Datasets:
File size: 3,554 Bytes
4970960 c193eac 4970960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import json
import pandas as pd
import datasets
import os
logger = datasets.logging.get_logger(__name__)
_CITATION = """
@inproceedings{chen-etal-2021-dialogsum,
title={{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset},
author={Chen, Yulong and Liu, Yang and Chen, Liang and Zhang, Yue},
journal={arXiv preprint arXiv:1911.12237},
year={2021},
booktitle ={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021"},
month = {aug},
address = {Online},
publisher = {Association for Computational Linguistics},
url = {https://aclanthology.org/2021.findings-acl.449},
doi = {10.18653/v1/2021.findings-acl.449},
pages = {5062--5074}
}
"""
_DESCRIPTION = """
DialogSUM Corpus contains 13460 chat dialogues with manually annotated
summaries.
There are two features:
- dialogue: text of dialogue.
- summary: human written summary of the dialogue.
- topic: one liner summary of the dialogue.
- id: id of a example.
"""
_HOMEPAGE = "hhttps://aclanthology.org/2021.findings-acl.449"
_LICENSE = "CC BY-NC-ND 4.0"
_URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/tree/main/"
#_URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/resolve/main/"
_URLS = {
"train": _URL + "train.json",
"test": _URL + "test.json",
"val": _URL + "val.json",
}
class Dialogsum(datasets.GeneratorBasedBuilder):
"""DialogSum Corpus dataset."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="dialogsum_reformat",
version=datasets.Version("1.0.0", ""),
description="DialogSum Corpus dataset",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"dialogue": datasets.Value("string"),
"summary": datasets.Value("string"),
"topic": datasets.Value("string"),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["test"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
]
def _generate_examples(self, filepath, split):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
key = 0
with open(os.path.join(filepath, split)) as f :
data = json.load(f)
for info in data :
dialogue_id = info['id']
dialogue_name = info['dialogue']
dialogue_summary = info['summary']
dialogue_topic = info['topic']
yield key, {
"id" : dialogue_id,
"dialogue" : dialogue_name,
"summary" : dialogue_summary,
"topic" : dialogue_topic,
}
key += 1 |