question_slug
stringlengths 3
77
| title
stringlengths 1
183
| slug
stringlengths 12
45
| summary
stringlengths 1
160
โ | author
stringlengths 2
30
| certification
stringclasses 2
values | created_at
stringdate 2013-10-25 17:32:12
2025-04-12 09:38:24
| updated_at
stringdate 2013-10-25 17:32:12
2025-04-12 09:38:24
| hit_count
int64 0
10.6M
| has_video
bool 2
classes | content
stringlengths 4
576k
| upvotes
int64 0
11.5k
| downvotes
int64 0
358
| tags
stringlengths 2
193
| comments
int64 0
2.56k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
counting-words-with-a-given-prefix | Just 3 lines code๐คฏโค๏ธโ๐ฅMost easy solutionโ
๐จ๐ปโ๐ปBeats ๐ฏ% solutions on LeetCode๐ฆโ๐ฅ | just-3-lines-codemost-easy-solutionbeats-0t6b | IntuitionFirst of all on reading the question I realised that we just need to count the number of words in the given array which have given word as prefix and t | codonaut_anant_05 | NORMAL | 2025-01-09T15:17:05.987936+00:00 | 2025-01-09T15:17:05.987936+00:00 | 8 | false | # Intuition
First of all on reading the question I realised that we just need to count the number of words in the given array which have given word as prefix and then simply return that count.

# Approach
- First create a variable of int data type named `count=0`.
- Now traverse through the given vector `words` and for each word check if the starting of the word contains the given word `pref` as prefix using `substr()` function.
- Increment the `count`, if the above condition is satisfied.
- Finally, return `count`.
# Complexity
- **Time complexity:** O(n*m)โณ
- **Space complexity:** O(1)๐
# Code
```cpp []
class Solution {
public:
int prefixCount(vector<string>& words, string pref) {
int count=0;
for(auto x: words){
count+=(x.substr(0,pref.size())==pref);
}
return count;
}
};
```
๐๐ก๐๐๐จ๐ ๐ช๐ฅ๐ซ๐ค๐ฉ๐๐ ๐๐ ๐ฎ๐ค๐ช ๐๐ค๐ช๐ฃ๐ ๐๐ฉ ๐๐๐ก๐ฅ๐๐ช๐ก ๐๐ช๐ฎ๐จ ๐๐จ ๐๐ฉ ๐ฌ๐ค๐ช๐ก๐ ๐๐ฃ๐๐ค๐ช๐ง๐๐๐ ๐ข๐ ๐ฉ๐ค ๐ฅ๐ค๐จ๐ฉ ๐ข๐ค๐ง๐ ๐จ๐ช๐๐ ๐จ๐ค๐ก๐ช๐ฉ๐๐ค๐ฃ๐จ. ๐ | 2 | 0 | ['Array', 'String', 'C++'] | 0 |
counting-words-with-a-given-prefix | Easy C++ Beats 100% | easy-c-beats-100-by-abhishek-verma01-61ku | IntuitionThe problem requires counting how many strings in the listwordsstart with a specific prefix pref.
The solution involves checking each string in the lis | Abhishek-Verma01 | NORMAL | 2025-01-09T14:27:25.941046+00:00 | 2025-01-09T14:27:25.941046+00:00 | 9 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
The problem requires counting how many strings in the list` words `start with a specific prefix `pref.`
The solution involves checking each string in the list to see if its first few characters match the prefix. If they do, the count is incremented.
# Approach
<!-- Describe your approach to solving the problem. -->
1. Iterate Through Words:
* Loop through each string in the `words` list.
* For each word, ensure that it is at least as long as the prefix to avoid out-of-bound checks.
2. Check Prefix Using `find:`
* Use the `string::find` function to determine if the prefix is present at the start of the string (i.e., at position 0). If true, increment the count.
3. Handle Edge Cases:
* Skip checking if the prefix is longer than the current word, as it cannot match.
4. Return the Count:
* After iterating through all words, return the total count of strings starting with the given prefix.
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- O(n)
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
- O(1)
# Code
```cpp []
class Solution {
public:
int prefixCount(vector<string>& words, string pref) {
int n = words.size(); // Get the number of words in the list
int count = 0; // Initialize a counter to keep track of matches
// Iterate through each word in the list
for (int i = 0; i < n; i++) {
// If the prefix length is greater than the current word's length,
// skip this word since the prefix cannot match
if (pref.size() > words[i].size()) {
continue;
}
// Check if the prefix exists at the start of the word
// 'find(pref) == 0' ensures the prefix is found at index 0
if (words[i].find(pref) == 0) {
count++; // Increment the counter if the prefix matches
}
}
return count; // Return the total count of words with the prefix
}
};
``` | 2 | 0 | ['Array', 'String', 'String Matching', 'Counting', 'C++'] | 0 |
counting-words-with-a-given-prefix | Super easy solution in python. (beats 100%) - one liner solution. | super-easy-solution-in-python-beats-100-mohhp | IntuitionHere we need to find that if the string present in array starts with the given prefix.ApproachThe approach for this is super easy. We just need to loop | shwet_46 | NORMAL | 2025-01-09T14:19:38.686059+00:00 | 2025-01-09T14:28:11.318380+00:00 | 7 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
Here we need to find that if the string present in array starts with the given prefix.
# Approach
<!-- Describe your approach to solving the problem. -->
The approach for this is super easy. We just need to loop through words list and check if it starts with given prefix using ***s.startswith()*** function. If it is true increase the count and after looping return the count.
# Complexity
- Time complexity: O(n*m)
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: O(1)
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```python3 []
class Solution:
def prefixCount(self, words: List[str], pref: str) -> int:
c = 0
for i in words:
if i.startswith(pref):
c += 1
return c
```
# One liner solution ๐ฟ
```
class Solution:
def prefixCount(self, words: List[str], pref: str) -> int:
return sum(1 for x in words if x.startswith(pref))
```
**Hope so you like this !**
| 2 | 0 | ['Array', 'String', 'String Matching', 'Python3'] | 0 |
counting-words-with-a-given-prefix | beats:100%, 1 line javascript solution | 1-line-javascript-solution-by-baesumin-1fyi | IntuitionApproachComplexity
Time complexity: O(n*k)
Space complexity: O(n)
Code | baesumin | NORMAL | 2025-01-09T13:25:54.821457+00:00 | 2025-01-09T23:54:11.135260+00:00 | 16 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity: O(n*k)
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: O(n)
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```javascript []
/**
* @param {string[]} words
* @param {string} pref
* @return {number}
*/
var prefixCount = function (words, pref) {
return words.filter(word => word.startsWith(pref)).length
};
``` | 2 | 0 | ['Array', 'String', 'String Matching', 'JavaScript'] | 0 |
counting-words-with-a-given-prefix | Beginner friendly, beats 100% | beginner-friendly-beats-100-by-akshitha_-4q7p | IntuitionTo check every word in the words[] array starts with the given prefix pref.Approach
Initialize a variable int count=0 to keep the track of the words in | Akshitha_Naverse | NORMAL | 2025-01-09T13:20:12.865889+00:00 | 2025-01-09T13:20:12.865889+00:00 | 6 | false | # Intuition
To check every word in the `words[]` array starts with the given prefix `pref`.
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
- Initialize a variable `int count=0` to keep the track of the words in the `words[]` array which start with the given prefix `pref`.
- Simply check if every word in the `words[]` array starts with the given prefix `pref` and increment the `count` variable if so.
- Use the `str.startsWith()` method to check if the given prefix `pref` is a prefix of the current word from the `words[]` array.
- Return the `count`.
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity: O(N)
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: O(1)
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
public int prefixCount(String[] words, String pref) {
int count=0;
for(String word:words)
{
if(word.startsWith(pref)) count++;
}
return count;
}
}
``` | 2 | 0 | ['Java'] | 0 |
counting-words-with-a-given-prefix | Simple Cpp Solution | simple-cpp-solution-by-arpita_sat-m5mq | ApproachIterate through elements of words and just compare te starting characters of each word with the pref string.Complexity
Time complexity: O(n*m) where n = | arpita_sat | NORMAL | 2025-01-09T12:56:29.333850+00:00 | 2025-01-09T12:56:29.333850+00:00 | 11 | false |
# Approach
<!-- Describe your approach to solving the problem. -->
Iterate through elements of words and just compare te starting characters of each word with the pref string.
# Complexity
- Time complexity: O(n*m) where n = number of words and m = length of pref string
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: O(1)
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
int prefixCount(vector<string>& words, string pref) {
int ans=0;
for(int i=0; i<words.size(); i++)
{
bool flag=true;
for(int j=0; j<pref.length(); j++)
{
if(pref[j] != words[i][j])
{
flag=false;
break;
}
}
if(flag) ans++;
}
return ans;
}
};
``` | 2 | 0 | ['C++'] | 0 |
counting-words-with-a-given-prefix | My minimal and easy solution in c++ | my-minimal-and-easy-solution-in-c-by-mo7-sqz7 | My Code | Mo7amed_3bdelghany | NORMAL | 2025-01-09T12:43:30.387880+00:00 | 2025-01-09T12:43:30.387880+00:00 | 14 | false |
# My Code
```cpp []
class Solution {
public:
int prefixCount(vector<string>& words, string pref) {
int count = 0, n = pref.size();
for(auto it: words){
if(it.substr(0, n) == pref)
count++;
}
return count;
}
};
``` | 2 | 0 | ['String Matching', 'C++'] | 0 |
counting-words-with-a-given-prefix | Easy solution || Beats 100% | easy-solution-beats-100-by-shantanusaxen-safv | IntuitionMatching every character of pref with the the prefixes of strings present in words array.Approach
Iterate through every element in the array. And initi | ShantanuSaxena | NORMAL | 2025-01-09T11:49:49.036811+00:00 | 2025-01-09T11:49:49.036811+00:00 | 8 | false | 
# Intuition
Matching every character of pref with the the prefixes of strings present in words array.
# Approach
1. Iterate through every element in the array. And initialize a counter cnt to return the final answer.
2. Now check is the pref is a prefix of words[i] or not. If it is a prefix than increase the cnt.
3. To check initialize a pointer (j = 0) over pref and string and check one by one if they match than increment the pointer j (j++) otherwise return false.
# Complexity
- Time complexity: **O(n.m)**
where n = size of array and m = length of pref string.
- Space complexity: **O(1)**
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
bool check(string s1, string s2){
int j = 0;
while(j < s2.size()){
if(s1[j] != s2[j]) return false;
else j++;
}
return true;
}
int prefixCount(vector<string>& words, string pref) {
int n = words.size();
int cnt = 0;
for(int i = 0; i < n; i++){
if(check(words[i], pref)) cnt++;
}
return cnt;
}
};
```
Upvote if it helps :)
| 2 | 0 | ['C++'] | 0 |
counting-words-with-a-given-prefix | JAVA | Faster Than 100% | Runtime : 1ms | java-faster-than-100-runtime-1ms-by-07_d-esah | Complexity
Time complexity: O(N)
Space complexity: O(N)
Code | 07_deepak | NORMAL | 2025-01-09T11:09:07.026557+00:00 | 2025-01-09T11:09:07.026557+00:00 | 10 | false |
# Complexity
- Time complexity: **O(N)**
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: **O(N)**
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
public int prefixCount(String[] words, String pref) {
int n=pref.length(),c=0;
for(String i:words){
if(i.length()>=n && i.substring(0,n).equals(pref)){
c+=1;
}
}
return c;
}
}
``` | 2 | 0 | ['Java'] | 0 |
counting-words-with-a-given-prefix | Very Easy Detailed Solution ๐ฅ || ๐ฅ Beats 100% || ๐ฏ Two Approaches | very-easy-detailed-solution-beats-100-tw-92ow | Approach 1:
Helper Function (isPrefix):
Checks if a string (str1) starts with another string (pref) by comparing the substring of str1 of length equal to pref | chaturvedialok44 | NORMAL | 2025-01-09T10:31:50.065115+00:00 | 2025-01-09T10:31:50.065115+00:00 | 28 | false | # Approach 1:
<!-- Describe your approach to solving the problem. -->
1. **Helper Function (isPrefix):**
- Checks if a string (str1) starts with another string (pref) by comparing the substring of str1 of length equal to pref.
- If the length of str1 is less than the length of pref, it immediately returns false since pref cannot be a prefix.
2. **Main Function (prefixCount):**
- Iterates through the words array.
- For each word, it calls the isPrefix function to check if the word starts with pref.
- If isPrefix returns true, the counter ans is incremented.
3. **Return Value:**
- The total count of words with the specified prefix is returned.
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
$O(n*n2)$
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
$O(n*n2)$
# Code
```java []
class Solution {
private boolean isPrefix(String str1, String pref) {
int n1 = str1.length(), n2 = pref.length();
if (n1 < n2) {
return false;
}
return str1.substring(0, n2).equals(pref);
}
public int prefixCount(String[] words, String pref) {
int n = words.length, ans = 0;
for(int i=0; i<n; i++){
if(isPrefix(words[i], pref)){
ans++;
}
}
return ans;
}
}
```
# Approach 2 : Optimized
<!-- Describe your approach to solving the problem. -->
1. **Loop Through the Words:**
- Iterate through each string in the words array.
2. **Length Check:**
- If the length of the current string (s) is less than the length of pref, it cannot have pref as a prefix, so mark it with flag = false.
3. **Character-by-Character Comparison:**
- If the length is sufficient, compare characters of the word and the prefix one by one up to the length of pref.
- If any character doesn't match, set flag = false and break out of the inner loop.
4. **Count Matching Prefixes:**
- If flag remains true, increment the counter ans.
5. **Return the Count:**
- Finally, return the total count of words that match the prefix.
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
$O(n*m)$
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
$O(1)$
# Code
```java []
class Solution {
public int prefixCount(String[] words, String pref) {
int n = words.length;
int m = pref.length();
int ans = 0;
for(int i=0; i<n; i++){
String s = words[i];
boolean flag = true;
if(s.length() < m){
flag = false;
}
else{
for(int j=0; j<s.length() && j<m; j++){
if(s.charAt(j) != pref.charAt(j)){
flag = false;
break;
}
}
}
if(flag){
ans++;
}
}
return ans;
}
}
``` | 2 | 0 | ['Array', 'String', 'String Matching', 'Counting', 'Java'] | 2 |
properties-graph | [C++ & Java] DSU || Simple and easy to understand solution | dsu-simple-and-easy-to-understand-soluti-x4vt | Intuition
find if the nodes are connected or not. we just need to check each item of each property to be checked in the other item property, if its present or n | kreakEmp | NORMAL | 2025-03-23T04:02:11.601008+00:00 | 2025-03-23T05:26:26.063743+00:00 | 2,376 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
- find if the nodes are connected or not. we just need to check each item of each property to be checked in the other item property, if its present or not. To do this further we can create a map of set and push each item to it. the other way around is sort each property and then iteratively match each item form both items property.
- Once we can evaluate connectedness, then simply initialise the total connected count to total items ( assuming all the items are disconnected at the begining). Then keep on reducing the count as we merge two distict group together.
# Approach
- Insert all item's property to the map of set data structure
- Iterate over all possible combinations of nodes
- check if they are connected or not ( standard DSU - find, add code)
- if connected then, reduce the count if the two nodes are distinct groups before combining to single group.
# Complexity
- Time complexity: O(n.n.p)
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: O(n.p)
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
Here n is total node count and p is the length of property
# Code
```cpp []
bool isConnected(unordered_map<int, unordered_set<int>>& mp, int k, int i, int j){
for(auto t: mp[i]) k -= (mp[j].find(t) != mp[j].end())?1:0;
return (k <= 0);
}
int find(int node, vector<int>& par){
return par[node] = ((par[node] == node)?node: find(par[node], par));
}
int add(int a, int b, vector<int>& par){
int pa = find(a, par), pb = find(b, par);
par[pb] = pa;
return (pa != pb)?1:0; // return 1 if bothe are in different group before ese return 0
}
int numberOfComponents(vector<vector<int>>& p, int k) {
int count = p.size();
vector<int> par(p.size(), -1);
unordered_map<int, unordered_set<int>> mp;
for(int i = 0; i < par.size(); ++i) par[i] = i;
for(int i = 0; i < p.size(); ++i){ // create the lookup map
for(int j = 0; j < p[i].size(); ++j) mp[i].insert(p[i][j]);
}
for(int i = 0; i < p.size(); ++i){
for(int j = i+1; j < p.size(); ++j){
if(isConnected(mp, k, i, j)) count -= add(i, j, par); // check connected or not, if connected then add them and if we are merging two disconnected group then reduce the total count by 1
}
}
return count;
}
```
```Java []
boolean isConnected(Map<Integer, Set<Integer>> map, int k, int i, int j){
for(Integer t: map.get(i)) k -= (map.get(j).contains(t))?1:0;
return (k <= 0);
}
int find(int node, int[] par){ System.out.println(node + " " + par[node]);
return par[node] = ((par[node] == node)?node: find(par[node], par));
}
int add(int a, int b, int[] par){
int pa = find(a, par), pb = find(b, par);
par[pb] = pa;
return (pa != pb)?1:0; // return 1 if bothe are in different group before ese return 0
}
int numberOfComponents(int[][] p, int k) {
int count = p.length;
int[] par = new int[p.length];
for(int i = 0; i < par.length; ++i) par[i] = i;
Map<Integer, Set<Integer>> map = new HashMap<>();
for(int i = 0; i < p.length; ++i){ // create the lookup map
for(int j = 0; j < p[i].length; ++j) map.computeIfAbsent(i, key -> new HashSet<>()).add(p[i][j]);
}
for(int i = 0; i < p.length; ++i){
for(int j = i+1; j < p.length; ++j){System.out.println(i + " " + j);
if(isConnected(map, k, i, j)) count -= add(i, j, par); // check connected or not, if connected then add them and if we are merging two disconnected group then reduce the total count by 1
}
}
return count;
}
````
---
<span style="color:green">
<b>Here is an article of my last interview experience - A Journey to FAANG Company, I recomand you to go through this to know which all resources I have used & how I cracked interview at Amazon: </b> </span>
https://leetcode.com/discuss/interview-experience/3171859/Journey-to-a-FAANG-Company-Amazon-or-SDE2-(L5)-or-Bangalore-or-Oct-2022-Accepted
--- | 14 | 0 | ['C++', 'Java'] | 5 |
properties-graph | โกEASYโ
AND SHORT CODE๐จ|| BEATS ๐ฏ๐||ใC++/Java/Py3/JSใโCLEAN EXPLANATION โ | easy-and-short-code-beats-cjavapy3js-cle-iik9 | IntuitionWe need to construct an undirected graph where each node represents a row in the properties matrix. An edge exists between two nodes if the intersectio | Fawz-Haaroon | NORMAL | 2025-03-23T06:06:55.957822+00:00 | 2025-03-23T17:03:58.954297+00:00 | 1,399 | false | # **Intuition**
We need to construct an undirected graph where each node represents a row in the `properties` matrix. An edge exists between two nodes if the intersection of their respective lists contains at least `k` common elements. The problem then reduces to counting the number of connected components in this graph using the **Union-Find (Disjoint Set Union, DSU)** data structure.
---
# **Approach**
1. **Initialize Union-Find (DSU) and Presence Array:**
- Maintain a `parent` array where each node is initially its own parent.
- Use a `cnt` array to store the presence of numbers in each row for quick lookups.
2. **Mark Presence of Numbers in Each Row:**
- Iterate through each row and mark the numbers present in `cnt[i]`.
3. **Check for Intersections Between Rows:**
- For every row `i`, compare it with all previous rows `j`.
- Count the number of common elements between `properties[i]` and `properties[j]`.
- If the common element count is **at least `k`**, merge the two rows using Union-Find.
4. **Count Connected Components:**
- Traverse the `parent` array and count the number of unique roots (nodes that are their own parent).
---
# **Complexity Analysis**
- **Preprocessing Presence Array:** `O(n m)`
- **Checking Intersections:** `O(nยฒ . 100)` (since we check up to 100 numbers per pair)
- **Union-Find Operations:** `O(n . alpha(n))`, where `alpha(n)` is the inverse Ackermann function (almost constant).
# Overall Time Complexity: O(nยฒ + n * m)
# Overall Space Complexity: O(n)
---
# **Code** (commented explanation)
```cpp []
class Solution {
public:
int cnt[155][155]; // Stores presence of numbers in each row
int par[155]; // Union-Find parent array
// Find function with path compression
int fin(int x) {
if (par[x] == x) return x;
return par[x] = fin(par[x]);
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
// Initialize Union-Find and presence array
for (int i = 0; i < n; i++) {
par[i] = i; // Initially, each node is its own parent
memset(cnt[i], 0, sizeof(cnt[i])); // Reset presence array
// Mark numbers present in the current row
for (int num : properties[i]) cnt[i][num] = 1;
// Compare with previous rows to check intersection count
for (int j = 0; j < i; j++) {
int commonCt = 0;
// Count how many numbers appear in both rows
for (int num = 1; num <= 100; num++) {
if (cnt[i][num] && cnt[j][num]) commonCt++;
}
// Merge components if common elements >= k
if (commonCt >= k) par[fin(j)] = fin(i);
}
}
// Count the number of connected components
int compCt = 0;
for (int i = 0; i < n; i++) {
if (fin(i) == i) compCt++;
}return compCt;
}
};
```
```python3 []
class Solution:
def find(self, x, parent):
if parent[x] == x:
return x
parent[x] = self.find(parent[x], parent) # Path compression
return parent[x]
def numberOfComponents(self, properties, k):
n = len(properties)
parent = [i for i in range(n)]
cnt = [[0] * 101 for _ in range(n)] # Presence array
for i in range(n):
for num in properties[i]:
cnt[i][num] = 1
for j in range(i):
common_count = sum(1 for num in range(1, 101) if cnt[i][num] and cnt[j][num])
if common_count >= k:
parent[self.find(j, parent)] = self.find(i, parent)
return sum(1 for i in range(n) if self.find(i, parent) == i)
```
```java []
class Solution {
find(x, parent) {
if (parent[x] === x) return x;
return parent[x] = this.find(parent[x], parent);
}
numberOfComponents(properties, k) {
let n = properties.length;
let parent = Array.from({ length: n }, (_, i) => i);
let cnt = Array.from({ length: n }, () => Array(101).fill(0));
for (let i = 0; i < n; i++) {
for (let num of properties[i]) {
cnt[i][num] = 1;
}
for (let j = 0; j < i; j++) {
let commonCount = 0;
for (let num = 1; num <= 100; num++) {
if (cnt[i][num] && cnt[j][num]) {
commonCount++;
}
}
if (commonCount >= k) {
parent[this.find(j, parent)] = this.find(i, parent);
}
}
}
return parent.filter((_, i) => this.find(i, parent) === i).length;
}
}
```
```javascript []
/**
* @param {number[][]} properties
* @param {number} k
* @return {number}
*/
var numberOfComponents = function(properties, k) {
let n = properties.length;
let parent = Array.from({ length: n }, (_, i) => i);
let cnt = Array.from({ length: n }, () => Array(101).fill(0));
// Find function with path compression
const find = (x) => {
if (parent[x] === x) return x;
return parent[x] = find(parent[x]);
};
// Step 1: Fill presence array
for (let i = 0; i < n; i++) {
for (let num of properties[i]) {
cnt[i][num] = 1;
}
// Step 2: Compare with previous rows
for (let j = 0; j < i; j++) {
let commonCount = 0;
for (let num = 1; num <= 100; num++) {
if (cnt[i][num] && cnt[j][num]) {
commonCount++;
}
}
// Step 3: Union if commonCount >= k
if (commonCount >= k) {
parent[find(j)] = find(i);
}
}
}
// Step 4: Count connected components
let componentCount = 0;
for (let i = 0; i < n; i++) {
if (find(i) === i) {
componentCount++;
}
}
return componentCount;
};
```
# **Code** (withot comments)
```cpp []
class Solution {
public:
int cnt[155][155];
int parent[155];
int find(int x) {
if (parent[x] == x) return x;
return parent[x] = find(parent[x]);
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
for (int i = 0; i < n; i++) {
parent[i] = i;
memset(cnt[i], 0, sizeof(cnt[i]));
for (auto v : properties[i]) cnt[i][v] = 1;
for (int j = 0; j < i; j++) {
int h = 0;
for (int l = 1; l <= 100; l++) {
if (cnt[i][l] && cnt[j][l]) h++;
}if (h >= k) parent[find(j)] = find(i);
}
}
int res = 0;
for (int i = 0; i < n; i++){
if (find(i) == i) res++;
}return res;
}
};
```
```python3 []
class Solution:
def find(self, x, parent):
if parent[x] == x:
return x
parent[x] = self.find(parent[x], parent)
return parent[x]
def numberOfComponents(self, properties, k):
n = len(properties)
parent = [i for i in range(n)]
cnt = [[0] * 101 for _ in range(n)]
for i in range(n):
for num in properties[i]:
cnt[i][num] = 1
for j in range(i):
common_count = sum(1 for num in range(1, 101) if cnt[i][num] and cnt[j][num])
if common_count >= k:
parent[self.find(j, parent)] = self.find(i, parent)
return sum(1 for i in range(n) if self.find(i, parent) == i)
```
```java []
class Solution {
find(x, parent) {
if (parent[x] === x) return x;
return parent[x] = this.find(parent[x], parent);
}
numberOfComponents(properties, k) {
let n = properties.length;
let parent = Array.from({ length: n }, (_, i) => i);
let cnt = Array.from({ length: n }, () => Array(101).fill(0));
for (let i = 0; i < n; i++) {
for (let num of properties[i]) {
cnt[i][num] = 1;
}
for (let j = 0; j < i; j++) {
let commonCount = 0;
for (let num = 1; num <= 100; num++) {
if (cnt[i][num] && cnt[j][num]) {
commonCount++;
}
}
if (commonCount >= k) {
parent[this.find(j, parent)] = this.find(i, parent);
}
}
}
return parent.filter((_, i) => this.find(i, parent) === i).length;
}
}
```
```javascript []
var numberOfComponents = function(properties, k) {
let n = properties.length;
let parent = Array.from({ length: n }, (_, i) => i);
let cnt = Array.from({ length: n }, () => Array(101).fill(0));
const find = (x) => {
if (parent[x] === x) return x;
return parent[x] = find(parent[x]);
};
for (let i = 0; i < n; i++) {
for (let num of properties[i]) {
cnt[i][num] = 1;
}
for (let j = 0; j < i; j++) {
let commonCount = 0;
for (let num = 1; num <= 100; num++) {
if (cnt[i][num] && cnt[j][num]) {
commonCount++;
}
}
if (commonCount >= k) {
parent[find(j)] = find(i);
}
}
}
let componentCount = 0;
for (let i = 0; i < n; i++) {
if (find(i) === i) {
componentCount++;
}
}
return componentCount;
};
```
```
โจ AN UPVOTE WILL BE APPRECIATED ^_~ โจ
```
| 12 | 1 | ['Union Find', 'Graph', 'Matrix', 'Prefix Sum', 'Python', 'C++', 'Java', 'Python3', 'JavaScript'] | 1 |
properties-graph | UnionFind with rank + bitset|C++ beats 100% | unionfind-with-rank-bitsetc-beats-9314-b-fitl | IntuitionSolveed by Union find with optimation by rank.
To implement the interesection by using bitsetApproach[LC1971 uses this UnionFind class with rank. Pleas | anwendeng | NORMAL | 2025-03-23T10:13:39.681488+00:00 | 2025-03-24T23:48:07.771054+00:00 | 393 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
Solveed by Union find with optimation by rank.
To implement the interesection by using bitset
# Approach
<!-- Describe your approach to solving the problem. -->
[LC1971 uses this UnionFind class with rank. Please turn English subtitles if necessary]
[https://youtu.be/B1GQlUN08lk?si=DpfxrPBWc-t5eSPi](https://youtu.be/B1GQlUN08lk?si=DpfxrPBWc-t5eSPi)
1. UnionFind has 2 versions; 1 has `components` as member variable which is computed during performing `Union` action; other is the normal UnionFind with `rank`
2. 2 different versions for function `intersect` which computes the number of elements in $A\cap B$ by using `bitset`
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
$O(n^2m)$ where $m=average_{x\in nums}(|x|)$
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
$O(101)$
# Code 0~4ms||beats 100%
```cpp []
class UnionFind {
public:
char root[100], rank[100], components;
UnionFind(int N): components(N){
iota(root, root+N, 0);
fill(rank, rank+N, 1);
}
int Find(int x) {
return (x==root[x]) ? x : root[x] = Find(root[x]);
}
bool Union(int x, int y) {//Union by rank
int rX = Find(x), rY = Find(y);
if (rX == rY)
return 0;
if (rank[rX] > rank[rY])
swap(rX, rY);
root[rX] = rY;
if (rank[rX] == rank[rY])
rank[rY]++;
components--;
return 1;
}
};
class Solution {
public:
static int intersect(const auto& A, const auto& B){
return (A&B).count();
}
static int numberOfComponents(vector<vector<int>>& properties, int k) {
const int n=properties.size(), m=properties[0].size();
vector<bitset<101>> A(n, 0);
int i=0;
for(auto& a: properties){
for(int x: a) A[i][x]=1;
i++;
}
UnionFind G(n);
int components=n;
for(int i=0; i<n-1; i++){
for(int j=i+1; j<n; j++){
const auto& X=A[i];
const auto& Y=A[j];
if (intersect(X, Y)>=k){
G.Union(i, j);
}
}
}
return G.components;
}
};
```
```cpp [C++ 2nd ver]
class UnionFind {
public:
int root[100], rank[100];
UnionFind(int N){
iota(root, root+N, 0);
fill(rank, rank+N, 1);
}
int Find(int x) {
return (x==root[x]) ? x : root[x] = Find(root[x]);
}
bool Union(int x, int y) {//Union by rank
int rX = Find(x), rY = Find(y);
if (rX == rY)
return 0;
if (rank[rX] > rank[rY])
swap(rX, rY);
root[rX] = rY;
if (rank[rX] == rank[rY])
rank[rY]++;
return 1;
}
bool connected(int x, int y) {
return Find(x) == Find(y);
}
};
class Solution {
public:
static int intersect(const vector<int>& A, const vector<int>& B){
bitset<101> a=0, b=0;
for(int x: A) a[x]=1;
for(int x: B) b[x]=1;
return (a&b).count();
}
static int numberOfComponents(vector<vector<int>>& properties, int k) {
const int n=properties.size(), m=properties[0].size();
UnionFind G(n);
int components=n;
for(int i=0; i<n-1; i++){
for(int j=i+1; j<n; j++){
const auto& A=properties[i];
const auto& B=properties[j];
if (intersect(A, B)>=k){
components-=G.Union(i, j);
// cout<<"i="<<i<<", j="<<j<<" inter="<<intersect(A, B)<<" Union="<<u<<endl;
}
}
}
return components;
}
};
``` | 10 | 0 | ['Bit Manipulation', 'Union Find', 'C++'] | 3 |
properties-graph | C++ | Easy To Understand | DFS Must Learn For Interviews | c-easy-to-understand-dfs-must-learn-for-m1btr | Intuition
The problem involves determining the number of connected components in a graph where nodes represent elements with certain properties. Two nodes are c | kirthik | NORMAL | 2025-03-23T07:55:46.309614+00:00 | 2025-03-23T08:01:55.192337+00:00 | 582 | false | **Intuition**
The problem involves determining the number of connected components in a graph where nodes represent elements with certain properties. Two nodes are connected if they share at least k properties. Our goal is to construct this graph and then count the number of connected components.
**Approach**
- Build the Graph:
- Each element is represented as a node.
- We compare every pair of nodes to check if they have at least k common properties.
- If they do, we add an edge between them, forming an adjacency list representation of the graph.
- Perform DFS to Count Components:
- We traverse the graph using Depth-First Search (DFS) to find all connected components.
- A visited array keeps track of which nodes have been explored.
- Every time we find an unvisited node, we start a new DFS traversal, counting it as a new component.
**Complexity**
**Time Complexity:**
- Constructing the graph involves comparing all pairs of nodes, leading to **O(nยฒ โ
m)**, where **n** is the number of nodes and **m** is the maximum number of properties per node.
- DFS traversal runs in **O(n + e)**, where **e** is the number of edges.
- Overall, the time complexity is **O(nยฒ โ
m)**.
**Space Complexity:**
- The adjacency list requires **O(n + e)**.
- The visited array takes **O(n)**.
- The set representation of properties uses **O(n โ
m)**.
- Overall, the space complexity is **O(nยฒ + n โ
m)** in the worst case.
Explanation of the Code
1. build_graph function:
2. Converts the properties into sets for fast lookup.
3. Iterates through all pairs of nodes and checks if they share at least k properties.
4. If they do, an edge is added to the adjacency list.
5. dfs function:
Recursively explores all connected nodes starting from a given node.
6. numberOfComponents function:
Builds the graph using build_graph.
Uses DFS to count the number of connected components.
Code
```
class Solution {
public:
vector<vector<int>> build_graph(const vector<vector<int>>& p, int k) {
int n = p.size();
vector<vector<int>> adj_list(n);
vector<unordered_set<int>> s(n);
// Convert properties to sets for fast lookup
for (int i = 0; i < n; i++) {
for (auto &x: p[i])
s[i].insert(x);
}
// Check all pairs of nodes for at least k common properties
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
int common = 0;
for (auto &x: s[j]) {
if (s[i].count(x)) common++;
if (common >= k) break;
}
if (common >= k) {
adj_list[i].push_back(j);
adj_list[j].push_back(i);
}
}
}
return adj_list;
}
void dfs(int node, const vector<vector<int>>& adj_list, vector<bool>& visited) {
visited[node] = true;
for (int neigh: adj_list[node]) {
if (!visited[neigh]) {
dfs(neigh, adj_list, visited);
}
}
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
vector<vector<int>> adj = build_graph(properties, k);
int n = properties.size();
vector<bool> visited(n, false);
int count = 0;
for (int i = 0; i < n; i++) {
if (!visited[i]) {
count++;
dfs(i, adj, visited);
}
}
return count;
}
};
```

| 8 | 0 | ['Depth-First Search', 'C++'] | 0 |
properties-graph | Easy & Detailed Explanationโ
| DSU | Union - Find | C++ | Java | Python | Js | easy-detailed-explanation-dsu-union-find-6nxl | ๐ง IntuitionThe problem requires finding the number of connected components in a graph where each node represents a list of elements.
Two nodes are connected if | himanshu_dhage | NORMAL | 2025-03-23T04:05:11.840943+00:00 | 2025-03-23T04:05:11.840943+00:00 | 947 | false | # ๐ง Intuition
The problem requires finding the number of connected components in a graph where each node represents a list of elements.
Two nodes are connected if they share **at least k common elements**.
A **union-find (disjoint set)** data structure is well-suited for this task as it efficiently merges components and finds their representatives.
# ๐ Approach
1๏ธโฃ **Initialize Union-Find:**
- Create two arrays:
- `v1`: Parent array (stores the representative of each node).
- `v2`: Rank array (used for union by rank).
- Each node is initially its own parent.
2๏ธโฃ **Build Adjacency Map:**
- Use a **hash map** (`unordered_map`) for each node to store its elements.
- Helps in quickly checking common elements between nodes.
3๏ธโฃ **Compare Node Pairs:**
- Iterate over all node pairs `(i, j)`.
- Count the **common elements** between them.
- If the count is **โฅ k**, merge the nodes using **union-find**.
4๏ธโฃ **Count Unique Components:**
- Use a **set** to store unique root representatives.
- The size of this set is the number of connected components.
# โณ Complexity
- **Time Complexity:**
- Constructing the adjacency map: $$O(n \cdot m)$$ (where `m` is the average list size).
- Checking common elements: $$O(n^2 \cdot m)$$ in the worst case.
- Union-Find operations (amortized): $$O(\alpha(n))$$ per operation.
- Overall, **approximately** $$O(n^2 \cdot m)$$.
- **Space Complexity:**
- **Adjacency map:** $$O(n \cdot m)$$.
- **Union-Find arrays:** $$O(n)$$.
- **Set for unique components:** $$O(n)$$.
- **Total:** **$$O(n \cdot m)$$**.
### **Step-by-Step Explanation**
```plaintext
properties = [[1,2], [2,3], [4,5]], k = 1
```
### Step 1: Initialize Each Node as Its Own Parent
Initially, each node is its own parent:
| Index (i) | Properties | Parent (v1[i]) | Rank (v2[i]) |
|-----------|------------|----------------|--------------|
| 0 | [1,2] | 0 | 0 |
| 1 | [2,3] | 1 | 0 |
| 2 | [4,5] | 2 | 0 |
### Step 2: Create an Adjacency Map
Each node stores its properties in a map:
| Index (i) | Properties | Frequency Map |
|-----------|------------|---------------|
| 0 | [1,2] | {1:1, 2:1} |
| 1 | [2,3] | {2:1, 3:1} |
| 2 | [4,5] | {4:1, 5:1} |
### Step 3: Compare Nodes and Merge
We check each pair to see if they share at least k = 1 common element.
| Pair (i, j) | Common Elements | Merge? |
|-------------|----------------|------------------|
| (0,1) | {2} | โ
Yes (Union 0,1) |
| (0,2) | {} | โ No |
| (1,2) | {} | โ No |
### Step 4: Find Connected Components
After merging, we check the unique root parents:
| Index (i) | Final Parent (find(i)) |
|-----------|------------------------|
| 0 | 0 |
| 1 | 0 |
| 2 | 2 |
### Unique components are `{0, 2}`, so the final answer is **2**. ๐ฏ
# Code
```cpp []
class Solution {
public:
// Arrays to store parent references and rank for union-find (disjoint set)
vector<int> v1, v2;
// Function to find the representative (root) of a set using path compression
int find(int i)
{
if (v1[i] != i) // If i is not its own parent
{
v1[i] = find(v1[i]); // Recursively find the root and apply path compression
}
return v1[i]; // Return the root of i
}
// Function to unite (merge) two sets using union by rank
void unite(int i, int k)
{
int a = find(i); // Find root of i
int b = find(k); // Find root of k
if (a != b) // If they belong to different sets, merge them
{
if (v2[a] > v2[b])
{
v1[b] = a; // Attach the smaller tree (b) to the larger tree (a)
}
else if (v2[a] < v2[b])
{
v1[a] = b; // Attach the smaller tree (a) to the larger tree (b)
}
else
{
v1[b] = a; // Merge b into a and increase rank of a
v2[a]++;
}
}
}
// Function to count the number of connected components
int numberOfComponents(vector<vector<int>>& p, int k)
{
int n = p.size(); // Number of elements (nodes)
// Initialize disjoint set
v1.resize(n); // Parent array
v2.resize(n, 0); // Rank array (initially all 0)
for (int i = 0; i < n; i++)
{
v1[i] = i; // Each node is its own parent initially
}
// Create an adjacency map to store element frequency for each node
vector<unordered_map<int, int>> mp(n);
for (int i = 0; i < n; i++)
{
for (int j : p[i])
{
mp[i][j] = mp[i][j] + 1; // Count occurrences of each element in node i
}
}
// Compare each pair of nodes to check common elements
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
int cmn = 0; // Count of common elements between node i and node j
// Check for common elements between node i and j
for (auto it = mp[i].begin(); it != mp[i].end(); it++)
{
int num = it->first;
if (mp[j].find(num) != mp[j].end()) // If element exists in both nodes
{
cmn++;
}
}
// If the count of common elements is greater than or equal to k, merge them
if (cmn >= k) {
unite(i, j);
}
}
}
// Count the number of unique connected components
unordered_set<int> st;
for (int i = 0; i < n; i++)
{
st.insert(find(i)); // Insert unique root representatives into the set
}
return st.size(); // The number of unique roots gives the number of components
}
};
```
```javascript []
class Solution {
constructor() {
this.parent = new Map(); // Parent reference map
this.rank = new Map(); // Rank map
}
// Find function with path compression
find(i) {
if (this.parent.get(i) !== i) {
this.parent.set(i, this.find(this.parent.get(i))); // Path compression
}
return this.parent.get(i);
}
// Union function with union by rank
unite(i, k) {
let a = this.find(i);
let b = this.find(k);
if (a !== b) {
if (this.rank.get(a) > this.rank.get(b)) {
this.parent.set(b, a);
} else if (this.rank.get(a) < this.rank.get(b)) {
this.parent.set(a, b);
} else {
this.parent.set(b, a);
this.rank.set(a, this.rank.get(a) + 1);
}
}
}
// Function to count the number of connected components
numberOfComponents(p, k) {
let n = p.length;
// Initialize union-find structure
for (let i = 0; i < n; i++) {
this.parent.set(i, i);
this.rank.set(i, 0);
}
// Create a map to store element frequency for each node
let mp = new Array(n).fill(0).map(() => new Map());
for (let i = 0; i < n; i++) {
for (let num of p[i]) {
mp[i].set(num, (mp[i].get(num) || 0) + 1);
}
}
// Compare each pair of nodes to check common elements
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
let cmn = 0; // Count of common elements
// Count common elements
for (let num of mp[i].keys()) {
if (mp[j].has(num)) {
cmn++;
}
}
// If the count of common elements is >= k, merge the sets
if (cmn >= k) {
this.unite(i, j);
}
}
}
// Count the number of unique connected components
let st = new Set();
for (let i = 0; i < n; i++) {
st.add(this.find(i));
}
return st.size; // The number of unique roots gives the number of components
}
}
```
```python []
from collections import defaultdict
class Solution:
def __init__(self):
self.parent = {} # Dictionary for parent references in union-find
self.rank = {} # Dictionary for rank of sets
def find(self, i):
"""Find the root of node i with path compression."""
if self.parent[i] != i:
self.parent[i] = self.find(self.parent[i]) # Path compression
return self.parent[i]
def unite(self, i, k):
"""Union by rank of two sets."""
a = self.find(i)
b = self.find(k)
if a != b: # Merge only if they are in different sets
if self.rank[a] > self.rank[b]:
self.parent[b] = a
elif self.rank[a] < self.rank[b]:
self.parent[a] = b
else:
self.parent[b] = a
self.rank[a] += 1
def numberOfComponents(self, p, k):
n = len(p) # Number of nodes
# Initialize union-find structure
for i in range(n):
self.parent[i] = i
self.rank[i] = 0
# Create a dictionary to store element occurrences per node
mp = [defaultdict(int) for _ in range(n)]
for i in range(n):
for num in p[i]:
mp[i][num] += 1
# Compare each pair of nodes to check common elements
for i in range(n):
for j in range(i + 1, n):
cmn = sum(1 for num in mp[i] if num in mp[j])
# If the count of common elements is >= k, merge the sets
if cmn >= k:
self.unite(i, j)
# Count the number of unique connected components
return len(set(self.find(i) for i in range(n)))
```
```java []
import java.util.*;
class Solution {
// Arrays for storing parent references and rank in union-find
int[] parent, rank;
// Function to find the representative (root) of a set using path compression
private int find(int i) {
if (parent[i] != i) { // If i is not its own parent
parent[i] = find(parent[i]); // Recursively find the root and apply path compression
}
return parent[i]; // Return the root of i
}
// Function to unite (merge) two sets using union by rank
private void unite(int i, int k) {
int a = find(i); // Find root of i
int b = find(k); // Find root of k
if (a != b) { // If they belong to different sets, merge them
if (rank[a] > rank[b]) {
parent[b] = a; // Attach the smaller tree (b) to the larger tree (a)
} else if (rank[a] < rank[b]) {
parent[a] = b; // Attach the smaller tree (a) to the larger tree (b)
} else {
parent[b] = a; // Merge b into a and increase rank of a
rank[a]++;
}
}
}
// Function to count the number of connected components
public int numberOfComponents(List<List<Integer>> p, int k) {
int n = p.size(); // Number of nodes
// Initialize union-find structure
parent = new int[n];
rank = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i; // Each node is its own parent initially
}
// Create an adjacency map to store element frequency for each node
List<Map<Integer, Integer>> mp = new ArrayList<>();
for (int i = 0; i < n; i++) {
mp.add(new HashMap<>());
for (int num : p.get(i)) {
mp.get(i).put(num, mp.get(i).getOrDefault(num, 0) + 1);
}
}
// Compare each pair of nodes to check common elements
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
int cmn = 0; // Count of common elements between node i and node j
// Check for common elements between node i and j
for (int num : mp.get(i).keySet()) {
if (mp.get(j).containsKey(num)) {
cmn++;
}
}
// If the count of common elements is >= k, merge the sets
if (cmn >= k) {
unite(i, j);
}
}
}
// Count the number of unique connected components
Set<Integer> st = new HashSet<>();
for (int i = 0; i < n; i++) {
st.add(find(i)); // Insert unique root representatives into the set
}
return st.size(); // The number of unique roots gives the number of components
}
}
```
| 8 | 1 | ['Hash Table', 'Union Find', 'C++', 'Java', 'Python3', 'JavaScript'] | 1 |
properties-graph | Fastest C++ | Beats 100% | Easy and explained | fastest-c-beats-100-easy-and-explained-b-evwi | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | AK200199 | NORMAL | 2025-03-23T07:37:22.367655+00:00 | 2025-03-23T07:37:22.367655+00:00 | 504 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class DisjointSet{
vector<int>r,p;
public:
DisjointSet(int n){
r=vector<int>(n);
p=vector<int>(n);
for(int i=0;i<n;i++)p[i]=i;
}
int f(int x){
if(p[x]==x)return x;
return p[x]=f(p[x]);
}
void u(int a,int b){
a=f(a);b=f(b);
if(a==b)return;
if(r[a]<r[b])p[a]=b;
else if(r[b]<r[a])p[b]=a;
else p[b]=a,r[a]++;
}
};
class Solution {
public:
int numberOfComponents(vector<vector<int>>&A,int k){
int n=A.size();
// we can use bitset to find the intersection among all within n^2
// if we do it using set then it will take n^2*m
vector<bitset<101>>bs(n);
for(int i=0;i<n;i++)
for(int x:A[i])
bs[i][x]=1;
// Now to find the no.of componets we can use DSU
DisjointSet d(n);
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
// Insert all the nodes which have edges
// Edges are only if there is more than or equal to k common
// elements among the 2 vectors
if((bs[i]&bs[j]).count()>=k)
d.u(i,j);
}
}
// simply take a set to find the no.of unqiue ultimate parent
unordered_set<int>s;
for(int i=0;i<n;i++)s.insert(d.f(i));
// return the size of the set
return s.size();
}
};
``` | 6 | 0 | ['C++'] | 2 |
properties-graph | โ
Do as they say โ
| do-as-they-say-by-ajay_prabhu-4puc | IntuitionTo solve this problem, I need to build a graph where nodes are connected based on the number of common elements they share. Then I need to count the co | Ajay_Prabhu | NORMAL | 2025-03-23T06:27:03.450161+00:00 | 2025-03-23T06:27:03.450161+00:00 | 180 | false | # Intuition
To solve this problem, I need to build a graph where nodes are connected based on the number of common elements they share. Then I need to count the connected components in this graph.
# Approach
1. Build an adjacency list representation of the graph:
- For each pair of arrays, calculate the number of distinct common elements using a set intersection
- If the intersection count is at least k, add an edge between the corresponding nodes
2. Count connected components using BFS:
- Use a boolean array to keep track of visited nodes
- For each unvisited node, perform BFS and mark all reachable nodes as visited
- Increment the component count each time BFS is performed
# Complexity
- Time complexity: O(nยฒ ร m), where n is the number of arrays and m is the maximum length of any array. We compare each pair of arrays (O(nยฒ)) and calculating the intersection takes O(m) time.
- Space complexity: O(nยฒ + nm) for the adjacency list (O(nยฒ) in worst case) and set operations (O(nm)).
# Code
```java
class Solution {
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
List<List<Integer>> adj = new ArrayList<>();
for(int i = 0; i < n; i++) {
adj.add(new ArrayList<>());
}
// Build the graph
for(int i = 0; i < n; i++) {
for(int j = i + 1; j < n; j++) {
int intersectionCount = intersect(properties[i], properties[j]);
if(intersectionCount >= k) {
adj.get(i).add(j);
adj.get(j).add(i);
}
}
}
// Count connected components
int componentCount = 0;
boolean[] vis = new boolean[n];
for(int i = 0; i < n; i++) {
if(!vis[i]) {
bfs(i, adj, vis);
componentCount++;
}
}
return componentCount;
}
// BFS to traverse all nodes in a connected component
public void bfs(int node, List<List<Integer>> adj, boolean[] vis) {
Queue<Integer> q = new LinkedList<>();
q.add(node);
vis[node] = true;
while(!q.isEmpty()) {
int curNode = q.remove();
for(int neighbour : adj.get(curNode)) {
if(!vis[neighbour]) {
q.add(neighbour);
vis[neighbour] = true;
}
}
}
}
// Count distinct common elements between two arrays
public int intersect(int[] a, int[] b) {
Set<Integer> set1 = new HashSet<>();
Set<Integer> set2 = new HashSet<>();
for(int num : a) set1.add(num);
for(int num : b) set2.add(num);
set1.retainAll(set2);
return set1.size();
}
}
```

| 6 | 0 | ['Hash Table', 'Breadth-First Search', 'Graph', 'Java'] | 1 |
properties-graph | Union-Find and Set Intersection | union-find-and-set-intersection-by-votru-enbw | First, we convert properties to sets so we can use set_intersection.Then, we go though each pair and check if they are already in the same set (find operation). | votrubac | NORMAL | 2025-03-23T04:12:00.019127+00:00 | 2025-03-23T04:12:00.019127+00:00 | 556 | false | First, we convert properties to sets so we can use `set_intersection`.
Then, we go though each pair and check if they are already in the same set (find operation).
If not, we check for the set intersection, and join these two elements.
# Code
```cpp []
int find(int i, vector<int> &ds) {
return ds[i] < 0 ? i : ds[i] = find(ds[i], ds);
}
int numberOfComponents(vector<vector<int>>& props, int k) {
int n = props.size(), m = props[0].size();
vector<int> intersect(m);
vector<set<int>> ps;
for (const auto &p : props)
ps.push_back(set<int>(begin(p), end(p)));
vector<int> ds(n, -1);
for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)
if (int a = find(i, ds), b = find(j, ds); a != b)
if (set_intersection(begin(ps[i]), end(ps[i]), begin(ps[j]), end(ps[j]),
begin(intersect)) - begin(intersect) >= k)
ds[b] = a;
return count(begin(ds), end(ds), -1);
}
``` | 6 | 0 | ['C++'] | 2 |
properties-graph | Use union find | use-union-find-by-thomashsiao-5n47 | IntuitionWhen we look at the description carefully, we can find some hints.
First, it is an undirected graph.
Second, it requires the number of connected compon | ThomasHsiao | NORMAL | 2025-03-23T09:15:53.995070+00:00 | 2025-03-23T09:17:00.179360+00:00 | 166 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
When we look at the description carefully, we can find some hints.
First, it is an undirected graph.
Second, it requires the number of connected components in the resulting graph.
From the second hint, we can image we only need root for every connected graph, then union find is a good choice.
And through the intersect function, we could know if they were connected, we can union them together.
Then how we find all combinations?
We need nested loop to find them.
How we implement the intersect function?
Based on the constraint, we could use two limited array(max size 101 for 1 to 100) for counting.
Then we could check at every index again to count intersections by && operator, then return true if the result were larger than or equal to k.
Finally, counting the parent array to find roots, and it is answer!
# Approach
<!-- Describe your approach to solving the problem. -->
Using union find to find roots!
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
Let m means rows, and n means columns.
we need to loop for all combinations, it takes O(m^2), and we need to do the intersect function will take O(n), so we need O(m^2 * n).
Also, we need to find roots from parent array, it takes O(m).
In sum, the time complexity is O(m^2 * n + m).
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
O(m) for storing rank and parent.
# Code
```cpp []
class Solution {
private:
std::vector<int> parent;
std::vector<int> rank;
int find(int x) {
if (parent[x] == -1) {
return x;
}
return parent[x] = find(parent[x]);
}
void union_set(int x, int y) {
int rx = find(x);
int ry = find(y);
if (rx == ry) {
return;
}
if (rank[rx] > rank[ry]) {
parent[ry] = rx;
rank[rx] += rank[ry];
} else {
parent[rx] = ry;
rank[ry] += rank[rx];
}
}
bool intersect(int& k, std::vector<int>& v1, std::vector<int>& v2) {
int cnt = 0;
int cnt1[101]{ 0 };
int cnt2[101]{ 0 };
for (auto& v : v1) {
++cnt1[v];
}
for (auto& v : v2) {
++cnt2[v];
}
for (int i = 1; i <= 100; ++i) {
if (cnt1[i] && cnt2[i]) {
++cnt;
}
}
return cnt >= k;
}
public:
int numberOfComponents(vector<vector<int>>& properties, int k) {
int rows = properties.size();
int cols = properties[0].size();
parent.resize(rows, -1);
rank.resize(rows, 1);
for (int r = 0; r < rows; ++r) {
for (int n = r + 1; n < rows; ++n) {
if (intersect(k, properties[r], properties[n])) {
union_set(r, n);
}
}
}
int ans = 0;
for (int i = 0; i < rows; ++i) {
if (parent[i] == -1) {
++ans;
}
}
return ans;
}
};
```
```java []
class Solution {
private int[] parent;
private int[] rank;
private int find(int x) {
if (parent[x] == -1) {
return x;
}
return parent[x] = find(parent[x]);
}
private void unionSet(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX == rootY) {
return;
}
if (rank[rootX] > rank[rootY]) {
parent[rootY] = rootX;
rank[rootX] += rank[rootY];
} else {
parent[rootX] = rootY;
rank[rootY] += rank[rootX];
}
}
private boolean intersect(int k, int[] v1, int[] v2) {
int[] count1 = new int[101];
int[] count2 = new int[101];
for (int v : v1) {
count1[v]++;
}
for (int v : v2) {
count2[v]++;
}
int commonCount = 0;
for (int i = 1; i <= 100; i++) {
if (count1[i] > 0 && count2[i] > 0) {
commonCount++;
}
}
return commonCount >= k;
}
public int numberOfComponents(int[][] properties, int k) {
int rows = properties.length;
parent = new int[rows];
rank = new int[rows];
Arrays.fill(parent, -1);
Arrays.fill(rank, 1);
for (int r = 0; r < rows; r++) {
for (int n = r + 1; n < rows; n++) {
if (intersect(k, properties[r], properties[n])) {
unionSet(r, n);
}
}
}
int components = 0;
for (int i = 0; i < rows; i++) {
if (parent[i] == -1) {
components++;
}
}
return components;
}
}
```
```python3 []
class Solution:
def __init__(self):
self.parent = []
self.rank = []
def find(self, x: int) -> int:
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x]) # Path compression
return self.parent[x]
def union_set(self, x: int, y: int) -> None:
root_x = self.find(x)
root_y = self.find(y)
if root_x != root_y:
if self.rank[root_x] > self.rank[root_y]:
self.parent[root_y] = root_x
elif self.rank[root_x] < self.rank[root_y]:
self.parent[root_x] = root_y
else:
self.parent[root_y] = root_x
self.rank[root_x] += 1
def intersect(self, k: int, v1: List[int], v2: List[int]) -> bool:
counter1 = Counter(v1)
counter2 = Counter(v2)
common_count = sum(1 for item in counter1 if item in counter2)
return common_count >= k
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
rows = len(properties)
self.parent = list(range(rows)) # Initialize to itself
self.rank = [0] * rows
for r in range(rows):
for n in range(r + 1, rows):
if self.intersect(k, properties[r], properties[n]):
self.union_set(r, n)
return sum(1 for i in range(rows) if self.find(i) == i)
``` | 4 | 0 | ['Union Find', 'C++', 'Java', 'Python3'] | 0 |
properties-graph | ๐100% User Beat | ๐ก DFS | Java | 100-user-beat-dfs-java-by-s_a_m2003-qhmd | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | s_a_m2003 | NORMAL | 2025-03-24T10:58:02.334091+00:00 | 2025-03-24T10:58:02.334091+00:00 | 52 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
Map<Integer,List<Integer>> graph = new HashMap<>();
public int numberOfComponents(int[][] properties, int k) {
int v = properties.length;
for(int i = 0 ; i < v; i++){
graph.put(i,new ArrayList<>());
}
for(int i = 0 ; i < v; i++){
for(int j = 0; j < v; j++){
if(i != j && checkIntersection(properties[i],properties[j],k)){
addEdge(graph,i,j);
}
}
}
int cc = connectedComponent(graph, v);
System.out.println(cc);
return cc;
}
public boolean checkIntersection(int arr1[], int arr2[], int k){
Arrays.sort(arr1);
Arrays.sort(arr2);
int i = 0;
int j = 0;
Set<Integer> set = new HashSet<>();
while(i < arr1.length && j < arr2.length){
if(arr1[i] == arr2[j]){
set.add(arr1[i]);
i++;
j++;
}
else if(arr1[i] > arr2[j]){
j++;
}else{
i++;
}
}
if(set.size() >= k){
return true;
}
return false;
}
public void addEdge(Map<Integer,List<Integer>> graph, int v1, int v2){
graph.get(v1).add(v2);
graph.get(v2).add(v1);
}
public int connectedComponent(Map<Integer,List<Integer>> graph,int v) {
// one thing that you know Graph is disconnected(Some of them are connected)
// to go on each starting node you have to create an array of visited array
int visited[] = new int[v];
// after that i will try to find all possible diconnected component via
// using visited array...
int count = 0;
for(int i = 0; i < visited.length; i++){
if(visited[i] == 0){
count++;
dfs(graph,visited,i);
}
}
return count;
}
public void dfs(Map<Integer,List<Integer>> graph, int []visited,int src){
Stack<Integer> stack = new Stack<>();
stack.push(src);
while(!stack.isEmpty()){
int v = stack.pop();
if(visited[v] == 1){
continue;
}
visited[v] = 1;
for(int nbrs : graph.get(v)){
if(visited[nbrs] != 1){
stack.push(nbrs);
}
}
}
}
}
``` | 3 | 0 | ['Depth-First Search', 'Graph', 'Java'] | 1 |
properties-graph | Efficiently Counting Connected Components in a Graph Using DFS (Adjacency List) | efficiently-counting-connected-component-eiik | IntuitionThe problem requires us to construct a graph where each node represents a list of properties. An edge exists between two nodes if the number of common | pravardhan_100 | NORMAL | 2025-03-23T04:38:04.369939+00:00 | 2025-03-23T04:38:04.369939+00:00 | 199 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
The problem requires us to construct a graph where each node represents a list of properties. An edge exists between two nodes if the number of common elements in their respective lists is at least k. Our goal is to determine the number of connected components in this graph.
# Approach
<!-- Describe your approach to solving the problem. -->
1. **Graph Construction**:
- Iterate through all pairs of indices \((i, j)\) and check if they share at least \(k\) common elements.
- If they do, add an edge between them in the adjacency list.
2. **Finding Connected Components**:
- Use Depth-First Search (DFS) to count the number of connected components.
3. **Intersection Calculation**:
- Convert each list into a set and count the number of common elements between two sets.
# Complexity
- **Time Complexity**:
- Constructing the adjacency list takes \(O(n^2), where \(n\) is the number of nodes, and \(m\) is the average size of each property list.
- DFS traversal takes \(O(n + E)\), where \(E\) is the number of edges.
- Overall complexity is approximately (O(n^2).
- **Space Complexity**:
- The adjacency list takes \(O(n^2)\) in the worst case.
- The visited array takes \(O(n)\).
- The set operations require \(O(m)\) space per function call.
- Overall space complexity is approximately \(O(n^2 + m)\).
# Code
```java
class Solution {
public int numberOfComponents(int[][] properties, int k) {
int n=properties.length;
List<List<Integer>> adj=new ArrayList();
for(int i=0;i<n;i++)
adj.add(new ArrayList());
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(possible(properties[i],properties[j],k))
{
adj.get(i).add(j);
adj.get(j).add(i);
}
}
}
boolean vis[]=new boolean[n+1];
int cnt=0;
for(int i=0;i<n;i++)
{
if(!vis[i])
{
dfs(i,vis,adj);
cnt++;
}
}
return cnt;
}
public static void dfs(int node,boolean vis[],List<List<Integer>> adj)
{
vis[node]=true;
for(int it:adj.get(node))
{
if(!vis[it])
dfs(it,vis,adj);
}
}
public static boolean possible(int a[],int b[],int k)
{
Set<Integer> set1=new HashSet();
for(int ele:a)
set1.add(ele);
Set<Integer> set2=new HashSet();
for(int ele:b)
{
if(set1.contains(ele))
set2.add(ele);
}
return set2.size()>=k;
}
}
```
This solution efficiently constructs the graph and determines the number of connected components using DFS traversal.
| 3 | 0 | ['Java'] | 1 |
properties-graph | SIMPLE DFS APPROACH USING PYTHON | simple-dfs-approach-using-python-by-vish-33x4 | Complexity
Time complexity:
O(n2)
Space complexity:
O(n)
Code | VISHAAL-KUMAR | NORMAL | 2025-03-23T04:18:43.726301+00:00 | 2025-03-23T04:18:43.726301+00:00 | 196 | false | # Complexity
- Time complexity:
O(n2)
- Space complexity:
O(n)
# Code
```python3 []
from collections import defaultdict
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
n = len(properties)
res = 1
visit = set()
visit.add(0)
graph = defaultdict(list)
def intersect(a, b):
return len(set(a) & set(b))
for i in range(n):
for j in range(n):
if intersect(properties[i], properties[j]) >= k and i != j:
graph[i].append(j)
graph[j].append(i)
def dfs(index):
for neighbour in graph[index]:
if neighbour in visit:
continue
visit.add(neighbour)
dfs(neighbour)
dfs(0)
for i in range(n):
if i not in visit:
dfs(i)
res += 1
return res
``` | 3 | 0 | ['Python3'] | 1 |
properties-graph | simple c++ solution | simple-c-solution-by-22h51a66e5-7zg6 | IntuitionApproachComplexity
Time complexity:
Worst-case O(nยฒ * m)
Space complexity:
O(n * m)Code | 22h51a66e5 | NORMAL | 2025-03-23T04:06:17.352227+00:00 | 2025-03-23T04:06:17.352227+00:00 | 139 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
Worst-case O(nยฒ * m)
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
O(n * m)
# Code
```cpp []
class Disjointset{
private:
vector<int>par,rank;
public:
Disjointset(int n){
par.resize(n);
rank.resize(n,0);
for(int i=0;i<n;i++){
par[i]=i;
}
}
int find(int x){
if(par[x]!=x){
par[x]=find(par[x]);
}
return par[x];
}
void unite(int x,int y){
int rootx=find(x);
int rooty=find(y);
if(rootx!=rooty){
if(rank[rootx]>rank[rooty]){
par[rooty]=rootx;
}
else if(rank[rootx]<rank[rooty]){
par[rootx]=rooty;
}
else{
par[rooty]=rootx;
rank[rootx]++;
}
}
}
bool isc(int x,int y){
return find(x)==find(y);
}
};
class Solution {
public:
int numberOfComponents(vector<vector<int>>& pro, int k) {
vector<set<int>>vs(pro.size());
unordered_set<int>aa;
Disjointset ds(pro.size());
for(int i=0;i<pro.size();i++){
for(auto j:pro[i]){
vs[i].insert(j);
}
}
for(int i=0;i<pro.size();i++){
for(int l=i+1;l<pro.size();l++){
int cnt=0;
for(auto j:vs[i]){
if(vs[l].find(j)!=vs[l].end()){
cnt++;
if(cnt>=k){ds.unite(i,l);break;}
}
}
}
}
for(int c=0;c<pro.size();c++){
aa.insert(ds.find(c));
}
return aa.size();
}
};
``` | 3 | 0 | ['C++'] | 0 |
properties-graph | DSU based solution | dsu-based-solution-by-anubhavpathak03-u02a | I approched this solution by DSUI first solve these question to do this questionQuestion-1 (common element b/w two arrays)Question-2 (count the number of comple | anubhavpathak03 | NORMAL | 2025-03-24T10:42:13.148998+00:00 | 2025-03-24T10:42:13.148998+00:00 | 26 | false | <!-- # Intuition -->
<!-- Describe your first thoughts on how to solve this problem. -->
<!-- # Approach -->
<!-- Describe your approach to solving the problem. -->
<!-- # Complexity -->
<!-- - Time complexity: -->
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
<!-- - Space complexity: -->
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
### I approched this solution by DSU
### I first solve these question to do this question
[Question-1 (common element b/w two arrays)](https://leetcode.com/problems/find-common-elements-between-two-arrays/description/)
[Question-2 (count the number of complete components)](https://leetcode.com/problems/count-the-number-of-complete-components/description/)
#### Good Luck ๐
# Code
```cpp []
class DisjointSet {
public:
vector<int> size, rank, parent;
DisjointSet(int n) {
size.resize(n+1, 1);
rank.resize(n+1, 0);
parent.resize(n+1);
for(int i=0; i<=n; i++) parent[i] = i;
}
int findUltiParent(int n) {
if(n == parent[n]) {
return n;
}
return parent[n] = findUltiParent(parent[n]);
}
void unionByRank(int u, int v) {
int root_u = findUltiParent(u);
int root_v = findUltiParent(v);
if(root_u == root_v) return;
if(rank[root_u] < rank[root_v]) {
parent[root_u] = root_v;
}
else if(rank[root_v] < rank[root_u]) {
parent[root_v] = root_u;
}
else {
parent[root_v] = root_u;
rank[root_u]++;
}
}
};
class Solution {
public:
bool intersect(unordered_set<int>& a, unordered_set<int>& b, int k) {
int cnt = 0;
for(auto it : a) {
if(b.find(it) != b.end()) {
cnt++;
}
}
return cnt >= k;
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
// SC->O(n*m)
vector<unordered_set<int>> s(n);
// TC->O(n*m)
for(int i=0;i<n;i++){
for(auto &it : properties[i]) {
s[i].insert(it);
}
}
DisjointSet dsu(n);
// TC-> O(n^2 * m)
for(int i=0; i<n; i++) {
for(int j=i+1; j<n; j++) {
if(intersect(s[i], s[j], k)) {
dsu.unionByRank(i, j);
}
}
}
// TC-> O(n * x(n)) x-> alpha
int num_of_component = 0;
for(int i=0; i<n; i++) {
if(dsu.findUltiParent(i) == i) {
num_of_component++;
}
}
return num_of_component;
}
};
// TC -> O(n*m + n^2 * m + n*x(n))
// SC -> O(n*m)
``` | 2 | 0 | ['Union Find', 'C++'] | 0 |
properties-graph | Python3 || dfs || T/S: 84% / 99% | python3-dfs-ts-84-99-by-spaulding-9xwi | https://leetcode.com/problems/properties-graph/submissions/1583589292/I could be wrong, but I think that time complexity is *O(N ^2 * M) and space complexity is | Spaulding_ | NORMAL | 2025-03-23T18:44:10.916932+00:00 | 2025-03-23T18:44:10.916932+00:00 | 14 | false | ```python3 []
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
def areConnected(list1, list2):
return len(set(list1) & set(list2)) >= k
def dfs(node: int) -> None:
stack = [node]
while stack:
node = stack.pop()
for nei in range(n):
if nei not in unseen: continue
if areConnected(properties[node], properties[nei]):
unseen.remove(nei)
stack.append(nei)
return
n, ans = len(properties), 0
unseen = set(range(n))
while unseen:
ans += 1
node = unseen.pop()
dfs(node)
return ans
```
[https://leetcode.com/problems/properties-graph/submissions/1583589292/](https://leetcode.com/problems/properties-graph/submissions/1583589292/)
I could be wrong, but I think that time complexity is **O*(*N* ^2 * *M*) and space complexity is *O*(*N* + *M*), in which *N* ~ `len(nums)`. and *M* ~ maximum length of lists in `g.values()`
| 2 | 0 | ['Python3'] | 0 |
properties-graph | ๐๏ธ Counting Connected Components in a Graph ๐๏ธ | counting-connected-components-in-a-graph-2muy | ๐ก Intuition:We need to determine how many connected components exist in a graph constructed from the given properties array.Each index in properties represents | opWzPXRgDd | NORMAL | 2025-03-23T04:29:57.000931+00:00 | 2025-03-23T04:29:57.000931+00:00 | 97 | false | # ๐ก Intuition:
<!-- Describe your first thoughts on how to solve this problem. -->
We need to determine how many connected components exist in a graph constructed from the given `properties` array.
Each index in `properties` represents a node, and an edge is formed between two nodes if they share at least `k` common distinct integers. The number of connected components in the graph represents our answer.
# ๐ ๏ธ Approach:
<!-- Describe your approach to solving the problem. -->
1. Build the Graph:
- Convert each `properties[i]` list into a set for easy intersection calculations.
- Create an adjacency list where two nodes are connected if they share at least `k` common numbers.
2. Perform DFS Traversal:
- Maintain a `visited` list to track explored nodes.
- Use DFS to traverse all connected nodes, marking them as visited.
- Each new DFS call represents discovering a new connected component.
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
Constructing the adjacency list takes $$O(n^2 * m)$$ in the worst case (checking all pairs).
DFS traversal takes $$O(n + e)$$, where e is the number of edges.
Overall, it remains $$O(n^2 * m)$$ in the worst case.
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
$$O(n^2)$$ for adjacency list in the worst case.
$$O(n)$$ for visited array and recursion stack.
Overall: $$O(n^2)$$ worst-case space usage.
# Code
```python3 []
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
n = len(properties)
def intersect(a, b):
seta = set(a)
setb = set(b)
return len(seta.intersection(setb))
adj = [[] for _ in range(n)] # Adjacency list to represent the graph
# Build the graph
for i in range(n):
for j in range(i + 1, n):
if intersect(properties[i], properties[j]) >= k:
adj[i].append(j)
adj[j].append(i) # Graph is undirected
visited = [False] * n
count = 0
def dfs(node):
visited[node] = True
for neighbor in adj[node]:
if not visited[neighbor]:
dfs(neighbor)
# Count connected components
for i in range(n):
if not visited[i]:
dfs(i)
count += 1
return count
```

| 2 | 0 | ['Array', 'Depth-First Search', 'Graph', 'Python3'] | 0 |
properties-graph | Python | Union Find | python-union-find-by-prince0018-ej6h | Code | prince0018 | NORMAL | 2025-03-23T04:06:50.855968+00:00 | 2025-03-23T04:06:50.855968+00:00 | 49 | false | # Code
```python3 []
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
edges=[]
for x in range(len(properties)-1):
for y in range(x+1,len(properties)):
hash1=set(Counter(properties[x]).keys())
hash2=set(Counter(properties[y]).keys())
if len(hash1.intersection(hash2))>=k:
edges.append((x,y))
par=[x for x in range(len(properties))]
rank=[1]*len(properties)
def find(n1):
res=n1
while res!=par[res]:
par[res]=par[par[res]]
res=par[res]
return res
def union(n1,n2):
p1,p2=find(n1),find(n2)
if p1==p2:
return 0
if rank[p1]>rank[p2]:
rank[p1]+=rank[p2]
par[p2]=p1
else:
rank[p2]+=rank[p1]
par[p1]=p2
return 1
res=len(properties)
for n1,n2 in edges:
res-=union(n1,n2)
return res
``` | 2 | 0 | ['Union Find', 'Python3'] | 1 |
properties-graph | โ
โฃ Java Solution โข | java-solution-by-harsh__005-hil7 | Code | Harsh__005 | NORMAL | 2025-03-23T04:02:08.899679+00:00 | 2025-03-23T04:02:08.899679+00:00 | 78 | false | # Code
```java []
class Solution {
private void dfs(boolean[] used, Map<Integer, List<Integer>> map, int v) {
used[v] = true;
for(int child : map.getOrDefault(v, new ArrayList<>())) {
if(!used[child]) {
dfs(used, map, child);
}
}
}
public int numberOfComponents(int[][] properties, int K) {
Map<Integer, List<Integer>> map = new HashMap<>();
int n = properties.length, m = properties[0].length;
for(int i=0; i<n; i++) {
for(int j=i+1; j<n; j++) {
int[][] ct = new int[101][2];
Set<Integer> set = new HashSet<>();
for(int k=0; k<m; k++) {
int v1 = properties[i][k], v2 = properties[j][k];
if(ct[v1][0] == 0) ct[v1][0]++;
if(ct[v2][1] == 0) ct[v2][1]++;
if(ct[v1][0]==1 && ct[v1][1]==1) set.add(v1);
if(ct[v2][0]==1 && ct[v2][1]==1) set.add(v2);
}
if(set.size() >= K) {
map.putIfAbsent(i, new ArrayList<>());
map.putIfAbsent(j, new ArrayList<>());
map.get(i).add(j);
map.get(j).add(i);
}
}
}
boolean used[] = new boolean[n];
int ans = 0;
for(int i=0; i<n; i++) {
if(!used[i]) {
ans++;
dfs(used, map, i);
}
}
return ans;
}
}
``` | 2 | 0 | ['Java'] | 1 |
properties-graph | Easy cpp and Javaโ
| easy-cpp-and-java-by-pune18-ti65 | IntuitionThe problem involves finding the number of connected components in a graph where nodes represent arrays, and edges exist between nodes if they share at | pune18 | NORMAL | 2025-03-23T04:02:04.598888+00:00 | 2025-03-24T01:46:05.568886+00:00 | 129 | false | # Intuition
The problem involves finding the number of connected components in a graph where nodes represent arrays, and edges exist between nodes if they share at least k distinct common integers. The key insight is to model this as a graph problem and use Depth-First Search (DFS) to count the connected components.
# Approach
1. Graph Construction:
* Each array is treated as a node in the graph.
* An edge is added between two nodes if the number of distinct common integers between their corresponding arrays is at least k.
2. Intersection Calculation:
* A helper function intersect calculates the number of distinct common integers between two arrays using sets.
3. DFS Traversal:
* DFS is used to traverse the graph and mark all reachable nodes from a starting node, effectively identifying a connected component.
* The process is repeated for all unvisited nodes to count the total number of connected components.
# Complexity
- Time complexity:
O(n^2โ
m+n+e)
- Space complexity:
O(nโ
m+n+e)
# Code
```java []
import java.util.*;
class Solution {
// Helper function to calculate the number of distinct common integers between two arrays
private int intersect(int[] a, int[] b) {
Set<Integer> setA = new HashSet<>();
for (int num : a) setA.add(num);
Set<Integer> setB = new HashSet<>();
for (int num : b) setB.add(num);
setA.retainAll(setB); // Retain only common elements
return setA.size();
}
// DFS to traverse the graph and mark visited nodes
private void dfs(int node, Map<Integer, List<Integer>> graph, Set<Integer> visited) {
visited.add(node);
for (int neighbor : graph.getOrDefault(node, new ArrayList<>())) {
if (!visited.contains(neighbor)) {
dfs(neighbor, graph, visited);
}
}
}
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
// Build the graph
Map<Integer, List<Integer>> graph = new HashMap<>();
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (intersect(properties[i], properties[j]) >= k) {
// Add edge between i and j
graph.computeIfAbsent(i, x -> new ArrayList<>()).add(j);
graph.computeIfAbsent(j, x -> new ArrayList<>()).add(i);
}
}
}
// Count connected components using DFS
Set<Integer> visited = new HashSet<>();
int components = 0;
for (int i = 0; i < n; i++) {
if (!visited.contains(i)) {
dfs(i, graph, visited);
components++;
}
}
return components;
}
}
```
```c++ []
class Solution {
public:
vector<vector<int>> build_graph(const vector<vector<int>>& p, int k) {
int n = p.size();
vector<vector<int>> adj_list(n);
vector<unordered_set<int>> s(n);
// Convert properties to sets for fast lookup
for (int i = 0; i < n; i++) {
for (auto &x: p[i])
s[i].insert(x);
}
// Check all pairs of nodes for at least k common properties
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
int common = 0;
for (auto &x: s[j]) {
if (s[i].count(x)) common++;
if (common >= k) break;
}
if (common >= k) {
adj_list[i].push_back(j);
adj_list[j].push_back(i);
}
}
}
return adj_list;
}
void dfs(int node, const vector<vector<int>>& adj_list, vector<bool>& visited) {
visited[node] = true;
for (int neigh: adj_list[node]) {
if (!visited[neigh]) {
dfs(neigh, adj_list, visited);
}
}
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
vector<vector<int>> adj = build_graph(properties, k);
int n = properties.size();
vector<bool> visited(n, false);
int count = 0;
for (int i = 0; i < n; i++) {
if (!visited[i]) {
count++;
dfs(i, adj, visited);
}
}
return count;
}
};
``` | 2 | 1 | ['Ordered Map', 'Ordered Set', 'C++', 'Java'] | 1 |
properties-graph | C, Union-Find 100% | c-union-find-100-by-nikamir-955r | IntuitionUse union-find, use the bit masks to store the propertiesComplexity
Time complexity:
O(n2)
Space complexity:
O(n)
Code | nikamir | NORMAL | 2025-03-31T20:12:04.219258+00:00 | 2025-03-31T20:38:30.159501+00:00 | 9 | false | # Intuition
Use union-find, use the bit masks to store the properties
# Complexity
- Time complexity:
$$O(n^2)$$
- Space complexity:
$$O(n)$$
# Code
```c []
/* hold bits for ~100 properties 2x64 bit numbers*/
typedef struct {
/* tree of sets, set size, link to parent */
unsigned char size, parent;
unsigned long long props[2];
} setData;
/* union find instance */
typedef struct {
unsigned char nSets; /* numbers of disjoint sets*/
setData* data; /* Data for each set member */
} unionFind;
/* efficient bit count for 64 bit numbers */
unsigned char bitCount(unsigned long data) {
data = (data & 0x5555555555555555) + ((data & 0xAAAAAAAAAAAAAAAA) >> 1);
data = (data & 0x3333333333333333) + ((data & 0xCCCCCCCCCCCCCCCC) >> 2);
data = (data & 0x0F0F0F0F0F0F0F0F) + ((data & 0xF0F0F0F0F0F0F0F0) >> 4);
data = (data & 0x00FF00FF00FF00FF) + ((data & 0xFF00FF00FF00FF00) >> 8);
data = (data & 0x0000FFFF0000FFFF) + ((data & 0xFFFF0000FFFF0000) >> 16);
data = (data & 0x00000000FFFFFFFF) + ((data & 0xFFFFFFFF00000000) >> 32);
return data;
}
/* finding the set by its member, returnse the set id */
unsigned char getSet(unionFind* pufData, unsigned char x) {
unsigned char curX = x;
unsigned char prevX = pufData->data[curX].parent;
/* traverse to the parent */
while (prevX != curX) {
curX = prevX;
prevX = pufData->data[curX].parent;
}
/* walk again to compress the path */
curX = pufData->data[x].parent;
while (curX != prevX) {
pufData->data[x].parent = prevX;
x = curX;
curX = pufData->data[x].parent;
}
return prevX;
}
/* join two sets, returns 1 if the join took place or 0 x and y are already in the same set */
unsigned char unionSets(unionFind* pufData, unsigned char x, unsigned char y) {
x = getSet(pufData, x);
y = getSet(pufData, y);
if (x == y) return 0;
/* merge smaller to larger */
if (pufData->data[x].size >= pufData->data[y].size) {
pufData->data[x].size += pufData->data[y].size;
pufData->data[y].parent = x;
} else {
pufData->data[y].size += pufData->data[x].size;
pufData->data[x].parent = y;
}
/* reduce the current number of sets*/
--pufData->nSets;
return 1;
}
/* Allocate to "size" sets */
void allocateUFData(unionFind* puf, int size) {
puf->nSets = size;
puf->data = malloc(size * sizeof(setData));
}
/* deallocate tje UF structure */
void deallocateUFData(unionFind* puf) {
free(puf->data);
}
int numberOfComponents(int** properties, int propertiesSize, int* propertiesColSize, int k) {
unionFind ufData;
allocateUFData(&ufData, propertiesSize);
/* Populate the UF structure */
setData* tempData = ufData.data;
int** curProperties = properties;
int* curPropColSize = propertiesColSize;
unsigned char x, y;
for (x = 0; x < propertiesSize; ++x, ++tempData, ++curProperties, ++curPropColSize) {
/* each set is size 1 at start*/
tempData->size = 1;
/* properties set to 0 */
tempData->props[0] = 0UL;
tempData->props[1] = 0UL;
tempData->parent = x; /* each set is unique at start 0..n-1 */
/* Collect properties into bits */
int* curProperty = *curProperties;
for (y = 0; y < *curPropColSize; ++y, ++curProperty) {
/* under 64 to lower part, over 64 to higher part */
if (*curProperty < 64) {
tempData->props[0] |= (1UL << *curProperty);
} else {
tempData->props[1] |= (1UL << (*curProperty - 64));
}
}
}
/* run the edge check between every pair or the vertices: x,y */
setData* xData = ufData.data + 1;
for (x = 1; x < propertiesSize; ++x, ++xData) {
setData* yData = ufData.data;
for (y = 0; y < x; ++y, ++yData) {
unsigned char flagCount = bitCount(xData->props[0] & yData->props[0]);
if (flagCount >= k || (flagCount + bitCount(xData->props[1] & yData->props[1])) >= k) {
if (unionSets(&ufData, x, y) == 1) {
if (ufData.nSets == 1) {
/* if already down to 1 set, stop and return 1 */
deallocateUFData(&ufData);
return 1;
}
}
}
}
}
deallocateUFData(&ufData);
return ufData.nSets;
}
``` | 1 | 0 | ['C'] | 0 |
properties-graph | Beginner Friendly Adjacency List + DFS using unordered sets | C++ | Beats 100% | beginner-friendly-adjacency-list-dfs-usi-ng3v | IntuitionEach row is converted to a set to eliminate duplicates. For all pairs of rows, edges are added if their intersection size meets k. Finally, DFS travers | pratiiik_p | NORMAL | 2025-03-28T10:03:33.085818+00:00 | 2025-03-28T10:03:33.085818+00:00 | 17 | false | # Intuition
Each row is converted to a set to eliminate duplicates. For all pairs of rows, edges are added if their intersection size meets `k`. Finally, DFS traverses the graph to count connected components.
# Approach
1. **Preprocessing Rows into Sets:**
- Convert each row into an `unordered_set` to eliminate duplicate elements within the same row. This ensures that the intersection count between rows is based on distinct values.
2. **Building the Graph:**
- For each pair of rows (i, j) where `i < j`, compute the intersection size of their sets using a helper function.
- If the intersection size is โฅ `k`, add an undirected edge between nodes `i` and `j` in an adjacency list (`H`).
3. **DFS for Connected Components:**
- Initialize a `visited` array to track nodes traversed.
- For each unvisited node, perform DFS to mark all reachable nodes as visited. Each DFS initiation corresponds to a new connected component.
**Example Walkthrough (k=1):**
- **Rows Converted to Sets:**
```
{1,2}, {1}, {3,4}, {4,5}, {5,6}, {7}
```
- **Edges Created:**
- (0-1), (2-3), (3-4) (each pair shares โฅ1 element).
- **Connected Components:**
- Component 1: Nodes 0, 1 (connected via shared '1').
- Component 2: Nodes 2, 3, 4 (connected via 2-3 and 3-4).
- Component 3: Node 5 (no edges).
**Result:** 3 components.
# Complexity
- Time complexity: $$O(nยฒ * m)$$
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
where `n` is the number of rows and `m` is the average row size.
- Space complexity: $$O(nยฒ + n*m)$$
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
storing adjacency lists for up to O(nยฒ) edges and O(n*m) for row sets.
# Code
```cpp []
class Solution {
public:
int intersect(unordered_set <int> &a, unordered_set <int> &b){
int count = 0;
for(auto &n: b){
if(a.find(n)!=a.end())count++;
}
return count;
}
void dfs(int i, vector <bool> &visited, unordered_map <int, vector <int>> &H){
visited[i] = true;
for(auto &node: H[i]){
if(!visited[node])dfs(node, visited, H);
}
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
unordered_map <int, vector <int>> H; // Adjacency list for graph
vector <bool> visited(n, false); // Tracks visited nodes
vector <unordered_set <int>> p; // Stores each row as a set
// Convert each row to a set to remove duplicates (also reduces time complexity)
for(auto u: properties){
unordered_set <int> temp(u.begin(), u.end());
p.push_back(temp);
}
// Build graph
for(int i=0; i<n; i++){
for(int j=i+1; j<n; j++){
if((intersect(p[i], p[j])>=k)){
H[i].push_back(j);
H[j].push_back(i);
}
}
}
int res = 0;
for(int i=0; i<n; i++){
if(!visited[i]){
res++;
dfs(i, visited, H);
}
}
return res;
}
};
``` | 1 | 0 | ['Hash Table', 'Depth-First Search', 'Ordered Set', 'C++'] | 0 |
properties-graph | Beginners Friendly ! Easy to Understand | beginners-friendly-easy-to-understand-by-2fwt | IntuitionApproachComplexity
Time complexity: O(n*m)
Space complexity: O(n*m)
Code | jayprakash00012 | NORMAL | 2025-03-28T06:44:53.901166+00:00 | 2025-03-28T06:44:53.901166+00:00 | 14 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity: O(n*m)
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: O(n*m)
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
int intersect(vector<int> &a,vector<int> &b){
unordered_set<int> st(a.begin(),a.end());
sort(b.begin(),b.end());
int ans=0;
for(int i=0;i<b.size();i++){
if(i>0){
if(b[i]==b[i-1]) continue;
}
if(st.find(b[i])!=st.end()){
ans++;
}
}
return ans;
}
void dfs(unordered_map<int,vector<int>> &adj,int u,vector<int> &visited){
visited[u]=1;
for(auto it:adj[u]){
if(visited[it]==-1){
dfs(adj,it,visited);
}
}
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n= properties.size();
unordered_map<int,vector<int>> adj;
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
if(intersect(properties[i],properties[j])>=k){
adj[i].push_back(j);
adj[j].push_back(i);
}
}
}
vector<int> visited(n,-1);
int ans=0;
for(int i=0;i<n;i++){
if(visited[i]==-1){
dfs(adj,i,visited);
ans++;
}
}
return ans;
}
};
``` | 1 | 0 | ['Array', 'Hash Table', 'Depth-First Search', 'Graph', 'C++'] | 0 |
properties-graph | Disjoint Set & Set intersection - Python solution | disjoint-set-set-intersection-python-sol-m0ed | Intuition & ApproachThis problem can be divited (and the conquered) into two smaller problems.IntersectionWe need an efficient way to find number of distinct in | agayev169 | NORMAL | 2025-03-26T13:46:04.693892+00:00 | 2025-03-26T13:47:02.415755+00:00 | 14 | false | # Intuition & Approach
This problem can be divited (and the conquered) into two smaller problems.
## Intersection
We need an efficient way to find number of distinct integers common to two arrays. The most efficient way to do this is to pre-convert all the arrays to sets and then do an intersection operation between sets.
An intersection of two sets usually takes $$O(N)$$ time since it takes $$O(1)$$ time to find whether a value is presented in a set, therefore, for $$N$$ values it will take $$O(N)$$ time.
## Relationship between nodes
We need an efficient way to find relationship between nodes of our graph (each node is represented by an array as descibed in the problem description).
This problem is usually solved by Disjoint Set/Find-Union data structure (you may check out [explore card for disjoint set](https://leetcode.com/explore/learn/card/graph/618/disjoint-set/) for more details).
The data structure (sometimes recalled as algorithm) is fairly simple. You have two methods: `find(node)` and `union(node1, node2)`. `find(node)` method finds the root of a graph that `node` is a part of. `union(node1, node2)` on the other hand unions two graphs into a bigger graph.
To do this efficiently, we create a list of `parents` which is first filled with `-1`s representing that each node is its parent. Since we haven't started the creation of the relations yet, this is a correct representation of our graph.
For each two connected nodes in our graph, we union them by setting `parents[node2] = node1`.
After processing all the nodes we have our `parents` list with the parent node set for each node we have.
The number of remaining ``-1``s in the `parents` list is the number of connected components.
# Complexity
- Time complexity: $$O(n^2m)$$, where $$n$$ is the number of nodes (length of `properties` list), and $$m$$ is the number of elements in each property.
## Explanation
We have two nested loops to intersect each two nodes, this is $$O(n^2)$$. Then intersection operation takes $$O(m)$$ time and union operation takes $$O(1)$$ time. Therefore, the final time complexity is $$O(n^2m)$$.
- Space complexity: $$O(nm)$$, where $$n$$ is the number of nodes (length of `properties` list), and $$m$$ is the number of elements in each property.
## Explanation
We need to pre-convert all the given properties lists to sets, which use $$O(nm)$$ space. We also use $$O(n)$$ space for `parents` list. Therefore, the final space complexity is $$O(nm)$$.
# Code
```python3 []
class Solution:
def intersect(self, a: set[int], b: set[int]) -> int:
return len(a.intersection(b))
def find(self, n: int) -> int:
if self.parents[n] == -1:
return n
self.parents[n] = self.find(self.parents[n])
return self.parents[n]
def union(self, n1: int, n2: int) -> None:
r1 = self.find(n1)
r2 = self.find(n2)
if r1 == r2:
return
self.parents[r2] = r1
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
n = len(properties)
numSet = [set(p) for p in properties]
self.parents = [-1 for _ in range(n)]
for i in range(n-1):
for j in range(i+1, n):
if self.intersect(numSet[i], numSet[j]) >= k:
self.union(i, j)
res = 0
for p in self.parents:
if p == -1:
res += 1
return res
```

| 1 | 0 | ['Hash Table', 'Union Find', 'Graph', 'Python3'] | 1 |
properties-graph | Simple and easy to understand | BFS | Python3 | Beats 80% | simple-and-easy-to-understand-bfs-python-pogq | Please UpvoteCode | Alpha2404 | NORMAL | 2025-03-26T02:16:48.559953+00:00 | 2025-03-26T02:16:48.559953+00:00 | 11 | false | # Please Upvote
# Code
```python3 []
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
n = len(properties)
m = len(properties[0])
def intersect(a, b):
return len(set(a).intersection(set(b)))
adj = defaultdict(list)
for i in range(n):
for j in range(n):
if i==j:
continue
else:
if intersect(properties[i],properties[j])>=k:
adj[i].append(j)
visited = set()
count = 0
def bfs(node):
qu = deque()
qu.append(node)
visited.add(node)
while qu:
temp = qu.popleft()
for nei in adj[temp]:
if nei not in visited:
qu.append(nei)
visited.add(nei)
return
for i in range(n):
if i not in visited:
count+=1
bfs(i)
return count
``` | 1 | 0 | ['Array', 'Hash Table', 'Breadth-First Search', 'Graph', 'Python3'] | 0 |
properties-graph | Simple || DFS || Beginner Friendly || Counting โ
๐ฏ | simple-dfs-beginner-friendly-counting-by-6lzt | Approach:dfs(u, vis, adj):
Standard depth-first search (DFS) to traverse connected components in an adjacency list representation of a graph.
Marks visited node | mayankn31 | NORMAL | 2025-03-24T19:14:48.065845+00:00 | 2025-03-24T19:14:48.065845+00:00 | 20 | false | # Approach:
## dfs(u, vis, adj):
- Standard depth-first search (DFS) to traverse connected components in an adjacency list representation of a graph.
- Marks visited nodes to avoid reprocessing.
## intersect(a, b):
- Uses two binary arrays (one and two) of size 101 to track the presence of numbers in arrays a and b.
- Checks how many indices have 1 in both arrays (i.e., common distinct integers).
## numberOfComponents(properties, k)
- Graph Construction: Creates an adjacency list where edges are added if two properties share at least k common elements.
- Connected Component Counting: Uses DFS to count the number of connected components in the graph.
# Code
```cpp []
class Solution {
public:
void dfs(int u,vector<bool>& vis,unordered_map<int,vector<int>>& adj){
vis[u]=true;
for(int &v:adj[u]){
if(!vis[v]) dfs(v,vis,adj);
}
}
int intersect(vector<int>& a,vector<int>& b){
int cnt=0;
vector<int>one(100+1,0);
vector<int>two(100+1,0);
for(int &x:a) one[x]=1;
for(int &x:b) two[x]=1;
for(int i=1;i<=100;i++) cnt+=one[i]&two[i];
return cnt;
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
unordered_map<int,vector<int>> adj;
int n=properties.size();
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
if(intersect(properties[i], properties[j])>=k){
adj[i].push_back(j);
adj[j].push_back(i);
}
}
}
int res=0;
vector<bool>vis(n,false);
for(int i=0;i<n;i++){
if(!vis[i]){
dfs(i,vis,adj);
res++;
}
}
return res;
}
};
``` | 1 | 0 | ['Array', 'Hash Table', 'Depth-First Search', 'Graph', 'Counting', 'C++'] | 0 |
properties-graph | ๐100% User Beat | ๐ก DFS | Java | 100-user-beat-dfs-java-by-s_a_m2003-cg3f | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | s_a_m2003 | NORMAL | 2025-03-24T10:56:50.666949+00:00 | 2025-03-24T10:56:50.666949+00:00 | 13 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
Map<Integer,List<Integer>> graph = new HashMap<>();
public int numberOfComponents(int[][] properties, int k) {
int v = properties.length;
for(int i = 0 ; i < v; i++){
graph.put(i,new ArrayList<>());
}
for(int i = 0 ; i < v; i++){
for(int j = 0; j < v; j++){
if(i != j && checkIntersection(properties[i],properties[j],k)){
addEdge(graph,i,j);
}
}
}
int cc = connectedComponent(graph, v);
System.out.println(cc);
return cc;
}
public boolean checkIntersection(int arr1[], int arr2[], int k){
Arrays.sort(arr1);
Arrays.sort(arr2);
int i = 0;
int j = 0;
Set<Integer> set = new HashSet<>();
while(i < arr1.length && j < arr2.length){
if(arr1[i] == arr2[j]){
set.add(arr1[i]);
i++;
j++;
}
else if(arr1[i] > arr2[j]){
j++;
}else{
i++;
}
}
if(set.size() >= k){
return true;
}
return false;
}
public void addEdge(Map<Integer,List<Integer>> graph, int v1, int v2){
graph.get(v1).add(v2);
graph.get(v2).add(v1);
}
public int connectedComponent(Map<Integer,List<Integer>> graph,int v) {
// one thing that you know Graph is disconnected(Some of them are connected)
// to go on each starting node you have to create an array of visited array
int visited[] = new int[v];
// after that i will try to find all possible diconnected component via
// using visited array...
int count = 0;
for(int i = 0; i < visited.length; i++){
if(visited[i] == 0){
count++;
dfs(graph,visited,i);
}
}
return count;
}
public void dfs(Map<Integer,List<Integer>> graph, int []visited,int src){
Stack<Integer> stack = new Stack<>();
stack.push(src);
while(!stack.isEmpty()){
int v = stack.pop();
if(visited[v] == 1){
continue;
}
visited[v] = 1;
for(int nbrs : graph.get(v)){
if(visited[nbrs] != 1){
stack.push(nbrs);
}
}
}
}
}
``` | 1 | 0 | ['Depth-First Search', 'Graph', 'Java'] | 0 |
properties-graph | simple intuitive approach .beats 78 perc . o(n2) . | simple-intuitive-approach-beats-78-perc-rbcun | Approachfirst we will sort all the arrays in properties and remove their duplicates.
then we will take 2 arrays and check if their intersection ( ie common uniq | alokth1302 | NORMAL | 2025-03-24T01:49:21.091032+00:00 | 2025-03-24T01:49:21.091032+00:00 | 9 | false |
# Approach
first we will sort all the arrays in properties and remove their duplicates.
then we will take 2 arrays and check if their intersection ( ie common unique elements) is greater than k.
to do this we have used a 2 pointers approach.
if intersection comes out to be greater than k .we form an undirected edge between node i and node j.
for this we are maintaining an adjacency list g.
then we apply dfs.
we traverse over all nodes.if it is unvisited we visit that node and all its neighbours and their neighbours...recursively and color them with their component no.
in the end we return no of components.
# Complexity
- Time complexity:
o(n2)
# Code
```cpp []
class Solution {
public:
int intersect(vector<int>a,vector<int>b)
{
int i=0,j=0;
int ct=0;
while(i<a.size() && j<b.size()){
if(a[i]==b[j])
{
ct++;
i++;
j++;
}
else if(a[i]<b[j])
{
i++;
}
else
j++;
}
// cout<<ct;
return ct;
}
void dfs(vector<vector<int>>&g,int i,int compno,vector<int>&vis)
{
vis[i]=compno;
for(auto u:g[i])
{
if(vis[u]==0)
{
dfs(g,u,compno,vis);
}
}
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
vector<vector<int>>g;
int n=properties.size();
g.resize(n);
for(int i=0;i<n;i++)
{
sort(properties[i].begin(),properties[i].end());
properties[i].erase(unique(properties[i].begin(),properties[i].end()),properties[i].end());
//for(auto u: properties[i])
//cout<<u<<" ";
cout<<endl;
}
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
int ic=(intersect(properties[i],properties[j]));
if(ic>=k)
{
// cout<<"between "<<i<<"and "<<j<<" intersection : "<<k<<endl;
g[i].push_back(j);
g[j].push_back(i);
}
}
}
vector<int>vis(n,0);
int compno=0;
for(int i=0;i<n;i++)
{
if(vis[i]==0)
{
compno++;
dfs(g,i,compno,vis);
}
}
return compno;
}
};
``` | 1 | 0 | ['C++'] | 0 |
properties-graph | DSU/UnionFind. 450ms | dsuunionfind-by-vokasik-y86x | Code | vokasik | NORMAL | 2025-03-23T23:49:41.342978+00:00 | 2025-03-23T23:50:24.465864+00:00 | 11 | false | # Code
```python3
class Solution:
def numberOfComponents(self, grid: List[List[int]], k: int) -> int:
def union(a,b):
nonlocal components
if (roota := find(a)) != (rootb := find(b)):
if sizes[roota] > sizes[rootb]:
parents[rootb] = roota
sizes[roota] += sizes[rootb]
else:
parents[roota] = rootb
sizes[rootb] += sizes[roota]
components -= 1
def find(e):
if parents[e] != e:
parents[e] = (e := find(parents[e]))
return e
components = N = len(grid)
sizes = {i:1 for i in range(N)}
parents = {i:i for i in range(N)}
for i in range(N):
for j in range(i + 1, N):
if len(set(grid[i]) & set(grid[j])) >= k:
union(i, j)
return components
``` | 1 | 0 | ['Union Find', 'Python3'] | 0 |
properties-graph | Optimal DFS Solution in C++, JAVA & PYTHON | optimal-dfs-solution-in-c-java-python-by-ofdg | Understanding Connected Components in Graphs: A Multi-Language ApproachIntroductionConnected components are a fundamental concept in graph theory, often used in | dipesh1203 | NORMAL | 2025-03-23T20:15:25.869284+00:00 | 2025-03-23T20:15:25.869284+00:00 | 26 | false | # Understanding Connected Components in Graphs: A Multi-Language Approach
## Introduction
Connected components are a fundamental concept in graph theory, often used in clustering problems, social network analysis, and recommendation systems. In this blog, we will explore an efficient approach to solving a problem involving connected components using DFS (Depth First Search). We'll implement the solution in **C++, Java, and Python**.
## Problem Statement
Given a list of properties represented as an adjacency matrix, we need to determine the number of connected components based on a similarity threshold **k**. Two nodes (properties) are considered connected if they share at least **k** common attributes.
## Approach
1. **Graph Construction:** Treat properties as nodes and create an edge between two nodes if they share **k** or more attributes.
2. **DFS Traversal:** Use DFS to explore connected nodes and count the number of connected components.
3. **Set Intersection:** Determine common elements between two properties efficiently using a HashSet.
---
## **Java Implementation**
```java
import java.util.*;
class Solution {
class Edge {
int src, dest;
public Edge(int src, int dest) {
this.src = src;
this.dest = dest;
}
}
public int intersection(int[][] properties, int i, int j) {
Set<Integer> set = new HashSet<>();
Set<Integer> setj = new HashSet<>();
for (int k : properties[j]) setj.add(k);
for (int k : properties[i]) {
if (setj.contains(k)) set.add(k);
}
return set.size();
}
public void dfs(ArrayList<Edge>[] graph, int src, boolean[] visited) {
visited[src] = true;
for (Edge e : graph[src]) {
if (!visited[e.dest]) {
dfs(graph, e.dest, visited);
}
}
}
public int numberOfComponents(int[][] properties, int k) {
int v = properties.length;
ArrayList<Edge>[] graph = new ArrayList[v];
for (int i = 0; i < v; i++) graph[i] = new ArrayList<>();
for (int i = 0; i < v; i++) {
for (int j = i + 1; j < v; j++) {
if (intersection(properties, i, j) >= k) {
graph[i].add(new Edge(i, j));
graph[j].add(new Edge(j, i));
}
}
}
int count = 0;
boolean[] visited = new boolean[v];
for (int i = 0; i < v; i++) {
if (!visited[i]) {
count++;
dfs(graph, i, visited);
}
}
return count;
}
}
```
---
## **C++ Implementation**
```cpp
#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
int intersection(vector<vector<int>>& properties, int i, int j) {
unordered_set<int> setj(properties[j].begin(), properties[j].end());
int count = 0;
for (int num : properties[i]) {
if (setj.count(num)) count++;
}
return count;
}
void dfs(vector<vector<int>>& graph, vector<bool>& visited, int node) {
visited[node] = true;
for (int neighbor : graph[node]) {
if (!visited[neighbor]) {
dfs(graph, visited, neighbor);
}
}
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
int v = properties.size();
vector<vector<int>> graph(v);
for (int i = 0; i < v; i++) {
for (int j = i + 1; j < v; j++) {
if (intersection(properties, i, j) >= k) {
graph[i].push_back(j);
graph[j].push_back(i);
}
}
}
int count = 0;
vector<bool> visited(v, false);
for (int i = 0; i < v; i++) {
if (!visited[i]) {
count++;
dfs(graph, visited, i);
}
}
return count;
}
};
```
---
## **Python Implementation**
```python
def intersection(properties, i, j):
setj = set(properties[j])
return len([x for x in properties[i] if x in setj])
def dfs(graph, src, visited):
visited[src] = True
for neighbor in graph[src]:
if not visited[neighbor]:
dfs(graph, neighbor, visited)
def number_of_components(properties, k):
v = len(properties)
graph = [[] for _ in range(v)]
for i in range(v):
for j in range(i + 1, v):
if intersection(properties, i, j) >= k:
graph[i].append(j)
graph[j].append(i)
count = 0
visited = [False] * v
for i in range(v):
if not visited[i]:
count += 1
dfs(graph, i, visited)
return count
```
---
## **Time Complexity Analysis**
- **Graph Construction:** O(Nยฒ ร M), where N is the number of nodes and M is the average length of each property list.
- **DFS Traversal:** O(N + E), where E is the number of edges.
- **Total Complexity:** Approximately **O(Nยฒ ร M)**.
## **Conclusion**
In this blog, we discussed how to find connected components using DFS across multiple programming languages. The key takeaways are:
- Efficient **set operations** to determine common attributes.
- **DFS traversal** to count connected components.
- **Graph adjacency list representation** to store connections efficiently.
This approach is useful in **clustering, recommendation systems, and social network analysis**. ๐ Happy Coding!
| 1 | 0 | ['Depth-First Search', 'Graph', 'Ordered Set', 'Python', 'C++', 'Java', 'Python3'] | 0 |
properties-graph | Easy solution using Map and Set | easy-solution-using-map-and-set-by-abh15-v16f | Approach
Use a map array to store the connected node.
Check every possible pair. For each pair i,j:
If 2 nodes i&j are connected, store the smallest of ther | Abh15hek | NORMAL | 2025-03-23T20:10:41.271137+00:00 | 2025-03-23T20:10:41.271137+00:00 | 8 | false | # Approach
<!-- Describe your approach to solving the problem. -->
- Use a map array to store the connected node.
- Check every possible pair. For each pair i,j:
- If 2 nodes i&j are connected, store the smallest of there map values in both map[i] and map[j].
- Add the minimum value of the connected nodes in set
- return the size of set
# Code
```java []
class Solution {
public int numberOfComponents(int[][] p, int k) {
Set<Integer> set=new HashSet<>();
int map[]=new int[p.length];
for(int i=0;i<p.length;i++)
map[i]=i;
for(int i=0;i<p.length;i++){
for(int j=0;j<p.length;j++){
if(i==j)
continue;
if(check(p[i],p[j],k)){
int x=Math.min(map[i],map[j]);
map[i]=x;
map[j]=x;
}
}
}
for(int i=0;i<p.length;i++){
int x=i;
while(map[x]!=x)
x=map[x];
set.add(x);
}
return set.size();
}
boolean check(int[] a, int[] b, int k){
Set<Integer> set=new HashSet<>();
for(int it:a)
set.add(it);
for(int it:b)
if(set.contains(it)){
k--;
set.remove(it);
}
return k<=0;
}
}
``` | 1 | 0 | ['Java'] | 0 |
properties-graph | C++ || Simple and Easy Explanation || Union-Find | c-simple-and-easy-explanation-union-find-ayln | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | jhanvi_sankhla | NORMAL | 2025-03-23T17:27:40.079544+00:00 | 2025-03-23T17:27:40.079544+00:00 | 8 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
We need to find connected components,
The most intitutive approach for that is Union Set.
# Approach
<!-- Describe your approach to solving the problem. -->
1.Write a function for intersect using two pointer.
For that we need to sort the vectors in properties.
2.Create class for unionSet.
3.We use two for loops and compare all the vectors to find nodes,
with edges.
4.Check each node, if it is parent of itself, it is root node so
increase count of component.
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
private:
int intersect(vector<int>& a, vector<int>& b){
/*this is brute force for understanding
gives tle on last taste case
int ans = 0;
unordered_set<int> sta(a.begin(),a.end());
unordered_set<int> stb(b.begin(),b.end());
for(auto it:sta){
if(stb.find(it) != stb.end()) ans++;
}
return ans;*/
int ans = 0;
int i = 0, j = 0;
while (i < a.size() && j < b.size()) {
if (a[i] == b[j]) {
ans++;
int val = a[i];
// skip duplicates in both arrays
while (i < a.size() && a[i] == val) i++;
while (j < b.size() && b[j] == val) j++;
} else if (a[i] < b[j]) {
i++;
} else {
j++;
}
}
return ans;
}
class unionFind{
public:
vector<int> parent,size;
unionFind(int n) : parent(n,-1),size(n,1) {}
int find(int node){
if(parent[node] == -1){
return node;
}
return parent[node] = find(parent[node]);
}
void unionSet(int a,int b){
int pa = find(a);
int pb = find(b);
if(pa == pb) return;
if(size[pa] > size[pb]){
parent[pb] = pa;
size[pa] += size[pb];
}
else{
parent[pa] = pb;
size[pb] += size[pa];
}
}
};
public:
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
for (auto& v : properties) {
sort(v.begin(), v.end());
}
unionFind dsu(n);
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
if(intersect(properties[i],properties[j]) >= k){
dsu.unionSet(i,j);
}
}
}
int ans = 0;
for(int i=0;i<n;i++){
if(dsu.find(i) == i){
ans++;
}
}
return ans;
}
};
``` | 1 | 0 | ['Two Pointers', 'Union Find', 'C++'] | 0 |
properties-graph | C++ Solution simple approach using graph construction and dfs | c-solution-simple-approach-using-graph-c-ad1r | ApproachFor the given constraints, following approach works fine.
Construct a graph using the given approach and then find number of connected componentsComplex | kavya_naik | NORMAL | 2025-03-23T14:17:58.853188+00:00 | 2025-03-23T14:19:45.868625+00:00 | 29 | false | # Approach
For the given constraints, following approach works fine.
Construct a graph using the given approach and then find number of connected components
# Complexity
- Time complexity: $$O(n^2 * m * log(m))$$
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: $$O(n ^ 2)$$
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
vector<vector<int>> graph = constructGraph(properties, k);
vector<int> visited(n, 0);
int connectedComponents = 0;
for (int i = 0; i < n; ++i) {
if (!visited[i]) {
dfs(graph, i, visited);
connectedComponents++;
}
}
return connectedComponents;
}
private:
void dfs(vector<vector<int>>& graph, int node, vector<int>& visited) {
visited[node] = 1;
for (auto u : graph[node]) {
if (!visited[u]) {
dfs(graph, u, visited);
}
}
}
vector<vector<int>> constructGraph(vector<vector<int>>& properties, int k) {
int n = properties.size();
int m = properties[0].size();
vector<vector<int>> graph(n, vector<int>());
for (int i = 0; i < n; ++i) {
set<int> s1;
for (int l = 0; l < m; ++l) {
s1.insert(properties[i][l]);
}
for (int j = i + 1; j < n; ++j) {
set<int> s2;
for (int l = 0; l < m; ++l) {
if (s1.find(properties[j][l]) != s1.end()) {
s2.insert(properties[j][l]);
}
}
if (s2.size() >= k) {
graph[i].push_back(j);
graph[j].push_back(i);
}
}
}
return graph;
}
};
``` | 1 | 0 | ['Array', 'Greedy', 'Depth-First Search', 'Graph', 'Ordered Set', 'Strongly Connected Component', 'C++'] | 0 |
properties-graph | ๐งฉ๐ค๐ป Count Connected Components Based on Shared Properties (Using DSU / Union Find)๐ฆ๐ | count-connected-components-based-on-shar-e70i | IntuitionTo determine the number of connected components where each component is formed by groups of items sharing at least k common properties, we can treat th | udit_s05 | NORMAL | 2025-03-23T14:00:44.924474+00:00 | 2025-03-23T14:01:23.286586+00:00 | 26 | false | # Intuition
To determine the number of connected components where each component is formed by groups of items sharing at least k common properties, we can treat this as a graph problem. Each item is a node, and there is an edge between two nodes if they share k or more properties. This leads to the formation of disjoint sets of nodes, which we can track using a Disjoint Set Union (DSU) data structure.
# Approach
Disjoint Set (Union-Find):
- We implement a Disjoint Set data structure supporting both union by rank and union by size. Here, unionBySize is used to merge groups.
Preprocessing:
- Convert each list of properties into a set for faster intersection checks.
Pairwise Comparison:
- For each pair of elements (i, j), compute how many properties they have in common using a helper function intersect().
- If the number of common properties is โฅ k, unite them in the DSU.
Component Counting:
- Finally, count how many unique parents exist in the DSU, which gives the number of components.
# Complexity
- Time complexity:
- Let n be the number of items and m be the average number of properties per item.
- Constructing the sets: O(n * m)
- Pairwise comparisons: O(n^2 * m) in the worst case (due to intersect() doing set lookups)
- DSU operations (with path compression and union by size): nearly constant time (amortized O(ฮฑ(n)))
- Overall: O(n^2 * m)
- Space complexity:
- O(n * m) to store the property sets.
- Additional O(n) for DSU structures (parent, rank, size).
- Overall: O(n * m)
# Code
```cpp []
class DisjointSet {
public:
vector<int> rank, parent, size;
DisjointSet(int n) {
rank.resize(n+1, 0);
parent.resize(n+1);
size.resize(n+1);
for(int i = 0;i<=n;i++) {
parent[i] = i;
size[i] = 1;
}
}
int findUPar(int node) {
if(node == parent[node])
return node;
return parent[node] = findUPar(parent[node]);
}
void unionByRank(int u, int v) {
int ulp_u = findUPar(u);
int ulp_v = findUPar(v);
if(ulp_u == ulp_v) return;
if(rank[ulp_u] < rank[ulp_v]) {
parent[ulp_u] = ulp_v;
}
else if(rank[ulp_v] < rank[ulp_u]) {
parent[ulp_v] = ulp_u;
}
else {
parent[ulp_v] = ulp_u;
rank[ulp_u]++;
}
}
void unionBySize(int u, int v) {
int ulp_u = findUPar(u);
int ulp_v = findUPar(v);
if(ulp_u == ulp_v) return;
if(size[ulp_u] < size[ulp_v]) {
parent[ulp_u] = ulp_v;
size[ulp_v] += size[ulp_u];
}
else {
parent[ulp_v] = ulp_u;
size[ulp_u] += size[ulp_v];
}
}
};
class Solution {
public:
int intersect(const unordered_set<int>& s1, const unordered_set<int>& s2){
int common = 0;
if (s1.size() > s2.size()) {return intersect(s2, s1);}
for(int x : s1){ {if(s2.count(x)) common++;}
}
return common;
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
int ans = 0, n = properties.size();
DisjointSet ds(n);
vector<unordered_set<int>> sets(n);
for(int i = 0; i < n; i++){
sets[i] = unordered_set<int>(properties[i].begin(), properties[i].end());
}
for(int i=0; i<n; i++){
for(int j=i+1; j<properties.size(); j++){
if(intersect(sets[i], sets[j]) >= k){
ds.unionBySize(i, j);
}
}
}
for(int i=0; i<n; i++){
if(ds.findUPar(i) == i) ans++;
}
return ans;
}
};
``` | 1 | 0 | ['Array', 'Union Find', 'Graph', 'Ordered Set', 'C++'] | 0 |
properties-graph | Oh really So much to do. | oh-really-so-much-to-do-by-madhavendrasi-9j8p | IntuitionFirst divide the part and then understand the concept.ApproachSo first make the function which return count of commman number and thenalso make dfs fu | Madhavendrasinh44 | NORMAL | 2025-03-23T12:39:03.055875+00:00 | 2025-03-23T12:39:03.055875+00:00 | 25 | false | # Intuition
First divide the part and then understand the concept.
# Approach
So first make the function which return count of commman number and thenalso make dfs function then sort the prop arrays and make them unique and thenmake the call for the common count then make the adjancent list. and then return the connected component
# Complexity
- Time complexity: $$O(n^2)$$
- Space complexity: $$O(n)$$
# Code
```cpp []
class Solution {
public:
int comman(vector<int>&a,vector<int>&b){
int i=0,j=0,cnt=0;
while(i<a.size() and j<b.size()){
if(a[i]==b[j]){
cnt++,i++,j++;
}
else if(a[i]<b[j]){
i++;
}
else{
j++;
}
}
return cnt;
}
void dfs(int a , vector<int>&vis,vector<vector<int>>&adj){
vis[a]=1;
for(auto v : adj[a]){
if(vis[v])continue;
dfs(v,vis,adj);
}
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
for(int i=0;i<properties.size();i++){
sort(properties[i].begin(),properties[i].end());
properties[i].resize(unique(properties[i].begin(),properties[i].end())-properties[i].begin());
}
vector<vector<int>> adj(properties.size());
for(int i=0;i<properties.size();i++){
for(int j=i+1;j<properties.size();j++){
int cnt=comman(properties[i],properties[j]);
if(cnt>=k){
adj[i].push_back(j);
adj[j].push_back(i);
}
}
}
int ans=0;
vector<int>vis(properties.size(),0);
for(int i=0;i<properties.size();i++){
if(vis[i])continue;
dfs(i,vis,adj);
ans++;
}
return ans;
}
};
``` | 1 | 0 | ['Depth-First Search', 'Counting Sort', 'C++'] | 0 |
properties-graph | Beginner-Friendly || JAVA | beginner-friendly-java-by-gauraabhas-ifdo | IntuitionThe problem involves finding connected components based on shared properties between items. We can represent this as a graph problem, where nodes repre | gauraabhas | NORMAL | 2025-03-23T10:29:04.641285+00:00 | 2025-03-23T10:29:04.641285+00:00 | 13 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
The problem involves finding connected components based on shared properties between items. We can represent this as a graph problem, where nodes represent items, and edges exist between nodes if they share at least k common properties.
# Approach
<!-- Describe your approach to solving the problem. -->
1. Build the Graph:
- Each item is treated as a node.
- Use a helper function intersect() to count common elements between two property lists.
- If two items share at least k common properties, an edge is created between them.
- We store these edges in an adjacency list representation of the graph.
2. Find Connected Components:
- Use Depth-First Search (DFS) to traverse the graph and count the number of connected components.
- Maintain a visited array to track nodes that have been explored.
- For each unvisited node, start a DFS traversal and mark all reachable nodes as visited.
- Each DFS traversal represents discovering a new connected component.
# Complexity
- Time complexity: O(n^2*m)
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: O(n^2)
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
public int intersect(int[] a,int[] b){
Set<Integer> A = new HashSet<>();
Set<Integer> B = new HashSet<>();
for(int i : a) A.add(i);
for(int i : b) B.add(i);
A.retainAll(B);
return A.size();
}
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
List<List<Integer>> adj = new ArrayList<>();
for(int i=0;i<n;i++){
adj.add(new ArrayList<>());
}
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
if(intersect(properties[i],properties[j]) >= k){
adj.get(i).add(j);
adj.get(j).add(i);
}
}
}
boolean visited[] = new boolean[n];
int c = 0;
for(int i=0;i<n;i++){
if(!visited[i]){
c++;
dfs(i,adj,visited);
}
}
return c;
}
public void dfs(int node ,List<List<Integer>> adj,boolean[] visited){
visited[node] = true;
for(int nei : adj.get(node)){
if(!visited[nei]){
dfs(nei,adj,visited);
}
}
}
}
``` | 1 | 0 | ['Depth-First Search', 'Graph', 'Java'] | 0 |
properties-graph | Easy | C++ | Connected Components | easy-c-connected-components-by-wait_watc-w17a | IntuitionApproach
Graph Construction:
Treat each row in properties as a node.
Use intersect() function to determine if two nodes are connected.
If two rows sh | wait_watch | NORMAL | 2025-03-23T09:55:05.439121+00:00 | 2025-03-26T13:30:59.773790+00:00 | 33 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
1. **Graph Construction:**
- Treat each row in `properties` as a node.
- Use `intersect()` function to determine if two nodes are connected.
- If two rows share at least `k` common elements, create an edge between them in the adjacency list.
2. **Intersection Function (`intersect`):**
- Convert the first list into an unordered set.
- Iterate over the second list and count how many elements exist in the set.
- Remove elements from the set to ensure each element is counted only once.
3. **Finding Connected Components (`countConnectedComponents`):**
- Use BFS to traverse the graph.
- Maintain a `visited` array to track visited nodes.
- For each unvisited node, start a BFS traversal and mark all reachable nodes.
- Each BFS traversal represents a connected component.
- Count the number of BFS traversals to get the total number of connected components.
4. **Main Function (`numberOfComponents`):**
- Calls `numberOfConnectedComponents()` to compute the result.
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
vector<int>g[110];
vector<bool>vis;
int findCommon(unordered_map<int,int>&a, unordered_map<int,int>&b){
auto it = a.begin();
int ans =0;
while(it!=a.end()){
if(b.count(it->first))
ans++;
it++;
}
return ans;
}
void dfs(int u){
vis[u] = true;
for(int v:g[u]){
if(!vis[v]){
dfs(v);
}
}
}
int numberOfComponents(vector<vector<int>>& p, int k) {
vis = vector<bool>(p.size()+10,false);
vector<unordered_map<int,int>>v;
for(int i=0;i<p.size();i++){
unordered_map<int,int>curr;
for(int j=0;j<p[i].size();j++){
curr[p[i][j]]++;
}
v.push_back(curr);
}
for(int i=0;i<p.size();i++){
for(int j=i+1;j<p.size();j++){
int ck = findCommon(v[i],v[j]);
if(ck>=k){
g[i].push_back(j);
g[j].push_back(i);
}
}
}
int ans =0;
for(int i=0;i<p.size();i++){
if(!vis[i]){
dfs(i);
ans++;
}
}
return ans;
}
};
``` | 1 | 0 | ['Graph', 'C++'] | 0 |
properties-graph | [Go, Python3] 0ms 9.26MB Fastest Go solution using Union Find and BitMask with explanations | go-python3-0ms-926-fastest-go-solution-u-u9ug | IntuitionWe need to count how many connected components exist in the graph, and the Union-Find (Disjoint Set Union) algorithm is a perfect fit for this type of | I4TL | NORMAL | 2025-03-23T09:50:17.353364+00:00 | 2025-03-23T09:51:41.947896+00:00 | 20 | false | 
# Intuition
We need to count how many connected components exist in the graph, and the **Union-Find** (Disjoint Set Union) algorithm is a perfect fit for this type of problem. Which is special about this problem is that we don't have neither adjacency list nor list of edges given to us as an input. Instead we are gives list of sets (although they are arrays, but problem states that "*...that returns the **number of distinct integers**...*" so we can simply ignore it and threat them as sets). We know the there's an edge between two vertices if they share **at least `k` common integers** (set intersection).
# Approach
1. Representing Sets Efficiently with Bitsets
Instead of using an array of maps `sets := []map[int]struct{}`, (which is relatively slow in Go), we use a **bitmask** representation. Given the constraint `(1 <= properties[i][j] <= 100)` we know the maximum integer is `100`. We need at least **100 slots**, which can be efficiently stored using **two** **`uint64` values** (providing 128 bits in total).
or example, if a vertex is represented by the set `[1, 4, 5, 9]`, we encode it as a bitmask where the corresponding bit positions are set to `1`.
`high = 000...000,
low = ...100011001`
This encoding allows us to efficiently check intersections using bitwise operations.
We also initialize the `parent` and `rank` arrays for the Union-Find.
2. Building the Adjacency List
We construct the adjacency list by comparing every pair of vertices. If two vertices share **at least `k` common elements**, we add an edge between them. To check for common elements, we use the bitwise AND operation between the corresponding low and high parts of their `BitSet` representation and count the number of `1` bits using the `bits.OnesCount64` function.
3. Union-Find with Path Compression
We perform a classic Union-Find algorithm with path compression for efficient merging of components. Each time we successfully unite two components, we decrement the count of components n. By the end of this process, n will represent the number of connected components.
# Complexity
- Time complexity: $$O(n^2)$$
Constructing the bitsets: $$O(n \times m) $$ where n is the number of vertices and m is the maximum length of the sets (in this case, at most 100).
Building the adjacency list: $$O(n^2)$$ since we compare all pairs of vertices.
Union-Find operations: $$O(n \times \alpha(n) )$$ where $$\alpha(n)$$ is the inverse Ackermann function (amortized constant time).
- Space complexity: $$O(n)$$
Bitsets: $$O(n)$$ (two uint64 per vertex).
Union-Find arrays: $$O(n)$$ (parent and rank arrays).
Adjacency list: $$O(E)$$ Where $$E$$ is the amound of edges.
# Code
```golang []
type BitSet struct {
low, high uint64
}
func numberOfComponents(properties [][]int, k int) (r int) {
n := len(properties)
// 1. Initialize and fill main data structures
sets := make([]BitSet, n)
parent := make([]int, n)
rank := make([]int, n)
for idx, arr := range properties {
parent[idx] = idx
rank[idx] = 1
// use BitSet as bool array setting bit 1 if number is in set
for _, v := range arr {
if v < 64 {sets[idx].low |= (1 << v)
} else {sets[idx].high |= (1 << (v - 64))}
}
}
// 2. Build adjacency list by adding edges for all sets with at least k common integers
adjList := make([][]int, n)
for idxI, setI := range sets {
for idxJ := idxI + 1; idxJ < n; idxJ++ {
setJ := sets[idxJ]
// check how many bits which are set to 1 are shared which is basically equivalent to set intersection
if bits.OnesCount64(setI.low&setJ.low) + bits.OnesCount64(setI.high&setJ.high) >= k {
adjList[idxI] = append(adjList[idxI], idxJ)}
}
}
// 3. Union find functions declaration
find := func(p int) int {
for p != parent[p] {
parent[p] = parent[parent[p]]
p = parent[p]
}
return p
}
union := func(n1, n2 int) {
a, b := find(n1), find(n2)
if a == b {return}
if rank[a] > rank[b] {
rank[a] += rank[b]
parent[b] = a
n--
} else {
rank[b] += rank[a]
parent[a] = b
n--
}
}
// Perform union on all edges we constructed previously
for a, edges := range adjList {
for _, b := range edges {union(a, b)}
}
return n
}
```
I also provide simpler python code which uses simple sets for comparison, is some parts in Go look confusing. It's much slower, but still fast among python solution

```python
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
properties = [set(i) for i in properties]
n = len(properties)
adjList = defaultdict(list)
for idx_i, i in enumerate(properties):
for idx_j, j in enumerate(islice(properties, (_from:=idx_i+1), None), start=_from):
if len(i.intersection(j)) >= k:
adjList[idx_i].append(idx_j)
parent = list(range(n))
rank = [1] * n
def find(p):
while p != parent[p]:
parent[p] = parent[parent[p]]
p = parent[p]
return p
def union(n1, n2):
a, b = find(n1), find(n2)
if a == b:
return
if rank[a] > rank[b]:
rank[a] += rank[b]
parent[b] = a
self.components -= 1
else:
rank[b] += rank[a]
parent[a] = b
self.components -= 1
self.components = n
for a, v in adjList.items():
for b in v:
union(a, b)
return self.components
``` | 1 | 0 | ['Bit Manipulation', 'Union Find', 'Bitmask', 'Go', 'Python3'] | 0 |
properties-graph | Using BFS | using-bfs-by-udaykiran2427-kocx | IntuitionThe question is the algorithm! We have to follow the steps given:
Write intersect(a, b), which counts common elements of both.
For every array where i | udaykiran2427 | NORMAL | 2025-03-23T09:46:36.494271+00:00 | 2025-03-23T09:46:36.494271+00:00 | 20 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
The question is the algorithm! We have to follow the steps given:
1. Write `intersect(a, b)`, which counts common elements of both.
2. For every array where `i != j`, check if `count >= k`. If true, create an edge between `i` and `j`. You can generate an adjacency list or matrix.
3. Count the connected components in the graph you just generated. You can use BFS/DFS/Disjoint Set. I used BFS in my solution.
# Approach
<!-- Describe your approach to solving the problem. -->
- Construct a graph where an edge exists between two nodes if their intersection size is at least `k`.
- Use BFS to count the number of connected components.
# Complexity
- **Time complexity:**
- Constructing the graph: $$O(n^2 \cdot m)$$ (where $$m$$ is the max size of each array).
- BFS traversal: $$O(n + E)$$, where $$E$$ is the number of edges.
- Overall: $$O(n^2 \cdot m)$$ in the worst case.
- **Space complexity:**
- $$O(n^2)$$ for the adjacency list in the worst case.
- $$O(n)$$ for the visited array.
- Overall: $$O(n^2)$$ in the worst case.
# Code
```cpp
class Solution {
int intersect(vector<int>& a, vector<int>& b) {
set<int> st;
for (int i : a)
st.insert(i);
int cnt = 0;
for (int i : b) {
if (st.find(i) != st.end()) {
cnt++;
st.erase(i);
}
}
return cnt;
}
public:
int numberOfComponents(vector<vector<int>>& prop, int k) {
int n = prop.size();
int m = prop[0].size();
vector<vector<int>> adj(n);
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (intersect(prop[i], prop[j]) >= k) {
adj[i].push_back(j);
adj[j].push_back(i);
}
}
}
int ans = 0;
vector<int> vis(n, 0);
for (int i = 0; i < n; i++) {
if (!vis[i]) {
ans++;
queue<int> q;
q.push(i);
while (!q.empty()) {
int node = q.front();
q.pop();
vis[node] = 1;
for (int x : adj[node]) {
if (!vis[x]) {
q.push(x);
vis[x] = 1;
}
}
}
}
}
return ans;
}
};
| 1 | 0 | ['Breadth-First Search', 'C++'] | 0 |
properties-graph | Create Adjacency List then DFS | O(N * M) in 3ms | Rust | create-adjacency-list-then-dfs-on-m-in-3-ndba | Complexity
Time complexity: O(NโM)
Space complexity: O(NโM)
Code | Prog_Jacob | NORMAL | 2025-03-23T05:08:42.371129+00:00 | 2025-03-23T05:08:42.371129+00:00 | 13 | false | # Complexity
- Time complexity: $$O(N * M)$$
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: $$O(N * M)$$
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```rust []
impl Solution {
pub fn number_of_components(properties: Vec<Vec<i32>>, k: i32) -> i32 {
let n = properties.len();
let mut adj = vec![vec![]; n];
let mut visited = vec![false; n];
let properties = properties.iter().map(|p|
p.iter().fold(0u128, |acc, &x| acc | (1 << x))
).collect::<Vec<_>>();
for i in 0..n {
for j in 0..n {
if i == j { continue };
if (properties[i] & properties[j]).count_ones() >= k as _ {
adj[i].push(j);
adj[j].push(i);
}
}
}
(0..n).filter(|&i| dfs(i, &adj, &mut visited)).count() as _
}
}
fn dfs(i: usize, adj: &Vec<Vec<usize>>, visited: &mut Vec<bool>) -> bool {
if visited[i] {
return false;
}
visited[i] = true;
for &j in &adj[i] {
dfs(j, adj, visited);
}
true
}
``` | 1 | 0 | ['Rust'] | 0 |
properties-graph | Simple C++ with DFS | simple-c-with-dfs-by-prajakta_1510-ubqh | IntuitionApproachComplexity
Time complexity: O(N^2 * M)
Space complexity: O(N^2) + O(N) + O(M)
Code | prajakta_1510 | NORMAL | 2025-03-23T04:47:36.213372+00:00 | 2025-03-23T04:47:36.213372+00:00 | 68 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity: O(N^2 * M)
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: O(N^2) + O(N) + O(M)
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
void dfs(int node,vector<int>adj[],vector<int>&vis)
{
vis[node]=1;
for(auto it : adj[node])
{
if(!vis[it])
dfs(it,adj,vis);
}
}
int fun(vector<int>adj[],int n)
{
vector<int>vis(n,0);
int cnt=0;
for(int i=0;i<n;i++)
{
if(!vis[i])
{
dfs(i,adj,vis);
cnt++;
}
}
return cnt;
}
bool check(vector<int>&a, vector<int>&b,int k,int m)
{
set<int>st;
int i=0,j=0;
sort(a.begin(),a.end());
sort(b.begin(),b.end());
while(i<m && j<m)
{
if(a[i]==b[j])
{
st.insert(a[i]);
i++;
j++;
}
else if(a[i]<b[j])
{
i++;
}
else
j++;
}
//cout<<st.size()<<endl;
return st.size()>=k;
}
int numberOfComponents(vector<vector<int>>& prop, int k) {
int n=prop.size();
vector<int>adj[n];
int m=prop[0].size();
// sort(prop.begin(),prop.end());
for(int i=0;i<n-1;i++)
{
for(int j=i+1;j<n;j++)
{
if(check(prop[i],prop[j],k,m))
{
adj[i].push_back(j);
adj[j].push_back(i);
}
}
}
return fun(adj,n);
}
};
``` | 1 | 0 | ['Graph', 'Sorting', 'C++'] | 0 |
properties-graph | Union Find + Bitmask, 4 ms Java Beats 100%. | union-find-bitmask-4-ms-java-beats-100-b-w7jl | Instead of entire hashsets, the limited scope of nums allows us to use two different longs to fit all 100 different nums into the 128 bits of the longs.This all | NickUlman | NORMAL | 2025-03-23T04:47:00.070044+00:00 | 2025-03-23T04:47:00.070044+00:00 | 26 | false | Instead of entire hashsets, the limited scope of nums allows us to use two different longs to fit all 100 different nums into the 128 bits of the longs.
This allows us to calculate the intersection of any two rows unique vals by just taking the bitwise and of the masks. From here can just get the bitcount of the bitwise and and determine if it is >= threshold k to see if the intersection is large enough.
# Code
```java []
class Solution {
int[] id, sz;
public int numberOfComponents(int[][] properties, int k) {
int m = properties.length, n = properties[0].length;
long[][] propMasks = new long[m][2];
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
propMasks[i][properties[i][j]/60] |= (1L << (properties[i][j] % 60));
}
}
id = new int[m];
sz = new int[m];
for(int i = 0; i < m; i++) {
id[i] = i;
sz[i] = 1;
}
for(int r = 0; r < m; r++) {
for(int i = r+1; i < m; i++) {
long intersectMask1 = (propMasks[r][0] & propMasks[i][0]), intersectMask2 = (propMasks[r][1] & propMasks[i][1]);
int intersectSize = Long.bitCount(intersectMask1) + Long.bitCount(intersectMask2);
if(intersectSize >= k) union(i, r);
}
}
int comp = 0;
for(int i = 0; i < m; i++) {
if(find(i) == i) comp++;
}
return comp;
}
private int find(int p) {
int root = p;
while(id[root] != root) root = id[root];
while(p != root) {
int next = id[p];
id[p] = root;
p = next;
}
return root;
}
private void union(int p, int q) {
p = find(p);
q = find(q);
if(p == q) return;
if(sz[p] < sz[q]) {
id[p] = q;
sz[q] += sz[p];
} else {
id[q] = p;
sz[p] += sz[q];
}
}
}
``` | 1 | 0 | ['Bit Manipulation', 'Union Find', 'Java'] | 0 |
properties-graph | Simple Brute force | DSU | simple-brute-force-dsu-by-mayberon-dtfp | Code | MaybeRon | NORMAL | 2025-03-23T04:37:56.435150+00:00 | 2025-03-23T04:37:56.435150+00:00 | 53 | false | # Code
```cpp []
class Solution {
public:
struct DSU{
vector<int> par, chi;
int components = 0;
DSU(int n){
components = n;
for(int i=0; i < n; i++){
par.push_back(i);
chi.push_back(1);
}
}
int getP(int n){
return par[n] = (par[n] == n ? n : getP(par[n]));
}
void join(int a, int b){
a = getP(a);
b = getP(b);
if(chi[a] >= chi[b]){
par[b] = a;
chi[a] += chi[b];
}
else{
par[a] = b;
chi[b] += chi[a];
}
components--;
}
int countComponents(){
return components;
}
};
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
auto intersect = [](auto &a, auto &b)->int{
unordered_set<int> st(a.begin(), a.end());
int common=0;
for(int x : b){
if(st.count(x)){
common++;
st.erase(x);
}
}
return common;
};
DSU dsu(n);
sort(properties.begin(), properties.end(), [](auto& a, auto& b) {
return a.size() < b.size();
});
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n && properties[j].size() <= properties[i].size() + k; j++){
if(intersect(properties[i], properties[j]) >= k){
int par_u = dsu.getP(i);
int par_v = dsu.getP(j);
if(par_u != par_v){
dsu.join(i,j);
}
}
}
}
return dsu.countComponents();
}
};
``` | 1 | 0 | ['Union Find', 'C++'] | 0 |
properties-graph | Best and easy solution to get an idea how to approach such Questions | best-and-easy-solution-to-get-an-idea-ho-3sq2 | IntuitionComplexity
Time complexity: O(nยฒ * m)
Space complexity:
Adjacency list: O(nยฒ)
Visited array: O(n)
HashSets: O(m)
Recursion stack: O(n)
Overall Space | cocwarrior16112004 | NORMAL | 2025-03-23T04:21:45.029844+00:00 | 2025-03-23T04:21:45.029844+00:00 | 37 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
just follow the question , use hashSet to find distinct common elements in the array , and after that connect those nodes to each other by adding them to the adj list , and its done.
The graph is completed , now apply simple bfs and dfs too find the number of connected components.
# Complexity
- Time complexity: O(nยฒ * m)
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
Adjacency list: O(nยฒ)
Visited array: O(n)
HashSets: O(m)
Recursion stack: O(n)
Overall Space Complexity:
- O(nยฒ + m) (since O(nยฒ) dominates).
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
public int getCnt(int i , int j , int[][] properties ,int m ){
Set<Integer> a = new HashSet<>();
Set<Integer> b = new HashSet<>();
for(int k = 0 ; k < m ; k++){
a.add(properties[i][k]);
b.add(properties[j][k]);
}
int cnt = 0;
for(int p : a){
if(b.contains(p)) cnt++;
}
return cnt;
}
public void dfs(int node ,List<Integer>[] adj, boolean[] vis ){
vis[node]=true;
for(int i: adj[node]){
if(!vis[i]){
dfs(i,adj,vis);
}
}
}
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
int m = properties[0].length;
List<Integer>[] adj = new ArrayList[properties.length];
for(int i = 0 ; i < n ; i++){
adj[i] = new ArrayList<>();
}
for(int i = 0 ; i < n ; i++){
for(int j = 0 ; j < n ; j++){
if(i==j) continue;
int cnt = getCnt(i,j,properties,m);
if(cnt>=k){
adj[i].add(j);
adj[j].add(i);
}
}
}
boolean vis[] = new boolean[n];
int cnt = 0;
for(int i = 0 ; i < n ; i++){
if(!vis[i]){
dfs(i,adj,vis);
cnt++;
}
}
return cnt;
}
}
``` | 1 | 0 | ['Array', 'Hash Table', 'Depth-First Search', 'Java'] | 0 |
properties-graph | Easy to Understand - Queue + BFS - Python/Java/C++ | easy-to-understand-queue-bfs-pythonjavac-tq2v | IntuitionApproachComplexity
Time complexity:
Space complexity:
Note:While the Python and Java code execute successfully, the C++ code results in a TLE. Yet, wh | cryandrich | NORMAL | 2025-03-23T04:13:20.817615+00:00 | 2025-03-23T04:13:20.817615+00:00 | 13 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
## Note:
While the Python and Java code execute successfully, the C++ code results in a TLE. Yet, when I run the C++ code specifically against the 667th test case, it succeeds?
# Code
```java []
class Solution {
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
List<List<Integer>> adj = new ArrayList<>();
for (int i = 0; i < n; i += 1) {
adj.add(new ArrayList<>());
}
for (int i = 0; i < n; i += 1) {
for (int j = i + 1; j < n; j += 1) {
if (intersect(properties[i], properties[j]) >= k) {
adj.get(i).add(j);
adj.get(j).add(i);
}
}
}
boolean[] visited = new boolean[n];
int count = 0;
for (int i = 0; i < n; i += 1) {
if (!visited[i]) {
count += 1;
Queue<Integer> queue = new LinkedList<>();
queue.offer(i);
visited[i] = true;
while (!queue.isEmpty()) {
int current = queue.poll();
for (int neighbor : adj.get(current)) {
if (!visited[neighbor]) {
visited[neighbor] = true;
queue.offer(neighbor);
}
}
}
}
}
return count;
}
private int intersect(int[] a, int[] b) {
Set<Integer> setA = new HashSet<>();
for (int num : a) {
setA.add(num);
}
Set<Integer> setB = new HashSet<>();
for (int num : b) {
setB.add(num);
}
int count = 0;
for (int num : setB) {
if (setA.contains(num)) {
count += 1;
}
}
return count;
}
}
```
```cpp []
class Solution {
public:
int intersect(const vector<int>& a, const vector<int>& b) {
unordered_set<int> setA(a.begin(), a.end());
unordered_set<int> setB(b.begin(), b.end());
int count = 0;
for (int num : setB) {
if (setA.find(num) != setA.end()) {
count += 1;
}
}
return count;
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
vector<vector<int>> adj(n);
for (int u = 0; u < n; u += 1) {
for (int v = u + 1; v < n; v += 1) {
if (intersect(properties[u], properties[v]) >= k) {
adj[u].push_back(v);
adj[v].push_back(u);
}
}
}
vector<bool> visited(n, false);
int count = 0;
for (int i = 0; i < n; i += 1) {
if (!visited[i]) {
count += 1;
queue<int> q;
q.push(i);
visited[i] = true;
while (!q.empty()) {
int current = q.front();
q.pop();
for (int neighbor : adj[current]) {
if (!visited[neighbor]) {
visited[neighbor] = true;
q.push(neighbor);
}
}
}
}
}
return count;
}
};
```
```python []
class Solution:
def intersect(self, a: List[int], b: List[int]) -> int:
return len(set(a) & set(b))
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
n = len(properties)
adj = [[] for _ in range(n)]
for u in range(n):
for v in range(u + 1, n):
if self.intersect(properties[u], properties[v]) >= k:
adj[u].append(v)
adj[v].append(u)
visited = [False] * n
count = 0
for i in range(n):
if not visited[i]:
count += 1
queue = deque([i])
visited[i] = True
while queue:
current = queue.popleft()
for neighbor in adj[current]:
if not visited[neighbor]:
visited[neighbor] = True
queue.append(neighbor)
return count
```
| 1 | 0 | ['Breadth-First Search', 'Queue', 'C++', 'Java', 'Python3'] | 0 |
properties-graph | python code: it's work | python-code-its-work-by-bhav5sh-0e3w | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | Bhav5sh | NORMAL | 2025-03-23T04:10:38.694951+00:00 | 2025-03-23T04:10:38.694951+00:00 | 35 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```python3 []
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
n = len(properties)
adjlist = defaultdict(list)
for i in range(n):
for j in range(n):
if i != j:
if self.intersect(i, j, properties) >= k:
adjlist[i].append(j)
adjlist[j].append(i)
count_component = 0
visited = [False] * n
for i in range(n):
if not visited[i]:
self.bfs(i, visited, adjlist)
count_component += 1
return count_component
def intersect(self, i, j, properties):
mp1 = {}
for val in properties[i]:
mp1[val] = True
mp2 = {}
for val in properties[j]:
if val in mp1 and val not in mp2:
mp2[val] = True
return len(mp2)
def bfs(self, src, visited, adjlist):
q = deque()
q.append(src)
visited[src] = True
while q:
front = q.popleft()
for neighbor in adjlist[front]:
if not visited[neighbor]:
q.append(neighbor)
visited[neighbor] = True
``` | 1 | 0 | ['Hash Table', 'Breadth-First Search', 'Python3'] | 0 |
properties-graph | DSU || HashSet || Java | dsu-hashset-java-by-akshay_kadamm-dhta | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | Akshay_Kadamm | NORMAL | 2025-03-23T04:09:07.695553+00:00 | 2025-03-23T04:09:07.695553+00:00 | 19 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
class DSU {
int[] parent, rank;
DSU(int n) {
parent = new int[n];
rank = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
rank[i] = 1;
}
}
int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]);
}
return parent[x];
}
boolean union(int u, int v) {
int rootU = find(u);
int rootV = find(v);
if (rootU == rootV) return false;
if (rank[rootU] > rank[rootV]) {
parent[rootV] = rootU;
} else if (rank[rootU] < rank[rootV]) {
parent[rootU] = rootV;
} else {
parent[rootV] = rootU;
rank[rootU]++;
}
return true;
}
}
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
DSU dsu = new DSU(n);
for (int i = 0; i < n; i++) {
HashSet<Integer> set1 = new HashSet<>();
for (int num : properties[i]) {
set1.add(num);
}
for (int j = i + 1; j < n; j++) {
HashSet<Integer> set2 = new HashSet<>();
for (int num : properties[j]) {
set2.add(num);
}
if (intersect(set1, set2) >= k) {
dsu.union(i, j);
}
}
}
Set<Integer> unique = new HashSet<>();
for (int i = 0; i < n; i++) {
unique.add(dsu.find(i));
}
return unique.size();
}
private int intersect(HashSet<Integer> set1, HashSet<Integer> set2) {
int count = 0;
for (int num : set1) {
if (set2.contains(num)) {
count++;
}
}
return count;
}
}
``` | 1 | 0 | ['Java'] | 0 |
properties-graph | ๐๐ Easy way ๐ฅ3493. Properties Graph ๐ | easy-way-3493-properties-graph-by-vanshn-s09k | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | Vanshnigam | NORMAL | 2025-03-23T04:06:48.399742+00:00 | 2025-03-23T04:06:48.399742+00:00 | 32 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class DSU {
int p[];
int r[];
DSU(int n) {
p = new int[n];
r = new int[n];
for (int i = 0; i < n; i++)
p[i] = i;
}
public int find(int x) {
if (x != p[x])
p[x] = find(p[x]);
return p[x];
}
public void union(int x, int y) {
int a = find(x);
int b = find(y);
if (a == b)
return;
if (r[a] > r[b])
p[b] = a;
else if (r[a] < r[b])
p[a] = b;
else {
p[b] = a;
r[a]++;
}
}
}
class Solution {
int intersect_check(Set<Integer> a, Set<Integer> b) {
int c = 0;
for (int num : a) {
if (b.contains(num))
c++;
}
return c;
}
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
DSU dsu = new DSU(n);
List<Set<Integer>> List = new ArrayList<>();
for (int[] p : properties) {
Set<Integer> s = new HashSet<>();
for (int num : p)
s.add(num);
List.add(s);
}
for (int x = 0; x < n; x++) {
for (int y = x + 1; y < n; y++) {
if (intersect_check(List.get(x), List.get(y)) >= k) {
dsu.union(x, y);
}
}
}
Set<Integer> ans = new HashSet<>();
for (int i = 0; i < n; i++) {
ans.add(dsu.find(i));
}
return ans.size();
}
}
``` | 1 | 0 | ['Greedy', 'Depth-First Search', 'Breadth-First Search', 'Union Find', 'Graph', 'Ordered Set', 'Java'] | 0 |
properties-graph | Easy Java Solution | easy-java-solution-by-vermaanshul975-7k5v | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | vermaanshul975 | NORMAL | 2025-03-23T04:06:03.551976+00:00 | 2025-03-23T04:06:33.981312+00:00 | 12 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
boolean[] vis = new boolean[n];
int components = 0;
List<List<Integer>> adj = new ArrayList<>();
for (int i = 0; i < n; i++) {
adj.add(new ArrayList<>());
}
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (intersect(properties[i], properties[j]) >= k) {
adj.get(i).add(j);
adj.get(j).add(i);
}
}
}
for (int i = 0; i < n; i++) {
if (!vis[i]) {
components++;
dfs(adj, vis, i);
}
}
return components;
}
private void dfs(List<List<Integer>> adj, boolean[] vis, int node) {
vis[node] = true;
for (int it : adj.get(node)) {
if (!vis[it]){
dfs(adj,vis,it);
}
}
}
private int intersect(int[] a, int[] b) {
Map<Integer, Integer> map = new HashMap<>();
for (int num : a) {
map.put(num, map.getOrDefault(num, 1));
}
int count = 0;
for (int num : b) {
if (map.containsKey(num) && map.get(num) > 0) {
count++;
map.put(num, map.get(num) - 1);
}
}
return count;
}
}
``` | 1 | 0 | ['Java'] | 0 |
properties-graph | Java Disjoint Set Union | java-disjoint-set-union-by-adityachauhan-zycr | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | adityachauhan_27 | NORMAL | 2025-03-23T04:05:24.661987+00:00 | 2025-03-23T04:05:24.661987+00:00 | 7 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
public int f(int[] a,int[] b){
HashSet<Integer> set=new HashSet<>();
for(int i:a){
set.add(i);
}
int cnt=0;
for(int i:b){
if(set.contains(i)){
cnt++;
set.remove(i);
}
}
return cnt;
}
public int getPar(int x,int[] parent){
if(parent[x]==x)return x;
parent[x]=getPar(parent[x],parent);
return parent[x];
}
public void union(int u,int v,int[] parent){
int ultpu=getPar(u,parent);
int ultpv=getPar(v,parent);
if(ultpu==ultpv){
return;
}else{
parent[ultpv]=ultpu;
}
}
public int numberOfComponents(int[][] properties, int k) {
int n=properties.length;
int[] parent=new int[n];
for(int i=0;i<n;i++){
parent[i]=i;
}
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
if(f(properties[i],properties[j])>=k){
union(i,j,parent);
}
}
}
int res=0;
for(int i=0;i<n;i++){
if(parent[i]==i){
res++;
}
}
return res;
}
}
``` | 1 | 0 | ['Union Find', 'Java'] | 0 |
properties-graph | Java | Set and DFS - Graph | java-set-and-dfs-graph-by-pankajj_42-b1cy | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | Pankajj_42 | NORMAL | 2025-03-23T04:04:44.201885+00:00 | 2025-03-23T04:04:44.201885+00:00 | 14 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
private void dfs( int s, Map<Integer,List<Integer>> adjList, boolean[] vis ) {
vis[s] = true;
for( int adj : adjList.get(s) )
if( !vis[adj] )
dfs( adj, adjList, vis );
}
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
Map<Integer,List<Integer>> adjList = new HashMap<>();
for( int i=0; i<n; i++ ) {
Set<Integer> iSet = Arrays.stream( properties[i] )
.boxed()
.collect( Collectors.toSet() );
for( int j=i+1; j<n; j++ ) {
Set<Integer> jSet = Arrays.stream( properties[j] )
.boxed()
.collect( Collectors.toSet() );
jSet.retainAll( iSet );
if( jSet.size() >= k ) {
adjList.putIfAbsent( i, new ArrayList<Integer>() );
adjList.putIfAbsent( j, new ArrayList<Integer>() );
adjList.get(i).add(j);
adjList.get(j).add(i);
}
}
}
int res = 0;
boolean[] vis = new boolean[n];
for( int i=0; i<n; i++ ) {
if( !vis[i] ) {
res++;
if( adjList.containsKey(i) )
dfs( i, adjList, vis );
}
}
return res;
}
}
``` | 1 | 0 | ['Java'] | 0 |
properties-graph | Easy C++ solutionโ
| comments added for explanationโ
| easy-c-solution-comments-added-for-expla-8p27 | Code | procrastinator_op | NORMAL | 2025-03-23T04:04:30.342519+00:00 | 2025-03-23T04:04:30.342519+00:00 | 43 | false |
# Code
```cpp []
// standard dsu template
class disjoint{
//for 0 based indexing
vector<int> rank;
vector<int> parent;
vector<int> size;
public:
disjoint(int n){
rank.resize(n,0);
size.resize(n,1);
parent.resize(n,0);
for (int i=0;i<n;i++){
parent[i]=i;
}
}
void reset(int node){
parent[node]=node;
}
bool connected(int u,int v){
return (findParent(u)==findParent(v));
}
int findParent(int u){
if (u==parent[u]){
return u;
}
return parent[u]=findParent(parent[u]);
}
void unionrank(int u,int v){
int pu=findParent(u);
int pv=findParent(v);
if (pu==pv){
return;
}
if (rank[pu]==rank[pv]){
parent[pv]=pu;
rank[pu]++;
}
else if(rank[pu]<rank[pv]){
parent[pu]=pv;
}
else{
parent[pv]=pu;
}
}
void unionsize(int u,int v){
int pu=findParent(u);
int pv=findParent(v);
if (pu==pv){
return;
}
if (size[pu] < size[pv]) {
parent[pu] = pv;
size[pv] += size[pu];
}
else {
parent[pv] = pu;
size[pu] += size[pv];
}
}
};
class Solution {
public:
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
// Initialize disjoint set for n nodes.
disjoint d(n);
// Create a 2D vector 'v' of size n x 101 (because properties values are in range [0, 100])
// and mark the occurrence of each integer in properties[i].
vector<vector<int>> v(n, vector<int>(101, 0));
for (int i = 0; i < n; i++) {
for (auto j : properties[i])
v[i][j] = 1; // Mark that integer j is present in properties[i].
}
// Compare each pair of properties.
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
int cnt = 0; // Counter for common distinct integers.
// Iterate over all possible values from 0 to 100.
for (int q = 0; q <= 100; q++) {
// If integer 'q' is present in both properties[i] and properties[j], increment counter.
if (v[i][q] == 1 && v[j][q] == 1)
cnt++;
}
// If the number of common distinct integers is at least k, union the two nodes.
if (cnt >= k)
d.unionrank(i, j);
}
}
// Use a set to collect unique representative parents of each component.
set<int> ans;
for (int i = 0; i < n; i++) {
ans.insert(d.findParent(i));
}
// The number of connected components is the size of the set.
return ans.size();
}
};
``` | 1 | 0 | ['C++'] | 0 |
properties-graph | ๐๐ Easy way ๐ฅ3493. Properties Graph ๐ | easy-way-3493-properties-graph-by-vanshn-k5fq | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | Vanshnigam | NORMAL | 2025-03-23T04:04:11.545949+00:00 | 2025-03-23T04:04:11.545949+00:00 | 31 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class DSU {
int p[];
int r[];
DSU(int n) {
p = new int[n];
r = new int[n];
for (int i = 0; i < n; i++)
p[i] = i;
}
public int find(int x) {
if (x != p[x])
p[x] = find(p[x]);
return p[x];
}
public void union(int x, int y) {
int a = find(x);
int b = find(y);
if (a == b)
return;
if (r[a] > r[b])
p[b] = a;
else if (r[a] < r[b])
p[a] = b;
else {
p[b] = a;
r[a]++;
}
}
}
class Solution {
int intersect_check(Set<Integer> a, Set<Integer> b) {
int c = 0;
for (int num : a) {
if (b.contains(num))
c++;
}
return c;
}
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
DSU dsu = new DSU(n);
List<Set<Integer>> List = new ArrayList<>();
for (int[] p : properties) {
Set<Integer> s = new HashSet<>();
for (int num : p)
s.add(num);
List.add(s);
}
for (int x = 0; x < n; x++) {
for (int y = x + 1; y < n; y++) {
if (intersect_check(List.get(x), List.get(y)) >= k) {
dsu.union(x, y);
}
}
}
Set<Integer> ans = new HashSet<>();
for (int i = 0; i < n; i++) {
ans.add(dsu.find(i));
}
return ans.size();
}
}
``` | 1 | 0 | ['Java'] | 1 |
properties-graph | || โ
#DAY_64th_Of_Daily_Codingโ
|| | day_64th_of_daily_coding-by-coding_with_-4m30 | JAI SHREE DATNA๐๐๐๐๐๐๐๐๐๐๐๐๐๐Code | Coding_With_Star | NORMAL | 2025-03-23T04:02:11.929354+00:00 | 2025-03-23T04:05:32.425457+00:00 | 26 | false | # JAI SHREE DATNA๐๐๐๐๐๐๐๐๐๐๐๐๐๐
# Code
```cpp []
class Solution {
public:
class DSU {
public:
vector<int> parent, rank;
DSU(int size) {
parent.resize(size);
rank.resize(size, 1);
for (int i = 0; i < size; i++) {
parent[i] = i;
}
}
int findParent(int node) {
if (parent[node] != node) {
parent[node] = findParent(parent[node]);
}
return parent[node];
}
void mergeSets(int node1, int node2) {
int root1 = findParent(node1);
int root2 = findParent(node2);
if (root1 != root2) {
if (rank[root1] > rank[root2]) {
parent[root2] = root1;
} else if (rank[root1] < rank[root2]) {
parent[root1] = root2;
} else {
parent[root2] = root1;
rank[root1]++;
}
}
}
};
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
DSU dsu(n);
// Precompute bitmask for each set
vector<bitset<101>> bitmasks(n);
for (int i = 0; i < n; i++) {
for (int num : properties[i]) {
bitmasks[i].set(num); // Set the bit at position `num`
}
}
// Compare each pair of sets and merge if they share at least `k` common elements
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// Count common elements using bitwise AND
int common = (bitmasks[i] & bitmasks[j]).count();
if (common >= k) {
dsu.mergeSets(i, j);
}
}
}
// Count the number of unique components
unordered_set<int> uniqueComponents;
for (int i = 0; i < n; i++) {
uniqueComponents.insert(dsu.findParent(i));
}
return uniqueComponents.size();
}
};
``` | 1 | 0 | ['C++', 'Java'] | 1 |
properties-graph | Union Find || Disjoint Set || O(n^2*m) || Faster than 99% || Clean Java Code | union-find-disjoint-set-on2m-faster-than-x0qe | Complexity
Time complexity: O(n2โm)
Space complexity: O(nโm)
Code | youssef1998 | NORMAL | 2025-03-31T21:45:49.558162+00:00 | 2025-03-31T21:45:49.558162+00:00 | 1 | false | # Complexity
- Time complexity: $$O(n^2*m)$$
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: $$O(n*m)$$
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class DisjointSet {
private final int[] root;
private final int[] rank;
private int count;
public DisjointSet(int size) {
root = new int[size];
rank = new int[size];
for (int i = 0; i < size; i++) {
root[i] = i;
rank[i] = 1;
}
}
public int getCount() {
Set<Integer> roots = new HashSet<>();
for (int i = 0; i < root.length; i++) {
roots.add(find(i));
}
return roots.size();
}
public void union(int vertex1, int vertex2) {
int root1 = find(vertex1);
int root2 = find(vertex2);
if (root1 != root2) {
if (rank[root1] > rank[root2]) {
root[root2] = root1;
} else if (rank[root2] > rank[root1]) {
root[root1] = root2;
} else {
root[root2] = root1;
rank[root1]++;
}
}
}
private int find(int vertex) {
if (root[vertex] == vertex) return vertex;
return root[vertex] = find(root[vertex]);
}
}
class Solution {
public int numberOfComponents(int[][] properties, int k) {
DisjointSet disjointSet = new DisjointSet(properties.length);
for (int i = 0; i < properties.length; i++) {
boolean[] distinct = new boolean[101];
for (int l = 0; l < properties[i].length; l++) {
distinct[properties[i][l]] = true;
}
for (int j = i + 1; j < properties.length; j++) {
long intersect = intersect(distinct, properties[j]);
if (intersect >= k) {
disjointSet.union(i, j);
}
}
}
return disjointSet.getCount();
}
private long intersect(boolean[] prop1, int[] prop2) {
long count = 0;
boolean[] counted = new boolean[101];
for (int p : prop2) {
if (prop1[p] && !counted[p]) {
counted[p] = true;
count++;
}
}
return count;
}
}
``` | 0 | 0 | ['Array', 'Union Find', 'Graph', 'Java'] | 0 |
properties-graph | Java | JavaScript | TypeScript | C++ | C# | Kotlin | Go Solution. | java-javascript-typescript-c-c-kotlin-go-aazu | null | LachezarTsK | NORMAL | 2025-03-31T17:28:04.612744+00:00 | 2025-03-31T17:48:15.853026+00:00 | 2 | false | ```Java []
public class Solution {
private static final int BIT_SET_SUBGROUPS = 2;
private static final int[] RANGE_OF_VALUES = {1, 100};
private int minNumberOfUniqueValueConnections;
public int numberOfComponents(int[][] properties, int minNumberOfUniqueValueConnections) {
this.minNumberOfUniqueValueConnections = minNumberOfUniqueValueConnections;
long[][] bitSetGroups = createBitSetGroups(properties);
return findNumberOfConnectedGroups(properties, bitSetGroups);
}
private long[][] createBitSetGroups(int[][] properties) {
/*
To keep the number of bit shifts within a 64-bit integer, each bitSetGroups[i] has:
bitSetGroups[i][0] => stores unique values from 1 to 50
bitSetGroups[i][1] => stores unique values from 51 to 100
*/
long[][] bitSetGroups = new long[properties.length][BIT_SET_SUBGROUPS];
for (int i = 0; i < properties.length; ++i) {
for (int value : properties[i]) {
int index = value / (RANGE_OF_VALUES[1] / BIT_SET_SUBGROUPS + 1);
int bitShifts = 1 + value % (RANGE_OF_VALUES[1] / BIT_SET_SUBGROUPS + 1);
long bitStamp = 1L << bitShifts;
bitSetGroups[i][index] |= bitStamp;
}
}
return bitSetGroups;
}
private int findNumberOfConnectedGroups(int[][] properties, long[][] bitSetGroups) {
UnionFind unionFind = new UnionFind(properties.length);
int numberOfComponents = properties.length;
for (int i = 0; i < bitSetGroups.length; ++i) {
for (int j = i + 1; j < bitSetGroups.length; ++j) {
int totalConnections = 0;
for (int g = 0; g < BIT_SET_SUBGROUPS; ++g) {
totalConnections += countBitsSetToOne(bitSetGroups[i][g] & bitSetGroups[j][g]);
}
if (totalConnections >= minNumberOfUniqueValueConnections && unionFind.joinByRank(i, j)) {
--numberOfComponents;
}
}
}
return numberOfComponents;
}
private int countBitsSetToOne(long value) {
int bitsSetToOne = 0;
while (value > 0) {
bitsSetToOne += (value & 1);
value >>= 1;
}
return bitsSetToOne;
}
}
class UnionFind {
private int[] parent;
private int[] rank;
UnionFind(int numberOfElements) {
parent = new int[numberOfElements];
rank = new int[numberOfElements];
for (int i = 0; i < numberOfElements; ++i) {
parent[i] = i;
rank[i] = 1;
}
/*
Alternatively:
parent = IntStream.range(0, numberOfElements).toArray();
rank = new int[numberOfElements];
Arrays.fill(rank, 1);
*/
}
private int findParent(int index) {
if (parent[index] != index) {
parent[index] = findParent(parent[index]);
}
return parent[index];
}
boolean joinByRank(int indexOne, int indexTwo) {
int first = findParent(indexOne);
int second = findParent(indexTwo);
if (first == second) {
return false;
}
if (rank[first] >= rank[second]) {
rank[first] += rank[second];
parent[second] = first;
} else {
rank[second] += rank[first];
parent[first] = second;
}
return true;
}
}
```
```JavaScript []
/**
* @param {number[][]} properties
* @param {number} minNumberOfUniqueValueConnections
* @return {number}
*/
var numberOfComponents = function (properties, minNumberOfUniqueValueConnections) {
this.BIT_SET_SUBGROUPS = 4;
this.RANGE_OF_VALUES = [1, 100];
this.minNumberOfUniqueValueConnections = minNumberOfUniqueValueConnections;
const bitSetGroups = createBitSetGroups(properties);
return findNumberOfConnectedGroups(properties, bitSetGroups);
};
/**
* @param {number[][]} properties
* @return {number[][]}
*/
function createBitSetGroups(properties) {
/*
To keep the number of bit shifts within a 32-bit integer, each bitSetGroups[i] has:
bitSetGroups[i][0] => stores unique values from 1 to 25
bitSetGroups[i][1] => stores unique values from 26 to 50
bitSetGroups[i][2] => stores unique values from 51 to 75
bitSetGroups[i][3] => stores unique values from 76 to 100
While the solutions in the other languages keep the number of bit shifts within a 64-bit integer,
thus bitSetGroups[i] is divided into two parts, from 1 to 50 and from 51 to 100, in JavaScript,
correspondingly in TypeScript, when performing bitwise operations on their standard number,
implemented in double-precision 64-bit binary format IEEE 754, it is treated in a 32-bit binary format.
To avoid overflowing, one option is to apply their inbuilt BigInt class (the less efficient option)
or, as is done here, to divide the bitSetGroups[i] into four equal parts,
so that the bit shifts do not exceed the 32-bit.
*/
const bitSetGroups = Array.from(new Array(properties.length), () => new Array(this.BIT_SET_SUBGROUPS).fill(0));
for (let i = 0; i < properties.length; ++i) {
for (let value of properties[i]) {
const index = Math.floor(value / (this.RANGE_OF_VALUES[1] / this.BIT_SET_SUBGROUPS + 1));
const bitShifts = 1 + (value % (this.RANGE_OF_VALUES[1] / this.BIT_SET_SUBGROUPS + 1));
const bitStamp = 1 << bitShifts;
bitSetGroups[i][index] |= bitStamp;
}
}
return bitSetGroups;
}
/**
* @param {number[][]} properties
* @param {number[][]} bitSetGroups
* @return {number}
*/
function findNumberOfConnectedGroups(properties, bitSetGroups) {
const unionFind = new UnionFind(properties.length);
let numberOfComponents = properties.length;
for (let i = 0; i < bitSetGroups.length; ++i) {
for (let j = i + 1; j < bitSetGroups.length; ++j) {
let totalConnections = 0;
for (let g = 0; g < this.BIT_SET_SUBGROUPS; ++g) {
totalConnections += countBitsSetToOne(bitSetGroups[i][g] & bitSetGroups[j][g]);
}
if (totalConnections >= this.minNumberOfUniqueValueConnections && unionFind.joinByRank(i, j)) {
--numberOfComponents;
}
}
}
return numberOfComponents;
}
/**
* @param {number} value
* @return {number}
*/
function countBitsSetToOne(value) {
let bitsSetToOne = 0;
while (value > 0) {
bitsSetToOne += (value & 1);
value >>= 1;
}
return bitsSetToOne;
}
class UnionFind {
#parent;
#rank;
/**
* @param {number} numberOfElements
*/
constructor(numberOfElements) {
this.#parent = new Array(numberOfElements);
this.#rank = new Array(numberOfElements);
for (let i = 0; i < numberOfElements; ++i) {
this.#parent[i] = i;
this.#rank[i] = 1;
}
/*
Alternatively:
this.parent = Array.from(Array(numberOfElements).keys());
this.rank = new Array(numberOfElements).fill(1);
*/
}
/**
* @param {number} index
* @return {number}
*/
#findParent(index) {
if (this.#parent[index] !== index) {
this.#parent[index] = this.#findParent(this.#parent[index]);
}
return this.#parent[index];
}
/**
* @param {number} indexOne
* @param {number} indexTwo
* @return {boolean}
*/
joinByRank(indexOne, indexTwo) {
const first = this.#findParent(indexOne);
const second = this.#findParent(indexTwo);
if (first === second) {
return false;
}
if (this.#rank[first] >= this.#rank[second]) {
this.#rank[first] += this.#rank[second];
this.#parent[second] = first;
} else {
this.#rank[second] += this.#rank[first];
this.#parent[first] = second;
}
return true;
}
}
```
```TypeScript []
function numberOfComponents(properties: number[][], minNumberOfUniqueValueConnections: number): number {
this.BIT_SET_SUBGROUPS = 4;
this.RANGE_OF_VALUES = [1, 100];
this.minNumberOfUniqueValueConnections = minNumberOfUniqueValueConnections;
const bitSetGroups = createBitSetGroups(properties);
return findNumberOfConnectedGroups(properties, bitSetGroups);
};
function createBitSetGroups(properties: number[][]): number[][] {
/*
To keep the number of bit shifts within a 32-bit integer, each bitSetGroups[i] has:
bitSetGroups[i][0] => stores unique values from 1 to 25
bitSetGroups[i][1] => stores unique values from 26 to 50
bitSetGroups[i][2] => stores unique values from 51 to 75
bitSetGroups[i][3] => stores unique values from 76 to 100
While the solutions in the other languages keep the number of bit shifts within a 64-bit integer,
thus bitSetGroups[i] is divided into two parts, from 1 to 50 and from 51 to 100, in JavaScript,
correspondingly in TypeScript, when performing bitwise operations on their standard number,
implemented in double-precision 64-bit binary format IEEE 754, it is treated in a 32-bit binary format.
To avoid overflowing, one option is to apply their inbuilt BigInt class (the less efficient option)
or, as is done here, to divide the bitSetGroups[i] into four equal parts,
so that the bit shifts do not exceed the 32-bit.
*/
const bitSetGroups = Array.from(new Array(properties.length), () => new Array(this.BIT_SET_SUBGROUPS).fill(0));
for (let i = 0; i < properties.length; ++i) {
for (let value of properties[i]) {
const index = Math.floor(value / (this.RANGE_OF_VALUES[1] / this.BIT_SET_SUBGROUPS + 1));
const bitShifts = 1 + (value % (this.RANGE_OF_VALUES[1] / this.BIT_SET_SUBGROUPS + 1));
const bitStamp = 1 << bitShifts;
bitSetGroups[i][index] |= bitStamp;
}
}
return bitSetGroups;
}
function findNumberOfConnectedGroups(properties: number[][], bitSetGroups: number[][]): number {
const unionFind = new UnionFind(properties.length);
let numberOfComponents = properties.length;
for (let i = 0; i < bitSetGroups.length; ++i) {
for (let j = i + 1; j < bitSetGroups.length; ++j) {
let totalConnections = 0;
for (let g = 0; g < this.BIT_SET_SUBGROUPS; ++g) {
totalConnections += countBitsSetToOne(bitSetGroups[i][g] & bitSetGroups[j][g]);
}
if (totalConnections >= this.minNumberOfUniqueValueConnections && unionFind.joinByRank(i, j)) {
--numberOfComponents;
}
}
}
return numberOfComponents;
}
function countBitsSetToOne(value: number): number {
let bitsSetToOne = 0;
while (value > 0) {
bitsSetToOne += (value & 1);
value >>= 1;
}
return bitsSetToOne;
}
class UnionFind {
private parent: number[];
private rank: number[];
constructor(numberOfElements: number) {
this.parent = new Array(numberOfElements);
this.rank = new Array(numberOfElements);
for (let i = 0; i < numberOfElements; ++i) {
this.parent[i] = i;
this.rank[i] = 1;
}
/*
Alternatively:
this.parent = Array.from(Array(numberOfElements).keys());
this.rank = new Array(numberOfElements).fill(1);
*/
}
private findParent(index: number): number {
if (this.parent[index] !== index) {
this.parent[index] = this.findParent(this.parent[index]);
}
return this.parent[index];
}
joinByRank(indexOne: number, indexTwo: number): boolean {
const first = this.findParent(indexOne);
const second = this.findParent(indexTwo);
if (first === second) {
return false;
}
if (this.rank[first] >= this.rank[second]) {
this.rank[first] += this.rank[second];
this.parent[second] = first;
} else {
this.rank[second] += this.rank[first];
this.parent[first] = second;
}
return true;
}
}
```
```C++ []
#include <span>
#include <vector>
using namespace std;
class UnionFind {
vector<int> parent;
vector<int> rank;
public:
UnionFind(int numberOfElements) {
parent.resize(numberOfElements);
rank.resize(numberOfElements);
for (int i = 0; i < numberOfElements; ++i) {
parent[i] = i;
rank[i] = 1;
}
/*
Alternatively:
parent.resize(numberOfElements);
ranges::iota(parent, 0);
rank.resize(numberOfElements, 1);
*/
}
int findParent(int index) {
if (parent[index] != index) {
parent[index] = findParent(parent[index]);
}
return parent[index];
}
bool joinByRank(int indexOne, int indexTwo) {
int first = findParent(indexOne);
int second = findParent(indexTwo);
if (first == second) {
return false;
}
if (rank[first] >= rank[second]) {
rank[first] += rank[second];
parent[second] = first;
}
else {
rank[second] += rank[first];
parent[first] = second;
}
return true;
}
};
class Solution {
static const int BIT_SET_SUBGROUPS = 2;
static constexpr array<int, 2> RANGE_OF_VALUES = { 1, 100 };
int minNumberOfUniqueValueConnections{};
public:
int numberOfComponents(vector<vector<int>>& properties, int minNumberOfUniqueValueConnections) {
this->minNumberOfUniqueValueConnections = minNumberOfUniqueValueConnections;
vector<vector<long long>> bitSetGroups = createBitSetGroups(properties);
return findNumberOfConnectedGroups(properties, bitSetGroups);
}
private:
vector<vector<long long>> createBitSetGroups(span<const vector<int>> properties) const {
/*
To keep the number of bit shifts within a 64-bit integer, each bitSetGroups[i] has:
bitSetGroups[i][0] => stores unique values from 1 to 50
bitSetGroups[i][1] => stores unique values from 51 to 100
*/
vector<vector<long long>> bitSetGroups(properties.size(), vector<long long>(BIT_SET_SUBGROUPS)); ;
for (int i = 0; i < properties.size(); ++i) {
for (int value : properties[i]) {
int index = value / (RANGE_OF_VALUES[1] / BIT_SET_SUBGROUPS + 1);
int bitShifts = 1 + value % (RANGE_OF_VALUES[1] / BIT_SET_SUBGROUPS + 1);
long long bitStamp = 1LL << bitShifts;
bitSetGroups[i][index] |= bitStamp;
}
}
return bitSetGroups;
}
int findNumberOfConnectedGroups(span<const vector<int>> properties, span<const vector<long long>> bitSetGroups) const {
UnionFind unionFind(properties.size());
int numberOfComponents = properties.size();
for (int i = 0; i < bitSetGroups.size(); ++i) {
for (int j = i + 1; j < bitSetGroups.size(); ++j) {
int totalConnections = 0;
for (int g = 0; g < BIT_SET_SUBGROUPS; ++g) {
totalConnections += countBitsSetToOne(bitSetGroups[i][g] & bitSetGroups[j][g]);
}
if (totalConnections >= minNumberOfUniqueValueConnections && unionFind.joinByRank(i, j)) {
--numberOfComponents;
}
}
}
return numberOfComponents;
}
int countBitsSetToOne(long long value) const {
int bitsSetToOne = 0;
while (value > 0) {
bitsSetToOne += (value & 1);
value >>= 1;
}
return bitsSetToOne;
}
};
```
```C# []
using System;
public class Solution
{
private static readonly int BIT_SET_SUBGROUPS = 2;
private static readonly int[] RANGE_OF_VALUES = { 1, 100 };
private int minNumberOfUniqueValueConnections;
public int NumberOfComponents(int[][] properties, int minNumberOfUniqueValueConnections)
{
this.minNumberOfUniqueValueConnections = minNumberOfUniqueValueConnections;
long[][] bitSetGroups = CreateBitSetGroups(properties);
return FindNumberOfConnectedGroups(properties, bitSetGroups);
}
private long[][] CreateBitSetGroups(int[][] properties)
{
/*
To keep the number of bit shifts within a 64-bit integer, each bitSetGroups[i] has:
bitSetGroups[i][0] => stores unique values from 1 to 50
bitSetGroups[i][1] => stores unique values from 51 to 100
*/
long[][] bitSetGroups = new long[properties.Length][];
for (int i = 0; i < properties.Length; ++i)
{
bitSetGroups[i] = new long[BIT_SET_SUBGROUPS];
foreach (int value in properties[i])
{
int index = value / (RANGE_OF_VALUES[1] / BIT_SET_SUBGROUPS + 1);
int bitShifts = 1 + value % (RANGE_OF_VALUES[1] / BIT_SET_SUBGROUPS + 1);
long bitStamp = 1L << bitShifts;
bitSetGroups[i][index] |= bitStamp;
}
}
return bitSetGroups;
}
private int FindNumberOfConnectedGroups(int[][] properties, long[][] bitSetGroups)
{
UnionFind unionFind = new UnionFind(properties.Length);
int numberOfComponents = properties.Length;
for (int i = 0; i < bitSetGroups.Length; ++i)
{
for (int j = i + 1; j < bitSetGroups.Length; ++j)
{
int totalConnections = 0;
for (int g = 0; g < BIT_SET_SUBGROUPS; ++g)
{
totalConnections += CountBitsSetToOne(bitSetGroups[i][g] & bitSetGroups[j][g]);
}
if (totalConnections >= minNumberOfUniqueValueConnections && unionFind.JoinByRank(i, j))
{
--numberOfComponents;
}
}
}
return numberOfComponents;
}
private int CountBitsSetToOne(long value)
{
int bitsSetToOne = 0;
while (value > 0)
{
bitsSetToOne += (int)(value & 1);
value >>= 1;
}
return bitsSetToOne;
}
}
class UnionFind
{
private int[] parent;
private int[] rank;
public UnionFind(int numberOfElements)
{
parent = new int[numberOfElements];
rank = new int[numberOfElements];
for (int i = 0; i < numberOfElements; ++i)
{
parent[i] = i;
rank[i] = 1;
}
/*
Alternatively:
parent = Enumerable.Range(0, numberOfElements).ToArray();
rank = new int[numberOfElements];
Array.Fill(rank, 1);
*/
}
private int FindParent(int index)
{
if (parent[index] != index)
{
parent[index] = FindParent(parent[index]);
}
return parent[index];
}
public bool JoinByRank(int indexOne, int indexTwo)
{
int first = FindParent(indexOne);
int second = FindParent(indexTwo);
if (first == second)
{
return false;
}
if (rank[first] >= rank[second])
{
rank[first] += rank[second];
parent[second] = first;
}
else
{
rank[second] += rank[first];
parent[first] = second;
}
return true;
}
}
```
```Kotlin []
class Solution {
private companion object {
const val BIT_SET_SUBGROUPS = 2
val RANGE_OF_VALUES = intArrayOf(1, 100)
}
private var minNumberOfUniqueValueConnections = 0
fun numberOfComponents(properties: Array<IntArray>, minNumberOfUniqueValueConnections: Int): Int {
this.minNumberOfUniqueValueConnections = minNumberOfUniqueValueConnections
val bitSetGroups: Array<LongArray> = createBitSetGroups(properties)
return findNumberOfConnectedGroups(properties, bitSetGroups)
}
private fun createBitSetGroups(properties: Array<IntArray>): Array<LongArray> {
/*
To keep the number of bit shifts within a 64-bit integer, each bitSetGroups[i] has:
bitSetGroups[i][0] => stores unique values from 1 to 50
bitSetGroups[i][1] => stores unique values from 51 to 100
*/
val bitSetGroups = Array(properties.size) { LongArray(BIT_SET_SUBGROUPS) }
for (i in properties.indices) {
for (value in properties[i]) {
val index = value / (RANGE_OF_VALUES[1] / BIT_SET_SUBGROUPS + 1)
val bitShifts = 1 + value % (RANGE_OF_VALUES[1] / BIT_SET_SUBGROUPS + 1)
val bitStamp : Long = 1L shl bitShifts
bitSetGroups[i][index] = bitSetGroups[i][index] or bitStamp
}
}
return bitSetGroups
}
private fun findNumberOfConnectedGroups(properties: Array<IntArray>, bitSetGroups: Array<LongArray>): Int {
val unionFind = UnionFind(properties.size)
var numberOfComponents = properties.size
for (i in bitSetGroups.indices) {
for (j in i + 1..<bitSetGroups.size) {
var totalConnections = 0
for (g in 0..<BIT_SET_SUBGROUPS) {
totalConnections += countBitsSetToOne(bitSetGroups[i][g] and bitSetGroups[j][g])
}
if (totalConnections >= minNumberOfUniqueValueConnections && unionFind.joinByRank(i, j)) {
--numberOfComponents
}
}
}
return numberOfComponents
}
private fun countBitsSetToOne(value: Long): Int {
var bitsSetToOne = 0
var value: Long = value
while (value > 0) {
bitsSetToOne += (value and 1).toInt()
value = value shr 1
}
return bitsSetToOne
}
}
class UnionFind(private val numberOfElements: Int) {
private val parent = IntArray(numberOfElements)
private val rank = IntArray(numberOfElements)
init {
for (i in 0..<numberOfElements) {
parent[i] = i
rank[i] = 1
}
}
/*
Alternatively:
private val parent = IntArray(numberOfElements) { i -> i }
private val rank = IntArray(numberOfElements) { 1 }
*/
private fun findParent(index: Int): Int {
if (parent[index] != index) {
parent[index] = findParent(parent[index])
}
return parent[index]
}
fun joinByRank(indexOne: Int, indexTwo: Int): Boolean {
val first = findParent(indexOne)
val second = findParent(indexTwo)
if (first == second) {
return false
}
if (rank[first] >= rank[second]) {
rank[first] += rank[second]
parent[second] = first
} else {
rank[second] += rank[first]
parent[first] = second
}
return true
}
}
```
```Go []
package main
const BIT_SET_SUBGROUPS = 2
var RANGE_OF_VALUES = [2]int{1, 100}
var minNumberOfUniqueValueConnections int
func numberOfComponents(properties [][]int, minNumberOfConnections int) int {
minNumberOfUniqueValueConnections = minNumberOfConnections
var bitSetGroups [][]int64 = createBitSetGroups(properties)
return findNumberOfConnectedGroups(properties, bitSetGroups)
}
func createBitSetGroups(properties [][]int) [][]int64 {
/*
To keep the number of bit shifts within a 64-bit integer, each bitSetGroups[i] has:
bitSetGroups[i][0] => stores unique values from 1 to 50
bitSetGroups[i][1] => stores unique values from 51 to 100
*/
bitSetGroups := make([][]int64, len(properties))
for i := range properties {
bitSetGroups[i] = make([]int64, BIT_SET_SUBGROUPS)
for _, value := range properties[i] {
index := value / (RANGE_OF_VALUES[1] / BIT_SET_SUBGROUPS + 1)
bitShifts := 1 + value % (RANGE_OF_VALUES[1] / BIT_SET_SUBGROUPS+1)
bitStamp := int64(1) << bitShifts
bitSetGroups[i][index] |= bitStamp
}
}
return bitSetGroups
}
func findNumberOfConnectedGroups(properties [][]int, bitSetGroups [][]int64) int {
unionFind := NewUnionFind(len(properties))
numberOfComponents := len(properties)
for i := range bitSetGroups {
for j := i + 1; j < len(bitSetGroups); j++ {
totalConnections := 0
for g := range BIT_SET_SUBGROUPS {
totalConnections += countBitsSetToOne(bitSetGroups[i][g] & bitSetGroups[j][g])
}
if totalConnections >= minNumberOfUniqueValueConnections && unionFind.joinByRank(i, j) {
numberOfComponents--
}
}
}
return numberOfComponents
}
func countBitsSetToOne(value int64) int {
bitsSetToOne := 0
for value > 0 {
bitsSetToOne += int(value & 1)
value >>= 1
}
return bitsSetToOne
}
type UnionFind struct {
parent []int
rank []int
}
func NewUnionFind(numberOfElements int) *UnionFind {
unionFind := &UnionFind{
parent: make([]int, numberOfElements),
rank: make([]int, numberOfElements),
}
for i := range numberOfElements {
unionFind.parent[i] = i
unionFind.rank[i] = 1
}
return unionFind
}
func (this *UnionFind) findParent(index int) int {
if this.parent[index] != index {
this.parent[index] = this.findParent(this.parent[index])
}
return this.parent[index]
}
func (this *UnionFind) joinByRank(indexOne int, indexTwo int) bool {
first := this.findParent(indexOne)
second := this.findParent(indexTwo)
if first == second {
return false
}
if this.rank[first] >= this.rank[second] {
this.rank[first] += this.rank[second]
this.parent[second] = first
} else {
this.rank[second] += this.rank[first]
this.parent[first] = second
}
return true
}
``` | 0 | 0 | ['C++', 'Java', 'Go', 'TypeScript', 'Kotlin', 'JavaScript', 'C#'] | 0 |
properties-graph | 12-line union find + bit masks, beats 99.65% | 12-line-union-find-bit-masks-beats-9965-b4m0f | Complexity
Time complexity: O(mโn)
Space complexity: O(n)
Submissionhttps://leetcode.com/problems/properties-graph/submissions/1591932651/Code | dsapelnikov | NORMAL | 2025-03-31T10:53:35.931739+00:00 | 2025-03-31T10:53:35.931739+00:00 | 1 | false | # Complexity
- Time complexity: $$O(m*n)$$
- Space complexity: $$O(n)$$
# Submission
https://leetcode.com/problems/properties-graph/submissions/1591932651/
# Code
```python3 []
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
# Union find: parents + parent getter with path compression
parent = list(range(len(properties)))
def get_parent(node):
res = node
while parent[res] != res:
res = parent[res]
parent[node] = res
return res
# Turn arrays into bit masks due to small range of values
mask = [reduce(or_, [1 << o for o in pr]) for pr in properties]
# Find disjoint sets using the union find algorithm
for i, j in combinations(range(len(mask)), 2):
if (mask[i] & mask[j]).bit_count() >= k:
parent[get_parent(i)] = get_parent(j)
# Return the number of root nodes in the parent graph
return sum(i == parent[i] for i in range(len(parent)))
``` | 0 | 0 | ['Python3'] | 0 |
properties-graph | easiest java code !....... | easiest-java-code-by-coder_neeraj123-zga4 | IntuitionApproachwe have to build the graph with the common elements of the two selected arrays , so iterate over the 2d array and select two arrays properties | coder_neeraj123 | NORMAL | 2025-03-31T07:25:38.338029+00:00 | 2025-03-31T07:25:38.338029+00:00 | 1 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->simply building the graph and counting the connected component
# Approach
<!-- Describe your approach to solving the problem. -->
we have to build the graph with the common elements of the two selected arrays , so iterate over the 2d array and select two arrays properties[i] , properties[j] find there common elements and if they are >= k then i,j have an edge between them , after the graph is ready just apply dfs and count the connected components
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
O(n^2 * m)
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
int m = properties[0].length;
ArrayList<Integer> list[] = new ArrayList[n];
for (int i = 0; i < list.length; i++) {
list[i] = new ArrayList<>();
}
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
Set<Integer> set1 = new HashSet<>();
Set<Integer> set2 = new HashSet<>();
for (int num : properties[i])
set1.add(num);
for (int num : properties[j])
set2.add(num);
set1.retainAll(set2);
if (set1.size() >= k) {
list[i].add(j);
list[j].add(i);
}
}
}
int ans = helper(list);
return ans;
}
public static int helper(ArrayList<Integer> list[]) {
boolean vis[] = new boolean[list.length];
int count = 0;
for (int i = 0; i < list.length; i++) {
if (vis[i] != true) {
count++;
dfs(list, i, vis);
}
}
return count;
}
public static void dfs(ArrayList<Integer> list[], int curr, boolean vis[]) {
vis[curr] = true;
for (int i = 0; i < list[curr].size(); i++) {
int neigh = list[curr].get(i);
if (vis[neigh] == false) {
dfs(list, neigh, vis);
}
}
}
}
``` | 0 | 0 | ['Java'] | 0 |
properties-graph | Use sets to find edge condition and DSU to get no. of components | use-sets-to-find-edge-condition-and-dsu-xrcs0 | IntuitionUse sets to find edge condition and DSU to get no. of componentsCode | akshar_ | NORMAL | 2025-03-30T08:16:33.871287+00:00 | 2025-03-30T08:16:33.871287+00:00 | 3 | false | # Intuition
Use sets to find edge condition and DSU to get no. of components
# Code
```cpp []
class Solution {
public:
class DSU {
public:
int n;
vector<int> parent, rank;
DSU(int _n) {
n = _n;
parent.resize(n);
rank.resize(n, 1);
for (int i = 0; i < n; i++) {
parent[i] = i;
}
}
void combine(int x, int y) {
int rx = find(x);
int ry = find(y);
if (rx == ry) { return; }
if (rank[rx] > rank[ry]) {
parent[ry] = rx;
} else if (rank[ry] > rank[rx]) {
parent[rx] = ry;
} else {
rank[rx]++;
parent[ry] = rx;
}
}
int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]);
}
return parent[x];
}
};
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
DSU dsu(n);
vector<unordered_set<int>> sets;
for (int i = 0; i < n; i++) {
unordered_set<int> s(properties[i].begin(), properties[i].end());
sets.push_back(s);
}
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (edgeExists(sets[i], sets[j], k)) {
dsu.combine(i, j);
}
}
}
unordered_set<int> roots;
for (int i = 0; i < n; i++) {
roots.insert(dsu.find(i));
}
return roots.size();
}
bool edgeExists(unordered_set<int> &s1, unordered_set<int> &s2, int k) {
if (s1.size() < s2.size()) {
return edgeExists(s2, s1, k); // iterate over smaller set for efficiency
}
int count = 0;
for (int num : s2) {
if (s1.find(num) != s1.end()) { // exists in both sets
count++;
}
if (count >= k) {
return true;
}
}
return false;
}
};
``` | 0 | 0 | ['Strongly Connected Component', 'C++'] | 0 |
properties-graph | C++ 79 ms | c-79-ms-by-eridanoy-7x07 | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | eridanoy | NORMAL | 2025-03-29T21:50:50.419211+00:00 | 2025-03-29T21:50:50.419211+00:00 | 1 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
bool intersect(const vector<int>& a, const vector<int>& b, int k) {
constexpr int len = 101;
bool A[len] {};
for(auto i : a) A[i] = true;
bool B[len] {};
for(auto i : b) B[i] = true;
for(int i = 0; i < len; ++i)
if(A[i] and B[i] and !--k)
return true;
return false;
}
void BFS(const vector<vector<int>>& graph, vector<bool>& visited, int curr) {
queue<int> vertices;
visited[curr] = true;
vertices.push(curr);
while(!vertices.empty()) {
curr = vertices.front();
vertices.pop();
for(auto next : graph[curr]) {
if(visited[next]) continue;
visited[next] = true;
vertices.push(next);
}
}
}
int numberOfComponents(const vector<vector<int>>& properties, const int k) {
const int len = size(properties);
vector<vector<int>> graph(len);
for(int first = 0; first < len - 1; ++first) {
for(int second = first + 1; second < len; ++second) {
if(intersect(properties[first], properties[second], k)) {
graph[first].push_back(second);
graph[second].push_back(first);
}
}
}
int count = 0;
vector<bool> visited(len);
for(int i = 0; i < len; ++i) {
if(visited[i]) continue;
BFS(graph, visited, i);
++count;
}
return count;
}
};
``` | 0 | 0 | ['C++'] | 0 |
properties-graph | Javascript union find 685ms | javascript-union-find-685ms-by-henrychen-ex1c | null | henrychen222 | NORMAL | 2025-03-29T16:08:58.695157+00:00 | 2025-03-29T16:08:58.695157+00:00 | 1 | false |
```
function DJSet(n) {
let p = Array(n).fill(-1);
return { find, union, count, equiv, par, grp }
function find(x) {
return p[x] < 0 ? x : p[x] = find(p[x]);
}
function union(x, y) {
x = find(x);
y = find(y);
if (x == y) return false;
if (p[x] < p[y]) [x, y] = [y, x];
p[x] += p[y];
p[y] = x;
return true;
}
function count() { // total groups
return p.filter(v => v < 0).length;
}
function equiv(x, y) { // isConnected
return find(x) == find(y);
}
function par() {
return p;
}
function grp() { // generate all groups (nlogn)
let g = [];
for (let i = 0; i < n; i++) g.push([]);
for (let i = 0; i < n; i++) g[find(i)].push(i); // sorted and unique
return g;
}
}
const numberOfComponents = (p, k) => {
let n = p.length, m = p[0].length, ds = new DJSet(n);
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
let cnt = intersect(p[i], p[j]);
if (cnt >= k) ds.union(i, j);
}
}
return ds.count();
};
const intersect = (a, b) => {
let res = 0;
a = new Set(a), b = new Set(b);
for (const x of a) {
if (b.has(x)) res++;
}
return res;
};
``` | 0 | 0 | ['Union Find', 'JavaScript'] | 0 |
properties-graph | union-find with path compression | union-find-with-path-compression-by-lamb-lmeu | Intuition
typical union-find with path compression
brute force to check edge/connection between two nodes/properties
Code | lambdacode-dev | NORMAL | 2025-03-29T01:21:57.485628+00:00 | 2025-03-29T01:21:57.485628+00:00 | 3 | false | # Intuition
- typical union-find with path compression
- brute force to check edge/connection between two nodes/properties
# Code
```cpp []
class Solution {
public:
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
int m = properties[0].size();
vector<vector<bool>> masks(n, vector<bool>(101, false));
for(int i = 0; i < n; ++i) {
for(auto j : properties[i]) {
masks[i][j] = true;
}
}
vector<int> parent(n);
function<int(int)> find;
find = [&find, &parent] (int i) {
if(parent[i] == i) return i;
return ( parent[i] = find(parent[i]) );
};
iota(parent.begin(), parent.end(), 0);
for(int j = 1; j < n; ++j) {
for(int i = 0; i < j; ++i) {
int common = 0;
for(int k = 1; k <= 100; ++k) {
if(masks[i][k] && masks[j][k])
++common;
}
if(common >= k) {
parent[find(j)] = find(i);
}
}
}
unordered_set<int> groupIds;
for(int j = 0; j < n; ++j) {
groupIds.insert(find(j));
}
return groupIds.size();
}
};
``` | 0 | 0 | ['C++'] | 0 |
properties-graph | Brute force to make edges and then graph visit | brute-force-to-make-edges-and-then-graph-ncft | Intuition
brute force to check number of common numbers between two properties to make an edge if >= k. This takes < 100*100*100 steps.
graph visited on the adj | lambdacode-dev | NORMAL | 2025-03-29T00:59:11.521890+00:00 | 2025-03-29T00:59:11.521890+00:00 | 4 | false | # Intuition
- brute force to check number of common numbers between two properties to make an edge if `>= k`. This takes `< 100*100*100` steps.
- graph visited on the adjacent list.
- use `vector` instead of `unordered_map/set` as size is only `< 100`
# Code
```cpp []
class Solution {
public:
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
int m = properties[0].size();
vector<vector<bool>> nums(n, vector<bool>(101,false));
for(int i = 0; i < n; ++i) {
for(auto p : properties[i]) {
nums[i][p] = true;
}
}
vector<vector<int>> adj(n);
for(int i = 0; i < n; ++i) {
for(int j = i+1; j < n; ++j) {
int common = 0;
for(int k = 0; k <= 100; ++k) {
if(nums[i][k] && nums[j][k]) {
++common;
}
}
if(common >= k) {
adj[i].push_back(j);
adj[j].push_back(i);
}
}
}
vector<bool> visited(n, false);
function<void(int)> dfs;
dfs = [&dfs, &visited, &adj](int i) {
visited[i] = true;
for(auto j : adj[i]) {
if(!visited[j])
dfs(j);
}
};
int count = 0;
for(int i = 0; i < n; ++i) {
if(!visited[i]) {
dfs(i);
count++;
}
}
return count;
}
};
``` | 0 | 0 | ['C++'] | 0 |
properties-graph | [C++] Union Find || Bitset | c-union-find-bitset-by-daks_05-zsvf | IntuitionThe question states that there are n nodes 0 to n-1.
Since There exists between node i to j only if intersect(properties[i], properties[j]) >= k, where | daks_05 | NORMAL | 2025-03-28T17:29:43.226656+00:00 | 2025-03-28T17:29:43.226656+00:00 | 1 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
The question states that there are n nodes `0` to `n-1`.
Since There exists between node `i` to `j` only if `intersect(properties[i], properties[j]) >= k`, where `intersect(a, b) that returns the number of distinct integers common to both arrays a and b`.
The key thing is to compute `intersection` optimally,
we can make use of bitset or any similar thing to do the same optimally
represent presence of element in bitset and make use of `bitwise and`(&) to intersect those two
We can either use Depth-first, Breath-first search or Union Find/ DisJoint set to find the number of components.
# Approach
<!-- Describe your approach to solving the problem. -->
- Use a vector of bitset<100>
- For each Property
- Mark presence of each element in that property in the respective bitset.
- Declare a DisJointset
- for i from 0 until n
- for j from i+1 until n
- if (countSetBits(hash[i] & hash[j]) >= k) connect / union node i and j
- return the number of components
# Complexity
- Time complexity: $$O(n^2)$$
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: $$O(n)$$
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class DisJointSet {
int nC;
vector<int> parent;
public:
vector<int> size;
DisJointSet(int n) {
nC = n;
parent.resize(n);
size.resize(n, 1);
iota(parent.begin(), parent.end(), 0);
}
int find(int node) {
if(node == parent[node]) return node;
return parent[node] = find(parent[node]);
}
void unionSet(int u, int v) {
int parU = find(u), parV = find(v);
if(parU == parV) return ;
if(size[parU] < size[parV]) {
parent[parU] = parent[parV];
size[parV] += size[parU];
} else {
parent[parV] = parent[parU];
size[parU] += size[parV];
}
nC--;
}
int getNC() const { return nC; }
};
class Solution {
public:
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size(), m = properties[0].size();
DisJointSet ds(n);
bitset<100> intersection;
vector<bitset<100>> hash(n);
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
hash[i].set(properties[i][j] - 1);
for(int i=0; i<n; i++) {
for(int j=i+1; j<n; j++) {
intersection = hash[i] & hash[j];
if(intersection.count() >= k) ds.unionSet(i, j);
}
}
return ds.getNC();
}
};
``` | 0 | 0 | ['Hash Table', 'Bit Manipulation', 'Union Find', 'C++'] | 0 |
properties-graph | ๐ฅ The Ultimate Union-Find Trick to Solve This in No Time! ๐ฅ | the-ultimate-union-find-trick-to-solve-t-drz0 | IntuitionImagine each property as a galaxy in space. If two galaxies share enough stars (common elements), they form a galactic cluster (connected component). O | dngzz1 | NORMAL | 2025-03-28T12:22:53.069397+00:00 | 2025-03-28T12:22:53.069397+00:00 | 5 | false | # Intuition
Imagine each property as a galaxy in space. If two galaxies share enough stars (common elements), they form a galactic cluster (connected component). Our mission? Find the number of these clusters! ๐
How do we do that? Graph + Union-Find Magic! ๐ฉโจ
# Approach
Graph Representation: Each property list is a node. An edge exists between two nodes if their intersection has at least k elements.
Union-Find for Clustering: We use path compression + union by rank to efficiently merge connected components. Every time we merge two components, the total count decreases.
Final Count = Number of Clusters! ๐ฏ
# Complexity
- Time complexity:
Intersection Check is $O(m)$ per pair. Graph construction is $O(n^2 m)$. Union-Find is almost $O(1)$, so the total is $O(n^2 m)$.
- Space complexity:
Union-Find takes $O(n)$ and sets for intersection takes $O(m)$ so the total is $O(n + m)$.
# Code
```typescript []
function numberOfComponents(properties: number[][], k: number): number {
const n = properties.length
const m = properties[0].length
let numComponents = n
const unionFind = new UnionFind(n)
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
if (intersect(properties[i], properties[j]) >= k) {
const unioned = unionFind.union(i, j)
if (unioned) numComponents--
}
}
}
return numComponents
};
function intersect(a: number[], b: number[]): number {
const setA = new Set(a)
const setB = new Set(b)
let count = 0
for (let num of setA) {
if (setB.has(num)) count++
}
return count
}
class UnionFind {
parent: number[]
rank: number[]
constructor(n: number) {
this.parent = Array.from({ length: n }, (_, i) => i)
this.rank = new Array(n).fill(0)
}
find(i: number): number {
if (this.parent[i] === i) return i
return this.parent[i] = this.find(this.parent[i])
}
union(i: number, j: number): boolean {
const rootI = this.find(i)
const rootJ = this.find(j)
if (rootI === rootJ) return false
if (this.rank[rootI] < this.rank[rootJ]) {
this.parent[rootI] = rootJ
} else if (this.rank[rootJ] < this.rank[rootI]) {
this.parent[rootJ] = rootI
} else {
this.parent[rootI] = rootJ
this.rank[rootJ]++
}
return true
}
}
``` | 0 | 0 | ['TypeScript'] | 0 |
properties-graph | DSU soln | dsu-soln-by-rajanarora1999-ye04 | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | rajanarora1999 | NORMAL | 2025-03-28T08:33:56.898511+00:00 | 2025-03-28T08:33:56.898511+00:00 | 2 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
bool isedge(set <int> &a, set <int> &b,int k)
{int ans=0;
for(auto p:a)
{
if(b.find(p)!=b.end())
ans++;
}
return ans>=k;
}
int getparent(int a,vector <int> &parent)
{
if(a==parent[a])
return a;
return parent[a]=getparent(parent[a],parent);
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n=properties.size();
vector <int> parent(n);
vector <set<int> > op(n);
for(int i=0;i<n;i++)
{
for(auto p:properties[i])
op[i].insert(p);
}
for(int i=0;i<n;i++)
parent[i]=i;
int ans=n;
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++)
{
int x= getparent(i,parent),y=getparent(j,parent);
if(x!=y and isedge(op[i],op[j],k))
{
parent[x]=parent[y];
ans--;
}
}
return ans;
}
};
``` | 0 | 0 | ['C++'] | 0 |
properties-graph | simple python DFS solution | simple-python-dfs-solution-by-tejassheth-2i0m | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | TejasSheth | NORMAL | 2025-03-27T23:23:39.902250+00:00 | 2025-03-27T23:23:39.902250+00:00 | 4 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```python3 []
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
graph = defaultdict(list)
visited = set()
res = 0
def intersect(a, b):
return len(set(a) & set(b))
for i in range(len(properties) - 1):
for j in range(i + 1, len(properties)):
if intersect(properties[i], properties[j]) >= k:
graph[i].append(j)
graph[j].append(i)
def dfs(idx):
for neigh in graph[idx]:
if neigh not in visited:
visited.add(neigh)
dfs(neigh)
for i in range(len(properties)):
if i not in visited:
dfs(i)
res += 1
return res
``` | 0 | 0 | ['Array', 'Hash Table', 'Depth-First Search', 'Graph', 'Python3'] | 0 |
properties-graph | Easy C++ Union Find | Beats 88.95% | easy-c-union-find-beats-8895-by-divs_div-u5zm | IntuitionWhen Quesion asks about no. of components and edges are supposed to be formed based on some condition , Think once along the line of Union FindApproach | Divs_Divs | NORMAL | 2025-03-27T18:11:11.991316+00:00 | 2025-03-27T18:11:11.991316+00:00 | 5 | false | # Intuition
When Quesion asks about no. of components and edges are supposed to be formed based on some condition , Think once along the line of **Union Find**
# Approach
1. Write the code of Union Find , cnt is to maintain no. of comoponents. Initially there ar en components as there are no edges formed
2. Take every pair of i and j and check the `intersect(a[i] ,a[j])`. If it has more than k elements, then form an edge between i and j.
3. intersect function - The "v" array is maintained for the elements seens in first array and then iterate over second array to find common elements.
# Similar Problems
[Number of Operations to Make Network Connected](https://leetcode.com/problems/number-of-operations-to-make-network-connected/description/)
[Redundant Connection](https://leetcode.com/problems/redundant-connection/description/)
---
# Code
```cpp []
class Solution {
public:
vector<int> parent, rank;
int cnt;
/* code for union find */
int find(int node)
{
if(node==parent[node])
return node;
return parent[node] = find(parent[node]);
}
void makeset(int u , int v)
{
u =find(u);
v=find(v);
if(u==v)
return ;
if(rank[u] < rank[v])
parent[u] = v;
else if(rank[v] < rank[u])
parent[v] = u;
else if(rank[v]==rank[u])
{parent[v]=u;
rank[u]++;
}
cnt--; // when a connection is made we reduce it because no. of components dec. by 1
}
int intersect(vector<int> &a1 , vector<int> &a2)
{
vector<int> v(101 , 0);
for(auto x:a1)
v[x]++;
int cnt =0;
for(auto x:a2)
{
if(v[x]!=0)
{
cnt++;
v[x] =0 ;// count only once
}
}
return cnt;
}
int numberOfComponents(vector<vector<int>>& a, int k) {
int n= a.size();
parent.resize(n);
rank.resize(n);
cnt = n; // right now n components
for(int i=0; i<n; i++)
parent[i]=i , rank[i]=0;
for(int i=0; i<n ; i++)
{
for(int j= i+1; j<n; j++)
{
if(find(i)!= find(j))// if i and j are already not connected
{
if(intersect(a[i] , a[j]) >= k)
{
cout<<i<<" "<<j<<'\n';
makeset(i, j);
}
}
}
}
return cnt;
}
};
```

| 0 | 0 | ['Union Find', 'Graph', 'C++'] | 0 |
properties-graph | just use union find ๐ | just-use-union-find-by-shashanksaroj-vlav | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | shashanksaroj | NORMAL | 2025-03-27T16:03:01.384932+00:00 | 2025-03-27T16:03:01.384932+00:00 | 3 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import java.util.stream.Collectors;
class Solution {
class UnionFind {
int[] parent;
int count;
public UnionFind(int count) {
parent = new int[count];
for (int i = 0; i < count; i++) {
parent[i] = i;
}
this.count = count;
}
public int find(int a) {
int rootA = parent[a];
if (rootA != a) {
rootA = find(rootA);
}
return rootA;
}
public void union(int a, int b) {
int rootA = find(a);
int rootB = find(b);
if (rootA != rootB) {
parent[rootB] = rootA;
count--;
}
}
public int getCount() {
return count;
}
}
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
int m = properties[0].length;
Map<Integer, Set<Integer>> mp = new HashMap<>();
for (int i = 0; i < n; i++) {
int[] st = properties[i];
mp.put(i, Arrays.stream(st).boxed().collect(Collectors.toSet()));
}
int x = n;
UnionFind uf = new UnionFind(x);
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (isConnected(i, j, mp, k))
uf.union(i, j);
}
}
return uf.getCount();
}
private boolean isConnected(int i, int j, Map<Integer, Set<Integer>> mp, int k) {
Set<Integer> intersectionSet = new HashSet<>(mp.get(i));
intersectionSet.retainAll(mp.get(j));
return intersectionSet.size() >= k;
}
}
``` | 0 | 0 | ['Java'] | 0 |
properties-graph | Easy to understand ...try once | easy-to-understand-try-once-by-chandak14-51z7 | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | chandak1427 | NORMAL | 2025-03-27T08:20:41.508534+00:00 | 2025-03-27T08:20:41.508534+00:00 | 2 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
import java.util.*;
class Solution {
class DisjointSet {
List<Integer> par;
List<Integer> size;
DisjointSet(int n) {
par = new ArrayList<>();
size = new ArrayList<>();
for (int i = 0; i < n; i++) {
par.add(i);
size.add(1);
}
}
public int findUPar(int node) {
if (par.get(node) == node) {
return node;
}
int ul_par = findUPar(par.get(node));
par.set(node, ul_par); // Path Compression
return ul_par;
}
public void unionBySize(int u, int v) {
int ulp_u = findUPar(u);
int ulp_v = findUPar(v);
if (ulp_u == ulp_v) return; // Already in the same set
if (size.get(ulp_u) >= size.get(ulp_v)) {
size.set(ulp_u, size.get(ulp_u) + size.get(ulp_v));
par.set(ulp_v, ulp_u); // Merge v into u
} else {
size.set(ulp_v, size.get(ulp_u) + size.get(ulp_v));
par.set(ulp_u, ulp_v); // Merge u into v
}
}
}
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
DisjointSet ds = new DisjointSet(n);
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (intersect(properties[i], properties[j]) >= k) {
ds.unionBySize(i, j);
}
}
}
Set<Integer> components = new HashSet<>();
for (int i = 0; i < n; i++) {
components.add(ds.findUPar(i));
}
return components.size();
}
private int intersect(int[] a, int[] b) {
Set<Integer> setA = new HashSet<>();
for (int num : a) {
setA.add(num);
}
int count = 0;
Set<Integer> intersected = new HashSet<>();
for (int num : b) {
if (setA.contains(num) && !intersected.contains(num)) {
count++;
intersected.add(num);
}
}
return count;
}
}
``` | 0 | 0 | ['Hash Table', 'Union Find', 'Graph', 'Java'] | 0 |
properties-graph | Beats 97%; Simple Counting and Storing Indices First and then DFS | beats-97-simple-counting-and-storing-ind-icvv | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | Architava_Bhattacharya | NORMAL | 2025-03-26T22:21:39.271573+00:00 | 2025-03-26T22:21:39.271573+00:00 | 2 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length, largest = 0;
int[][] commons = new int[n][n];
for (int[] elements : properties) {
for (int element : elements) {
largest = Math.max(element, largest);
}
}
List<List<Integer>> indices = new ArrayList<>();
for (int i = 0; i <= largest; i++) {
indices.add(new ArrayList<>());
}
for (int i = 0; i < properties.length; i++) {
Set<Integer> unique = new HashSet<>();
for (int j = 0; j < properties[i].length; j++) {
if (!unique.contains(properties[i][j])) {
for (int element : indices.get(properties[i][j])) {
commons[i][element]++;
commons[element][i]++;
}
indices.get(properties[i][j]).add(i);
unique.add(properties[i][j]);
}
}
}
List<List<Integer>> adj = new ArrayList<>();
for (int i = 0; i < n; i++) {
adj.add(new ArrayList<>());
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (commons[i][j] >= k) {
adj.get(i).add(j);
}
}
}
boolean vis[] = new boolean[n];
int components = 0;
for (int i = 0; i < n; i++) {
if (!vis[i]) {
dfs(i, adj, vis);
components++;
}
}
return components;
}
public void dfs(int node, List<List<Integer>> adj, boolean[] vis) {
vis[node] = true;
for (int child : adj.get(node)) {
if (!vis[child]) {
dfs(child, adj, vis);
}
}
}
}
``` | 0 | 0 | ['Java'] | 0 |
properties-graph | TLE Issue Solution using minor changes | tle-issue-solution-using-minor-changes-b-bwnl | Approach
Steps to solve tle issue;
1.
instead of this:do this:2.
instead of this:do this:Complexity
Time complexity:
Space complexity:
Code | vasp0007 | NORMAL | 2025-03-26T21:20:36.536313+00:00 | 2025-03-26T21:20:36.536313+00:00 | 4 | false | # Approach
<!-- Describe your approach to solving the problem. -->
> ## **Steps to solve tle issue;**
$$1.$$
instead of this:
```
for(int i=0; i<n; i++){
for(int j=0; j<n; j++){
adj[i].push_back(j);
}
}
```
do this:
```
for(int i=0; i<n; i++){
for(int j=i+1; j<n; j++){
adj[i].push_back(j);
adj[j].push_back(i);
}
}
```
$$2.$$
instead of this:
```
int intersect(vector<int>&arr1, vector<int>&arr2){
unordered_set<int>hash1(arr1.begin(), arr1.end());
unordered_set<int>hash2(arr2.begin(), arr2.end());
int count = 0;
for(auto it: hash2){
if(hash1.find(it)!=hash1.end()) count++;
}
return count;
}
```
do this:
```
int intersect(vector<int>&arr1, vector<int>&arr2){
unordered_set<int>hash1(arr1.begin(), arr1.end());
int count = 0;
for(auto it: arr2){
if(hash1.find(it)!=hash1.end()){
hash1.erase(it);
count++;
}
}
return count;
}
```
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
int intersect(vector<int>&arr1, vector<int>&arr2){
unordered_set<int>hash1(arr1.begin(), arr1.end());
int count = 0;
for(auto it: arr2){
if(hash1.find(it)!=hash1.end()){
hash1.erase(it);
count++;
}
}
return count;
}
void bfs(int node, vector<int>&vis, vector<vector<int>>&adj){
queue<int>q;
vis[node] = 1;
q.push(node);
while(!q.empty()){
int currNode = q.front();
q.pop();
for(auto it: adj[currNode]){
if(!vis[it]){
vis[it] = 1;
q.push(it);
}
}
}
}
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
vector<vector<int>>adj(n);
for(int i=0; i<n; i++){
for(int j=i+1; j<n; j++){
if(i!=j){
if( intersect(properties[i], properties[j]) >= k){
adj[i].push_back(j);
adj[j].push_back(i);
}
}
}
}
vector<int>vis(n,0);
int count = 0;
for(int i=0; i<n; i++){
if(!vis[i]){
bfs(i,vis,adj);
count++;
}
}
return count;
}
};
``` | 0 | 0 | ['Depth-First Search', 'Breadth-First Search', 'Graph', 'Ordered Set', 'C++'] | 0 |
properties-graph | Python | python-by-aravindankathi-0k5g | Complexity
Time complexity: N*N
Space complexity: O(N)
Code | aravindankathi | NORMAL | 2025-03-26T19:01:03.955616+00:00 | 2025-03-26T19:01:03.955616+00:00 | 1 | false |
# Complexity
- Time complexity: N*N
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity: O(N)
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```python3 []
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
def intersect(a, b):
return len(list(set(a) & set(b)))
dic = {}
for i in range(len(properties)):
dic[i] = []
for i in range(len(properties)):
for j in range(i+1, len(properties)):
if intersect(properties[i], properties[j]) >= k:
dic[i].append(j)
dic[j].append(i)
component = 0
visited = [False] * len(properties)
def dfs(node):
if visited[node]: return
visited[node] = True
for nei in dic[node]:
dfs(nei)
for i in range(len(properties)):
if not visited[i]:
dfs(i)
component += 1
return component
``` | 0 | 0 | ['Python3'] | 0 |
properties-graph | Python - short brute force with DFS | python-short-brute-force-with-dfs-by-ant-jj05 | null | Ante_ | NORMAL | 2025-03-26T15:47:51.167614+00:00 | 2025-03-26T15:47:51.167614+00:00 | 2 | false | ```
class Solution:
def numberOfComponents(self, p, k):
props, g, n, res, seen = {i: set(a) for i, a in enumerate(p)}, defaultdict(set), len(p), 0, set()
{g[i].add(j) or g[j].add(i) for i, j in combinations(range(n), 2) if len(props[i] & props[j]) >= k}
def dfs(node):
seen.add(node)
[dfs(to) for to in g[node] if to not in seen]
return sum(dfs(i) or 1 for i in range(n) if i not in seen)
``` | 0 | 0 | ['Array', 'Hash Table', 'Depth-First Search', 'Python3'] | 0 |
properties-graph | Easiest solution | easiest-solution-by-markandey_kumar-lsa1 | IntuitiondfsApproach
Find the intersection in both arrays and then form the list graph
Now check no of disconnected graph that will be answer
Code | markandey_kumar | NORMAL | 2025-03-26T14:55:45.949407+00:00 | 2025-03-26T14:55:45.949407+00:00 | 1 | false | # Intuition
dfs
# Approach
1. Find the intersection in both arrays and then form the list graph
2. Now check no of disconnected graph that will be answer
# Code
```java []
class Solution {
int intersect(int[] A, int[] B){
Set<Integer> set = new HashSet<>();
int count = 0;
for(int x : A) set.add(x);
for(int x : B){
if(set.contains(x)){
count++;
set.remove(x);
}
}
return count;
}
public void dfs(List<Integer> [] graph, int start, boolean[] vis){
vis[start] = true;
for(int curr: graph[start]){
if(!vis[curr]){
dfs(graph, curr, vis);
}
}
}
public int numberOfComponents(int[][] p, int k) {
int n = p.length;
List<Integer> [] graph = new List[n];
for(int i = 0; i<n;i++) graph[i] = new ArrayList<>();
for(int i = 0; i<p.length; i++){
for(int j = i+1; j<p.length; j++){
if(intersect(p[i], p[j]) >= k){
System.out.println("hell");
graph[i].add(j);
graph[j].add(i);
}
}
}
int ans = 0;
boolean[] vis = new boolean[n];
for(int i = 0; i<n;i++){
if(!vis[i]){
dfs(graph, i, vis);
ans++;
}
}
return ans;
}
}
``` | 0 | 0 | ['Java'] | 0 |
properties-graph | Easiest solution using java | easiest-solution-using-java-by-markandey-wybp | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | markandey_kumar | NORMAL | 2025-03-26T14:52:42.447040+00:00 | 2025-03-26T14:52:42.447040+00:00 | 1 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
int intersect(int[] A, int[] B){
Set<Integer> set = new HashSet<>();
int count = 0;
for(int x : A) set.add(x);
for(int x : B){
if(set.contains(x)){
count++;
set.remove(x);
}
}
return count;
}
public void dfs(List<Integer> [] graph, int start, boolean[] vis){
vis[start] = true;
for(int curr: graph[start]){
if(!vis[curr]){
dfs(graph, curr, vis);
}
}
}
public int numberOfComponents(int[][] p, int k) {
int n = p.length;
List<Integer> [] graph = new List[n];
for(int i = 0; i<n;i++) graph[i] = new ArrayList<>();
for(int i = 0; i<p.length; i++){
for(int j = i+1; j<p.length; j++){
if(intersect(p[i], p[j]) >= k){
System.out.println("hell");
graph[i].add(j);
graph[j].add(i);
}
}
}
int ans = 0;
boolean[] vis = new boolean[n];
for(int i = 0; i<n;i++){
if(!vis[i]){
dfs(graph, i, vis);
ans++;
}
}
return ans;
}
}
``` | 0 | 0 | ['Java'] | 0 |
properties-graph | DSU | Easy C++ Solution | dsu-easy-c-solution-by-krishiiitp-ikg7 | Code | krishiiitp | NORMAL | 2025-03-26T11:27:46.361888+00:00 | 2025-03-26T11:28:05.506820+00:00 | 3 | false | # Code
```cpp []
class DisjointSet {
private:
vector < int > parent, rank;
public:
DisjointSet (int n) {
parent.resize(n, 0);
rank.resize(n, 0);
for (int i = 0; i < n; i ++) {
parent[i] = i;
}
}
int findUp(int node) {
if (parent[node] == node) {
return node;
}
return parent[node] = findUp(parent[node]);
}
bool unionByRank(int a, int b) {
int pa = findUp(a), pb = findUp(b);
if (pa == pb) {
return false;
}
if (rank[pa] > rank[pb]) {
parent[pa] = pb;
} else if (rank[pa] < rank[pb]) {
parent[pb] = pa;
} else {
parent[pa] = pb;
rank[pa] ++;
}
return true;
}
};
class Solution {
public:
int numberOfComponents(vector<vector<int>>& a, int k) {
int n = a.size(), m = a[0].size(), ans = n;
vector < vector < int > > dp (n, vector < int > (101, 0));
for (int i = 0; i < n; i ++) {
for (int j = 0; j < m; j ++) {
dp[i][a[i][j]]++;
}
}
DisjointSet ds(n);
for (int i = 0; i < n; i ++) {
for (int j = i + 1; j < n; j ++) {
int count = 0;
for (int k = 1; k <= 100; k ++) {
if(dp[i][k] && dp[j][k]) {
count++;
}
}
if (count >= k) {
if (ds.unionByRank(i, j)) {
ans --;
}
}
}
}
return ans;
}
};
``` | 0 | 0 | ['Array', 'Union Find', 'Graph', 'C++'] | 0 |
properties-graph | Python beats 99%. Union Find + Bit Set | python-beats-99-union-find-bit-set-by-te-np8y | IntuitionWhen a problem asks for the number of connected components, union-find should be at the top of your list for things to try. This problem is asking you | tet | NORMAL | 2025-03-26T09:12:11.350565+00:00 | 2025-03-26T09:12:11.350565+00:00 | 3 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
When a problem asks for the number of connected components, union-find should be at the top of your list for things to try. This problem is asking you to build a graph where each node is a set of integers and there is an edge between every two nodes whose intersection is at least size k.
Simply create sets from each list and intersect them to see whether they are connected. If they are union the components together.
# Approach
<!-- Describe your approach to solving the problem. -->
First note that the numbers only go up to 100. We can use bit sets to represent the sets. Normal Python ints can be used as bit sets for relatively small numbers. Note that doing bit operations on really large numbers will be very slow, so consider implementing bit sets as a class when needed. For only 100 bits, normal ints will be fine.
Convert each list of ints into a bit set. For each bit set, check if the intersection has at least k bits set. If so, union the indices. This step is where you can save a lot of time by using the built-in bit_count() method for ints. I get around 50 ms using this method and around 300 ms using the standard hamming weight algorithm which I left commented. I tried passing k and returning as soon as `c >= k`, but that was about the same. The bit_count method is implemented in c in cpython, so it runs a lot faster than a python implementation.
Finally find the number of connected components by counting the number of unique parents.
# Complexity
$n$ is the number of properties, $m$ is the size of each property, $l$ is the largest value contained in a property.
- Time complexity: $$O(n * m * l)$$
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
The union-find complexity is dominated by the intersect complexity, so the reverse Ackermann function does not appear in the time complexity.
- Space complexity: $$O(n * l)$$
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
The number of bits used in each bit set scales with the largest value of all properties, albeit with a small constant factor.
# Code
```python3 []
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
n = len(properties)
self.parents = [i for i in range(n)]
properties = [reduce(lambda x, y: x | (1 << y-1), prop, 0) for prop in properties]
for i in range(n-1):
for j in range(i+1, n):
if self.intersect(properties[i], properties[j]) >= k:
self.union(i, j)
unique_parents = {self.find(i) for i in range(n)}
return len(unique_parents)
def intersect(self, a, b):
return (a & b).bit_count()
# n = a & b
# c = 0
# while n:
# n &= n-1
# c += 1
# return c
def find(self, x):
if x != self.parents[x]:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y:
return
self.parents[x] = y
```

| 0 | 0 | ['Bit Manipulation', 'Union Find', 'Python', 'Python3'] | 0 |
properties-graph | easy cpp solution using bitset and DSU | easy-cpp-solution-using-bitset-and-dsu-b-kk5h | Code | singlaarshit | NORMAL | 2025-03-25T12:34:41.444211+00:00 | 2025-03-25T12:34:41.444211+00:00 | 2 | false |
# Code
```cpp []
class DSU {
public:
vector<int> rank, parent;
DSU(int n) {
rank.resize(n + 1, 0);
parent.resize(n + 1);
for (int i = 0; i <= n; i++) {
parent[i] = i;
}
}
int find(int node) {
if (node == parent[node]) {
return node;
}
return parent[node] = find(parent[node]);
}
bool Union(int u, int v) {
int ulp_u = find(u);
int ulp_v = find(v);
if (ulp_u == ulp_v) return false; // Already in the same set
if (rank[ulp_u] < rank[ulp_v]) {
parent[ulp_u] = ulp_v;
} else if (rank[ulp_v] < rank[ulp_u]) {
parent[ulp_v] = ulp_u;
} else {
parent[ulp_v] = ulp_u;
rank[ulp_u]++;
}
return true; // Successful union
}
};
class Solution {
static int intersect(const vector<int>& A, const vector<int>& B) {
bitset<101> a, b;
for (int x : A) a[x] = 1;
for (int x : B) b[x] = 1;
return (a & b).count();
}
public:
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
DSU uf(n);
int components = n;
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (intersect(properties[i], properties[j]) >= k) {
if (uf.Union(i, j)) {
components--;
}
}
}
}
return components;
}
};
``` | 0 | 0 | ['C++'] | 0 |
properties-graph | Contest - 442 || Question-2 | contest-442-question-2-by-sajaltiwari007-hetw | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | sajaltiwari007 | NORMAL | 2025-03-25T10:21:39.269696+00:00 | 2025-03-25T10:21:39.269696+00:00 | 3 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class DSU{
List<Integer> parent = new ArrayList<>();
List<Integer> size = new ArrayList<>();// For Path Compression
public DSU(int n){
for(int i=0;i<n;i++){
parent.add(i);
size.add(1);
}
}
public int find_Parent(int x){
if(parent.get(x)==x) return x;
int x_parent = find_Parent(parent.get(x));
parent.set(x,x_parent);
return parent.get(x);
}
public void take_union(int x , int y){
int x_parent = find_Parent(x);
int y_parent = find_Parent(y);
if(x_parent==y_parent) return;
if(size.get(x_parent)>size.get(y_parent)){
parent.set(y_parent ,x_parent );
size.set(x_parent , size.get(x_parent)+size.get(y_parent));
}
else{
parent.set(x_parent ,y_parent );
size.set(y_parent , size.get(x_parent)+size.get(y_parent));
}
}
public List<Integer> getParentList() {
return parent;
}
public List<Integer> getSizeList() {
return size;
}
}
class Solution {
public int numberOfComponents(int[][] nums, int k) {
int n = nums.length;
boolean[][] present = new boolean[n][101];
for (int i = 0; i < n; i++) {
for (int num : nums[i]) {
present[i][num] = true;
}
}
DSU ds = new DSU(n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if(i==j) continue;
int size = 0;
for (int x = 1; x <= 100; x++) {
if (present[i][x] && present[j][x]) {
size++;
}
}
if (size >= k) {
ds.take_union(i, j);
}
}
}
List<Integer> list = ds.getParentList();
// System.out.println(list);
HashSet<Integer> set = new HashSet<>();
for(int i:list) set.add(i);
return set.size();
}
}
``` | 0 | 0 | ['Union Find', 'Java'] | 0 |
properties-graph | C++ | c-by-srv-er-nnfg | Code | srv-er | NORMAL | 2025-03-25T08:32:36.539537+00:00 | 2025-03-25T08:32:36.539537+00:00 | 6 | false |
# Code
```cpp []
class Solution {
public:
bool isIntersected(vector<int> property_1, vector<int> property_2, int k) {
bitset<101> mask_1, mask_2;
for (auto& i : property_1)
mask_1.set(i);
for (auto& i : property_2)
mask_2.set(i);
mask_1 &= mask_2;
int common = 0;
for (int i = 0; i < 101; i++)
if (mask_1[i])
++common;
return common >= k;
}
class DSU {
vector<int> parent, height;
int V;
public:
DSU(int n) {
parent.resize(n);
iota(parent.begin(), parent.end(), 0);
height.resize(n, 1);
V = n;
}
int find(int x) {
if (x != parent[x])
return parent[x] = find(parent[x]);
return x;
}
void unite(int u, int v) {
int s1 = find(u), s2 = find(v);
if (s1 == s2) {
return;
}
if (height[s1] < height[s2]) {
parent[s1] = s2;
height[s2] += height[s1];
} else {
parent[s2] = s1;
height[s1] += height[s2];
}
}
int getConnectedComponents() {
int comp = 0;
for (int i = 0; i < V; i++)
if (i == parent[i])
++comp;
return comp;
}
};
int numberOfComponents(vector<vector<int>>& properties, int k) {
int n = properties.size();
DSU uf(n);
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++)
if (isIntersected(properties[i], properties[j], k))
uf.unite(i, j);
}
return uf.getConnectedComponents();
}
};
``` | 0 | 0 | ['C++'] | 0 |
properties-graph | Using Two Set and Straightforward BFS Traversal | using-two-set-and-straightforward-bfs-tr-vqas | Approach1. Common Elements Calculation:
The commonElement method uses two sets to track the elements of the two arrays. It then counts the number of common elem | hokteyash | NORMAL | 2025-03-25T08:17:30.006642+00:00 | 2025-03-25T08:17:30.006642+00:00 | 2 | false | # Approach
### 1. Common Elements Calculation:
- The commonElement method uses two sets to track the elements of the two arrays. It then counts the number of common elements between the two sets.
### 2. Graph Construction:
- An adjacency list is created to represent the graph. For each pair of properties, if the number of common elements is greater than or equal to k, an edge is added between the corresponding nodes.
### 3. Connected Components Calculation:
- A straightforward BFS is used to traverse the graph and count the number of connected components. The bfs method marks all nodes reachable from a given node as visited.
This approach ensures that we efficiently count the number of connected components in the graph based on the given conditions.
# Code
```java []
class Solution {
private int commonElement(int[] arr1, int[] arr2) {
Set<Integer> set1 = new HashSet<>();
Set<Integer> set2 = new HashSet<>();
for (int x : arr1)
set1.add(x);
for (int x : arr2)
set2.add(x);
int count = 0;
for (int x : set2) {
if (set1.contains(x))
count++;
}
return count;
}
private void bfs(boolean[] visited, int node, List<List<Integer>> adj) {
Queue<Integer> queue = new LinkedList<>();
queue.offer(node);
visited[node] = true;
while (!queue.isEmpty()) {
int iNode = queue.poll();
for (int x : adj.get(iNode)) {
if (!visited[x]) {
queue.offer(x);
visited[x] = true;
}
}
}
}
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
List<List<Integer>> adj = new ArrayList<>();
for (int i = 0; i < n; i++)
adj.add(new ArrayList<>());
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (commonElement(properties[i], properties[j]) >= k) {
adj.get(i).add(j);
adj.get(j).add(i);
}
}
}
boolean[] visited = new boolean[n];
int ans = 0;
for (int i = 0; i < n; i++) {
if (!visited[i]) {
ans++;
bfs(visited, i, adj);
}
}
return ans;
}
}
``` | 0 | 0 | ['Breadth-First Search', 'Graph', 'Ordered Set', 'Java'] | 0 |
properties-graph | UnionFind | unionfind-by-ya_ah-9hcy | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | ya_ah | NORMAL | 2025-03-25T01:49:01.040201+00:00 | 2025-03-25T01:49:01.040201+00:00 | 1 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
public int numberOfComponents(int[][] properties, int k) {
UnionFind uf = new UnionFind(properties.length);
for (int i = 0; i < properties.length; i++) {
Set<Integer> si = new HashSet<>();
for (int l : properties[i]) si.add(l);
for (int j = i + 1; j < properties.length; j++) {
Set<Integer> s = new HashSet<>();
for (int l : properties[j]) s.add(l);
int jsize = s.size();
s.addAll(si);
if (si.size() + jsize - k >= s.size()) uf.union(i, j);
}
}
return uf.setsCount;
}
static class UnionFind {
int n;
int[] roots;
int setsCount;
UnionFind(int n) {
this.n = n;
roots = new int[n];
for (int i = 0; i < n; i++) roots[i] = i;
setsCount = n;
}
boolean union(int a, int b) {
int rootA = find(a);
int rootB = find(b);
if (rootA == rootB) return false;
roots[b] = roots[rootB] = rootA;
setsCount--;
return true;
}
int find(int i) {
if (roots[i] == i) return i;
return roots[i] = find(roots[i]);
}
}
}
``` | 0 | 0 | ['Java'] | 0 |
properties-graph | Python || union Find | python-union-find-by-vilaparthibhaskar-hh2y | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | vilaparthibhaskar | NORMAL | 2025-03-24T23:50:03.506604+00:00 | 2025-03-24T23:50:03.506604+00:00 | 3 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```python3 []
class UnionFind:
def __init__(self, size):
self.parent = list(range(size))
self.rank = [0] * size
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def union(self, x, y):
rootX = self.find(x)
rootY = self.find(y)
if rootX == rootY:
return False
if self.rank[rootX] < self.rank[rootY]:
self.parent[rootX] = rootY
elif self.rank[rootX] > self.rank[rootY]:
self.parent[rootY] = rootX
else:
self.parent[rootY] = rootX
self.rank[rootX] += 1
return True
class Solution:
def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
n, m = len(properties), len(properties[0])
dp = [[0 for _ in range(n)] for _ in range(n)]
def intersect(a, b):
s = set(b)
ans = 0
for i in set(a):
if i in s:
ans += 1
return ans
for i in range(n):
for j in range(i + 1, n):
dp[i][j] = True if k <= intersect(properties[i], properties[j]) else False
uf = UnionFind(n)
for i in range(n):
for j in range(i + 1, n):
if dp[i][j]:
uf.union(i, j)
ans = 0
for i, j in enumerate(uf.parent):
if i == j:
ans += 1
return ans
``` | 0 | 0 | ['Array', 'Hash Table', 'Union Find', 'Graph', 'Python3'] | 0 |
properties-graph | UnionFind | unionfind-by-linda2024-ukx2 | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | linda2024 | NORMAL | 2025-03-24T22:26:45.941687+00:00 | 2025-03-24T22:26:45.941687+00:00 | 8 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```csharp []
public class Solution {
private bool ValidComm(HashSet<int> h1, HashSet<int> h2, int k)
{
int len1 = h1.Count, len2 = h2.Count;
if(len1 > len2)
return ValidComm(h2, h1, k);
if(len1 < k)
return false;
foreach(int cur in h1)
{
if(h2.Contains(cur))
k--;
}
return k <= 0;
}
private int[] par;
private int FindPar(int x)
{
if(par[x] != x)
par[x] = FindPar(par[x]);
return par[x];
}
private void Union(int x, int y)
{
int parX = FindPar(x), parY = FindPar(y);
par[parX] = par[parY];
}
public int NumberOfComponents(int[][] properties, int k) {
int n = properties.Length, res = 0;
par = Enumerable.Range(0, n).ToArray();
bool[,] dp = new bool[n, n];
HashSet<int> visited = new();
for(int i = 0; i < n; i++)
{
for(int j = i+1; j < n; j++)
{
if(ValidComm(properties[i].ToHashSet(), properties[j].ToHashSet(), k))
Union(i, j);
}
}
HashSet<int> parSets = new();
for(int i = 0; i < n; i++)
{
int curPar = FindPar(i);
Console.WriteLine($"{i}th item's par is {curPar}");
parSets.Add(curPar);
}
return parSets.Count;
}
}
``` | 0 | 0 | ['C#'] | 0 |
properties-graph | transfer vectors in unordered_set + BFS (C++) | transfer-vectors-in-unordered_set-bfs-c-pz3h1 | ApproachTransfer vectors in properties to unordered_set in order to efficiently find edges in graph prapering process, after that just do bfs over the graph in | xelladze | NORMAL | 2025-03-24T20:24:32.159098+00:00 | 2025-03-24T20:26:05.930847+00:00 | 2 | false | # Approach
<!-- Describe your approach to solving the problem. -->
Transfer vectors in properties to unordered_set<int> in order to efficiently find edges in graph prapering process, after that just do bfs over the graph in order to find connected components.
# Complexity
- Time complexity:O(N)
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:O(N)
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
int numberOfComponents(vector<vector<int>>& properties, int k) {
int ans = 0;
int n = properties.size();
vector <vector <int>> graph (n, vector <int>());
vector<unordered_set<int>> vc;
for(auto & it : properties)
vc.push_back({it.begin(), it.end()});
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
if(i == j)
continue;
if(intersact(vc[i], vc[j]) >= k){
graph[i].push_back(j);
graph[j].push_back(i);
}
}
}
vector <bool> visited (n, false);
for(int i = 0; i < n; i++){
if(!visited[i]){
ans++;
queue<int> que;
que.push(i);
visited[i] = true;
while(!que.empty()){
int u = que.front();
que.pop();
for(auto & v : graph[u]){
if(!visited[v]){
visited[v] = true;
que.push(v);
}
}
}
}
}
return ans;
}
int intersact(unordered_set <int> &a, unordered_set <int> &b){
int count = 0;
for(auto & it : b)
if(a.find(it) != a.end())
count++;
return count;
}
};
``` | 0 | 0 | ['C++'] | 0 |
properties-graph | Java || DFS || Beats 100% | java-dfs-beats-100-by-dipankarsethi3012-l95i | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | dipankarsethi3012 | NORMAL | 2025-03-24T17:24:11.697633+00:00 | 2025-03-24T17:24:11.697633+00:00 | 4 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
public int numberOfComponents(int[][] properties, int k) {
int n = properties.length;
Map<Integer, List<Integer>> mp = new HashMap<>();
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
if(i == j) continue;
int res = intersect(properties[i], properties[j]);
if(res >= k) {
mp.putIfAbsent(i, new ArrayList<>());
mp.putIfAbsent(j, new ArrayList<>());
mp.get(i).add(j);
mp.get(j).add(i);
}
}
}
boolean[] visited = new boolean[n];
int count = 0;
for(int i = 0; i < n; i++) {
if(!mp.containsKey(i)) {
count++;
continue;
}
if(visited[i]) continue;
count++;
dfs(mp, i, visited);
}
return count;
}
private int intersect(int[] a, int[] b) {
Set<Integer> st = new HashSet<>();
Set<Integer> visited = new HashSet<>();
for(int i : a) {
st.add(i);
}
int c = 0;
for(int i : b) {
if(st.contains(i) && !visited.contains(i)) {
c++;
visited.add(i);
}
}
return c;
}
private void dfs(Map<Integer, List<Integer>> mp, int node, boolean[] visited) {
visited[node] = true;
if(!mp.containsKey(node)) return;
for(int nbr : mp.get(node)) {
if(visited[nbr]) continue;
dfs(mp, nbr, visited);
}
}
}
``` | 0 | 0 | ['Java'] | 0 |
properties-graph | Easy JAVA Solution using Sets and BFS | easy-java-solution-using-sets-and-bfs-by-kk41 | Code | Debrup7703 | NORMAL | 2025-03-24T13:49:01.807764+00:00 | 2025-03-24T13:49:01.807764+00:00 | 1 | false |
# Code
```java []
class Solution {
public int numberOfComponents(int[][] properties, int k) {
int n=properties.length;
List<List<Integer>> adj=new ArrayList<>();
for(int i=0;i<=n;i++) adj.add(new ArrayList<Integer>());
HashMap<Integer,HashSet<Integer>> map=new HashMap<>();
for(int i=0;i<properties.length;i++){
HashSet<Integer> h=new HashSet<>();
for(int j:properties[i]) h.add(j);
map.put(i,h);
}
for(int i=0;i<properties.length;i++){
HashSet<Integer> hs1=map.get(i);
for(int j=i+1;j<properties.length;j++){
HashSet<Integer> hs2=map.get(j);
HashSet<Integer> in=new HashSet<>();
for(int l:hs2){
if(hs1.contains(l)) in.add(l);
}
if(in.size()>=k){
adj.get(i).add(j);
adj.get(j).add(i);
}
}
}
int[] vis=new int[n];
int ans=0;
for(int i=0;i<n;i++){
if(vis[i]==1) continue;
ans++;
Queue<Integer> q=new LinkedList<Integer>();
q.offer(i);
vis[i]=1;
while(!q.isEmpty()){
int curr=q.peek();
q.remove();
for(int j:adj.get(curr)){
if(vis[j]==1) continue;
q.offer(j);
vis[j]=1;
}
}
}
return ans;
}
}
``` | 0 | 0 | ['Hash Table', 'Breadth-First Search', 'Graph', 'Java'] | 0 |
properties-graph | 8 lines scala disjoint-set / union-find solution | 8-lines-scala-disjoint-set-union-find-so-mgfj | null | vititov | NORMAL | 2025-03-24T11:24:19.758311+00:00 | 2025-03-24T11:24:19.758311+00:00 | 1 | false | ```scala []
object Solution {
import scala.util.chaining._
def numberOfComponents(properties: Array[Array[Int]], k: Int): Int = {
val djs = properties.indices.to(Array)
def root(i:Int): Int = if(djs(i)==i) i else root(djs(i)).tap(djs(i) = _)
def join(i:Int)(j:Int) = (djs(root(j))=root(i))
properties.map(_.to(Set)).to(List).zipWithIndex.tails.filter(_.nonEmpty)
.flatMap{t => t.head pipe {case (aSet,i) =>
t.tail.collect{ case (bSet,j) if (aSet intersect bSet).size >= k => (i,j)}
}}.foreach{case (i,j) => join(i)(j)}
djs.indices.map(root).distinct.size
}
}
``` | 0 | 0 | ['Hash Table', 'Greedy', 'Union Find', 'Graph', 'Scala'] | 0 |
properties-graph | ๐100% User Beat | ๐ก DFS | Java | 100-user-beat-dfs-java-by-s_a_m2003-bh80 | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | s_a_m2003 | NORMAL | 2025-03-24T10:57:32.722390+00:00 | 2025-03-24T10:57:32.722390+00:00 | 1 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```java []
class Solution {
Map<Integer,List<Integer>> graph = new HashMap<>();
public int numberOfComponents(int[][] properties, int k) {
int v = properties.length;
for(int i = 0 ; i < v; i++){
graph.put(i,new ArrayList<>());
}
for(int i = 0 ; i < v; i++){
for(int j = 0; j < v; j++){
if(i != j && checkIntersection(properties[i],properties[j],k)){
addEdge(graph,i,j);
}
}
}
int cc = connectedComponent(graph, v);
System.out.println(cc);
return cc;
}
public boolean checkIntersection(int arr1[], int arr2[], int k){
Arrays.sort(arr1);
Arrays.sort(arr2);
int i = 0;
int j = 0;
Set<Integer> set = new HashSet<>();
while(i < arr1.length && j < arr2.length){
if(arr1[i] == arr2[j]){
set.add(arr1[i]);
i++;
j++;
}
else if(arr1[i] > arr2[j]){
j++;
}else{
i++;
}
}
if(set.size() >= k){
return true;
}
return false;
}
public void addEdge(Map<Integer,List<Integer>> graph, int v1, int v2){
graph.get(v1).add(v2);
graph.get(v2).add(v1);
}
public int connectedComponent(Map<Integer,List<Integer>> graph,int v) {
// one thing that you know Graph is disconnected(Some of them are connected)
// to go on each starting node you have to create an array of visited array
int visited[] = new int[v];
// after that i will try to find all possible diconnected component via
// using visited array...
int count = 0;
for(int i = 0; i < visited.length; i++){
if(visited[i] == 0){
count++;
dfs(graph,visited,i);
}
}
return count;
}
public void dfs(Map<Integer,List<Integer>> graph, int []visited,int src){
Stack<Integer> stack = new Stack<>();
stack.push(src);
while(!stack.isEmpty()){
int v = stack.pop();
if(visited[v] == 1){
continue;
}
visited[v] = 1;
for(int nbrs : graph.get(v)){
if(visited[nbrs] != 1){
stack.push(nbrs);
}
}
}
}
}
``` | 0 | 0 | ['Depth-First Search', 'Graph', 'Java'] | 0 |
properties-graph | Simple bitset + dfs || c++ | simple-bitset-dfs-c-by-subhamchauhan1100-ov1s | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | subhamchauhan1100 | NORMAL | 2025-03-24T09:43:41.959474+00:00 | 2025-03-24T09:43:41.959474+00:00 | 3 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
vector<int> adj[101];
vector<bool> visited = vector<bool>(101, false);
void dfs(int v) {
visited[v] = true;
for (int u : adj[v]) {
if (!visited[u])
dfs(u);
}
}
static int intersect(const auto& A, const auto& B){
return (A&B).count();
}
int numberOfComponents(vector<vector<int>>& p, int k) {
int n =p.size(),m=p[0].size();
vector<bitset<101>> A(n, 0);
int i=0;
for(auto& a: p){
for(int x: a) A[i][x]=1;
i++;
}
for(int i =0;i<n;i++)
{
for(int j=0;j<n;j++)
{
const auto& X=A[i];
const auto& Y=A[j];
if(intersect(X,Y)>=k)
{
adj[i].push_back(j);
adj[j].push_back(i);
}
}
}
int ans=0;
for(int i=0;i<n;i++)
{
if(adj[i].size()>=0 && !visited[i])
{
cout<<i<<endl;
dfs(i);
ans++;
}
}
return ans;
}
};
``` | 0 | 0 | ['C++'] | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.