question_slug
stringlengths
3
77
title
stringlengths
1
183
slug
stringlengths
12
45
summary
stringlengths
1
160
author
stringlengths
2
30
certification
stringclasses
2 values
created_at
stringdate
2013-10-25 17:32:12
2025-04-12 09:38:24
updated_at
stringdate
2013-10-25 17:32:12
2025-04-12 09:38:24
hit_count
int64
0
10.6M
has_video
bool
2 classes
content
stringlengths
4
576k
upvotes
int64
0
11.5k
downvotes
int64
0
358
tags
stringlengths
2
193
comments
int64
0
2.56k
find-the-maximum-factor-score-of-array
Java Solution
java-solution-by-dheeraj_2602-cfad
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
Dheeraj_2602
NORMAL
2024-10-27T17:18:41.901359+00:00
2024-10-27T17:18:41.901389+00:00
13
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\nO(n^2)\n- Space complexity:\nO(1)\n# Code\n```java []\nclass Solution {\n public long maxScore(int[] nums) {\n if (nums.length == 1) {\n return (long) nums[0] * nums[0];\n }\n long ans = score(nums, -1);\n for (int i = 0; i < nums.length; i++) {\n ans = Math.max(ans, score(nums, i));\n }\n return ans;\n }\n\n long score(int[] nums, int skip) {\n long lcm = skip != 0 ? nums[0] : nums[1];\n long gcd = skip != 0 ? nums[0] : nums[1];\n for (int i = 0; i < nums.length; i++) {\n if (i == skip) {\n continue;\n }\n gcd = GCD(gcd, nums[i]);\n lcm = LCM(lcm, nums[i]);\n }\n return lcm * gcd;\n }\n\n long GCD(long a, long b) {\n while (b != 0) {\n long temp = b;\n b = a % b;\n a = temp;\n }\n return a;\n }\n\n long LCM(long a, long b) {\n return (a / GCD(a, b)) * b;\n }\n}\n\n```
0
0
['Java']
0
find-the-maximum-factor-score-of-array
100x speed-up of prevailing "7ms" (fastest) solution
100x-speed-up-of-prevailing-7ms-fastest-yf53e
Intuition\n\nReuse the prime_factors_t c++ class which I attempted (and developed) in another problem\n\nGCD and LCM calculations are as simple as bitwise AND a
jrmwng
NORMAL
2024-10-27T16:43:09.521416+00:00
2024-10-27T16:43:09.521450+00:00
13
false
# Intuition\n\nReuse the `prime_factors_t` c++ class which I attempted (and developed) in another problem\n\nGCD and LCM calculations are as simple as bitwise AND and bitwise OR respectively in the `prime_factors_t` representation.\n\n# Approach\n\nUse the Excel file which I used in the development of `prime_factors_t` to initialize the `prime_factors_t::g_astCONST` variable and the `prime_factors_t::g_aauPRIME_NUMBER` variable, tailored for this problem.\n\nPossible values of `nums[i]` are finite (only 31). The `prime_factors_t` representations of numbers 1 to 30 are constructed at compile-time (use `constexpr`). Then using look-up table approach to convert `nums[i]` into `prime_factors_t` representation.\n\nUse the "traverse left-to-right" and "traverse right-to-left" pattern that draw my attention recently in another problem.\n\nCombine the results of "left-to-right" and "right-to-left" to obtain the `n + 1` candidates. The for-loop of this procedure is auto-vectorized.\n\nReturn the maximum score among the candidates.\n\n# Complexity\n- Time complexity:\n$$O(n)$$\n\n- Space complexity:\n$$O(n)$$\n\n# Code\n```cpp []\nclass Solution {\npublic:\n long long maxScore(vector<int>& nums);\n};\n\n\n\tstruct prime_factors_t : std::tuple<uint32_t>\n\t{\n\t\tusing tuple_t = std::tuple<uint32_t>;\n\n\t\tusing number_t = std::uint64_t;\n\t\tusing encode_t = std::uint32_t; // encoded form\n\n\t\tstruct const_t\n\t\t{\n\t\t\tencode_t uBit0;\n\t\t\tencode_t uMask;\n\t\t};\n\t\tconstexpr static const_t const g_astCONST[]\n\t\t{\n\t\t\t{(1u << 0),(15u << 0)},//2\n\t\t\t{(1u << 4),(7u << 4)},//3\n\t\t\t{(1u << 7),(3u << 7)},//5\n\t\t\t{(1u << 9),(1u << 9)},//7\n\t\t\t{(1u << 10),(1u << 10)},//11\n\t\t\t{(1u << 11),(1u << 11)},//13\n\t\t\t{(1u << 12),(1u << 12)},//17\n\t\t\t{(1u << 13),(1u << 13)},//19\n\t\t\t{(1u << 14),(1u << 14)},//23\n\t\t\t{(1u << 15),(1u << 15)},//29\n\t\t};\n\n\t\tconstexpr static number_t const g_aauPRIME_NUMBER[][4]\n\t\t{\n\t\t\t{2,4,8,16},\n\t\t\t{3,9,27,0},\n\t\t\t{5,25,0,0},\n\t\t\t{7,0,0,0},\n\t\t\t{11,0,0,0},\n\t\t\t{13,0,0,0},\n\t\t\t{17,0,0,0},\n\t\t\t{19,0,0,0},\n\t\t\t{23,0,0,0},\n\t\t\t{29,0,0,0},\n\t\t};\n\n\t\tconstexpr prime_factors_t() = default;\n\t\tconstexpr prime_factors_t(tuple_t&& that)\n\t\t\t: tuple_t(std::move(that))\n\t\t{\n\t\t}\n//\t\tusing tuple_t::tuple;\n\n\t\tconstexpr static std::tuple<encode_t, number_t> encode(number_t uNumber, size_t const zuStart, size_t const zuEnd, encode_t ulPrimeFactors)\n\t\t{\n\t\t\tfor (size_t i = zuStart; i < zuEnd && 1u < uNumber; ++i)\n\t\t\t{\n\t\t\t\tnumber_t const uPrimeNumber = g_aauPRIME_NUMBER[i][0];\n\n\t\t\t\tfor (encode_t uBit = g_astCONST[i].uBit0; uNumber % uPrimeNumber == 0; uNumber /= uPrimeNumber, uBit <<= 1)\n\t\t\t\t{\n\t\t\t\t\tulPrimeFactors |= uBit;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn{ ulPrimeFactors, uNumber };\n\t\t}\n\n\t\tconstexpr prime_factors_t(number_t uNumber)\n\t\t\t: tuple_t(std::get<0>(encode(uNumber >> std::countr_zero(uNumber), 1u, 10u, (1u << std::countr_zero(uNumber)) - 1u)))\n\t\t{\n\t\t}\n\n\t\tconstexpr static number_t decode(encode_t const ulPrimeFactors, size_t const zuStart, size_t const zuEnd, number_t uFactors)\n\t\t{\n\t\t\tfor (size_t i = zuStart; i < zuEnd && ulPrimeFactors >= g_astCONST[i].uBit0; ++i)\n\t\t\t{\n\t\t\t\tencode_t const uBits = ulPrimeFactors & g_astCONST[i].uMask;\n\n\t\t\t\tif (uBits)\n\t\t\t\t{\n\t\t\t\t\tuFactors *= g_aauPRIME_NUMBER[i][std::popcount(uBits) - 1u];\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn uFactors;\n\t\t}\n\t\t//constexpr static number_t decode(encode_t ulPrimeFactors, size_t const zuStart, number_t uFactors)\n\t\t//{\n\t\t//\twhile (ulPrimeFactors)\n\t\t//\t{\n\t\t//\t\tsize_t const zuIndex0 = zuStart + std::countr_zero(ulPrimeFactors) / 2u;\n\n\t\t//\t\tunsigned const uIndex1 = std::popcount(encode_t(ulPrimeFactors & g_astCONST[zuIndex0].uMask)) - 1u;\n\n\t\t//\t\tulPrimeFactors &= ~g_astCONST[zuIndex0].uMask;\n\n\t\t//\t\tuFactors *= g_aauPRIME_NUMBER[zuIndex0][uIndex1];\n\t\t//\t}\n\t\t//\treturn uFactors;\n\t\t//}\n\n\t\tconstexpr operator number_t () const\n\t\t{\n\t\t\treturn decode(std::get<encode_t>(*this), 1u, 10u, 1u) << std::popcount(encode_t(std::get<encode_t>(*this) & g_astCONST[0].uMask));\n\t\t}\n\t};\n\tprime_factors_t gcd(prime_factors_t const& lhs, prime_factors_t const& rhs)\n\t{\n\t\treturn{ prime_factors_t::tuple_t(std::get<0>(lhs) & std::get<0>(rhs)) };\n\t}\n\tprime_factors_t lcm(prime_factors_t const& lhs, prime_factors_t const& rhs)\n\t{\n\t\treturn{ prime_factors_t::tuple_t(std::get<0>(lhs) | std::get<0>(rhs)) };\n\t}\n\n\n\nlong long Solution::maxScore(vector<int>& nums)\n{\n\tsize_t const n = nums.size();\n\tif (n == 0) return 0ll;\n\n\t// 1. prime factors representation of `nums`\n\tconstexpr static prime_factors_t aPrimeFactors[31]{ 1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 };\n\n\t// 2. left-to-right and right-to-left pattern\n\tstd::vector<prime_factors_t> vPrimeFactors_lcm_left;\n\tstd::vector<prime_factors_t> vPrimeFactors_gcd_left;\n\tstd::vector<prime_factors_t> vPrimeFactors_lcm_right;\n\tstd::vector<prime_factors_t> vPrimeFactors_gcd_right;\n\tvPrimeFactors_lcm_left.resize(n);\n\tvPrimeFactors_gcd_left.resize(n);\n\tvPrimeFactors_lcm_right.resize(n);\n\tvPrimeFactors_gcd_right.resize(n);\n\tvPrimeFactors_lcm_left.front() = aPrimeFactors[nums.front()];\n\tvPrimeFactors_gcd_left.front() = aPrimeFactors[nums.front()];\n\tvPrimeFactors_lcm_right.back() = aPrimeFactors[nums.back()];\n\tvPrimeFactors_gcd_right.back() = aPrimeFactors[nums.back()];\n\tfor (size_t i = 1, j = n - 2; i < n; ++i, --j)\n\t{\n\t\tvPrimeFactors_lcm_left[i] = lcm(vPrimeFactors_lcm_left[i - 1], aPrimeFactors[nums[i]]);\n\t\tvPrimeFactors_gcd_left[i] = gcd(vPrimeFactors_gcd_left[i - 1], aPrimeFactors[nums[i]]);\n\t\tvPrimeFactors_lcm_right[j] = lcm(vPrimeFactors_lcm_right[j + 1], aPrimeFactors[nums[j]]);\n\t\tvPrimeFactors_gcd_right[j] = gcd(vPrimeFactors_gcd_right[j + 1], aPrimeFactors[nums[j]]);\n\t}\n\n\t// 3. combine "left-to-right" and "right-to-left" results\n\tstd::vector<prime_factors_t> vCandidate_lcm;\n\tstd::vector<prime_factors_t> vCandidate_gcd;\n\tvCandidate_lcm.resize(1 + n);\n\tvCandidate_gcd.resize(1 + n);\n\tvCandidate_lcm[0] = vPrimeFactors_lcm_right.front();\n\tvCandidate_gcd[0] = vPrimeFactors_gcd_right.front();\n\tif (1 < n)\n\t{\n\t\tvCandidate_lcm[1] = *(vPrimeFactors_lcm_right.begin() + 1);\n\t\tvCandidate_gcd[1] = *(vPrimeFactors_gcd_right.begin() + 1);\n\n\t\tprime_factors_t const* __restrict pstPrimeFactors_lcm_left = vPrimeFactors_lcm_left.data();\n\t\tprime_factors_t const* __restrict pstPrimeFactors_gcd_left = vPrimeFactors_gcd_left.data();\n\t\tprime_factors_t const* __restrict pstPrimeFactors_lcm_right = vPrimeFactors_lcm_right.data() + 2;\n\t\tprime_factors_t const* __restrict pstPrimeFactors_gcd_right = vPrimeFactors_gcd_right.data() + 2;\n\t\tprime_factors_t* __restrict pstPrimeFactors_lcm = vCandidate_lcm.data() + 2;\n\t\tprime_factors_t* __restrict pstPrimeFactors_gcd = vCandidate_gcd.data() + 2;\n\n\t\tfor (size_t i = 0, i_end = n - 2; i < i_end; ++i) // info C5001: loop vectorized\n\t\t{\n\t\t\t//pstPrimeFactors_lcm[i] = lcm(pstPrimeFactors_lcm_left[i], pstPrimeFactors_lcm_right[i]);\n\t\t\t//pstPrimeFactors_gcd[i] = gcd(pstPrimeFactors_gcd_left[i], pstPrimeFactors_gcd_right[i]);\n\t\t\tstd::get<prime_factors_t::encode_t>(pstPrimeFactors_lcm[i]) = std::get<prime_factors_t::encode_t>(pstPrimeFactors_lcm_left[i]) | std::get<prime_factors_t::encode_t>(pstPrimeFactors_lcm_right[i]);\n\t\t\tstd::get<prime_factors_t::encode_t>(pstPrimeFactors_gcd[i]) = std::get<prime_factors_t::encode_t>(pstPrimeFactors_gcd_left[i]) & std::get<prime_factors_t::encode_t>(pstPrimeFactors_gcd_right[i]);\n\t\t}\n\t\tvCandidate_lcm.back() = *(vPrimeFactors_lcm_left.rbegin() + 1);\n\t\tvCandidate_gcd.back() = *(vPrimeFactors_gcd_left.rbegin() + 1);\n\t}\n\n\t// 4. calculate scores\n\tuint64_t uMaxScore = 0;\n\tfor (size_t i = 0, i_end = 1 + n; i < i_end; ++i)\n\t{\n\t\tuint64_t const uGCD = vCandidate_gcd[i];\n\t\tuint64_t const uLCM = vCandidate_lcm[i];\n\n\t\tuMaxScore = std::max(uMaxScore, (uGCD * uLCM));\n\t}\n\n\treturn (long long)(uMaxScore);\n}\n\n#include <iostream>\nstatic auto _______ = []() {\n // turn off sync\n std::ios::sync_with_stdio(false);\n // untie in/out streams\n std::cin.tie(nullptr);\n return 0;\n}();\n\n```
0
0
['Bit Manipulation', 'Bitmask', 'C++']
0
find-the-maximum-factor-score-of-array
Brute Force solution!
brute-force-solution-by-chiragbellara-mi2u
Intuition\nWe get the product of every possible removal, and compare them.\n\n# Approach\nInitialize the maximum value as the product of the lcm and gcd of the
ChiragBellara
NORMAL
2024-10-27T15:40:21.597085+00:00
2024-10-27T15:40:21.597122+00:00
11
false
# Intuition\nWe get the product of every possible removal, and compare them.\n\n# Approach\nInitialize the maximum value as the product of the lcm and gcd of the entire nums list, as that will be the possible value when no number is removed from the list.\nThen simply iterate over the list and remove every number and check if the lcm * gcd of the list without this number is greater than the current maximum value.\nReturn the final value of the maximum.\n\n# Code\n```python3 []\nclass Solution:\n def maxScore(self, nums: List[int]) -> int:\n if len(nums) == 1:\n return nums[0] ** 2\n\n if len(nums) == 0:\n return 0\n\n score = math.gcd(*nums) * math.lcm(*nums)\n for i in range(len(nums)):\n changedList = nums[:i] + nums[i + 1 :]\n score = max(score, math.gcd(*changedList) * math.lcm(*changedList))\n\n return score\n\n```
0
0
['Array', 'Python3']
0
find-the-maximum-factor-score-of-array
Simple Java Solution | Beats 100%
simple-java-solution-beats-100-by-nithin-i3gv
\n\n# Code\njava []\nclass Solution {\n long gcd(long a, long b) \n { \n return b == 0 ? a: gcd(b, a % b); \n }\n\n long lcm(int[] arr,
nithin_1217
NORMAL
2024-10-27T15:25:00.739425+00:00
2024-10-27T15:25:00.739457+00:00
15
false
\n\n# Code\n```java []\nclass Solution {\n long gcd(long a, long b) \n { \n return b == 0 ? a: gcd(b, a % b); \n }\n\n long lcm(int[] arr, int idx, int r)\n {\n if (idx == arr.length - 1){\n if(idx == r) return 1;\n return arr[idx];\n }\n if(r == idx){\n idx += 1;\n }\n if (idx == arr.length - 1){\n return arr[idx];\n }\n long a = arr[idx];\n long b = lcm(arr, idx+1, r);\n return (a*b/gcd(a,b)); \n }\n public long maxScore(int[] nums) {\n long lcm = 0, gcd = 0, prod = 0;\n int n = nums.length;\n gcd = nums[0];\n for (int element: nums){\n gcd = gcd(gcd, element);\n\n if(gcd == 1)\n {\n break;\n }\n }\n lcm = lcm(nums,0,-1);\n prod = gcd*lcm;\n for(int i=0;i<n;i++){\n gcd = i == n-1 ? nums[0] : nums[i+1];\n for(int j=0;j<n;j++){\n if(j == i)continue;\n gcd = gcd(gcd,nums[j]);\n }\n lcm = lcm(nums,0,i);\n prod = Math.max(gcd*lcm,prod);\n } \n return prod;\n }\n}\n```
0
0
['Java']
0
find-the-maximum-factor-score-of-array
Python3 solution faster than 100%
python3-solution-faster-than-100-by-subh-g6qd
\nimport math\nclass Solution:\n def maxScore(self,nums: list[int]) -> int:\n def product(array):\n if len(array)!=0:\n lcm
elixlamp
NORMAL
2024-10-27T15:20:20.069814+00:00
2024-10-27T15:21:35.645323+00:00
26
false
```\nimport math\nclass Solution:\n def maxScore(self,nums: list[int]) -> int:\n def product(array):\n if len(array)!=0:\n lcm = array[0]\n gcd = array[0]\n for x in range(len(array)):\n lcm = max(math.lcm(array[x],lcm),lcm)\n gcd = min(math.gcd(array[x],gcd),gcd)\n return lcm*gcd \n maximum = 0\n if len(nums)>0:\n nums.sort()\n regularmax = product(nums)\n if len(nums)==1:\n return regularmax\n for x in range(len(nums)):\n arr = nums[:x] + nums[x+1:]\n maximum = max(maximum,product(arr))\n \n return max(maximum,regularmax)\n else:\n return 1\n```
0
0
['Python', 'Python3']
0
find-the-maximum-factor-score-of-array
Simple Python solution || 100% faster
simple-python-solution-100-faster-by-chi-y5gg
Code\npython3 []\nimport math\n\nclass Solution:\n def maxScore(self, nums: List[int]) -> int:\n if len(nums) == 1:\n return nums[0]**2\n
chiragnayak10
NORMAL
2024-10-27T14:33:14.793566+00:00
2024-10-27T14:33:14.793590+00:00
2
false
# Code\n```python3 []\nimport math\n\nclass Solution:\n def maxScore(self, nums: List[int]) -> int:\n if len(nums) == 1:\n return nums[0]**2\n max_score = 0\n\n for i in range(-1,len(nums)):\n if i == 0:\n start = 1\n gcd_value = nums[1]\n lcm_value = nums[1]\n else:\n start = 0\n gcd_value = nums[0]\n lcm_value = nums[0]\n\n for j in range(start, len(nums)):\n if j == i:\n continue\n gcd_value = math.gcd(gcd_value, nums[j])\n lcm_value = (lcm_value * nums[j]) // math.gcd(lcm_value, nums[j])\n\n max_score = max(max_score, gcd_value * lcm_value)\n\n return max_score\n\n \n```
0
0
['Python3']
0
find-the-maximum-factor-score-of-array
Brute Force
brute-force-by-trifecta_of_reality-g7tu
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
trifecta_of_reality
NORMAL
2024-10-27T14:27:05.339924+00:00
2024-10-27T14:27:05.339961+00:00
16
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```cpp []\n\n\nclass Solution {\npublic:\n long long gcd(long long a, long long b)\n {\n if(b>a)\n swap(a,b);\n if(b==0)\n return a;\n return gcd(a%b, b);\n \n }\n long long calculate_max_factor(vector<int>& arr, int idx)\n {\n long long lcm = arr[0];\n long long hcf = arr[0];\n long long gc = arr[0];\n int n = arr.size();\n if(idx == 0)\n {\n lcm = arr[1];\n hcf = arr[1];\n gc = arr[1];\n }\n for(int i=0;i<n;i++)\n {\n if(i == idx)\n continue;\n hcf = gcd(lcm, arr[i]);\n lcm = (lcm * arr[i])/hcf;\n gc = gcd(gc, arr[i]);\n }\n return lcm * gc;\n }\n long long maxScore(vector<int>& arr) {\n int n = arr.size();\n if(n==1)\n return 1LL * arr[0] * arr[0];\n long long ans = 0;\n ans = calculate_max_factor(arr, -1);\n for(int i=0;i<n;i++)\n {\n ans = max(ans, calculate_max_factor(arr, i));\n }\n return ans;\n }\n};\n```
0
0
['C++']
0
find-the-maximum-factor-score-of-array
c++ solution
c-solution-by-dilipsuthar60-3p9d
\nclass Solution {\npublic:\n long long gcd(long long a,long long b){\n return __gcd(a,b);\n }\n long long lcm(long long a,long long b){\n
dilipsuthar17
NORMAL
2024-10-27T13:50:38.202317+00:00
2024-10-27T13:50:38.202344+00:00
1
false
```\nclass Solution {\npublic:\n long long gcd(long long a,long long b){\n return __gcd(a,b);\n }\n long long lcm(long long a,long long b){\n return a*b/gcd(a,b);\n }\n long long maxScore(vector<int>& nums) {\n int n=nums.size();\n if(n==1) return nums[0]*nums[0];\n long long ans=0;\n for(int i=0;i<n;i++){\n long long currGcd=0;\n long long currLcm=0;\n for(int j=0;j<n;j++){\n if(i!=j){\n if(currGcd==0&&currLcm==0){\n currLcm=nums[j];\n currGcd=nums[j];\n }\n else{\n currGcd=gcd(currGcd,nums[j]);\n currLcm=lcm(currLcm,nums[j]);\n }\n }\n }\n ans=max(ans,currLcm*currGcd);\n }\n long long currGcd=0;\n long long currLcm=0;\n for(int i=0;i<n;i++){\n if(i==0){\n currGcd=nums[i];\n currLcm=nums[i];\n }\n else{\n currLcm=lcm(currLcm,nums[i]);\n currGcd=gcd(currGcd,nums[i]);\n }\n }\n return max(ans,currLcm*currGcd);\n }\n};\n```
0
0
['C', 'C++']
0
find-the-maximum-factor-score-of-array
Rust beginner solution
rust-beginner-solution-by-chenyo-17-ou0f
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
chenyo-17
NORMAL
2024-10-27T13:48:27.223287+00:00
2024-10-27T13:48:27.223317+00:00
5
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity: O(n)\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: O(n)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```rust []\nimpl Solution {\n pub fn max_score(nums: Vec<i32>) -> i64 {\n // special case 1\n if nums.is_empty() {\n return 0;\n }\n // precision conversion\n let nums: Vec<i64> = nums.iter().map(|v| *v as i64).collect(); \n // special case 2\n if nums.len() == 1 {\n return nums[0] * nums[0];\n }\n\n // pre-compute the gcd prefix and suffix array\n // time: O(n)\n let n = nums.len();\n // gcd_prefix[i] stores the gcd up to nums[i]\n let mut gcd_prefix = vec![1; n];\n gcd_prefix[0] = nums[0];\n for i in 1..n {\n gcd_prefix[i] = Self::gcd(gcd_prefix[i - 1], nums[i]);\n }\n // gcd_suffix[i] stores the gcd from nums[i] to end\n let mut gcd_suffix = vec![1; n];\n gcd_suffix[n - 1] = nums[n - 1];\n for i in (0..n - 1).rev() {\n gcd_suffix[i] = Self::gcd(gcd_suffix[i + 1], nums[i]);\n }\n\n // precompute lcm prefix and suffix array\n // time: O(n)\n let mut lcm_prefix = vec![1; n];\n // lcm_prefix[i] stores the lcm up to nums[i]\n lcm_prefix[0] = nums[0];\n for i in 1..n {\n lcm_prefix[i] = Self::lcm(lcm_prefix[i - 1], nums[i]);\n }\n // lcm_suffix[i] stores the lcm from nums[i] to end\n let mut lcm_suffix = vec![1; n];\n lcm_suffix[n - 1] = nums[n - 1];\n for i in (0..n - 1).rev() {\n lcm_suffix[i] = Self::lcm(lcm_suffix[i + 1], nums[i]);\n }\n\n // gcd_exclude[i] stores the gcd excluding nums[i]\n // lcm_exclude[i] stores the lcm excluding nums[i]\n let mut gcd_exclude = vec![1; n];\n let mut lcm_exclude = vec![1; n];\n for i in 0..n {\n // corner cases\n if i == 0 {\n gcd_exclude[i] = gcd_suffix[1];\n lcm_exclude[i] = lcm_suffix[1];\n } else if i == n - 1 {\n gcd_exclude[i] = gcd_prefix[n - 2];\n lcm_exclude[i] = lcm_prefix[n - 2];\n } else {\n gcd_exclude[i] = Self::gcd(gcd_prefix[i - 1], gcd_suffix[i + 1]);\n lcm_exclude[i] = Self::lcm(lcm_prefix[i - 1], lcm_suffix[i + 1]);\n }\n }\n\n // start iteration\n // time: O(n) \n // store the score when nothing is removed\n let mut max_score = match gcd_prefix[n - 1] {\n 0 => 0,\n s => lcm_prefix[n - 1].abs() * s,\n };\n for i in 0..n {\n // compute the score when nums[i] is removed\n let new_score = lcm_exclude[i] * gcd_exclude[i];\n max_score = max_score.max(new_score);\n }\n max_score\n }\n\n pub fn gcd(a: i64, b: i64) -> i64 {\n let mut a = a;\n let mut b = b;\n // gcd using euclidean algorithm\n while b != 0 {\n (a, b) = (b, a % b);\n }\n a\n }\n\n pub fn lcm(a: i64, b: i64) -> i64 {\n if a == 0 || b == 0 {\n return 0;\n }\n (a * b).abs() / Self::gcd(a, b)\n }\n}\n```
0
0
['Rust']
0
smallest-number-with-all-set-bits
[Java/C++/Python] Different ideas
javacpython-different-ideas-by-lee215-6qce
Explanation\nSolution 1. while loop on res = res * 2 + 1\nSolution 2. Build-in count leading zeros\nSolution 3. Build-in count bit length\n\n# Complexity\nTime
lee215
NORMAL
2024-12-01T04:32:41.952130+00:00
2024-12-01T12:29:30.946106+00:00
1,927
false
# **Explanation**\nSolution 1. while loop on `res = res * 2 + 1`\nSolution 2. Build-in count leading zeros\nSolution 3. Build-in count bit length\n\n# **Complexity**\nTime `O(logn)`\nSpace `O(1)`\n<br>\n\n**Java**\n```Java\n public int smallestNumber(int n) {\n int res = 1;\n while (res < n)\n res = res * 2 + 1;\n return res;\n }\n```\n```Java\n public int smallestNumber(int n) {\n return -1 >>> Integer.numberOfLeadingZeros(n);\n }\n```\n**C++**\n```C++\n int smallestNumber(int n) {\n return (1 << (32 - __builtin_clz(n))) - 1;\n }\n\n int smallestNumber(int n) {\n return INT_MAX >> __builtin_clz(n) - 1;\n }\n```\n**Python**\n```py [Python3]\n def smallestNumber(self, n: int) -> int:\n return (1 << n.bit_length()) - 1\n```
19
3
['C', 'Python', 'Java']
2
smallest-number-with-all-set-bits
🔥 Find the Smallest Number with Only Set Bits 🔢
find-the-smallest-number-with-only-set-b-8jef
Intuition \uD83D\uDCA1 \n\nThe problem revolves around finding the smallest number greater than or equal to a given number n where the binary representation of
lasheenwael9
NORMAL
2024-12-02T04:56:32.750751+00:00
2024-12-02T04:56:32.750776+00:00
1,265
false
# Intuition \uD83D\uDCA1 \n\nThe problem revolves around finding the smallest number greater than or equal to a given number `n` where the binary representation of the number contains only `1`s. \n\n1. **Key Insight**: \n - Numbers with only `1`s in their binary representation (e.g., 1, 3, 7, 15) follow the form $$ 2^b - 1 $$, where `b` is the total number of bits. \n - The smallest such number greater than or equal to `n` will have a binary representation of all set bits and at least `b` bits where $$ b = \\lceil \\log_2(n + 1) \\rceil $$. \n\n2. **Approach**: \n - Determine the number of bits `b` needed to represent `n`. \n - Calculate the result as $$ 2^b - 1 $$.\n\n---\n\n# Approach \uD83D\uDEE0\uFE0F \n\n1. Compute the number of bits `b` using the formula `b = log2(n) + 1`. \n2. Return the value $$ (1 << b) - 1 $$, which represents $$ 2^b - 1 $$ with all bits set. \n\n---\n\n# Complexity \u23F3 \n\n- **Time Complexity**: \n $$ O(1) $$ since the calculations involve constant-time operations. \n\n- **Space Complexity**: \n $$ O(1) $$ as no extra space is used. \n\n---\n![c1ee5054-dd07-4caa-a7df-e21647cfae9e_1709942227.5165014.png](https://assets.leetcode.com/users/images/7865b3eb-6d8d-42fe-9c51-188ad4821476_1733115321.1447082.png)\n\n\n# Code \uD83D\uDCBB \n\n```cpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n int b = log2(n) + 1; // Calculate the number of bits\n return (1 << b) - 1; // Return 2^b - 1\n }\n};\n```\n\n```java []\nclass Solution {\n public int smallestNumber(int n) {\n int b = (int) (Math.log(n) / Math.log(2)) + 1; // Calculate the number of bits\n return (1 << b) - 1; // Return 2^b - 1\n }\n}\n```\n\n```python []\nclass Solution:\n def smallestNumber(self, n: int) -> int:\n b = n.bit_length() # Calculate the number of bits\n return (1 << b) - 1 # Return 2^b - 1\n```\n\n```javascript []\n/**\n * @param {number} n\n * @return {number}\n */\nvar smallestNumber = function(n) {\n let b = Math.floor(Math.log2(n)) + 1; // Calculate the number of bits\n return (1 << b) - 1; // Return 2^b - 1\n};\n```\n\n---\n\n# Explanation \uD83D\uDCD8 \n\n## Example \n```plaintext\nInput: n = 6 \nOutput: 7 \n\nExplanation: \n- Binary of 6 = `110` \n- Smallest number with all set bits >= 6 is `111` (7 in decimal). \n\nInput: n = 10 \nOutput: 15 \n\nExplanation: \n- Binary of 10 = `1010` \n- Smallest number with all set bits >= 10 is `1111` (15 in decimal). \n```\n\n---\n\n# Takeaway \uD83D\uDE80 \n\nThis problem showcases how mathematical properties of binary numbers simplify implementation! If this helped, **drop a \uD83D\uDC4D and share the love! \uD83D\uDC96** \n\n![1HBC0324_COV.jpg](https://assets.leetcode.com/users/images/70e39342-85db-4485-8efb-38cc388b370a_1733115349.6659803.jpeg)\n
14
0
['Bit Manipulation', 'C++', 'Java', 'Python3', 'JavaScript']
2
smallest-number-with-all-set-bits
1 less than largest power of 2 greater than n
1-less-than-largest-power-of-2-greater-t-4hha
Approach\n- - Find the next larget power of 2 i.e. ceil(log2(n+1))\n- Then reurn power of 2 to the number found above and then - 1 to have all bits set.\n\n# Co
kreakEmp
NORMAL
2024-12-01T05:03:28.355327+00:00
2024-12-01T05:08:17.125979+00:00
1,327
false
# Approach\n- - Find the next larget power of 2 i.e. ceil(log2(n+1))\n- Then reurn power of 2 to the number found above and then - 1 to have all bits set.\n\n# Code\n```cpp []\nint smallestNumber(int n) {\n return pow(2, ceil(log2(n+1))) - 1;\n}\n```\n\n\n\n---\n\n\n<b>Here is an article of my interview experience - A Journey to FAANG Company, I recomand you to go through this to know which all resources I have used & how I cracked interview at Amazon:\nhttps://leetcode.com/discuss/interview-experience/3171859/Journey-to-a-FAANG-Company-Amazon-or-SDE2-(L5)-or-Bangalore-or-Oct-2022-Accepted\n\n\n---\n
9
3
['C++']
2
smallest-number-with-all-set-bits
Python3 || 1 line, Count the bits || T/S: 99% / 59%
python3-1-line-count-the-bits-ts-99-59-b-8rgf
This problem is equivalent to: Given a number n, find the greatest integer with the same bit-length. Thus, we determine the bit-length of n and use mathematics
Spaulding_
NORMAL
2024-12-01T04:33:52.161899+00:00
2024-12-08T02:29:41.488118+00:00
363
false
This problem is equivalent to: *Given a number *n*, find the greatest integer with the same bit-length.* Thus, we determine the bit-length of *n* and use mathematics to complete the task.\n\n```python3 []\nclass Solution:\n def smallestNumber(self, n: int) -> int:\n \n return pow(2, n.bit_length()) - 1\n```\n```cpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n return (1 << (32 - __builtin_clz(n))) - 1;\n }\n};\n```\n```java []\nclass Solution {\n\n public int smallestNumber(int n) {\n return (1 << (Integer.SIZE - Integer.\n \n numberOfLeadingZeros(n))) - 1; }\n}\n\n```\nI could be wrong, but I think that time complexity is *O*(log log *N*) and space complexity is *O*(1), *N* ~ `n`.\n\n[https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1473080933/](https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1473080933/)
8
0
['C++', 'Java', 'Python3']
0
smallest-number-with-all-set-bits
One-Liners
one-liners-by-votrubac-bb78
Two solutions in case you do not want bit manipulations...\n\nC++\ncpp\nint smallestNumber(int n) {\n return pow(2, floor(log2(n) + 1)) - 1;\n}\n\nC++\ncpp\n
votrubac
NORMAL
2024-12-01T04:47:16.547971+00:00
2024-12-01T04:55:43.978155+00:00
440
false
Two solutions in case you do not want bit manipulations...\n\n**C++**\n```cpp\nint smallestNumber(int n) {\n return pow(2, floor(log2(n) + 1)) - 1;\n}\n```\n**C++**\n```cpp\nint sb[10] = {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023};\nint smallestNumber(int n) {\n return *lower_bound(begin(sb), end(sb), n);\n}\n```
7
2
[]
0
smallest-number-with-all-set-bits
Intuition + Approach | Power of 2 | T.C ~ O(logn)
intuition-approach-power-of-2-tc-ologn-b-i4y6
Intuition\n\nIf we subtract 1 from any power of 2 we will get number having all set bits.\n\nExample:-\n\n 2^3 -1 = (8-1) =7 -> binary(111)\n\n## Approach\n
langesicht
NORMAL
2024-12-01T04:58:38.616360+00:00
2024-12-01T10:58:19.250732+00:00
504
false
# Intuition\n\nIf we subtract 1 from any power of 2 we will get number having all set bits.\n\nExample:-\n\n 2^3 -1 = (8-1) =7 -> binary(111)\n\n## Approach\n- Find 1st power of 2 which is greater than or equal to n+1\n- Ans is (Power of 2) -1\n\n For Example:- \n n = 5,\n power of 2 greater than or equal to (n+1 = 6) is 2^3 =8,\n binary representation of (8-1 = 7) --> 111,\n Therefore 7 is ans\n\n\n# Complexity\n- Time complexity: O(logn)\n\n- Space complexity: O(1)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```java []\nclass Solution {\n public int powerOf2(int n){\n int p = 1;\n while(p<n){\n p*=2;\n }\n return p;\n }\n public int smallestNumber(int n) {\n int num = powerOf2(n+1);\n return num-1;\n }\n}\n```\n# PLEASE UPVOTE ! THANKS\n.\n.\n\n.
6
0
['Java']
0
smallest-number-with-all-set-bits
bit_ceil 1 line||beats 100%
bit_ceil-1-linebeats-100-by-anwendeng-osy5
Intuition\n Describe your first thoughts on how to solve this problem. \nUse bit_ceil (C++20). That is the smallest 2 powers greater or equal to n\n# Approach\n
anwendeng
NORMAL
2024-12-01T05:52:16.568432+00:00
2024-12-01T05:57:33.538119+00:00
202
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nUse bit_ceil (C++20). That is the smallest 2 powers greater or equal to n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n- If bit_ceil(n)=n, n is a 2 power, return 2*n-1\n- otherwise return bit_ceil(n)-1\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nAt most $O(\\log n)$ maybe $O(32)=O(1)$\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n$$O(1)$$\n# Code||0ms beats 100%\n```cpp []\nclass Solution {\npublic:\n int smallestNumber(unsigned n) {\n return (bit_ceil(n)==n)?(n<<1)-1:bit_ceil(n)-1;\n }\n};\n```\n# Code variant\n```\nclass Solution {\npublic:\n int smallestNumber(unsigned n) {\n return bit_ceil(n+1)-1;\n }\n};\n```
5
1
['Bit Manipulation', 'C++']
2
smallest-number-with-all-set-bits
[Python, Java, C++, Rust] Elegant & Short | O(1) | Power Of Two
python-java-c-rust-elegant-short-o1-powe-ki9y
Complexity\n- Time complexity: O(1)\n- Space complexity: O(1)\n\n# Code\npython3 []\nclass Solution:\n def smallestNumber(self, n: int) -> int:\n retu
Kyrylo-Ktl
NORMAL
2024-12-01T10:03:30.276733+00:00
2024-12-01T10:13:13.750927+00:00
226
false
# Complexity\n- Time complexity: $$O(1)$$\n- Space complexity: $$O(1)$$\n\n# Code\n```python3 []\nclass Solution:\n def smallestNumber(self, n: int) -> int:\n return (1 << n.bit_length()) - 1\n```\n```java []\nimport java.math.BigInteger;\n\nclass Solution {\n public int smallestNumber(int n) {\n return (1 << BigInteger.valueOf(n).bitLength()) - 1;\n }\n}\n```\n```C++ []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n return (1 << (32 - __builtin_clz(n))) - 1;\n }\n};\n```\n```Rust []\nimpl Solution {\n pub fn smallest_number(n: i32) -> i32 {\n (1 << (32 - n.leading_zeros())) - 1\n }\n}\n```
4
0
['Python', 'C++', 'Java', 'Python3', 'Rust']
0
smallest-number-with-all-set-bits
🔥Beats 100 % 🔥 | Easiest Solution ✔️ | O(1) and O(n) | Bit Manipulation
beats-100-easiest-solution-o1-and-on-bit-j5ty
Intuition\nThe goal is to find the smallest number >= n where all bits in its binary representation are set (e.g., 1, 3, 7, 15, etc.). Starting from n, we check
ntrcxst
NORMAL
2024-12-01T05:16:25.863480+00:00
2024-12-01T05:16:25.863519+00:00
138
false
# Intuition\nThe goal is to find the smallest number `>= n` where all **bits** in its binary representation are set (e.g., 1, 3, 7, 15, etc.). Starting from `n`, we check if the number satisfies the condition `x & (x + 1) == 0`, which is true only if `x` has all **bits set** , binary \n`0111 & 1000 = 0`. If `x` doesn\'t meet this condition, increment it and check again until the condition holds. Once found, return this number as the smallest value meeting the criteria.\n\n# Approach\n`Step 1` **Understanding the Bitwise Condition :**\n- `x & (x + 1) == 0` is true only when `x` has all bits set in its binary representation. For example:\n - 3 (binary 11): `3 & 4 = 0`\n - 7 (binary 111): 7 & 8 = 0\n\n`Step 2` **Iterate and Increment :**\n- Start from n and keep incrementing `x` until the condition is satisfied.\n\n`Step 3` **Return the Result :**\n- Once the condition is met, `x` is guaranteed to be the\n- `smallest number \u2265 n` with all bits set. Return it.\n\n# Complexity\n- Time complexity: $$O(n)$$\n- Space complexity: $$O(1)$$\n\n# Code\n```java []\nclass Solution \n{\n public int smallestNumber(int n) \n {\n int x = n;\n \n // Step 1: Check if x has all bits set\n while ((x & (x + 1)) != 0) \n { \n x++; // Step 2: Increment x until the condition is met\n }\n \n return x; // Step 3 : Return Smallest Number with All Set Bits \n }\n}\n```
4
0
['Bit Manipulation', 'Bitmask', 'Java']
1
smallest-number-with-all-set-bits
💯Very Easy Detailed Solution || 🎯 Beats 100% || 🎯 Two Approaches
very-easy-detailed-solution-beats-100-tw-svn4
Approach 1: Brute Force\n Describe your approach to solving the problem. \n1. Helper Function check(String str):\n - This method checks if a given binary str
chaturvedialok44
NORMAL
2024-12-02T06:06:30.724977+00:00
2024-12-02T06:06:30.725006+00:00
187
false
# Approach 1: Brute Force\n<!-- Describe your approach to solving the problem. -->\n1. **Helper Function check(String str):**\n - This method checks if a given binary string contains only the character \'1\'.\n - If it encounters a \'0\' in the string, it returns false; otherwise, it returns true.\n\n2. **Method smallestNumber(int n):**\n - Starts with result = n.\n - Converts the current number (result) to its binary representation using Integer.toBinaryString(result).\n - Uses the check method to verify if the binary representation contains only 1.\n - If true, the loop breaks, and the number is returned.\n - Otherwise, result is incremented, and the process repeats.\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n$O((k-n).log(k))$\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n$O(log(k))$\n# Code\n```java []\nclass Solution {\n private boolean check(String str){\n for(char ch : str.toCharArray()){\n if(ch == \'0\'){\n return false;\n }\n }\n return true;\n }\n public int smallestNumber(int n) {\n int result = n;\n while(true){\n if(check(Integer.toBinaryString(result))){\n break;\n }\n else{\n result++;\n }\n }\n return result;\n }\n}\n```\n\n# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nThe numbers with binary representation containing only 1 are powers of 2-1:\nBinary numbers like 1, 11, 111, etc., correspond to 2^1 - 1, 2^2 - 1, 2^3 - 1, and so on.\nPrecompute these values or derive them directly to reduce brute-force iterations. This would result in logarithmic or constant time checks instead of linear iteration.\n# Approach 2: Optimized Approach\n<!-- Describe your approach to solving the problem. -->\n1. **Initialization:**\n - ans is initialized to 1 (binary: 1).\n\n2. **Iterative Multiplication:**\n - The loop multiplies ans by 2 and adds 1 in each iteration. This operation appends a 1 to the binary representation of ans. For example:\n - Start with 1 (binary: 1).\n - Multiply by 2 and add 1: 1\u21923 (binary: 11).\n - Multiply by 2 and add 1: 3\u21927 (binary: 111).\n - Multiply by 2 and add 1: 7\u219215 (binary: 1111).\n\n3. **Loop Termination:**\n - The loop continues until ans is greater than or equal to n. At this point, ans is returned.\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n$O(log(n))$\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n$O(1)$\n# Code\n```java []\nclass Solution {\n public int smallestNumber(int n) {\n int ans = 1;\n while(ans < n){\n ans = ans*2 + 1;\n }\n return ans;\n }\n}\n```
3
0
['Math', 'String', 'Bit Manipulation', 'String Matching', 'Bitmask', 'Java']
2
smallest-number-with-all-set-bits
💢☠💫Easiest👾Faster✅💯 Lesser🧠 🎯 C++✅Python3🐍✅Java✅C✅Python🐍✅C#✅💥🔥💫Explained☠💥🔥 Beats 100
easiestfaster-lesser-cpython3javacpython-vrhi
\n\n# Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n\n Describe your first thoughts on how to solve this problem. \n- J
Edwards310
NORMAL
2024-12-01T09:56:04.251796+00:00
2024-12-01T09:56:04.251831+00:00
134
false
![0ehh83fsnh811.jpg](https://assets.leetcode.com/users/images/9fc46acb-7ba4-42e1-864c-3b0e7e0e82b6_1730795144.4340796.jpeg)\n\n# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n\n<!-- Describe your first thoughts on how to solve this problem. -->\n- ***JavaScript Code -->*** https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1467200570\n- ***C++ Code -->*** https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1467182393\n- ***Python3 Code -->*** https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1467186457\n- ***Java Code -->*** https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1467054963\n- ***C Code -->*** https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1467188235\n- ***Python Code -->*** https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1467185715\n- ***C# Code -->*** https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1467200359\n- ***Go Code -->*** https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1467235020\n- ***PHP Code -->*** https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1467201851\n- ***Dart Code -->*** https://leetcode.com/problems/smallest-number-with-all-set-bits/submissions/1467204071\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n O(1)\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n O(1)\n# Code\n![th.jpeg](https://assets.leetcode.com/users/images/983d2a06-1018-48b9-a044-bb8eecb3016b_1733046912.0161605.jpeg)\n
3
1
['C', 'PHP', 'Python', 'C++', 'Java', 'Go', 'Python3', 'JavaScript', 'C#', 'Dart']
0
smallest-number-with-all-set-bits
[Python3] Math
python3-math-by-ye15-yo9h
Intuition\nCount the number of bits of n and create an all 1 binary. \n\nAnalysis\nTime complexity O(1)\nSpace complexity O(1)\n\nImplemetation\n\nclass Solutio
ye15
NORMAL
2024-12-01T04:44:57.321582+00:00
2024-12-01T04:47:44.562088+00:00
158
false
**Intuition**\nCount the number of bits of `n` and create an all `1` binary. \n\n**Analysis**\nTime complexity `O(1)`\nSpace complexity `O(1)`\n\n**Implemetation**\n```\nclass Solution:\n def smallestNumber(self, n: int) -> int:\n return (1<<n.bit_length()) - 1\n```
3
0
['Python3']
1
smallest-number-with-all-set-bits
Easiest Solution💯 || 100% beats
easiest-solution-100-beats-by-aryaman123-8nan
Code
aryaman123
NORMAL
2025-03-19T16:05:29.600995+00:00
2025-03-19T16:05:29.600995+00:00
93
false
# Code ```java [] class Solution { public int smallestNumber(int n) { int ans = poweroftwo(n+1); return ans-1; } public int poweroftwo(int n){ int p = 1; while(p<n){ p*=2; } return p; } } ```
2
0
['Java']
0
smallest-number-with-all-set-bits
100% Best Solution
100-best-solution-by-luffy240605-nckx
IntuitionAll set bits are present in numbers just before the powers of 2 for example 7 just before 8 , 15 just before 16 etc. So we will count the number of bit
luffy240605
NORMAL
2025-01-07T01:25:52.241169+00:00
2025-01-07T01:27:15.151351+00:00
86
false
# Intuition All set bits are present in numbers just before the powers of 2 for example 7 just before 8 , 15 just before 16 etc. So we will count the number of bits in the number n(given) and return 2 to the power the number of bits in that number - 1. # Approach Initialize count variable and count the number of bits with the help of a while loop and right shifting or dividing number by 2. # Complexity - Time complexity:O(logN) - Space complexity:O(1) # Code ```cpp [] class Solution { public: int smallestNumber(int n) { int num = n , cnt = 0; while(num){ num = num >> 1; cnt++; } return pow(2,cnt) - 1; } }; ```
2
0
['C++']
1
smallest-number-with-all-set-bits
[Swift, C++, Python3] Simplest solution 0ms O(logN)
swift-c-python3-simplest-solution-0ms-ol-fnfn
Intuition\nThe first numbers which contain only set bits are 1, 3, 7, 15, 31.\nSo, each next only set bits number can be calculated as current * 2 + 1.\n\n\n\n\
evkobak
NORMAL
2024-12-02T05:13:20.488650+00:00
2024-12-02T07:01:06.156742+00:00
43
false
# Intuition\nThe first numbers which contain only set bits are 1, 3, 7, 15, 31.\nSo, each next only set bits number can be calculated as `current * 2 + 1`.\n\n![Screenshot 2024-12-02 095847.png](https://assets.leetcode.com/users/images/3a9b413f-1b8b-46f0-bc1f-692d6818ed88_1733122778.0951207.png)\n\n\n# Approach\nWe can start from 1 and calculate next number while our number lesser than n.\n\n# Complexity\n- Time complexity:\nO(logN)\n\n- Space complexity:\nO(1)\n\n![0ms.png](https://assets.leetcode.com/users/images/fe25f967-e3a9-405d-b7c2-d86fef07d60d_1733115874.7205248.png)\n\n# Swift Code\n```swift []\nclass Solution {\n func smallestNumber(_ n: Int) -> Int {\n var curr = 1\n while curr < n {\n curr = curr * 2 + 1\n }\n return curr\n }\n}\n```\n\n# C++ Code\n```cpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n int curr = 1;\n while (curr < n)\n curr = curr * 2 + 1;\n return curr;\n }\n};\n```\n\n# Python3 Code\n```python3 []\nclass Solution:\n def smallestNumber(self, n: int) -> int:\n curr = 1\n while curr < n:\n curr = curr * 2 + 1\n return curr\n```\n
2
0
['Swift', 'C++', 'Python3']
0
smallest-number-with-all-set-bits
Simple and Easy Solution | ✅Beats 100% | C++| Java | Python | JavaScript
simple-and-easy-solution-beats-100-c-jav-e5td
\n\n# \u2B06\uFE0F Upvote if it helps! \u2B06\uFE0F \n## Connect with me on LinkedIn: Bijoy Sing \n\n---\n\n\n## Follow me also on Codeforces: Bijoy Sing\n\n\
BijoySingh7
NORMAL
2024-12-01T05:45:28.738744+00:00
2024-12-01T05:47:40.106978+00:00
572
false
\n\n# \u2B06\uFE0F Upvote if it helps! \u2B06\uFE0F \n## Connect with me on LinkedIn: [Bijoy Sing](https://www.linkedin.com/in/bijoy-sing-236a5a1b2/) \n\n---\n\n\n## Follow me also on Codeforces: [Bijoy Sing](https://codeforces.com/profile/BijoySingh7)\n\n\n---\n\n### **Solution in C++, Python, Java, and JavaScript**\n\n```cpp\nclass Solution {\npublic:\n int smallestNumber(int n) {\n int bit = log2(n) + 1; // Calculate the number of bits required\n int ans = (1 << bit) - 1; // Construct the smallest number with all bits set\n return ans;\n }\n};\n```\n\n```python\nclass Solution:\n def smallestNumber(self, n):\n bit = n.bit_length() # Calculate the number of bits required\n ans = (1 << bit) - 1 # Construct the smallest number with all bits set\n return ans\n```\n\n```java\nclass Solution {\n public int smallestNumber(int n) {\n int bit = (int)(Math.log(n) / Math.log(2)) + 1; // Calculate the number of bits required\n int ans = (1 << bit) - 1; // Construct the smallest number with all bits set\n return ans;\n }\n}\n```\n\n```javascript\nclass Solution {\n smallestNumber(n) {\n let bit = Math.floor(Math.log2(n)) + 1; // Calculate the number of bits required\n let ans = (1 << bit) - 1; // Construct the smallest number with all bits set\n return ans;\n }\n}\n```\n\n---\n\n### **Explanation**\nThe goal is to find the smallest integer where all its bits are set to 1, given \\( n \\). \n\n#### Approach:\n1. Calculate the number of bits needed to represent \\( n \\). \n - In C++, Python, JavaScript: Use `log2(n)` and add 1.\n - In Java: Use `Math.log(n) / Math.log(2)` and add 1.\n2. Construct the smallest number with all bits set using bit manipulation: \n \\( (1 << \\text{bit}) - 1 \\). \n This shifts 1 left by `bit` positions, filling it with 1\'s, and subtracts 1 to create the final result.\n\n---\n\n### **Complexity Analysis**\n- **Time Complexity**: \\( O(1) \\) \n All operations (logarithm and bit manipulation) take constant time. \n\n- **Space Complexity**: \\( O(1) \\) \n No additional space is required. \n\n---\n\n### **If you liked the solution, don\'t forget to upvote! \uD83D\uDE0A**
2
0
['Bit Manipulation', 'Bitmask', 'Python', 'C++', 'Java', 'Python3', 'JavaScript']
2
smallest-number-with-all-set-bits
✅ Simple Java Solution
simple-java-solution-by-harsh__005-57wt
CODE\nJava []\npublic int smallestNumber(int n) {\n\tString str = Integer.toBinaryString(n);\n\tint i=str.length()-1, res = 0;\n\n\twhile(i >= 0) {\n\t\tres +=
Harsh__005
NORMAL
2024-12-01T05:36:16.680373+00:00
2024-12-01T05:36:16.680400+00:00
55
false
## **CODE**\n```Java []\npublic int smallestNumber(int n) {\n\tString str = Integer.toBinaryString(n);\n\tint i=str.length()-1, res = 0;\n\n\twhile(i >= 0) {\n\t\tres += (1<<i);\n\t\ti--;\n\t}\n\treturn res;\n}\n```
2
0
['Java']
1
smallest-number-with-all-set-bits
3370. Smallest Number With All Set Bits
3370-smallest-number-with-all-set-bits-b-mxkg
Intuition\n\nGenerate string like below:\n0\n01\n011\n0111\n01111\n011111\n\nConvert to decimal\n0\n1\n3\n7\n15\n31\n\nif greater than n, return that converted
pgmreddy
NORMAL
2024-12-01T05:15:48.081407+00:00
2024-12-01T05:24:48.730053+00:00
59
false
# Intuition\n```\nGenerate string like below:\n0\n01\n011\n0111\n01111\n011111\n\nConvert to decimal\n0\n1\n3\n7\n15\n31\n\nif greater than n, return that converted decimal number\n```\n\nor\n```\nn and next to n bit and is 0\n```\n\n# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```javascript []\nvar smallestNumber = function (n) {\n let binaryString = "0";\n while (parseInt(binaryString, 2) < n) {\n binaryString += "1";\n }\n return parseInt(binaryString, 2);\n};\n```\n\n```\nvar smallestNumber = function (n) {\n for (; ; n++) {\n if ((n & (n + 1)) === 0) {\n return n\n }\n }\n}\n```\n
2
0
['JavaScript']
0
smallest-number-with-all-set-bits
Set all bits in n | C++, Python, Java
set-all-bits-in-n-c-python-java-by-not_y-eu9n
Approach\n Describe your approach to solving the problem. \nSet all the bits in n\'s binary representation to 1.\n\nFor the python version, 2^k-1 is a number wi
not_yl3
NORMAL
2024-12-01T05:02:18.821899+00:00
2024-12-01T20:59:54.003385+00:00
188
false
# Approach\n<!-- Describe your approach to solving the problem. -->\nSet all the bits in n\'s binary representation to 1.\n\nFor the python version, $$2^k-1$$ is a number with all `k` set bits.\n# Complexity\n- Time complexity: $$O(log(n))$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```C++ []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n for (int bit = 1; bit < n; bit <<= 1)\n n |= bit;\n return n;\n }\n};\n```\n```python []\nclass Solution:\n def smallestNumber(self, n: int) -> int:\n k = 0\n while 1 << k <= n:\n k += 1\n return (1 << k) - 1\n```\n```Java []\nclass Solution {\n public int smallestNumber(int n) {\n int bit = 1;\n while (bit < n)\n bit = (bit << 1) | 1;\n return bit;\n }\n}\n```\n
2
0
['Bit Manipulation', 'C', 'Python', 'C++', 'Java', 'Python3']
0
smallest-number-with-all-set-bits
simple and easy C++ solution | Bitmask
simple-and-easy-c-solution-bitmask-by-sh-5ivk
\n# if it\'s help, please up \u2B06 vote! \u2764\uFE0F\n###### Let\'s Connect on Linkedin: www.linkedin.com/in/shishirrsiam\n\n\n\n# Code\ncpp []\nclass Solutio
shishirRsiam
NORMAL
2024-12-01T04:55:12.471249+00:00
2024-12-01T04:55:12.471278+00:00
102
false
\n# if it\'s help, please up \u2B06 vote! \u2764\uFE0F\n###### Let\'s Connect on Linkedin: www.linkedin.com/in/shishirrsiam\n\n\n\n# Code\n```cpp []\nclass Solution {\npublic:\n int smallestNumber(int n) \n {\n bitset<24>bits(n);\n string num, s = bits.to_string();\n\n int idx = s.find(\'1\');\n for(int i = idx; i < 24; i++)\n num += \'1\';\n\n int ans = stoi(num, NULL, 2);\n return ans;\n }\n};\n```
2
1
['Bit Manipulation', 'Bitmask', 'C++']
0
smallest-number-with-all-set-bits
C code No built-in functions, Only bit manipulation (explained)
c-code-no-built-in-functions-only-bit-ma-muo7
Code
amiensa
NORMAL
2025-04-05T22:00:00.105554+00:00
2025-04-05T22:00:00.105554+00:00
10
false
# Code ```c [] int smallestNumber(int n) { int count = 0; // number of 1's in "n" int lastone = 0; // refers to last bit with value 1 // in "n" starting from right int m = n; for(int i = 1 ; i < 11 ; i++){ if(m & 1){ lastone=i; count++; } m >>= 1; } // this line below means we only encounter bits with 1 values // before reaching the first bit with 0 value if(lastone==count)return n; int result = 0; for(int j = 0 ; j < lastone; j++){ // shift left and set LSB to 1 result = (result << 1) | 1; } return result; } ```
1
0
['Bit Manipulation', 'C']
0
smallest-number-with-all-set-bits
100 Beats Solution 🔥|| Java 🎯
100-beats-solution-java-by-user8688f-obzg
Approachres * 2 + 1 upto n gives the answerComplexity Time complexity:O(Log(N)) Space complexity:O(1) Code
user8688F
NORMAL
2025-03-22T07:29:25.072332+00:00
2025-03-22T07:29:25.072332+00:00
29
false
# Approach res * 2 + 1 upto n gives the answer <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity:O(Log(N)) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity:O(1) <!-- Add your space complexity here, e.g. $$O(n)$$ --> ![7865b3eb-6d8d-42fe-9c51-188ad4821476_1733115321.1447082.png](https://assets.leetcode.com/users/images/e812dee3-e02d-41ce-abc8-1faaed3e4feb_1742628549.6887143.png) # Code ```java [] class Solution { public int smallestNumber(int n) { int res=1; while(res<n){ res=res*2+1; } return res; } } ```
1
0
['Math', 'Java']
0
smallest-number-with-all-set-bits
100% Acceptance!✅With Efficient Memory!✅ Very Easy To understand!✅
100-acceptancewith-efficient-memory-very-h3uj
IntuitionApproachComplexity Time complexity:O(n)✅ Space complexity:O(1)✅ Code
velan_m_velan
NORMAL
2025-03-19T07:55:47.450649+00:00
2025-03-19T07:55:47.450649+00:00
50
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity:$$O(n)$$✅ <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity:$$O(1)$$✅ <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: int smallestNumber(int n) { int sum=0; for(int b=0;b<=10;b++){ sum+=pow(2,b); if(sum>=n)return sum; } return -1; } }; ```
1
0
['C++']
0
smallest-number-with-all-set-bits
Simple Go, no bit manipulation
simple-go-no-bit-manipulation-by-user891-gjbp
ApproachWe need find power of 2 that is bigger than the given number and subtract 1.5 -> 101 next greater number that is a power of 2 is 8 8 -> 1000 subtract 1
user8912Cp
NORMAL
2025-03-17T04:06:28.214915+00:00
2025-03-17T04:06:28.214915+00:00
18
false
# Approach We need find power of 2 that is bigger than the given number and subtract 1. 5 -> 101 next greater number that is a power of 2 is 8 8 -> 1000 subtract 1 7 -> 111 Same length as 5 in binary representation, but all bits are ones # Complexity - Time complexity: O(log(n)) - Space complexity: O(n) # Code ```golang [] func smallestNumber(n int) int { result := 1 for result <= n { result *= 2 } return result - 1 } ```
1
0
['Go']
0
smallest-number-with-all-set-bits
☑️ Finding Smallest Number With All Set Bits. ☑️
finding-smallest-number-with-all-set-bit-w009
Code
Abdusalom_16
NORMAL
2025-03-15T11:50:46.516379+00:00
2025-03-15T11:50:46.516379+00:00
19
false
# Code ```dart [] class Solution { int smallestNumber(int n) { while(true){ List<String> conv = n.toRadixString(2).split(""); if(conv.toSet().length == 1 && conv.first == "1"){ return n; } n++; } return 999; } } ```
1
0
['Math', 'Bit Manipulation', 'Dart']
0
smallest-number-with-all-set-bits
// ONE LINER SOLUTION >- BEATS 100%
one-liner-solution-beats-100-by-fwupexeg-msec
🧠 Intuition The goal is to find a pattern related to the highest power of 2 in the given number n. Observing the binary representation of numbers, we notice tha
fWUpExEgyB
NORMAL
2025-02-27T08:49:50.324449+00:00
2025-02-27T08:49:50.324449+00:00
53
false
🧠 Intuition The goal is to find a pattern related to the highest power of 2 in the given number n. Observing the binary representation of numbers, we notice that: The highest power of 2 in n is the most significant set bit. If we take 2 * highestOneBit(n) - 1, we get a number consisting of all 1s in binary, covering that power of 2. For example: n = 5 (binary 101), highest power of 2 = 4 (binary 100), result = 7 (binary 111). n = 10 (binary 1010), highest power of 2 = 16 (binary 1000), result = 15 (binary 1111). 🔍 Approach Find the highest power of 2 in n using Integer.highestOneBit(n). Generate a number with all 1s up to that position using 2 * highestOneBit(n) - 1. Return the computed result. ⏳ Complexity Analysis Time Complexity: O(1) Integer.highestOneBit(n) runs in constant time as it operates on a fixed 32-bit integer. Space Complexity: O(1) No extra space is used. 💻 Code java: class Solution { public int smallestNumber(int n) { int nextPower = Integer.highestOneBit(n); return 2 * nextPower - 1; } }
1
0
['Java']
0
smallest-number-with-all-set-bits
EASIEST 2 LINE SOLUTION BEATING 100% IN 0ms
easiest-2-line-solution-beating-100-in-0-ov3w
ApproachTo find the smallest number x greater than or equal to n where x's binary representation consists of only set bits (i.e., all bits are 1), we can utiliz
arshi_bansal
NORMAL
2025-02-09T07:34:47.579409+00:00
2025-02-09T07:34:47.579409+00:00
62
false
# Approach <!-- Describe your approach to solving the problem. --> To find the smallest number x greater than or equal to n where x's binary representation consists of only set bits (i.e., all bits are 1), we can utilize the following method: 1. Start with a number of the form 2^k - 1, which in binary is k consecutive set bits (e.g., 3 (11), 7 (111), 15 (1111), etc.). 2. Keep increasing k until 2^k - 1 is greater than or equal to n. 3. Return this number. # Complexity - Time complexity: O(log n) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: O(1) <!-- Add your space complexity here, e.g. $$O(n)$$ --> ![image.png](https://assets.leetcode.com/users/images/ea6fbf1d-8c77-4584-bd4a-8a58b7e461e9_1739086453.8204598.png) # Code ```java [] class Solution { public int smallestNumber(int n) { int x = 1; while ((x - 1) < n) { x <<= 1; // Multiply x by 2 } return x - 1; } } ```
1
0
['Math', 'Bit Manipulation', 'Java']
0
smallest-number-with-all-set-bits
0MS 🏆 || 🌟JAVA ☕
0ms-java-by-galani_jenis-1x3p
Code
Galani_jenis
NORMAL
2025-01-29T05:39:29.541636+00:00
2025-01-29T05:39:29.541636+00:00
58
false
# Code ```java [] class Solution { public int smallestNumber(int n) { int ans = 1; while (ans < n) ans = ans * 2 + 1; return ans; } } ```
1
0
['Java']
0
smallest-number-with-all-set-bits
"Simple & small" ahh solution | Beats 100%.
simple-small-ahh-solution-beats-100-by-a-6g9s
IntuitionApproach Find the smallest power of 2 that is strictly greater than n. Return that power of 2, subtracting 1 as the result. Complexity Time complexity:
AnaghaBharadwaj
NORMAL
2025-01-20T06:04:48.605269+00:00
2025-01-20T06:04:48.605269+00:00
59
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach 1. Find the smallest power of 2 that is strictly greater than n. 2. Return that power of 2, subtracting 1 as the result. <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity:O(n) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity:O(1) <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { public int smallestNumber(int n) { int sol=0; for(int i=1;i<=n;++i){ if(Math.pow(2,i)>n){ sol =(int)Math.pow(2,i); break; } } return sol-1; } } ```
1
0
['Java']
0
smallest-number-with-all-set-bits
BEATS 100% WITH 3 LINES OF CODE
beats-100-with-3-lines-of-code-by-yashve-eapv
IntuitionApproachFirst find the number of bits in the number and then return the 2 raise to the power bits -1. If you find any difficulty please refer to my sol
Yashvendra
NORMAL
2025-01-01T16:45:20.703110+00:00
2025-01-01T16:45:20.703110+00:00
12
false
# Intuition # Approach First find the number of bits in the number and then return the 2 raise to the power bits -1. If you find any difficulty please refer to my solution. # Complexity - Time complexity: O(1). - Space complexity: O(1). # Code ```java [] class Solution { public int smallestNumber(int n) { int bits = (int) (Math.log(n)/Math.log(2.0)); int x =(int)(Math.pow(2,bits+1)); return x -1; } } ```
1
0
['Math', 'Bit Manipulation', 'Java']
0
smallest-number-with-all-set-bits
🔥Beats 100 % 🔥 || Easiest Solution ✔️ || JAVA ||
beats-100-easiest-solution-java-by-happy-f8bo
IntuitionThe problem revolves around finding the smallest number greater than or equal to a given number n where the binary representation of the number contain
Happy-Singh-Chauhan
NORMAL
2024-12-24T18:02:26.617969+00:00
2024-12-24T18:02:26.617969+00:00
38
false
# Intuition *The problem revolves around finding the smallest number greater than or equal to a given number n where the binary representation of the number contains only 1s.* # Approach 1. Determine the number of bits b needed to represent n. 2. Calculate the result as Math.pow(2,b)-1. # Complexity - Time complexity: O(log n) - Space complexity: O(1) # Code ```java [] class Solution { public int smallestNumber(int n) { int count=0; while(n > 0){ count++; n=n>>1; } return (int)Math.pow(2,count)-1; } } ```
1
0
['Math', 'Bit Manipulation', 'Java']
0
smallest-number-with-all-set-bits
optimal approach: o(logn)
optimal-approach-ologn-by-bhagavanreddy-9ntl
IntuitionApproach :Best approachBy using left shift operatorComplexity Time complexity:O(LogN) Space complexity:O(1) Code
bhagavanreddy
NORMAL
2024-12-24T15:15:46.384695+00:00
2024-12-24T15:15:46.384695+00:00
29
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach :Best approach By using left shift operator <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity:O(LogN) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity:O(1) <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: int smallestNumber(int n) { int pow=1; while(pow<n){ pow=pow<<1|1 ; } return pow; } }; ```
1
0
['C++']
0
smallest-number-with-all-set-bits
Bit Updation 🔥✅ - Beats 100% | C++ Solution
bit-updation-beats-100-c-solution-by-saj-uoqu
IntuitionStart with the value 1. Now we will keep converting our number from 1 -> 11 -> 111 like this , until it become just greater than the n.Approachwhile th
Sajal0701
NORMAL
2024-12-21T13:22:05.892083+00:00
2024-12-21T13:22:05.892083+00:00
42
false
# Intuition Start with the value 1. Now we will keep converting our number from 1 -> 11 -> 111 like this , until it become just greater than the n. # Approach while the value of x is lesser than n we will convert right most unset bit to 1. Simply run a while loop until the value of x is lesser than n. In each iteration left shift the x and take OR with 1 , to set the last bit. x = x<<1 | 1; This will give the required answer; # Complexity - Time complexity: $$O(logn)$$ --> - Space complexity: $$O(1)$$ # Code ```cpp [] class Solution { public: int smallestNumber(int n) { int x = 1; while(x<n){ x = x << 1 | 1; } return x; } }; ```
1
0
['C++']
0
smallest-number-with-all-set-bits
✅ C++ Simple Code ✅
c-simple-code-by-jagdish9903-liwp
\n\n# Code\ncpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n int ans = log2(n);\n return pow(2, (ans + 1)) - 1; \n }\n};\n
Jagdish9903
NORMAL
2024-12-05T07:30:46.303363+00:00
2024-12-05T07:30:46.303385+00:00
19
false
\n\n# Code\n```cpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n int ans = log2(n);\n return pow(2, (ans + 1)) - 1; \n }\n};\n```
1
0
['Math', 'Bit Manipulation', 'C++']
0
smallest-number-with-all-set-bits
Used built in function kuch STL ka
used-built-in-function-kuch-stl-ka-by-ye-cz6x
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
yesyesem
NORMAL
2024-12-04T18:54:48.812561+00:00
2024-12-04T18:54:48.812597+00:00
17
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```cpp []\nclass Solution {\npublic:\nbool isPowerOfTwo(int n) {\n return n > 0 && __builtin_popcount(n) == 1;\n}\n int smallestNumber(int n) {\n //n > 0 && (n & (n - 1)) == 0;\n // n=n+1;\n\n while(1)\n {\n if(isPowerOfTwo(n+1))\n return n;\n n++;\n }\n return n;\n }\n};\n```
1
0
['C++']
0
smallest-number-with-all-set-bits
Need to learn bitset conversion binary find_first_not_of() etc need to do STL properly
need-to-learn-bitset-conversion-binary-f-rsw7
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
yesyesem
NORMAL
2024-12-04T16:58:18.405964+00:00
2024-12-04T16:58:18.405999+00:00
15
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```cpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n\n while(1)\n {\n string binary = bitset<32>(n).to_string();\n\n binary.erase(0,binary.find_first_not_of(\'0\'));\n\n if(binary.find(\'0\') == string::npos) \n return n;\n else\n n++;\n }\n\n return n;\n }\n};\n```
1
0
['C++']
0
smallest-number-with-all-set-bits
C# O(1) solution
c-o1-solution-by-idhammond-hpoe
Approach\nPropagating any set bit to the right by 8 bits then 4 bits, then 2 bits and finally 1 bit, using a shift and or operation, results in all bits to the
idhammond
NORMAL
2024-12-04T08:08:49.489434+00:00
2024-12-04T08:08:49.489479+00:00
4
false
# Approach\nPropagating any set bit to the right by 8 bits then 4 bits, then 2 bits and finally 1 bit, using a shift and or operation, results in all bits to the right of any set bit also getting set.\n\nFor example: `001000000000` -> `001000000010` -> `001000100010` -> `001010101010` -> `001111111111`\n\n# Complexity\n- Time complexity:\n$$O(1)$$\n\n- Space complexity:\n$$O(1)$$\n\n# Code\n```csharp []\npublic class Solution {\n public int SmallestNumber(int n) {\n n |= n >> 8;\n n |= n >> 4;\n n |= n >> 2;\n return n | n >> 1;\n }\n}\n```
1
0
['C#']
0
smallest-number-with-all-set-bits
Unique Solution
unique-solution-by-himanshu_gahlot-7qaz
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
Himanshu_Gahlot
NORMAL
2024-12-04T04:19:57.723182+00:00
2024-12-04T04:19:57.723204+00:00
10
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```java []\nclass Solution {\n public int smallestNumber(int n) {\n int i=n;\n while(i>=0){\n int bit=Integer.bitCount(i);\n String s=Integer.toBinaryString(i);\n if(bit==s.length())\n return i;\n i++;\n }\n return -1;\n }\n}\n```
1
0
['Bit Manipulation', 'Java']
0
smallest-number-with-all-set-bits
Simple Solution C# | 0 MS
simple-solution-c-0-ms-by-nyester-iats
Approach\n Describe your approach to solving the problem. \n\n# Code\ncsharp []\npublic class Solution {\n public int SmallestNumber(int n) \n {\n
Nyester
NORMAL
2024-12-03T11:45:19.966128+00:00
2024-12-03T11:45:19.966169+00:00
10
false
# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Code\n```csharp []\npublic class Solution {\n public int SmallestNumber(int n) \n {\n // Count the number of bits\n int bits = 0;\n while(n > 0)\n {\n n /= 2;\n bits++;\n } \n int m = 1; \n int sol = 0;\n // Calculate the solution\n for(int i = 1; i <= bits; i ++)\n {\n sol += m;\n m *=2;\n }\n return sol;\n }\n}\n```
1
0
['C#']
0
smallest-number-with-all-set-bits
Binary Manipulation Approach || Python3
binary-manipulation-approach-python3-by-eind3
Binary Manipulation Approach:\n\n# Intuition\n- The idea is to find the smallest number that has the same number of bits set to 1 as the binary representation o
lavanyaimmaneni12
NORMAL
2024-12-01T18:05:06.418546+00:00
2024-12-01T18:05:06.418584+00:00
20
false
# Binary Manipulation Approach:\n\n# Intuition\n- The idea is to find the smallest number that has the same number of bits set to 1 as the binary representation of the given number \\( n \\).\n\n# Approach\n- Convert \\( n \\) to its binary representation.\n- Count the number of bits set to 1.\n- Construct a binary number composed entirely of 1s with the same length.\n- Convert the binary string back to an integer and return it.\n\n# Complexity\n- Time complexity: $$O(\\log n)$$\n- Space complexity: $$O(\\log n)$$\n\n# Code\n```python\nclass Solution:\n def smallestNumber(self, n: int) -> int:\n l = bin(n)[2:] # Convert n to binary and strip the "0b" prefix.\n l = \'1\' * len(l) # Create a binary string of 1s with the same length.\n return int(l, 2) # Convert the binary string back to an integer.\n
1
0
['Python3']
0
smallest-number-with-all-set-bits
C bit-shifting
c-bit-shifting-by-michelusa-f0o3
Set bits, one at a time.\n\n# Code\nc []\nint smallestNumber(int n) {\n int res = 0;\n\n while (n > 0) {\n res = (res << 1) | 1;\n n >>= 1;\
michelusa
NORMAL
2024-12-01T11:53:35.169227+00:00
2024-12-01T11:53:35.169260+00:00
39
false
Set bits, one at a time.\n\n# Code\n```c []\nint smallestNumber(int n) {\n int res = 0;\n\n while (n > 0) {\n res = (res << 1) | 1;\n n >>= 1;\n }\n\n return res;\n}\n```
1
0
['C']
0
smallest-number-with-all-set-bits
🚀 LeetCode Solution: Finding the Greatest Square and the Smallest Number
leetcode-solution-finding-the-greatest-s-zboh
Here\u2019s how your LeetCode solution post could look:\n\n---\n\n### \uD83D\uDE80 LeetCode Solution: Finding the Greatest Square and the Smallest Number\n\n\uD
krishnakanthpathi
NORMAL
2024-12-01T07:02:02.103897+00:00
2024-12-01T07:02:02.103934+00:00
20
false
Here\u2019s how your LeetCode solution post could look:\n\n---\n\n### \uD83D\uDE80 LeetCode Solution: Finding the Greatest Square and the Smallest Number\n\n\uD83D\uDCA1 **Problem Statement**: \nGiven a number `n`, the task is to: \n1. Find the smallest number that is larger than `n` and is a power of 2. \n2. Return the largest number smaller than this power of 2.\n\n---\n\n### \uD83E\uDDF5 **Code Explanation**\n\n```python\nclass Solution:\n def greatestSquare(self, n):\n # Convert number to its binary representation\n cur = bin(n)[2:] # Strips the \'0b\' prefix\n # Create a binary number that\'s just one higher power of 2\n greater = "1" + len(cur) * "0"\n return int(greater, 2) # Convert binary string back to integer\n\n def smallestNumber(self, n: int) -> int:\n # Find the nearest power of 2 that\'s greater than `n`\n nearst = self.greatestSquare(n)\n # Subtract 1 to find the largest number less than `nearst`\n return nearst - 1\n```\n\n---\n\n### \uD83D\uDEE0\uFE0F **Step-by-Step Explanation**\n\n1. **Understanding the Function `greatestSquare`:** \n - Convert the number `n` to its binary representation using `bin(n)`.\n - Skip the `"0b"` prefix using `[2:]`.\n - Append a `"1"` followed by as many `"0"`s as the length of the binary number.\n - Convert this binary string back to a decimal integer to find the nearest power of 2.\n\n \uD83D\uDCDD *Example*: \n For `n = 5` (binary: `101`): \n - Append `"1"` to create `1000`. \n - This corresponds to `8` in decimal.\n\n2. **Understanding the Function `smallestNumber`:** \n - Use `greatestSquare` to find the next power of 2 greater than `n`.\n - Subtract `1` from this number to get the largest number less than that power of 2.\n\n \uD83D\uDCDD *Example*: \n For `n = 5`: \n - Nearest power of 2 = `8`. \n - Subtract `1` \u2192 Result = `7`.\n\n---\n\n### \uD83C\uDF1F **Examples**\n\n#### \uD83D\uDD0D Input: `n = 5` \n- **Step 1:** Binary of 5 is `101`. \n- **Step 2:** Append `"1"` + `"0"` * 3 \u2192 Nearest power of 2 = `8`. \n- **Step 3:** Subtract `1` \u2192 Result = `7`.\n\n#### \uD83D\uDD0D Input: `n = 12` \n- **Step 1:** Binary of 12 is `1100`. \n- **Step 2:** Append `"1"` + `"0"` * 4 \u2192 Nearest power of 2 = `16`. \n- **Step 3:** Subtract `1` \u2192 Result = `15`.\n\n---\n\n### \u26A1 Key Points:\n- This solution works in **O(log(n))**, where `log(n)` comes from binary conversion.\n- Efficient for handling large numbers due to its simplicity in bit manipulation.\n\nHope this helps! \uD83C\uDF1F Keep coding and solving! \uD83D\uDCBB
1
0
['Python', 'Python3']
0
smallest-number-with-all-set-bits
Using Mersenne Numbers
using-mersenne-numbers-by-sapilol-hu4v
\n\n\n# Code\ncpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n int z = 1;\n for (int i = 0; i <= n; i++) {\n z = (1
LeadingTheAbyss
NORMAL
2024-12-01T04:36:26.755756+00:00
2024-12-01T04:36:26.755781+00:00
17
false
![image.png](https://assets.leetcode.com/users/images/d614775c-47e0-49da-89ab-1c222a41891d_1733027782.9739358.png)\n\n\n# Code\n```cpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n int z = 1;\n for (int i = 0; i <= n; i++) {\n z = (1 << i);\n if (z > n)\n return z - 1;\n }\n return 0;\n }\n};\n\n```
1
0
['C++']
0
smallest-number-with-all-set-bits
Easy to understand C++ Solution
easy-to-understand-c-solution-by-rajvir_-fqp4
Complexity\n- Time complexity: O(1)\n\n- Space complexity: O(1)\n\n# Code\ncpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n for(int i
rajvir_singh
NORMAL
2024-12-01T04:33:26.888809+00:00
2024-12-01T04:33:26.888828+00:00
109
false
# Complexity\n- Time complexity: O(1)\n\n- Space complexity: O(1)\n\n# Code\n```cpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n for(int i = 1; i <= 10; i++){\n int x = pow(2, i) - 1;\n if(x >= n) return x;\n }\n return -1;\n }\n};\n```
1
0
['Bit Manipulation', 'C++']
0
smallest-number-with-all-set-bits
C++ O(1) Clean 1-Line bit_width
c-o1-clean-1-line-bit_width-by-bramar2-iey7
Complexity\n- Time complexity: $O(1)$\n\n- Space complexity: $O(1)$\n\n# Code\ncpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n retur
bramar2
NORMAL
2024-12-01T04:14:43.991018+00:00
2024-12-01T05:56:16.150089+00:00
32
false
# Complexity\n- Time complexity: $O(1)$\n\n- Space complexity: $O(1)$\n\n# Code\n```cpp []\nclass Solution {\npublic:\n int smallestNumber(int n) {\n return (1 << bit_width(unsigned(n))) - 1;\n }\n};\n```
1
0
['C++']
0
smallest-number-with-all-set-bits
Easy C solution 100% 💡
easy-c-solution-100-by-jossue-05aj
💡 IntuitionWhen we look at a binary number like 5 = 101, its bitwise complement (within its significant bits) is 2 = 010. If we perform a bitwise OR between the
Jossue
NORMAL
2025-04-12T03:57:35.741571+00:00
2025-04-12T03:57:35.741571+00:00
1
false
# 💡 Intuition When we look at a binary number like `5 = 101`, its bitwise complement (within its significant bits) is `2 = 010`. If we perform a bitwise OR between the number and its complement, we get a result with all bits set: `5 | 2 = 101 | 010 = 111`. This idea helps us construct the smallest number greater than or equal to `n` with all bits set starting from the most significant bit. --- # 🚀 Approach We build a **mask** with all bits set to `1` until it fully covers the significant bits of `n`. We shift the mask left and OR it with `1` repeatedly until `~mask & n == 0`, meaning that the mask now covers all bits in `n`. Finally, we return `n | mask`, which results in the smallest number ≥ `n` with all bits from the highest bit downward set to `1`. --- # 🧠 Complexity - **Time complexity:** $$O(\log n)$$ We loop through the number of bits in `n`. - **Space complexity:** $$O(1)$$ Only a few integer variables are used. --- # ✅ Code ```c [] int smallestNumber(int n) { int mask = 0; while((n & ~mask) != 0){ mask = (mask << 1) | 1; } int comp = n ^ mask; return n | mask; } ```
0
0
['C']
0
smallest-number-with-all-set-bits
easiest o(1) java solution (one array and loop)
easiest-o1-java-solution-one-array-and-l-w6qn
IntuitionApproachComplexity Time complexity: Space complexity: Code
dpasala
NORMAL
2025-04-08T19:20:04.739908+00:00
2025-04-08T19:20:04.739908+00:00
2
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { public int smallestNumber(int n) { if (n == 1) return 1; int[] arr = new int[]{1, 3, 7, 15, 31, 63, 127, 255, 511, 1023}; for (int i = 1; i < 10; i++) { if (n == arr[i]) return arr[i]; else if (n > arr[i - 1] && n < arr[i]) return arr[i]; } return -1; } } ```
0
0
['Java']
0
smallest-number-with-all-set-bits
One line solution in Kotlin | Math | Logarithm
one-line-solution-in-kotlin-math-logarit-o5me
Code
ahmadali_ok
NORMAL
2025-04-01T18:18:08.954298+00:00
2025-04-01T18:18:08.954298+00:00
2
false
# Code ```kotlin [] class Solution { fun smallestNumber(n: Int): Int { return (2.00.pow(log2(n.toDouble()).toInt().toDouble() + 1.00) - 1.00).toInt() } } ```
0
0
['Kotlin']
0
smallest-number-with-all-set-bits
simple
simple-by-ryuji-zypg
IntuitionApproachComplexity Time complexity: Space complexity: Code
ryuji
NORMAL
2025-03-31T20:02:31.652095+00:00
2025-03-31T20:02:31.652095+00:00
1
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```rust [] impl Solution { pub fn smallest_number(mut n: i32) -> i32 { let mut count = 0; while n > 0 { n /= 2; count += 1; } (0..count).fold(0, |acc, i| acc + 2i32.pow(i)) } } ```
0
0
['Rust']
0
smallest-number-with-all-set-bits
Simple Swift Solution
simple-swift-solution-by-felisviridis-1bgz
Code
Felisviridis
NORMAL
2025-03-28T09:45:36.362757+00:00
2025-03-28T09:45:36.362757+00:00
1
false
# Code ```swift [] class Solution { func smallestNumber(_ n: Int) -> Int { var num = 0 while num < n { num = num << 1 + 1 } return num } } ```
0
0
['Swift']
0
smallest-number-with-all-set-bits
simplest solution using cpp.
simplest-solution-using-cpp-by-prachi_ja-dv1r
IntuitionApproachComplexity Time complexity: O(1) Space complexity: O(1)Code
prachi_jadon
NORMAL
2025-03-25T03:19:42.157769+00:00
2025-03-25T03:19:42.157769+00:00
3
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> O(1) - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> O(1) # Code ```cpp [] class Solution { public: int smallestNumber(int n) { int ans=1; while(n!=0) { ans=ans*2; n=n>>1; } return ans-1; } }; ```
0
0
['C++']
0
smallest-number-with-all-set-bits
Something Interesting
something-interesting-by-shakhob-lsh7
Code
Shakhob
NORMAL
2025-03-23T01:13:32.592346+00:00
2025-03-23T01:13:32.592346+00:00
2
false
# Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: current = n while True: if bin(current).count('0') == 1: return current current += 1 ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
Beats 100%
beats-100-by-raji1804-3sc9
Code
Raji1804
NORMAL
2025-03-22T06:10:19.450881+00:00
2025-03-22T06:10:19.450881+00:00
2
false
# Code ```java [] class Solution { public int smallestNumber(int n) { double p=0,ans=0; if(n==1) return 1; for(int i=0;i<n;i++) { p=Math.pow(2,i); if(p>n) { ans=p-1; break; } } return (int)ans; } } ```
0
0
['Java']
0
smallest-number-with-all-set-bits
0ms JAVA CODE........!!!!!!!!!!!!!
0ms-java-code-by-devesh_agrawal-svu0
IntuitionApproachComplexity Time complexity: Space complexity: Code
Devesh_Agrawal
NORMAL
2025-03-19T14:33:25.881229+00:00
2025-03-19T14:33:25.881229+00:00
1
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { public int smallestNumber(int n) { int x = n; while ((x & (x + 1)) != 0) { x++; } return x; } } ```
0
0
['Java']
0
smallest-number-with-all-set-bits
0ms JAVA CODE........!!!!!!!!!!!!!
0ms-java-code-by-devesh_agrawal-os5a
IntuitionApproachComplexity Time complexity: Space complexity: Code
Devesh_Agrawal
NORMAL
2025-03-19T14:33:24.040483+00:00
2025-03-19T14:33:24.040483+00:00
2
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { public int smallestNumber(int n) { int x = n; while ((x & (x + 1)) != 0) { x++; } return x; } } ```
0
0
['Java']
0
smallest-number-with-all-set-bits
Simple Solution by Baby Beginner
simple-solution-by-baby-beginner-by-chan-1mzq
IntuitionApproachComplexity Time complexity: Space complexity: Code
chandueddalausa
NORMAL
2025-03-18T18:10:36.760850+00:00
2025-03-18T18:10:36.760850+00:00
3
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: le=len(str(bin(n))[2:]) return(int("1"*le,2)) ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
100% beats
100-beats-by-kunal_1310-xq5n
IntuitionApproachComplexity Time complexity: Space complexity: Code
kunal_1310
NORMAL
2025-03-17T17:49:01.668679+00:00
2025-03-17T17:49:01.668679+00:00
2
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: bool isPower(int n) { if (n == 1) return true; if (n % 2 != 0) return false; if (n <= 0) return false; while (n > 1) { if (n % 2 != 0) { return false; } n = n / 2; } return true; } int smallestNumber(int n) { if(n==1)return n; int temp = n; while(temp>=n){ if (isPower(temp) and temp>=n) { int x=temp-1; if(x>=n){ return x; } else{ temp++; } } else{ temp++; } } return 0; } }; ```
0
0
['C++']
0
smallest-number-with-all-set-bits
SIMPLE C PROGRAM
simple-c-program-by-mr_jaikumar-knby
IntuitionApproachComplexity Time complexity:0 MS Space complexity: Code
Mr_JAIKUMAR
NORMAL
2025-03-14T05:38:14.846770+00:00
2025-03-14T05:38:14.846770+00:00
6
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity:0 MS <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```c [] int smallestNumber(int n) { int jk=0,i=0; while(n!=0) { jk+=pow(2,i); n=n/2; i++; } return jk; } ```
0
0
['C']
0
smallest-number-with-all-set-bits
easy solution
easy-solution-by-owenwu4-tqym
Intuitionuse a loop and play around with the upper bound - n cubed in this caseApproachComplexity Time complexity: Space complexity: Code
owenwu4
NORMAL
2025-03-13T21:53:21.360981+00:00
2025-03-13T21:53:21.360981+00:00
1
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> use a loop and play around with the upper bound - n cubed in this case # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: for i in range(n, n * n * n): cur = bin(i)[2:] if len(set(cur)) == 1 and cur[0] == "1": return i return n ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
JAVA | Shift operators | Log N solutions
java-shift-operators-log-n-solutions-by-3nj2p
IntuitionFind the position of leftmost set bit. Leftmost set bit will tell us how many set bits we want.ApproachTo get left most set bit maintain a counter pos
pankajsbagal
NORMAL
2025-03-12T17:17:11.966283+00:00
2025-03-12T17:17:11.966283+00:00
1
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> Find the position of leftmost set bit. Leftmost set bit will tell us how many set bits we want. # Approach <!-- Describe your approach to solving the problem. --> To get left most set bit maintain a counter `pos` to count the position of bits. Shift right by 1 `n>>1` position at a time till given becomes 0. When number becomes 0 we get the position of left most set bit. Now shift left 1s for `1<<pos` to get power to the base 2 and substract 1 to get all set bits just greater than earlier number `1<<pos - 1` # Complexity - Time complexity: O(log(n)) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: O(1) <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { public int smallestNumber(int n) { int pos = 0; while(n!=0) { pos++; n = n>>1; } return (1<<pos)-1; } } ```
0
0
['Math', 'Bit Manipulation', 'Java']
0
smallest-number-with-all-set-bits
smallest number with all set bits
smallest-number-with-all-set-bits-by-anu-r8yq
Code
AnushaYelleti
NORMAL
2025-03-12T14:22:09.538125+00:00
2025-03-12T14:22:09.538125+00:00
1
false
# Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: f=True ans=0 temp=n while(f): b=bin(temp)[2:] if b.count('1')==len(b): ans=temp f=False temp+=1 return ans ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
Python | 1 line | Beats %100
python-1-line-beats-100-by-isinsarici-dnr9
Code
isinsarici
NORMAL
2025-03-11T22:41:14.988261+00:00
2025-03-11T22:41:14.988261+00:00
2
false
# Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: return int(bin(n)[2:].replace('0', '1'), 2) ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
Beats 100% solution. Super easy cpp code.
beats-100-solution-super-easy-cpp-code-b-higl
IntuitionFind the nearest power (p) of 2 which surpasses n. Subtract 1 from the number (p-1);ApproachInitialize count=0; Run a while loop and divide the number
codestguy
NORMAL
2025-03-10T12:18:54.578103+00:00
2025-03-10T12:18:54.578103+00:00
2
false
# Intuition Find the nearest power (p) of 2 which surpasses n. Subtract 1 from the number (p-1); # Approach Initialize count=0; Run a while loop and divide the number by 2 till n becomes 0 and count++; # Complexity - Time complexity: O(n). - Space complexity: O(1) # Code ```cpp [] class Solution { public: int smallestNumber(int n) { int cnt=0; while(n) { n/=2; cnt++; } return (1<<cnt)-1; } }; ```
0
0
['C++']
0
smallest-number-with-all-set-bits
Simple and Easy Solution with Intuition | ✅Beats 100% | Java | Python 🔥🔥
simple-and-easy-solution-with-intuition-zdod3
🔹 Approach 1: Brute Force (O(logN))IntuitionIterate from num and increment until we find a number where all bits are set.Algorithm Start with num. Increment num
sohith_reddy01
NORMAL
2025-03-08T19:34:34.862636+00:00
2025-03-08T19:40:32.375397+00:00
4
false
## **🔹 Approach 1: Brute Force (O(logN))** ### **Intuition** Iterate from `num` and increment until we find a number where **all bits are set**. ### **Algorithm** 1. Start with `num`. 2. Increment `num` until `num & (num + 1) == 0`. 3. Return the result. ### **Implementation** #### **Java** ```java class Solution { public int nearestAllSetBits(int num) { while ((num & (num + 1)) != 0) { num++; } return num; } } ``` #### **Python** ```python class Solution: def nearestAllSetBits(self, num: int) -> int: while (num & (num + 1)) != 0: num += 1 return num ``` ### **Complexity Analysis** - **Time Complexity:** `O(logN)` – Iterates until reaching a power of `2 - 1`. - **Space Complexity:** `O(1)` – Uses a single variable. --- ## **🔹 Approach 2: Optimized Bitwise (O(1))** ### **Intuition** Instead of iterating, leverage bitwise operations: ###### Use this formula:- ##### **Nearest all-1s number = (Next power of 2) - 1** This works because `2^x - 1` always has all bits set. ### **Algorithm** 1. Find the **next power of 2** of `num`. 2. Subtract `1` to get all bits set. ### **Implementation** #### **Java** ```java class Solution { public int nearestAllSetBits(int num) { int nextPowerOfTwo = Integer.highestOneBit(num) << 1; return nextPowerOfTwo - 1; } } ``` #### **Python** ```python class Solution: def nearestAllSetBits(self, num: int) -> int: nextPowerOfTwo = 1 << num.bit_length() return nextPowerOfTwo - 1 ``` ### **Complexity Analysis** - **Time Complexity:** `O(1)` – Uses only bitwise operations. - **Space Complexity:** `O(1)` – No extra memory usage. --- ## **🔍 Comparison Table** | Approach | Time Complexity | Space Complexity | Key Idea | |----------|----------------|----------------|----------| | **Brute Force** | `O(logN)` | `O(1)` | Increment `num` until all bits are `1`. | | **Bitwise (Optimal)** | `O(1)` | `O(1)` | Use bitwise shifts to compute the result instantly. | --- ## **Conclusion** - **Brute Force** is simple but inefficient for large numbers. - **Bitwise Optimization** provides an elegant `O(1)` solution using `Integer.highestOneBit()` or `bit_length()`. For efficient solutions, **bitwise operations** are the preferred approach. 🚀 --- ### ✅ **If you found this explanation helpful, don't forget to upvote!** 🚀 ![image.png](https://assets.leetcode.com/users/images/cc1fbde5-1c73-4314-8b31-013087a7d852_1741462236.1272159.png)
0
0
['Bit Manipulation', 'Bitmask', 'Java', 'Python3']
0
smallest-number-with-all-set-bits
Without using log
without-using-log-by-nishant15-8y3v
IntuitionApproachComplexity Time complexity: Space complexity: Code
nishant15
NORMAL
2025-03-08T18:30:48.364081+00:00
2025-03-08T18:30:48.364081+00:00
2
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```csharp [] public class Solution { public int SmallestNumber(int n) { int res = 0; int j = 0; for (int i = 1; i <= n; i = i * 2) { res += (int)Math.Pow(2, j++); } return res; } } ```
0
0
['C#']
0
smallest-number-with-all-set-bits
Optimized simple solution - beats 100%🔥
optimized-simple-solution-beats-100-by-c-od14
Complexity Time complexity: O(1) Space complexity: O(1) Code
cyrusjetson
NORMAL
2025-03-06T05:01:55.445702+00:00
2025-03-06T05:01:55.445702+00:00
3
false
# Complexity - Time complexity: O(1) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: O(1) <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { public int smallestNumber(int n) { int powerr = (int) (Math.log(n) / Math.log(2)); return (int)(Math.pow(2, powerr + 1) - 1); } } ```
0
0
['Java']
0
smallest-number-with-all-set-bits
C++
c-by-nguyenvinhhung2705-fw4y
IntuitionApproachComplexity Time complexity: Space complexity: Code
kazumin
NORMAL
2025-03-03T15:32:04.083308+00:00
2025-03-03T15:32:04.083308+00:00
3
false
# Intuition # Approach # Complexity - Time complexity: - Space complexity: # Code ```cpp [] class Solution { public: int smallestNumber(int n) { n+=1 while((n & n-1) != 0){ n++; } return n-1; } }; ```
0
0
['C++']
0
smallest-number-with-all-set-bits
Elixir solution.
elixir-solution-by-spring555-7blo
IntuitionApproachComplexity Time complexity: 0ms Space complexity: 72.15MB Code
spring555
NORMAL
2025-03-02T09:31:13.812577+00:00
2025-03-02T09:31:13.812577+00:00
1
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: 0ms <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: 72.15MB <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```elixir [] defmodule Solution do @spec smallest_number(n :: integer) :: integer def smallest_number(n) do smallest_number(n, 1) end @spec smallest_number(n :: integer, cur :: integer) :: integer def smallest_number(n, cur) when cur - 1 < n do smallest_number(n, cur*2) end def smallest_number(_n, cur) do cur - 1 end end ```
0
0
['Elixir']
0
smallest-number-with-all-set-bits
simple log solution
simple-log-solution-by-ishanchauhan79-cnyt
Code
IshanChauhan79
NORMAL
2025-02-27T11:02:02.505890+00:00
2025-02-27T11:02:02.505890+00:00
1
false
# Code ```typescript [] function smallestNumber(n: number): number { const log2 = Math.log2(n + 1); const log2C = Math.ceil(log2) return Math.pow(2, log2C) - 1 }; ```
0
0
['TypeScript']
0
smallest-number-with-all-set-bits
Simple js solution
simple-js-solution-by-midhunambadan-jud6
IntuitionApproachComplexity Time complexity: Space complexity: Code
midhunambadan
NORMAL
2025-02-25T12:54:53.307876+00:00
2025-02-25T12:54:53.307876+00:00
7
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```javascript [] /** * @param {number} n * @return {number} */ var smallestNumber = function (n) { if(n<=1) return n let x = 1 while (x <= n) { x = x * 2 } return x - 1 }; ```
0
0
['JavaScript']
0
smallest-number-with-all-set-bits
Easy Solution
easy-solution-by-kallamswethanareddy-8ohc
Code
kallamswethanareddy
NORMAL
2025-02-20T16:43:29.488091+00:00
2025-02-20T16:43:29.488091+00:00
5
false
# Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: x=n while x>=n: a=bin(x)[2:] if '0' in a: x+=1 if '0' not in a: return x break ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
Python one-line solution
python-one-line-solution-by-redberry33-bx32
Code
redberry33
NORMAL
2025-02-19T12:52:04.314717+00:00
2025-02-19T12:52:04.314717+00:00
2
false
# Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: return 2**len(bin(n)[2:]) -1 ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
[C++] Simple Solution
c-simple-solution-by-samuel3shin-utqs
Code
Samuel3Shin
NORMAL
2025-02-18T16:12:28.670617+00:00
2025-02-18T16:12:28.670617+00:00
3
false
# Code ```cpp [] class Solution { public: int smallestNumber(int n) { int cur = 1; int mult = 2; while(cur <= n) { if(cur >= n) return cur; cur += mult; mult *= 2; } return cur; } }; ```
0
0
['C++']
0
smallest-number-with-all-set-bits
🚀 Smallest Number with Same Binary Length 🔢
smallest-number-with-same-binary-length-mpxe8
IntuitionThe goal is to find the smallest possible number that has the same number of binary digits as the given number n.Observations: The smallest number with
fisherman611
NORMAL
2025-02-16T18:28:00.209370+00:00
2025-02-16T18:28:00.209370+00:00
3
false
## Intuition The goal is to find the smallest possible number that has the same number of binary digits as the given number `n`. Observations: 1. The smallest number with a given binary length consists of all `1`s in binary representation. 2. Converting `n` to binary helps determine its length. 3. Constructing a new binary number with all `1`s of the same length ensures it is the smallest possible number with that length. ## Approach 1. Convert `n` to its binary representation using `bin(n)[2:]` to remove the `0b` prefix. 2. Determine the length of the binary string. 3. Construct a new binary string consisting entirely of `1`s with the same length. 4. Convert the new binary string back to an integer. ## Complexity - **Time Complexity**: $$O(\log n)$$ - The binary conversion and string operations take logarithmic time relative to `n`. - **Space Complexity**: $$O(1)$$ - Only a few integer and string variables are used. ## Code ```python class Solution: def smallestNumber(self, n: int) -> int: # Convert to binary and find its length binary_string = bin(n)[2:] # Create the smallest number with the same binary length return int('1' * len(binary_string), 2)
0
0
['Python3']
0
smallest-number-with-all-set-bits
EASY SOLUTION BEATS 100%
easy-solution-beats-100-by-lakshmisatvik-jq8s
IntuitionApproachComplexity Time complexity: Space complexity: Code
lakshmisatvikasuggula2006
NORMAL
2025-02-16T14:29:39.034905+00:00
2025-02-16T14:29:39.034905+00:00
1
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: res=bin(n)[2:] s='' for i in res: s+='1' return int(s,2) ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
Typescript ✅
typescript-by-kay-79-taba
Code
Kay-79
NORMAL
2025-02-11T06:15:07.861455+00:00
2025-02-11T06:15:07.861455+00:00
1
false
# Code ```typescript [] function smallestNumber(n: number): number { let bin = n.toString(2).split(""); for (let i = 0; i < bin.length; i++) { if (bin[i] === "0") bin[i] = "1"; } return parseInt(bin.join(""), 2); } ```
0
0
['TypeScript']
0
smallest-number-with-all-set-bits
C++ solution
c-solution-by-sy7794564-dsa4
Code
sy7794564
NORMAL
2025-02-07T08:30:02.227831+00:00
2025-02-07T08:30:02.227831+00:00
3
false
# Code ```cpp [] class Solution { public: int smallestNumber(int n) { int x = 1; while (x <= n) { x <<= 1 ; } return x-1; } }; ```
0
0
['C++']
0
smallest-number-with-all-set-bits
simple C
simple-c-by-hadsid-3ql8
IntuitionApproachComplexity Time complexity: Space complexity: Code
hadsid
NORMAL
2025-02-07T06:46:57.573487+00:00
2025-02-07T06:46:57.573487+00:00
5
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```c [] int smallestNumber(int n) { int k = 0; while(n) { k++; n >>= 1; } return pow(2,k) - 1; } ```
0
0
['C']
0
smallest-number-with-all-set-bits
Swift, Beats 100.00%, bit << 1 + | 1
swift-beats-10000-bit-1-1-by-victor-smk-qq1i
null
Victor-SMK
NORMAL
2025-02-05T18:06:37.889774+00:00
2025-02-05T18:06:37.889774+00:00
3
false
```swift [] class Solution { func smallestNumber(_ n: Int) -> Int { var ans = 1 while ans < n { ans = ans << 1 | 1 } return ans } } ```
0
0
['Swift']
0
smallest-number-with-all-set-bits
Smallest Number with All set Bits - python3
smallest-number-with-all-set-bits-python-gp4v
IntuitionApproachComplexity Time complexity: Space complexity: Code
ChaithraDee
NORMAL
2025-02-01T15:41:29.677792+00:00
2025-02-01T15:41:29.677792+00:00
2
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: if n == 1: return 1 num = 2 for i in range(n): if 2 ** i - 1 >= n: return 2 ** i - 1 ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
Smallest Number with All set Bits - python3
smallest-number-with-all-set-bits-python-iw9i
IntuitionApproachComplexity Time complexity: Space complexity: Code
ChaithraDee
NORMAL
2025-02-01T15:41:22.606763+00:00
2025-02-01T15:41:22.606763+00:00
2
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: if n == 1: return 1 num = 2 for i in range(n): if 2 ** i - 1 >= n: return 2 ** i - 1 ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
Bit Manipulation
bit-manipulation-by-ivl7sth6io-i5t4
IntuitionApproachComplexity Time complexity: Space complexity: Code
iVl7stH6Io
NORMAL
2025-01-30T21:11:46.486191+00:00
2025-01-30T21:11:46.486191+00:00
2
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: ans = 0 while (n): ans |=1 n >>= 1 ans <<=1 ans >>=1 return ans ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
Java two rows solution beats 100%
java-two-rows-solution-beats-100-by-had0-nc96
IntuitionThere are two ways to solve a problem: 1)Transform to String and search for '0' in a String. 2)Use operator & if all the bits are '1' in bin.ApproachTh
had0uken
NORMAL
2025-01-27T14:50:27.596300+00:00
2025-01-27T14:50:27.596300+00:00
4
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> There are two ways to solve a problem: 1)Transform to String and search for '0' in a String. 2)Use operator & if all the bits are '1' in bin. # Approach <!-- Describe your approach to solving the problem. --> The second way is much faster and quite brief, so we choose it. So we use operator & between n and n(+1). We get 0 only in a case when all bits are '1'. So, we keep iterating n, until we get '0'. # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> O(n) - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { public int smallestNumber(int n) { while ((n&(n+1))!=0)n++; return n; } } ```
0
0
['Java']
0
smallest-number-with-all-set-bits
Smallest number with all set bits
smallest-number-with-all-set-bits-by-nib-lrte
Approach2^n-1 has all set bits case 1:n=3 2^3-1=8-1=7 7 has all set bits "111"Complexity Time complexity: O(1)--->100% Code
NIBISHA
NORMAL
2025-01-27T13:24:54.724374+00:00
2025-01-27T13:24:54.724374+00:00
2
false
# Approach 2^n-1 has all set bits case 1:n=3 2^3-1=8-1=7 7 has all set bits "111" # Complexity - Time complexity: O(1)--->100% # Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: i=0 while(1): if pow(2,i)-1<n: i+=1 else: return pow(2,i)-1 ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
easy eye caching java code for beginners!!!!!!!!!!!!!!!
easy-eye-caching-java-code-for-beginners-fyr6
IntuitionApproachComplexity Time complexity: Space complexity: Code
CHURCHILL04
NORMAL
2025-01-27T03:46:43.286215+00:00
2025-01-27T03:46:43.286215+00:00
1
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { public int smallestNumber(int n) { int ans = 1; while(ans < n){ ans = ans*2 + 1; } return ans; } } ```
0
0
['Java']
0
smallest-number-with-all-set-bits
3370. Smallest Number With All Set Bits
3370-smallest-number-with-all-set-bits-b-8xoh
IntuitionEasy one!Approachwhile loop to count number of bits and returning the result as "2 raised to the power of count"-1.Complexity Time complexity: O(logN)
SPD-LEGEND
NORMAL
2025-01-25T06:51:10.647837+00:00
2025-01-25T06:51:10.647837+00:00
1
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> Easy one! # Approach <!-- Describe your approach to solving the problem. --> while loop to count number of bits and returning the result as "2 raised to the power of count"-1. # Complexity - Time complexity: O(logN) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: O(1) <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { public int smallestNumber(int n) { int c = 0; while(n>0) { n/=2; c++; } return (int)Math.pow(2,c)-1; } } ```
0
0
['Java']
0
smallest-number-with-all-set-bits
3370. Smallest Number With All Set Bits
3370-smallest-number-with-all-set-bits-b-57mw
Complexity Time complexity: O(n) Space complexity: O(1) Code
SiriusStella
NORMAL
2025-01-22T03:21:38.586204+00:00
2025-01-22T03:21:38.586204+00:00
3
false
# Complexity - Time complexity: O(n) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: O(1) <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```python [] class Solution(object): def smallestNumber(self, n): """ :type n: int :rtype: int """ if n==1: return 1 for i in range(n): if (2**i)-1>=n: return (2**i)-1 ```
0
0
['Python']
0
smallest-number-with-all-set-bits
simple One-liner 100% java
simple-one-liner-100-java-by-prakharmish-a4ck
IntuitionApproachComplexity Time complexity: Space complexity: Code
PrakharMishraEnginner
NORMAL
2025-01-21T10:11:22.852964+00:00
2025-01-21T10:11:22.852964+00:00
3
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { public int smallestNumber(int n) { int mask = (Integer.highestOneBit(n) << 1) - 1; return mask; } } ```
0
0
['Java']
0
smallest-number-with-all-set-bits
The 2^m - 1 Binary Pattern Solution
the-2m-1-binary-pattern-solution-by-mpra-vkxl
IntuitionThe key insight comes from understanding how numbers with all 1's work in binary. When you have a number with m consecutive 1's in binary, it's equal t
mpractice
NORMAL
2025-01-21T02:51:39.303831+00:00
2025-01-21T02:51:39.303831+00:00
1
false
# Intuition The key insight comes from understanding how numbers with all 1's work in binary. When you have a number with m consecutive 1's in binary, it's equal to 2^m - 1. This is because: For example with m=4 bits: 1111₂ = 2⁴ - 1 = 16 - 1 = 15₁₀ Breaking this down: 1111₂ = 2³ + 2² + 2¹ + 2⁰ = 8 + 4 + 2 + 1 = 15 So, if we need n 1's in our binary number, we need to find the smallest m where 2^m - 1 will give us a number with at least n 1's. # Approach 1. First, we need to find how many bits (m) are needed to represent n 1's * The relationship between n and m is: n ≤ m where 2^(m-1) < n+1 ≤ 2^m * This can be solved using logarithms: m = ⌈log₂(n+1)⌉ 2. Once we have m, our answer will be 2^m - 1 * This creates a binary number with exactly m consecutive 1's * Which is guaranteed to be the smallest number with at least n 1's For example, if n = 4: 1. m = ⌈log₂(5)⌉ = 3 2. 2^3 - 1 = 8 - 1 = 7 (111₂) # Complexity - Time complexity: $$O(1)$$ * Both logarithm and power operations are constant time * No loops or iterations needed - Space complexity: $$O(1)$$ * Only using a constant amount of extra space regardless of input size # Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: m = math.ceil(math.log2(n+1)) return int(math.pow(2, m) - 1) ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
0ms Python
0ms-python-by-mubina1-blbr
Complexity Time complexity: O(1) Space complexity: O(1) Code
mubina1
NORMAL
2025-01-19T14:52:55.232310+00:00
2025-01-19T14:52:55.232310+00:00
2
false
# Complexity - Time complexity: O(1) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: O(1) <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```python3 [] class Solution: def smallestNumber(self, n: int) -> int: a=bin(n).replace('0b', '') return 2**len(a) - 1 ```
0
0
['Python3']
0
smallest-number-with-all-set-bits
Time Complexity : O( logn ) | Space Complexity : O( 1 )
time-complexity-o-logn-space-complexity-e3kl5
Code
Trigun_2005
NORMAL
2025-01-18T13:55:54.053781+00:00
2025-01-18T13:55:54.053781+00:00
3
false
# Code ```cpp [] class Solution { public: int smallestNumber(int n) { int result = 0; while(n > result) result = result*2 + 1; return result; } }; ```
0
0
['C++']
0