N +� +i=M+1 +z[i], for all M = 1, . . . , N − 1. +(15) +This, together with (12), implies that �C[M](x) ≤ 0 is equivalent to (13). +Consequently, using Lemma 1 and Assumption 1(a), Problem (10) can be cast as the fol- +lowing DC constrained DC program: +min +x∈X +f(x) := g(x) − h(x) +s.t. +G(x) − H(x) ≤ 0, +(16) +where g, h are continuous and convex and G, H defined in (12) are also continuous and convex. +2.2 +A Proximal DC Algorithm for Chance Constrained Programs +In this subsection, we propose a proximal DC algorithm for solving Problem (16). To begin, we +define +I := {(i1, i2, . . . , iN−M) : 1 ≤ i1 < i2 < · · · < iN−M ≤ N} , +(17) +and denote the active index set of C(x, ˆξi) and H(x) in (12) respectively by +Mi +c(x) := +� +j ∈ {1, . . . , m} : cj(x, ˆξi) = C(x, ˆξi) +� +, +(18) +MH(x) := +� +I ∈ I : +N−M +� +t=1 +�Cit(x) = H(x) +� +. +(19) +We then talk about how to compute an element in these two active sets, respectively. Specifically, +for the former one, we compute the function values of cj(x, ˆξi) for all j = 1, . . . , m and obtain +an element in the index set Mi +c(x) by finding an index j∗ ∈ {1, . . . , m} such that cj∗(x, ˆξi) has +the largest value. For the latter one, after we compute C(x, ˆξi) for all i = 1, . . . , N using (7), +we obtain an element in the index set MH(x) by finding an index (i∗ +1, . . . , i∗ +N−M) ∈ I such that +{C(x, ˆξi∗ +t )}T +t=1 is the T largest elements in {C(x, ˆξi)}N +i=1. Now, we specify how to compute the +subgradient of H(x) efficiently by utilizing its structure. +8 + +Lemma 2. Let H be defined in (12). Given an x ∈ Rn, it holds that +∂H(x) = conv +� +∪ +N−M +� +t=1 +∂ �Cit(x) : (i1, . . . , iN−M) ∈ MH(x) +� +, +(20) +where +∂ �Ci(x) = conv +� +∪{∇cj(x, ˆξi)} : j ∈ Mi +c(x) +� +(21) +for all i = 1, . . . , N and conv(A) denotes the convex hull of the set A. +Proof. It follows from (14) and the rule of calculating the subdifferential of the pointwise max- +imum of convex functions ([27, Corollary 4.3.2]) that +∂H(x) = conv +� +∪∂ +N−M +� +t=1 +�Cit(x) : (i1, . . . , iN−M) ∈ MH(x) +� += conv +� +∪ +N−M +� +t=1 +∂ �Cit(x) : (i1, . . . , iN−M) ∈ MH(x) +� +, +where the second equality follows from the continuity and the convexity of C(x, ˆξi) for all +i = 1, . . . , N. Since �Ci(x) = C(x, ˆξi) = max{cj(x, ˆξi) : j = 1, . . . , m} for any i ∈ {1, . . . , N}, +using the rule of calculating the subdifferential of the pointwise maximum of convex functions +again and Assumption 1(c), we obtain (21). +Now, we are ready to propose a proximal DC algorithm for solving Problem (16). Specifically, +suppose that an initial point x0 ∈ X satisfying G(x0) − H(x0) ≤ 0 is available. At the k-th +iteration, we choose sk +h ∈ ∂h(xk) and sk +H ∈ ∂H(xk), and generate the next iterate xk+1 by +solving the following convex subproblem +xk+1 ∈ argmin +x∈X +g(x) − h(xk) − ⟨sk +h, x − xk⟩ + β +2 ∥x − xk∥2 +s.t. +G(x) − H(xk) − ⟨sk +H, x − xk⟩ ≤ 0, +(22) +where β ≥ 0 is a penalty parameter. As shown in Lemma 2, the subgradient sk +H can be easily +computed. However, Problem (22) is still not suitable for off-the-shelf solvers, because it is +difficult to directly input G(x) defined in (12), which involves the sum of the N −M +1 largest +components of �C(x, ξ), into solvers due to its combinatorial nature. To handle this issue, we +reformulate Problem (22) into a form that is suitable for solvers by introducing an auxiliary +variable z ∈ RN such that C(x, ˆξi) ≤ zi, for all i = 1, . . . , N. Note that +N +� +i=M +z[i] = max +u∈Rn +� +⟨u, z⟩ : 0 ≤ u ≤ 1, 1T u = N − M + 1 +� +. +This is a linear program and its dual problem is +min +λ∈RN,µ∈R {⟨1, λ⟩ + (N − M + 1)µ : z − λ − µ1 ≤ 0, λ ≥ 0} . +9 + +Using the strong duality of linear programming, we rewrite Problem (22) as +xk+1 = +argmin +x∈X,z∈RN,λ∈RN,µ∈R +g(x) − h(xk) − ⟨sk +h, x − xk⟩ + β +2 ∥x − xk∥2 +s.t. +⟨1, λ⟩ + (N − M + 1)µ − H(xk) − ⟨sk +H, x − xk⟩ ≤ 0, +z − λ − µ1 ≤ 0, λ ≥ 0, +cj(x, ˆξi) − zi ≤ 0, ∀ i =, 1 . . . , N, j = 1, . . . , m. +(23) +We remark that we can also eliminate the auxiliary variable z ∈ RN by combining cj(x, ˆξi)−zi ≤ +0 for i = 1, . . . , N, j = 1, . . . , m and z−λ−µ1 ≤ 0 together and obtain cj(x, ˆξi)−λi−µ ≤ 0 for +i = 1, . . . , N, j = 1, . . . , m. We summarize the proposed proximal DC algorithm in Algorithm +1. +Algorithm 1 A Proximal DC Algorithm for Chance Constrained Programs +1: Input: data samples {ˆξi}N +i=1, feasible point x0, β ≥ 0. +2: for k = 0, 1, . . . do +3: +take any sk +h ∈ ∂h(xk) and sk +H ∈ ∂H(xk) +4: +solve Problem (23) to obtain an xk+1 +5: +if a termination criterion is met then +6: +stop and return xk+1 +7: +end if +8: end for +Before studying its convergence, we make some remarks on Algorithm 1. First, Algorithm +1 is closely related to sequential convex programming methods in [47, 73]. However, different +from them, we fully exploit the structure of the DC function and reformulate the subproblem +into a form that is suitable for off-the-shelf solvers. Moreover, we should also mention that our +DC approach differs from that in [29], since their DC approach is based on the DC approxima- +tion of the indicator function, while ours directly handles the empirical quantile of the chance +constraint. Second, a key issue in our implementation is how to choose a feasible initial point +x0. A common approach is to solve a convex approximation of Problem (2) such as CVaR in +[53] to generate a feasible point. Third, the penalty parameter β can be updated in an adaptive +manner as long as it is non-increasing and positive. In our numerical experiments, we observe +that this adaptive scheme may empirically accelerate the convergence of the pDCA. Finally, the +subproblem (23) is easy to solve in some cases. Specifically, it is observed that the functions +cj(·, ξ) for all j = 1, . . . , m in many practical applications take the linear form; see, e.g., [50, 35]. +Based on this observation, suppose that in (16) X is a polyhedron and +g(x) = aT +0 x, cj(x, ξ) = aT +j x + bT +j ξ, for all j = 1, . . . , m. +(24) +Then, substituting (24) into (23) with β = 0 (resp. β > 0) yields a linear (resp. quadratic) +program with (m+2)N +1 linear constraints (without considering the linear constraints in X). +We can solve it easily by inputting it into off-the-shelf linear (resp. quadratic) programming +10 + +solvers, such as MOSEK, Gurobi, and CPLEX. In addition, suppose that in (16) X is a polyhedron +and +g(x) = xT Ax + aT +0 x, cj(x, ξ) = aT +j x + bT +j ξ, for all j = 1, . . . , m, +(25) +where A ∈ Rn×n is a symmetric matrix. The resulting subproblem (23) is a quadratic program +when β ≥ 0. +3 +Convergence and Iteration Complexity Analysis +In this section, we study the convergence properties of Algorithm 1. Towards this end, we first +show the subsequential convergence of the sequence {xk} generated by Algorithm 1 to a KKT +point of Problem (16) under some constraint qualification. Second, we prove convergence of +the entire sequence {xk} if in addition the K�L property holds for a specially designed potential +function. Finally, we analyze the iteration complexity of Algorithm 1. We point out that the +proposed algorithm and its convergence in fact apply to Problem (16) with G(x) and H(x) being +general convex functions defined on an open set that contains X, which takes the form of general +DC constrained DC programs. An extension to multiple DC constraints will be discussed in +Section 4.2. +Before we proceed, we introduce some further notation, assumptions, and definitions that +will be used throughout this section. To begin, we specify the convex constraints in the set X +as follows: +X = +� +x ∈ Rn : aT +i x + bi = 0, i ∈ E, ωi(x) ≤ 0, i ∈ I +� +, +(26) +where ai ∈ Rn and bi ∈ R for all i ∈ E, ωi : Rn → R for all i ∈ I are convex and continuously +differentiable functions, and E and I are finite sets of indices. We denote the active set of the +inequality constraints at x ∈ X by +A(x) := {i ∈ I : ωi(x) = 0} , +(27) +and the feasible set of Problem (16) by +¯ +X := {x ∈ X : G(x) − H(x) ≤ 0} . +We now introduce a generalized version of the Mangasarian-Fromovitz constraint qualification +(MFCQ), which is a widely used assumption on the algebraic description of the feasible set +of constrained problems that ensures that the KKT conditions hold at any local minimum +([47, 72]). +Assumption 2 (Generalized MFCQ). The generalized MFCQ holds for all x ∈ ¯ +X, i.e., there +exists y ∈ X such that for G(x) = H(x), we have +G(y) − H(x) − ⟨sH, y − x⟩ < 0, for all sH ∈ ∂H(x), +(28) +⟨∇ωi(x), y − x⟩ < 0, for all i ∈ A(x). +(29) +11 + +We next introduce the definition of KKT points for Problem (16). +Definition 2 (KKT points of Problem (16)). We say that x ∈ ¯ +X is a KKT point of Problem +(16) if there exists λ ∈ R+ such that (x, λ) satisfies λ (G(x) − H(x)) = 0 and +0 ∈ ∂g(x) − ∂h(x) + λ (∂G(x) − ∂H(x)) + NX (x). +Note that every local minimizer of Problem (16) is a KKT point under the generalized +MFCQ. More precisely, suppose that x∗ ∈ ¯ +X is a local minimizer of Problem (16), P = {x : +aT x + bi = 0, i ∈ E} is a polyhedron, and there exists d ∈ TP(x∗) for x∗ ∈ X satisfying +G(x∗) = H(x∗) and ω(x∗) such that +G′(x∗, d) < +inf +s∈∂H(x∗) sT d, +and +ω′ +i(x∗, d) = ωi(x∗)T d < 0, i ∈ E. +(30) +Then, there exists λ∗ ∈ R+ such that x∗ is a KKT point of Problem (16). This result is a direct +consequence of [47, Theorem 2.1]. It is worth noting that (30) holds if the generalized MFCQ +holds at x∗; see, e.g., Remark (b) of [47, Theorem 2.1]. +3.1 +Subsequential Convergence to a KKT Point +In this subsection, our goal is to show that any accumulation point of the sequence {xk} +generated by Algorithm 1 is a KKT point of Problem (16). +Lemma 3. Suppose that Assumptions 1 holds, the function f is given in Problem (16), and the +level set +� +x ∈ ¯ +X : f(x) ≤ f(x0) +� +is bounded. Let {xk} be the sequence generated by Algorithm +1 with ρ + β > 0. Then, the following statements hold: +(i) It holds for all k ≥ 0 that xk ∈ ¯ +X and +f(xk+1) − f(xk) ≤ −ρ + β +2 +∥xk+1 − xk∥2. +(31) +(ii) The sequence {xk} ⊆ ¯ +X is bounded. +(iii) It holds that +lim +k→∞ ∥xk+1 − xk∥ = 0. +(32) +Proof. (i) According to the feasibility of xk+1 to Problem (22), sk +H ∈ ∂H(xk), and the convexity +of H, we have xk+1 ∈ X and +G(xk+1) ≤ H(xk) + ⟨sk +H, xk+1 − xk⟩ ≤ H(xk+1). +(33) +This implies xk+1 ∈ ¯ +X for all k ≥ 0. Moreover, it follows from the optimality of xk+1 for +Problem (22) and the ρ-strongly convexity of g that for all k ≥ 0, +g(xk+1) − h(xk) − ⟨sk +h, xk+1 − xk⟩ + ρ + β +2 +∥xk+1 − xk∥2 ≤ g(xk) − h(xk). +12 + +This, together with the convexity of h and sk +h ∈ ∂h(xk), yields that for all k ≥ 0, +g(xk+1) − h(xk+1) + ρ + β +2 +∥xk+1 − xk∥2 ≤ g(xk) − h(xk), +which is equivalent to (31). +(ii) According to (31), the function value f(xk) is monotonically decreasing and thus we +have f(xk+1) ≤ f(x0) for all k ≥ 1. +This, together with the level-boundness of the set +� +x ∈ X c : f(x) ≤ f(x0) +� +, implies that {xk} is bounded. +(iii) The boundedness of the sequence {xk}, together with continuity of f implies that +{f(xk)} is bounded from below. Using this and the fact that {f(xk)} is monotonically de- +creasing, we obtain that there exists some f ∗ such that f(xk) → f ∗. +It follows from (31) +that +α + β +2 +∞ +� +k=0 +∥xk+1 − xk∥2 ≤ f(x0) − lim +k→∞f(xk+1) = f(x0) − f ∗ < ∞. +This implies (32). +Armed with the above lemma, we are ready to show the subsequential convergence of the +sequence {xk} generated by Algorithm 1 to a KKT point of Problem (16). +Theorem 1. Suppose that Assumptions 1 and 2 hold, the function f is given in Problem (16), +and the level set +� +x ∈ ¯ +X : f(x) ≤ f(x0) +� +is bounded. Let {xk} be the sequence generated by +Algorithm 1 with ρ + β > 0. Then, any accumulation point of {xk} is a KKT point of Problem +(16). +Proof. According to (i) in Lemma 3, it holds that xk ∈ ¯ +X for all k ≥ 0. This, together with the +generalized MFCQ in Assumption 2 and the equivalence between the Slater condition and the +MFCQ by [18, Exercise 2.3.3(b)], yields that there exists x ∈ X such that for any sk +H ∈ ∂H(xk), +G(x) − H(xk) − ⟨sk +H, x − xk⟩ < 0, ωi(x) < 0, ∀ i ∈ A(x). +(34) +This is exactly the Slater condition for Problem (22). According to this, (26), and [62, Corollary +28.2.1, Theorem 28.3], there exists a Lagrange multiplier λk ∈ R for all k ≥ 0 such that the +following KKT system holds: + + + + + + + + + +G(xk+1) − H(xk) − ⟨sk +H, xk+1 − xk⟩ ≤ 0, xk+1 ∈ X, +λk � +G(xk+1) − H(xk) − ⟨sk +H, xk+1 − xk⟩ +� += 0, λk ≥ 0, +0 ∈ ∂g(xk+1) − sk +h + β(xk+1 − xk) + λk � +∂G(xk+1) − sk +H +� ++ NX (xk+1). +(35) +It follows from (ii) of Lemma 3 that {xk} is bounded. Let x∗ be an accumulation point of {xk} +such that there exists a subsequence {xki} with limi→∞ xki = x∗. We claim that the sequence +{λk} is bounded. Passing to a further subsequence if necessary, we assume without loss of +generality that limi→∞ λki = λ∗. According to (32) in Lemma 3, we have limi→∞(xki+1−xki) = +0. Using this fact, the outer semi-continuity of ∂g, ∂h, ∂G, ∂H [63, Definition 5.4, Proposition +13 + +8.7], and sk +h ∈ ∂h(xk), sk +H ∈ ∂H(xk), we have upon passing to the limit as i goes to infinity in +(35) with k = ki that sk +h → s∗ +h ∈ ∂h(x∗) and sk +H → s∗ +H ∈ ∂H(x∗), and thus +0 ∈ ∂g(x∗) − ∂h(x∗) + λ∗ (∂G(x∗) − ∂H(x∗)) + NX (x∗). +(36) +On the other hand, using (35) and (32) with k = ki and the boundedness of ∂H(x∗), letting +i → ∞, we have +G(x∗) ≤ H(x∗), λ∗ (G(x∗) − H(x∗)) = 0. +(37) +Moreover, since λk ≥ 0 and xk ∈ ¯ +X for all k ≥ 0, we have λ∗ ≥ 0 and x∗ ∈ ¯ +X. This, together +with (36), (37), and Definition 2, implies that x∗ is a KKT point of Problem (16). +The rest of the proof is devoted to proving that {λk} is bounded. Without loss of generality, +we assume that {ai : i ∈ E} is linearly independent, since otherwise we can obtain the same +results by eliminating the redundant linear equalities. It follows from [63, Theorem 6.14] for +any x ∈ X that +NX (x) = +�� +i∈E +uiai + +� +i∈I +vi∇ωi(x) : vi ≥ 0, for i ∈ A(x), vi = 0, for i /∈ A(x) +� +. +This, together with (35), yields that there exist uk +i for i ∈ E, vk +i ≥ 0 for i ∈ A(xk+1), and vk +i = 0 +for i /∈ A(xk+1) such that +0 ∈ ∂g(xk+1) − sk +h + β(xk+1 − xk) + λk � +∂G(xk+1) − sk+1 +H +� ++ +� +i∈E +uk +i ai + +� +i∈I +vk +i ∇ωi(xk+1). +(38) +Then, let +ρk := +� +(λk)2 + +� +i∈E +(uk +i )2 + +� +i∈I +(vk +i )2, τ k := λk +ρk , µk +i := uk +i +ρk , νk +i := vk +i +ρk . +Suppose to the contrary that {λk} is unbounded. +This implies that ρk is also unbounded. +Then, there exists a subsequence {λkj} such that |λkj| → ∞ as j goes to infinity. Passing +to a further subsequence if necessary, suppose that there exist τ ∗ ∈ R+, µ∗ +i , ν∗ +i ∈ R+, x∗, and +s∗ +H ∈ ∂H(x∗) such that limj→∞ τ kj = τ ∗, limj→∞ µkj +i += µ∗ +i , limj→∞ νkj +i += ν∗ +i , limj→∞ xkj = x∗, +and limj→∞ skj +H = s∗ +H, where skj +H ∈ ∂H(xkj), due to λk ≥ 0, v∗ +i ≥ 0 for i ∈ I, the boundness +of {τ k}, {µk}, {νk}, {xk}, and ∂H(xk), and the outer semi-continuity of ∂H. Then, dividing +both sides of (38) by |ρkj|, letting j → ∞, and using (32), the outer semi-continuity of ∂g and +∂h, and the boundness of ∂g(x∗), ∂h(x∗), and {xk}, we have +0 ∈ τ ∗ (∂G(x∗) − s∗ +H) + +� +i∈E +µ∗ +i ai + +� +i∈I +ν∗ +i ∇ωi(x∗). +(39) +Using the definitions of τ ∗, µ∗, and ν∗, we further have +(τ ∗)2 + ∥µ∗∥2 + ∥ν∗∥2 = 1, +(40) +14 + +(Case 1) Suppose that τ ∗ = 0. Due to (39), we have +0 = +� +i∈E +µ∗ +i ai + +� +i∈I +ν∗ +i ∇ωi(x∗). +(41) +According to Assumption 2, there exists y ∈ X such that ⟨∇ωi(x∗), y−x∗⟩ < 0 for all i ∈ A(x∗). +Moreover, since A(xk) ⊆ A(x∗) when k is sufficiently large, we have i /∈ A(xk) if i /∈ A(x∗). +Therefore, we have νk +i = 0 for all i /∈ A(xk) as k → ∞, which implies ν∗ +i = 0 for i /∈ A(x∗). +Then, taking inner products with y − x∗ on both sides of (41) yields +0 = +� +i∈A(x∗) +ν∗ +i ⟨∇ωi(x∗), y − x∗⟩, +where the equality follows from ⟨ai, y − x∗⟩ = 0 for i ∈ E and ν∗ +i = 0 for i /∈ A(x∗). This, +together with ⟨∇ωi(x∗), y−x∗⟩ < 0 for all i ∈ A(x∗), gives ν∗ +i = 0 for all i ∈ A(x∗). Substituting +this and ν∗ +i = 0 for i /∈ A(x∗) into (41), we have 0 = � +i∈E µ∗ +i ai. Noting that we assume that +{ai : i ∈ E} is linearly independent, we have µ∗ +i = 0 for all i ∈ E. Therefore, ν∗ +i = 0 for all i ∈ I +and µ∗ +i = 0 for all i ∈ E. This contradicts (40). +(Case 2) Suppose that τ ∗ > 0. We first consider the case of G(x∗) < H(x∗). It follows from +the second line of (35) with k = kj, j → ∞, and (32) that limj→∞ λkj = 0. This implies τ ∗ = 0, +which contradict (40). We then must have G(x∗) = H(x∗). This, together with the convexity +of G and (28) in Assumption 2, yields that there exists y ∈ X such that +⟨¯sG − s∗ +H, y − x∗⟩ ≤ G(y) − G(x∗) − ⟨s∗ +H, y − x∗⟩ = G(y) − H(x∗) − ⟨s∗ +H, y − x∗⟩ < 0, (42) +where ¯sG is an arbitrary subgradient of G at x. According to (39), there exists s∗ +G ∈ ∂G(x∗) +such that +0 = τ ∗ (s∗ +G − s∗ +H) + +� +i∈E +µ∗ +i ai + +� +i∈I +ν∗ +i ∇ωi(x∗). +(43) +Taking inner products with y − x∗ on both sides yields +0 = τ ∗⟨s∗ +G − s∗ +H, y − x∗⟩ + +� +i∈A(x∗) +ν∗ +i ⟨∇ωi(x∗), y − x∗⟩. +Note that ν∗ +i ≥ 0 due to vk +i ≥ 0 for all i ∈ I. This, together with (29) at x∗ and (42), implies +τ ∗ = 0, which is a contradiction. We prove the claim. +3.2 +Convergence of the Entire Sequence to a KKT Point +In this subsection, we employ the analysis framework proposed in [2, 4] based on the K�L property +to study the sequential convergence of Algorithm 1 for β > 0. Our first step is to show that the +sequence generated by Algorithm 1 satisfies sufficient decrease and relative error conditions with +respect to a potential function. Motivated by the potential functions constructed in [46, 73], we +construct the following potential function +ϕ(x, y, z) := g(x) − ⟨x, y⟩ + h∗(y) + δ ¯F (·)≤0(x, z) + δX (x), +(44) +15 + +where +¯F(x, z) := G(x) − ⟨x, z⟩ + H∗(z). +(45) +Then, we characterize the subdifferential of δ ¯F (·)≤0(x, z) using its structure and the convexity +of G and H. We point out that this characterization holds for G and H being arbitrary proper +closed convex functions. +Lemma 4. Suppose that Assumption 2 holds and (x, z) satisfies ¯F(x, z) ≤ 0. It holds that the +function δ ¯F (·) is regular and +∂δ ¯F (·)≤0(x, z) = +�� +λ(s1 − z) +λ(−x + s2) +� +: s1 ∈ ∂G(x), s2 ∈ ∂H∗(z), λ ≥ 0, λ ¯F(x, z) = 0 +� +. +(46) +Proof. To begin, let +S := +� +(x, z) : ¯F(x, z) ≤ 0 +� +. +In particular, we write S = ¯F −1(R−). Because G and H∗ are both convex functions, then ¯F is +locally Lipschitz continuous. It follows from [63, Definition 9.1] that ¯F : Rn×Rn → R is a strictly +continuous function since it is locally Lipschitz continuous. We obtain that y ∈ NR−( ¯F(x, z)) +is equivalent to y ≥ 0, y ¯F(x, z) = 0. Suppose that the only vector y ∈ NR−( ¯F(x, z)) with +0 ∈ ∂(y ¯F)(x, z) is y = 0. Moreover, R− is regular at ¯F(x, z) and ¯F is regular due to convexity +of G and H∗. These, together with [63, Corollary 10.50], imply that S is regular, which further +implies δ ¯F(·) is regular by [63, Exercise 8.14], and (46) holds. +The rest of our proof is to show that the only vector y ∈ NR−( ¯F(x, z)) with 0 ∈ ∂(y ¯F)(x, z) +is y = 0. Suppose that this is not the case. Then, there exists y > 0 such that y ∈ NR−( ¯F(x, z)) +with 0 ∈ ∂(y ¯F)(x, z), which implies +� +(x, z) : +¯F(x, z) = 0, 0 ∈ ∂ ¯F(x, z) +� +̸= ∅. +(47) +Let (x, z) be such that ¯F(x, z) = 0 and 0 ∈ ∂ ¯F(x, z). It follows from ¯F(x, z) = 0 and (45) +that +G(x) − ⟨x, z⟩ + H∗(z) = 0. +(48) +Using [3, Proposition 2.1] and 0 ∈ ∂ ¯F(x, z) with (45), we have +z ∈ ∂G(x), x ∈ ∂H∗(z). +In particular, x ∈ ∂H∗(z) holds if and only if z ∈ ∂H(x) because H is a pointwise maximum of +continuous and convex functions, and thus closed and convex, which implies H∗(z) + H(x) = +⟨x, z⟩ according to Young’s inequality. Using this and (48), we have G(x) = H(x). It follows +from z ∈ ∂G(x) and the convexity of G that +G(y) ≥ G(x) + ⟨z, y − x⟩, for all y ∈ Rn. +Plugging z ∈ ∂H(x) and G(x) = H(x) into the above inequality yields that for z ∈ ∂H(x), +G(y) ≥ H(x) + ⟨z, y − x⟩, for all y ∈ Rn, +which contradicts (28) in Assumption 2. We prove the claim. +16 + +Now, we are ready to show that the sequence {(xk, sk +h, sk +H)} generated by Algorithm 1 +satisfies the sufficient decrease and relative error conditions mentioned earlier. +Lemma 5. Suppose that Assumptions 1 and 2 hold. +Let {(xk+1, sk +h, sk +H)} be the sequence +generated by Algorithm 1 with ρ + β > 0. Then, the following statements hold: +(i) [Sufficient Decrease] The sequence {(xk+1, sk +h, sk +H)} is bounded. It holds for all k ≥ 1 that +ϕ(xk+1, sk +h, sk +H) − ϕ(xk, sk−1 +h +, sk−1 +H +) ≤ −ρ + β +2 +∥xk+1 − xk∥2. +(ii) [Relative Error] There exists a constant κ > 0 such that for all k ≥ 0, +dist +� +0, ∂ϕ(xk+1, sk +h, sk +H) +� +≤ κ∥xk+1 − xk∥. +Proof. (i) It follows from (i) in Lemma 3 that {xk} ⊆ ¯ +X is bounded. This, together with the +fact that h and H are convex, implies that {(sk +h, sk +H)} is bounded. Therefore, the sequence +{(xk+1, sk +h, sk +H)} is bounded. According to (45), we have for all k ≥ 0, +¯F(xk+1, sk +H) = G(xk+1) − ⟨xk+1, sk +H⟩ + H∗(sk +H) += G(xk+1) + H∗(sk +H) − ⟨xk, sk +H⟩ − ⟨xk+1 − xk, sk +H⟩ += G(xk+1) − H(xk) − ⟨xk+1 − xk, sk +H⟩ ≤ 0, +(49) +where the last equality follows from H(xk) + H∗(sk +H) = ⟨xk, sk +H⟩ due to Young’s inequality and +sk +H ∈ ∂H(xk), and the inequality is due to the constraint in (22). Moreover, it follows from +(22) and the ρ-strongly convexity of g that for all k ≥ 0, +g(xk+1) − ⟨sk +h, xk+1 − xk⟩ + ρ + β +2 +∥xk+1 − xk∥2 ≤ g(xk). +(50) +This, together with (49) and xk ∈ X, implies for all k ≥ 1, +ϕ(xk+1, sk +h, sk +H) = g(xk+1) − ⟨xk+1, sk +h⟩ + h∗(sk +h) +≤ g(xk) − ⟨sk +h, xk⟩ − ρ + β +2 +∥xk+1 − xk∥2 + h∗(sk +h) += g(xk) − h(xk) − ρ + β +2 +∥xk+1 − xk∥2 +≤ g(xk) − ⟨xk, sk−1 +h +⟩ + h∗(sk−1 +h +) − ρ + β +2 +∥xk+1 − xk∥2 += ϕ(xk, sk−1 +h +, sk−1 +H +) − ρ + β +2 +∥xk+1 − xk∥2, +where the first inequality uses (50), the second equality follows from h(xk) + h∗(sk +h) = ⟨xk, sk +h⟩ +due to sk +h ∈ ∂h(xk) and Young’s inequality, the second inequality follows from h(xk)+h∗(sk−1 +h +) ≥ +⟨xk, sk−1 +h +⟩ due to Young’s inequality, and the last equality is due to xk ∈ X, (44), and (49). +(ii) According to [63, Exercise 8.8(c)], we compute +∂ϕ(x, y, z) = ∂ +� +g(x) + h∗(y) + δ ¯F (·)≤0(x, z) + δX (x) +� ++ + + +−y +−x +0 + + += +� + + + + + + + +∂g(x) − y + λ(∂G(x) − z) + NX(x) +−x + ∂h∗(y) +λ(−x + ∂H ∗ (z)) + + : λ ≥ 0, λ ¯F(x, z) = 0 + + + + + +, +17 + +where the second equality uses [63, Corollary 10.9] and the fact that g, h∗ and δX are regular +due to the convexity and δ ¯F (·) is regular due to Lemma 4. Therefore, we have +∂ϕ(xk+1, sk +h, sk +H) = +� + + + + + + + +∂g(xk+1) − sk +h + λ(∂G(xk+1) − sk +H) + NX (xk+1) +−xk+1 + ∂h∗(sk +h) +λ(−xk+1 + ∂H∗(sk +H)) + + : +λ ≥ 0, λ ¯F(xk+1, sk +H) = 0 +� +. +(51) +It follows from Assumption 2 that the KKT system (35) holds for Problem (22). Then we have +λk ≥ 0 and +λk ¯F(xk+1, sk +H) = λk � +G(xk+1) − ⟨xk+1, sk +H⟩ + H∗(sk +H) +� += λk � +G(xk+1) − H(xk) − ⟨xk+1 − xk, sk +H⟩ +� += 0, +(52) +where the first equality uses (45), the second equality follows from H(xk) + H∗(sk +H) = ⟨xk, sk +H⟩ +due to sk +H ∈ ∂H(xk) and Young’s inequality, and the last equality follows from the second line +in (35). It follows from the last line in (35) that +β(xk − xk+1) ∈ ∂g(xk+1) − sk +h + λk � +∂G(xk+1) − sk +H +� ++ NX (xk+1). +This, together with (49), (51), (52) with λk ≥ 0, sk +h ∈ ∂h(xk), sk +H ∈ ∂H(xk), and the fact that +y ∈ ∂ψ(x) if and only if x ∈ ∂ψ∗(y) provided that ψ is a proper closed convex function, yields +that + + +β(xk − xk+1) +xk − xk+1 +λk(xk − xk+1) + + ∈ ∂ϕ(xk+1, sk +h, sk +H) +This implies +dist +� +0, ∂ϕ(xk+1, sk +h, sk +H) +� +≤ (β + 1 + λk)∥xk+1 − xk∥, +where λk ≥ 0 is bounded in (35) according to the proof of Theorem 1. Then, we complete the +proof. +Since g, h, G, and H are continuous and convex functions and X is a closed and convex +set, we can verify that ϕ is a K�L function with exponent θ ∈ [0, 1) according to [9, Theorem 3]. +Using Lemma 5 and the analysis in [2, 3, 4, 9, 46, 73], we shall prove the sequential convergence +and the convergence rate of the sequence {xk} generated by Algorithm 1. The proof is rather +standard and thus we omit it. We refer the reader to [2, 46] for the detailed arguments. +Theorem 2. Suppose that Assumptions 1 and 2 hold, the function f is given in Problem (16), +and the level set +� +x ∈ X c : f(x) ≤ f(x0) +� +is bounded. Then, the sequence {xk} generated by +Algorithm 1 with ρ + β > 0 converges to a KKT point x∗ of Problem (16). Let θ ∈ [0, 1) denote +the K�L exponent of ϕ in (44). There exists an integer k∗ ≥ 1 such that the following statements +18 + +hold: +(i) If θ = 0, then {xk} converges finitely, i.e., xk = x∗ for all k ≥ k∗. +(ii) If θ ∈ (0, 1/2], then {xk} converges linearly, i.e., there exist c > 0 and q ∈ (0, 1) such that +for all k ≥ k∗, +∥xk − x∗∥ ≤ cqk. +(iii) If θ ∈ (1/2, 1), then {xk} converges sublinearly, i.e., there exist c > 0 such that for all +k ≥ k∗, +∥xk − x∗∥ ≤ ck− 1−θ +2θ−1 . +It follows from Theorem 2 that the proximal DC algorithm achieves linear convergence when +the K�L exponent θ = 1/2. Therefore, an interesting future direction is to investigate under what +conditions the K�L exponent of Problem (16) is 1/2; see, e.g., [43, 33, 34, 45, 70, 76]. +3.3 +Iteration Complexity for Computing an Approximate KKT Point +In this subsection, we analyze the iteration complexity of Algorithm 1 for computing an ap- +proximate KKT point of Problem (16). Motivated by the analysis framework in [74] for DC +constrained DC programs with all functions being differentiable, we connect Algorithm 1 to a +variant of the Frank-Wolfe (FW) method. +To simplify notation, let +w := (x, s, t), +q(w) := s − h(x), +Q(w) := t − H(x), +and +W := {w : x ∈ X, g(x) ≤ s, G(x) ≤ t} . +In particular, we should mention that q and Q are both concave functions and W is a convex +set. We rewrite Problem (16) as follows by introducing auxiliary variables s, t ∈ R: +min +x∈X,s∈R,t∈Rs − h(x) +s.t. +g(x) ≤ s, G(x) ≤ t, t − H(x) ≤ 0. +(53) +We further express Problem (53) as +min +w∈W q(w) +s.t. Q(w) ≤ 0, +(54) +Based on the above setup, we directly show the equivalence between the proximal DC iterations +in (22) and a variant of FW iterations applied to Problem (54). +Lemma 6. Suppose that Assumptions 1 and 2 hold. The proximal DC iterations in (22) with +β ≥ 0 is equivalent to the following variant of FW iterations: +wk+1 ∈ argmin +w∈W +q(wk) + ⟨sk +q, w − wk⟩ + β +2 ∥w − wk∥2 +T +s.t. +Q(wk) + ⟨sk +Q, w − wk⟩ ≤ 0, +(55) +19 + +where sk +q = (−sk +h, 1, 0), sk +h ∈ ∂h(xk), sk +Q = (−sk +H, 0, 1), sk +H ∈ ∂H(xk), and we define ∥z∥T = +��n +i=1 z2 +i for any z ∈ Rn+2. +Proof. The proof follows directly from the definitions of W, q(w), Q(w), and the fact that any +optimal solution of (55) must satisfy sk = g(xk) and s = g(x). +We next use the equivalent expression (54) to give an equivalent characterization of KKT +points (see Definition 2) of Problem (16) under the generalized MFCQ in Assumption 2. +Lemma 7. Suppose that Assumptions 1 and 2 hold. Given ¯w ∈ W, sq ∈ ∂q( ¯w) with g(¯x) ≤ +¯s, G(¯x) ≤ ¯t, and sQ ∈ ∂Q( ¯w), suppose that +⟨sq, w − ¯w⟩ + β +2 ∥w − ¯w∥2 +T ≥ 0 +(56) +for all w ∈ W satisfying Q( ¯w) + ⟨sQ, w − ¯w⟩ ≤ 0. Then, ¯x is a KKT point of Problem (16). +Proof. According to the statement of the lemma and [6, Proposition 2.1.2], we obtain that +¯w ∈ W is an optimal solution to the following convex problem: +min +w∈W +⟨sq, w − ¯w⟩ + β +2 ∥w − ¯w∥2 +T +s.t. +Q( ¯w) + ⟨sQ, w − ¯w⟩ ≤ 0. +Note that ⟨sq, w − ¯w⟩ = −⟨sh, x − ¯x⟩ + (s − ¯s). Moreover, the optimal solution of (55) must +satisfy s = g(x) and ¯s = g(¯x). Then we have +⟨sq, w − ¯w⟩ + β +2 ∥w − ¯w∥2 +T = g(x) − g(¯x) − ⟨sh, x − ¯x⟩ + β +2 ∥x − ¯x∥2. +(57) +Thus ¯x is an optimal solution to the following convex problem: +min +x∈X +g(x) − g(¯x) − ⟨sh, x − ¯x⟩ + β +2 ∥x − ¯x∥2 +s.t. +G(x) − H(¯x) − ⟨sH, x − ¯x⟩ ≤ 0, +where sh ∈ ∂h(¯x) and sH ∈ ∂H(¯x). This, together with the Slater’s condition due to Assump- +tion 2, implies that there exists λ ∈ R+ such that (¯x, λ) satisfies the KKT system in Definition +2. +Consequently, studying the iteration complexity of Algorithm 1 for computing an approxi- +mate KKT point of Problem (16) is equivalent to that of the variant of the FW iterations (55) +for computing a point satisfying (56). However, we cannot expect to achieve a solution that +satisfies (56) in practice. Instead, we often obtain an approximate solution as shown in the next +theorem, which can be seen as an approximation of a KKT point of Problem (16). The next +theorem gives the iteration complexity for achieving an approximate solution. +20 + +Theorem 3. Suppose that Assumptions 1 and 2 hold. Let {xk} be the sequence generated by +Algorithm 1. Then, there exists ℓ ∈ [k] such that +⟨sq, w − wℓ⟩ + β +2 ∥w − wℓ∥2 +T ≥ −1 +k +� +q(w0) − q∗� +, +(58) +for all w ∈ W and Q(wl) + ⟨sl +Q, w − wl⟩ ≤ 0, where q∗ ∈ R is the optimal value of Problem +(54) and sl +Q ∈ ∂Q(wl). +Proof. According to Lemma 6, a sequence {wk} generated by iterations (55) satisfies wk = +(xk, sk, tk) for all k ≥ 0. Since q is a concave function and sk +q ∈ ∂q(wk), we have +⟨sk +q, wk − wk+1⟩ ≤ q(wk) − q(wk+1). +Averaging the above inequality over k yields +1 +k +k +� +i=1 +⟨sk +q, wk − wk+1⟩ ≤ 1 +k +� +q(w0) − q(wk+1) +� +≤ 1 +k +� +q(w0) − q∗� +, +where the last inequality follows from the fact that q∗ ∈ R is the optimal value of Problem (54). +This implies that there exists an index ℓ ∈ {1, . . . , k} such that +⟨sℓ +q, wℓ − wℓ+1⟩ ≤ 1 +k +� +q(w0) − q∗� +. +(59) +Moreover, it follows from the optimality wk+1 to Problem (55) that for all w ∈ W satisfying +Q(wℓ) + ⟨sℓ +Q, w − wℓ⟩ ≤ 0, +⟨sℓ +q, wℓ+1 − wℓ⟩ + β +2 ∥wℓ+1 − wℓ∥2 +T ≤ ⟨sℓ +q, w − wℓ⟩ + β +2 ∥wℓ − w∥2 +T . +This, together with (59), implies that it holds for all w ∈ W satisfying Q(wℓ)+⟨sℓ +Q, w−wℓ⟩ ≤ 0 +that +⟨sq, w − wℓ⟩ + β +2 ∥w − wℓ∥2 +T ≥ ⟨sℓ +q, wℓ+1 − wℓ⟩ + β +2 ∥wℓ+1 − wℓ∥2 +T ≥ −1 +k +� +q(w0) − q∗� +. +We complete the proof. +We remark that in contrast to Theorems 1 and 2 that require ρ + β > 0, Theorem 3 can +be applied to analyze the case of ρ + β ≥ 0. It is worth noting that when β = 0, the standard +iteration complexity of the FW method for general nonconvex problems is O(1/ +√ +k) (see, e.g., +[38]), but the iteration complexity of our proposed FW method is improved to O(1/k) as we +construct a concave minimization surrogate using the DC structure. +4 +Extensions +In this section, we first discuss how to extend our approach to solve chance constrained problems +with the chance constraint estimated by general non-parametric estimation. We then extend +the proximal DC algorithm for solving Problem (16) with multiple DC constraints, which can +be used to solve chance constraint programs with multiple chance constraints. Finally, we show +that our technique can also be used to solve cardinality constrained optimization problems. +21 + +4.1 +Extension to L-Estimators of the Empirical Quantile +In statistics, an L-estimator is a linear combination of order statistics of a sample drawn from +the population distribution, which plays an important role in non-parametric estimation. The +main advantage of L-estimators is that they are easy to calculate and often resistant to outliers. +Due to this, L-estimators have been widely used in the literature; see, e.g., [17, 51, 66]. This +naturally motivates us to apply the L-estimators to Problem (2). +To proceed, we formally introduce L-estimators. Suppose that a set of samples {Xi}N +i=1 is +i.i.d. according to some unknown distribution FX. In general, L-estimators of the empirical +quantile take the form �N +i=1 wiX[i], where w ∈ ∆ := +� +u ∈ RN : 0 ≤ u ≤ 1, 1T u = 1 +� +. +In +statistics, there are many different L-estimators that outperform the empirical quantile in both +theory and practice; see, e.g., [17, 21, 31, 69]. Then, we consider some typical L-estimators of +the p empirical quantile for p ∈ (0, 1), i.e., X[M], where M = ⌈pN⌉. The first one is the weighted +average at X[M−1] (see, e.g., [21, 31]) defined as +L1 = (1 − g)X[M−1] + gX[M], +where g = Np − M + 1. Another one is the kernel quantile estimator (see, e.g., [44, 57]) defined +as +L2 = +N +� +i=1 +�� i/N +(i−1)/N +1 +hK +�x − p +h +� +dx +� +X[i], +where h > 0 is a constant and K(t) is a kernel function satisfying +� ∞ +−∞ K(t)dt = 1, K(t) ≥ 0, +and K(−t) = K(t). It is worth noting that this kernel quantile estimator can be viewed as a +smoothing version of the empirical quantile estimator. +Now, we apply L-estimators to the SAA of the chance constrained program. Specifically, +replacing the the empirical quantile �C[M](x) in Problem (10) with its L-estimator yields the +following problem: +min +x∈X +� +f(x) : +N +� +i=1 +wi �C[i](x) ≤ 0 +� +, +(60) +where the weight w ∈ ∆ is given. It is worth pointing out that Problem (2) is actually a special +case of Problem (60) by taking wM = 1 and wi = 0 for all i ̸= M. Then, we reformulate this +problem into a DC constrained DC program. Before we proceed, let +¯Z := +� +x ∈ Rn : +N +� +i=1 +wi �C[i](x) ≤ 0 +� +. +(61) +Similar to Lemma 1, we can also express the above constraint as a DC constraint. +Lemma 8. Let +G(x) := +N +� +i=1 +wi +N +� +j=i +�C[j](x), H(x) := +N−1 +� +i=1 +wi +N +� +j=i+1 +�C[j](x), +(62) +22 + +where w ∈ ∆. +Then, G and H are both continuous and convex functions, and the chance +constraint in ¯Z is equivalent to a DC constraint +G(x) − H(x) ≤ 0. +Proof. Using the argument in Lemma 1, we can show that �N +j=i �C[j](x) for i = 1, . . . , N are +convex functions. Since each of G and H in (62) is a positive weighted sum of convex functions, +G and H are both convex functions. According to (15), we have for i = 1, . . . , N − 1, +�C[i](x) = +N +� +j=i +�C[j](x) − +N +� +j=i+1 +�C[j](x). +This yields that +N +� +i=1 +wi �C[i](x) = +N−1 +� +i=1 +wi �C[i](x) + wN �C[N](x) = +N−1 +� +i=1 +wi + + +N +� +j=i +�C[j](x) − +N +� +j=i+1 +�C[j](x) + + + wN �C[N](x) += +N +� +i=1 +wi +N +� +j=i +�C[j](x) − +N−1 +� +i=1 +wi +N +� +j=i+1 +�C[j](x) = G(x) − H(x). +We then obtain a DC constrained DC program for L-estimators of the empirical quantile. +Consequently, we can still apply the proposed pDCA for solving the resulting problem. +4.2 +Extension to Multiple DC Constraints +In this subsection, we consider that Problem (16) has multiple DC constraints +Gi(x) − Hi(x) ≤ 0, for i = 1, . . . , K, +(63) +where Gi : Rn → R and Hi : Rn → R are continuous and convex functions. That is, we consider +the problem +min +x∈X +f(x) := g(x) − h(x) +s.t. +Gi(x) − Hi(x) ≤ 0, for i = 1, . . . , K. +(64) +We can still apply the proximal DC algorithm for solving this problem. Specifically, suppose +that an initial point x0 ∈ X satisfying Gi(x0) − Hi(x0) ≤ 0, i = 1, . . . , K is available. At the +k-th iteration, we choose sk +h ∈ ∂h(xk) and sk +Hi ∈ ∂Hi(xk) for i = 1, . . . , K, and generate the +next iterate xk+1 by solving the following convex subproblem +xk+1 ∈ argmin +x∈X +g(x) − h(xk) − ⟨sk +h, x − xk⟩ + β +2 ∥x − xk∥2 +s.t. +Gi(x) − Hi(xk) − ⟨sk +Hi, x − xk⟩ ≤ 0, for i = 1, . . . , K, +(65) +where β ≥ 0 is a penalty parameter. In particular, we can also prove subsequential convergence +to a KKT point for the proximal DC algorithm by assuming the following generalized MFCQ: +23 + +Assumption 3 (Generalized MFCQ). The generalized MFCQ holds for Problem (64), i.e., +there exists y ∈ X such that for Gi(x) = Hi(x), +Gi(y) − Hi(x) − ⟨sHi, y − x⟩ < 0, for all sHi ∈ ∂Hi(x), i = 1, . . . , K, +⟨∇ωi(x), y − x⟩ < 0, for all i ∈ A(x). +Using the similar argument in Section 3.1, we can obtain the following result: +Corollary 1. Suppose that Assumptions 1 and 3 hold, the function f is given in Problem (64), +X is of the form of (26), and the level set +� +x ∈ X : f(x) ≤ f(x0), Gi(x) − Hi(x) ≤ 0, for i = 1, . . . , K +� +is bounded. Let {xk} be the sequence generated by (65) with ρ+β > 0. Then, any accumulation +point of {xk} is a KKT point of Problem (64). +We remark that although it is pointed out in [56] that multiple DC constraints can be +combined into a single nondifferentiable DC constraint using the max-function, it makes the +constraint more complicated and thus a more difficult pDCA subproblem. +4.3 +Extension to Cardinality Constrained Optimization Problems +We consider the following cardinality constrained optimization problems: +min +x∈Rn {f(x) : ∥x∥0 ≤ K, x ∈ X} , +(66) +where ∥x∥0 denotes the cardinality of the vector, and K is an interger satisfying 1 ≤ K ≤ N −1. +This problem has found wide applications in diverse fields, such as quantitative finance [7, 22] +and signal processing [13], to name a few. By introducing an auxiliary variable z ∈ Rn, the +cardinality constraint ∥x∥0 ≤ K is equivalent to z[N−K] ≤ 0, zi = |xi| for all i = 1, . . . , n. This +implies that we can rewrite Problem (66) as +min +x∈X,z∈Rn +� +f(x) : z[N−K] ≤ 0, xi − zi ≤ 0, −xi − zi ≤ 0, i = 1, . . . , n +� +. +As in Lemma 1, we can further rewrite the constraint z[N−K] ≤ 0 into a DC constraint. Then, +we can apply the proposed approach for solving the resulting problem. +5 +Experimental Results +In this section, we conduct experiments to study the performance of our proposed method +on both synthetic and real data sets. For ease of reference, we denote our proposed method +by pDCA (resp. +DCA) when β > 0 (resp. +β = 0) in Algorithm 1. +We also compare our +methods with some state-of-the-art methods, which are CVaR in [53], the bisection-based CVaR +method3 (Bi-CVaR) in [5, Section 4.1], mixed-integer program (MIP) in [1], an augmented +3The bisection based CVaR method is a heuristic approach that can improve the performance of CVaR. +24 + +Lagrangian decomposition method (ALDM) in [5], and a DC approximation-based successive +convex approximation method (SCA) in [29]. Our codes are implemented in MATLAB 2022b. +In particular, we use the optimization solver Gurobi (version 9.5.2) for solving linear, quadratic, +and mixed integer subproblems. All the experiments are conducted on a Linux server with +256GB RAM and 24-core AMD EPYC 7402 2.8GHz CPU. +For pDCA, we update the penalty parameter β in an adaptive manner. That is, we set +βk+1 = βk/4 for k = 0, 1, 2, . . . For pDCA on each data set, we explore two different settings of +the regularization parameter β0, which will be specified later. We respectively denote them by +pDCA-1 and pDCA-2. We set the parameters of the remaining methods as those provided in +the corresponding papers. For the tested methods DCA, pDCA, Bi-CVaR, ALDM, and SCA, +we use the point returned by CVaR as their starting point. In each test, we terminate the +tested methods when |f k − f k+1|/ max{1, |f k+1|} ≤ 10−6, for k = 0, 1, 2, . . . , or the running +time reaches 1800 seconds.4 +5.1 +VaR-Constrained Portfolio Selection Problem +In this subsection, we study the VaR-constrained mean-variance portfolio selection problem, +which aims to minimize the risk while pursuing a targeted level of returns with probability at +least 1 − α. Let µ ∈ Rn and Σ ∈ Rn×n respectively denote expectation and covariance matrix +of the returns of n risky assets, and γ ∈ R+ denote the risk aversion factor. By letting x ∈ Rn ++ +denote the allocation vector such that the weight of the i-th risky asset is xi for i ∈ [n], this +problem is formulated as follows: +min +x∈Rn γxT Σx − µT x +s.t. +P +� +ξT x ≥ R +� +≥ 1 − α, +n +� +i=1 +xi = 1, 0 ≤ xi ≤ u, i = 1, . . . , n, +(67) +where R ∈ R+ is a prespecified level on the return and u ∈ R+ is an upper bound on the +weights. +We use 2523 daily return data of 435 stocks included in Standard & Poor’s 500 Index between +March 2006 and March 2016, which can be downloaded from https://sem.tongji.edu.cn/semch_data/faculty_cv/xjz/ccop.html. +Following [5], we generate the data input by choosing n = 100, 200, 300, 400, respectively. For +each n, we generate 5 instances from the daily return data set by randomly selecting n stocks +from the 435 stocks and N = 3n samples ˆξℓ for all ℓ ∈ [N] from the 2523 daily return data. +Then, we compute the sample mean µ and sample covariance matrix Σ using these data. We +set the remaining parameters as follows: R = 0.02%, γ = 2, and u = 0.5. In the tests, we set +the initial regularization parameter β0 of pDCA-1 and pDCA-2 as 0.1 and 1, respectively. In +Table 1 and the other two tables below for the other two experiments, we use “fval” to denote +the averaged returned objective value for the test problems, “time” the averaged CPU time (in +seconds), and “prob” the empirical in-sample probability of the chance constraint, all of which +4Since we only check the running time at the end of each iteration, the actual finishing time of an algorithm +may be longer than this limit. +25 + +are averaged over 5 instances. We highlight the best values except those of MIP and CVaR +for items “fval” and “time” since MIP is not suitable for large-scale data sets and the solution +returned by CVaR is too conservative. +Table 1: Comparison of different methods on the portfolio selection problem. +(α,n) +MIP +CVaR +Bi-CVaR +DCA +pDCA-1 +pDCA-2 +ALDM +SCA +� +0.05 +100 +� +fval +-1.3550 +-1.1861 +-1.2592 +-1.2860 +-1.2897 +-1.3037 +-1.3221 +-1.2732 +time +35.87 +0.1271 +1.868 +0.4603 +0.7387 +0.9553 +3.576 +0.8343 +prob +0.9500 +0.9887 +0.9500 +0.9627 +0.9587 +0.9587 +0.9420* +0.9593 +� +0.05 +200 +� +fval +-1.3531 +-1.1914 +-1.2754 +-1.2950 +-1.2923 +-1.3066 +-1.3284 +-1.2787 +time +1800 +0.3778 +5.013 +1.683 +1.808 +2.861 +9.901 +2.589 +prob +0.9500 +0.9873 +0.9500 +0.9553 +0.9560 +0.9560 +0.9447* +0.9580 +� +0.05 +300 +� +fval +-1.3484 +-1.1830 +-1.2629 +-1.2935 +-1.2835 +-1.2934 +-1.3279 +-1.2525 +time +1800 +0.9473 +12.26 +7.403 +6.188 +8.749 +19.59 +6.890 +prob +0.9500 +0.9853 +0.9500 +0.9529 +0.9553 +0.9553 +0.9456* +0.9584 +� +0.05 +400 +� +fval +-1.3719 +-1.1939 +-1.2886 +-1.3143 +-1.3206 +-1.3291 +-1.3150 +-1.2775 +time +1800 +1.861 +26.61 +20.07 +15.87 +16.46 +24.01 +16.26 +prob +0.9502 +0.9860 +0.9500 +0.9547 +0.9512 +0.9512 +0.9467* +0.9595 +� +0.1 +100 +� +fval +-1.4429 +-1.2284 +-1.3781 +-1.3699 +-1.3761 +-1.3839 +-1.3545 +-1.3826 +time +7.376 +0.1262 +1.875 +0.7790 +0.7084 +0.9591 +0.7826 +0.8081 +prob +0.9000 +0.9687 +0.9007 +0.9140 +0.9113 +0.9113 +0.9093 +0.9153 +� +0.1 +200 +� +fval +-1.4244 +-1.2371 +-1.3815 +-1.3772 +-1.3764 +-1.3934 +-1.3266 +-1.3827 +time +1225 +0.3467 +5.093 +3.385 +3.040 +4.350 +0.3601 +3.582 +prob +0.9000 +0.9620 +0.9007 +0.9087 +0.9127 +0.9127 +0.9193 +0.9103 +� +0.1 +300 +� +fval +-1.4410 +-1.2284 +-1.3999 +-1.4015 +-1.3959 +-1.4052 +-1.3000 +-1.3899 +time +1800 +0.9493 +12.32 +14.44 +11.43 +11.18 +0.8458 +11.16 +prob +0.9000 +0.9633 +0.9000 +0.9053 +0.9042 +0.9042 +0.9353 +0.9107 +� +0.1 +400 +� +fval +-1.4694 +-1.2467 +-1.4200 +-1.4352 +-1.4316 +-1.4262 +-1.3017 +-1.4190 +time +1800 +1.833 +26.42 +31.05 +32.69 +27.70 +0.9201 +27.62 +prob +0.9000 +0.9653 +0.9002 +0.9047 +0.9067 +0.9067 +0.9412 +0.9100 +“*” indicates that the computed probability is lower than the targeted level in Problem (2), which implies the +returned solution is not feasible (the same for Table 2 and 3). The magnitude of fval is 10−2. +We observe from Table 1 that although MIP achieves the lowest objective value, it is the +most time-consuming. In addition, we observe that pDCA is slightly better than DCA and +both pDCA and DCA generally outperform CVaR, Bi-CVaR, ALDM, and SCA in terms of +the objective value. Table 1 also demonstrates that CVaR is the fastest method, while DCA +and pDCA are comparable to the remaining ones. Finally, we also observe that the in-sample +probabilities of DCA and pDCA are generally comparable to those of the other methods, except +that ALDM fails to satisfy the chance constraint for α = 0.05 and sometimes is too conservative +for α = 0.1. +26 + +5.2 +Probabilistic Transportation Problem with Convex Objective +In this subsection, we consider a probabilistic version of the classical transportation problem, +which has been widely studied in the literature; see, e.g., [5, 50]. This problem is to minimize +the transportation cost of delivering products from n suppliers to m customers. The customer +demands are random and the j-th customer’s demand is represented by a random variable ξj +for each j ∈ {1, . . . , m}. The i-th supplier has a limited production capacity θi ∈ R+ for each +i ∈ {1, . . . , n}. The cost of shipping a unit of product from supplier i ∈ {1, . . . , n} to customer +j ∈ {1, . . . , m} is cij ∈ R+. Suppose that the shipment quantities are required to be determined +before the customer demands are known. By letting xij denote the amount of shipment delivered +from supplier i ∈ {1, . . . , n} to customer j ∈ {1, . . . , m}, this problem is formulated as +min +x∈Rn×m +n +� +i=1 +m +� +j=1 +cijxij +s.t. +P +� n +� +i=1 +xij ≥ ξj, j = 1, . . . , m +� +≥ 1 − α, +m +� +j=1 +xij ≤ θi, xij ≥ 0, i = 1, . . . , n, j = 1, . . . , m. +(68) +Table 2: Comparison of different methods on the probabilistic transportation problem. +(α,N) +MIP +CVaR +Bi-CVaR +DCA +pDCA-1 +pDCA-2 +ALDM +SCA +� +0.05 +500 +� +fval +4.2584 +4.3843 +4.3700 +4.3262 +4.3239 +4.3251 +4.7091 +4.1716 +time +73.89 +1.796 +22.84 +3.681 +405.2 +503.1 +58.76 +6.697 +prob +0.9500 +1.0000 +0.9504 +0.9500 +0.9500 +0.9500 +0.9504 +0.8180* +� +0.05 +1000 +� +fval +4.3655 +4.5423 +4.4931 +4.4445 +4.4435 +4.4467 +4.8644 +4.4447 +time +543.0 +2.818 +44.35 +5.895 +2441 +1915 +50.63 +73.90 +prob +0.9500 +0.9984 +0.9500 +0.9500 +0.9500 +0.9500 +0.9636 +0.9312* +� +0.05 +1500 +� +fval +4.3946 +4.6120 +4.5067 +4.4631 +4.4742 +4.4891 +4.8634 +4.5818 +time +891.6 +4.34 +70.75 +12.66 +1925 +2002 +44.63 +261.5 +prob +0.9500 +0.9980 +0.9504 +0.9500 +0.9500 +0.9500 +0.9787 +0.9508 +� +0.05 +2000 +� +fval +4.4167 +4.6538 +4.5199 +4.4898 +4.5063 +4.5391 +4.8597 +4.5488 +time +1535 +5.959 +95.60 +14.99 +2310 +2447 +46.52 +336.7 +prob +0.9500 +0.9848 +0.9504 +0.9500 +0.9500 +0.9500 +0.9843 +0.9515 +� +0.1 +500 +� +fval +4.1874 +4.3833 +4.3262 +4.2591 +4.2548 +4.2548 +4.7110 +4.3092 +time +171.6 +1.626 +24.75 +4.521 +528.5 +591.7 +42.70 +65.16 +prob +0.9000 +0.9916 +0.9000 +0.9000 +0.9000 +0.9000 +0.9812 +0.9008 +� +0.1 +1000 +� +fval +4.2790 +4.5306 +4.3869 +4.3617 +4.3590 +4.3633 +4.8027 +4.4135 +time +674.5 +2.928 +47.76 +9.151 +1944 +1921 +44.59 +164.868 +prob +0.9000 +0.9684 +0.9002 +0.9000 +0.9000 +0.9000 +0.9682 +0.9028 +� +0.1 +1500 +� +fval +4.3031 +4.5473 +4.3975 +4.3694 +4.3753 +4.3937 +4.7085 +4.4092 +time +1673 +5.073 +74.30 +11.84 +1899 +1954 +46.92 +326.652 +prob +0.9000 +0.9633 +0.9000 +0.9000 +0.9000 +0.9000 +0.9628 +0.9041 +� +0.1 +2000 +� +fval +4.3212 +4.5638 +4.3998 +4.3805 +4.4010 +4.4280 +4.7992 +4.4406 +time +1801 +5.982 +102.8 +14.08 +2217 +2190 +51.36 +507.0 +prob +0.9000 +0.9636 +0.9001 +0.9000 +0.9000 +0.9000 +0.9630 +0.9110 +The magnitude of fval is 107. +27 + +In our experiments, we use the setting in Luedtke et al. [50] to generate parameters (θ, c, ˆξ), +which is downloaded from http://homepages.cae.wisc.edu/~luedtkej/. In particular, we +choose (n, m) = (40, 100) and N = 500, 1000, 1500, 2000. We set β0 = 1, 10 for pDCA-1 and +pDCA-2, respectively. We report the experimental results in Table 2. We observe that DCA +and pDCA in general can find significantly better solutions than CVaR and ALDM, and slightly +better solutions than Bi-CVaR and SCA in terms of objective values. Meanwhile, we see that +MIP returns either global optimal solutions or best objective values among all the algorithms +in the time limit. We also observe that the CPU time of the DCA is less than Bi-CVaR and +ALDM, much less than that of MIP and pDCA, and is slightly larger than that of CVaR. +We should mention that pDCA is the most time-consuming among the tested methods, since +it solves a quadratic programming subproblem in each iteration, while other methods solve a +linear programming subproblem. Table 2 also indicates that the in-sample probabilities of DCA +and pDCA are exactly the risk level 1 − α in all instances, while the in-sample probabilities of +ALDM and SCA may be either too loose or too conservative. +5.3 +Probabilistic Transportation Problem with Non-Convex Objective +In this subsection, we consider a probabilistic version of the classical transportation problem +with a non-convex objective function, which has been studied in [5, 20]. In particular, the setting +of this problem is exactly the same as that in Section 5.2 except for the objective function. Here, +we assume that the transportation cost from supplier i to customer j consists of the normal +cost cijxij and cost discount aijx2 +ij (aij < 0). Consequently, this problem can be formulated as +min +x∈Rn×m +n +� +i=1 +m +� +j=1 +cijxij + aijx2 +ij +s.t. +P +� n +� +i=1 +xij ≥ ξj, j = 1, . . . , m +� +≥ 1 − α, +m +� +j=1 +xij ≤ θi, xij ≥ 0, i = 1, . . . , n, j = 1, . . . , m, +(69) +In our test, we set aij = −cij/ (2θi) for all i, j, and the remaining setting is the same as that in +the last section. +Since the objective function of this problem is non-convex, CVaR and Bi-CVaR cannot +handle this problem. Then, we only compare our proposed method with MIP, ALDM, and +SCA. To generate a feasible initial point, we apply CVaR to solve Problem (69) without cost +discount in the objective function. We report the experimental results in Table 3, which are +similar to those of Table 2. +We further point out that although MIP achieves the lowest +objective value, it reaches the time limit for all the instances, which indicates the hardness of +the additional non-convex term in the objective. In terms of objective values and running time, +we observe that DCA generally outperforms pDCA, ALDM, and SCA in most of cases. The +CPU time for DCA is similar to that of the convex case in Table 2. The reason is similar, i.e., +the subproblems of DCA are all linear programs like the convex cases in (68). We also observe +that the in-sample probabilities of DCA and pDCA are generally closer to the risk level 1 − α +than ALDM and SCA in all instances. +28 + +Table 3: Comparison of different methods on the probabilistic transportation problem with a +non-convex objective function. +(α,N) +MIP +DCA +pDCA-1 +pDCA-2 +ALDM +SCA +� +0.05 +500 +� +fval +3.5098 +3.6012 +3.5973 +3.5962 +4.0023 +3.4808 +time +1805 +7.448 +340.7 +458.8 +267.6 +8.42 +prob +0.9500 +0.9500 +0.9500 +0.9500 +0.9504 +0.8180* +� +0.05 +1000 +� +fval +3.5868 +3.6830 +3.6822 +3.7027 +4.1015 +3.6819 +time +1803 +15.76 +1989 +1851 +178.6 +87.53 +prob +0.9500 +0.9500 +0.9500 +0.9500 +0.9714 +0.9318* +� +0.05 +1500 +� +fval +3.6123 +3.6888 +3.7170 +3.7455 +3.9974 +3.7691 +time +1803 +23.12 +1927 +1986 +186.5 +309.4 +prob +0.9500 +0.9500 +0.9500 +0.9500 +0.9845 +0.9504 +� +0.05 +2000 +� +fval +3.6237 +3.7133 +3.7575 +3.7882 +4.0842 +3.7481 +time +1803 +33.04 +2381 +2381 +147.4 +412.9 +prob +0.9500 +0.9500 +0.9500 +0.9500 +0.9845 +0.9505 +� +0.1 +500 +� +fval +3.4581 +3.5473 +3.5436 +3.5421 +4.0195 +3.5784 +time +1804 +8.845 +413.1 +405.3 +175.4 +67.68 +prob +0.9000 +0.9000 +0.9000 +0.9000 +0.9904 +0.9016 +� +0.1 +1000 +� +fval +3.5238 +3.6224 +3.6229 +3.6406 +3.9981 +3.6503 +time +1802 +16.20 +1888 +1949 +151.1 +201.2 +prob +0.9000 +0.9000 +0.9000 +0.9000 +0.9684 +0.9010 +� +0.1 +1500 +� +fval +3.5427 +3.6231 +3.6482 +3.6779 +4.0223 +3.6499 +time +1802 +25.45 +1896 +1976 +177.2 +401.5 +prob +0.9000 +0.9000 +0.9000 +0.9000 +0.9629 +0.9007 +� +0.1 +2000 +� +fval +3.5521 +3.6281 +3.6775 +3.7071 +4.0006 +3.6647 +time +1802 +27.14 +2242 +2248 +156.4 +612.6 +prob +0.9000 +0.9000 +0.9000 +0.9032 +0.9631 +0.9114 +The magnitude of fval is 107. +6 +Conclusions +In this paper, we proposed a new DC reformulation based on the empirical quantile for solving +data-driven chance constrained programs and proposed a proximal DC algorithm to solve it. We +proved the subsequential and sequential convergence to a KKT point of the proposed method +and derived the iteration complexity for computing an approximate KKT point. We point out +that our analysis holds for general DC constrained DC programs beyond those reformulated +from chance constrained programs and can be extended to DC programs with multiple DC +constraints. We also show possible extensions of our methods to L-estimators for quantile in +chance constrained programs and cardinality constrained programs. Finally, we demonstrated +the efficiency and efficacy of the proposed method via numerical experiments. +29 + +Acknowledgements +We would like to thank Lai Tian (The Chinese University of Hong Kong) for the fruitful dis- +cussion of the theoretical analysis of this work. +References +[1] S. Ahmed and A. Shapiro. Solving chance-constrained stochastic programs via sampling +and integer programming. In State-of-the-art decision-making tools in the information- +intensive age, pages 261–269. Informs, 2008. +[2] H. Attouch and J. Bolte. On the convergence of the proximal algorithm for nonsmooth +functions involving analytic features. Mathematical Programming, 116(1-2):5–16, 2009. +[3] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization +and projection methods for nonconvex problems: An approach based on the Kurdyka- +�Lojasiewicz inequality. Mathematics of Operations Research, 35(2):438–457, 2010. +[4] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic +and tame problems: Proximal algorithms, forward-backward splitting, and regularized +Gauss-Seidel methods. Mathematical Programming, 137(1-2):91–129, 2013. +[5] X. Bai, J. Sun, and X. Zheng. An augmented Lagrangian decomposition method for chance- +constrained optimization problems. INFORMS Journal on Computing, 33(3):1056–1069, +2021. +[6] D. P. Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48 +(3):334–334, 1997. +[7] D. Bienstock. Computational study of a family of mixed-integer quadratic programming +problems. Mathematical programming, 74(2):121–140, 1996. +[8] D. Bienstock, M. Chertkov, and S. Harnett. Chance-constrained optimal power flow: Risk- +aware network control under uncertainty. SIAM Review, 56(3):461–495, 2014. +[9] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for +nonconvex and nonsmooth problems. Mathematical Programming, 146(1):459–494, 2014. +[10] P. Bonami and M. A. Lejeune. +An exact solution approach for portfolio optimization +problems under stochastic and integer constraints. Operations Research, 57(3):650–670, +2009. +[11] G. C. Calafiore and M. C. Campi. The scenario approach to robust control design. IEEE +Transactions on automatic control, 51(5):742–753, 2006. +[12] G. C. Calafiore and L. E. Ghaoui. On distributionally robust chance-constrained linear +programs. Journal of Optimization Theory and Applications, 130(1):1–22, 2006. +30 + +[13] E. J. Cand`es and M. B. Wakin. An introduction to compressive sampling. IEEE signal +processing magazine, 25(2):21–30, 2008. +[14] Y. Cao and V. M. Zavala. A sigmoidal approximation for chance-constrained nonlinear +programs. arXiv preprint arXiv:2004.02402, 2020. +[15] A. Charnes and W. W. Cooper. Chance-constrained programming. Management Science, +6(1):73–79, 1959. +[16] A. Charnes, W. W. Cooper, and G. H. Symonds. Cost horizons and certainty equivalents: +an approach to stochastic programming of heating oil. Management Science, 4(3):235–263, +1958. +[17] X. Cui, X. Sun, S. Zhu, R. Jiang, and D. Li. Portfolio optimization with nonparametric +value at risk: A block coordinate descent method. INFORMS Journal on Computing, 30 +(3):454–471, 2018. +[18] Y. Cui and J.-S. Pang. Modern nonconvex nondifferentiable optimization. SIAM, 2021. +[19] F. E. Curtis, A. Wachter, and V. M. Zavala. A sequential algorithm for solving nonlinear +optimization problems with chance constraints. +SIAM Journal on Optimization, 28(1): +930–958, 2018. +[20] D. Dentcheva and G. Martinez. Regularization methods for optimization problems with +probabilistic constraints. Mathematical Programming, 138(1):223–251, 2013. +[21] T. Dielman, C. Lowry, and R. Pfaffenberger. A comparison of quantile estimators. Com- +munications in Statistics-Simulation and Computation, 23(2):355–371, 1994. +[22] J. Gao and D. Li. Optimal cardinality constrained portfolio selection. Operations research, +61(3):745–761, 2013. +[23] A. Geletu, A. Hoffmann, M. Kloppel, and P. Li. An inner-outer approximation approach to +chance constrained optimization. SIAM Journal on Optimization, 27(3):1834–1857, 2017. +[24] L. E. Ghaoui, M. Oks, and F. Oustry. Worst-case value-at-risk and robust portfolio opti- +mization: A conic programming approach. Operations Research, 51(4):543–556, 2003. +[25] R. Henrion. Structural properties of linear probabilistic constraints. Optimization, 56(4): +425–440, 2007. +[26] R. Henrion and C. Strugarek. Convexity of chance constraints with independent random +variables. Computational Optimization and Applications, 41(2):263–276, 2008. +[27] J.-B. Hiriart-Urruty and C. Lemar´echal. Fundamentals of convex analysis. Springer Science +& Business Media, 2004. +[28] L. J. Hong and G. Liu. Simulating sensitivities of conditional value at risk. Management +Science, 55(2):281–293, 2009. +31 + +[29] L. J. Hong, Y. Yang, and L. Zhang. Sequential convex approximations to joint chance +constrained programs: A Monte Carlo approach. +Operations Research, 59(3):617–630, +2011. +[30] R. Horst and N. V. Thoai. DC programming: overview. Journal of Optimization Theory +and Applications, 103(1):1–43, 1999. +[31] D. Jadhav and T. Ramanathan. Parametric and non-parametric estimation of value-at-risk. +The Journal of Risk Model Validation, 3(1):51, 2009. +[32] N. Jiang and W. Xie. ALSO-X and ALSO-X+: Better convex approximations for chance +constrained programs. Operations Research, 2022. +[33] R. Jiang and D. Li. Novel reformulations and efficient algorithms for the generalized trust +region subproblem. SIAM Journal on Optimization, 29(2):1603–1633, 2019. +[34] R. Jiang and X. Li. H¨olderian error bounds and Kurdyka-�Lojasiewicz inequality for the +trust region subproblem. Mathematics of Operations Research, 2022. +[35] S. K¨u¸c¨ukyavuz. On mixing sets arising in chance-constrained programming. Mathematical +Programming, 132(1):31–56, 2012. +[36] S. K¨u¸c¨ukyavuz and R. Jiang. Chance-constrained optimization under limited distributional +information: A review of reformulations based on sampling and distributional robustness. +EURO Journal on Computational Optimization, 10:100030, 2022. +[37] K. Kurdyka. On gradients of functions definable in o-minimal structures. In Annales de +l’institut Fourier, volume 48, pages 769–783, 1998. +[38] S. Lacoste-Julien. +Convergence rate of Frank-Wolfe for non-convex objectives. +arXiv +preprint arXiv:1607.00345, 2016. +[39] C. M. Lagoa, X. Li, and M. Sznaier. Probabilistically constrained linear programs and +risk-adjusted controller design. SIAM Journal on Optimization, 15(3):938–951, 2005. +[40] H. A. Le Thi and T. Pham Dinh. DC programming and DCA: thirty years of developments. +Mathematical Programming, 169(1):5–68, 2018. +[41] H. A. Le Thi, T. Pham Dinh, et al. DC programming and DCA for general DC programs. +In Advanced Computational Methods for Knowledge Engineering, pages 15–35. Springer, +2014. +[42] M. A. Lejeune and A. Ruszczy´nski. +An efficient trajectory method for probabilistic +production-inventory-distribution problems. Operations Research, 55(2):378–394, 2007. +[43] G. Li and T. K. Pong. Calculus of the exponent of kurdyka–�lojasiewicz inequality and its +applications to linear convergence of first-order methods. Foundations of computational +mathematics, 18(5):1199–1232, 2018. +32 + +[44] Q. Li and J. S. Racine. +Nonparametric econometrics: theory and practice. +Princeton +University Press, 2007. +[45] H. Liu, A. M.-C. So, and W. Wu. Quadratic optimization with orthogonality constraint: +explicit �Lojasiewicz exponent and linear convergence of retraction-based line-search and +stochastic variance-reduced gradient methods. +Mathematical Programming, 178(1):215– +262, 2019. +[46] T. Liu, T. K. Pong, and A. Takeda. A refined convergence analysis of pDCAe with applica- +tions to simultaneous sparse recovery and outlier detection. Computational Optimization +and Applications, 73(1):69–100, 2019. +[47] Z. Lu. Sequential convex programming methods for a class of structured nonlinear pro- +gramming. arXiv preprint arXiv:1210.3039, 2012. +[48] Z. Lu, Z. Sun, and Z. Zhou. Penalty and augmented Lagrangian methods for constrained +DC programming. Mathematics of Operations Research, 47(3):2260–2285, 2022. +[49] J. Luedtke and S. Ahmed. A sample approximation approach for optimization with prob- +abilistic constraints. SIAM Journal on Optimization, 19(2):674–699, 2008. +[50] J. Luedtke, S. Ahmed, and G. L. Nemhauser. An integer programming approach for linear +programs with probabilistic constraints. Mathematical programming, 122(2):247–272, 2010. +[51] C. Martins-Filho, F. Yao, and M. Torero. Nonparametric estimation of conditional value- +at-risk and expected shortfall based on extreme value theory. Econometric Theory, 34(1): +23–67, 2018. +[52] A. Nemirovski and A. Shapiro. Scenario approximations of chance constraints. Probabilistic +and randomized methods for design under uncertainty, pages 3–47, 2006. +[53] A. Nemirovski and A. Shapiro. Convex approximations of chance constrained programs. +SIAM Journal on Optimization, 17(4):969–996, 2007. +[54] B. K. Pagnoncelli, S. Ahmed, and A. Shapiro. Computational study of a chance constrained +portfolio selection problem. Journal of Optimization Theory and Applications, 142(2):399– +416, 2009. +[55] B. K. Pagnoncelli, S. Ahmed, and A. Shapiro. +Sample average approximation method +for chance constrained programming: Theory and applications. Journal of Optimization +Theory and Applications, 142(2):399–416, 2009. +[56] J.-S. Pang, M. Razaviyayn, and A. Alvarado. Computing B-stationary points of nonsmooth +DC programs. Mathematics of Operations Research, 42(1):95–118, 2017. +[57] E. Parzen. Nonparametric statistical data modeling. Journal of the American statistical +association, 74(365):105–121, 1979. +33 + +[58] A. Pe˜na-Ordieres, J. R. Luedtke, and A. W¨achter. Solving chance-constrained problems +via a smooth sample-based nonlinear approximation. SIAM Journal on Optimization, 30 +(3):2221–2250, 2020. +[59] T. Pham Dinh and H. A. Le Thi. Convex analysis approach to dc programming: theory, +algorithms and applications. Acta mathematica vietnamica, 22(1):289–355, 1997. +[60] T. Pham Dinh and H. A. Le Thi. Recent advances in DC programming and DCA. Trans- +actions on computational intelligence XIII, pages 1–37, 2014. +[61] A. Pr´ekopa. Probabilistic programming. Handbooks in operations research and management +science, 10:267–351, 2003. +[62] R. T. Rockafellar. Convex analysis, volume 18. Princeton university press, 1970. +[63] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317 of Grundlehren der +mathematischen Wissenschaften. Springer–Verlag, Berlin Heidelberg, second edition, 2004. +[64] A. Ruszczy´nski. +Probabilistic programming with discrete distributions and precedence +constrained knapsack polyhedra. Mathematical Programming, 93(2):195–215, 2002. +[65] X. Shen, T. Ouyang, N. Yang, and J. Zhuang. Sample-based neural approximation ap- +proach for probabilistic constrained programs. +IEEE Transactions on Neural Networks +and Learning Systems, 2021. +[66] Z. Song and D. Xiu. A tale of two option markets: Pricing kernels and volatility risk. +Journal of Econometrics, 190(1):176–196, 2016. +[67] S. Talluri, R. Narasimhan, and A. Nair. Vendor performance with supply risk: A chance- +constrained DEA approach. International Journal of Production Economics, 100(2):212– +222, 2006. +[68] W. van Ackooij, S. Demassey, P. Javal, H. Morais, W. de Oliveira, and B. Swaminathan. +A bundle method for nonsmooth DC programming with application to chance-constrained +problems. Computational Optimization and Applications, 78(2):451–490, 2021. +[69] A. W. Van der Vaart. Asymptotic Statistics, volume 3. Cambridge university press, 2000. +[70] P. Wang, H. Liu, and A. M.-C. So. Linear convergence of a proximal alternating minimiza- +tion method with extrapolation for ℓ1-norm principal component analysis. arXiv preprint +arXiv:2107.07107, 2021. +[71] W. Xie and S. Ahmed. Bicriteria approximation of chance-constrained covering problems. +Operations Research, 68(2):516–533, 2020. +[72] J. Ye and D. Zhu. Optimality conditions for bilevel programming problems. Optimization, +33(1):9–27, 1995. +34 + +[73] P. Yu, T. K. Pong, and Z. Lu. Convergence rate analysis of a sequential convex program- +ming method with line search for a class of constrained difference-of-convex optimization +problems. SIAM Journal on Optimization, 31(3):2024–2054, 2021. +[74] A. Yurtsever and S. Sra. CCCP is Frank-Wolfe in disguise. arXiv preprint arXiv:2206. +12014, 2022. +[75] H. Zhang and P. Li. Chance constrained programming for optimal power flow under un- +certainty. IEEE Transactions on Power Systems, 26(4):2417–2424, 2011. +[76] T. Zheng, P. Wang, and A. M.-C. So. A linearly convergent algorithm for rotationally +invariant ℓ1-norm principal component analysis. arXiv preprint arXiv:2210.05066, 2022. +35 + diff --git a/gNAyT4oBgHgl3EQfj_gw/content/tmp_files/load_file.txt b/gNAyT4oBgHgl3EQfj_gw/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..51d18ed1af72401b3ad4ac29e5e4a32122242cf3 --- /dev/null +++ b/gNAyT4oBgHgl3EQfj_gw/content/tmp_files/load_file.txt @@ -0,0 +1,1869 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf,len=1868 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='00423v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='OC] 1 Jan 2023 Difference-of-Convex Reformulation for Chance Constrained Programs Peng Wang∗ Rujun Jiang† Qingyuan Kong‡ Laura Balzano§ January 3, 2023 Abstract Chance constrained programming refers to a type of optimization problem with uncertain constraints that are satisfied with at least a prescribed probability level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In this work, we study the sample average approximation of a class of chance constrained programs, in which the objective function is a difference-of-convex (DC) function and the functions in the chance constraint are all convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Utilizing the empirical quantile of the chance constraint, we reformulate it into a DC constrained DC program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We propose a proximal DC algorithm (pDCA) for solving the reformulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Moreover, we prove the global convergence of the proposed algorithm based on the Kurdyka-�Lojasiewicz property and derive the iteration complexity for finding an approximate KKT point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We point out that the proposed pDCA and its associated analysis apply to any DC constrained DC programs, which may be of independent interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To support and complement our theoretical development, we show via numerical experiments that the proposed approach is competitive with a host of existing approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 1 Introduction Chance constrained programming is a powerful modeling paradigm for optimization problems with uncertain parameters, which has found wide applications in diverse fields, such as finance [10, 54], power systems [8, 75], and supply chain [67, 42], to name a few;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [36] and the references therein for more applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In general, the chance constrained program is to minimize a targeted loss subject to the probability of violating uncertain constraints being within a prespecified risk level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In this work, we consider a chance constrained program of the form min x∈X {f(x) : P (ci(x, ξ) ≤ 0, i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m}) ≥ 1 − α} , (1) ∗Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (pengwa@umich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='edu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' †Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' School of Data Science, Fudan University, Shanghai, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (rjjiang@fudan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' ‡School of Data Science, Fudan University, Shanghai, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (qykong21@m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='fudan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' §Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (girasole@umich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=') 1 where the vector x ∈ Rn denotes the decision variables, the functions f : Rn → R and ci : Rn × Rd → R for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m} are real-valued, the set X ⊆ Rn is deterministic, and ξ ∈ Rd is a random vector with its probability distribution supported on some set Ξ ⊆ Rd, and α ∈ (0, 1) is a given risk parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This problem is known as a single chance constrained program if m = 1, and a joint chance constrained program otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Throughout this paper, we make the following assumptions for this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Assumption 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (a) The function f takes the form of f = g − h, where g and h are continuous and convex (possibly non-smooth) functions defined on an open set that contains X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The func- tion g is ρ-strongly convex for some ρ ≥ 01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (b) The set X is non-empty, closed, and convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (c) The functions ci(x, ξ) : Rn × Ξ → R for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m are convex and continuously differen- tiable in x for every ξ ∈ Ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In general, Problem (1) is highly intractable due to the chance constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Indeed, the feasible region formed by the chance constraint may be non-convex despite that ci(x, ξ) for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m} are convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' For example, even if ci(x, ξ) for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m} are all linear in x and X is a polyhedron, the resulting feasible region defined by the chance constraint may not be convex [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Moreover, it is generally impossible to compute the probability of satisfying the constraint for a given x ∈ X when the distribution of ξ is unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In this work, we study Problem (1) in the data-driven setting, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', a set of independently and identically distributed (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=') samples {ˆξi}N i=1 generated according to the distribution of ξ is available, while its distribution is unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Motivated by the recent work on chance constrained programs [1, 49, 55, 58], we consider a sample average approximation (SAA) of Problem (1) over the samples {ˆξi}N i=1, which takes the form of min x∈X � f(x) : 1 N N � i=1 1{C(x, ˆξi)≤0} ≥ 1 − α � , (2) where C(x, ξ) := max {ci(x, ξ) : i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m}, and where 1A is the indicator of event A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We should mention that Problem (2) also includes the scenario where the distribution is finite and discrete, and each event appears with probability 1/N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, it has been shown in [49, 55] that solving Problem (2) can return a good approximate solution of Problem (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' However, Problem (2) is hard to optimize due to the discreteness of the constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Note that we assume that the objective function f in Problem (2) is a difference-of-convex (DC) function and all the functions ci(·, ξ) in the constraint are convex in Assumption 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, a natural question is whether we can utilize these structures to develop an effective algorithmic framework for solving Problem (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In this work, we answer this question in the affirmative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Exploiting these structures, we reformulate Problem (2) into a DC constrained DC problem and propose a proximal DC algorithm for solving the reformulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In the literature, the existing approaches for solving Problem (2) generally can only prove subsequential convergence and have no iteration complexity analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In contrast with these results, we not only prove the 1If ρ = 0, g is a general convex function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 2 subsequential and entire convergence to a Karush-Kuhn-Tucker (KKT) point of the proposed algorithm but also derive the iteration complexity for finding an approximate KKT point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 Related Works We first review some popular methods for solving chance constrained programs and then briefly talk about some DC algorithms closely related to our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Since the first appearance of chance constrained programs in [15, 16], various algorithms for solving chance constrained problems under different settings have been proposed in a substantial body of literature over the past years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' One well-known approach for solving Problem (1) is to reformulate the chance constraint into a convex constraint when the distribution of ξ is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' For example, Henrion [25, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2] showed that the chance constraint can be reformulated into a second-order cone if C(x, ξ) = ⟨ξ, x⟩ − b, ξ has an elliptical symmetric distribution, and b is a scalar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We refer the reader to [24, 39, 12, 26, 61] for more results on the convexity of the feasible region formed by chance constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' These convex reformulations generally require a special distribution on random vector ξ, such as Gaussian or log-concave distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' However, in practice, sometimes only a few random samples from the distribution of ξ are available while the distribution of ξ is unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To handle this scenario, one popular approach is to consider the SAA of the problem (see Problem (2)), which is obtained by replacing the true distribution with an empirical distribution corresponding to random samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Luedtke and Ahmed [49] showed that the SAA with a risk level smaller than the required risk level can obtain a solution satisfying a chance constraint with high probability under suitable conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Later, Pagnoncelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [55] showed that a solution of the SAA problem converges to that of the original problem with probability approaching one as N goes to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Despite the fact that it possesses nice convergence properties, the SAA problem (2) is generally difficult to optimize due to its discrete nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To solve it, many different approaches have been proposed in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' For example, Ahmed and Shapiro [1] proposed a mixed-integer programming (MIP) reformulation for the SAA problem;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' see also [36, 49, 50, 64] and the references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Curtis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [19] proposed a sequential algorithm, which minimizes quadratic subproblems with linear cardinality constraints iteratively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Bai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [5] proposed an augmented Lagrangian decomposition method for solving Problem (1) when ξ has a finite discrete distribution and cj(·, ξ) for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m are all affine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Recently, Pe˜na-Ordieres et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [58] proposed a smoothing non-linear approximation of Problem (2) based on the empirical quantile of the chance constraint and developed a Sℓ1QP-type trust-region method to solve the approximation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Using a similar idea, Shen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [65] proposed a neural network model to approximate the empirical quantile of the chance constraint and employed a simulated annealing algorithm for solving the approximation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In general, some methods, such as [65], are heuristic in nature, and some other works, such as [5, 19, 58], only establish subsequential convergence for their proposed methods and have no iteration complexity analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The scenario approximation approach proposed by Calafiore and Campi [11], Nemirovski and Shapiro [52] is another well- known sample-based approach for solving Problem (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This approach is simple and easy to implement, but it suffers from the solution becoming more and more conservative as the sample 3 size increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Another notable approach for solving Problem (1) is to consider its conservative and tractable approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Among these approximations, the most famous one is the condition value-at- risk (CVaR) approximation proposed by Nemirovski and Shapiro [53], which is based on a conservative and convex approximation of the indication function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, Hong and Liu [28] proposed a gradient-based Monte Carlo method for solving the CVaR approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To avoid overly conservative solutions, Hong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [29] studied a DC approximation of the chance constraint and tackled it by solving a sequence of convex approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Xie and Ahmed [71] proposed a bicriteria approximation for solving chance constrained covering problems and proved a constant factor approximation guarantee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' More recently, Jiang and Xie [32] proposed a convex approximation named ALSO-X that always outperforms the CVaR approximation when uncertain constraints are convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' There are also other approximations based on different techniques in the literature;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [14, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' DC constrained DC programs2 refer to optimization problems that minimize a DC function subject to constraints defined by DC functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Such problems have been extensively studied in the literature for decades [60, 30, 40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' One of the most popular methods for solving DC programs is the DC algorithm and its variants, which solve a sequence of convex subproblems by linearizing the second component of DC functions [29, 47, 59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Le Thi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [41] proposed a penalty method and a DC algorithm using slack variables and showed that every accumulation point of the generated sequence is a KKT point of the considered problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Later, Pang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [56] studied the proximal linearized method for DC programs and showed that every accumulation point of the generated sequence is a Bouligand-stationary point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Recently, van Ackooij et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [68] developed a proximal bundle method for addressing DC programs and analyzed its convergence under different settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [48] proposed penalty and augmented Lagrangian methods for solving DC programs, and established strong convergence guarantees for the proposed methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2 Our Contributions In this work, we study the SAA of the chance constrained program when the distribution of ξ is unknown but a set of i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' samples {ˆξi}N i=1 generated according to its distribution is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' First, we reformulate the SAA (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', Problem (2)) of the chance constrained program (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', Problem (1)) into a DC constrained DC program by utilizing Assumption 1 and the empirical quantile function of C(x, ξ) over the samples {ˆξi}N i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Second, we propose a proximal DC algorithm (pDCA) for solving the reformulation, which proceeds by solving a sequence of convex subproblems by linearizing the second component of the obtained DC functions and adding a proximal term to the objective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, we show that it is easy to compute the required subgradients by using the structure of the DC functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Moreover, the obtained subproblem can be rewritten in a form that is suitable for off-the-shelf solvers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Finally, we analyze the convergence and iteration complexity of the proposed method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Specifically, we show that any accumulation point of the sequence generated by the proposed method is a 2For simplicity, we also call it DC programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 4 KKT point of the reformulated problem under a constraint qualification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, we establish the convergence and convergence rate of the entire sequence by using the Kurdyka-�Lojasiewicz (K�L) inequality with the associated exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Moreover, we further show that the obtained DC program is equivalent to a convex constrained problem with a concave objective, which is amenable to the Frank-Wolfe (FW) method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' By further showing the equivalence between proximal DC iterations for solving the DC program and modified FW iterations for solving the equivalent problem, we derive the iteration complexity of the pDCA for computing an approximate KKT point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, in contrast to the standard iteration complexity of the FW method O(1/ √ k) (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [38]), the iteration complexity of our considered FW method is improved to O(1/k) by utilizing the DC structure, where k is the number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In Section 2, we reformulate Problem (2) into a DC constrained DC program and introduce the proposed pDCA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In Section 3, we analyze the convergence and iteration complexity of the proposed method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In Section 4, we discuss some extensions of our approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In Section 5, we report the experimental results of the proposed method and other existing methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We end the paper with some conclusions in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3 Notation and Definitions Besides the notation introduced earlier, we shall use the following notation throughout the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We write matrices in bold capital letters like A, vectors in bold lower-case letters like a, and scalars in plain letters like a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Given a matrix A ∈ Rm×n, we use aij to denote its (i, j)-th element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Given a vector x ∈ Rn, we use ∥x∥ to denote its Euclidean norm, xi its i-th element, and x[M] its M-th smallest element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We use 1 and 0 to denote the all-one vector and all-zero vector, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Next, we introduce some concepts in non-smooth analysis that will be needed in our sub- sequent development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The details can be found in [63].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let ϕ : Rn → (−∞, ∞] be a given function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We say that the function ϕ is proper if dom(ϕ) := {x ∈ Rn : ϕ(x) < ∞} ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A vector s ∈ Rn is said to be a Fr´echet subgradient of ϕ at x ∈ dom(ϕ) if lim inf y→x,y̸=x ϕ(y) − ϕ(x) − ⟨s, y − x⟩ ∥y − x∥2 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (3) The set of vectors s ∈ Rn satisfying (3) is called the Fr´echet subdifferential of f at x ∈ dom(ϕ) and denoted by �∂ϕ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The limiting subdifferential, or simply the subdifferential, of ϕ at x ∈ dom(ϕ) is defined as ∂ϕ(x) = � s ∈ Rn : ∃xk → x, sk → v with ϕ(xk) → ϕ(x), sk ∈ �∂ϕ(xk) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' When ϕ is proper and convex, thanks to [63, Proposition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='12], the limiting subdifferential of ϕ at x ∈ dom(ϕ) coincides with the classic subdifferential defined as ∂ϕ(x) = {s ∈ Rn : ϕ(y) ≥ ϕ(x) + ⟨s, y − x⟩, for all y ∈ Rn} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (4) 5 For a non-empty set S ⊆ Rn, its indicator function δS : Rn → {0, +∞} is defined as δS(x) = \uf8f1 \uf8f2 \uf8f3 0, if x ∈ S, +∞, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Its normal cone (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' regular normal cone) at x ∈ S is defined as NS(x) := ∂δS(x) (reps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' � NS(x) := �∂δS(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Given a point x ∈ Rn, its distance to S is defined as dist(x, S) = infy∈S ∥x− y∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We say that S is regular at one of its points x if it is locally closed and satisfies NS(x) = � NS(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In addition, we say that a function ϕ is regular at x if ϕ(x) is finite and its epigraph epi(ϕ) is regular at (x, ϕ(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that ϕ is a convex function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The directional derivative of ϕ at x ∈ Rn in the direction d ∈ Rn is defined by ϕ′(x, d) = lim tց0 ϕ(x + td) − ϕ(x) t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, it holds that ϕ′(x, d) = sup {⟨s, d⟩ : s ∈ ∂ϕ(x)} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (5) We say that a set valued mapping F : Rn → Rm is outer semi-continuous if for any sequence such that xk → x∗, yk → y∗ and yk ∈ F(xk), we have y∗ ∈ F(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We next introduce the K�L property with the associated exponent;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [2, 3, 4, 37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Definition 1 (K�L property and exponent).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that ϕ : Rn → (−∞, ∞] is proper and lower semicontinuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The function ϕ is said to satisfy the K�L property at ¯x ∈ {x ∈ Rn : ∂ϕ(x) ̸= ∅} if there exist a constant η ∈ (0, ∞], a neighborhood U of ¯x, and a continuous concave function ψ : [0, η) → R+ with ψ(0) = 0, ψ being continuously differentiable on (0, η), and ψ′(s) > 0 for s ∈ (0, η) such that ψ′ (ϕ(x) − ϕ(¯x)) dist(0, ∂ϕ(x)) ≥ 1 (6) for all x ∈ U satisfying ϕ(¯x) < ϕ(x) < ϕ(¯x) + η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, if ψ(s) = cs1−θ for some c > 0 and θ ∈ (0, 1), then ϕ is said to satisfy the K�L property at ¯x with exponent θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It is worth mentioning that a wide range of functions arising in applications satisfy the K�L property, such as proper and lower semicontinuous semialgebraic functions [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 2 A Proximal DC Algorithm for Chance Constrained Programs In this section, we first reformulate Problem (2) into a DC constrained DC program based on the empirical quantile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, we propose a pDCA for solving the reformulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To proceed, we introduce some further notions that will be used in the sequel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let C(x, ξ) := max {ci(x, ξ) : i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (7) Given a set of samples {ˆξi}N i=1, let �C(x) := � C(x, ˆξ1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , C(x, ˆξN) � ∈ RN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (8) 6 We define the p-th empirical quantile of C(x, ξ) over the samples {ˆξi}N i=1 for a probability p ∈ (0, 1) by ˆQc(p) := inf � y ∈ R : 1 N N � i=1 1{C(x, ˆξi)≤y} ≥ p � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Throughout this section, let M := ⌈(1 − α)N⌉.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (9) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 DC Reformulation of the Chance Constraint In this subsection, we reformulate the sample-based chance constraint in Problem (2) into a DC constraint using the empirical quantile function of C(x, ξ) over the samples {ˆξi}N i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To begin, according to [69, Chapter 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2], the (1 − α)-th empirical quantile of C(x, ξ) over the samples {ˆξi}N i=1 for α ∈ (0, 1) is ˆQc(1 − α) = �C[M](x), where �C[M](x) denotes the M-th smallest element of �C(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This allows us to get an equivalent form of Problem (2) as follows: min x∈X � f(x) : �C[M](x) ≤ 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (10) We should mention that the same empirical quantile-based problem has been considered in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' For example, Pe˜na-Ordieres et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [58], Shen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [65] considered approximations of the quantile constraint, and Cui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [17] simplified the value at risk constraint of the loss of a portfolio, which is exactly the quantile constraint, by introducing new variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' By contrast, we directly handle the empirical quantile constraint by reformulating it into a DC form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To simplify our development, we denote the above constraint set by ZM := � x ∈ Rn : �C[M](x) ≤ 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (11) Remark that if M = N, this constraint requires C(x, ˆξi) ≤ 0 for all i ∈ [N].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with Assumption 1(c) and (7), implies that the constraint set ZN is convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' For this case, Problem (10) minimizes a DC objective function subject to convex constraints, and many algorithms in the literature have been proposed to solve this problem;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [60] and the references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To avoid this case, we assume that M ≤ N − 1 throughout this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Using the structure of the function �C(·) and the convexity of ci(·, ξ), we show that the above constraint is a DC constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that M ≤ N − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let G(x) := N � i=M �C[i](x), H(x) := N � i=M+1 �C[i](x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (12) Then, G and H are both continuous and convex functions, and the chance constraint in (11) is equivalent to a DC constraint G(x) − H(x) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (13) 7 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The continuity of G and H follows from (7), (8), and Assumption 1(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Since H(x) denotes the sum of T largest components of �C(x), we rewrite it as H(x) = max �N−M � t=1 �Cit(x) : 1 ≤ i1 < i2 < · · · < iN−M ≤ N � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (14) According to the convexity of cj(x, ˆξi) for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N and j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m due to Assumption 1(c) and the fact that the pointwise maximum of convex functions is still convex ([27, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2]), we see that C(x, ˆξi) for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N are convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with (14), the fact that the sum of convex functions is convex, and the fact that the pointwise maximum of convex functions is still convex, implies that H(x) is convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' By the same argument, we show that G(x) is convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Given z ∈ RN and M ≤ N − 1, we decompose z[M] as z[M] = N � i=M z[i] − N � i=M+1 z[i], for all M = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (15) This, together with (12), implies that �C[M](x) ≤ 0 is equivalent to (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Consequently, using Lemma 1 and Assumption 1(a), Problem (10) can be cast as the fol- lowing DC constrained DC program: min x∈X f(x) := g(x) − h(x) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' G(x) − H(x) ≤ 0, (16) where g, h are continuous and convex and G, H defined in (12) are also continuous and convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2 A Proximal DC Algorithm for Chance Constrained Programs In this subsection, we propose a proximal DC algorithm for solving Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To begin, we define I := {(i1, i2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , iN−M) : 1 ≤ i1 < i2 < · · · < iN−M ≤ N} , (17) and denote the active index set of C(x, ˆξi) and H(x) in (12) respectively by Mi c(x) := � j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m} : cj(x, ˆξi) = C(x, ˆξi) � , (18) MH(x) := � I ∈ I : N−M � t=1 �Cit(x) = H(x) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (19) We then talk about how to compute an element in these two active sets, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Specifically, for the former one, we compute the function values of cj(x, ˆξi) for all j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m and obtain an element in the index set Mi c(x) by finding an index j∗ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m} such that cj∗(x, ˆξi) has the largest value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' For the latter one, after we compute C(x, ˆξi) for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N using (7), we obtain an element in the index set MH(x) by finding an index (i∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , i∗ N−M) ∈ I such that {C(x, ˆξi∗ t )}T t=1 is the T largest elements in {C(x, ˆξi)}N i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Now, we specify how to compute the subgradient of H(x) efficiently by utilizing its structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 8 Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let H be defined in (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Given an x ∈ Rn, it holds that ∂H(x) = conv � ∪ N−M � t=1 ∂ �Cit(x) : (i1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , iN−M) ∈ MH(x) � , (20) where ∂ �Ci(x) = conv � ∪{∇cj(x, ˆξi)} : j ∈ Mi c(x) � (21) for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N and conv(A) denotes the convex hull of the set A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It follows from (14) and the rule of calculating the subdifferential of the pointwise max- imum of convex functions ([27, Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2]) that ∂H(x) = conv � ∪∂ N−M � t=1 �Cit(x) : (i1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , iN−M) ∈ MH(x) � = conv � ∪ N−M � t=1 ∂ �Cit(x) : (i1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , iN−M) ∈ MH(x) � , where the second equality follows from the continuity and the convexity of C(x, ˆξi) for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Since �Ci(x) = C(x, ˆξi) = max{cj(x, ˆξi) : j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m} for any i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N}, using the rule of calculating the subdifferential of the pointwise maximum of convex functions again and Assumption 1(c), we obtain (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Now, we are ready to propose a proximal DC algorithm for solving Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Specifically, suppose that an initial point x0 ∈ X satisfying G(x0) − H(x0) ≤ 0 is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' At the k-th iteration, we choose sk h ∈ ∂h(xk) and sk H ∈ ∂H(xk), and generate the next iterate xk+1 by solving the following convex subproblem xk+1 ∈ argmin x∈X g(x) − h(xk) − ⟨sk h, x − xk⟩ + β 2 ∥x − xk∥2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' G(x) − H(xk) − ⟨sk H, x − xk⟩ ≤ 0, (22) where β ≥ 0 is a penalty parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' As shown in Lemma 2, the subgradient sk H can be easily computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' However, Problem (22) is still not suitable for off-the-shelf solvers, because it is difficult to directly input G(x) defined in (12), which involves the sum of the N −M +1 largest components of �C(x, ξ), into solvers due to its combinatorial nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To handle this issue, we reformulate Problem (22) into a form that is suitable for solvers by introducing an auxiliary variable z ∈ RN such that C(x, ˆξi) ≤ zi, for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Note that N � i=M z[i] = max u∈Rn � ⟨u, z⟩ : 0 ≤ u ≤ 1, 1T u = N − M + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This is a linear program and its dual problem is min λ∈RN,µ∈R {⟨1, λ⟩ + (N − M + 1)µ : z − λ − µ1 ≤ 0, λ ≥ 0} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 9 Using the strong duality of linear programming, we rewrite Problem (22) as xk+1 = argmin x∈X,z∈RN,λ∈RN,µ∈R g(x) − h(xk) − ⟨sk h, x − xk⟩ + β 2 ∥x − xk∥2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' ⟨1, λ⟩ + (N − M + 1)µ − H(xk) − ⟨sk H, x − xk⟩ ≤ 0, z − λ − µ1 ≤ 0, λ ≥ 0, cj(x, ˆξi) − zi ≤ 0, ∀ i =, 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (23) We remark that we can also eliminate the auxiliary variable z ∈ RN by combining cj(x, ˆξi)−zi ≤ 0 for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m and z−λ−µ1 ≤ 0 together and obtain cj(x, ˆξi)−λi−µ ≤ 0 for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We summarize the proposed proximal DC algorithm in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Algorithm 1 A Proximal DC Algorithm for Chance Constrained Programs 1: Input: data samples {ˆξi}N i=1, feasible point x0, β ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 2: for k = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' do 3: take any sk h ∈ ∂h(xk) and sk H ∈ ∂H(xk) 4: solve Problem (23) to obtain an xk+1 5: if a termination criterion is met then 6: stop and return xk+1 7: end if 8: end for Before studying its convergence, we make some remarks on Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' First, Algorithm 1 is closely related to sequential convex programming methods in [47, 73].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' However, different from them, we fully exploit the structure of the DC function and reformulate the subproblem into a form that is suitable for off-the-shelf solvers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Moreover, we should also mention that our DC approach differs from that in [29], since their DC approach is based on the DC approxima- tion of the indicator function, while ours directly handles the empirical quantile of the chance constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Second, a key issue in our implementation is how to choose a feasible initial point x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A common approach is to solve a convex approximation of Problem (2) such as CVaR in [53] to generate a feasible point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Third, the penalty parameter β can be updated in an adaptive manner as long as it is non-increasing and positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In our numerical experiments, we observe that this adaptive scheme may empirically accelerate the convergence of the pDCA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Finally, the subproblem (23) is easy to solve in some cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Specifically, it is observed that the functions cj(·, ξ) for all j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m in many practical applications take the linear form;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [50, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Based on this observation, suppose that in (16) X is a polyhedron and g(x) = aT 0 x, cj(x, ξ) = aT j x + bT j ξ, for all j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (24) Then, substituting (24) into (23) with β = 0 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' β > 0) yields a linear (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' quadratic) program with (m+2)N +1 linear constraints (without considering the linear constraints in X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We can solve it easily by inputting it into off-the-shelf linear (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' quadratic) programming 10 solvers, such as MOSEK, Gurobi, and CPLEX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In addition, suppose that in (16) X is a polyhedron and g(x) = xT Ax + aT 0 x, cj(x, ξ) = aT j x + bT j ξ, for all j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m, (25) where A ∈ Rn×n is a symmetric matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The resulting subproblem (23) is a quadratic program when β ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 3 Convergence and Iteration Complexity Analysis In this section, we study the convergence properties of Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Towards this end, we first show the subsequential convergence of the sequence {xk} generated by Algorithm 1 to a KKT point of Problem (16) under some constraint qualification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Second, we prove convergence of the entire sequence {xk} if in addition the K�L property holds for a specially designed potential function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Finally, we analyze the iteration complexity of Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We point out that the proposed algorithm and its convergence in fact apply to Problem (16) with G(x) and H(x) being general convex functions defined on an open set that contains X, which takes the form of general DC constrained DC programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' An extension to multiple DC constraints will be discussed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Before we proceed, we introduce some further notation, assumptions, and definitions that will be used throughout this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To begin, we specify the convex constraints in the set X as follows: X = � x ∈ Rn : aT i x + bi = 0, i ∈ E, ωi(x) ≤ 0, i ∈ I � , (26) where ai ∈ Rn and bi ∈ R for all i ∈ E, ωi : Rn → R for all i ∈ I are convex and continuously differentiable functions, and E and I are finite sets of indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We denote the active set of the inequality constraints at x ∈ X by A(x) := {i ∈ I : ωi(x) = 0} , (27) and the feasible set of Problem (16) by ¯ X := {x ∈ X : G(x) − H(x) ≤ 0} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We now introduce a generalized version of the Mangasarian-Fromovitz constraint qualification (MFCQ), which is a widely used assumption on the algebraic description of the feasible set of constrained problems that ensures that the KKT conditions hold at any local minimum ([47, 72]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Assumption 2 (Generalized MFCQ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The generalized MFCQ holds for all x ∈ ¯ X, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', there exists y ∈ X such that for G(x) = H(x), we have G(y) − H(x) − ⟨sH, y − x⟩ < 0, for all sH ∈ ∂H(x), (28) ⟨∇ωi(x), y − x⟩ < 0, for all i ∈ A(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (29) 11 We next introduce the definition of KKT points for Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Definition 2 (KKT points of Problem (16)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We say that x ∈ ¯ X is a KKT point of Problem (16) if there exists λ ∈ R+ such that (x, λ) satisfies λ (G(x) − H(x)) = 0 and 0 ∈ ∂g(x) − ∂h(x) + λ (∂G(x) − ∂H(x)) + NX (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Note that every local minimizer of Problem (16) is a KKT point under the generalized MFCQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' More precisely, suppose that x∗ ∈ ¯ X is a local minimizer of Problem (16), P = {x : aT x + bi = 0, i ∈ E} is a polyhedron, and there exists d ∈ TP(x∗) for x∗ ∈ X satisfying G(x∗) = H(x∗) and ω(x∗) such that G′(x∗, d) < inf s∈∂H(x∗) sT d, and ω′ i(x∗, d) = ωi(x∗)T d < 0, i ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (30) Then, there exists λ∗ ∈ R+ such that x∗ is a KKT point of Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This result is a direct consequence of [47, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It is worth noting that (30) holds if the generalized MFCQ holds at x∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', Remark (b) of [47, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 Subsequential Convergence to a KKT Point In this subsection, our goal is to show that any accumulation point of the sequence {xk} generated by Algorithm 1 is a KKT point of Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that Assumptions 1 holds, the function f is given in Problem (16), and the level set � x ∈ ¯ X : f(x) ≤ f(x0) � is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let {xk} be the sequence generated by Algorithm 1 with ρ + β > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, the following statements hold: (i) It holds for all k ≥ 0 that xk ∈ ¯ X and f(xk+1) − f(xk) ≤ −ρ + β 2 ∥xk+1 − xk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (31) (ii) The sequence {xk} ⊆ ¯ X is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (iii) It holds that lim k→∞ ∥xk+1 − xk∥ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (32) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (i) According to the feasibility of xk+1 to Problem (22), sk H ∈ ∂H(xk), and the convexity of H, we have xk+1 ∈ X and G(xk+1) ≤ H(xk) + ⟨sk H, xk+1 − xk⟩ ≤ H(xk+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (33) This implies xk+1 ∈ ¯ X for all k ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Moreover, it follows from the optimality of xk+1 for Problem (22) and the ρ-strongly convexity of g that for all k ≥ 0, g(xk+1) − h(xk) − ⟨sk h, xk+1 − xk⟩ + ρ + β 2 ∥xk+1 − xk∥2 ≤ g(xk) − h(xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 12 This, together with the convexity of h and sk h ∈ ∂h(xk), yields that for all k ≥ 0, g(xk+1) − h(xk+1) + ρ + β 2 ∥xk+1 − xk∥2 ≤ g(xk) − h(xk), which is equivalent to (31).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (ii) According to (31), the function value f(xk) is monotonically decreasing and thus we have f(xk+1) ≤ f(x0) for all k ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with the level-boundness of the set � x ∈ X c : f(x) ≤ f(x0) � , implies that {xk} is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (iii) The boundedness of the sequence {xk}, together with continuity of f implies that {f(xk)} is bounded from below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Using this and the fact that {f(xk)} is monotonically de- creasing, we obtain that there exists some f ∗ such that f(xk) → f ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It follows from (31) that α + β 2 ∞ � k=0 ∥xk+1 − xk∥2 ≤ f(x0) − lim k→∞f(xk+1) = f(x0) − f ∗ < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This implies (32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Armed with the above lemma, we are ready to show the subsequential convergence of the sequence {xk} generated by Algorithm 1 to a KKT point of Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that Assumptions 1 and 2 hold, the function f is given in Problem (16), and the level set � x ∈ ¯ X : f(x) ≤ f(x0) � is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let {xk} be the sequence generated by Algorithm 1 with ρ + β > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, any accumulation point of {xk} is a KKT point of Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' According to (i) in Lemma 3, it holds that xk ∈ ¯ X for all k ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with the generalized MFCQ in Assumption 2 and the equivalence between the Slater condition and the MFCQ by [18, Exercise 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3(b)], yields that there exists x ∈ X such that for any sk H ∈ ∂H(xk), G(x) − H(xk) − ⟨sk H, x − xk⟩ < 0, ωi(x) < 0, ∀ i ∈ A(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (34) This is exactly the Slater condition for Problem (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' According to this, (26), and [62, Corollary 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1, Theorem 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3], there exists a Lagrange multiplier λk ∈ R for all k ≥ 0 such that the following KKT system holds: \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 G(xk+1) − H(xk) − ⟨sk H, xk+1 − xk⟩ ≤ 0, xk+1 ∈ X, λk � G(xk+1) − H(xk) − ⟨sk H, xk+1 − xk⟩ � = 0, λk ≥ 0, 0 ∈ ∂g(xk+1) − sk h + β(xk+1 − xk) + λk � ∂G(xk+1) − sk H � + NX (xk+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (35) It follows from (ii) of Lemma 3 that {xk} is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let x∗ be an accumulation point of {xk} such that there exists a subsequence {xki} with limi→∞ xki = x∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We claim that the sequence {λk} is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Passing to a further subsequence if necessary, we assume without loss of generality that limi→∞ λki = λ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' According to (32) in Lemma 3, we have limi→∞(xki+1−xki) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Using this fact, the outer semi-continuity of ∂g, ∂h, ∂G, ∂H [63, Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4, Proposition 13 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7], and sk h ∈ ∂h(xk), sk H ∈ ∂H(xk), we have upon passing to the limit as i goes to infinity in (35) with k = ki that sk h → s∗ h ∈ ∂h(x∗) and sk H → s∗ H ∈ ∂H(x∗), and thus 0 ∈ ∂g(x∗) − ∂h(x∗) + λ∗ (∂G(x∗) − ∂H(x∗)) + NX (x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (36) On the other hand, using (35) and (32) with k = ki and the boundedness of ∂H(x∗), letting i → ∞, we have G(x∗) ≤ H(x∗), λ∗ (G(x∗) − H(x∗)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (37) Moreover, since λk ≥ 0 and xk ∈ ¯ X for all k ≥ 0, we have λ∗ ≥ 0 and x∗ ∈ ¯ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with (36), (37), and Definition 2, implies that x∗ is a KKT point of Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The rest of the proof is devoted to proving that {λk} is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Without loss of generality, we assume that {ai : i ∈ E} is linearly independent, since otherwise we can obtain the same results by eliminating the redundant linear equalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It follows from [63, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='14] for any x ∈ X that NX (x) = �� i∈E uiai + � i∈I vi∇ωi(x) : vi ≥ 0, for i ∈ A(x), vi = 0, for i /∈ A(x) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with (35), yields that there exist uk i for i ∈ E, vk i ≥ 0 for i ∈ A(xk+1), and vk i = 0 for i /∈ A(xk+1) such that 0 ∈ ∂g(xk+1) − sk h + β(xk+1 − xk) + λk � ∂G(xk+1) − sk+1 H � + � i∈E uk i ai + � i∈I vk i ∇ωi(xk+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (38) Then, let ρk := � (λk)2 + � i∈E (uk i )2 + � i∈I (vk i )2, τ k := λk ρk , µk i := uk i ρk , νk i := vk i ρk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose to the contrary that {λk} is unbounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This implies that ρk is also unbounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, there exists a subsequence {λkj} such that |λkj| → ∞ as j goes to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Passing to a further subsequence if necessary, suppose that there exist τ ∗ ∈ R+, µ∗ i , ν∗ i ∈ R+, x∗, and s∗ H ∈ ∂H(x∗) such that limj→∞ τ kj = τ ∗, limj→∞ µkj i = µ∗ i , limj→∞ νkj i = ν∗ i , limj→∞ xkj = x∗, and limj→∞ skj H = s∗ H, where skj H ∈ ∂H(xkj), due to λk ≥ 0, v∗ i ≥ 0 for i ∈ I, the boundness of {τ k}, {µk}, {νk}, {xk}, and ∂H(xk), and the outer semi-continuity of ∂H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, dividing both sides of (38) by |ρkj|, letting j → ∞, and using (32), the outer semi-continuity of ∂g and ∂h, and the boundness of ∂g(x∗), ∂h(x∗), and {xk}, we have 0 ∈ τ ∗ (∂G(x∗) − s∗ H) + � i∈E µ∗ i ai + � i∈I ν∗ i ∇ωi(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (39) Using the definitions of τ ∗, µ∗, and ν∗, we further have (τ ∗)2 + ∥µ∗∥2 + ∥ν∗∥2 = 1, (40) 14 (Case 1) Suppose that τ ∗ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Due to (39), we have 0 = � i∈E µ∗ i ai + � i∈I ν∗ i ∇ωi(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (41) According to Assumption 2, there exists y ∈ X such that ⟨∇ωi(x∗), y−x∗⟩ < 0 for all i ∈ A(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Moreover, since A(xk) ⊆ A(x∗) when k is sufficiently large, we have i /∈ A(xk) if i /∈ A(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Therefore, we have νk i = 0 for all i /∈ A(xk) as k → ∞, which implies ν∗ i = 0 for i /∈ A(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, taking inner products with y − x∗ on both sides of (41) yields 0 = � i∈A(x∗) ν∗ i ⟨∇ωi(x∗), y − x∗⟩, where the equality follows from ⟨ai, y − x∗⟩ = 0 for i ∈ E and ν∗ i = 0 for i /∈ A(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with ⟨∇ωi(x∗), y−x∗⟩ < 0 for all i ∈ A(x∗), gives ν∗ i = 0 for all i ∈ A(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Substituting this and ν∗ i = 0 for i /∈ A(x∗) into (41), we have 0 = � i∈E µ∗ i ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Noting that we assume that {ai : i ∈ E} is linearly independent, we have µ∗ i = 0 for all i ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Therefore, ν∗ i = 0 for all i ∈ I and µ∗ i = 0 for all i ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This contradicts (40).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (Case 2) Suppose that τ ∗ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We first consider the case of G(x∗) < H(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It follows from the second line of (35) with k = kj, j → ∞, and (32) that limj→∞ λkj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This implies τ ∗ = 0, which contradict (40).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We then must have G(x∗) = H(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with the convexity of G and (28) in Assumption 2, yields that there exists y ∈ X such that ⟨¯sG − s∗ H, y − x∗⟩ ≤ G(y) − G(x∗) − ⟨s∗ H, y − x∗⟩ = G(y) − H(x∗) − ⟨s∗ H, y − x∗⟩ < 0, (42) where ¯sG is an arbitrary subgradient of G at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' According to (39), there exists s∗ G ∈ ∂G(x∗) such that 0 = τ ∗ (s∗ G − s∗ H) + � i∈E µ∗ i ai + � i∈I ν∗ i ∇ωi(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (43) Taking inner products with y − x∗ on both sides yields 0 = τ ∗⟨s∗ G − s∗ H, y − x∗⟩ + � i∈A(x∗) ν∗ i ⟨∇ωi(x∗), y − x∗⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Note that ν∗ i ≥ 0 due to vk i ≥ 0 for all i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with (29) at x∗ and (42), implies τ ∗ = 0, which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We prove the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2 Convergence of the Entire Sequence to a KKT Point In this subsection, we employ the analysis framework proposed in [2, 4] based on the K�L property to study the sequential convergence of Algorithm 1 for β > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Our first step is to show that the sequence generated by Algorithm 1 satisfies sufficient decrease and relative error conditions with respect to a potential function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Motivated by the potential functions constructed in [46, 73], we construct the following potential function ϕ(x, y, z) := g(x) − ⟨x, y⟩ + h∗(y) + δ ¯F (·)≤0(x, z) + δX (x), (44) 15 where ¯F(x, z) := G(x) − ⟨x, z⟩ + H∗(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (45) Then, we characterize the subdifferential of δ ¯F (·)≤0(x, z) using its structure and the convexity of G and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We point out that this characterization holds for G and H being arbitrary proper closed convex functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that Assumption 2 holds and (x, z) satisfies ¯F(x, z) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It holds that the function δ ¯F (·) is regular and ∂δ ¯F (·)≤0(x, z) = �� λ(s1 − z) λ(−x + s2) � : s1 ∈ ∂G(x), s2 ∈ ∂H∗(z), λ ≥ 0, λ ¯F(x, z) = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (46) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To begin, let S := � (x, z) : ¯F(x, z) ≤ 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, we write S = ¯F −1(R−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Because G and H∗ are both convex functions, then ¯F is locally Lipschitz continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It follows from [63, Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1] that ¯F : Rn×Rn → R is a strictly continuous function since it is locally Lipschitz continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We obtain that y ∈ NR−( ¯F(x, z)) is equivalent to y ≥ 0, y ¯F(x, z) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that the only vector y ∈ NR−( ¯F(x, z)) with 0 ∈ ∂(y ¯F)(x, z) is y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Moreover, R− is regular at ¯F(x, z) and ¯F is regular due to convexity of G and H∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' These, together with [63, Corollary 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='50], imply that S is regular, which further implies δ ¯F(·) is regular by [63, Exercise 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='14], and (46) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The rest of our proof is to show that the only vector y ∈ NR−( ¯F(x, z)) with 0 ∈ ∂(y ¯F)(x, z) is y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that this is not the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, there exists y > 0 such that y ∈ NR−( ¯F(x, z)) with 0 ∈ ∂(y ¯F)(x, z), which implies � (x, z) : ¯F(x, z) = 0, 0 ∈ ∂ ¯F(x, z) � ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (47) Let (x, z) be such that ¯F(x, z) = 0 and 0 ∈ ∂ ¯F(x, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It follows from ¯F(x, z) = 0 and (45) that G(x) − ⟨x, z⟩ + H∗(z) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (48) Using [3, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1] and 0 ∈ ∂ ¯F(x, z) with (45), we have z ∈ ∂G(x), x ∈ ∂H∗(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, x ∈ ∂H∗(z) holds if and only if z ∈ ∂H(x) because H is a pointwise maximum of continuous and convex functions, and thus closed and convex, which implies H∗(z) + H(x) = ⟨x, z⟩ according to Young’s inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Using this and (48), we have G(x) = H(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It follows from z ∈ ∂G(x) and the convexity of G that G(y) ≥ G(x) + ⟨z, y − x⟩, for all y ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Plugging z ∈ ∂H(x) and G(x) = H(x) into the above inequality yields that for z ∈ ∂H(x), G(y) ≥ H(x) + ⟨z, y − x⟩, for all y ∈ Rn, which contradicts (28) in Assumption 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We prove the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 16 Now, we are ready to show that the sequence {(xk, sk h, sk H)} generated by Algorithm 1 satisfies the sufficient decrease and relative error conditions mentioned earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that Assumptions 1 and 2 hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let {(xk+1, sk h, sk H)} be the sequence generated by Algorithm 1 with ρ + β > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, the following statements hold: (i) [Sufficient Decrease] The sequence {(xk+1, sk h, sk H)} is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It holds for all k ≥ 1 that ϕ(xk+1, sk h, sk H) − ϕ(xk, sk−1 h , sk−1 H ) ≤ −ρ + β 2 ∥xk+1 − xk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (ii) [Relative Error] There exists a constant κ > 0 such that for all k ≥ 0, dist � 0, ∂ϕ(xk+1, sk h, sk H) � ≤ κ∥xk+1 − xk∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (i) It follows from (i) in Lemma 3 that {xk} ⊆ ¯ X is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with the fact that h and H are convex, implies that {(sk h, sk H)} is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Therefore, the sequence {(xk+1, sk h, sk H)} is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' According to (45), we have for all k ≥ 0, ¯F(xk+1, sk H) = G(xk+1) − ⟨xk+1, sk H⟩ + H∗(sk H) = G(xk+1) + H∗(sk H) − ⟨xk, sk H⟩ − ⟨xk+1 − xk, sk H⟩ = G(xk+1) − H(xk) − ⟨xk+1 − xk, sk H⟩ ≤ 0, (49) where the last equality follows from H(xk) + H∗(sk H) = ⟨xk, sk H⟩ due to Young’s inequality and sk H ∈ ∂H(xk), and the inequality is due to the constraint in (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Moreover, it follows from (22) and the ρ-strongly convexity of g that for all k ≥ 0, g(xk+1) − ⟨sk h, xk+1 − xk⟩ + ρ + β 2 ∥xk+1 − xk∥2 ≤ g(xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (50) This,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' together with (49) and xk ∈ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' implies for all k ≥ 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' ϕ(xk+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' sk h,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' sk H) = g(xk+1) − ⟨xk+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' sk h⟩ + h∗(sk h) ≤ g(xk) − ⟨sk h,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' xk⟩ − ρ + β 2 ∥xk+1 − xk∥2 + h∗(sk h) = g(xk) − h(xk) − ρ + β 2 ∥xk+1 − xk∥2 ≤ g(xk) − ⟨xk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' sk−1 h ⟩ + h∗(sk−1 h ) − ρ + β 2 ∥xk+1 − xk∥2 = ϕ(xk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' sk−1 h ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' sk−1 H ) − ρ + β 2 ∥xk+1 − xk∥2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' where the first inequality uses (50),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' the second equality follows from h(xk) + h∗(sk h) = ⟨xk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' sk h⟩ due to sk h ∈ ∂h(xk) and Young’s inequality,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' the second inequality follows from h(xk)+h∗(sk−1 h ) ≥ ⟨xk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' sk−1 h ⟩ due to Young’s inequality,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' and the last equality is due to xk ∈ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (44),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' and (49).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (ii) According to [63, Exercise 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8(c)], we compute ∂ϕ(x, y, z) = ∂ � g(x) + h∗(y) + δ ¯F (·)≤0(x, z) + δX (x) � + \uf8ee \uf8ef\uf8f0 −y −x 0 \uf8f9 \uf8fa\uf8fb = � \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 \uf8ee \uf8ef\uf8f0 ∂g(x) − y + λ(∂G(x) − z) + NX(x) −x + ∂h∗(y) λ(−x + ∂H ∗ (z)) \uf8f9 \uf8fa\uf8fb : λ ≥ 0, λ ¯F(x, z) = 0 \uf8fc \uf8f4 \uf8fd \uf8f4 \uf8fe , 17 where the second equality uses [63, Corollary 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9] and the fact that g, h∗ and δX are regular due to the convexity and δ ¯F (·) is regular due to Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Therefore, we have ∂ϕ(xk+1, sk h, sk H) = � \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 \uf8ee \uf8ef\uf8f0 ∂g(xk+1) − sk h + λ(∂G(xk+1) − sk H) + NX (xk+1) −xk+1 + ∂h∗(sk h) λ(−xk+1 + ∂H∗(sk H)) \uf8f9 \uf8fa\uf8fb : λ ≥ 0, λ ¯F(xk+1, sk H) = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (51) It follows from Assumption 2 that the KKT system (35) holds for Problem (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then we have λk ≥ 0 and λk ¯F(xk+1, sk H) = λk � G(xk+1) − ⟨xk+1, sk H⟩ + H∗(sk H) � = λk � G(xk+1) − H(xk) − ⟨xk+1 − xk, sk H⟩ � = 0, (52) where the first equality uses (45), the second equality follows from H(xk) + H∗(sk H) = ⟨xk, sk H⟩ due to sk H ∈ ∂H(xk) and Young’s inequality, and the last equality follows from the second line in (35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It follows from the last line in (35) that β(xk − xk+1) ∈ ∂g(xk+1) − sk h + λk � ∂G(xk+1) − sk H � + NX (xk+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with (49), (51), (52) with λk ≥ 0, sk h ∈ ∂h(xk), sk H ∈ ∂H(xk), and the fact that y ∈ ∂ψ(x) if and only if x ∈ ∂ψ∗(y) provided that ψ is a proper closed convex function, yields that \uf8ee \uf8ef\uf8f0 β(xk − xk+1) xk − xk+1 λk(xk − xk+1) \uf8f9 \uf8fa\uf8fb ∈ ∂ϕ(xk+1, sk h, sk H) This implies dist � 0, ∂ϕ(xk+1, sk h, sk H) � ≤ (β + 1 + λk)∥xk+1 − xk∥, where λk ≥ 0 is bounded in (35) according to the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, we complete the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Since g, h, G, and H are continuous and convex functions and X is a closed and convex set, we can verify that ϕ is a K�L function with exponent θ ∈ [0, 1) according to [9, Theorem 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Using Lemma 5 and the analysis in [2, 3, 4, 9, 46, 73], we shall prove the sequential convergence and the convergence rate of the sequence {xk} generated by Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The proof is rather standard and thus we omit it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We refer the reader to [2, 46] for the detailed arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that Assumptions 1 and 2 hold, the function f is given in Problem (16), and the level set � x ∈ X c : f(x) ≤ f(x0) � is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, the sequence {xk} generated by Algorithm 1 with ρ + β > 0 converges to a KKT point x∗ of Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let θ ∈ [0, 1) denote the K�L exponent of ϕ in (44).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' There exists an integer k∗ ≥ 1 such that the following statements 18 hold: (i) If θ = 0, then {xk} converges finitely, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', xk = x∗ for all k ≥ k∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (ii) If θ ∈ (0, 1/2], then {xk} converges linearly, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', there exist c > 0 and q ∈ (0, 1) such that for all k ≥ k∗, ∥xk − x∗∥ ≤ cqk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (iii) If θ ∈ (1/2, 1), then {xk} converges sublinearly, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', there exist c > 0 such that for all k ≥ k∗, ∥xk − x∗∥ ≤ ck− 1−θ 2θ−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It follows from Theorem 2 that the proximal DC algorithm achieves linear convergence when the K�L exponent θ = 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Therefore, an interesting future direction is to investigate under what conditions the K�L exponent of Problem (16) is 1/2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [43, 33, 34, 45, 70, 76].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3 Iteration Complexity for Computing an Approximate KKT Point In this subsection, we analyze the iteration complexity of Algorithm 1 for computing an ap- proximate KKT point of Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Motivated by the analysis framework in [74] for DC constrained DC programs with all functions being differentiable, we connect Algorithm 1 to a variant of the Frank-Wolfe (FW) method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To simplify notation, let w := (x, s, t), q(w) := s − h(x), Q(w) := t − H(x), and W := {w : x ∈ X, g(x) ≤ s, G(x) ≤ t} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, we should mention that q and Q are both concave functions and W is a convex set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We rewrite Problem (16) as follows by introducing auxiliary variables s, t ∈ R: min x∈X,s∈R,t∈Rs − h(x) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' g(x) ≤ s, G(x) ≤ t, t − H(x) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (53) We further express Problem (53) as min w∈W q(w) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Q(w) ≤ 0, (54) Based on the above setup, we directly show the equivalence between the proximal DC iterations in (22) and a variant of FW iterations applied to Problem (54).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that Assumptions 1 and 2 hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The proximal DC iterations in (22) with β ≥ 0 is equivalent to the following variant of FW iterations: wk+1 ∈ argmin w∈W q(wk) + ⟨sk q, w − wk⟩ + β 2 ∥w − wk∥2 T s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Q(wk) + ⟨sk Q, w − wk⟩ ≤ 0, (55) 19 where sk q = (−sk h, 1, 0), sk h ∈ ∂h(xk), sk Q = (−sk H, 0, 1), sk H ∈ ∂H(xk), and we define ∥z∥T = ��n i=1 z2 i for any z ∈ Rn+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The proof follows directly from the definitions of W, q(w), Q(w), and the fact that any optimal solution of (55) must satisfy sk = g(xk) and s = g(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We next use the equivalent expression (54) to give an equivalent characterization of KKT points (see Definition 2) of Problem (16) under the generalized MFCQ in Assumption 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that Assumptions 1 and 2 hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Given ¯w ∈ W, sq ∈ ∂q( ¯w) with g(¯x) ≤ ¯s, G(¯x) ≤ ¯t, and sQ ∈ ∂Q( ¯w), suppose that ⟨sq, w − ¯w⟩ + β 2 ∥w − ¯w∥2 T ≥ 0 (56) for all w ∈ W satisfying Q( ¯w) + ⟨sQ, w − ¯w⟩ ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, ¯x is a KKT point of Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' According to the statement of the lemma and [6, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2], we obtain that ¯w ∈ W is an optimal solution to the following convex problem: min w∈W ⟨sq, w − ¯w⟩ + β 2 ∥w − ¯w∥2 T s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Q( ¯w) + ⟨sQ, w − ¯w⟩ ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Note that ⟨sq, w − ¯w⟩ = −⟨sh, x − ¯x⟩ + (s − ¯s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Moreover, the optimal solution of (55) must satisfy s = g(x) and ¯s = g(¯x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then we have ⟨sq, w − ¯w⟩ + β 2 ∥w − ¯w∥2 T = g(x) − g(¯x) − ⟨sh, x − ¯x⟩ + β 2 ∥x − ¯x∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (57) Thus ¯x is an optimal solution to the following convex problem: min x∈X g(x) − g(¯x) − ⟨sh, x − ¯x⟩ + β 2 ∥x − ¯x∥2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' G(x) − H(¯x) − ⟨sH, x − ¯x⟩ ≤ 0, where sh ∈ ∂h(¯x) and sH ∈ ∂H(¯x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with the Slater’s condition due to Assump- tion 2, implies that there exists λ ∈ R+ such that (¯x, λ) satisfies the KKT system in Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Consequently, studying the iteration complexity of Algorithm 1 for computing an approxi- mate KKT point of Problem (16) is equivalent to that of the variant of the FW iterations (55) for computing a point satisfying (56).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' However, we cannot expect to achieve a solution that satisfies (56) in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Instead, we often obtain an approximate solution as shown in the next theorem, which can be seen as an approximation of a KKT point of Problem (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The next theorem gives the iteration complexity for achieving an approximate solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 20 Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that Assumptions 1 and 2 hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let {xk} be the sequence generated by Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, there exists ℓ ∈ [k] such that ⟨sq, w − wℓ⟩ + β 2 ∥w − wℓ∥2 T ≥ −1 k � q(w0) − q∗� , (58) for all w ∈ W and Q(wl) + ⟨sl Q, w − wl⟩ ≤ 0, where q∗ ∈ R is the optimal value of Problem (54) and sl Q ∈ ∂Q(wl).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' According to Lemma 6, a sequence {wk} generated by iterations (55) satisfies wk = (xk, sk, tk) for all k ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Since q is a concave function and sk q ∈ ∂q(wk), we have ⟨sk q, wk − wk+1⟩ ≤ q(wk) − q(wk+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Averaging the above inequality over k yields 1 k k � i=1 ⟨sk q, wk − wk+1⟩ ≤ 1 k � q(w0) − q(wk+1) � ≤ 1 k � q(w0) − q∗� , where the last inequality follows from the fact that q∗ ∈ R is the optimal value of Problem (54).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This implies that there exists an index ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , k} such that ⟨sℓ q, wℓ − wℓ+1⟩ ≤ 1 k � q(w0) − q∗� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (59) Moreover, it follows from the optimality wk+1 to Problem (55) that for all w ∈ W satisfying Q(wℓ) + ⟨sℓ Q, w − wℓ⟩ ≤ 0, ⟨sℓ q, wℓ+1 − wℓ⟩ + β 2 ∥wℓ+1 − wℓ∥2 T ≤ ⟨sℓ q, w − wℓ⟩ + β 2 ∥wℓ − w∥2 T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This, together with (59), implies that it holds for all w ∈ W satisfying Q(wℓ)+⟨sℓ Q, w−wℓ⟩ ≤ 0 that ⟨sq, w − wℓ⟩ + β 2 ∥w − wℓ∥2 T ≥ ⟨sℓ q, wℓ+1 − wℓ⟩ + β 2 ∥wℓ+1 − wℓ∥2 T ≥ −1 k � q(w0) − q∗� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We complete the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We remark that in contrast to Theorems 1 and 2 that require ρ + β > 0, Theorem 3 can be applied to analyze the case of ρ + β ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It is worth noting that when β = 0, the standard iteration complexity of the FW method for general nonconvex problems is O(1/ √ k) (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [38]), but the iteration complexity of our proposed FW method is improved to O(1/k) as we construct a concave minimization surrogate using the DC structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 4 Extensions In this section, we first discuss how to extend our approach to solve chance constrained problems with the chance constraint estimated by general non-parametric estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We then extend the proximal DC algorithm for solving Problem (16) with multiple DC constraints, which can be used to solve chance constraint programs with multiple chance constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Finally, we show that our technique can also be used to solve cardinality constrained optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 21 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 Extension to L-Estimators of the Empirical Quantile In statistics, an L-estimator is a linear combination of order statistics of a sample drawn from the population distribution, which plays an important role in non-parametric estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The main advantage of L-estimators is that they are easy to calculate and often resistant to outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Due to this, L-estimators have been widely used in the literature;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [17, 51, 66].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This naturally motivates us to apply the L-estimators to Problem (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To proceed, we formally introduce L-estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that a set of samples {Xi}N i=1 is i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' according to some unknown distribution FX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In general, L-estimators of the empirical quantile take the form �N i=1 wiX[i], where w ∈ ∆ := � u ∈ RN : 0 ≤ u ≤ 1, 1T u = 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In statistics, there are many different L-estimators that outperform the empirical quantile in both theory and practice;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [17, 21, 31, 69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, we consider some typical L-estimators of the p empirical quantile for p ∈ (0, 1), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', X[M], where M = ⌈pN⌉.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The first one is the weighted average at X[M−1] (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [21, 31]) defined as L1 = (1 − g)X[M−1] + gX[M], where g = Np − M + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Another one is the kernel quantile estimator (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [44, 57]) defined as L2 = N � i=1 �� i/N (i−1)/N 1 hK �x − p h � dx � X[i], where h > 0 is a constant and K(t) is a kernel function satisfying � ∞ −∞ K(t)dt = 1, K(t) ≥ 0, and K(−t) = K(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It is worth noting that this kernel quantile estimator can be viewed as a smoothing version of the empirical quantile estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Now, we apply L-estimators to the SAA of the chance constrained program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Specifically, replacing the the empirical quantile �C[M](x) in Problem (10) with its L-estimator yields the following problem: min x∈X � f(x) : N � i=1 wi �C[i](x) ≤ 0 � , (60) where the weight w ∈ ∆ is given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' It is worth pointing out that Problem (2) is actually a special case of Problem (60) by taking wM = 1 and wi = 0 for all i ̸= M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, we reformulate this problem into a DC constrained DC program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Before we proceed, let ¯Z := � x ∈ Rn : N � i=1 wi �C[i](x) ≤ 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (61) Similar to Lemma 1, we can also express the above constraint as a DC constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let G(x) := N � i=1 wi N � j=i �C[j](x), H(x) := N−1 � i=1 wi N � j=i+1 �C[j](x), (62) 22 where w ∈ ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, G and H are both continuous and convex functions, and the chance constraint in ¯Z is equivalent to a DC constraint G(x) − H(x) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Using the argument in Lemma 1, we can show that �N j=i �C[j](x) for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N are convex functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Since each of G and H in (62) is a positive weighted sum of convex functions, G and H are both convex functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' According to (15), we have for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , N − 1, �C[i](x) = N � j=i �C[j](x) − N � j=i+1 �C[j](x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This yields that N � i=1 wi �C[i](x) = N−1 � i=1 wi �C[i](x) + wN �C[N](x) = N−1 � i=1 wi \uf8eb \uf8ed N � j=i �C[j](x) − N � j=i+1 �C[j](x) \uf8f6 \uf8f8 + wN �C[N](x) = N � i=1 wi N � j=i �C[j](x) − N−1 � i=1 wi N � j=i+1 �C[j](x) = G(x) − H(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We then obtain a DC constrained DC program for L-estimators of the empirical quantile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Consequently, we can still apply the proposed pDCA for solving the resulting problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2 Extension to Multiple DC Constraints In this subsection, we consider that Problem (16) has multiple DC constraints Gi(x) − Hi(x) ≤ 0, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , K, (63) where Gi : Rn → R and Hi : Rn → R are continuous and convex functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' That is, we consider the problem min x∈X f(x) := g(x) − h(x) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Gi(x) − Hi(x) ≤ 0, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (64) We can still apply the proximal DC algorithm for solving this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Specifically, suppose that an initial point x0 ∈ X satisfying Gi(x0) − Hi(x0) ≤ 0, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , K is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' At the k-th iteration, we choose sk h ∈ ∂h(xk) and sk Hi ∈ ∂Hi(xk) for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , K, and generate the next iterate xk+1 by solving the following convex subproblem xk+1 ∈ argmin x∈X g(x) − h(xk) − ⟨sk h, x − xk⟩ + β 2 ∥x − xk∥2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Gi(x) − Hi(xk) − ⟨sk Hi, x − xk⟩ ≤ 0, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , K, (65) where β ≥ 0 is a penalty parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, we can also prove subsequential convergence to a KKT point for the proximal DC algorithm by assuming the following generalized MFCQ: 23 Assumption 3 (Generalized MFCQ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The generalized MFCQ holds for Problem (64), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', there exists y ∈ X such that for Gi(x) = Hi(x), Gi(y) − Hi(x) − ⟨sHi, y − x⟩ < 0, for all sHi ∈ ∂Hi(x), i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , K, ⟨∇ωi(x), y − x⟩ < 0, for all i ∈ A(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Using the similar argument in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1, we can obtain the following result: Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that Assumptions 1 and 3 hold, the function f is given in Problem (64), X is of the form of (26), and the level set � x ∈ X : f(x) ≤ f(x0), Gi(x) − Hi(x) ≤ 0, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , K � is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let {xk} be the sequence generated by (65) with ρ+β > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, any accumulation point of {xk} is a KKT point of Problem (64).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We remark that although it is pointed out in [56] that multiple DC constraints can be combined into a single nondifferentiable DC constraint using the max-function, it makes the constraint more complicated and thus a more difficult pDCA subproblem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3 Extension to Cardinality Constrained Optimization Problems We consider the following cardinality constrained optimization problems: min x∈Rn {f(x) : ∥x∥0 ≤ K, x ∈ X} , (66) where ∥x∥0 denotes the cardinality of the vector, and K is an interger satisfying 1 ≤ K ≤ N −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This problem has found wide applications in diverse fields, such as quantitative finance [7, 22] and signal processing [13], to name a few.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' By introducing an auxiliary variable z ∈ Rn, the cardinality constraint ∥x∥0 ≤ K is equivalent to z[N−K] ≤ 0, zi = |xi| for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This implies that we can rewrite Problem (66) as min x∈X,z∈Rn � f(x) : z[N−K] ≤ 0, xi − zi ≤ 0, −xi − zi ≤ 0, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' As in Lemma 1, we can further rewrite the constraint z[N−K] ≤ 0 into a DC constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, we can apply the proposed approach for solving the resulting problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 5 Experimental Results In this section, we conduct experiments to study the performance of our proposed method on both synthetic and real data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' For ease of reference, we denote our proposed method by pDCA (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' DCA) when β > 0 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' β = 0) in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We also compare our methods with some state-of-the-art methods, which are CVaR in [53], the bisection-based CVaR method3 (Bi-CVaR) in [5, Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1], mixed-integer program (MIP) in [1], an augmented 3The bisection based CVaR method is a heuristic approach that can improve the performance of CVaR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 24 Lagrangian decomposition method (ALDM) in [5], and a DC approximation-based successive convex approximation method (SCA) in [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Our codes are implemented in MATLAB 2022b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, we use the optimization solver Gurobi (version 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2) for solving linear, quadratic, and mixed integer subproblems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' All the experiments are conducted on a Linux server with 256GB RAM and 24-core AMD EPYC 7402 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8GHz CPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' For pDCA, we update the penalty parameter β in an adaptive manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' That is, we set βk+1 = βk/4 for k = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' For pDCA on each data set, we explore two different settings of the regularization parameter β0, which will be specified later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We respectively denote them by pDCA-1 and pDCA-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We set the parameters of the remaining methods as those provided in the corresponding papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' For the tested methods DCA, pDCA, Bi-CVaR, ALDM, and SCA, we use the point returned by CVaR as their starting point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In each test, we terminate the tested methods when |f k − f k+1|/ max{1, |f k+1|} ≤ 10−6, for k = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , or the running time reaches 1800 seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 VaR-Constrained Portfolio Selection Problem In this subsection, we study the VaR-constrained mean-variance portfolio selection problem, which aims to minimize the risk while pursuing a targeted level of returns with probability at least 1 − α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Let µ ∈ Rn and Σ ∈ Rn×n respectively denote expectation and covariance matrix of the returns of n risky assets, and γ ∈ R+ denote the risk aversion factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' By letting x ∈ Rn + denote the allocation vector such that the weight of the i-th risky asset is xi for i ∈ [n], this problem is formulated as follows: min x∈Rn γxT Σx − µT x s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' P � ξT x ≥ R � ≥ 1 − α, n � i=1 xi = 1, 0 ≤ xi ≤ u, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , n, (67) where R ∈ R+ is a prespecified level on the return and u ∈ R+ is an upper bound on the weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We use 2523 daily return data of 435 stocks included in Standard & Poor’s 500 Index between March 2006 and March 2016, which can be downloaded from https://sem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='tongji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='cn/semch_data/faculty_cv/xjz/ccop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Following [5], we generate the data input by choosing n = 100, 200, 300, 400, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' For each n, we generate 5 instances from the daily return data set by randomly selecting n stocks from the 435 stocks and N = 3n samples ˆξℓ for all ℓ ∈ [N] from the 2523 daily return data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, we compute the sample mean µ and sample covariance matrix Σ using these data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We set the remaining parameters as follows: R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='02%, γ = 2, and u = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In the tests, we set the initial regularization parameter β0 of pDCA-1 and pDCA-2 as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 and 1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In Table 1 and the other two tables below for the other two experiments, we use “fval” to denote the averaged returned objective value for the test problems, “time” the averaged CPU time (in seconds), and “prob” the empirical in-sample probability of the chance constraint, all of which 4Since we only check the running time at the end of each iteration, the actual finishing time of an algorithm may be longer than this limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 25 are averaged over 5 instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We highlight the best values except those of MIP and CVaR for items “fval” and “time” since MIP is not suitable for large-scale data sets and the solution returned by CVaR is too conservative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Table 1: Comparison of different methods on the portfolio selection problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (α,n) MIP CVaR Bi-CVaR DCA pDCA-1 pDCA-2 ALDM SCA � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 100 � fval 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3550 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1861 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2592 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2860 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2897 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3037 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3221 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2732 time 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1271 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='868 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4603 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7387 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9553 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='576 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8343 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9627 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9587 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9587 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9420* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9593 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 200 � fval 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3531 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1914 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2754 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2950 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2923 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3066 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3284 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2787 time 1800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3778 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='013 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='683 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='808 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='861 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='901 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='589 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9873 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9553 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9560 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9560 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9447* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9580 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 300 � fval 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3484 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1830 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2629 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2935 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2835 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2934 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3279 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2525 time 1800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9473 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='26 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='403 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='188 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='749 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='59 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='890 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9529 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9553 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9553 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9456* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9584 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 400 � fval 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3719 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1939 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2886 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3143 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3206 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3291 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3150 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2775 time 1800 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='861 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='61 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='07 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='87 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='46 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='01 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='26 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9502 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9860 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9547 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9512 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9512 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9467* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9595 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 100 � fval 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4429 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2284 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3781 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3699 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3761 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3839 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3545 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3826 time 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='376 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1262 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='875 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7790 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7084 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9591 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7826 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8081 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9687 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9113 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9113 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9093 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9153 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 200 � fval 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4244 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2371 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3815 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3772 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3764 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3934 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3266 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3827 time 1225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3467 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='093 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='385 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='040 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='350 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3601 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='582 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9620 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9087 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9127 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9127 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9193 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9103 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 300 � fval 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4410 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2284 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3999 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4015 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3959 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4052 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3899 time 1800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9493 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='32 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='44 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='43 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8458 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='16 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9633 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9053 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9042 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9042 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9353 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9107 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 400 � fval 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4694 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2467 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4200 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4352 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4316 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4262 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3017 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4190 time 1800 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='833 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='42 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='69 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9201 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='62 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9653 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9047 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9412 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9100 “*” indicates that the computed probability is lower than the targeted level in Problem (2), which implies the returned solution is not feasible (the same for Table 2 and 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The magnitude of fval is 10−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We observe from Table 1 that although MIP achieves the lowest objective value, it is the most time-consuming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In addition, we observe that pDCA is slightly better than DCA and both pDCA and DCA generally outperform CVaR, Bi-CVaR, ALDM, and SCA in terms of the objective value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Table 1 also demonstrates that CVaR is the fastest method, while DCA and pDCA are comparable to the remaining ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Finally, we also observe that the in-sample probabilities of DCA and pDCA are generally comparable to those of the other methods, except that ALDM fails to satisfy the chance constraint for α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 and sometimes is too conservative for α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 26 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2 Probabilistic Transportation Problem with Convex Objective In this subsection, we consider a probabilistic version of the classical transportation problem, which has been widely studied in the literature;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', [5, 50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' This problem is to minimize the transportation cost of delivering products from n suppliers to m customers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The customer demands are random and the j-th customer’s demand is represented by a random variable ξj for each j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The i-th supplier has a limited production capacity θi ∈ R+ for each i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The cost of shipping a unit of product from supplier i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , n} to customer j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m} is cij ∈ R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Suppose that the shipment quantities are required to be determined before the customer demands are known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' By letting xij denote the amount of shipment delivered from supplier i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , n} to customer j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m}, this problem is formulated as min x∈Rn×m n � i=1 m � j=1 cijxij s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' P � n � i=1 xij ≥ ξj, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m � ≥ 1 − α, m � j=1 xij ≤ θi, xij ≥ 0, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , n, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (68) Table 2: Comparison of different methods on the probabilistic transportation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (α,N) MIP CVaR Bi-CVaR DCA pDCA-1 pDCA-2 ALDM SCA � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 500 � fval 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2584 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3843 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3700 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3262 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3239 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3251 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7091 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1716 time 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='89 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='796 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='84 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='681 405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2 503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='76 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='697 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8180* � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 1000 � fval 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3655 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5423 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4931 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4445 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4435 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4467 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8644 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4447 time 543.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='818 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='35 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='895 2441 1915 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='63 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='90 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9984 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9636 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9312* � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 1500 � fval 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3946 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6120 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5067 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4631 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4742 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4891 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8634 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5818 time 891.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='34 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='75 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='66 1925 2002 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='63 261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9980 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9787 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9508 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 2000 � fval 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4167 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6538 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5199 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4898 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5063 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5391 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8597 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5488 time 1535 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='959 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='60 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='99 2310 2447 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='52 336.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9848 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9843 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9515 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 500 � fval 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1874 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3833 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3262 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2591 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2548 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2548 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7110 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3092 time 171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='626 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='75 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='521 528.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5 591.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='70 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='16 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9916 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9008 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 1000 � fval 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2790 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5306 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3869 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3617 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3590 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3633 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8027 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4135 time 674.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='928 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='76 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='151 1944 1921 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='59 164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='868 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9684 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9682 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9028 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 1500 � fval 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3031 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5473 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3975 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3694 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3753 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3937 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7085 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4092 time 1673 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='073 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='30 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='84 1899 1954 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='92 326.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='652 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9633 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9628 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9041 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 2000 � fval 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3212 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5638 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3998 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3805 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4010 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4280 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7992 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4406 time 1801 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='982 102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='08 2217 2190 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='36 507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='0 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9636 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9630 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9110 The magnitude of fval is 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 27 In our experiments, we use the setting in Luedtke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [50] to generate parameters (θ, c, ˆξ), which is downloaded from http://homepages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='cae.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='wisc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='edu/~luedtkej/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, we choose (n, m) = (40, 100) and N = 500, 1000, 1500, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We set β0 = 1, 10 for pDCA-1 and pDCA-2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We report the experimental results in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We observe that DCA and pDCA in general can find significantly better solutions than CVaR and ALDM, and slightly better solutions than Bi-CVaR and SCA in terms of objective values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Meanwhile, we see that MIP returns either global optimal solutions or best objective values among all the algorithms in the time limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We also observe that the CPU time of the DCA is less than Bi-CVaR and ALDM, much less than that of MIP and pDCA, and is slightly larger than that of CVaR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We should mention that pDCA is the most time-consuming among the tested methods, since it solves a quadratic programming subproblem in each iteration, while other methods solve a linear programming subproblem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Table 2 also indicates that the in-sample probabilities of DCA and pDCA are exactly the risk level 1 − α in all instances, while the in-sample probabilities of ALDM and SCA may be either too loose or too conservative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3 Probabilistic Transportation Problem with Non-Convex Objective In this subsection, we consider a probabilistic version of the classical transportation problem with a non-convex objective function, which has been studied in [5, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In particular, the setting of this problem is exactly the same as that in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2 except for the objective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Here, we assume that the transportation cost from supplier i to customer j consists of the normal cost cijxij and cost discount aijx2 ij (aij < 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Consequently, this problem can be formulated as min x∈Rn×m n � i=1 m � j=1 cijxij + aijx2 ij s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' P � n � i=1 xij ≥ ξj, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m � ≥ 1 − α, m � j=1 xij ≤ θi, xij ≥ 0, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , n, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' , m, (69) In our test, we set aij = −cij/ (2θi) for all i, j, and the remaining setting is the same as that in the last section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Since the objective function of this problem is non-convex, CVaR and Bi-CVaR cannot handle this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Then, we only compare our proposed method with MIP, ALDM, and SCA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' To generate a feasible initial point, we apply CVaR to solve Problem (69) without cost discount in the objective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We report the experimental results in Table 3, which are similar to those of Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We further point out that although MIP achieves the lowest objective value, it reaches the time limit for all the instances, which indicates the hardness of the additional non-convex term in the objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In terms of objective values and running time, we observe that DCA generally outperforms pDCA, ALDM, and SCA in most of cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The CPU time for DCA is similar to that of the convex case in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The reason is similar, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=', the subproblems of DCA are all linear programs like the convex cases in (68).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We also observe that the in-sample probabilities of DCA and pDCA are generally closer to the risk level 1 − α than ALDM and SCA in all instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 28 Table 3: Comparison of different methods on the probabilistic transportation problem with a non-convex objective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' (α,N) MIP DCA pDCA-1 pDCA-2 ALDM SCA � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 500 � fval 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5098 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6012 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5973 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5962 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='0023 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4808 time 1805 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='448 340.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7 458.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8 267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='42 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='8180* � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 1000 � fval 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5868 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6830 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6822 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7027 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1015 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6819 time 1803 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='76 1989 1851 178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='53 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9318* � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 1500 � fval 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6123 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6888 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7170 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7455 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9974 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7691 time 1803 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='12 1927 1986 186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5 309.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9504 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05 2000 � fval 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6237 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7133 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7575 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7882 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='0842 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7481 time 1803 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='04 2381 2381 147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4 412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9505 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 500 � fval 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4581 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5473 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5436 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5421 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='0195 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5784 time 1804 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='845 413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3 175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='68 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9016 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 1000 � fval 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5238 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6224 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6229 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6406 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9981 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6503 time 1802 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='20 1888 1949 151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9684 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9010 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 1500 � fval 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5427 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6231 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6482 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6779 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='0223 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6499 time 1802 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='45 1896 1976 177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='2 401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9629 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9007 � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='1 2000 � fval 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='5521 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6281 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6775 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='7071 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='0006 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6647 time 1802 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='14 2242 2248 156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='4 612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='6 prob 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9032 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9631 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='9114 The magnitude of fval is 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 6 Conclusions In this paper, we proposed a new DC reformulation based on the empirical quantile for solving data-driven chance constrained programs and proposed a proximal DC algorithm to solve it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We proved the subsequential and sequential convergence to a KKT point of the proposed method and derived the iteration complexity for computing an approximate KKT point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We point out that our analysis holds for general DC constrained DC programs beyond those reformulated from chance constrained programs and can be extended to DC programs with multiple DC constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' We also show possible extensions of our methods to L-estimators for quantile in chance constrained programs and cardinality constrained programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Finally, we demonstrated the efficiency and efficacy of the proposed method via numerical experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 29 Acknowledgements We would like to thank Lai Tian (The Chinese University of Hong Kong) for the fruitful dis- cussion of the theoretical analysis of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' References [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ahmed and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Shapiro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Solving chance-constrained stochastic programs via sampling and integer programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In State-of-the-art decision-making tools in the information- intensive age, pages 261–269.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Informs, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [2] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Attouch and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Bolte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' On the convergence of the proximal algorithm for nonsmooth functions involving analytic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematical Programming, 116(1-2):5–16, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [3] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Attouch, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Bolte, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Redont, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Soubeyran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka- �Lojasiewicz inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematics of Operations Research, 35(2):438–457, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [4] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Attouch, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Bolte, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Svaiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematical Programming, 137(1-2):91–129, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [5] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Bai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Sun, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Zheng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' An augmented Lagrangian decomposition method for chance- constrained optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' INFORMS Journal on Computing, 33(3):1056–1069, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Bertsekas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Nonlinear programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Journal of the Operational Research Society, 48 (3):334–334, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Bienstock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Computational study of a family of mixed-integer quadratic programming problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematical programming, 74(2):121–140, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Bienstock, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Chertkov, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Harnett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Chance-constrained optimal power flow: Risk- aware network control under uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' SIAM Review, 56(3):461–495, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Bolte, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Sabach, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Teboulle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Proximal alternating linearized minimization for nonconvex and nonsmooth problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematical Programming, 146(1):459–494, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [10] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Bonami and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lejeune.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' An exact solution approach for portfolio optimization problems under stochastic and integer constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Operations Research, 57(3):650–670, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Calafiore and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Campi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The scenario approach to robust control design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' IEEE Transactions on automatic control, 51(5):742–753, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [12] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Calafiore and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ghaoui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' On distributionally robust chance-constrained linear programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Journal of Optimization Theory and Applications, 130(1):1–22, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 30 [13] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Cand`es and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Wakin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' An introduction to compressive sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' IEEE signal processing magazine, 25(2):21–30, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Cao and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Zavala.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A sigmoidal approximation for chance-constrained nonlinear programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' arXiv preprint arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='02402, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Charnes and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Cooper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Chance-constrained programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Management Science, 6(1):73–79, 1959.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Charnes, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Cooper, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Symonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Management Science, 4(3):235–263, 1958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [17] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Cui, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Sun, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Zhu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Jiang, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Portfolio optimization with nonparametric value at risk: A block coordinate descent method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' INFORMS Journal on Computing, 30 (3):454–471, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [18] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Cui and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Modern nonconvex nondifferentiable optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' SIAM, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [19] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Curtis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Wachter, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Zavala.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A sequential algorithm for solving nonlinear optimization problems with chance constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' SIAM Journal on Optimization, 28(1): 930–958, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [20] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Dentcheva and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Martinez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Regularization methods for optimization problems with probabilistic constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematical Programming, 138(1):223–251, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [21] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Dielman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lowry, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pfaffenberger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A comparison of quantile estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Com- munications in Statistics-Simulation and Computation, 23(2):355–371, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Gao and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Optimal cardinality constrained portfolio selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Operations research, 61(3):745–761, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Geletu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Hoffmann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Kloppel, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' An inner-outer approximation approach to chance constrained optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' SIAM Journal on Optimization, 27(3):1834–1857, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [24] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ghaoui, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Oks, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Oustry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Worst-case value-at-risk and robust portfolio opti- mization: A conic programming approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Operations Research, 51(4):543–556, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [25] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Henrion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Structural properties of linear probabilistic constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Optimization, 56(4): 425–440, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [26] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Henrion and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Strugarek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Convexity of chance constraints with independent random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Computational Optimization and Applications, 41(2):263–276, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Hiriart-Urruty and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lemar´echal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Fundamentals of convex analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Springer Science & Business Media, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [28] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Hong and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Simulating sensitivities of conditional value at risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Management Science, 55(2):281–293, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 31 [29] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Hong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Yang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Operations Research, 59(3):617–630, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [30] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Horst and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Thoai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' DC programming: overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Journal of Optimization Theory and Applications, 103(1):1–43, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [31] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Jadhav and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ramanathan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Parametric and non-parametric estimation of value-at-risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' The Journal of Risk Model Validation, 3(1):51, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [32] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Jiang and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Xie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' ALSO-X and ALSO-X+: Better convex approximations for chance constrained programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Operations Research, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [33] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Jiang and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Novel reformulations and efficient algorithms for the generalized trust region subproblem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' SIAM Journal on Optimization, 29(2):1603–1633, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [34] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Jiang and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' H¨olderian error bounds and Kurdyka-�Lojasiewicz inequality for the trust region subproblem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematics of Operations Research, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [35] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' K¨u¸c¨ukyavuz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' On mixing sets arising in chance-constrained programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematical Programming, 132(1):31–56, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [36] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' K¨u¸c¨ukyavuz and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Jiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Chance-constrained optimization under limited distributional information: A review of reformulations based on sampling and distributional robustness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' EURO Journal on Computational Optimization, 10:100030, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [37] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Kurdyka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' On gradients of functions definable in o-minimal structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In Annales de l’institut Fourier, volume 48, pages 769–783, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [38] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lacoste-Julien.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Convergence rate of Frank-Wolfe for non-convex objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' arXiv preprint arXiv:1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='00345, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [39] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lagoa, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Li, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Sznaier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Probabilistically constrained linear programs and risk-adjusted controller design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' SIAM Journal on Optimization, 15(3):938–951, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [40] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Le Thi and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pham Dinh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' DC programming and DCA: thirty years of developments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematical Programming, 169(1):5–68, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [41] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Le Thi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pham Dinh, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' DC programming and DCA for general DC programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' In Advanced Computational Methods for Knowledge Engineering, pages 15–35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Springer, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [42] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lejeune and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ruszczy´nski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' An efficient trajectory method for probabilistic production-inventory-distribution problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Operations Research, 55(2):378–394, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [43] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Li and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Calculus of the exponent of kurdyka–�lojasiewicz inequality and its applications to linear convergence of first-order methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Foundations of computational mathematics, 18(5):1199–1232, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 32 [44] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Li and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Racine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Nonparametric econometrics: theory and practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Princeton University Press, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [45] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Liu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' So, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Quadratic optimization with orthogonality constraint: explicit �Lojasiewicz exponent and linear convergence of retraction-based line-search and stochastic variance-reduced gradient methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematical Programming, 178(1):215– 262, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [46] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Liu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pong, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Takeda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A refined convergence analysis of pDCAe with applica- tions to simultaneous sparse recovery and outlier detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Computational Optimization and Applications, 73(1):69–100, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [47] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Sequential convex programming methods for a class of structured nonlinear pro- gramming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' arXiv preprint arXiv:1210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='3039, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [48] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Sun, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Zhou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Penalty and augmented Lagrangian methods for constrained DC programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematics of Operations Research, 47(3):2260–2285, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [49] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Luedtke and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ahmed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A sample approximation approach for optimization with prob- abilistic constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' SIAM Journal on Optimization, 19(2):674–699, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [50] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Luedtke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ahmed, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Nemhauser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' An integer programming approach for linear programs with probabilistic constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematical programming, 122(2):247–272, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [51] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Martins-Filho, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Yao, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Torero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Nonparametric estimation of conditional value- at-risk and expected shortfall based on extreme value theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Econometric Theory, 34(1): 23–67, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [52] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Nemirovski and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Shapiro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Scenario approximations of chance constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Probabilistic and randomized methods for design under uncertainty, pages 3–47, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [53] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Nemirovski and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Shapiro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Convex approximations of chance constrained programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' SIAM Journal on Optimization, 17(4):969–996, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [54] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pagnoncelli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ahmed, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Shapiro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Computational study of a chance constrained portfolio selection problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Journal of Optimization Theory and Applications, 142(2):399– 416, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [55] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pagnoncelli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ahmed, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Shapiro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Sample average approximation method for chance constrained programming: Theory and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Journal of Optimization Theory and Applications, 142(2):399–416, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [56] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Razaviyayn, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Alvarado.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Computing B-stationary points of nonsmooth DC programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematics of Operations Research, 42(1):95–118, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [57] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Parzen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Nonparametric statistical data modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Journal of the American statistical association, 74(365):105–121, 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 33 [58] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pe˜na-Ordieres, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Luedtke, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' W¨achter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Solving chance-constrained problems via a smooth sample-based nonlinear approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' SIAM Journal on Optimization, 30 (3):2221–2250, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [59] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pham Dinh and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Le Thi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Convex analysis approach to dc programming: theory, algorithms and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Acta mathematica vietnamica, 22(1):289–355, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [60] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pham Dinh and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Le Thi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Recent advances in DC programming and DCA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Trans- actions on computational intelligence XIII, pages 1–37, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [61] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pr´ekopa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Probabilistic programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Handbooks in operations research and management science, 10:267–351, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [62] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Rockafellar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Convex analysis, volume 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Princeton university press, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [63] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Rockafellar and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Wets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Variational Analysis, volume 317 of Grundlehren der mathematischen Wissenschaften.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Springer–Verlag, Berlin Heidelberg, second edition, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [64] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ruszczy´nski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Mathematical Programming, 93(2):195–215, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [65] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Shen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ouyang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Yang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Zhuang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Sample-based neural approximation ap- proach for probabilistic constrained programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' IEEE Transactions on Neural Networks and Learning Systems, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [66] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Song and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Xiu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A tale of two option markets: Pricing kernels and volatility risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Journal of Econometrics, 190(1):176–196, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [67] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Talluri, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Narasimhan, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Nair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Vendor performance with supply risk: A chance- constrained DEA approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' International Journal of Production Economics, 100(2):212– 222, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [68] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' van Ackooij, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Demassey, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Javal, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Morais, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' de Oliveira, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Swaminathan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A bundle method for nonsmooth DC programming with application to chance-constrained problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Computational Optimization and Applications, 78(2):451–490, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [69] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Van der Vaart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Asymptotic Statistics, volume 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Cambridge university press, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [70] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Liu, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' So.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Linear convergence of a proximal alternating minimiza- tion method with extrapolation for ℓ1-norm principal component analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' arXiv preprint arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='07107, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [71] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Xie and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ahmed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Bicriteria approximation of chance-constrained covering problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Operations Research, 68(2):516–533, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [72] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Ye and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Optimality conditions for bilevel programming problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Optimization, 33(1):9–27, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 34 [73] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Yu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Pong, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Lu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Convergence rate analysis of a sequential convex program- ming method with line search for a class of constrained difference-of-convex optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' SIAM Journal on Optimization, 31(3):2024–2054, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [74] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Yurtsever and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Sra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' CCCP is Frank-Wolfe in disguise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' arXiv preprint arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 12014, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [75] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Zhang and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Chance constrained programming for optimal power flow under un- certainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' IEEE Transactions on Power Systems, 26(4):2417–2424, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' [76] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Zheng, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' Wang, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' So.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' A linearly convergent algorithm for rotationally invariant ℓ1-norm principal component analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' arXiv preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content='05066, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} +page_content=' 35' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf'} diff --git a/gNFLT4oBgHgl3EQfYy_o/vector_store/index.faiss b/gNFLT4oBgHgl3EQfYy_o/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..594bbf1564cbc612693d2bc638c9d61e7c918ed6 --- /dev/null +++ b/gNFLT4oBgHgl3EQfYy_o/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2015afffb1438c5f4c41e62a1277a5f86feaea0a0f3356ee0240414d512c593e +size 7667757 diff --git a/hNFAT4oBgHgl3EQf9B6c/content/tmp_files/2301.08754v1.pdf.txt b/hNFAT4oBgHgl3EQf9B6c/content/tmp_files/2301.08754v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1a023ed474ca54a6239c39079801dfcec6e30a53 --- /dev/null +++ b/hNFAT4oBgHgl3EQf9B6c/content/tmp_files/2301.08754v1.pdf.txt @@ -0,0 +1,956 @@ +DESY-23-004 +The Tachyonic Higgs and the Inflationary Universe +Bibhushan Shakya +Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany +The Standard Model Higgs becomes tachyonic at high energy scales according to current mea- +surements. This unstable regime of the Higgs potential can be realized in the early Universe during +high scale inflation, potentially with catastrophic consequences. +This letter highlights a crucial +inherent feature of such configurations that has so far remained ignored: Higgs particle produc- +tion out of vacuum induced by the rapidly evolving Higgs field, which gets exponentially enhanced +due to the tachyonic instability. Such explosive particle production can rapidly drain energy away +from the Higgs field, sustaining a significant density of Higgs particles even during inflation, and +could initiate a qualitatively different form of preheating in parts of the post-inflationary Universe. +Any study of the Higgs field in its tachyonic phase, either during or after inflation, must therefore +take this substantial particle energy density into account, which could significantly affect the sub- +sequent evolution of such systems. This could carry important implications for high scale inflation, +post-inflationary preheating, observable signals in the cosmic microwave background, gravitational +waves, and primordial black holes, as well as deeper concepts ranging from eternal inflation to the +metastability of the electroweak vacuum. +I. +MOTIVATION +Current +measurements +indicate +that +the +Standard +Model (SM) Higgs potential is unstable at high scales, and +the electroweak (EW) vacuum that our Universe exists in is +metastable, albeit with a decay lifetime significantly longer +than the current age of the Universe. However, the Higgs +could have briefly existed in this unstable regime in the +early Universe due to quantum fluctuations during a pe- +riod of high scale inflation. Such configurations have been +extensively studied in the literature [1–14], and the con- +sequences are believed to be catastrophic: the Higgs field +rapidly evolves to regions of negative potential energy that +can terminate inflation, resulting in crunching anti-de Sit- +ter (AdS) space that grows to engulf all of spacetime, ren- +dering the existence of a Universe such as ours impossible. +This fate can be avoided with nonminimal modifications +of the Higgs potential that stabilize it before reaching such +regimes (see e.g. [8, 9, 15–26]). However, in the absence of +such stabilizing corrections, the SM Higgs appears to be +incompatible with inflation scales greater than the insta- +bility scale of the Higgs potential. +In this Letter, we study the effects of Higgs particle pro- +duction in the tachyonic regime during inflation. It is well +known that the tachyonic instability triggers an expon- +tential growth of particle number [27–29]. Some previous +papers [14, 30, 31] that considered particle production and +tachyonic growth of inhomogeneities in this regime during +inflation found such effects to be negligible; however, these +papers only considered Hubble-induced effects, i.e. those +sourced by the inflationary background. +In this paper, +we focus on particle production induced by the dynam- +ics of the Higgs field itself. It is well known that a non- +adiabatically changing background field can produce par- +ticles out of vacuum; this phenomenon is encountered in +many familiar contexts, such as the Schwinger mechanism, +Hawking radiation from black holes, or gravitational par- +ticle production. Although the energy density in the Higgs +field is subdominant to the inflaton energy density in our +regime of interest, which might have led previous studies +to ignore this effect, we will see that particle production +induced by the Higgs field evolution is an important effect, +due to the fact that the Higgs field can reach significantly +larger values than the Hubble scale during inflation. +A substantial population of Higgs particles produced out +of the Higgs field during inflation can have several impor- +tant consequences. It can draw energy out of the Higgs +field, slowing its evolution towards catastrophic values, +as well as produce stabilizing thermal corrections to the +Higgs potential. +It can terminate inflation locally once +its energy density becomes comparable to the inflaton en- +ergy density, resulting in emergence out of inflation into a +preheated state, much as in warm inflation scenarios [32], +rather than into AdS. Even the collapse into AdS, cur- +rently believed to be catastrophic, could become benign +due to modified evolution due to the significant energy +density in particles. Such considerations reopen the pos- +sibility of restoring the Universe to the EW vacuum after +reheating, thereby making high scale inflation compatible +with the Higgs instability. The presence of a large den- +sity of particles in some Hubble patches could also lead to +various observables signals of such inhomogeneities, such +as imprints in the cosmic microwave background (CMB), +gravitational waves, and primordial black holes. +The main purpose of this Letter is to demonstrate that +excursions of the Higgs to large field values of its unstable +potential is necessarily accompanied by a huge energy den- +sity of Higgs particles, even during inflation, which can af- +fect the subsequent evolution of the Higgs field. Section II +describes the framework for the study. Section III presents +the calculation of particle production from Higgs evolution +and tachyonic instability during inflation. +Backreaction +effects of particle production are addressed in Section IV, +followed by qualitative discussions of the post-inflationary +evolution of such regions (Section V) and observable sig- +nals of such configurations (Section VI). Section VII is de- +voted to a discussion of open questions and broader impli- +cations. +arXiv:2301.08754v1 [hep-ph] 20 Jan 2023 + +2 +II. +FRAMEWORK: HIGGS EVOLUTION +The Standard Model Higgs potential develops an insta- +bility scale at ΛI ∼ 1011 GeV due to the Higgs quartic +coupling running to negative values (see e.g. [33]). Above +this scale, the Higgs potential can be written as +V (h) ≈ −λ +4 h4 . +(1) +We can approximate λ ≈ 0.01 for our purposes. The (field- +dependent) Higgs mass in this regime is tachyonic: +m2 +h(h) = Vhh = −3λh2 ≈ −(0.17 h)2 < 0 . +(2) +The inflaton potential is +Vφ = 3 +8π H2M 2 +P , +(3) +where MP ≈ 1.2 × 1019 GeV is the Planck scale, and H +is the Hubble scale during inflation, which we take to be +constant. +The evolution of the Higgs field in this setup has been +studied in detail in several previous works [2, 4, 5, 8–10, +13, 14]. +For small (sub-Hubble) Higgs field values, the +dynamics is dominated by quantum fluctuations of size +∼ +H +2π induced by inflation, resulting in random coherent +“jumps” of the Higgs field within entire Hubble patches, +which remains the dominant driving force until the Higgs +reaches h ≈ (3/2πλ)1/3H ≈ 3.6H. Beyond this, classical +evolution driven by the Higgs potential takes over, and the +equation of motion of the Higgs field is +¨h + 3H ˙h = dV +dh . +(4) +We will solve for Higgs evolution in this classical regime, +with initial conditions h = 3.6H and ˙h = 0, to obtain the +Higgs field value as a function of time, h(t). In the early +stages of this regime, Hubble friction causes the Higgs field +to slow-roll for several e-folds of inflation, until it reaches +h ∼ hsr ≡ (3/λ)1/2H ≈ 17.3H +(end of slow-roll) +(5) +Beyond this point, Hubble friction becomes negligible, and +the Higgs field diverges quickly to very large values in less +than a single e-fold. +Note that the inflaton energy density dominates over the +Higgs potential energy until +h ∼ hI ≡ +� 3 +2πλ +�1/4� +H MP +(exit from inflation) +(6) +For this paper, we take the scale of inflation to be of the +same order as the Higgs instability scale, H ∼ ΛI; then the +inflaton energy density dominates until h ≳ hI ∼ 104H. If +the Higgs field gets to such large values in a Hubble patch, +this terminates inflation locally, and the region rapidly col- +lapses into AdS. These collapsing regions grow to engulf +the surrounding spacetime after inflation has ended glob- +ally [10]; therefore, the existence of even a single Hubble +patch where the Higgs field extends beyond the slow-roll +regime is posited to be catastrophic for the existence of +our Universe [9, 10, 34]. However, as we will see below, it +is precisely in this window beyond slow-roll, hsr < h < hI, +that particle production becomes important, and could af- +fect the subsequent evolution. +III. +PARTICLE PRODUCTION AND +TACHYONIC GROWTH +We now consider particle production from the evolving +Higgs field in the regime hsr < h < hI. It is well known +that particle production during inflation requires non- +adiabatic conditions. Beyond the Higgs slow-roll regime +h > hsr, the Higgs mass indeed changes non-adiabatically, +| ˙mh/m2 +h| ∼ 1, as can be verified numerically using Eq. 2 +and the numerical solution for Eq. 4. This non-adiabatic +evolution of the Higgs mass can therefore excite Higgs par- +ticles out of the vacuum. 1 The standard approach to cal- +culate the number density of particles produced from a +non-adiabatically changing background is via the compu- +tation of Bogoliubov coefficients (see e.g. [35–37]). Here, +we first present a semi-analytic estimate that is computa- +tionally simpler and offers greater intuition before compar- +ing with numerical solutions. +When the Higgs mass evolves non-adiabatically, modes +with momenta k ≲ |mh| get populated with occupation +number nk = |βk|2 ∼ 1, where βk is the Bogoliubov coeffi- +cient of a positive frequency mode, corresponding to parti- +cle excitation [35–38]. When the mass is tachyonic, the co- +efficient gets further enhanced exponentially via the tachy- +onic instability as β ∼ e−iωt = e|ω|t, where ω2 = m2 +h + k2, +for modes with ω2 < 0. The Higgs particle energy den- +sity as a function of the Higgs field value can therefore be +estimated as 2 +ρP (h) = +� mh +H +d3k +(2π)3 |ω(h, k)|nk = +1 +2π2 +� mh +H +k2dk|ω(h, k)|nk +(7) +where ω2 (h, k) = m2 +h(h) + k2. The mode occupation num- +ber is evaluated as +nk = |βk|2 ≈ Exp +� +2 +� +|ω(h, k)|dt +� +, +(8) +1 All other SM particles that obtain mass from the Higgs mechanism +also have non-adiabatically varying masses and can get excited out +of vacuum in this phase; however, their masses are not tachyonic, +hence the effects of their production are negligible. +2 Strictly speaking, the interpretation of nk as the number of parti- +cles with energy |ωk| is robust only at a stable point of the theory, +not in the unstable regime while the background is changing; nev- +ertheless we will adopt this interpretation here, as is commonly +done in the literature. + +3 +where the integral is taken over all tachyonic regimes, +i.e. over all k and t where ω2 < 0 holds. +For particle production during inflation, two additional +considerations must be taken into account: +• Inflation redshifts momenta and dilutes number den- +sities exponentially fast: k → k/a ≈ ke−Ht. +• The amplitudes of modes that become larger than +the horizon size during inflation, ie k hsr, Hubble friction +is negligible, hence energy conservation dictates that the +sum of the Higgs kinetic energy and the energy density in +particles must be equal to the energy released from the +Higgs potential, +1 +2 +˙h2 + ρP (h) ≈ |V (h)| . +(16) +Substituting ρP (h) from Eq. 15 enables us to solve for ˙h as +a function of h, +˙h ∼ +� +λ/2 +� +1 + 2 +� λ +3 +�2 � h +H +�2 h2 . +(17) +The Higgs kinetic energy obtained from Eq. 17 is shown in +Fig. 2. This shows that as the Higgs field rolls from hsr to +hI, an increasingly greater fraction of the released poten- +tial energy goes into particle production. At h ≳ 103H, +the Higgs kinetic energy is only a percent level component, +and almost all of the released energy is instead in particles. +We can also estimate the thermal correction to the Higgs +potential due to the presence of the particle bath. +Al- +though the particle ensemble is produced in coherent states +of various momenta and has not had the time to thermal- +ize, we may nevertheless use energy conservation to assign +an effective temperature Teff, +π2 +30T 4 +eff ≈ ρP ≈ |V (h)| +⇒ +Teff ∼ +�15λ +2π2 +�1/4 +h ∼ 0.3 h . +(18) +The temperature correction to the Higgs potential from a +thermal bath of Higgs particles at temperature T is given + +5 +by (see e.g. [39, 40]) +∆VT = T 4 +2π2 +� ∞ +0 +dz z2 ln +� +� +�1 − e +− +� +z2+ +|m2 +h| +T 2 +1 − e−z +� +� +� . +(19) +With T = Teff above, it can be checked numerically that +∆VT ∼ 0.03 |V (h)|, hence such thermal corrections do not +appreciably modify the Higgs potential. 3 +Let us briefly discuss the nature of the growing popula- +tion of Higgs particles. Calculations of particle production +from vacuum assume that the produced particle distribu- +tion is homogeneous and isotropic. However, it is also stan- +dard to interpret a high occupation number of scalars in a +coherent state as a classical scalar wave with spatial extent +k−1 [27, 28] (however, see also [41, 42]), which therefore in- +troduces sub-horizon sized spatial inhomogeneities in the +otherwise homogeneous background field. The dynamics +of such large inhomogeneities can form localized, pseudo- +stable configurations known as oscillons, which remains +a topic of active research [43–48]. +In the most extreme +cases, the development of large inhomogeneities can cause +the fragmentation of the Higgs field itself 4, at which point +it makes little sense to talk about a coherently evolving +background Higgs field. Detailed understanding of such +aspects requires lattice studies and is beyond the scope of +this work; here we simply emphasize that understanding +the dynamics of such configurations is necessary to under- +stand the eventual fate of a spatial region with large Higgs +inhomogeneities. +Independent of such details, it is clear that the pop- +ulation of Higgs particles eventually becomes the domi- +nant form of energy in the Universe as h approaches hI, +and we expect this to terminate inflation locally (if infla- +tion has not ended already due to inflaton dynamics) when +ρP ∼ Vφ + V (h). +V. +POST-INFLATIONARY EVOLUTION +We now discuss post-inflationary evolution of regions +where the Higgs has evolved to large field values h > hsr, +in particular whether such regions could be compatible +with the existence of our Universe given the results in +the previous sections. A definitive resolution of this ques- +tion requires numerical simulations of the dynamics of the +Higgs inhomogeneities as well as of spacetime itself, which +is beyond the scope of this paper and will be addressed +in future work [51]; here we only provide some qualitative +discussions. +3 This conclusion remains unchanged even if the Higgs population +decays into a thermal bath of SM particles. +4 Similar scenarios have recently been encountered, for instance, in +the context of resonant particle production leading to axion frag- +mentation [49, 50]. +Higgs instability during preheating has been studied in +previous works (such as [20, 24, 26, 52–57]), but these focus +on the Higgs in the EW minimum, studying the destabi- +lizing effects of tachyonic instabilities, or resonant particle +production through some inflaton-Higgs coupling. Here we +are interested, instead, in configurations where the Higgs +field is already in the unstable region, at h > hsr. Previous +works that considered this regime painted a bleak picture, +concluding that the existence of such regions in our past +lightcone has catastrophic consequences [8–10, 34]. Such +conclusions were primarily based on two observations (see +in particular [10] for detailed discussions): (1) any region +with h ≳ hsr rapidly diverges to h > hI within a single e- +fold, descending into crunching AdS, and post-inflationary +reheating effects likely cannot provide large enough ther- +mal corrections to restore the Higgs to the EW vacuum +in such a short timeframe; (2) while the interior of the +AdS region collapses into a black hole, the boundary of +the AdS region grows outwards, thereby engulfing other +Hubble patches where the Higgs field might remain in the +good (EW) vacuum. These results, however, were obtained +within frameworks that only considered the interplay of +the potential and kinetic energies of the Higgs and the in- +flaton, and must be reassessed in the presence of a large +energy density in particles. +Particle production improves the former consideration +(1) in two respects: the Higgs velocity is slower in this +regime (as seen from Eq. 17 and Fig. 2), and the local Hub- +ble patch emerges out of inflation in a partially preheated +state. One might hope that the slower Higgs velocity could +significantly delay its approach to hI; however, the time +� hI +hsr dh/˙h for the Higgs to roll from hsr to hI still evaluates +(using Eq. 17) to roughly an e-fold. This is reasonable, as +the friction from particle production becomes significant +only towards the very late stages of this evolution. Nev- +ertheless, the emergence out of inflation into a partially +preheated state may aid with the preheating/reheating +through the inflaton. In particular, if inflaton decay oc- +curs via efficient resonant processes such as parametric res- +onance or tachyonic preheating, the coherent Higgs popu- +lation (or its annihilation/decay products) already present +can seed the growth of such resonances, making these even +more efficient. Such explosive particle production from the +inflaton can stabilize the Higgs potential through thermal +corrections, driving it back to the EW vacuum. However, +it should be noted that such effects require some nonmini- +mal coupling between the inflaton and the SM, which will +in general also modify the Higgs potential. +Such effects are unlikely to rescue Hubble patches where +h ∼ hI ∼ 104 H, where |V (h)| ∼ Vφ, even with instanta- +neous reheating. On the other hand, in regions with the +Higgs at somewhat smaller field values, e.g. h ≲ 103H, +we have |V (h)|/Vφ ≲ 10−4, hence releasing even a small +fraction of the inflaton energy density into particles could +provide large enough corrections to stabilize the Higgs po- +tential. +It is well known that preheating from resonant +effects can draw a significant fraction of the inflaton en- + +6 +ergy density within one, or a few, inflaton oscillations [27– +29]. Fig. 2 shows that the kinetic energy of the Higgs is a +percent level of the total energy released from the Higgs +potential in this regime, hence the Higgs spends over an or- +der magnitude longer time in this regime as a consequence +of particle production, improving the prospects of rescu- +ing such patches. Understanding whether this can in fact +be realized requires model-dependent studies with specific +models of inflation, as well as a more careful treatment of +the particle population (including the evolution of inho- +mogeneities / oscillons discussed above), which is beyond +the scope of this paper. Nevertheless, the above considera- +tions at least make it more plausible that post-inflationary +reheating can rescue regions with h > hsr from collapsing +into AdS. +Even the seemingly inevitable descent into AdS might +not be catastrophic. The outward growth of these collaps- +ing AdS regions, as found in [10] (see also [14, 34]), was +based on simulations that only considered potential and +kinetic energies. It is possible that the inclusion of parti- +cles, which can become the dominant energy component in +these patches, could change this outlook, and these AdS +regions – more accurately, regions with negative poten- +tial energy [58] but dominated by particle energy density +– could evolve, likely collapsing into black holes, without +destroying neighboring regions where the Higgs is in the +EW vacuum. A complete resolution of this question re- +quires numerical simulations of the spacetime dynamics. +VI. +OBSERVABLE SIGNALS +Next, we briefly discuss some observable consequences +of large excursions of the Higgs field to h > hsr in the +early Universe. As demonstrated in the previous sections, +such excursions are inevitably accompanied by a large en- +ergy density of Higgs particles in these Hubble patches. +Note that while such particle densities could be a signif- +icant, even dominant, component of energy in the local +patch, from a global viewpoint the Higgs field distribution +is peaked around h ∼ 0 [1–14], and only a small frac- +tion of inflating Hubble patches have the Higgs field at +such large values. Therefore, at the end of inflation, this +configuration results in very large inhomogeneities in an +extremely small fraction of the Universe volume. Such in- +homogeneities, if sufficiently numerous, can nevertheless +leave several observable imprints in our Universe today. +Again, the detailed nature of such signals can only be de- +duced after the post-inflationary dynamics of the Higgs in- +homogeneities and spacetime is better understood, hence +we only make some brief qualitative statements here. +Imprints in the CMB: Particle production during infla- +tion is known to modify the primordial power spectrum +[59], and produce CMB “hotspots” [60]. +Gravitational Waves: +Fluctuations in the Higgs field +generated during inflation can source stochastic gravita- +tional waves [61–63], which can be observed with LISA, +the Einstein Telescope, or Advanced-Ligo [61]. +Black Holes: +The Higgs overdensities, if sufficiently +large, can collapse into black holes, giving rise to a popula- +tion of primordial black holes that could survive to present +times [31, 63] (and, with the right parameters, could even +account for dark matter [31]). +Detailed studies of such signals in scenarios where the +Higgs instability is accompanied by a large population of +Higgs particles will be performed in future work [51]. +VII. +DISCUSSION +This Letter has highlighted the importance of particle +production from Higgs dynamics in its tachyonic phase +during and after high scale inflation. It is shown that non- +adiabatic evolution of the Higgs field beyond its slow-roll +regime, h > hsr ∼ 17H, excites Higgs particles out of +the vacuum, and the tachyonic instability enhances these +particle numbers exponentially, resulting in the released +Higgs potential energy being converted almost entirely to +particle energy density. Therefore, regions of space where +the Standard Model Higgs field has fluctuated to such large +values sustain a significant population of Higgs particles. +Thus, any study of the Higgs field in this regime must take +this sizeable particle density into account. +This remarkable result has many important implica- +tions. +When such regions exit inflation, the emergent +patch is already in a preheated state, which could facil- +itate efficient dissipation of the inflaton energy density +if the inflaton decays through resonant effects that can +build on this pre-existing particle abundance. This opens +the prospects of rapid thermal corrections that could re- +store these regions to the electroweak vacuum instead of +them evolving into anti-de Sitter space. Even if regions +with large Higgs field values fall into AdS, it is not clear +whether, in the presence of large particle densities, such oc- +currences are necessarily catastrophic for the macroscopic +Universe. +Likewise, the presence of such large inhomo- +geneities in parts of the post-inflationary Universe can also +leave observable imprints in the CMB, gravitational waves, +or primordial black holes, which would represent tantaliz- +ing evidence of the realization of the tachyonic phase of +the SM Higgs in our cosmological history. +The results in this Letter could also hold relevance for +questions of a more fundamental nature. The Higgs po- +tential is metastable only for a very narrow range of pa- +rameters (Higgs and top quark masses), hence its realiza- +tion in nature is somewhat of a mystery. In this context, +it is possible that the metastable vacuum exists because +it serves some important purpose in the early Universe, +which could be related to its tachyonic phase, and perhaps +the explosive particle production that comes with it. The +tachyonic regime also plays an intriguing role in the con- +text of eternal inflation: any patch that inflates for too +long will inevitably find itself in the tachyonic phase of +the Higgs, which will trigger a rapid growth of inhomo- + +7 +geneities, terminating inflation locally; in this sense, the +tachyonic Higgs could act as a regulator of eternal infla- +tion. 5 +Several aspects and implications of Higgs particle pro- +duction were only touched upon briefly and qualitatively +here, and require further detailed study. +Of paramount +importance is a better understanding of the evolution of +the large particle number densities or inhomogeneities, +which requires lattice studies. It would also be insightful +to study the post-inflationary evolution of patches with +large Higgs number densities within specific models of in- +flation and (p)reheating, to understand the extent to which +large Higgs field values can be saved from collapsing into +AdS. Numerical simulations of the negative potential en- +ergy regimes with a significant particle energy density are +needed to clarify whether such regions can be compati- +ble with the existence of our Universe. Likewise, careful +derivation of the nature of observable signals of the tachy- +onic phase and accompanying particle production, in par- +ticular in the CMB, gravitational waves, and primordial +black holes, will be crucial in making more direct con- +nections with ongoing and future experimental programs. +These aspects will be addressed in greater detail in future +work [51]. +Acknowledgments +It is a pleasure to thank Gian Giudice for multiple in- +sightful discussions at various stages of this project. The +author is also grateful to Antonio Riotto, Geraldine Ser- +vant, Alexander Westphal, and Kathryn Zurek for help- +ful discussions and feedback, and thanks the Berkeley +Center for Theoretical Physics and the Lawrence Berke- +ley National Laboratory for hospitality during the com- +pletion of this project. +This work is supported by the +Deutsche Forschungsgemeinschaft under Germany’s Excel- +lence Strategy - EXC 2121 Quantum Universe - 390833306. +[1] J. Ellis, J. Espinosa, G. Giudice, A. Hoecker, and A. Ri- +otto, Phys.Lett. B679, 369 (2009), 0906.0954. +[2] J. R. Espinosa, G. F. Giudice, and A. Riotto, JCAP 0805, +002 (2008), 0710.2484. +[3] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, +A. Riotto, and A. Strumia, Phys. Lett. B 709, 222 (2012), +1112.3022. +[4] A. Kobakhidze and A. Spencer-Smith, Phys. Lett. B 722, +130 (2013), 1301.2846. +[5] A. Hook, J. Kearney, B. Shakya, and K. M. Zurek, JHEP +01, 061 (2015), 1404.5953. +[6] A. Kobakhidze and A. Spencer-Smith (2014), 1404.4709. +5 See also [40, 64] for related ideas. +[7] A. Shkerin and S. Sibiryakov, Phys. Lett. B 746, 257 +(2015), 1503.02586. +[8] J. Kearney, H. Yoo, and K. M. Zurek, Phys. Rev. D91, +123537 (2015), 1503.05193. +[9] J. R. Espinosa, G. F. Giudice, E. Morgante, A. Riotto, +L. Senatore, A. Strumia, and N. Tetradis, JHEP 09, 174 +(2015), 1505.04825. +[10] W. E. East, J. Kearney, B. Shakya, H. Yoo, and K. M. +Zurek, Phys. Rev. D 95, 023526 (2017), 1607.00381. +[11] A. V. Grobov, R. V. Konoplich, and S. G. Rubin, Annalen +Phys. 528, 187 (2016), 1610.01421. +[12] K. Kohri and H. Matsui, JCAP 08, 011 (2017), 1607.08133. +[13] T. Markkanen, A. Rajantie, and S. Stopyra, Front. Astron. +Space Sci. 5, 40 (2018), 1809.06923. +[14] V. De Luca, A. Kehagias, and A. Riotto, JCAP 09, 055 +(2022), 2205.10240. +[15] O. Lebedev and A. Westphal, Phys.Lett. B719, 415 +(2013), 1210.6987. +[16] M. Fairbairn and R. Hogan, Phys. Rev. Lett. 112, 201801 +(2014), 1403.6786. +[17] M. Herranen, T. Markkanen, S. Nurmi, and A. Rajantie, +Phys. Rev. Lett. 113, 211102 (2014), 1407.3141. +[18] K. Kamada, Phys. Lett. B 742, 126 (2015), 1409.5078. +[19] A. K. Saha and A. Sil, Phys. Lett. B 765, 244 (2017), +1608.04919. +[20] K. Enqvist, M. Karciauskas, O. Lebedev, S. Rusak, and +M. Zatta, JCAP 11, 025 (2016), 1608.08848. +[21] Y. Ema, M. Karciauskas, O. Lebedev, S. Rusak, and +M. Zatta, Phys. Lett. B 789, 373 (2019), 1711.10554. +[22] Y. Ema, M. Karciauskas, O. Lebedev, and M. Zatta, JCAP +06, 054 (2017), 1703.04681. +[23] D. G. Figueroa, A. Rajantie, and F. Torrenti, Phys. Rev. +D 98, 023532 (2018), 1709.00398. +[24] M. Postma and J. van de Vis, JCAP 05, 004 (2017), +1702.07636. +[25] J. Fumagalli, S. Renaux-Petel, and J. W. Ronayne, JHEP +02, 142 (2020), 1910.13430. +[26] J. Kost, C. S. Shin, and T. Terada, Phys. Rev. D 105, +043508 (2022), 2105.06939. +[27] G. N. Felder, J. Garcia-Bellido, P. B. Greene, L. Kofman, +A. D. Linde, and I. Tkachev, Phys. Rev. Lett. 87, 011601 +(2001), hep-ph/0012142. +[28] G. N. Felder, L. Kofman, and A. D. Linde, Phys. Rev. D +64, 123517 (2001), hep-th/0106179. +[29] D. Boyanovsky, H. J. de Vega, R. Holman, and J. F. J. +Salgado, Phys. Rev. D 54, 7570 (1996), hep-ph/9608205. +[30] D. Rodriguez Roman and M. Fairbairn, Phys. Rev. D 99, +036012 (2019), 1807.02450. +[31] J. R. Espinosa, D. Racco, and A. Riotto, Phys. Rev. Lett. +120, 121301 (2018), 1710.11196. +[32] R. Rangarajan, in 18th Lomonosov Conference on Elemen- +tary Particle Physics (2019), pp. 339–345, 1801.02648. +[33] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, +F. Sala, A. Salvio, and A. Strumia, JHEP 12, 089 (2013), +1307.3536. +[34] A. Strumia and N. Tetradis, JHEP 09, 203 (2022), +2207.00299. +[35] N. Birrell and P. Davies, Quantum Fields in Curved Space, +Cambridge Monographs on Mathematical Physics (Cam- +bridge Univ. Press, Cambridge, UK, 1984), ISBN 978-0- +521-27858-4, 978-0-521-27858-4. +[36] L. E. Parker and D. Toms, Quantum Field Theory in +Curved Spacetime: +Quantized Field and Gravity, Cam- +bridge Monographs on Mathematical Physics (Cambridge +University Press, 2009), ISBN 978-0-521-87787-9, 978-0- + +8 +521-87787-9, 978-0-511-60155-2. +[37] D. S. Gorbunov and V. A. Rubakov, Introduction to the +theory of the early universe: Cosmological perturbations +and inflationary theory (2011). +[38] J. Garcia-Bellido and E. Ruiz Morales, Phys. Lett. B536, +193 (2002), hep-ph/0109230. +[39] E. W. Kolb and M. S. Turner, The Early Universe, vol. 69 +(1990), ISBN 978-0-201-62674-2. +[40] M. Jain and M. P. Hertzberg, Phys. Rev. D 101, 103506 +(2020), 1910.04664. +[41] W. Boucher and J. H. Traschen, Phys. Rev. D 37, 3522 +(1988). +[42] J. H. Traschen and R. H. Brandenberger, Phys. Rev. D 42, +2491 (1990). +[43] M. P. Hertzberg, +Phys. Rev. D 82, +045022 (2010), +1003.3459. +[44] M. A. Amin, R. Easther, and H. Finkel, JCAP 12, 001 +(2010), 1009.2505. +[45] M. A. Amin (2010), 1006.3075. +[46] M. Gleiser, N. Graham, and N. Stamatopoulos, Phys. Rev. +D 83, 096010 (2011), 1103.1911. +[47] M. A. Amin, R. Easther, H. Finkel, R. Flauger, and +M. P. Hertzberg, Phys. Rev. Lett. 108, 241302 (2012), +1106.3335. +[48] M. A. Amin, M. P. Hertzberg, D. I. Kaiser, and J. Karouby, +Int. J. Mod. Phys. D 24, 1530003 (2014), 1410.3808. +[49] N. Fonseca, E. Morgante, R. Sato, and G. Servant, JHEP +04, 010 (2020), 1911.08472. +[50] E. Morgante, W. Ratzinger, R. Sato, and B. A. Stefanek, +JHEP 12, 037 (2021), 2109.13823. +[51] B. Shakya et. al. (2023), in progress. +[52] Y. Ema, K. Mukaida, and K. Nakayama, JCAP 10, 043 +(2016), 1602.00483. +[53] K. Kohri and H. Matsui, Phys. Rev. D 94, 103509 (2016), +1602.02100. +[54] M. Herranen, T. Markkanen, S. Nurmi, and A. Rajantie, +Phys. Rev. Lett. 115, 241301 (2015), 1506.04065. +[55] Y. Ema, K. Mukaida, and K. Nakayama, JCAP 12, 030 +(2017), 1706.08920. +[56] G. N. Felder and L. Kofman, Phys. Rev. D 63, 103503 +(2001), hep-ph/0011160. +[57] M. He, R. Jinno, K. Kamada, A. A. Starobinsky, and +J. Yokoyama, JCAP 01, 066 (2021), 2007.10369. +[58] G. N. Felder, A. V. Frolov, L. Kofman, and A. D. Linde, +Phys. Rev. D 66, 023507 (2002), hep-th/0202017. +[59] D. J. H. Chung, E. W. Kolb, A. Riotto, and I. I. Tkachev, +Phys. Rev. D 62, 043508 (2000), hep-ph/9910437. +[60] J. H. Kim, S. Kumar, A. Martin, and Y. Tsai, JHEP 11, +158 (2021), 2107.09061. +[61] J. R. Espinosa, D. Racco, and A. Riotto, JCAP 09, 012 +(2018), 1804.07732. +[62] J.-F. Dufaux, G. Felder, L. Kofman, and O. Navros, JCAP +03, 001 (2009), 0812.2917. +[63] D. Y. Cheong, K. Kohri, and S. C. Park, JCAP 10, 015 +(2022), 2205.14813. +[64] M. Jain and M. P. Hertzberg, Phys. Rev. D 100, 023513 +(2019), 1904.04262. + diff --git a/hNFAT4oBgHgl3EQf9B6c/content/tmp_files/load_file.txt b/hNFAT4oBgHgl3EQf9B6c/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..d33586c2f7d5a52d1839db0730a823f544e921ae --- /dev/null +++ b/hNFAT4oBgHgl3EQf9B6c/content/tmp_files/load_file.txt @@ -0,0 +1,720 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf,len=719 +page_content='DESY-23-004 The Tachyonic Higgs and the Inflationary Universe Bibhushan Shakya Deutsches Elektronen-Synchrotron DESY, Notkestr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' 85, 22607 Hamburg, Germany The Standard Model Higgs becomes tachyonic at high energy scales according to current mea- surements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' This unstable regime of the Higgs potential can be realized in the early Universe during high scale inflation, potentially with catastrophic consequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' This letter highlights a crucial inherent feature of such configurations that has so far remained ignored: Higgs particle produc- tion out of vacuum induced by the rapidly evolving Higgs field, which gets exponentially enhanced due to the tachyonic instability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Such explosive particle production can rapidly drain energy away from the Higgs field, sustaining a significant density of Higgs particles even during inflation, and could initiate a qualitatively different form of preheating in parts of the post-inflationary Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Any study of the Higgs field in its tachyonic phase, either during or after inflation, must therefore take this substantial particle energy density into account, which could significantly affect the sub- sequent evolution of such systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' This could carry important implications for high scale inflation, post-inflationary preheating, observable signals in the cosmic microwave background, gravitational waves, and primordial black holes, as well as deeper concepts ranging from eternal inflation to the metastability of the electroweak vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' MOTIVATION Current measurements indicate that the Standard Model (SM) Higgs potential is unstable at high scales, and the electroweak (EW) vacuum that our Universe exists in is metastable, albeit with a decay lifetime significantly longer than the current age of the Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' However, the Higgs could have briefly existed in this unstable regime in the early Universe due to quantum fluctuations during a pe- riod of high scale inflation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Such configurations have been extensively studied in the literature [1–14], and the con- sequences are believed to be catastrophic: the Higgs field rapidly evolves to regions of negative potential energy that can terminate inflation, resulting in crunching anti-de Sit- ter (AdS) space that grows to engulf all of spacetime, ren- dering the existence of a Universe such as ours impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' This fate can be avoided with nonminimal modifications of the Higgs potential that stabilize it before reaching such regimes (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' [8, 9, 15–26]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' However, in the absence of such stabilizing corrections, the SM Higgs appears to be incompatible with inflation scales greater than the insta- bility scale of the Higgs potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' In this Letter, we study the effects of Higgs particle pro- duction in the tachyonic regime during inflation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' It is well known that the tachyonic instability triggers an expon- tential growth of particle number [27–29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Some previous papers [14, 30, 31] that considered particle production and tachyonic growth of inhomogeneities in this regime during inflation found such effects to be negligible;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' however, these papers only considered Hubble-induced effects, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' those sourced by the inflationary background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' In this paper, we focus on particle production induced by the dynam- ics of the Higgs field itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' It is well known that a non- adiabatically changing background field can produce par- ticles out of vacuum;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' this phenomenon is encountered in many familiar contexts, such as the Schwinger mechanism, Hawking radiation from black holes, or gravitational par- ticle production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Although the energy density in the Higgs field is subdominant to the inflaton energy density in our regime of interest, which might have led previous studies to ignore this effect, we will see that particle production induced by the Higgs field evolution is an important effect, due to the fact that the Higgs field can reach significantly larger values than the Hubble scale during inflation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' A substantial population of Higgs particles produced out of the Higgs field during inflation can have several impor- tant consequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' It can draw energy out of the Higgs field, slowing its evolution towards catastrophic values, as well as produce stabilizing thermal corrections to the Higgs potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' It can terminate inflation locally once its energy density becomes comparable to the inflaton en- ergy density, resulting in emergence out of inflation into a preheated state, much as in warm inflation scenarios [32], rather than into AdS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Even the collapse into AdS, cur- rently believed to be catastrophic, could become benign due to modified evolution due to the significant energy density in particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Such considerations reopen the pos- sibility of restoring the Universe to the EW vacuum after reheating, thereby making high scale inflation compatible with the Higgs instability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' The presence of a large den- sity of particles in some Hubble patches could also lead to various observables signals of such inhomogeneities, such as imprints in the cosmic microwave background (CMB), gravitational waves, and primordial black holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' The main purpose of this Letter is to demonstrate that excursions of the Higgs to large field values of its unstable potential is necessarily accompanied by a huge energy den- sity of Higgs particles, even during inflation, which can af- fect the subsequent evolution of the Higgs field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Section II describes the framework for the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Section III presents the calculation of particle production from Higgs evolution and tachyonic instability during inflation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Backreaction effects of particle production are addressed in Section IV, followed by qualitative discussions of the post-inflationary evolution of such regions (Section V) and observable sig- nals of such configurations (Section VI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Section VII is de- voted to a discussion of open questions and broader impli- cations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='08754v1 [hep-ph] 20 Jan 2023 2 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' FRAMEWORK: HIGGS EVOLUTION The Standard Model Higgs potential develops an insta- bility scale at ΛI ∼ 1011 GeV due to the Higgs quartic coupling running to negative values (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' [33]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Above this scale, the Higgs potential can be written as V (h) ≈ −λ 4 h4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' (1) We can approximate λ ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='01 for our purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' The (field- dependent) Higgs mass in this regime is tachyonic: m2 h(h) = Vhh = −3λh2 ≈ −(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='17 h)2 < 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' (2) The inflaton potential is Vφ = 3 8π H2M 2 P , (3) where MP ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='2 × 1019 GeV is the Planck scale, and H is the Hubble scale during inflation, which we take to be constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' The evolution of the Higgs field in this setup has been studied in detail in several previous works [2, 4, 5, 8–10, 13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' For small (sub-Hubble) Higgs field values, the dynamics is dominated by quantum fluctuations of size ∼ H 2π induced by inflation, resulting in random coherent “jumps” of the Higgs field within entire Hubble patches, which remains the dominant driving force until the Higgs reaches h ≈ (3/2πλ)1/3H ≈ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='6H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Beyond this, classical evolution driven by the Higgs potential takes over, and the equation of motion of the Higgs field is ¨h + 3H ˙h = dV dh .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' (4) We will solve for Higgs evolution in this classical regime, with initial conditions h = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='6H and ˙h = 0, to obtain the Higgs field value as a function of time, h(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' In the early stages of this regime, Hubble friction causes the Higgs field to slow-roll for several e-folds of inflation, until it reaches h ∼ hsr ≡ (3/λ)1/2H ≈ 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='3H (end of slow-roll) (5) Beyond this point, Hubble friction becomes negligible, and the Higgs field diverges quickly to very large values in less than a single e-fold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Note that the inflaton energy density dominates over the Higgs potential energy until h ∼ hI ≡ � 3 2πλ �1/4� H MP (exit from inflation) (6) For this paper, we take the scale of inflation to be of the same order as the Higgs instability scale, H ∼ ΛI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' then the inflaton energy density dominates until h ≳ hI ∼ 104H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' If the Higgs field gets to such large values in a Hubble patch, this terminates inflation locally, and the region rapidly col- lapses into AdS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' These collapsing regions grow to engulf the surrounding spacetime after inflation has ended glob- ally [10];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' therefore, the existence of even a single Hubble patch where the Higgs field extends beyond the slow-roll regime is posited to be catastrophic for the existence of our Universe [9, 10, 34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' However, as we will see below, it is precisely in this window beyond slow-roll, hsr < h < hI, that particle production becomes important, and could af- fect the subsequent evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' PARTICLE PRODUCTION AND TACHYONIC GROWTH We now consider particle production from the evolving Higgs field in the regime hsr < h < hI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' It is well known that particle production during inflation requires non- adiabatic conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Beyond the Higgs slow-roll regime h > hsr, the Higgs mass indeed changes non-adiabatically, | ˙mh/m2 h| ∼ 1, as can be verified numerically using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' 2 and the numerical solution for Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' This non-adiabatic evolution of the Higgs mass can therefore excite Higgs par- ticles out of the vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' 1 The standard approach to cal- culate the number density of particles produced from a non-adiabatically changing background is via the compu- tation of Bogoliubov coefficients (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' [35–37]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' Here, we first present a semi-analytic estimate that is computa- tionally simpler and offers greater intuition before compar- ing with numerical solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' When the Higgs mass evolves non-adiabatically, modes with momenta k ≲ |mh| get populated with occupation number nk = |βk|2 ∼ 1, where βk is the Bogoliubov coeffi- cient of a positive frequency mode, corresponding to parti- cle excitation [35–38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' When the mass is tachyonic, the co- efficient gets further enhanced exponentially via the tachy- onic instability as β ∼ e−iωt = e|ω|t, where ω2 = m2 h + k2, for modes with ω2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' The Higgs particle energy den- sity as a function of the Higgs field value can therefore be estimated as 2 ρP (h) = � mh H d3k (2π)3 |ω(h, k)|nk = 1 2π2 � mh H k2dk|ω(h, k)|nk (7) where ω2 (h, k) = m2 h(h) + k2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' The mode occupation num- ber is evaluated as nk = |βk|2 ≈ Exp � 2 � |ω(h, k)|dt � , (8) 1 All other SM particles that obtain mass from the Higgs mechanism also have non-adiabatically varying masses and can get excited out of vacuum in this phase;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' however, their masses are not tachyonic, hence the effects of their production are negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' 2 Strictly speaking, the interpretation of nk as the number of parti- cles with energy |ωk| is robust only at a stable point of the theory, not in the unstable regime while the background is changing;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' nev- ertheless we will adopt this interpretation here, as is commonly done in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' 3 where the integral is taken over all tachyonic regimes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' over all k and t where ω2 < 0 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' For particle production during inflation, two additional considerations must be taken into account: Inflation redshifts momenta and dilutes number den- sities exponentially fast: k → k/a ≈ ke−Ht.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNFAT4oBgHgl3EQf9B6c/content/2301.08754v1.pdf'} +page_content=' The amplitudes of modes that become larger than the horizon size during inflation, ie k