python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
from .interpreter import Interpreter from .get_memory_handler import GetMemoryHandler from .put_memory_handler import PutMemoryHandler __all__ = [GetMemoryHandler, Interpreter, PutMemoryHandler]
craftassist-master
python/craftassist/dialogue_objects/__init__.py
from base_agent.dialogue_objects import ConditionInterpreter from mc_stop_condition import AgentAdjacentStopCondition from .block_helpers import get_block_type # this will become unnecessary with distance between class MCConditionInterpreter(ConditionInterpreter): def __init__(self): super().__init__() self.condition_types["ADJACENT_TO_BLOCK_TYPE"] = self.interpret_adjacent_block def interpret_adjacent_block(self, interpreter, speaker, d): block_type = d["block_type"] bid, meta = get_block_type(block_type) return AgentAdjacentStopCondition(interpreter.agent, bid)
craftassist-master
python/craftassist/dialogue_objects/condition_helper.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ from typing import Dict, Tuple, Any, Optional, Sequence from base_agent.dialogue_objects import DialogueObject from .interpreter_helper import interpret_reference_object, ErrorWithResponse from base_agent.memory_nodes import MemoryNode, ReferenceObjectNode from string_lists import ACTION_ING_MAPPING from tasks import Build from ttad.generation_dialogues.generate_utils import prepend_a_an ######FIXME TEMPORARY: from base_agent import post_process_logical_form class GetMemoryHandler(DialogueObject): def __init__(self, speaker_name: str, action_dict: Dict, **kwargs): super().__init__(**kwargs) self.provisional: Dict = {} self.speaker_name = speaker_name self.action_dict = action_dict def step(self) -> Tuple[Optional[str], Any]: r = self._step() self.finished = True return r def _step(self) -> Tuple[Optional[str], Any]: assert self.action_dict["dialogue_type"] == "GET_MEMORY" filter_type = self.action_dict["filters"]["type"] if filter_type == "ACTION": return self.handle_action() elif filter_type == "AGENT": return self.handle_agent() elif filter_type == "REFERENCE_OBJECT": return self.handle_reference_object() else: raise ValueError("Unknown filter_type={}".format(filter_type)) def handle_reference_object(self, voxels_only=False) -> Tuple[Optional[str], Any]: ####FIXME TEMPORARY!!!! r = post_process_logical_form.fix_reference_object_with_filters( self.action_dict["filters"] ) objs = interpret_reference_object( self, self.speaker_name, r["reference_object"], not_location=True ) return self.do_answer(objs) def handle_action(self) -> Tuple[Optional[str], Any]: # get current action target_action_type = self.action_dict["filters"].get("target_action_type") if target_action_type: task = self.memory.task_stack_find_lowest_instance(target_action_type) else: task = self.memory.task_stack_peek() if task is not None: task = task.get_root_task() if task is None: return "I am not doing anything right now", None # get answer return self.do_answer([task]) def handle_agent(self) -> Tuple[Optional[str], Any]: # location is currently the only expected answer_type location = tuple(self.agent.pos) return "I am at {}".format(location), None def do_answer(self, mems: Sequence[MemoryNode]) -> Tuple[Optional[str], Any]: answer_type = self.action_dict["answer_type"] if answer_type == "TAG": return self.handle_answer_type_tag(mems) elif answer_type == "EXISTS": return self.handle_answer_type_exists(mems) else: raise ValueError("Bad answer_type={}".format(answer_type)) def handle_answer_type_tag(self, mems: Sequence[MemoryNode]) -> Tuple[Optional[str], Any]: if len(mems) == 0: raise ErrorWithResponse("I don't know what you're referring to") mem = mems[0] tag_name = self.action_dict["tag_name"] if tag_name.startswith("has_"): triples = self.memory.get_triples(subj=mem.memid, pred_text=tag_name) # TODO backoff to other memories, search etc. if len(triples) == 0: # first backoff to tags triples = self.memory.get_triples(subj=mem.memid, pred_text="has_tag") if len(triples) == 0: return "I don't know", None else: tag_name = "has_tag" all_tags = [t[2] for t in triples if t[2][0] != "_"] _, _, val = triples[0] if tag_name == "has_name": if "_in_progress" in self.memory.get_tags_by_memid(mem.memid): return "It will be a %r" % (val), None else: return "It is a %r" % (val), None elif tag_name == "has_tag": return "That has tags " + " ".join(all_tags), None else: return "It is %r" % (val), None elif tag_name == "action_name": assert hasattr(mem, "task") return "I am {}".format(ACTION_ING_MAPPING[mem.action_name.lower()]), None elif tag_name == "action_reference_object_name": assert hasattr(mems[0], "task"), mems[0] assert isinstance(mems[0].task, Build), mems[0].task for pred, val in mems[0].task.schematic_tags: if pred == "has_name": return "I am building " + prepend_a_an(val), None return "I am building something that is {}".format(val), None elif tag_name == "move_target": assert mem.action_name == "Move", mem target = tuple(mem.task.target) return "I am going to {}".format(target), None elif tag_name == "location": if isinstance(mems[0], ReferenceObjectNode): return str(mems[0].get_pos()), None else: raise TypeError("Can't get location of {} {}".format(mems[0], mems[0].memid)) else: raise ErrorWithResponse("I don't understand what you're asking") def handle_answer_type_exists(self, mems: Sequence[MemoryNode]) -> Tuple[Optional[str], Any]: # we check progeny data bc if it exists, there was a confirmation, # and the interpret reference object failed to find the object # so it does not have the proper tag. this is an unused opportunity to learn... # also note if the answer is going to be no, bot will always ask. maybe should fix this. if len(mems) > 0 and len(self.progeny_data) == 0: return "Yes", None else: return "No", None
craftassist-master
python/craftassist/dialogue_objects/get_memory_handler.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import logging import numpy as np import random import heuristic_perception from typing import Tuple, Dict, Any, Optional, List from word2number.w2n import word_to_num import sys import os BASE_AGENT_ROOT = os.path.join(os.path.dirname(__file__), "../..") sys.path.append(BASE_AGENT_ROOT) from base_agent.dialogue_objects import ( DialogueObject, ConfirmTask, Say, SPEAKERLOOK, ReferenceObjectInterpreter, ) from .interpreter_helper import ( ErrorWithResponse, NextDialogueStep, get_repeat_num, get_repeat_dir, interpret_reference_location, interpret_reference_object, interpret_relative_direction, interpret_schematic, interpret_size, interpret_facing, interpret_point_target, filter_by_sublocation, ) from .modify_helpers import ( handle_fill, handle_rigidmotion, handle_scale, handle_replace, handle_thicken, ) from .block_helpers import get_block_type from .condition_helper import MCConditionInterpreter from .reference_object_helpers import compute_locations from base_agent.memory_nodes import PlayerNode from mc_memory_nodes import MobNode, ItemStackNode import dance import tasks from mc_util import to_block_pos, Hole, XYZ class Interpreter(DialogueObject): """This class handles processes incoming chats and modifies the task stack Handlers should add/remove/reorder tasks on the stack, but not execute them. """ def __init__(self, speaker: str, action_dict: Dict, **kwargs): super().__init__(**kwargs) self.speaker = speaker self.action_dict = action_dict self.provisional: Dict = {} self.action_dict_frozen = False self.loop_data = None self.archived_loop_data = None self.default_debug_path = "debug_interpreter.txt" self.subinterpret = { "reference_objects": ReferenceObjectInterpreter(interpret_reference_object), "condition": MCConditionInterpreter(), } self.action_handlers = { "MOVE": self.handle_move, "BUILD": self.handle_build, "DESTROY": self.handle_destroy, "DIG": self.handle_dig, "STOP": self.handle_stop, "RESUME": self.handle_resume, "FREEBUILD": self.handle_freebuild, "UNDO": self.handle_undo, "SPAWN": self.handle_spawn, "FILL": self.handle_fill, "DANCE": self.handle_dance, "MODIFY": self.handle_modify, "DROP": self.handle_drop, "GET": self.handle_get, "OTHERACTION": self.handle_otheraction, } def step(self) -> Tuple[Optional[str], Any]: assert self.action_dict["dialogue_type"] == "HUMAN_GIVE_COMMAND" try: actions = [] if "action" in self.action_dict: actions.append(self.action_dict["action"]) elif "action_sequence" in self.action_dict: actions = self.action_dict["action_sequence"] actions.reverse() if len(actions) == 0: # The action dict is in an unexpected state raise ErrorWithResponse( "I thought you wanted me to do something, but now I don't know what" ) for action_def in actions: action_type = action_def["action_type"] response = self.action_handlers[action_type](self.speaker, action_def) return response except NextDialogueStep: return None, None except ErrorWithResponse as err: self.finished = True return err.chat, None def handle_modify(self, speaker, d) -> Tuple[Optional[str], Any]: default_ref_d = {"filters": {"location": SPEAKERLOOK}} ref_d = d.get("reference_object", default_ref_d) # only modify blockobjects... objs = self.subinterpret["reference_objects"]( self, speaker, ref_d, only_physical=True, only_voxels=True ) if len(objs) == 0: raise ErrorWithResponse("I don't understand what you want me to modify.") m_d = d.get("modify_dict") if not m_d: raise ErrorWithResponse( "I think you want me to modify an object but am not sure what to do" ) for obj in objs: if m_d["modify_type"] == "THINNER" or m_d["modify_type"] == "THICKER": destroy_task_data, build_task_data = handle_thicken(self, speaker, m_d, obj) elif m_d["modify_type"] == "REPLACE": destroy_task_data, build_task_data = handle_replace(self, speaker, m_d, obj) elif m_d["modify_type"] == "SCALE": destroy_task_data, build_task_data = handle_scale(self, speaker, m_d, obj) elif m_d["modify_type"] == "RIGIDMOTION": destroy_task_data, build_task_data = handle_rigidmotion(self, speaker, m_d, obj) elif m_d["modify_type"] == "FILL" or m_d["modify_type"] == "HOLLOW": destroy_task_data, build_task_data = handle_fill(self, speaker, m_d, obj) else: raise ErrorWithResponse( "I think you want me to modify an object but am not sure what to do (parse error)" ) if build_task_data: self.append_new_task(tasks.Build, build_task_data) if destroy_task_data: self.append_new_task(tasks.Destroy, destroy_task_data) self.finished = True return None, None def handle_undo(self, speaker, d) -> Tuple[Optional[str], Any]: task_name = d.get("undo_action") if task_name: task_name = task_name.split("_")[0].strip() old_task = self.memory.get_last_finished_root_task(task_name) if old_task is None: raise ErrorWithResponse("Nothing to be undone ...") undo_tasks = [tasks.Undo(self.agent, {"memid": old_task.memid})] # undo_tasks = [ # tasks.Undo(self.agent, {"memid": task.memid}) # for task in old_task.all_descendent_tasks(include_root=True) # ] undo_command = old_task.get_chat().chat_text logging.info("Pushing ConfirmTask tasks={}".format(undo_tasks)) self.dialogue_stack.append_new( ConfirmTask, 'Do you want me to undo the command: "{}" ?'.format(undo_command), undo_tasks, ) self.finished = True return None, None def handle_spawn(self, speaker, d) -> Tuple[Optional[str], Any]: spawn_filters = d.get("reference_object", {}).get("filters", {}) if not spawn_filters: raise ErrorWithResponse("I don't understand what you want me to spawn.") object_name = spawn_filters["has_name"] schematic = self.memory.get_mob_schematic_by_name(object_name) if not schematic: raise ErrorWithResponse("I don't know how to spawn: %r." % (object_name)) object_idm = list(schematic.blocks.values())[0] location_d = d.get("location", SPEAKERLOOK) mems = interpret_reference_location(self, speaker, location_d) steps, reldir = interpret_relative_direction(self, location_d) pos, _ = compute_locations(self, speaker, mems, steps, reldir) repeat_times = get_repeat_num(d) for i in range(repeat_times): task_data = {"object_idm": object_idm, "pos": pos, "action_dict": d} self.append_new_task(tasks.Spawn, task_data) self.finished = True return None, None def handle_move(self, speaker, d) -> Tuple[Optional[str], Any]: def new_tasks(): # TODO if we do this better will be able to handle "stay between the x" location_d = d.get("location", SPEAKERLOOK) if self.loop_data and hasattr(self.loop_data, "get_pos"): mems = [self.loop_data] else: mems = interpret_reference_location(self, speaker, location_d) steps, reldir = interpret_relative_direction(self, location_d) pos, _ = compute_locations(self, speaker, mems, steps, reldir) # TODO: can this actually happen? if pos is None: raise ErrorWithResponse("I don't understand where you want me to move.") task_data = {"target": pos, "action_dict": d} task = tasks.Move(self.agent, task_data) return [task] if "stop_condition" in d: condition = self.subinterpret["condition"](self, speaker, d["stop_condition"]) location_d = d.get("location", SPEAKERLOOK) mems = interpret_reference_location(self, speaker, location_d) if mems: self.loop_data = mems[0] steps, reldir = interpret_relative_direction(self, location_d) loop_task_data = { "new_tasks_fn": new_tasks, "stop_condition": condition, "action_dict": d, } self.append_new_task(tasks.Loop, loop_task_data) else: for t in new_tasks(): self.append_new_task(t) self.finished = True return None, None def handle_build(self, speaker, d) -> Tuple[Optional[str], Any]: # Get the segment to build if "reference_object" in d: # handle copy repeat = get_repeat_num(d) objs = self.subinterpret["reference_objects"]( self, speaker, d["reference_object"], limit=repeat, only_voxels=True, loose_speakerlook=True, ) if len(objs) == 0: raise ErrorWithResponse("I don't understand what you want me to build") tagss = [ [(p, v) for (_, p, v) in self.memory.get_triples(subj=obj.memid)] for obj in objs ] interprets = [ [list(obj.blocks.items()), obj.memid, tags] for (obj, tags) in zip(objs, tagss) ] else: # a schematic if d.get("repeat") is not None: repeat_dict = d else: repeat_dict = None interprets = interpret_schematic( self, speaker, d.get("schematic", {}), repeat_dict=repeat_dict ) # Get the locations to build location_d = d.get("location", SPEAKERLOOK) mems = interpret_reference_location(self, speaker, location_d) steps, reldir = interpret_relative_direction(self, location_d) origin, offsets = compute_locations( self, speaker, mems, steps, reldir, repeat_dir=get_repeat_dir(location_d), objects=interprets, enable_geoscorer=True, ) interprets_with_offsets = [ (blocks, mem, tags, off) for (blocks, mem, tags), off in zip(interprets, offsets) ] tasks_todo = [] for schematic, schematic_memid, tags, offset in interprets_with_offsets: og = np.array(origin) + offset task_data = { "blocks_list": schematic, "origin": og, "schematic_memid": schematic_memid, "schematic_tags": tags, "action_dict": d, } tasks_todo.append(task_data) for task_data in reversed(tasks_todo): self.append_new_task(tasks.Build, task_data) logging.info("Added {} Build tasks to stack".format(len(tasks_todo))) self.finished = True return None, None def handle_freebuild(self, speaker, d) -> Tuple[Optional[str], Any]: # This handler handles the action where the agent can complete # a human half-built structure using a generative model self.dialogue_stack.append_new(Say, "Sorry, I don't know how to do that yet.") self.finished = True return None, None def handle_fill(self, speaker, d) -> Tuple[Optional[str], Any]: r = d.get("reference_object") self.finished = True if not r.get("filters"): r["filters"] = {"location", SPEAKERLOOK} # Get the reference location location_d = r["filters"].get("location", SPEAKERLOOK) mems = interpret_reference_location(self, speaker, location_d) steps, reldir = interpret_relative_direction(self, location_d) location, _ = compute_locations(self, speaker, mems, steps, reldir) # Get nearby holes holes: List[Hole] = heuristic_perception.get_all_nearby_holes(self.agent, location) candidates: List[Tuple[XYZ, Hole]] = [ (to_block_pos(np.mean(hole[0], axis=0)), hole) for hole in holes ] # Choose the best ones to fill repeat = get_repeat_num(d) holes = filter_by_sublocation(self, speaker, candidates, r, limit=repeat, loose=True) if holes is None: self.dialogue_stack.append_new( Say, "I don't understand what holes you want me to fill." ) return None, None for hole in holes: _, hole_info = hole poss, hole_idm = hole_info fill_idm = get_block_type(d["has_block_type"]) if "has_block_type" in d else hole_idm task_data = {"action_dict": d, "schematic": poss, "block_idm": fill_idm} self.append_new_task(tasks.Fill, task_data) if len(holes) > 1: self.dialogue_stack.append_new(Say, "Ok. I'll fill up the holes.") else: self.dialogue_stack.append_new(Say, "Ok. I'll fill that hole up.") self.finished = True return None, None def handle_destroy(self, speaker, d) -> Tuple[Optional[str], Any]: default_ref_d = {"filters": {"location": SPEAKERLOOK}} ref_d = d.get("reference_object", default_ref_d) objs = self.subinterpret["reference_objects"](self, speaker, ref_d, only_destructible=True) if len(objs) == 0: raise ErrorWithResponse("I don't understand what you want me to destroy.") # don't kill mobs if all(isinstance(obj, MobNode) for obj in objs): raise ErrorWithResponse("I don't kill animals, sorry!") if all(isinstance(obj, PlayerNode) for obj in objs): raise ErrorWithResponse("I don't kill players, sorry!") objs = [obj for obj in objs if not isinstance(obj, MobNode)] num_destroy_tasks = 0 for obj in objs: if hasattr(obj, "blocks"): schematic = list(obj.blocks.items()) task_data = {"schematic": schematic, "action_dict": d} self.append_new_task(tasks.Destroy, task_data) num_destroy_tasks += 1 logging.info("Added {} Destroy tasks to stack".format(num_destroy_tasks)) self.finished = True return None, None # TODO mark in memory it was stopped by command def handle_stop(self, speaker, d) -> Tuple[Optional[str], Any]: self.finished = True if self.loop_data is not None: # TODO if we want to be able stop and resume old tasks, will need to store self.archived_loop_data = self.loop_data self.loop_data = None if self.memory.task_stack_pause(): return "Stopping. What should I do next?", None else: return "I am not doing anything", None # TODO mark in memory it was resumed by command def handle_resume(self, speaker, d) -> Tuple[Optional[str], Any]: self.finished = True if self.memory.task_stack_resume(): if self.archived_loop_data is not None: # TODO if we want to be able stop and resume old tasks, will need to store self.loop_data = self.archived_loop_data self.archived_loop_data = None return "resuming", None else: return "nothing to resume", None def handle_dig(self, speaker, d) -> Tuple[Optional[str], Any]: def new_tasks(): attrs = {} schematic_d = d["schematic"] # set the attributes of the hole to be dug. for dim, default in [("depth", 1), ("length", 1), ("width", 1)]: key = "has_{}".format(dim) if key in schematic_d: attrs[dim] = word_to_num(schematic_d[key]) elif "has_size" in schematic_d: attrs[dim] = interpret_size(self, schematic_d["has_size"]) else: attrs[dim] = default # minecraft world is [z, x, y] padding = (attrs["depth"] + 4, attrs["length"] + 4, attrs["width"] + 4) print("attrs", attrs) print("padding", padding) location_d = d.get("location", SPEAKERLOOK) repeat_num = get_repeat_num(d) repeat_dir = get_repeat_dir(d) print("loc d in dig", location_d, "repeat", repeat_num, repeat_dir) mems = interpret_reference_location(self, speaker, location_d) steps, reldir = interpret_relative_direction(self, location_d) origin, offsets = compute_locations( self, speaker, mems, steps, reldir, repeat_num=repeat_num, repeat_dir=repeat_dir, padding=padding, ) print("origin from dig", origin, "offsets", offsets) # add dig tasks in a loop tasks_todo = [] for offset in offsets: og = np.array(origin) + offset t = tasks.Dig(self.agent, {"origin": og, "action_dict": d, **attrs}) print("append task:", t, og, d, attrs) tasks_todo.append(t) return list(reversed(tasks_todo)) print("inside dig, dict", d) if "stop_condition" in d: print("stop condition", d["stop_condition"]) condition = self.subinterpret["condition"](self, speaker, d["stop_condition"]) self.append_new_task( tasks.Loop, {"new_tasks_fn": new_tasks, "stop_condition": condition, "action_dict": d}, ) else: for t in new_tasks(): self.append_new_task(t) self.finished = True return None, None def handle_otheraction(self, speaker, d) -> Tuple[Optional[str], Any]: self.finished = True return "I don't know how to do that yet", None def handle_dance(self, speaker, d) -> Tuple[Optional[str], Any]: def new_tasks(): repeat = get_repeat_num(d) tasks_to_do = [] # only go around the x has "around"; FIXME allow other kinds of dances location_d = d.get("location") if location_d is not None: rd = location_d.get("relative_direction") if rd is not None and ( rd == "AROUND" or rd == "CLOCKWISE" or rd == "ANTICLOCKWISE" ): ref_obj = None location_reference_object = location_d.get("reference_object") if location_reference_object: objmems = self.subinterpret["reference_objects"]( self, speaker, location_reference_object ) if len(objmems) == 0: raise ErrorWithResponse("I don't understand where you want me to go.") ref_obj = objmems[0] for i in range(repeat): refmove = dance.RefObjMovement( self.agent, ref_object=ref_obj, relative_direction=location_d["relative_direction"], ) t = tasks.Dance(self.agent, {"movement": refmove}) tasks_to_do.append(t) return list(reversed(tasks_to_do)) dance_type = d.get("dance_type", {"dance_type_name": "dance"}) # FIXME holdover from old dict format if type(dance_type) is str: dance_type = dance_type = {"dance_type_name": "dance"} if dance_type.get("point"): target = interpret_point_target(self, speaker, dance_type["point"]) for i in range(repeat): t = tasks.Point(self.agent, {"target": target}) tasks_to_do.append(t) # MC bot does not control body turn separate from head elif dance_type.get("look_turn") or dance_type.get("body_turn"): lt = dance_type.get("look_turn") or dance_type.get("body_turn") f = interpret_facing(self, speaker, lt) for i in range(repeat): t = tasks.DanceMove(self.agent, f) tasks_to_do.append(t) else: if location_d is None: dance_location = None else: mems = interpret_reference_location(self, speaker, location_d) steps, reldir = interpret_relative_direction(self, location_d) dance_location, _ = compute_locations(self, speaker, mems, steps, reldir) # TODO use name! if dance_type.get("dance_type_span") is not None: dance_name = dance_type["dance_type_span"] if dance_name == "dance": dance_name = "ornamental_dance" dance_memids = self.memory._db_read( "SELECT DISTINCT(Dances.uuid) FROM Dances INNER JOIN Triples on Dances.uuid=Triples.subj WHERE Triples.obj_text=?", dance_name, ) else: dance_memids = self.memory._db_read( "SELECT DISTINCT(Dances.uuid) FROM Dances INNER JOIN Triples on Dances.uuid=Triples.subj WHERE Triples.obj_text=?", "ornamental_dance", ) dance_memid = random.choice(dance_memids)[0] dance_fn = self.memory.dances[dance_memid] for i in range(repeat): dance_obj = dance.Movement( agent=self.agent, move_fn=dance_fn, dance_location=dance_location ) t = tasks.Dance(self.agent, {"movement": dance_obj}) tasks_to_do.append(t) return list(reversed(tasks_to_do)) if "stop_condition" in d: condition = self.subinterpret["condition"](self, speaker, d["stop_condition"]) self.append_new_task( tasks.Loop, {"new_tasks_fn": new_tasks, "stop_condition": condition, "action_dict": d}, ) else: for t in new_tasks(): self.append_new_task(t) self.finished = True return None, None def handle_get(self, speaker, d) -> Tuple[Optional[str], Any]: ref_d = d.get("reference_object", None) if not ref_d: raise ErrorWithResponse("I don't understand what you want me to get.") objs = self.subinterpret["reference_objects"](self, speaker, ref_d, only_on_ground=True) if len(objs) == 0: raise ErrorWithResponse("I don't understand what you want me to get.") obj = [obj for obj in objs if isinstance(obj, ItemStackNode)][0] item_stack = self.agent.get_item_stack(obj.eid) idm = (item_stack.item.id, item_stack.item.meta) task_data = {"idm": idm, "pos": obj.pos, "eid": obj.eid, "memid": obj.memid} self.append_new_task(tasks.Get, task_data) self.finished = True return None, None def handle_drop(self, speaker, d) -> Tuple[Optional[str], Any]: ref_d = d.get("reference_object", None) if not ref_d: raise ErrorWithResponse("I don't understand what you want me to drop.") objs = self.subinterpret["reference_objects"](self, speaker, ref_d, only_in_inventory=True) if len(objs) == 0: raise ErrorWithResponse("I don't understand what you want me to drop.") obj = [obj for obj in objs if isinstance(obj, ItemStackNode)][0] item_stack = self.agent.get_item_stack(obj.eid) idm = (item_stack.item.id, item_stack.item.meta) task_data = {"eid": obj.eid, "idm": idm, "memid": obj.memid} self.append_new_task(tasks.Drop, task_data) self.finished = True return None, None def append_new_task(self, cls, data=None): # this is badly named, FIXME # add a tick to avoid two tasks having same timestamp self.memory.add_tick() if data is None: self.memory.task_stack_push(cls, chat_effect=True) else: task = cls(self.agent, data) self.memory.task_stack_push(task, chat_effect=True)
craftassist-master
python/craftassist/dialogue_objects/interpreter.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import logging import numpy as np import math import random import re from typing import cast, List, Tuple, Union, Optional, Dict from base_agent.dialogue_objects import ConfirmReferenceObject, SPEAKERLOOK, tags_from_dict import block_data import heuristic_perception import rotation import size_words from base_agent.memory_nodes import ReferenceObjectNode from .reference_object_helpers import compute_locations from .block_helpers import get_block_type from mc_util import ( Block, T, XYZ, most_common_idm, object_looked_at, euclid_dist, ErrorWithResponse, NextDialogueStep, ) from word2number.w2n import word_to_num from word_maps import SPECIAL_SHAPE_FNS, SPECIAL_SHAPES_CANONICALIZE def get_special_reference_object(interpreter, speaker, S): # TODO/FIXME! add things to workspace memory # TODO/FIXME! remove all direct references to perception modules here, go through memory # in particular get_player_struct_by_name.... get the eid from memory if S == "SPEAKER_LOOK" or S == "SPEAKER": p = interpreter.agent.perception_modules["low_level"].get_player_struct_by_name(speaker) f = {"special": {S: p.entityId}} elif S == "AGENT": p = interpreter.agent.get_player() f = {"special": {S: p.entityId}} elif type(S) is dict: coord_span = S["coordinates_span"] loc = cast(XYZ, tuple(int(float(w)) for w in re.findall("[-0-9.]+", coord_span))) if len(loc) != 3: logging.error("Bad coordinates: {}".format(coord_span)) raise ErrorWithResponse("I don't understand what location you're referring to") memid = interpreter.memory.add_location((int(loc[0]), int(loc[1]), int(loc[2]))) mem = interpreter.memory.get_location_by_id(memid) f = {"special": {"DUMMY": mem}} mems = interpreter.memory.get_reference_objects(f) if not mems: # need a better interface for this, don't need to run full perception # just to force speakerlook in memory # TODO force if look is stale, not just if it doesn't exist # this branch shouldn't occur # interpreter.agent.perceive(force=True) raise ErrorWithResponse( "I think you are pointing at something but I don't know what it is" ) return mems[0] def interpret_relative_direction(interpreter, location_d): steps = location_d.get("steps", None) if steps is not None: try: steps = math.ceil(float(steps)) except: steps = None reldir = location_d.get("relative_direction") return steps, reldir def interpret_reference_object( interpreter, speaker, d, only_voxels=False, only_physical=False, only_in_inventory=False, only_on_ground=False, only_destructible=False, not_location=False, limit=1, loose_speakerlook=False, allow_clarification=True, ) -> List[ReferenceObjectNode]: """this tries to find a ref obj memory matching the criteria from the ref_obj_dict """ F = d.get("filters") special = d.get("special_reference") # F can be empty... assert (F is not None) or special, "no filters or special_reference sub-dicts {}".format(d) if special: mem = get_special_reference_object(interpreter, speaker, special) return [mem] if F.get("contains_coreference", "NULL") != "NULL": mem = F["contains_coreference"] if isinstance(mem, ReferenceObjectNode): return [mem] elif mem == "resolved": pass else: logging.error("bad coref_resolve -> {}".format(mem)) if len(interpreter.progeny_data) == 0: tags = tags_from_dict(F) if only_voxels: tags.append("_voxel_object") if only_physical: tags.append("_physical_object") if only_in_inventory: tags.append("_in_inventory") if only_on_ground: tags.append("_on_ground") if only_destructible: tags.append("_destructible") # FIXME hack until memory_filters supprts "not" if not_location: tags.append("_not_location") # TODO Add ignore_player maybe? candidates = get_reference_objects(interpreter, *tags) if len(candidates) > 0: r = filter_by_sublocation( interpreter, speaker, candidates, d, limit=limit, loose=loose_speakerlook ) return [mem for _, mem in r] elif allow_clarification: # no candidates found; ask Clarification # TODO: move ttad call to dialogue manager and remove this logic interpreter.action_dict_frozen = True player_struct = interpreter.agent.perception_modules[ "low_level" ].get_player_struct_by_name(speaker) tags = [] if only_voxels: tags.append("_voxel_object") if only_physical: tags.append("_physical_object") if only_destructible: tags.append("_destructible") confirm_candidates = get_reference_objects(interpreter, *tags) objects = object_looked_at( interpreter.agent, confirm_candidates, player_struct, limit=1 ) if len(objects) == 0: raise ErrorWithResponse("I don't know what you're referring to") _, mem = objects[0] interpreter.provisional["object_mem"] = mem interpreter.provisional["F"] = F interpreter.dialogue_stack.append_new(ConfirmReferenceObject, mem) raise NextDialogueStep() else: raise ErrorWithResponse("I don't know what you're referring to") else: # clarification answered r = interpreter.progeny_data[-1].get("response") if r == "yes": # TODO: learn from the tag! put it in memory! return [interpreter.provisional.get("object_mem")] * limit else: raise ErrorWithResponse("I don't know what you're referring to") def interpret_shape_schematic( interpreter, speaker, d, shapename=None ) -> Tuple[List[Block], List[Tuple[str, str]]]: """Return a tuple of 2 values: - the schematic blocks, list[(xyz, idm)] - a list of (pred, val) tags """ if shapename is not None: shape = shapename else: # For sentences like "Stack" and "Place" that have the shapename in dict shape = d["has_shape"] numeric_keys = [ "has_thickness", "has_radius", "has_depth", "has_width", "has_height", "has_length", "has_slope", # "has_orientation", #is this supposed to be numeric key? "has_distance", "has_base", ] attrs = {key[4:]: word_to_num(d[key]) for key in numeric_keys if key in d} if "has_orientation" in d: attrs["orient"] = d["has_orientation"] if "has_size" in d: attrs["size"] = interpret_size(interpreter, d["has_size"]) if "has_block_type" in d: block_type = get_block_type(d["has_block_type"]) attrs["bid"] = block_type elif "has_colour" in d: c = block_data.COLOR_BID_MAP.get(d["has_colour"]) if c is not None: attrs["bid"] = random.choice(c) tags = [] for key, val in d.items(): if key.startswith("has_"): stemmed_val = val tags.append((key, stemmed_val)) return SPECIAL_SHAPE_FNS[shape](**attrs), tags def interpret_size(interpreter, text) -> Union[int, List[int]]: """Processes the has_size_ span value and returns int or list[int]""" nums = re.findall("[-0-9]+", text) if len(nums) == 1: # handle "3", "three", etc. return word_to_num(nums[0]) elif len(nums) > 1: # handle "3 x 3", "four by five", etc. return [word_to_num(n) for n in nums] else: # handle "big", "really huge", etc. if hasattr(interpreter.agent, "size_str_to_int"): return interpreter.agent.size_str_to_int(text) else: return size_words.size_str_to_int(text) def interpret_named_schematic( interpreter, speaker, d ) -> Tuple[List[Block], Optional[str], List[Tuple[str, str]]]: """Return a tuple of 3 values: - the schematic blocks, list[(xyz, idm)] - a SchematicNode memid, or None - a list of (pred, val) tags """ if "has_name" not in d: raise ErrorWithResponse("I don't know what you want me to build.") name = d["has_name"] stemmed_name = name shapename = SPECIAL_SHAPES_CANONICALIZE.get(name) or SPECIAL_SHAPES_CANONICALIZE.get( stemmed_name ) if shapename: shape_blocks, tags = interpret_shape_schematic( interpreter, speaker, d, shapename=shapename ) return shape_blocks, None, tags schematic = interpreter.memory.get_schematic_by_name(name) if schematic is None: schematic = interpreter.memory.get_schematic_by_name(stemmed_name) if schematic is None: raise ErrorWithResponse("I don't know what you want me to build.") tags = [(p, v) for (_, p, v) in interpreter.memory.get_triples(subj=schematic.memid)] blocks = schematic.blocks # TODO generalize to more general block properties # Longer term: remove and put a call to the modify model here if d.get("has_colour"): old_idm = most_common_idm(blocks.values()) c = block_data.COLOR_BID_MAP.get(d["has_colour"]) if c is not None: new_idm = random.choice(c) for l in blocks: if blocks[l] == old_idm: blocks[l] = new_idm return list(blocks.items()), schematic.memid, tags def interpret_schematic( interpreter, speaker, d, repeat_dict=None ) -> List[Tuple[List[Block], Optional[str], List[Tuple[str, str]]]]: """Return a list of 3-tuples, each with values: - the schematic blocks, list[(xyz, idm)] - a SchematicNode memid, or None - a list of (pred, val) tags """ # hack, fixme in grammar/standardize. sometimes the repeat is a sibling of action if repeat_dict is not None: repeat = cast(int, get_repeat_num(repeat_dict)) else: repeat = cast(int, get_repeat_num(d)) assert type(repeat) == int, "bad repeat={}".format(repeat) if "has_shape" in d: blocks, tags = interpret_shape_schematic(interpreter, speaker, d) return [(blocks, None, tags)] * repeat else: return [interpret_named_schematic(interpreter, speaker, d)] * repeat def interpret_reference_location(interpreter, speaker, d): """ Location dict -> coordinates of reference objc and maybe a list of ref obj memories. Side effect: adds mems to agent_memory.recent_entities """ loose_speakerlook = False expected_num = 1 if d.get("relative_direction") == "BETWEEN": loose_speakerlook = True expected_num = 2 ref_obj_1 = d.get("reference_object_1") ref_obj_2 = d.get("reference_object_2") if ref_obj_1 and ref_obj_2: mem1 = interpret_reference_object( interpreter, speaker, ref_obj_1, loose_speakerlook=loose_speakerlook, allow_clarification=False, )[0] mem2 = interpret_reference_object( interpreter, speaker, ref_obj_2, loose_speakerlook=loose_speakerlook, allow_clarification=False, )[0] if mem1 is None or mem2 is None: raise ErrorWithResponse("I don't know what you're referring to") mems = [mem1, mem2] interpreter.memory.update_recent_entities(mems) return mems ref_obj = d.get("reference_object", SPEAKERLOOK["reference_object"]) mems = interpret_reference_object( interpreter, speaker, ref_obj, limit=expected_num, loose_speakerlook=loose_speakerlook ) if len(mems) < expected_num: tags = set(tags_from_dict(ref_obj)) cands = interpreter.memory.get_recent_entities("Mob") mems = [c for c in cands if any(set.intersection(set(c.get_tags()), tags))] if len(mems) < expected_num: cands = interpreter.memory.get_recent_entities("BlockObject") mems = [c for c in cands if any(set.intersection(set(c.get_tags()), tags))] if len(mems) < expected_num: raise ErrorWithResponse("I don't know what you're referring to") mems = mems[:expected_num] interpreter.memory.update_recent_entities(mems) # TODO: are there any memories where get_pos() doesn't return something? return mems def interpret_point_target(interpreter, speaker, d): if d.get("location") is None: # TODO other facings raise ErrorWithResponse("I am not sure where you want me to point") # TODO: We might want to specifically check for BETWEEN/INSIDE, I'm not sure # what the +1s are in the return value mems = interpret_reference_location(interpreter, speaker, d["location"]) steps, reldir = interpret_relative_direction(interpreter.agent, d) loc, _ = compute_locations(interpreter, speaker, mems, steps, reldir) return (loc[0], loc[1] + 1, loc[2], loc[0], loc[1] + 1, loc[2]) def number_from_span(span): # this will fail in many cases.... words = span.split() degrees = None for w in words: try: degrees = int(w) except: pass if not degrees: try: degrees = word_to_num(span) except: pass return degrees def interpret_facing(interpreter, speaker, d): current_pitch = interpreter.agent.get_player().look.pitch current_yaw = interpreter.agent.get_player().look.yaw if d.get("yaw_pitch"): span = d["yaw_pitch"] # for now assumed in (yaw, pitch) or yaw, pitch or yaw pitch formats yp = span.replace("(", "").replace(")", "").split() return {"head_yaw_pitch": (int(yp[0]), int(yp[1]))} elif d.get("yaw"): # for now assumed span is yaw as word or number w = d["yaw"].strip(" degrees").strip(" degree") return {"head_yaw_pitch": (word_to_num(w), current_pitch)} elif d.get("pitch"): # for now assumed span is pitch as word or number w = d["pitch"].strip(" degrees").strip(" degree") return {"head_yaw_pitch": (current_yaw, word_to_num(w))} elif d.get("relative_yaw"): # TODO in the task use turn angle if d["relative_yaw"].get("angle"): return {"relative_yaw": int(d["relative_yaw"]["angle"])} elif d["relative_yaw"].get("yaw_span"): span = d["relative_yaw"].get("yaw_span") left = "left" in span or "leave" in span # lemmatizer :) degrees = number_from_span(span) or 90 if degrees > 0 and left: return {"relative_yaw": -degrees} else: return {"relative_yaw": degrees} else: pass elif d.get("relative_pitch"): if d["relative_pitch"].get("angle"): # TODO in the task make this relative! return {"relative_pitch": int(d["relative_pitch"]["angle"])} elif d["relative_pitch"].get("pitch_span"): span = d["relative_pitch"].get("pitch_span") down = "down" in span degrees = number_from_span(span) or 90 if degrees > 0 and down: return {"relative_pitch": -degrees} else: return {"relative_pitch": degrees} else: pass elif d.get("location"): mems = interpret_reference_location(interpreter, speaker, d["location"]) steps, reldir = interpret_relative_direction(interpreter, d["location"]) loc, _ = compute_locations(interpreter, speaker, mems, steps, reldir) return {"head_xyz": loc} else: raise ErrorWithResponse("I am not sure where you want me to turn") # def interpret_stop_condition(interpreter, speaker, d) -> Optional[StopCondition]: # if d.get("condition_type") == "NEVER": # return NeverStopCondition(interpreter.agent) # elif d.get("condition_type") == "ADJACENT_TO_BLOCK_TYPE": # block_type = d["block_type"] # bid, meta = get_block_type(block_type) # return AgentAdjacentStopCondition(interpreter.agent, bid) # else: # return None def get_reference_objects(interpreter, *tags) -> List[Tuple[XYZ, ReferenceObjectNode]]: """Return a list of (xyz, memory) tuples encompassing all possible reference objects""" f = {"triples": [{"pred_text": "has_tag", "obj_text": tag} for tag in tags]} mems = interpreter.memory.get_reference_objects(f) return [(m.get_pos(), m) for m in mems] # TODO filter by INSIDE/AWAY/NEAR def filter_by_sublocation( interpreter, speaker, candidates: List[Tuple[XYZ, T]], d: Dict, limit=1, all_proximity=10, loose=False, ) -> List[Tuple[XYZ, T]]: """Select from a list of candidate (xyz, object) tuples given a sublocation If limit == 'ALL', return all matching candidates Returns a list of (xyz, mem) tuples """ F = d.get("filters") assert F is not None, "no filters".format(d) location = F.get("location", SPEAKERLOOK) if limit == 1: limit = get_repeat_num(d) # handle SPEAKER_LOOK separately due to slightly different semantics # (proximity to ray instead of point) if location.get("location_type") == "SPEAKER_LOOK": player_struct = interpreter.agent.perception_modules[ "low_level" ].get_player_struct_by_name(speaker) return object_looked_at( interpreter.agent, candidates, player_struct, limit=limit, loose=loose ) reldir = location.get("relative_direction") if reldir: if reldir == "INSIDE": if location.get("reference_object"): # this is ugly, should probably return from interpret_reference_location... ref_mems = interpret_reference_object( interpreter, speaker, location["reference_object"] ) for l, candidate_mem in candidates: if heuristic_perception.check_inside([candidate_mem, ref_mems[0]]): return [(l, candidate_mem)] raise ErrorWithResponse("I can't find something inside that") elif reldir == "AWAY": raise ErrorWithResponse("I don't know which object you mean") elif reldir == "NEAR": pass # fall back to no reference direction elif reldir == "BETWEEN": mems = interpret_reference_location(interpreter, speaker, location) steps, reldir = interpret_relative_direction(interpreter, d) ref_loc, _ = compute_locations(interpreter, speaker, mems, steps, reldir) candidates.sort(key=lambda c: euclid_dist(c[0], ref_loc)) return candidates[:limit] else: # reference object location, i.e. the "X" in "left of X" mems = interpret_reference_location(interpreter, speaker, location) ref_loc = mems[0].get_pos() # relative direction, i.e. the "LEFT" in "left of X" reldir_vec = rotation.DIRECTIONS[reldir] # transform each object into the speaker look coordinate system, # and project onto the reldir vector look = ( interpreter.agent.perception_modules["low_level"] .get_player_struct_by_name(speaker) .look ) proj = [ rotation.transform(np.array(l) - ref_loc, look.yaw, 0) @ reldir_vec for (l, _) in candidates ] # filter by relative dir, e.g. "left of Y" proj_cands = [(p, c) for (p, c) in zip(proj, candidates) if p > 0] # "the X left of Y" = the right-most X that is left of Y if limit == "ALL": limit = len(proj_cands) return [c for (_, c) in sorted(proj_cands, key=lambda p: p[0])][:limit] else: # is it even possible to end up in this branch? FIXME? # no reference direction: choose the closest mems = interpret_reference_location(interpreter, speaker, location) steps, reldir = interpret_relative_direction(interpreter, d) ref_loc, _ = compute_locations(interpreter, speaker, mems, steps, reldir) if limit == "ALL": return list(filter(lambda c: euclid_dist(c[0], ref_loc) <= all_proximity, candidates)) else: candidates.sort(key=lambda c: euclid_dist(c[0], ref_loc)) return candidates[:limit] return [] # this fixes flake but seems awful? def get_repeat_num(d) -> Union[int, str]: if "repeat" in d: repeat_dict = d["repeat"] if repeat_dict["repeat_key"] == "FOR": try: return word_to_num(repeat_dict["repeat_count"]) except: return 2 # TODO: dialogue instead of default? if repeat_dict["repeat_key"] == "ALL": return "ALL" return 1 def get_repeat_dir(d): if "repeat" in d: direction_name = d.get("repeat", {}).get("repeat_dir", "FRONT") elif "schematic" in d: direction_name = d["schematic"].get("repeat", {}).get("repeat_dir", "FRONT") else: direction_name = None return direction_name
craftassist-master
python/craftassist/dialogue_objects/interpreter_helper.py
import numpy as np import rotation from shape_transforms import ( scale, thicker, shrink_sample, replace_by_blocktype, replace_by_halfspace, fill_flat, hollow, rotate, maybe_convert_to_list, maybe_convert_to_npy, ) from .interpreter_helper import ( ErrorWithResponse, interpret_reference_location, interpret_relative_direction, ) from .reference_object_helpers import compute_locations from .block_helpers import get_block_type # TODO lots of reuse with build here.... # TODO don't destroy then build if its unecessary... def handle_rigidmotion(interpreter, speaker, modify_dict, obj): old_blocks = list(obj.blocks.items()) mx, my, mz = np.min([l for l, idm in old_blocks], axis=0) angle = modify_dict.get("categorical_angle") mirror = modify_dict.get("mirror") no_change = False if angle or mirror: angle = angle or 0 angle = {0: 0, "LEFT": -90, "RIGHT": 90, "AROUND": 180}[angle] if mirror: mirror = 0 else: mirror = -1 new_schematic = maybe_convert_to_list(rotate(old_blocks, angle, mirror)) else: no_change = True new_schematic = old_blocks location_d = modify_dict.get("location") if location_d: mems = interpret_reference_location(interpreter, speaker, location_d) steps, reldir = interpret_relative_direction(interpreter, location_d) origin, _ = compute_locations(interpreter, speaker, mems, steps, reldir) else: origin = (mx, my, mz) if no_change and origin == (mx, my, mz): return None, None destroy_task_data = {"schematic": old_blocks} # FIXME deal with tags!!! build_task_data = { "blocks_list": new_schematic, "origin": origin, # "schematic_tags": tags, } return destroy_task_data, build_task_data # TODO don't destroy the whole thing, just the extra blocks def handle_scale(interpreter, speaker, modify_dict, obj): old_blocks = list(obj.blocks.items()) bounds = obj.get_bounds() mx, my, mz = (bounds[0], bounds[2], bounds[4]) csf = modify_dict.get("categorical_scale_factor") origin = [mx, my, mz] if not csf: if modify_dict.get("numerical_scale_factor"): raise ErrorWithResponse("I don't know how to handle numerical_scale_factor yet") else: raise ErrorWithResponse( "I think I am supposed to scale something but I don't know which dimensions to scale" ) destroy_task_data = {"schematic": old_blocks} if csf == "WIDER": if bounds[1] - bounds[0] > bounds[5] - bounds[4]: lam = (2.0, 1.0, 1.0) else: lam = (1.0, 1.0, 2.0) new_blocks = maybe_convert_to_list(scale(old_blocks, lam)) destroy_task_data = None elif csf == "NARROWER": if bounds[1] - bounds[0] > bounds[5] - bounds[4]: lam = (0.5, 1.0, 1.0) else: lam = (1.0, 1.0, 0.5) new_blocks = maybe_convert_to_list(shrink_sample(old_blocks, lam)) elif csf == "TALLER": lam = (1.0, 2.0, 1.0) new_blocks = maybe_convert_to_list(scale(old_blocks, lam)) destroy_task_data = None elif csf == "SHORTER": lam = (1.0, 0.5, 1.0) new_blocks = maybe_convert_to_list(shrink_sample(old_blocks, lam)) elif csf == "SKINNIER": lam = (0.5, 1.0, 0.5) new_blocks = maybe_convert_to_list(shrink_sample(old_blocks, lam)) elif csf == "FATTER": lam = (2.0, 1.0, 2.0) new_blocks = maybe_convert_to_list(scale(old_blocks, lam)) destroy_task_data = None elif csf == "BIGGER": lam = (2.0, 2.0, 2.0) destroy_task_data = None new_blocks = maybe_convert_to_list(scale(old_blocks, lam)) elif csf == "SMALLER": lam = (0.5, 0.5, 0.5) new_blocks = maybe_convert_to_list(shrink_sample(old_blocks, lam)) M_new = np.max([l for l, idm in new_blocks], axis=0) m_new = np.min([l for l, idm in new_blocks], axis=0) new_extent = (M_new[0] - m_new[0], M_new[1] - m_new[1], M_new[2] - m_new[2]) old_extent = (bounds[1] - bounds[0], bounds[3] - bounds[2], bounds[5] - bounds[4]) origin = ( mx - (new_extent[0] - old_extent[0]) // 2, my, mz - (new_extent[2] - old_extent[2]) // 2, ) # FIXME deal with tags!!! build_task_data = { "blocks_list": new_blocks, "origin": origin, # "schematic_tags": tags, } return destroy_task_data, build_task_data def handle_fill(interpreter, speaker, modify_dict, obj): old_blocks = list(obj.blocks.items()) bounds = obj.get_bounds() mx, my, mz = (bounds[0], bounds[2], bounds[4]) origin = [mx, my, mz] destroy_task_data = None if modify_dict.get("modify_type") == "FILL": if modify_dict.get("new_block"): # TODO FILTERS, also in build block_type = get_block_type(modify_dict["new_block"]) new_blocks = fill_flat(old_blocks, fill_material=block_type) else: new_blocks = fill_flat(old_blocks) else: # modify_dict.get("modify_type") == "hollow" new_blocks = hollow(old_blocks) # destroy_task_data = {"schematic": old_blocks} # FIXME deal with tags!!! build_task_data = { "blocks_list": maybe_convert_to_list(new_blocks), "origin": origin, # "schematic_tags": tags, } return destroy_task_data, build_task_data def handle_replace(interpreter, speaker, modify_dict, obj): old_blocks = list(obj.blocks.items()) bounds = obj.get_bounds() mx, my, mz = (bounds[0], bounds[2], bounds[4]) origin = (mx, my, mz) new_block_type = get_block_type(modify_dict["new_block"]) destroy_task_data = None if modify_dict.get("old_block"): # TODO FILTERS, also in build # TODO "make the red blocks green" etc- currently get_block type does not return a list of possibilities old_block_type = get_block_type(modify_dict["old_block"]) new_blocks = replace_by_blocktype( old_blocks, new_idm=new_block_type, current_idm=old_block_type ) else: geom_d = modify_dict.get("replace_geometry") geometry = {} schematic = maybe_convert_to_npy(old_blocks) geometry["offset"] = np.array(schematic.shape[:3]) / 2 reldir = geom_d.get("relative_direction", "TOP") if reldir == "TOP": reldir = "UP" elif reldir == "BOTTOM": reldir = "DOWN" reldir_vec = rotation.DIRECTIONS[reldir] look = ( interpreter.agent.perception_modules["low_level"] .get_player_struct_by_name(speaker) .look ) dir_vec = rotation.transform(reldir_vec, look.yaw, 0, inverted=True) geometry["v"] = dir_vec projections = [] for l, idm in old_blocks: projections.append((np.array(l) - geometry["offset"]) @ reldir_vec) a = geom_d.get("amount", "HALF") if a == "QUARTER": geometry["threshold"] = (np.max(projections) - np.min(projections)) / 4 else: geometry["threshold"] = 0.0 new_blocks = replace_by_halfspace(old_blocks, new_idm=new_block_type, geometry=geometry) # FIXME deal with tags!!! build_task_data = { "blocks_list": maybe_convert_to_list(new_blocks), "origin": origin, # "schematic_tags": tags, } return destroy_task_data, build_task_data # TODO don't destroy first def handle_thicken(interpreter, speaker, modify_dict, obj): old_blocks = list(obj.blocks.items()) bounds = obj.get_bounds() mx, my, mz = (bounds[0], bounds[2], bounds[4]) origin = [mx, my, mz] if modify_dict.get("modify_type") == "THICKER": num_blocks = modify_dict.get("num_blocks", 1) new_blocks = thicker(old_blocks, delta=num_blocks) else: raise ErrorWithResponse("I don't know how thin out blocks yet") destroy_task_data = {"schematic": old_blocks} # FIXME deal with tags!!! build_task_data = { "blocks_list": new_blocks, "origin": origin, # "schematic_tags": tags, } return destroy_task_data, build_task_data
craftassist-master
python/craftassist/dialogue_objects/modify_helpers.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import logging from multiprocessing import Queue, Process import sys import os from mc_memory_nodes import InstSegNode from heuristic_perception import all_nearby_objects from shapes import get_bounds VISION_DIR = os.path.dirname(os.path.realpath(__file__)) CRAFTASSIST_DIR = os.path.join(VISION_DIR, "../") SEMSEG_DIR = os.path.join(VISION_DIR, "semantic_segmentation/") sys.path.append(CRAFTASSIST_DIR) sys.path.append(SEMSEG_DIR) import build_utils as bu from semseg_models import SemSegWrapper # TODO all "subcomponent" operations are replaced with InstSeg class SubcomponentClassifierWrapper: def __init__(self, agent, model_path, vocab_path, perceive_freq=0): self.agent = agent self.memory = self.agent.memory self.perceive_freq = perceive_freq if model_path is not None: self.subcomponent_classifier = SubComponentClassifier(voxel_model_path=model_path, vocab_path=vocab_path) self.subcomponent_classifier.start() else: self.subcomponent_classifier = None def perceive(self, force=False): if self.perceive_freq == 0 and not force: return if self.perceive_freq > 0 and self.agent.count % self.perceive_freq != 0 and not force: return if self.subcomponent_classifier is None: return # TODO don't all_nearby_objects again, search in memory instead to_label = [] # add all blocks in marked areas for pos, radius in self.agent.areas_to_perceive: for obj in all_nearby_objects(self.agent.get_blocks, pos, radius): to_label.append(obj) # add all blocks near the agent for obj in all_nearby_objects(self.agent.get_blocks, self.agent.pos): to_label.append(obj) for obj in to_label: self.subcomponent_classifier.block_objs_q.put(obj) # everytime we try to retrieve as many recognition results as possible while not self.subcomponent_classifier.loc2labels_q.empty(): loc2labels, obj = self.subcomponent_classifier.loc2labels_q.get() loc2ids = dict(obj) label2blocks = {} def contaminated(blocks): """ Check if blocks are still consistent with the current world """ mx, Mx, my, My, mz, Mz = get_bounds(blocks) yzxb = self.agent.get_blocks(mx, Mx, my, My, mz, Mz) for b, _ in blocks: x, y, z = b if loc2ids[b][0] != yzxb[y - my, z - mz, x - mx, 0]: return True return False for loc, labels in loc2labels.items(): b = (loc, loc2ids[loc]) for l in labels: if l in label2blocks: label2blocks[l].append(b) else: label2blocks[l] = [b] for l, blocks in label2blocks.items(): ## if the blocks are contaminated we just ignore if not contaminated(blocks): locs = [loc for loc, idm in blocks] InstSegNode.create(self.memory, locs, [l]) class SubComponentClassifier(Process): """ A classifier class that calls a voxel model to output object tags. """ def __init__(self, voxel_model_path=None, vocab_path=None): super().__init__() if voxel_model_path is not None: logging.info( "SubComponentClassifier using voxel_model_path={}".format(voxel_model_path) ) self.model = SemSegWrapper(voxel_model_path, vocab_path) else: raise Exception("specify a segmentation model") self.block_objs_q = Queue() # store block objects to be recognized self.loc2labels_q = Queue() # store loc2labels dicts to be retrieved by the agent self.daemon = True def run(self): """ The main recognition loop of the classifier """ while True: # run forever tb = self.block_objs_q.get(block=True, timeout=None) loc2labels = self._watch_single_object(tb) self.loc2labels_q.put((loc2labels, tb)) def _watch_single_object(self, tuple_blocks): """ Input: a list of tuples, where each tuple is ((x, y, z), [bid, mid]). This list represents a block object. Output: a dict of (loc, [tag1, tag2, ..]) pairs for all non-air blocks. """ def get_tags(p): """ convert a list of tag indices to a list of tags """ return [self.model.tags[i][0] for i in p] def apply_offsets(cube_loc, offsets): """ Convert the cube location back to world location """ return (cube_loc[0] + offsets[0], cube_loc[1] + offsets[1], cube_loc[2] + offsets[2]) np_blocks, offsets = bu.blocks_list_to_npy(blocks=tuple_blocks, xyz=True) pred = self.model.segment_object(np_blocks) # convert prediction results to string tags return dict([(apply_offsets(loc, offsets), get_tags([p])) for loc, p in pred.items()]) def recognize(self, list_of_tuple_blocks): """ Multiple calls to _watch_single_object """ tags = dict() for tb in list_of_tuple_blocks: tags.update(self._watch_single_object(tb)) return tags
craftassist-master
python/craftassist/voxel_models/subcomponent_classifier.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import logging import sys import os import torch GEOSCORER_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "geoscorer/") sys.path.append(GEOSCORER_DIR) from geoscorer_wrapper import ContextSegmentMergerWrapper from spatial_utils import shift_sparse_voxel_to_origin, densify class Geoscorer(object): """ A model class that provides geoscorer functionality. This is distinct from the wrapper itself because I see the wrapper becoming more specialized as we add more functionality and this object possible becoming a process or holding multiple wrappers. """ def __init__(self, merger_model_path=None): if merger_model_path is not None: logging.info("Geoscorer using merger_model_path={}".format(merger_model_path)) self.merger_model = ContextSegmentMergerWrapper(merger_model_path) else: raise Exception("specify a geoscorer model") self.radius = self.merger_model.context_sl // 2 self.seg_sl = self.merger_model.seg_sl self.blacklist = ["BETWEEN", "INSIDE", "AWAY", "NEAR"] # Define the circumstances where we can use geoscorer def use(self, steps, repeat_num, rel_dir): if repeat_num > 1 or steps is not None: return False if rel_dir is None or rel_dir in self.blacklist: return False return True def produce_segment_pos_in_context(self, segment, context, brc): # Offset puts us right outside of the bottom right corner # c_offset = [sum(x) for x in zip(brc, (-1, -1, -1))] c_offset = brc context_p = self._process_context(context) segment_p = self._process_segment(segment) bottom_right_coord = self._seg_context_processed_to_coord(segment_p, context_p, c_offset) return bottom_right_coord def _seg_context_processed_to_coord(self, segment, context, context_off): local_coord = self.merger_model.segment_context_to_pos(segment, context) global_coord = [sum(x) for x in zip(local_coord, context_off)] return global_coord def _process_context(self, context): c_tensor = torch.from_numpy(context[:, :, :, 0]).long().to(device="cuda") return c_tensor def _process_segment(self, segment): """ Takes a segment, described as a list of tuples of the form: ((x, y, z), (block_id, ?)) Returns an 8x8x8 block with the segment shifted to the origin its bounds. """ shifted_seg, _ = shift_sparse_voxel_to_origin(segment) sl = self.seg_sl c = self.seg_sl // 2 p, _ = densify(shifted_seg, [sl, sl, sl], center=[c, c, c], useid=True) s_tensor = torch.from_numpy(p).long().to(device="cuda") return s_tensor
craftassist-master
python/craftassist/voxel_models/geoscorer.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib import plotly.graph_objs as go matplotlib.use("Agg") import matplotlib.pyplot as plt import visdom import pickle import os import torch GEOSCORER_DIR = os.path.dirname(os.path.realpath(__file__)) MC_DIR = os.path.join(GEOSCORER_DIR, "../../../") A = Axes3D # to make flake happy :( def draw_color_hash(schematic, vis, title="", threshold=0.05, win=None, bins=3): # schematic is DxHxW, each entry an index into hash bin clrs = [] schematic = schematic.cpu() X = torch.nonzero(schematic) clrs = np.zeros((X.shape[0], 3)) for i in range(X.shape[0]): r = schematic[X[i][0], X[i][1], X[i][2]] r = r - 1 clrs[i][2] = r % bins r = r - clrs[i][2] clrs[i][1] = r / bins % bins r = r - clrs[i][1] * bins clrs[i][0] = r / bins ** 2 clrs = (256 * clrs / bins).astype("int64") w = vis.scatter( X=X.numpy(), win=win, opts={ "markercolor": clrs, "markersymbol": "square", "markersize": 15, "title": title, "camera": dict(eye=dict(x=2, y=0.1, z=2)), }, ) vis._send({"win": w, "camera": dict(eye=dict(x=2, y=0.1, z=2))}) return w def draw_rgb(schematic, vis, title="", threshold=0.05, win=None, colorio=2): clrs = [] schematic = schematic.cpu() szs = schematic.shape X = torch.nonzero(schematic[:3, :, :, :].norm(2, 0) > threshold) U = schematic.view(szs[0], -1).t() X_lin = szs[2] * szs[3] * X[:, 0] + szs[3] * X[:, 1] + X[:, 2] clrs = U[X_lin] clrs = torch.clamp(clrs, 0, 1) if clrs.shape[1] == 1: clrs = clrs.repeat(1, 3) clrs = clrs / 2 colors = (256 * clrs[:, 0:3]).long().numpy() w = vis.scatter( X=X, win=win, opts={ "markercolor": colors, "markersymbol": "square", "markersize": 15, "title": title, "camera": dict(eye=dict(x=2, y=0.1, z=2)), }, ) vis._send({"win": w, "camera": dict(eye=dict(x=2, y=0.1, z=2))}) return w def cuboid_data(pos, size=(1, 1, 1)): # code taken from # https://stackoverflow.com/a/35978146/4124317 # suppose axis direction: x: to left; y: to inside; z: to upper # get the (left, outside, bottom) point o = [a - b / 2 for a, b in zip(pos, size)] # get the length, width, and height l, w, h = size x = [ [o[0], o[0] + l, o[0] + l, o[0], o[0]], [o[0], o[0] + l, o[0] + l, o[0], o[0]], [o[0], o[0] + l, o[0] + l, o[0], o[0]], [o[0], o[0] + l, o[0] + l, o[0], o[0]], ] y = [ [o[1], o[1], o[1] + w, o[1] + w, o[1]], [o[1], o[1], o[1] + w, o[1] + w, o[1]], [o[1], o[1], o[1], o[1], o[1]], [o[1] + w, o[1] + w, o[1] + w, o[1] + w, o[1] + w], ] z = [ [o[2], o[2], o[2], o[2], o[2]], [o[2] + h, o[2] + h, o[2] + h, o[2] + h, o[2] + h], [o[2], o[2], o[2] + h, o[2] + h, o[2]], [o[2], o[2], o[2] + h, o[2] + h, o[2]], ] return np.array(x), np.array(y), np.array(z) def plotCubeAt(pos=(0, 0, 0), color=(0, 1, 0, 1), ax=None): # Plotting a cube element at position pos if ax is not None: X, Y, Z = cuboid_data(pos) ax.plot_surface(X, Y, Z, color=color, rstride=1, cstride=1, alpha=1) class SchematicPlotter: def __init__(self, viz): self.viz = viz ims = pickle.load( open(os.path.join(MC_DIR, "minecraft_specs/block_images/block_data"), "rb") ) colors = [] alpha = [] self.bid_to_index = {} self.index_to_color = {} self.bid_to_color = {} count = 0 for b, I in ims["bid_to_image"].items(): I = I.reshape(1024, 4) if all(I[:, 3] < 0.2): colors = (0, 0, 0) else: colors = I[I[:, 3] > 0.2, :3].mean(axis=0) / 256.0 alpha = I[:, 3].mean() / 256.0 self.bid_to_color[b] = (colors[0], colors[1], colors[2], alpha) self.bid_to_index[b] = count self.index_to_color[count] = (colors[0], colors[1], colors[2], alpha) count = count + 1 def drawMatplot(self, schematic, n=1, title=""): fig = plt.figure() ax = fig.gca(projection="3d") ax.set_aspect("equal") if type(schematic) is np.ndarray: for i in range(schematic.shape[0]): for j in range(schematic.shape[1]): for k in range(schematic.shape[2]): if schematic[i, j, k, 0] > 0: c = self.bid_to_color.get(tuple(schematic[i, j, k, :])) if c: plotCubeAt(pos=(i, k, j), color=c, ax=ax) # x, z, y else: for b in schematic: if b[1][0] > 0: c = self.bid_to_color.get(b[1]) if c: plotCubeAt(pos=(b[0][0], b[0][2], b[0][1]), color=c, ax=ax) # x, z, y plt.title(title) visrotate(n, ax, self.viz) return fig, ax def drawGeoscorerPlotly(self, schematic): x = [] y = [] z = [] id = [] if type(schematic) is torch.Tensor: sizes = list(schematic.size()) for i in range(sizes[0]): for j in range(sizes[1]): for k in range(sizes[2]): if schematic[i, j, k] > 0: x.append(i) y.append(j) z.append(k) id.append(schematic[i, j, k].item()) elif type(schematic) is np.ndarray: for i in range(schematic.shape[0]): for j in range(schematic.shape[1]): for k in range(schematic.shape[2]): if schematic[i, j, k, 0] > 0: c = self.bid_to_color.get(tuple(schematic[i, j, k, :])) if c: x.append(i) y.append(j) z.append(k) id.append(i + j + k) else: for b in schematic: if b[1][0] > 0: c = self.bid_to_color.get(b[1]) if c: x.append(b[0][0]) y.append(b[0][2]) z.append(b[0][1]) id.append(i + j + k) trace1 = go.Scatter3d( x=np.asarray(x).transpose(), y=np.asarray(y).transpose(), z=np.asarray(z).transpose(), mode="markers", marker=dict( size=5, symbol="square", color=id, colorscale="Viridis", line=dict(color="rgba(217, 217, 217, 1.0)", width=0), opacity=1.0, ), ) data = [trace1] layout = go.Layout(margin=dict(l=0, r=0, b=0, t=0)) fig = go.Figure(data=data, layout=layout) self.viz.plotlyplot(fig) return fig def drawPlotly(self, schematic, title="", ptype="scatter"): x = [] y = [] z = [] id = [] clrs = [] if type(schematic) is torch.Tensor: sizes = list(schematic.size()) for i in range(sizes[0]): for j in range(sizes[1]): for k in range(sizes[2]): if schematic[i, j, k] > 0: x.append(i) y.append(j) z.append(k) id.append(schematic[i, j, k].item()) elif type(schematic) is np.ndarray: for i in range(schematic.shape[0]): for j in range(schematic.shape[1]): for k in range(schematic.shape[2]): if schematic[i, j, k, 0] > 0: c = self.bid_to_color.get(tuple(schematic[i, j, k, :])) if c: x.append(i) y.append(j) z.append(k) id.append(i + j + k) clrs.append(c) else: for b in schematic: if b[1][0] > 0: c = self.bid_to_color.get(b[1]) if c: x.append(b[0][0]) y.append(b[0][2]) z.append(b[0][1]) id.append(i + j + k) clrs.append(c) # clrs.append(self.bid_to_index[b[1]]) if ptype == "scatter": X = torch.Tensor([x, y, z]).t() if len(clrs) == 0: raise Exception("all 0 input?") colors = (256 * torch.Tensor(clrs)[:, 0:3]).long().numpy() w = self.viz.scatter( X=X, opts={ "markercolor": colors, "markersymbol": "square", "markersize": 15, "title": title, "camera": dict(eye=dict(x=2, y=0.1, z=2)), }, ) # layout = go.Layout(camera =dict(eye=dict(x=2, y=.1, z=2))) self.viz._send({"win": w, "camera": dict(eye=dict(x=2, y=0.1, z=2))}) return w else: maxid = max(clrs) clr_set = set(clrs) cmap = [ [ c / maxid, "rgb({},{},{})".format( self.index_to_color[c][0], self.index_to_color[c][1], self.index_to_color[c][0], ), ] for c in clr_set ] trace1 = go.Volume( x=np.asarray(x).transpose(), y=np.asarray(y).transpose(), z=np.asarray(z).transpose(), value=np.asarray(clrs).transpose(), isomin=0.1, isomax=0.8, colorscale=cmap, opacity=0.1, # needs to be small to see through all surfaces surface_count=21, # needs to be a large number for good volume rendering ) data = [trace1] layout = go.Layout(margin=dict(l=0, r=0, b=0, t=0)) fig = go.Figure(data=data, layout=layout) self.viz.plotlyplot(fig) return fig def visrotate(n, ax, viz): for angle in range(45, 405, 360 // n): ax.view_init(30, angle) plt.draw() viz.matplot(plt) if __name__ == "__main__": import sys import argparse parser = argparse.ArgumentParser() parser.add_argument( "--dataset", type=str, default="shapes", help="which\ dataset to visualize (shapes|segments)", ) opts = parser.parse_args() CRAFTASSIST_DIR = os.path.join(GEOSCORER_DIR, "../") sys.path.append(CRAFTASSIST_DIR) vis = visdom.Visdom(server="http://localhost") sp = SchematicPlotter(vis) # fig, ax = sp.drawMatplot(schematic, 4, "yo") if opts.dataset == "shapes": import shape_dataset as sdata num_examples = 3 num_neg = 3 dataset = sdata.SegmentCenterShapeData( nexamples=num_examples, for_vis=True, useid=True, shift_max=10, nneg=num_neg ) for n in range(num_examples): curr_data = dataset[n] sp.drawPlotly(curr_data[0]) for i in range(num_neg): sp.drawPlotly(curr_data[i + 1]) elif opts.dataset == "segments": import inst_seg_dataset as idata num_examples = 1 num_neg = 1 dataset = idata.SegmentCenterInstanceData( nexamples=num_examples, shift_max=10, nneg=num_neg ) for n in range(num_examples): curr_data = dataset[n] sp.drawPlotly(curr_data[0]) for i in range(num_neg): sp.drawPlotly(curr_data[i + 1]) else: raise Exception("Unknown dataset: {}".format(opts.dataset)) """ oldc = clrs[0] clrs[0] = 0 maxid = max(clrs) clr_set = set(clrs) cmap = [[c/maxid, "rgb({},{},{})".format(self.index_to_color[c][0], self.index_to_color[c][1], self.index_to_color[c][0])] for c in clr_set] # clrs[0] = oldc trace1 = go.Scatter3d( x=np.asarray(x).transpose(), y=np.asarray(y).transpose(), z=np.asarray(z).transpose(), mode="markers", marker=dict( size=15, symbol="square", color=clrs, # color=id, colorscale=cmap, # colorscale="Viridis", line=dict(color="rgba(217, 217, 217, 1.0)", width=0), opacity=1.0, ), ) """
craftassist-master
python/craftassist/voxel_models/plot_voxels.py
import pickle import argparse import glob import os import numpy as np from typing import List, Dict, Set, Tuple from pathlib import Path from copy import deepcopy from tqdm import tqdm def open_house_schematic(house_directory: Path) -> np.ndarray: with open(Path(house_directory) / "schematic.npy", "rb") as file: return np.load(file) def get_unique_pairs(house_dir: Path) -> Set: try: pairs = set() schematic = open_house_schematic(house_dir) # House schematic is in yzx format # (instance schematics are in xyz). for y in range(schematic.shape[0]): for z in range(schematic.shape[1]): for x in range(schematic.shape[2]): pair = (int(schematic[y, z, x, 0]), int(schematic[y, z, x, 1])) pairs.add(pair) return pairs except FileNotFoundError: print(f"schematic not found at {house_dir}") return set() def make_id_vocabulary(houses_data_path: Path) -> Dict[Tuple[int, int], int]: all_houses = glob.glob(str(houses_data_path / "houses" / "*")) all_sets = map(get_unique_pairs, tqdm(all_houses)) block_meta_pairs: Set[Tuple[int, int]] = set() for s in all_sets: block_meta_pairs = block_meta_pairs.union(s) vocabulary = {pair: i for i, pair in enumerate(block_meta_pairs)} return vocabulary def make_new_item(house_data_path: Path, item: List, vocabulary) -> List: instance_schematic: np.ndarray = item[0] house_name = item[-1] house_schematic = open_house_schematic(house_data_path / "houses" / house_name) assert house_schematic.shape[0] == instance_schematic.shape[1] assert house_schematic.shape[1] == instance_schematic.shape[2] assert house_schematic.shape[2] == instance_schematic.shape[0] new_schematic = instance_schematic.astype(np.int16) for x in range(instance_schematic.shape[0]): for y in range(instance_schematic.shape[1]): for z in range(instance_schematic.shape[2]): pair = (int(house_schematic[y, z, x, 0]), int(house_schematic[y, z, x, 1])) new_schematic[x, y, z] = vocabulary[pair] new_item = list(deepcopy(item)) new_item[0] = new_schematic return tuple(new_item) def create_new_seg_ds(house_data_path: Path, segmentation_data: List, vocabulary: Dict[Tuple[int, int], int]) -> List: new_seg_data = [] for item in segmentation_data: new_item = make_new_item(house_data_path, item, vocabulary) new_seg_data.append(new_item) return new_seg_data if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--house-data-dir", "--house", type=str, required=True) parser.add_argument("--segmentation-data-dir", "--seg", type=str, required=True) parser.add_argument("--out-dir", "--out", type=str, required=True) parser.add_argument("--vocabulary-in", "--vin", type=str, required=False) parser.add_argument("--vocabulary-out", "--vout", type=str, required=False) args = parser.parse_args() assert args.vocabulary_in is not None or args.vocabulary_out is not None, "Must specify vin or vout" house_data_dir = Path(args.house_data_dir) segmentation_data_dir = Path(args.segmentation_data_dir) out_dir = Path(args.out_dir) os.makedirs(out_dir, exist_ok=True) vocab_in = args.vocabulary_in if vocab_in: with open(vocab_in, "rb") as file: vocabulary = pickle.load(file) else: vocabulary = make_id_vocabulary(house_data_dir) with open(args.vocabulary_out, "wb") as file: pickle.dump(vocabulary, file) for ds_name in ["training_data.pkl", "validation_data.pkl"]: in_path = segmentation_data_dir / ds_name out_path = out_dir / ds_name with open(in_path, "rb") as file: seg_data = pickle.load(file) new_ds = create_new_seg_ds(house_data_dir, seg_data, vocabulary) with open(out_path, "wb") as file: pickle.dump(new_ds, file)
craftassist-master
python/craftassist/voxel_models/make_seg_ds.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import os import argparse import sys from data_loaders import InstSegData import torch import torch.nn as nn import torch.optim as optim import instseg_models as models ################################################## # for debugging ################################################## def print_slices(model, H, r, c, n, data): x, y = data[n] x = x.unsqueeze(0).cuda() yhat = model(x).squeeze() print(x[0, c - r : c + r, H, c - r : c + r].cpu()) print(y[c - r : c + r, H, c - r : c + r]) _, mm = yhat.max(0) print(mm[c - r : c + r, H, c - r : c + r].cpu()) def blocks_from_data(data, n): x, y = data[n] ids = x.nonzero() idl = ids.tolist() blocks = [((b[0], b[1], b[2]), (x[b[0], b[1], b[2]].item() + 1, 0)) for b in idl] return x, y, blocks def watcher_output(S, n, data): x, y, blocks = blocks_from_data(data, n) class_stats = {} for i in range(29): class_stats[train_data.classes["idx2name"][i]] = len((y == i).nonzero()) # print(train_data.classes['idx2name'][i], len((y==i).nonzero())) a = S._watch_single_object(blocks) return class_stats, a ################################################## # training loop ################################################## def validate(model, validation_data): pass def train_epoch(model, DL, loss, optimizer, args): model.train() losses = [] for b in DL: x = b[0] s = b[1].unsqueeze(1).float() y = b[2].float() masks = b[3].float() if args.cuda: x = x.cuda() s = s.cuda() y = y.cuda() masks = masks.cuda() model.train() yhat = model(x, s) # loss is expected to not reduce preloss = loss(yhat, y) u = torch.zeros_like(masks).uniform_(0, 1) idx = u.view(-1).gt((1 - args.sample_empty_prob)).nonzero().squeeze() masks.view(-1)[idx] = 1 preloss *= masks l = preloss.sum() / masks.sum() losses.append(l.item()) l.backward() optimizer.step() return losses if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--debug", type=int, default=-1, help="no shuffle, keep only debug num examples" ) parser.add_argument("--num_labels", type=int, default=50, help="How many top labels to use") parser.add_argument("--num_epochs", type=int, default=50, help="training epochs") parser.add_argument("--num_scales", type=int, default=3, help="if 0 use flat ") parser.add_argument("--augment", default="none", help="none or maxshift:K_underdirt:J") parser.add_argument("--cuda", action="store_true", help="use cuda") parser.add_argument("--gpu_id", type=int, default=0, help="which gpu to use") parser.add_argument("--batchsize", type=int, default=32, help="batch size") parser.add_argument("--data_dir", default="/checkpoint/aszlam/minecraft/segmentation_data/") parser.add_argument("--save_model", default="", help="where to save model (nowhere if blank)") parser.add_argument( "--load_model", default="", help="from where to load model (nowhere if blank)" ) parser.add_argument("--save_logs", default="/dev/null", help="where to save logs") parser.add_argument( "--hidden_dim", type=int, default=128, help="size of hidden dim in fc layer" ) parser.add_argument("--embedding_dim", type=int, default=4, help="size of blockid embedding") parser.add_argument("--lr", type=float, default=0.01, help="step size for net") parser.add_argument( "--sample_empty_prob", type=float, default=0.01, help="prob of taking gradients on empty locations", ) parser.add_argument("--mom", type=float, default=0.0, help="momentum") parser.add_argument("--ndonkeys", type=int, default=4, help="workers in dataloader") args = parser.parse_args() this_dir = os.path.dirname(os.path.realpath(__file__)) parent_dir = os.path.join(this_dir, "../") sys.path.append(parent_dir) print("loading train data") aug = {} if args.augment != "none": a = args.augment.split("_") aug = {t.split(":")[0]: int(t.split(":")[1]) for t in a} aug["flip_rotate"] = True if args.debug > 0 and len(aug) > 0: print("warning debug and augmentation together?") train_data = InstSegData( args.data_dir + "training_data.pkl", nexamples=args.debug, augment=aug ) shuffle = True if args.debug > 0: shuffle = False print("making dataloader") rDL = torch.utils.data.DataLoader( train_data, batch_size=args.batchsize, shuffle=shuffle, pin_memory=True, drop_last=True, num_workers=args.ndonkeys, ) print("making model") args.load = False if args.load_model != "": args.load = True if args.num_scales == 0: model = models.FlatInstSegNet(args) else: model = models.MsInstSegNet(args) bce = nn.BCEWithLogitsLoss(reduction="none") if args.cuda: model.cuda() bce.cuda() optimizer = optim.Adagrad(model.parameters(), lr=args.lr) # optimizer = optim.Adam(model.parameters(), lr=args.lr) print("training") for m in range(args.num_epochs): losses = train_epoch(model, rDL, bce, optimizer, args) print(" \nEpoch {} loss: {}".format(m, sum(losses) / len(losses))) if args.save_model != "": model.save(args.save_model)
craftassist-master
python/craftassist/voxel_models/instance_segmentation/train_instance_segmentation.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import pickle import numpy as np import torch from torch.utils import data as tds import random def get_rectanguloid_mask(y, fat=1): M = y.nonzero().max(0)[0].tolist() m = y.nonzero().min(0)[0].tolist() M = [min(M[i] + fat, y.shape[i] - 1) for i in range(3)] m = [max(v - fat, 0) for v in m] mask = torch.zeros_like(y) mask[m[0] : M[0], m[1] : M[1], m[2] : M[2]] = 1 return mask def underdirt(schematic, labels=None, max_shift=0, nothing_id=0): # todo fancier dirt! # FIXME!!!! label as ground where appropriate shift = torch.randint(max_shift + 1, (1,)).item() if shift > 0: new_schematic = torch.LongTensor(schematic.size()) new_schematic[:, shift:, :] = schematic[:, :-shift, :] new_schematic[:, :shift, :] = 3 new_labels = None if labels is not None: new_labels = torch.LongTensor(labels.size()) new_labels[:, shift:, :] = labels[:, :-shift, :] new_labels[:, :shift, :] = nothing_id return new_schematic, new_labels else: return schematic, labels def flip_rotate(c, l=None, idx=None): """ Randomly transform the cube for more data. The transformation is chosen from: 0. original 1. x-z plane rotation 90 2. x-z plane rotation 180 3. x-z plane rotation 270 4. x-axis flip 5. z-axis flip """ idx = np.random.choice(range(6)) if (idx is None) else idx l_ = l if idx == 0: c_ = c l_ = l elif idx >= 1 and idx <= 3: # rotate npc = c.numpy() npc = np.rot90(npc, idx, axes=(0, 2)) # rotate on the x-z plane c_ = torch.from_numpy(npc.copy()) if l is not None: npl = l.numpy() npl = np.rot90(npl, idx, axes=(0, 2)) # rotate on the x-z plane l_ = torch.from_numpy(npl.copy()) else: # flip npc = c.numpy() npc = np.flip(npc, axis=(idx - 4) * 2) # 0 or 2 c_ = torch.from_numpy(npc.copy()) if l is not None: npl = l.numpy() npl = np.flip(npl, axis=(idx - 4) * 2) # 0 or 2 l_ = torch.from_numpy(npl.copy()) return c_, l_, idx def pad_to_sidelength(schematic, labels=None, nothing_id=0, sidelength=32): szs = list(schematic.size()) szs = np.add(szs, -sidelength) pad = [] # this is all backwards bc pytorch pad semantics :( for s in szs: if s >= 0: pad.append(0) else: pad.append(-s) pad.append(0) schematic = torch.nn.functional.pad(schematic, pad[::-1]) if labels is not None: labels = torch.nn.functional.pad(labels, pad[::-1], value=nothing_id) return schematic, labels # TODO cut outliers # FIXME this should be better def fit_in_sidelength( schematic, center_on_labels=False, labels=None, nothing_id=0, sl=32, max_shift=0 ): schematic, labels = pad_to_sidelength( schematic, labels=labels, nothing_id=nothing_id, sidelength=sl ) if center_on_labels: nz = labels.nonzero() else: nz = schematic.nonzero() m, _ = nz.median(0) min_y, _ = nz.min(0) min_y = min_y[1] xshift = max(torch.randint(-max_shift, max_shift + 1, (1,)).item() - m[0].item() + sl // 2, 0) zshift = max(torch.randint(-max_shift, max_shift + 1, (1,)).item() - m[2].item() + sl // 2, 0) new_schematic = torch.LongTensor(sl, sl, sl).fill_(1) new_schematic[xshift:, : sl - min_y, zshift:] = schematic[ : sl - xshift, min_y:sl, : sl - zshift ] new_labels = None if labels is not None: new_labels = torch.LongTensor(sl, sl, sl).fill_(nothing_id) new_labels[xshift:, : sl - min_y, zshift:] = labels[: sl - xshift, min_y:sl, : sl - zshift] return new_schematic, new_labels, (xshift, -min_y, zshift) def make_example_from_raw( schematic, labels=None, center_on_labels=False, augment={}, nothing_id=0, sl=32 ): max_shift = augment.get("max_shift", 0) s, l, o = fit_in_sidelength( schematic, labels=labels, center_on_labels=center_on_labels, nothing_id=nothing_id, max_shift=max_shift, ) if len(augment) > 0: if augment.get("flip_rotate", False): s, l, _ = flip_rotate(s, l=l) m = augment.get("underdirt") if m is not None: # really should fix offset here.....TODO s, l = underdirt(s, labels=l, max_shift=m, nothing_id=nothing_id) s[s == 0] = 1 s -= 1 return s, l, o class InstSegData(tds.Dataset): def __init__( self, data_path, nexamples=-1, sidelength=32, classes=None, augment={}, min_inst_size=1, mask_fat=1, useid=True, ): self.sidelength = sidelength self.useid = useid self.examples = [] self.inst_data = pickle.load(open(data_path, "rb")) self.nexamples = nexamples self.augment = augment self.mask_fat = mask_fat if self.nexamples < 0: self.nexamples = len(self.inst_data) else: self.nexamples = min(len(self.inst_data), self.nexamples) def __getitem__(self, index): x = self.inst_data[index] has_label = [i for i in range(len(x[2])) if x[2][i] != "none"] i = random.choice(has_label) labels = (x[1] == i).astype("uint8") labels = torch.from_numpy(labels) s, l, o = make_example_from_raw( torch.from_numpy(x[0]), labels=labels, sl=self.sidelength, augment=self.augment, center_on_labels=True, ) seed = random.choice(l.nonzero().tolist()) seed_oh = l.clone().zero_() seed_oh[seed[0], seed[1], seed[2]] = 1 mask = get_rectanguloid_mask(l, fat=self.mask_fat) return s, seed_oh, l, mask def __len__(self): return self.nexamples # def drawme(s, islabel=False): # ss = s.clone() # if not islabel: # ss += 1 # ss[ss == 1] = 0 # else: # # fixme (4), also need to swap # ss[ss == 4] = 0 # fig, ax = sp.draw((torch.stack([ss, ss.clone().zero_()], 3)).numpy(), 4, "yo") if __name__ == "__main__": # import sys # import visdom # sys.path.append("/private/home/aszlam/fairinternal/minecraft/python/craftassist/geoscorer/") # import plot_voxels S = InstSegData("/checkpoint/aszlam/minecraft/segmentation_data/training_data.pkl") # viz = visdom.Visdom(server="http://localhost") # sp = plot_voxels.SchematicPlotter(viz) # def plot(i): # h = S[i] # z = torch.zeros(h[0].size()).long() # schematic = torch.stack([h[0], z], 3) # fig, ax = sp.draw(schematic.numpy(), 4, "yo") # return fig, ax, h
craftassist-master
python/craftassist/voxel_models/instance_segmentation/data_loaders.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np import torch import torch.nn as nn from data_loaders import make_example_from_raw def conv3x3x3(in_planes, out_planes, stride=1, bias=True): """3x3x3 convolution with padding""" return nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=bias) def conv3x3x3up(in_planes, out_planes, bias=True): """3x3x3 convolution with padding""" return nn.ConvTranspose3d( in_planes, out_planes, stride=2, kernel_size=3, padding=1, output_padding=1 ) def convbn(in_planes, out_planes, stride=1, bias=True): return nn.Sequential( (conv3x3x3(in_planes, out_planes, stride=stride, bias=bias)), nn.BatchNorm3d(out_planes), nn.ReLU(inplace=True), ) def convbnup(in_planes, out_planes, bias=True): return nn.Sequential( (conv3x3x3up(in_planes, out_planes, bias=bias)), nn.BatchNorm3d(out_planes), nn.ReLU(inplace=True), ) class InstSegNet(nn.Module): def __init__(self, opts): super(InstSegNet, self).__init__() if opts.load: if opts.load_model != "": self.load(opts.load_model) else: raise ("loading from file specified but no load_filepath specified") else: self.opts = opts self._build() def forward(self, x): raise NotImplementedError def save(self, filepath): self.cpu() sds = {} sds["opts"] = self.opts sds["state_dict"] = self.state_dict() torch.save(sds, filepath) if self.opts.cuda: self.cuda() def load(self, filepath): sds = torch.load(filepath) self.opts = sds["opts"] print("loading from file, using opts") print(self.opts) self._build() self.load_state_dict(sds["state_dict"]) self.zero_grad() class FlatInstSegNet(InstSegNet): def __init__(self, opts): super(FlatInstSegNet, self).__init__(opts) def _build(self): opts = self.opts embedding_dim = getattr(opts, "embedding_dim", 8) num_words = getattr(opts, "num_words", 255) num_layers = getattr(opts, "num_layers", 4) hidden_dim = getattr(opts, "hidden_dim", 64) self.embedding_dim = embedding_dim self.embedding = nn.Embedding(num_words, embedding_dim) self.layers = nn.ModuleList() self.num_layers = num_layers self.layers.append( nn.Sequential( nn.Conv3d(embedding_dim + 1, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) for i in range(num_layers - 1): self.layers.append( nn.Sequential( nn.Conv3d(hidden_dim + 1, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) self.out = nn.Conv3d(hidden_dim, 1, kernel_size=5, padding=2) def forward(self, x, seed_oh): # FIXME when pytorch is ready for this, embedding # backwards is soooooo slow # z = self.embedding(x) szs = list(x.size()) x = x.view(-1) z = self.embedding.weight.index_select(0, x) szs.append(self.embedding_dim) z = z.view(torch.Size(szs)) z = z.permute(0, 4, 1, 2, 3).contiguous() for i in range(self.num_layers): z = torch.cat((z, seed_oh), 1) z = self.layers[i](z) return self.out(z).squeeze() # num_scales = 3: # o --> o # ^ | # | v # o --> o --> o # ^ | # | v # o --> o --> o --> o # ^ | # | v # o --> o --> o --> o --> o --> o --> o --> o --> o # * * * * * # class MsInstSegNet(InstSegNet): def __init__(self, opts): super(MsInstSegNet, self).__init__(opts) def _build(self): opts = self.opts embedding_dim = getattr(opts, "embedding_dim", 8) num_words = getattr(opts, "num_words", 255) num_layers_per_scale = getattr(opts, "num_layers_per_scale", 1) hidden_dim = getattr(opts, "hidden_dim", 64) num_scales = getattr(opts, "num_scales", 3) num_cleanup = getattr(opts, "num_cleanup", 3) self.embedding_dim = embedding_dim self.embedding = nn.Embedding(num_words, embedding_dim) self.start = convbn(embedding_dim + 1, hidden_dim) self.scales = nn.ModuleList() self.downsamplers = nn.ModuleList() self.upsamplers = nn.ModuleList() self.cleanup = nn.ModuleList() for i in range(num_scales): scale = nn.ModuleList() if i != 0: self.downsamplers.append(convbn(hidden_dim, hidden_dim, stride=2)) self.upsamplers.append(convbnup(hidden_dim, hidden_dim)) for j in range(num_layers_per_scale * (num_scales - i)): d = hidden_dim e = d if i == 0: e = e + 1 # keep the seed around scale.append(convbn(e, d)) self.scales.append(scale) for i in range(num_cleanup): self.cleanup.append(convbn(hidden_dim, hidden_dim)) self.out = nn.Conv3d(hidden_dim, 1, kernel_size=5, padding=2) def forward(self, x, seed_oh): # FIXME when pytorch is ready for this, embedding # backwards is soooooo slow # z = self.embedding(x) nscales = len(self.scales) szs = list(x.size()) x = x.view(-1) z = self.embedding.weight.index_select(0, x) szs.append(self.embedding_dim) z = z.view(torch.Size(szs)) z = z.permute(0, 4, 1, 2, 3).contiguous() z = self.start(torch.cat((z, seed_oh), 1)) scales = [] v = 0 # flake... for i in range(nscales): if i > 0: u = self.downsamplers[i - 1](v) else: u = z for j in range(len(self.scales[i])): m = self.scales[i][j] if i == 0: u = torch.cat((u, seed_oh), 1) u = m(u) if j == 0: v = u.clone() scales.append(u) for i in range(nscales - 2, -1, -1): scales[i] = scales[i] + self.upsamplers[i](scales[i + 1]) z = scales[0] for m in self.cleanup: z = m(z) return self.out(z).squeeze() class Opt: pass ############################NOT DONE!!!!! class InstSegWrapper: def __init__(self, model, threshold=-1.0, blocks_only=True, cuda=False): if type(model) is str: opts = Opt() opts.load = True opts.load_model = model model = InstSegNet(opts) self.model = model self.cuda = cuda if self.cuda: model.cuda() else: model.cpu() @torch.no_grad() def segment_object(self, blocks): self.model.eval() blocks = torch.from_numpy(blocks)[:, :, :, 0] blocks, _, o = make_example_from_raw(blocks) blocks = blocks.unsqueeze(0) if self.cuda: blocks = blocks.cuda() y = self.model(blocks) _, mids = y.squeeze().max(0) locs = mids.nonzero() locs = locs.tolist() if self.blocks_only: return { tuple(np.subtract(l, o)): mids[l[0], l[1], l[2]].item() for l in locs if blocks[0, l[0], l[1], l[2]] > 0 } else: return {tuple(ll for ll in l): mids[l[0], l[1], l[2]].item() for l in locs} if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( "--hidden_dim", type=int, default=128, help="size of hidden dim in fc layer" ) parser.add_argument("--embedding_dim", type=int, default=16, help="size of blockid embedding") parser.add_argument("--num_words", type=int, default=256, help="number of blocks") parser.add_argument("--num_classes", type=int, default=20, help="number of blocks") args = parser.parse_args() args.load = False N = MsInstSegNet(args)
craftassist-master
python/craftassist/voxel_models/instance_segmentation/instseg_models.py
import random import sys import argparse sys.path.append("/private/home/rebeccaqian/minecraft/python/craftassist/") import minecraft_specs from shape_helpers import SHAPE_NAMES ID_DELIM = "^" BLOCK_NAMES = [v for k, v in minecraft_specs.get_block_data()["bid_to_name"].items() if k[0] < 256] COLOR_NAMES = [ "aqua", "black", "blue", "fuchsia", "green", "gray", "lime", "maroon", "navy", "olive", "purple", "red", "silver", "teal", "white", "yellow", "orange", "brown", "sienna", "pink", "light yellow", "dark yellow", "dark yellow", "gold", "gold", ] # COLOR_DATA = minecraft_specs.get_colour_data() def build_lf(ref_obj_dict, modify_dict): action_dict = {"action_type": "MODIFY", "modify_dict": modify_dict} if ref_obj_dict is not None: action_dict["reference_object"] = ref_obj_dict y = {"dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [action_dict]} return y def replace_with_span(d, split_text): if type(d) is dict: for k, v in d.items(): if type(v) is str: vsplit = v.split() identifier = vsplit[0].split(ID_DELIM) if len(identifier) > 1: identifier = identifier[1] has_id = [i for i, word in enumerate(split_text) if identifier in word] span = [0, [min(has_id), max(has_id)]] d[k] = {"span": span} for i in has_id: split_text[i] = split_text[i].strip(ID_DELIM + identifier) else: replace_with_span(v, split_text) else: return def get_target_object(): shape_name = random.choice(SHAPE_NAMES).lower() shape_name_split = shape_name.split("_") rid = str(random.random()) object_text = " ".join([v + ID_DELIM + rid for v in shape_name_split]) ref_obj = {"filters": {"has_name": object_text}} ref_obj_text = "the " + object_text return ref_obj, ref_obj_text def get_target_location(): loc_dict = {"location": {"location_type": "SPEAKER_LOOK"}} loc_text = "there" return loc_dict, loc_text def get_block(): rid = str(random.random()) if random.random() < 0.5: csplit = random.choice(COLOR_NAMES).split() colour = " ".join([w + ID_DELIM + rid for w in csplit]) block_dict = {"has_colour": colour} block_text = colour + " blocks" else: bsplit = random.choice(BLOCK_NAMES).split() blockname = " ".join([w + ID_DELIM + rid for w in bsplit]) block_dict = {"has_name": blockname} block_text = blockname return block_dict, block_text # THICKEN/SCALE/RIGIDMOTION/REPLACE/FILL class ModifyTemplates: def __init__(self): pass def generate(self): pass class ThickenTemplates(ModifyTemplates): def __init__(self, opts): pass def generate(self): ref_obj, ref_obj_text = get_target_object() modify_text = "make " + ref_obj_text if random.random() > 0.5: modify_text += " thicker" modify_dict = {"modify_type": "THICKER"} else: modify_text += " thinner" modify_dict = {"modify_type": "THINNER"} return modify_text, modify_dict, ref_obj_text, ref_obj class ScaleTemplates(ModifyTemplates): def __init__(self, opts): self.not_makephrase = 0.5 def generate(self): ref_obj, ref_obj_text = get_target_object() s = random.choice( ["WIDER", "NARROWER", "TALLER", "SHORTER", "SKINNIER", "FATTER", "BIGGER", "SMALLER"] ) modify_dict = {"modify_type": "SCALE", "categorical_scale_factor": s} modify_text = "make " + ref_obj_text + " " + s.lower() if random.random() < self.not_makephrase: if s == "WIDER": modify_text = "widen " + ref_obj_text elif s == "NARROWER": modify_text = "narrow " + ref_obj_text elif s == "SHORTER": modify_text = "shorten " + ref_obj_text elif s == "FATTER": modify_text = "fatten " + ref_obj_text elif s == "BIGGER": modify_text = ( random.choice(["upscale ", "grow ", "increase the size of "]) + ref_obj_text ) elif s == "SMALLER": modify_text = "shrink " + ref_obj_text return modify_text, modify_dict, ref_obj_text, ref_obj class RigidmotionTemplates(ModifyTemplates): def __init__(self, opts): self.opts = opts def generate(self): ref_obj, ref_obj_text = get_target_object() modify_dict = {"modify_type": "RIGIDMOTION"} if random.random() < self.opts.translate_prob: loc_dict, loc_text = get_target_location() modify_dict["location"] = loc_dict modify_text = random.choice(["move ", "put "]) + ref_obj_text + " " + loc_text else: if random.random() < self.opts.flip_prob: modify_dict["mirror"] = True modify_text = random.choice(["flip ", "mirror "]) + ref_obj_text else: d = random.choice(["LEFT", "RIGHT", "AROUND"]) modify_dict["categorical_angle"] = d modify_text = random.choice(["rotate ", "turn "]) + ref_obj_text + " " + d.lower() return modify_text, modify_dict, ref_obj_text, ref_obj class ReplaceTemplates(ModifyTemplates): def __init__(self, opts): self.opts = opts def generate(self): ref_obj, ref_obj_text = get_target_object() modify_dict = {"modify_type": "REPLACE"} new_block_dict, new_block_text = get_block() t = random.choice(["make |", "replace with", "swap with", "change to"]).split() if random.random() < self.opts.old_blocktype: # TODO "all" old_block_dict, old_block_text = get_block() modify_text = ( t[0] + " the " + old_block_text + " " + t[1].strip("|") + " " + new_block_text ) modify_dict["old_block"] = old_block_dict if random.random() > 0.5: modify_text += " in the " + ref_obj_text else: ref_obj = None else: # TODO geom *and* blocktype, every n d = random.choice(["LEFT", "RIGHT", "TOP", "BOTTOM", "FRONT", "BACK"]) fraction = random.choice(["QUARTER", "HALF", ""]) if fraction == "": modify_dict["replace_geometry"] = {"relative_direction": d.lower()} modify_text = ( t[0] + " the " + d.lower() + " of " + ref_obj_text + " " + t[1].strip("|") + " " + new_block_text ) else: modify_dict["replace_geometry"] = {"relative_direction": d.lower()} modify_text = ( t[0] + " the " + d.lower() + " " + fraction.lower() + " of " + ref_obj_text + " " + t[1].strip("|") + " " + new_block_text ) modify_dict["new_block"] = new_block_dict return modify_text, modify_dict, ref_obj_text, ref_obj class FillTemplates(ModifyTemplates): def __init__(self, opts): pass def generate(self): ref_obj, ref_obj_text = get_target_object() if random.random() > 0.5: modify_text = "fill up the " + ref_obj_text modify_dict = {"modify_type": "FILL"} if random.random() > 0.5: new_block_dict, new_block_text = get_block() modify_dict["new_block"] = new_block_dict modify_text += " with " + new_block_text else: modify_text = "hollow out the " + ref_obj_text modify_dict = {"modify_type": "HOLLOW"} return modify_text, modify_dict, ref_obj_text, ref_obj class TemplateHolder: def __init__(self, opts): # TODO # self.gen_weights = opts.gen_weights self.templates = { "thicken": ThickenTemplates(opts), "scale": ScaleTemplates(opts), "rigidmotion": RigidmotionTemplates(opts), "replace": ReplaceTemplates(opts), "fill": FillTemplates(opts), } def generate(self): modify_text, modify_dict, ref_obj_text, ref_obj_dict = random.choice( list(self.templates.values()) ).generate() split_modify_text = modify_text.split() replace_with_span(modify_dict, split_modify_text) if ref_obj_dict: replace_with_span(ref_obj_dict, split_modify_text) modify_text = " ".join(split_modify_text) return modify_text, build_lf(ref_obj_dict, modify_dict) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--target_dir", default="/checkpoint/rebeccaqian/datasets/modify_templates/", type=str, help="where to write modify data", ) parser.add_argument( "--translate_prob", default=0.25, type=int, help="where to write modify data" ) parser.add_argument("--flip_prob", default=0.1, type=int, help="where to write modify data") parser.add_argument( "--old_blocktype", default=0.25, type=str, help="where to write modify data" ) parser.add_argument("-N", default=100, type=int, help="number of samples to generate") opts = parser.parse_args() T = TemplateHolder(opts) data = [] for i in range(opts.N): data.append(T.generate()) f = open(opts.target_dir + "templated_modify.txt", "w") for d in data: cmd, action_dict = d f.write("{}|{}\n".format(cmd, action_dict)) if __name__ == "__main__": main()
craftassist-master
python/craftassist/voxel_models/modify/st_templates.py
if __name__ == "__main__": import os import sys import torch import argparse import conv_models as models from shape_transform_dataloader import ModifyData from voxel_models.plot_voxels import SchematicPlotter, draw_rgb # noqa import visdom from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument("--num_examples", type=int, default=1000000, help="num examples to encode") parser.add_argument("--color_io", action="store_true", help="input uses color-alpha") parser.add_argument( "--max_meta", type=int, default=20, help="allow that many meta values when hashing idmeta" ) parser.add_argument("--gpu_id", type=int, default=0, help="which gpu to use") parser.add_argument("--data_dir", default="") parser.add_argument("--model_filepath", default="", help="from where to load model") parser.add_argument( "--load_dictionary", default="/private/home/aszlam/junk/word_modify_word_ids.pk", help="where to get word dict", ) parser.add_argument("--lr", type=float, default=0.01, help="step size for net") parser.add_argument( "--sbatch", action="store_true", help="cluster run mode, no visdom, formatted stdout" ) parser.add_argument("--ndonkeys", type=int, default=8, help="workers in dataloader") args = parser.parse_args() if not args.sbatch: vis = visdom.Visdom(server="http://localhost") sp = SchematicPlotter(vis) this_dir = os.path.dirname(os.path.realpath(__file__)) parent_dir = os.path.join(this_dir, "../") sys.path.append(parent_dir) print("loading train data") ################# FIXME!!!! args.allow_same = False args.debug = -1 args.words_length = 12 args.sidelength = 32 args.nexamples = args.num_examples + 10000 args.tform_weights = { "thicker": 1.0, "scale": 1.0, "rotate": 1.0, "replace_by_block": 1.0, # 'replace_by_n': 1.0, "replace_by_halfspace": 1.0, "fill": 1.0, } train_data = ModifyData(args, dictionary=args.load_dictionary) num_workers = args.ndonkeys print("making dataloader") rDL = torch.utils.data.DataLoader( train_data, batch_size=32, shuffle=False, pin_memory=True, drop_last=True, num_workers=args.ndonkeys, ) print("making models") args.num_words = train_data.padword + 1 args.word_padding_idx = train_data.padword model = models.AE(args, args.model_filepath) model.cuda() model.eval() X = None it = iter(rDL) with torch.no_grad(): for i in tqdm(range(args.num_examples // 32 + 1)): b = it.next() words = b[0] x = b[1] y = b[2] x = x.cuda() y = y.cuda() z = model(x) if X is None: szs = model.hidden_state.shape X = torch.zeros(args.num_examples, szs[1], szs[2], szs[3], szs[4]) Y = torch.zeros(args.num_examples, szs[1], szs[2], szs[3], szs[4]) all_words = torch.LongTensor(args.num_examples, 12) c = min((i + 1) * 32, args.num_examples) X[i * 32 : c] = model.hidden_state z = model(y) Y[i * 32 : c] = model.hidden_state all_words[i * 32 : c] = words
craftassist-master
python/craftassist/voxel_models/modify/encode_many.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import torch import torch.nn as nn import numpy as np import os import pickle THIS_DIR = os.path.dirname(os.path.realpath(__file__)) MC_DIR = os.path.join(THIS_DIR, "../../../../") def model_filename_from_opts(opts, savedir=None, uid=None): filler = "][" name = "[" if opts.ae: name += "ae" name += filler name = name + "hdim" + str(opts.hidden_dim) + filler name = name + "edim" + str(opts.embedding_dim) + filler # name = name + "lrp" + str(opts.lr_patience) + filler name = name + "lrd" + str(opts.lr_decay) + filler name = name + "res" + str(opts.residual_connection) + filler name = name + "num_layers" + str(opts.num_layers) + filler name = name + "color_io" + str(opts.color_io) + filler name = name + "color_hash" + str(opts.color_hash) + filler name = name + "sl" + str(opts.sidelength) + filler name = name + "sigmoid" + str(opts.last_layer_sigmoid) + filler name = name + "lr" + str(opts.lr) + filler name = name + opts.optim_type if uid is not None and uid != "": name = name + filler + uid name = name + "].pth" if savedir is not None: name = os.path.join(savedir, name) return name def get_colors(): ims = pickle.load(open(os.path.join(MC_DIR, "minecraft_specs/block_images/block_data"), "rb")) colors = {} for b, I in ims["bid_to_image"].items(): I = I.reshape(1024, 4) c = np.zeros(4) if not all(I[:, 3] < 0.2): c[:3] = I[I[:, 3] > 0.2, :3].mean(axis=0) / 256.0 c[3] = I[:, 3].mean() / 256.0 colors[b] = c return colors def build_rgba_embed(max_meta, color_io=2): if color_io > 1: edim = 4 else: edim = 1 embedding = nn.Embedding(256 * max_meta, edim) embedding.weight.requires_grad = False colors = get_colors() for b, c in colors.items(): u = c if color_io == 1: u = (c.mean(),) elif color_io == 0: u = (1,) bid = b[1] + max_meta * b[0] if bid >= 256 * max_meta: continue embedding.weight[bid][0] = u[0] if color_io > 1: embedding.weight[bid][1] = u[1] embedding.weight[bid][2] = u[2] embedding.weight[bid][3] = u[3] return embedding def fake_embedding_fwd(x, embedding_weights): embedding_dim = embedding_weights.shape[1] szs = list(x.size()) x = x.view(-1) z = embedding_weights.index_select(0, x) szs.append(embedding_dim) z = z.view(torch.Size(szs)) z = z.permute(0, 4, 1, 2, 3).contiguous() return z def compressed_onehot_distribution(x, allowed_idxs, pool=False): """x is a B x H x W x D LongTensor of indices; if not pool, returns a tensor of the same size, with indices mapped to 0:len(allowed_idxs)-1 if pool, maps to onehot, and pools, returning B x len(allowed_idxs) x H x W x D""" k = len(allowed_idxs) vals, sidxs = allowed_idxs.sort() r = torch.arange(0, len(vals), dtype=allowed_idxs.dtype, device=allowed_idxs.device) u = torch.zeros(vals[-1].item() + 1, dtype=allowed_idxs.dtype, device=allowed_idxs.device) u[vals] = r mapped_x = u[x] if pool: weight = torch.eye(k, device=x.device) onehot = fake_embedding_fwd(mapped_x, weight) return torch.nn.functional.avg_pool3d(onehot, pool, stride=pool) else: return mapped_x def color_hash(x, nbins=3): # x is assumed to be Nx4, and each entry is 0<=x[i]<= 1 q = (x[:, :3] * (nbins - 0.001)).floor().to(dtype=torch.long) b = x[:, 3] < 0.02 q[b] = 0 b = 1 - b.to(dtype=torch.long) return b + q[:, 0] * nbins ** 2 + q[:, 1] * nbins + q[:, 2] class ConvNLL(nn.Module): def __init__(self, max_meta=20, subsample_zeros=-1): super(ConvNLL, self).__init__() self.embedding = build_rgba_embed(max_meta, color_io=2) self.subsample_zeros = subsample_zeros self.nll = nn.NLLLoss() self.lsm = nn.LogSoftmax() def cuda(self): self.embedding.cuda() def forward(self, gold, scores, nbins): gold = gold.view(-1) embedded_gold = self.embedding.weight.index_select(0, gold) hashed_eg = color_hash(embedded_gold, nbins=nbins) if self.subsample_zeros > 0: mask = (hashed_eg == 0).float() n = torch.rand(hashed_eg.shape[0], device=mask.device) mask = mask - n keep_nz_idx = torch.nonzero(mask < self.subsample_zeros).view(-1) scores = scores.permute(0, 2, 3, 4, 1).contiguous() szs = list(scores.size()) scores = scores.view(-1, szs[-1]) if self.subsample_zeros > 0: scores = scores[keep_nz_idx] hashed_eg = hashed_eg[keep_nz_idx] return self.nll(self.lsm(scores), hashed_eg) """ does a batch nce over B x c x H x W x D draws negatives from self.embedder """ class ConvDistributionMatch(nn.Module): def __init__(self, embedding, pool=False, subsample_zeros=-1): super(ConvDistributionMatch, self).__init__() self.pool = pool self.embedding = embedding self.K = self.embedding.weight.shape[0] self.lsm = nn.LogSoftmax(dim=1) self.lsm.to(self.embedding.weight.device) self.subsample_zeros = subsample_zeros def forward(self, gold, z, allowed_idxs): pool = self.pool mapped_gold = compressed_onehot_distribution(gold, allowed_idxs, pool=pool) if not pool: mapped_gold = mapped_gold.view(-1) else: mapped_gold = mapped_gold.permute(0, 2, 3, 4, 1).contiguous() szs = list(mapped_gold.size()) mapped_gold = mapped_gold.view(-1, szs[-1]) self.mapped_gold = mapped_gold # FIXME will break with pool if self.subsample_zeros > 0: mask = (mapped_gold == 0).float() n = torch.rand(mapped_gold.shape[0], device=mask.device) mask = mask - n keep_nz_idx = torch.nonzero(mask < self.subsample_zeros).view(-1) weight = self.embedding.weight.index_select(0, allowed_idxs) k = weight.shape[0] d = weight.shape[1] scores = nn.functional.conv3d(z, weight.view(k, d, 1, 1, 1)) self.scores = scores scores = scores.permute(0, 2, 3, 4, 1).contiguous() szs = list(scores.size()) scores = scores.view(-1, szs[-1]) if self.subsample_zeros > 0: scores = scores[keep_nz_idx] mapped_gold = mapped_gold[keep_nz_idx] if pool: kl = nn.KLDivLoss() return kl(self.lsm(scores), mapped_gold) else: # nll_weight = torch.ones(len(allowed_idxs), device=weight.device) # nll_weight[0] = 0.01 # nll = nn.NLLLoss(weight=nll_weight) nll = nn.NLLLoss() return nll(self.lsm(scores), mapped_gold) # this will need ot be fixed when we have relative directions!!!! class SimpleWordEmbedder(nn.Module): def __init__(self, opts): super(SimpleWordEmbedder, self).__init__() self.embedding = nn.Embedding( opts.num_words, opts.hidden_dim, padding_idx=opts.word_padding_idx ) def forward(self, words): return self.embedding(words).mean(1) class SimpleBase(nn.Module): def __init__(self, opts, filepath=None): super(SimpleBase, self).__init__() self.loaded_from = None if not filepath and opts.load_model_dir != "": filepath = model_filename_from_opts( opts, savedir=opts.load_model_dir, uid=opts.save_model_uid ) if filepath: try: self.load(filepath) self.loaded_from = filepath except: if opts.load_strict: raise ("tried to load from " + filepath + " but failed") else: print("warning: tried to load from " + filepath + " but failed") print("starting new model") self.opts = opts self._build() else: self.opts = opts self._build() def _build(self): pass def save(self, filepath): self.cpu() sds = {} sds["opts"] = self.opts sds["state_dict"] = self.state_dict() torch.save(sds, filepath) if self.opts.cuda: self.cuda() def load(self, filepath): sds = torch.load(filepath) self.opts = sds["opts"] print("loading from file, using opts") print(self.opts) self._build() self.load_state_dict(sds["state_dict"]) self.zero_grad() class SimpleConv(SimpleBase): def __init__(self, opts, pool=False): opts.pool = pool super(SimpleConv, self).__init__(opts) def _build(self): opts = self.opts if hasattr(opts, "pool"): self.pool = opts.pool else: self.pool = None self.max_meta = max(opts.max_meta, 20) self.num_blocks = 256 * self.max_meta num_blocks = self.num_blocks embedding_dim = opts.embedding_dim num_layers = opts.num_layers hidden_dim = opts.hidden_dim self.embedding_dim = embedding_dim if opts.color_io >= 0: self.embedding = build_rgba_embed(self.max_meta, color_io=opts.color_io) self.embedding_dim = self.embedding.weight.shape[1] else: self.embedding_dim = embedding_dim self.embedding = nn.Embedding(num_blocks, embedding_dim) self.layers = nn.ModuleList() self.num_layers = num_layers self.layers.append( nn.Sequential( nn.Conv3d(self.embedding_dim, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) self.gate_layers = nn.ModuleList() for i in range(num_layers - 1): self.layers.append( nn.Sequential( nn.Conv3d(hidden_dim, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) if self.opts.color_hash > 0: self.out = nn.Conv3d(hidden_dim, self.opts.color_hash ** 3 + 1, kernel_size=1) else: self.out = nn.Conv3d(hidden_dim, self.embedding_dim, kernel_size=1) self.lvar_embedder = nn.Embedding(opts.num_lvars, hidden_dim) self.words_embedder = SimpleWordEmbedder(opts) # TODO attention everywhere... def forward(self, blocks_array, words, lvars): words_embeddings = self.words_embedder(words) lvar_embeddings = self.lvar_embedder(lvars) # FIXME when pytorch is ready for this, embedding # backwards is soooooo slow # z = self.embedding(x) z = fake_embedding_fwd(blocks_array, self.embedding.weight) if self.pool: z = torch.nn.functional.avg_pool3d(z, self.pool, stride=self.pool) # words_embeddings should be a batchsize x hidden_dim vector # z = z + words_embeddings.view(wszs).expand(szs) # z = z + lvar_embeddings.view(wszs).expand(szs) for i in range(self.num_layers): oz = z.clone() z = self.layers[i](z) szs = list(z.size()) wszs = szs.copy() wszs[2] = 1 wszs[3] = 1 wszs[4] = 1 z = z + words_embeddings.view(wszs).expand(szs) z = z + lvar_embeddings.view(wszs).expand(szs) if self.opts.residual_connection > 0 and oz.shape[1] == z.shape[1]: z = z + oz return self.out(z) class AE(SimpleBase): def __init__(self, opts, filepath=None): super(AE, self).__init__(opts, filepath=filepath) def _build(self): opts = self.opts self.do_sigmoid = opts.last_layer_sigmoid == 1 self.max_meta = max(opts.max_meta, 20) self.num_blocks = 256 * self.max_meta num_blocks = self.num_blocks embedding_dim = opts.embedding_dim num_layers = opts.num_layers if opts.color_io >= 0: self.embedding = build_rgba_embed(self.max_meta, color_io=opts.color_io) self.embedding_dim = self.embedding.weight.shape[1] else: self.embedding_dim = embedding_dim self.embedding = nn.Embedding(num_blocks, embedding_dim) self.layers = nn.ModuleList() self.num_layers = num_layers current_dim = self.embedding_dim for i in range(num_layers): if i == 0: hdim = self.opts.hidden_dim else: hdim = 2 * current_dim self.layers.append( nn.Sequential( nn.Conv3d(current_dim, hdim, kernel_size=5, stride=2, padding=2), nn.BatchNorm3d(hdim), nn.ReLU(inplace=True), ) ) current_dim = hdim for i in range(num_layers): self.layers.append( nn.Sequential( nn.ConvTranspose3d( current_dim, current_dim // 2, kernel_size=5, stride=2, padding=2, output_padding=1, ), nn.BatchNorm3d(current_dim // 2), nn.ReLU(inplace=True), ) ) current_dim = current_dim // 2 if self.opts.color_hash > 0: self.pre_out = nn.Conv3d(current_dim, self.opts.color_hash ** 3 + 1, kernel_size=1) else: self.pre_out = nn.Conv3d(current_dim, self.embedding_dim, kernel_size=1) # TODO attention everywhere... def forward(self, blocks_array): # FIXME when pytorch is ready for this, embedding # backwards is soooooo slow # z = self.embedding(x) z = fake_embedding_fwd(blocks_array, self.embedding.weight) self.input_embed = z.clone() for i in range(self.num_layers): z = self.layers[i](z) self.hidden_state = z for i in range(self.num_layers, 2 * self.num_layers): z = self.layers[i](z) z = self.pre_out(z) if self.do_sigmoid and self.opts.color_hash < 0: return torch.sigmoid(z) else: return z class ConvGenerator(nn.Module): def __init__(self, opts): super(ConvGenerator, self).__init__() self.opts = opts self.hidden_dim = opts.hidden_dim self.zdim = opts.zdim self.do_sigmoid = opts.last_layer_sigmoid == 1 self.layers = nn.ModuleList() self.num_layers = opts.num_layers self.expected_output_size = opts.expected_output_size self.base_grid = opts.expected_output_size // 2 ** self.num_layers current_dim = self.hidden_dim self.layers.append(nn.Linear(self.zdim, self.hidden_dim * self.base_grid ** 3)) for i in range(self.num_layers): self.layers.append( nn.Sequential( nn.ConvTranspose3d( current_dim, current_dim // 2, kernel_size=5, stride=2, padding=2, output_padding=1, ), nn.BatchNorm3d(current_dim // 2), nn.ReLU(inplace=True), ) ) current_dim = current_dim // 2 self.pre_out = nn.Conv3d(current_dim, 4, kernel_size=1) def forward(self, z, c=None): z = self.layers[0](z) szs = z.shape z = z.view(szs[0], -1, self.base_grid, self.base_grid, self.base_grid) for i in range(self.num_layers): z = self.layers[i + 1](z) z = self.pre_out(z) if self.do_sigmoid: return torch.sigmoid(z) else: return z class ConvDiscriminator(nn.Module): def __init__(self, opts): super(ConvDiscriminator, self).__init__() self.opts = opts self.zdim = opts.zdim self.do_sigmoid = opts.last_layer_sigmoid == 1 self.layers = nn.ModuleList() self.num_layers = opts.num_layers self.expected_input_size = opts.expected_input_size self.layers = nn.ModuleList() current_dim = 4 # RGBA for i in range(self.num_layers): if i == 0: hdim = self.opts.hidden_dim else: hdim = 2 * current_dim self.layers.append( nn.Sequential( nn.Conv3d(current_dim, hdim, kernel_size=5, stride=2, padding=2), nn.BatchNorm3d(hdim), nn.ReLU(inplace=True), ) ) current_dim = hdim self.base_grid = opts.expected_input_size // 2 ** self.num_layers self.pre_out = nn.Linear(current_dim * self.base_grid ** 3, 1) def forward(self, z, c=None): for i in range(self.num_layers): z = self.layers[i](z) z = z.view(z.shape[0], -1) z = self.pre_out(z) return torch.tanh(z) class GAN(SimpleBase): def __init__(self, opts): super(GAN, self).__init__(opts) def _build(self): self.D = ConvDiscriminator(self.opts) self.G = ConvGenerator(self.opts) def forward(self, x, mode="D"): if mode == "D": return self.D(x) else: return self.G(x) class Opt: pass if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( "--hidden_dim", type=int, default=128, help="size of hidden dim in fc layer" ) parser.add_argument("--embedding_dim", type=int, default=16, help="size of blockid embedding") parser.add_argument("--num_words", type=int, default=256, help="number of blocks") parser.add_argument("--num_classes", type=int, default=20, help="number of blocks") args = parser.parse_args() # N = SemSegNet(args)
craftassist-master
python/craftassist/voxel_models/modify/conv_models.py
if __name__ == "__main__": import os import sys import torch import argparse from shape_transform_dataloader import ModifyData from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument("--num_examples", type=int, default=1000000, help="num examples to build") parser.add_argument("--data_dir", default="") parser.add_argument("--max_meta", type=int, default=20, help="max meta") parser.add_argument("--sidelength", type=int, default=32, help="sidelength for dataloader") parser.add_argument( "--load_dictionary", default="/private/home/aszlam/junk/word_modify_word_ids.pk", help="where to get word dict", ) parser.add_argument("--ndonkeys", type=int, default=8, help="workers in dataloader") args = parser.parse_args() this_dir = os.path.dirname(os.path.realpath(__file__)) parent_dir = os.path.join(this_dir, "../") sys.path.append(parent_dir) ################# FIXME!!!! args.allow_same = False args.debug = -1 args.words_length = 12 args.sidelength = args.sidelength args.nexamples = args.num_examples + 10000 args.tform_weights = { "thicker": 1.0, "scale": 1.0, "rotate": 1.0, "replace_by_block": 1.0, # 'replace_by_n': 1.0, "replace_by_halfspace": 1.0, "fill": 1.0, } train_data = ModifyData(args, dictionary=args.load_dictionary) num_workers = args.ndonkeys print("making dataloader") rDL = torch.utils.data.DataLoader( train_data, batch_size=32, shuffle=False, pin_memory=True, drop_last=True, num_workers=args.ndonkeys, ) X = torch.zeros( args.num_examples, args.sidelength, args.sidelength, args.sidelength, dtype=torch.int ) Y = torch.zeros( args.num_examples, args.sidelength, args.sidelength, args.sidelength, dtype=torch.int ) words = torch.zeros(args.num_examples, args.words_length) it = iter(rDL) for i in tqdm(range(args.num_examples // 32 + 1)): b = it.next() c = min((i + 1) * 32, args.num_examples) X[i * 32 : c] = b[1] Y[i * 32 : c] = b[2] words[i * 32 : c] = b[0]
craftassist-master
python/craftassist/voxel_models/modify/build_static_dataset.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import os print(os.getcwd()) import sys sys.path = [""] + sys.path from shape_transform_dataloader import ModifyData import torch # import torch.nn as nn import torch.optim as optim import conv_models as models # predict allowed blocks # quantize to nearest in allowed set def format_stats(stats_dict): status = "STATS :: epoch@{} | loss@{}".format(stats_dict["epoch"], stats_dict["loss"]) return status # FIXME allow restarting optimizer via opts def get_optimizer(args, model, lr=None, allow_load=True): if not lr: lr = args.lr sd = None if allow_load and args.load_model_dir != "" and model.loaded_from is not None: fname = os.path.basename(model.loaded_from) fdir = os.path.dirname(model.loaded_from) optimizer_path = os.path.join(fdir, "optim." + fname) try: sd = torch.load(optimizer_path) except: print("warning, unable to load optimizer from ") print(optimizer_path) print("restarting optimzier") if args.optim_type == "adam": optimizer = optim.Adam(model.parameters(), lr=lr) elif args.optim_type == "adagrad": optimizer = optim.Adagrad(model.parameters(), lr=lr) else: optimizer = optim.SGD(model.parameters(), lr=lr) if sd: try: optimizer.load_state_dict(sd) except: print("warning, optimizer from ") print(optimizer_path) print("appears corrupted, restarting optimzier") return optimizer def lower_lr(model, args, optimizer, new_lr): new_optimizer = get_optimizer(args, model, lr=new_lr, allow_load=False) sd = optimizer.state_dict() new_optimizer.load_state_dict(sd) return new_optimizer def save_optimizer(optimizer, fpath): fname = os.path.basename(fpath) fdir = os.path.dirname(fpath) optimizer_path = os.path.join(fdir, "optim." + fname) torch.save(optimizer.state_dict(), optimizer_path) ################################################## # for debugging ################################################## def draw_all(n): sp.drawPlotly(unhash_volume(b[1][n], 20)) # noqa draw_color_hash(maxi[n], vis) # noqa sp.drawPlotly(unhash_volume(b[2][n], 20), title=args._train_data.print_text(b[0][n])) # noqa def unhash_volume(x, max_meta): meta = x % max_meta bid = (x - meta) // max_meta return torch.stack((bid, meta), 3).cpu().numpy() def get_im(z, embedding, allowed_idxs): weight = embedding.weight.index_select(0, allowed_idxs) k = weight.shape[0] d = weight.shape[1] scores = torch.nn.functional.conv3d(z, weight.view(k, d, 1, 1, 1)) scores = scores.permute(0, 2, 3, 4, 1).contiguous() maxs, maxi = scores.max(4) return allowed_idxs[maxi] def f_get_im_and_draw(w, z, embedding, allowed_idxs, i, train_data): B = get_im(z, embedding, allowed_idxs) text = " ".join( [ train_data.dictionary["i2w"][l.item()] for l in w[i] if l.item() < len(train_data.dictionary["i2w"]) ] ) idm = unhash_volume(B[i], train_data.max_meta) sp.drawPlotly(idm, title=" ".join(text)) ################################################## # training loop ################################################## def find_lvars(model, x, y, words, loss_fn, args): with torch.no_grad(): losses = torch.zeros(x.shape[0], args.num_lvars, device=x.device) for i in range(args.num_lvars): lvars = torch.zeros(x.shape[0], 1, device=x.device, dtype=torch.long).fill_(i) z = model(x, words, lvars) if args.color_io >= 0 and args.color_hash < 0: l = torch.nn.functional.mse_loss(z, model.input_embed) elif args.color_hash > 0: l = loss_fn(y, z, args.color_hash) losses[:, i] = l minval, mini = losses.min(1) return mini def validate(model, validation_data): pass def train_epoch(model, DL, loss_fn, optimizer, args): model.train() losses = [] for b in DL: optimizer.zero_grad() words = b[0] x = b[1] y = b[2] if args.cuda: words = words.cuda() x = x.cuda() y = y.cuda() model.train() allowed_idxs = torch.unique(y) if args.ae: z = model(y) else: lvars = find_lvars(model, x, y, words, loss_fn, args) z = model(x, words, lvars) if args.color_io >= 0 and args.color_hash < 0: l = torch.nn.functional.mse_loss(z, model.input_embed) elif args.color_hash > 0: l = loss_fn(y, z, args.color_hash) else: l = loss_fn(y, z, allowed_idxs) losses.append(l.item()) l.backward() optimizer.step() return losses def main(args): print("loading train data") ################# FIXME!!!! args.allow_same = False args.nexamples = 1024 args.tform_weights = { "thicker": 1.0, "scale": 1.0, "rotate": 1.0, "replace_by_block": 1.0, # 'replace_by_n': 1.0, "replace_by_halfspace": 1.0, "fill": 1.0, } train_data = ModifyData(args, dictionary=args.load_dictionary) shuffle = True if args.debug > 0: num_workers = 0 shuffle = False else: num_workers = args.ndonkeys print("making dataloader") rDL = torch.utils.data.DataLoader( train_data, batch_size=args.batchsize, shuffle=shuffle, pin_memory=True, drop_last=True, num_workers=num_workers, ) print("making models") args.num_words = train_data.padword + 1 args.word_padding_idx = train_data.padword ########################################### # args.pool = 8 #!!!!!!!!!!!!!!!!!!!!!!!!!!!! args.pool = None ########################################### if args.ae: model = models.AE(args) else: model = models.SimpleConv(args, pool=args.pool) if args.cuda: model.cuda() else: print("warning: no cuda") ############ if args.color_hash > 0: loss_fn = models.ConvNLL(max_meta=args.max_meta) if args.cuda: loss_fn.cuda() else: loss_fn = models.ConvDistributionMatch(model.embedding, subsample_zeros=0.01) ############ optimizer = get_optimizer(args, model) args._model = model args._train_data = train_data print("training") minloss = 1000000 badcount = 0 lr = args.lr for m in range(args.num_epochs): losses = train_epoch(model, rDL, loss_fn, optimizer, args) mean_epoch_loss = sum(losses) / len(losses) status = format_stats({"epoch": m, "loss": mean_epoch_loss}) print(status) if args.save_model_dir != "": fpath = models.model_filename_from_opts( args, savedir=args.save_model_dir, uid=args.save_model_uid ) model.save(fpath) save_optimizer(optimizer, fpath) if mean_epoch_loss < 0.99 * minloss: minloss = mean_epoch_loss badcount = 0 else: badcount = badcount + 1 if badcount > args.lr_patience and args.lr_decay < 1.0: lr = args.lr_decay * lr optimizer = lower_lr(model, args, optimizer, lr) print("lowered lr to " + str(lr)) badcount = 0 return model, train_data, rDL if __name__ == "__main__": import argparse from voxel_models.plot_voxels import SchematicPlotter, draw_rgb, draw_color_hash # noqa import visdom parser = argparse.ArgumentParser() parser.add_argument( "--debug", type=int, default=-1, help="no shuffle, keep only debug num examples" ) parser.add_argument("--num_examples", type=int, default=1024, help="num examples in an epoch") parser.add_argument("--num_epochs", type=int, default=1500, help="training epochs") parser.add_argument("--last_layer_sigmoid", type=int, default=1, help="do sigmoid if 1") parser.add_argument( "--color_hash", type=int, default=-1, help="if > 0 hash color cube into bins" ) parser.add_argument("--num_lvars", type=int, default=10, help="number of random vars") parser.add_argument( "--lr_patience", type=int, default=8, help="how many epochs to wait before decreasing lr" ) parser.add_argument("--lr_decay", type=float, default=1.0, help="lr decrease multiple") parser.add_argument("--num_layers", type=int, default=4, help="num conv layers") # parser.add_argument("--augment", default="none", help="none or maxshift:K_underdirt:J") parser.add_argument("--sidelength", type=int, default=32, help="sidelength for dataloader") parser.add_argument( "--color_io", type=int, default=2, help="if 2 input uses color-alpha, 1 intensity, 0 bw, -1 emebdding", ) parser.add_argument("--ae", action="store_true", help="plain ae") parser.add_argument("--cuda", action="store_true", help="use cuda") parser.add_argument( "--max_meta", type=int, default=20, help="allow that many meta values when hashing idmeta" ) parser.add_argument("--gpu_id", type=int, default=0, help="which gpu to use") parser.add_argument("--batchsize", type=int, default=32, help="batch size") parser.add_argument("--data_dir", default="") parser.add_argument( "--save_model_dir", default="", help="where to save model (nowhere if blank)" ) parser.add_argument( "--load_model_dir", default="", help="from where to load model (nowhere if blank)" ) parser.add_argument( "--load_strict", action="store_true", help="error if model to load doesn't exist. if false just builds new", ) parser.add_argument( "--save_model_uid", default="", help="unique identifier on top of options-name" ) parser.add_argument( "--words_length", type=int, default=12, help="sentence pad length. FIXME?" ) parser.add_argument("--optim_type", default="adam", help="optim type, adam, adagrad, sgd") parser.add_argument("--save_logs", default="/dev/null", help="where to save logs") parser.add_argument( "--residual_connection", type=int, default=0, help="if bigger than 0 use resnet-style" ) parser.add_argument("--hidden_dim", type=int, default=64, help="size of hidden dim") parser.add_argument("--embedding_dim", type=int, default=16, help="size of blockid embedding") parser.add_argument( "--load_dictionary", default="/private/home/aszlam/junk/word_modify_word_ids.pk", help="where to get word dict", ) parser.add_argument("--lr", type=float, default=0.01, help="step size for net") parser.add_argument( "--sbatch", action="store_true", help="cluster run mode, no visdom, formatted stdout" ) parser.add_argument( "--sample_empty_prob", type=float, default=0.01, help="prob of taking gradients on empty locations", ) parser.add_argument("--ndonkeys", type=int, default=8, help="workers in dataloader") args = parser.parse_args() if not args.sbatch: vis = visdom.Visdom(server="http://localhost") sp = SchematicPlotter(vis) this_dir = os.path.dirname(os.path.realpath(__file__)) parent_dir = os.path.join(this_dir, "../") sys.path.append(parent_dir) grandparent_dir = os.path.join(this_dir, "../") sys.path.append(parent_dir) main(args)
craftassist-master
python/craftassist/voxel_models/modify/train_conv_model.py
######################################################### # TAKEN FROM https://github.com/LMescheder/GAN_stability/ ######################################################### # coding: utf-8 import torch from torch.nn import functional as F import torch.utils.data import torch.utils.data.distributed from torch import autograd class Trainer(object): def __init__( self, generator, discriminator, g_optimizer, d_optimizer, gan_type, reg_type, reg_param ): self.generator = generator self.discriminator = discriminator self.g_optimizer = g_optimizer self.d_optimizer = d_optimizer self.gan_type = gan_type self.reg_type = reg_type self.reg_param = reg_param def generator_trainstep(self, y, z): # assert(y.size(0) == z.size(0)) toggle_grad(self.generator, True) toggle_grad(self.discriminator, False) self.generator.train() self.discriminator.train() self.g_optimizer.zero_grad() x_fake = self.generator(z, y) d_fake = self.discriminator(x_fake, y) gloss = self.compute_loss(d_fake, 1) gloss.backward() self.g_optimizer.step() return gloss.item() def discriminator_trainstep(self, x_real, y, z): toggle_grad(self.generator, False) toggle_grad(self.discriminator, True) self.generator.train() self.discriminator.train() self.d_optimizer.zero_grad() # On real data x_real.requires_grad_() d_real = self.discriminator(x_real, y) dloss_real = self.compute_loss(d_real, 1) if self.reg_type == "real" or self.reg_type == "real_fake": dloss_real.backward(retain_graph=True) reg = self.reg_param * compute_grad2(d_real, x_real).mean() reg.backward() else: dloss_real.backward() # On fake data with torch.no_grad(): x_fake = self.generator(z, y) x_fake.requires_grad_() d_fake = self.discriminator(x_fake, y) dloss_fake = self.compute_loss(d_fake, 0) if self.reg_type == "fake" or self.reg_type == "real_fake": dloss_fake.backward(retain_graph=True) reg = self.reg_param * compute_grad2(d_fake, x_fake).mean() reg.backward() else: dloss_fake.backward() if self.reg_type == "wgangp": reg = self.reg_param * self.wgan_gp_reg(x_real, x_fake, y) reg.backward() elif self.reg_type == "wgangp0": reg = self.reg_param * self.wgan_gp_reg(x_real, x_fake, y, center=0.0) reg.backward() self.d_optimizer.step() toggle_grad(self.discriminator, False) # Output dloss = dloss_real + dloss_fake if self.reg_type == "none": reg = torch.tensor(0.0) return dloss.item(), reg.item() def compute_loss(self, d_out, target): targets = d_out.new_full(size=d_out.size(), fill_value=target) if self.gan_type == "standard": loss = F.binary_cross_entropy_with_logits(d_out, targets) elif self.gan_type == "wgan": loss = (2 * target - 1) * d_out.mean() else: raise NotImplementedError return loss def wgan_gp_reg(self, x_real, x_fake, y, center=1.0): batch_size = y.size(0) eps = torch.rand(batch_size, device=y.device).view(batch_size, 1, 1, 1) x_interp = (1 - eps) * x_real + eps * x_fake x_interp = x_interp.detach() x_interp.requires_grad_() d_out = self.discriminator(x_interp, y) reg = (compute_grad2(d_out, x_interp).sqrt() - center).pow(2).mean() return reg # Utility functions def toggle_grad(model, requires_grad): for p in model.parameters(): p.requires_grad_(requires_grad) def compute_grad2(d_out, x_in): batch_size = x_in.size(0) grad_dout = autograd.grad( outputs=d_out.sum(), inputs=x_in, create_graph=True, retain_graph=True, only_inputs=True )[0] grad_dout2 = grad_dout.pow(2) assert grad_dout2.size() == x_in.size() reg = grad_dout2.view(batch_size, -1).sum(1) return reg def update_average(model_tgt, model_src, beta): toggle_grad(model_src, False) toggle_grad(model_tgt, False) param_dict_src = dict(model_src.named_parameters()) for p_name, p_tgt in model_tgt.named_parameters(): p_src = param_dict_src[p_name] assert p_src is not p_tgt p_tgt.copy_(beta * p_tgt + (1.0 - beta) * p_src)
craftassist-master
python/craftassist/voxel_models/modify/gan_trainer.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import os from shape_transform_dataloader import ModifyData import torch from torch import distributions # import torch.nn as nn import torch.optim as optim import conv_models as models from gan_trainer import Trainer # predict allowed blocks # quantize to nearest in allowed set def format_stats(stats_dict): status = "STATS :: epoch@{} | gloss@{} | dloss@{}".format( stats_dict["epoch"], stats_dict["gloss"], stats_dict["dloss"] ) return status # FIXME allow restarting optimizer via opts def get_optimizer(args, model): sds = None if args.load_model_dir != "" and model.loaded_from is not None: fname = os.path.basename(model.loaded_from) fdir = os.path.dirname(model.loaded_from) optimizer_path = os.path.join(fdir, "optim." + fname) try: sds = torch.load(optimizer_path) sd_g = sds["g"] sd_d = sds["d"] except: print("warning, unable to load optimizer from ") print(optimizer_path) print("restarting optimzier") if args.optim_type == "adam": optimizer_d = optim.Adam(model.D.parameters(), lr=args.lr_d) optimizer_g = optim.Adam(model.G.parameters(), lr=args.lr_g) elif args.optim_type == "adagrad": optimizer_d = optim.Adagrad(model.D.parameters(), lr=args.lr_d) optimizer_g = optim.Adagrad(model.G.parameters(), lr=args.lr_g) elif args.optim_type == "rmsprop": optimizer_d = optim.RMSprop(model.D.parameters(), lr=args.lr_d, alpha=0.99, eps=1e-8) optimizer_g = optim.RMSprop(model.G.parameters(), lr=args.lr_g, alpha=0.99, eps=1e-8) else: optimizer_d = optim.SGD(model.D.parameters(), lr=args.lr_d) optimizer_g = optim.SGD(model.G.parameters(), lr=args.lr_g) if sds: try: optimizer_d.load_state_dict(sd_d) optimizer_g.load_state_dict(sd_g) except: print("warning, optimizer from ") print(optimizer_path) print("appears corrupted, restarting optimzier") return optimizer_d, optimizer_g def save_optimizer(optimizer_d, optimizer_g, fpath): fname = os.path.basename(fpath) fdir = os.path.dirname(fpath) optimizer_path = os.path.join(fdir, "optim." + fname) torch.save({"d": optimizer_d.state_dict(), "g": optimizer_g.state_dict()}, optimizer_path) ################################################## # for debugging ################################################## def unhash_volume(x, max_meta): meta = x % max_meta bid = (x - meta) // max_meta return torch.stack((bid, meta), 3).cpu().numpy() def get_im(z, embedding, allowed_idxs): weight = embedding.weight.index_select(0, allowed_idxs) k = weight.shape[0] d = weight.shape[1] scores = torch.nn.functional.conv3d(z, weight.view(k, d, 1, 1, 1)) scores = scores.permute(0, 2, 3, 4, 1).contiguous() maxs, maxi = scores.max(4) return allowed_idxs[maxi] def f_get_im_and_draw(w, z, embedding, allowed_idxs, i, train_data): B = get_im(z, embedding, allowed_idxs) text = " ".join( [ train_data.dictionary["i2w"][l.item()] for l in w[i] if l.item() < len(train_data.dictionary["i2w"]) ] ) idm = unhash_volume(B[i], train_data.max_meta) sp.drawPlotly(idm, title=" ".join(text)) ################################################## # training loop ################################################## def get_zdist(dist_name, dim, device=None): # Get distribution if dist_name == "uniform": low = -torch.ones(dim, device=device) high = torch.ones(dim, device=device) zdist = distributions.Uniform(low, high) elif dist_name == "gauss": mu = torch.zeros(dim, device=device) scale = torch.ones(dim, device=device) zdist = distributions.Normal(mu, scale) else: raise NotImplementedError # Add dim attribute zdist.dim = dim return zdist def validate(model, validation_data): pass def train_epoch(model, DL, trainer, args): model.train() losses = {"g": [], "d": []} for b in DL: words = b[0] x = b[1] y = b[2] if args.cuda: words = words.cuda() x = x.cuda() y = y.cuda() zdist = get_zdist("gauss", args.zdim, device=x.device) x_real = models.fake_embedding_fwd(y, trainer.rgba_embedding.weight) z = zdist.sample((args.batchsize,)) # Discriminator updates dloss, reg = trainer.discriminator_trainstep(x_real, None, z) losses["d"].append(dloss) # Generators updates # if ((it + 1) % args.d_steps) == 0: z = zdist.sample((args.batchsize,)) gloss = trainer.generator_trainstep(None, z) losses["g"].append(gloss) return losses def get_data(args): print("loading train data") ################# FIXME!!!! args.allow_same = False args.max_meta = 20 args.sidelength = 16 args.expected_input_size = args.sidelength args.expected_output_size = args.sidelength args.nexamples = 1024 args.tform_weights = { "thicker": 1.0, "scale": 1.0, "rotate": 1.0, "replace_by_block": 1.0, # 'replace_by_n': 1.0, "replace_by_halfspace": 1.0, "fill": 1.0, } train_data = ModifyData(args, dictionary=args.load_dictionary) shuffle = True if args.debug > 0: num_workers = 0 shuffle = False else: num_workers = args.ndonkeys print("making dataloader") rDL = torch.utils.data.DataLoader( train_data, batch_size=args.batchsize, shuffle=shuffle, pin_memory=True, drop_last=True, num_workers=num_workers, ) return rDL, train_data def main(args): rDL, train_data = get_data(args) print("making models") model = models.GAN(args) rgba_embedding = models.build_rgba_embed(args.max_meta) if args.cuda: model.cuda() rgba_embedding = rgba_embedding.cuda() else: print("warning: no cuda") optimizer_d, optimizer_g = get_optimizer(args, model) trainer = Trainer( model.G, model.D, optimizer_g, optimizer_d, gan_type="standard", reg_type="real", reg_param=args.reg_param, ) trainer.rgba_embedding = rgba_embedding args._model = model args._rgba_embedding = rgba_embedding print("training") win_name = None for m in range(args.num_epochs): losses = train_epoch(model, rDL, trainer, args) status = format_stats( { "epoch": m, "gloss": sum(losses["g"]) / len(losses["g"]), "dloss": sum(losses["d"]) / len(losses["d"]), } ) print(status) if args.save_model_dir != "": fpath = models.model_filename_from_opts( args, savedir=args.save_model_dir, uid=args.save_model_uid ) model.save(fpath) save_optimizer(optimizer_d, optimizer_g, fpath) if args.visualize: zdist = get_zdist("gauss", args.zdim, device=model.G.layers[0].weight.device) z = zdist.sample((4,)) with torch.no_grad(): u = model.G(z) win_name = draw_rgb(u[0], vis, threshold=0.1, win=win_name, title=str(m)) return model, train_data, rDL if __name__ == "__main__": import argparse from voxel_models.plot_voxels import SchematicPlotter, draw_rgb # noqa import visdom parser = argparse.ArgumentParser() parser.add_argument( "--debug", type=int, default=-1, help="no shuffle, keep only debug num examples" ) parser.add_argument("--visualize", action="store_true", help="draw pictures") parser.add_argument("--num_examples", type=int, default=1024, help="num examples in an epoch") parser.add_argument("--num_epochs", type=int, default=1500, help="training epochs") parser.add_argument("--last_layer_sigmoid", type=int, default=1, help="do sigmoid if 1") parser.add_argument("--num_layers", type=int, default=3, help="numm conv layers") # parser.add_argument("--augment", default="none", help="none or maxshift:K_underdirt:J") parser.add_argument("--cuda", action="store_true", help="use cuda") parser.add_argument("--gpu_id", type=int, default=0, help="which gpu to use") parser.add_argument("--zdim", type=int, default=256, help="hidden variable size") parser.add_argument("--batchsize", type=int, default=32, help="batch size") parser.add_argument("--data_dir", default="") parser.add_argument( "--save_model_dir", default="", help="where to save model (nowhere if blank)" ) parser.add_argument( "--load_model_dir", default="", help="from where to load model (nowhere if blank)" ) parser.add_argument( "--load_strict", action="store_true", help="error if model to load doesn't exist. if false just builds new", ) parser.add_argument( "--save_model_uid", default="", help="unique identifier on top of options-name" ) parser.add_argument( "--words_length", type=int, default=12, help="sentence pad length. FIXME?" ) parser.add_argument( "--optim_type", default="rmsprop", help="optim type, rmsprop, adam, adagrad, sgd" ) parser.add_argument("--hidden_dim", type=int, default=64, help="size of hidden dim") parser.add_argument( "--load_dictionary", default="/private/home/aszlam/junk/word_modify_word_ids.pk", help="where to get word dict", ) parser.add_argument("--reg_param", type=float, default=10.0, help="reg_param") parser.add_argument("--lr_g", type=float, default=0.0001, help="step size for net") parser.add_argument("--lr_d", type=float, default=0.0001, help="step size for net") parser.add_argument("--lr_anneal", type=float, default=1.0, help="step multiplier on anneal") parser.add_argument("--lr_anneal_every", type=int, default=150000, help="when to anneal") parser.add_argument("--d_steps", type=int, default=1, help="when to anneal") parser.add_argument( "--sbatch", action="store_true", help="cluster run mode, no visdom, formatted stdout" ) parser.add_argument("--ndonkeys", type=int, default=8, help="workers in dataloader") args = parser.parse_args() if not args.sbatch: vis = visdom.Visdom(server="http://localhost") sp = SchematicPlotter(vis) main(args)
craftassist-master
python/craftassist/voxel_models/modify/train_gan_model.py
from datetime import datetime import argparse import os import stat parser = argparse.ArgumentParser() parser.add_argument("--sweep_config_path", default="", help="path to sweep config") parser.add_argument("--sweep_scripts_output_dir", default="", help="where to put script") parser.add_argument("--sweep_name", default="", help="name of sweep") parser.add_argument("--output_dir", default="", help="where to put job_output") parser.add_argument( "--append_date", action="store_false", help="append date to output dir and job name" ) parser.add_argument("--partition", default="learnfair", help="name of partition") opts = parser.parse_args() assert opts.sweep_scripts_output_dir != "" now = datetime.now() nowstr = now.strftime("_%m_%d_%H_%M") job_name = opts.sweep_name output_dir = opts.output_dir scripts_dir = opts.sweep_scripts_output_dir if opts.append_date: job_name = job_name + nowstr output_dir = os.path.join(output_dir, job_name) scripts_dir = os.path.join(scripts_dir, job_name) os.makedirs(output_dir, exist_ok=True) os.makedirs(scripts_dir, exist_ok=True) with open(opts.sweep_config_path) as f: args = {} for l in f.readlines(): if len(l) > 0 and l[0] != "#": w = l.split("=") argname = w[0].strip() if len(w) == 1: argvals_text = [""] else: argvals_text = w[1].strip().split(",") args[argname] = [av.strip() for av in argvals_text] # grid search... TODO random varying_args = [""] static_args = " " for argname in args.keys(): new_arglist = [] if len(args[argname]) > 1: for a in varying_args: for argval in args[argname]: new_arglist.append(a + " --" + argname + " " + argval) varying_args = new_arglist.copy() else: static_args = static_args + " --" + argname + " " + args[argname][0] all_arglists = [] for a in varying_args: all_arglists.append(a + static_args) errpaths = [] outpaths = [] modelpaths = [] for i in range(len(all_arglists)): uid = job_name + "_P" + str(i) body = "#! /bin/bash \n" body += "#SBATCH --job-name=" + uid + "\n" body += "#SBATCH --output=" + os.path.join(output_dir, str(i) + ".out") + "\n" outpaths.append(os.path.join(output_dir, str(i) + ".out")) body += "#SBATCH --error=" + os.path.join(output_dir, str(i) + ".err") + "\n" errpaths.append(os.path.join(output_dir, str(i) + ".err")) body += "#SBATCH --partition=" + opts.partition + "\n" body += "#SBATCH --nodes=1 \n" body += "#SBATCH --ntasks-per-node=1 \n" body += "#SBATCH --gres=gpu:1 \n" body += "#SBATCH --cpus-per-task=10 \n" body += "#SBATCH --signal=B:USR1@60 #Signal is sent to batch script itself \n" body += "#SBATCH --open-mode=append \n" body += "#SBATCH --time=4320 \n" body += "\n" # body += st #FIXME body += "\n" body += "module purge\n" # TODO make a env loader... body += "module load NCCL/2.2.13-cuda.9.0 \n" body += "module load anaconda3/5.0.1 \n" body += "source activate /private/home/kavyasrinet/.conda/envs/minecraft_env\n" body += "cd /private/home/aszlam/fairinternal/minecraft/python/craftassist\n" ####### body += "/private/home/kavyasrinet/.conda/envs/minecraft_env/bin/python voxel_models/modify/train_conv_model.py" body += all_arglists[i] body += " --sbatch --save_model_uid " + job_name + "_" + str(i) scriptname = os.path.join(scripts_dir, str(i) + ".sh") g = open(scriptname, "w") g.write(body) g.close() st = os.stat(scriptname) os.chmod(scriptname, st.st_mode | stat.S_IEXEC) g = open(os.path.join(scripts_dir, "master"), "w") g.write("#! /bin/sh \n") for i in range(len(all_arglists)): g.write("# opts :: " + varying_args[i] + " :: " + outpaths[i] + "\n") for i in range(len(all_arglists)): g.write("echo " + "'" + varying_args[i] + " :: " + outpaths[i] + "'" + "\n") for i in range(len(all_arglists)): g.write("sbatch " + str(i) + ".sh &\n") g.close()
craftassist-master
python/craftassist/voxel_models/modify/build_sweep_scripts.py
import numpy as np import random import torch from torch.utils import data as tds import pickle import shape_transforms import shape_helpers as sh from build_utils import blocks_list_to_npy import minecraft_specs from block_data import COLOR_BID_MAP BLOCK_DATA = minecraft_specs.get_block_data() # FIXME.... NEW_BLOCK_CHOICES = [idm for v in COLOR_BID_MAP.values() for idm in v] BID_TO_COLOR = {idm: c for c in COLOR_BID_MAP.keys() for idm in COLOR_BID_MAP[c]} ############################################## # WARNING: all npy arrays in this file are xyz # not yzx def rand(): return torch.rand(1).item() def thicker(schematic): data = {} data["tform_data"] = {"delta": int(np.floor(2 * rand()) + 1)} # FIXME prob if rand() > 0.5: thick_or_thin = "thicker" data["inverse"] = False else: thick_or_thin = "thinner" data["inverse"] = True text = "make it " + thick_or_thin tform = shape_transforms.thicker return tform, text, data def scale(schematic): data = {} data["tform_data"] = {} d = random.choice( ["wider", "narrower", "taller", "shorter", "fatter", "skinnier", "bigger", "smaller"] ) text = "make it " + d if d == "wider" or d == "narrower": # FIXME prob scale_factor = rand() + 1.0 if rand() > 0.5: data["tform_data"]["lams"] = (1.0, 1.0, scale_factor) else: data["tform_data"]["lams"] = (scale_factor, 1.0, 1.0) if d == "wider": data["inverse"] = False else: data["inverse"] = True elif d == "fatter" or d == "skinnier": scale_factor = rand() + 1.0 data["tform_data"]["lams"] = (scale_factor, 1.0, scale_factor) if d == "fatter": data["inverse"] = False else: data["inverse"] = True elif d == "taller" or d == "shorter": scale_factor = rand() + 1.0 data["tform_data"]["lams"] = (1.0, scale_factor, 1.0) if d == "taller": data["inverse"] = False else: data["inverse"] = True elif d == "bigger" or d == "smaller": scale_factor = rand() + 1.0 data["tform_data"]["lams"] = (scale_factor, scale_factor, scale_factor) if d == "bigger": data["inverse"] = False else: data["inverse"] = True else: print(d) raise Exception("what?") tform = shape_transforms.scale_sparse return tform, text, data def rotate(schematic): data = {} angle = random.choice([90, -90]) data["tform_data"] = {"angle": angle} data["inverse"] = False if angle == 90: ccw = "clockwise" else: ccw = "counter-clockwise" text = "rotate it " + ccw tform = shape_transforms.rotate return tform, text, data def replace_by_block(schematic): data = {} data["inverse"] = False new_color = None # FIXME prob if rand() > 0.5: new_color = random.choice(list(COLOR_BID_MAP.keys())) new_idm = random.choice(COLOR_BID_MAP[new_color]) else: new_idm = random.choice(NEW_BLOCK_CHOICES) data["tform_data"] = {"new_idm": new_idm} if rand() > 0.25: idx = tuple(random.choice(np.transpose(schematic[:, :, :, 0].nonzero()))) idm = tuple(schematic[idx].squeeze()) if rand() > 0.5 or not (BID_TO_COLOR.get(idm)): block_name = BLOCK_DATA["bid_to_name"][idm] else: block_name = BID_TO_COLOR[idm] + " blocks" text = "change all the " + block_name + " to " data["tform_data"]["current_idm"] = idm else: data["tform_data"]["every_n"] = 1 text = "change all the blocks to " if new_color: text = text + new_color + " blocks " else: text = text + BLOCK_DATA["bid_to_name"][new_idm] tform = shape_transforms.replace_by_blocktype return tform, text, data # TODO middle... # TODO look vector and sides + front + back def replace_by_halfspace(schematic): data = {} data["inverse"] = False new_color = None # FIXME prob if rand() > 0.5: new_color = random.choice(list(COLOR_BID_MAP.keys())) new_idm = random.choice(COLOR_BID_MAP[new_color]) else: new_idm = random.choice(NEW_BLOCK_CHOICES) data["tform_data"] = {"new_idm": new_idm} geometry = {} geometry["offset"] = np.array(schematic.shape[:3]) / 2 + 0.5 text = "make the " if rand() > 0.5: nz = np.transpose(schematic[:, :, :, 0].nonzero()) mins = np.min(nz, axis=0) maxs = np.max(nz, axis=0) amount = "quarter " geometry["threshold"] = (maxs[1] - mins[1]) / 4 else: amount = "half " geometry["threshold"] = 0.0 if rand() > 0.5: text = text + "top " + amount geometry["v"] = np.array((0, 1.0, 0)) else: text = text + "bottom " + amount geometry["v"] = np.array((0, -1.0, 0)) data["tform_data"]["geometry"] = geometry if new_color: text = text + new_color else: text = text + BLOCK_DATA["bid_to_name"][new_idm] tform = shape_transforms.replace_by_halfspace return tform, text, data def fill(schematic): data = {} data["tform_data"] = {} if rand() > 0.5: data["inverse"] = False text = "fill it up" else: data["inverse"] = True text = "hollow it out" tform = shape_transforms.fill_flat return tform, text, data def get_schematic(): shape_name = random.choice(sh.SHAPE_NAMES) opts = sh.SHAPE_HELPERS[shape_name]() opts["bid"] = sh.bid() blocks = sh.SHAPE_FNS[shape_name](**opts) if len(blocks) == 0: import ipdb ipdb.set_trace() return blocks class ModifyData(tds.Dataset): def __init__(self, opts, dictionary=None): self.opts = opts self.templates = { "thicker": thicker, "scale": scale, "rotate": rotate, "replace_by_block": replace_by_block, # 'replace_by_n': replace_by_n, "replace_by_halfspace": replace_by_halfspace, "fill": fill, } self.debug = opts.debug self.stored = [] self.template_sampler = torch.distributions.Categorical( torch.Tensor(list(opts.tform_weights.values())) ) self.tform_names = list(opts.tform_weights.keys()) self.nexamples = opts.nexamples self.sidelength = opts.sidelength self.allow_same = opts.allow_same self.words_length = opts.words_length self.max_meta = opts.max_meta self.dictionary = dictionary if self.dictionary: if type(self.dictionary) is str: with open(dictionary, "rb") as f: self.dictionary = pickle.load(f) self.unkword = len(self.dictionary["w2i"]) self.padword = len(self.dictionary["w2i"]) + 1 # for debug... def print_text(self, word_tensor): # words is the tensor output of indexing the dataset words = "" for i in range(word_tensor.shape[0]): w = word_tensor[i].item() if w == self.padword: break else: words = words + self.dictionary["i2w"][w] + " " return words # TODO deal with reshifting back? def generate_task(self): size_fits = False while not size_fits: schematic, _ = blocks_list_to_npy(get_schematic(), xyz=True) if max(schematic.shape) < self.sidelength: size_fits = True schematic = shape_transforms.moment_at_center(schematic, self.sidelength) tform_name = self.tform_names[self.template_sampler.sample()] tform, text, task_data = self.templates[tform_name](schematic) return tform, text, task_data, schematic def maybe_words_to_tensor(self, text): words = text.split() if self.dictionary: wt = torch.LongTensor(self.words_length).fill_(self.padword) for i in range(len(words)): wt[i] = self.dictionary["w2i"].get(words[i], self.unkword) return wt else: return words def maybe_hash_idm(self, x): if self.max_meta > 0: return x[:, :, :, 1] + self.max_meta * x[:, :, :, 0] else: return x def __getitem__(self, index): if self.debug > 0: if len(self.stored) == 0: for i in range(self.debug): self.stored.append(self._generate_item(0)) return self.stored[index] else: return self._generate_item(0) def _generate_item(self, index): change = False size_fits = False while not change and not size_fits: tform, text, task_data, schematic = self.generate_task() new_schematic = tform(schematic, **task_data["tform_data"]) if max(new_schematic.shape) <= self.sidelength: size_fits = True new_schematic = shape_transforms.moment_at_center(new_schematic, self.sidelength) diff = (schematic - new_schematic).any() if self.allow_same: change = True if not diff: text = ["no", "change"] else: if diff: change = True w = self.maybe_words_to_tensor(text) schematic = self.maybe_hash_idm(torch.LongTensor(schematic)) new_schematic = self.maybe_hash_idm(torch.LongTensor(new_schematic)) if task_data["inverse"]: return w, new_schematic, schematic else: return w, schematic, new_schematic def __len__(self): if self.debug > 0: return self.debug else: return self.nexamples if __name__ == "__main__": from voxel_models.plot_voxels import SchematicPlotter import visdom import argparse vis = visdom.Visdom(server="http://localhost") sp = SchematicPlotter(vis) parser = argparse.ArgumentParser() parser.add_argument("--nexamples", type=int, default=100, help="size of epoch") parser.add_argument("--sidelength", type=int, default=32, help="size of epoch") parser.add_argument( "--save_dict_file", default="/private/home/aszlam/junk/word_modify_word_ids.pk", help="where to save word dict", ) parser.add_argument( "--examples_for_dict", type=int, default=-1, help="if bigger than 0, uses that many examples to build the word dict and save it", ) parser.add_argument( "--words_length", type=int, default=12, help="sentence pad length. FIXME?" ) opts = parser.parse_args() opts.allow_same = False opts.max_meta = -1 opts.tform_weights = { "thicker": 1.0, "scale": 1.0, "rotate": 1.0, "replace_by_block": 1.0, # 'replace_by_n': 1.0, "replace_by_halfspace": 1.0, "fill": 1.0, } opts.debug = False M = ModifyData(opts) def sample_and_draw(): text, old_schematic, new_schematic = M[0] sp.drawMatplot(old_schematic) sp.drawMatplot(new_schematic, title=" ".join(text)) return text, old_schematic, new_schematic # for i in range(100): # print(i) # text, old_schematic, new_schematic = M[0] # for i in range(10): # a, b, c = sample_and_draw() w2i = {} i2w = {} wcount = 0 for i in range(opts.examples_for_dict): text, a, b = M[0] for w in text: if w2i.get(w) is None: w2i[w] = wcount i2w[wcount] = w wcount += 1 print("new word! " + str(wcount) + " " + w) if len(w2i) > 0: with open(opts.save_dict_file, "wb") as f: pickle.dump({"w2i": w2i, "i2w": i2w}, f)
craftassist-master
python/craftassist/voxel_models/modify/shape_transform_dataloader.py
import torch import torch.utils.data import torchvision from box_ops import box_cxcywh_to_xyxy from datasets.lvis import LvisDetectionBase from pycocotools import mask as coco_mask from pycocotools.coco import COCO def convert_to_coco_api(ds): coco_ds = COCO() # annotation IDs need to start at 1, not 0, see torchvision issue #1530 ann_id = 1 dataset = {"images": [], "categories": [], "annotations": []} categories = set() for img_idx in range(len(ds)): # find better way to get target # targets = ds.get_annotations(img_idx) img, targets = ds.get_in_coco_format(img_idx) image_id = targets["image_id"].item() img_dict = {} img_dict["id"] = image_id height, width = targets["orig_size"].tolist() img_dict["height"] = height img_dict["width"] = width dataset["images"].append(img_dict) bboxes = targets["boxes"] # the boxes are in 0-1 format, in cxcywh format # let's convert it into the format expected by COCO api bboxes = box_cxcywh_to_xyxy(bboxes) bboxes = bboxes * torch.tensor([width, height, width, height], dtype=torch.float32) bboxes[:, 2:] -= bboxes[:, :2] bboxes = bboxes.tolist() labels = targets["labels"].tolist() areas = targets["area"].tolist() iscrowd = targets["iscrowd"].tolist() if "masks" in targets: masks = targets["masks"] # make masks Fortran contiguous for coco_mask masks = masks.permute(0, 2, 1).contiguous().permute(0, 2, 1) if "keypoints" in targets: keypoints = targets["keypoints"] keypoints = keypoints.reshape(keypoints.shape[0], -1).tolist() num_objs = len(bboxes) for i in range(num_objs): ann = {} ann["image_id"] = image_id ann["bbox"] = bboxes[i] ann["category_id"] = labels[i] categories.add(labels[i]) ann["area"] = areas[i] ann["iscrowd"] = iscrowd[i] ann["id"] = ann_id if "masks" in targets: ann["segmentation"] = coco_mask.encode(masks[i].numpy()) if "keypoints" in targets: ann["keypoints"] = keypoints[i] ann["num_keypoints"] = sum(k != 0 for k in keypoints[i][2::3]) dataset["annotations"].append(ann) ann_id += 1 dataset["categories"] = [{"id": i} for i in sorted(categories)] coco_ds.dataset = dataset coco_ds.createIndex() return coco_ds def get_coco_api_from_dataset(dataset): for _ in range(10): # if isinstance(dataset, torchvision.datasets.CocoDetection): # break if isinstance(dataset, torch.utils.data.Subset): dataset = dataset.dataset if isinstance(dataset, LvisDetectionBase): return dataset.lvis if isinstance(dataset, torchvision.datasets.CocoDetection): return dataset.coco return convert_to_coco_api(dataset) class PrepareInstance(object): CLASSES = ( "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor", ) def __call__(self, image, target): anno = target["annotation"] h, w = anno["size"]["height"], anno["size"]["width"] boxes = [] classes = [] area = [] iscrowd = [] objects = anno["object"] if not isinstance(objects, list): objects = [objects] for obj in objects: bbox = obj["bndbox"] bbox = [int(bbox[n]) - 1 for n in ["xmin", "ymin", "xmax", "ymax"]] boxes.append(bbox) classes.append(self.CLASSES.index(obj["name"])) iscrowd.append(int(obj["difficult"])) area.append((bbox[2] - bbox[0]) * (bbox[3] - bbox[1])) boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) classes = torch.as_tensor(classes) area = torch.as_tensor(area) iscrowd = torch.as_tensor(iscrowd) image_id = anno["filename"][:-4] image_id = torch.as_tensor([int(image_id)]) target = {} target["boxes"] = boxes target["labels"] = classes target["image_id"] = image_id # useful metadata target["orig_size"] = torch.as_tensor([int(h), int(w)]) target["size"] = torch.as_tensor([int(h), int(w)]) # for conversion to coco api target["area"] = area target["iscrowd"] = iscrowd return image, target
craftassist-master
python/craftassist/voxel_models/detection-transformer/to_coco_api.py
import random import torch import torchvision.transforms.functional as F import torchvision.transforms as T from torchvision.ops.misc import interpolate from box_ops import box_xyxy_to_cxcywh import PIL def crop(image, target, region): cropped_image = F.crop(image, *region) target = target.copy() i, j, h, w = region # should we do something wrt the original size? target["size"] = torch.tensor([h, w]) fields = ["labels", "area", "iscrowd"] if "boxes" in target: boxes = target["boxes"] max_size = torch.as_tensor([w, h], dtype=torch.float32) cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) cropped_boxes = cropped_boxes.clamp(min=0) area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) target["boxes"] = cropped_boxes.reshape(-1, 4) target["area"] = area fields.append("boxes") if "masks" in target: # FIXME should we update the area here if there are no boxes? target["masks"] = target["masks"][:, i : i + h, j : j + w] fields.append("masks") # remove elements for which the boxes or masks that have zero area if "boxes" in target or "masks" in target: # favor boxes selection when defining which elements to keep # this is compatible with previous implementation if "boxes" in target: cropped_boxes = target["boxes"].reshape(-1, 2, 2) keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) else: keep = target["masks"].flatten(1).any(1) for field in fields: target[field] = target[field][keep] return cropped_image, target def hflip(image, target): flipped_image = F.hflip(image) w, h = image.size target = target.copy() if "boxes" in target: boxes = target["boxes"] boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor( [w, 0, w, 0] ) target["boxes"] = boxes if "masks" in target: target["masks"] = target["masks"].flip(-1) return flipped_image, target def resize(image, target, size, max_size=None): # size can be min_size (scalar) or (w, h) tuple def get_size_with_aspect_ratio(image_size, size, max_size=None): w, h = image_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def get_size(image_size, size, max_size=None): if isinstance(size, (list, tuple)): return size[::-1] else: return get_size_with_aspect_ratio(image_size, size, max_size) size = get_size(image.size, size, max_size) rescaled_image = F.resize(image, size) if target is None: return rescaled_image, None ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) ratio_width, ratio_height = ratios target = target.copy() if "boxes" in target: boxes = target["boxes"] scaled_boxes = boxes * torch.as_tensor( [ratio_width, ratio_height, ratio_width, ratio_height] ) target["boxes"] = scaled_boxes area = target["area"] scaled_area = area * (ratio_width * ratio_height) target["area"] = scaled_area h, w = size target["size"] = torch.tensor([h, w]) if "masks" in target: target["masks"] = ( interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5 ) return rescaled_image, target def pad(image, target, padding): # assumes that we only pad on the bottom right corners padded_image = F.pad(image, (0, 0, padding[0], padding[1])) if target is None: return padded_image, None target = target.copy() # should we do something wrt the original size? target["size"] = torch.tensor(padded_image[::-1]) if "masks" in target: target["masks"] = torch.nn.functional.pad(target["masks"], (0, padding[0], 0, padding[1])) return padded_image, target class RandomCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): region = T.RandomCrop.get_params(img, self.size) return crop(img, target, region) class RandomSizeCrop(object): def __init__(self, min_size: int, max_size: int): self.min_size = min_size self.max_size = max_size def __call__(self, img: PIL.Image.Image, target: dict): w = random.randint(self.min_size, min(img.width, self.max_size)) h = random.randint(self.min_size, min(img.height, self.max_size)) region = T.RandomCrop.get_params(img, [h, w]) return crop(img, target, region) class CenterCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): image_width, image_height = img.size crop_height, crop_width = self.size crop_top = int(round((image_height - crop_height) / 2.0)) crop_left = int(round((image_width - crop_width) / 2.0)) return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) class RandomHorizontalFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, img, target): if random.random() < self.p: return hflip(img, target) return img, target class RandomResize(object): def __init__(self, sizes, max_size=None): assert isinstance(sizes, (list, tuple)) self.sizes = sizes self.max_size = max_size def __call__(self, img, target=None): size = random.choice(self.sizes) return resize(img, target, size, self.max_size) class RandomPad(object): def __init__(self, max_pad): self.max_pad = max_pad def __call__(self, img, target): pad_x = random.randint(0, self.max_pad) pad_y = random.randint(0, self.max_pad) return pad(img, target, (pad_x, pad_y)) class RandomSelect(object): """ Randomly selects between transforms1 and transforms2, with probability p for transforms1 and (1 - p) for transforms2 """ def __init__(self, transforms1, transforms2, p=0.5): self.transforms1 = transforms1 self.transforms2 = transforms2 self.p = p def __call__(self, img, target): if random.random() < self.p: return self.transforms1(img, target) return self.transforms2(img, target) class ToTensor(object): def __call__(self, img, target): return F.to_tensor(img), target class RandomErasing(object): def __init__(self, *args, **kwargs): self.eraser = T.RandomErasing(*args, **kwargs) def __call__(self, img, target): return self.eraser(img), target class Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, target=None): image = F.normalize(image, mean=self.mean, std=self.std) if target is None: return image, None target = target.copy() h, w = image.shape[-2:] if "boxes" in target: boxes = target["boxes"] boxes = box_xyxy_to_cxcywh(boxes) boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) target["boxes"] = boxes return image, target class RemoveDifficult(object): def __init__(self, enabled=False): self.remove_difficult = enabled def __call__(self, image, target=None): if target is None: return image, None target = target.copy() keep = ~target["iscrowd"].to(torch.bool) | (not self.remove_difficult) if "boxes" in target: target["boxes"] = target["boxes"][keep] target["labels"] = target["labels"][keep] target["iscrowd"] = target["iscrowd"][keep] return image, target class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string
craftassist-master
python/craftassist/voxel_models/detection-transformer/transforms.py
import argparse import builtins import datetime import json import os import random import time from pathlib import Path import numpy as np import torch from torch.utils.data import DataLoader, DistributedSampler from torch.optim.lr_scheduler import StepLR, MultiStepLR import datasets import to_coco_api import utils from datasets import build_dataset from engine import evaluate, train_one_epoch from models import build_model def get_args_parser(): parser = argparse.ArgumentParser("Set transformer detector", add_help=False) parser.add_argument("--lr", default=1e-4, type=float) parser.add_argument("--lr_backbone", default=1e-5, type=float) parser.add_argument("--batch_size", default=2, type=int) parser.add_argument("--weight_decay", default=1e-4, type=float) parser.add_argument("--epochs", default=300, type=int) parser.add_argument("--lr_drop", default=200, type=int) parser.add_argument("--optimizer", default="adam", type=str) parser.add_argument( "--clip_max_norm", default=0.1, type=float, help="gradient clipping max norm" ) parser.add_argument( "--eval_skip", default=1, type=int, help='do evaluation every "eval_skip" frames' ) parser.add_argument("--schedule", default="step", type=str, choices=("step", "multistep")) # model params parser.add_argument("--model_file", default="model_parallel") parser.add_argument( "--mask_model", default="none", type=str, choices=("none", "smallconv", "v2") ) parser.add_argument("--dropout", default=0.1, type=float) parser.add_argument("--nheads", default=8, type=int) parser.add_argument("--enc_layers", default=6, type=int) parser.add_argument("--dec_layers", default=6, type=int) parser.add_argument("--dim_feedforward", default=248, type=int) parser.add_argument("--hidden_dim", default=384, type=int) parser.add_argument( "--set_loss", default="hungarian", type=str, choices=("sequential", "hungarian", "lexicographical"), ) parser.add_argument("--set_cost_class", default=1, type=float) parser.add_argument("--set_cost_bbox", default=5, type=float) parser.add_argument("--set_cost_giou", default=1, type=float) parser.add_argument("--mask_loss_coef", default=1, type=float) parser.add_argument("--dice_loss_coef", default=1, type=float) parser.add_argument("--bbox_loss_coef", default=5, type=float) parser.add_argument("--giou_loss_coef", default=1, type=float) parser.add_argument("--backbone", default="semseg", type=str) # parser.add_argument('--backbone', default='resnet50', type=str) parser.add_argument("--position_embedding", default="v2", type=str, choices=("v1", "v2", "v3")) parser.add_argument("--resample_features_to_size", default=-1, type=int) parser.add_argument("--eos_coef", default=0.1, type=float) parser.add_argument("--num_queries", default=99, type=int) parser.add_argument("--pre_norm", action="store_true") parser.add_argument("--aux_loss", action="store_true") parser.add_argument("--pass_pos_and_query", action="store_true") parser.add_argument("--dilation", action="store_true") # dataset parameters parser.add_argument("--dataset_file", default="coco") parser.add_argument("--remove_difficult", action="store_true") parser.add_argument( "--crowdfree", action="store_true", help="Remove crowd images from training on COCO" ) parser.add_argument("--masks", action="store_true") parser.add_argument("--output-dir", default="", help="path where to save, empty for no saving") parser.add_argument("--device", default="cuda", help="device to use for training / testing") parser.add_argument("--seed", default=42, type=int) parser.add_argument("--resume", default="", help="resume from checkpoint") parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch") parser.add_argument("--eval", action="store_true") parser.add_argument("--num_workers", default=2, type=int) # distributed training parameters parser.add_argument( "--world-size", default=1, type=int, help="number of distributed processes" ) parser.add_argument( "--dist-url", default="env://", help="url used to set up distributed training" ) return parser def main(args): utils.init_distributed_mode(args) print("git:\n {}\n".format(utils.get_sha())) if args.mask_model != "none": args.masks = True print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) model, criterion, postprocessor = build_model(args) postprocessor.rescale_to_orig_size = True # for evaluation model.to(device) model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module n_parameters = builtins.sum(p.numel() for p in model.parameters() if p.requires_grad) print("number of params:", n_parameters) # optimizer = torch.optim.Adam(model.parameters()) param_dicts = [ {"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n]}, { "params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n], "lr": args.lr_backbone, }, ] if args.optimizer == "sgd": optimizer = torch.optim.SGD( param_dicts, lr=args.lr, momentum=0.9, weight_decay=args.weight_decay ) elif args.optimizer in ["adam", "adamw"]: optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay) else: raise RuntimeError(f"Unsupported optimizer {args.optimizer}") if args.schedule == "step": lr_scheduler = StepLR(optimizer, args.lr_drop) elif args.schedule == "multistep": milestones = list(range(args.lr_drop, args.epochs, 50)) lr_scheduler = MultiStepLR(optimizer, gamma=0.5, milestones=milestones) dataset_train = build_dataset(image_set="trainval", args=args) dataset_val = build_dataset(image_set="test", args=args) if args.distributed: sampler_train = DistributedSampler(dataset_train) sampler_val = DistributedSampler(dataset_val, shuffle=False) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) batch_sampler_train = torch.utils.data.BatchSampler( sampler_train, args.batch_size, drop_last=True ) data_loader_train = DataLoader( dataset_train, batch_sampler=batch_sampler_train, collate_fn=utils.collate_fn, num_workers=args.num_workers, ) data_loader_val = DataLoader( dataset_val, args.batch_size, sampler=sampler_val, drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers, ) if args.dataset_file == "coco_panoptic": # We also evaluate AP during panoptic training, on original coco DS coco_val = datasets.coco.build("val", args) base_ds = to_coco_api.get_coco_api_from_dataset(coco_val) else: base_ds = None # to_coco_api.get_coco_api_from_dataset(dataset_val) output_dir = Path(args.output_dir) if args.resume: checkpoint = torch.load(args.resume, map_location="cpu") model_without_ddp.load_state_dict(checkpoint["model"]) optimizer.load_state_dict(checkpoint["optimizer"]) lr_scheduler.load_state_dict(checkpoint["lr_scheduler"]) args.start_epoch = checkpoint["epoch"] + 1 if args.eval: test_stats, coco_evaluator = evaluate( model, criterion, postprocessor, data_loader_val, base_ds, device, eval_bbox=True, eval_masks=args.masks, ) if args.output_dir: utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth") return print("Start training") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: sampler_train.set_epoch(epoch) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm ) lr_scheduler.step() if args.output_dir: checkpoint_paths = [output_dir / "checkpoint.pth"] # extra checkpoint before LR drop and every 100 epochs if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0: checkpoint_paths.append(output_dir / f"checkpoint{epoch:04}.pth") for checkpoint_path in checkpoint_paths: utils.save_on_master( { "model": model_without_ddp.state_dict(), "optimizer": optimizer.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), "epoch": epoch, "args": args, }, checkpoint_path, ) # if epoch % args.eval_skip == 0: # test_stats, coco_evaluator = evaluate( # model, criterion, postprocessor, data_loader_val, base_ds, device, eval_bbox=True, eval_masks=args.masks # ) # else: # test_stats, coco_evaluator = {}, None test_stats, coco_evaluator = {}, None log_stats = { **{f"train_{k}": v for k, v in train_stats.items()}, **{f"test_{k}": v for k, v in test_stats.items()}, "n_parameters": n_parameters, } if args.output_dir and utils.is_main_process(): with (output_dir / "log.txt").open("a") as f: f.write(json.dumps(log_stats) + "\n") # for evaluation logs if coco_evaluator is not None: os.makedirs(os.path.join(args.output_dir, "eval"), exist_ok=True) if "bbox" in coco_evaluator.coco_eval: filenames = ["latest.pth"] if epoch % 50 == 0: filenames.append(f"{epoch:03}.pth") for name in filenames: torch.save( coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval" / name ) with (output_dir / "log_tb.txt").open("a") as f: f.write(f"TORCHBOARD_METRICS[epoch] = {epoch}\n") for k, v in vars(args).items(): f.write(f"TORCHBOARD_METRICS[{k}] = {v}") for key in log_stats: v = log_stats[key] if isinstance(v, list): for i, vi in enumerate(v): f.write(f"TORCHBOARD_METRICS[{key}_{i}] = {vi}\n") else: f.write(f"TORCHBOARD_METRICS[{key}] = {v}\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print("Training time {}".format(total_time_str)) if __name__ == "__main__": parser = argparse.ArgumentParser("Set transformer detector", parents=[get_args_parser()]) args = parser.parse_args() if args.output_dir: os.makedirs(args.output_dir, exist_ok=True) main(args)
craftassist-master
python/craftassist/voxel_models/detection-transformer/detection.py
import torch def box_area(boxes): """ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, z1, x2, y2, z2) coordinates. Arguments: boxes (Tensor[N, 6]): boxes for which the area will be computed. They are expected to be in (x1, y1, z1, x2, y2, z2) format Returns: area (Tensor[N]): area for each box """ return (boxes[:, 3] - boxes[:, 0]) * (boxes[:, 4] - boxes[:, 1]) * (boxes[:, 5] - boxes[:, 2]) def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) def box_cxcyczwhd_to_xyzxyz(x): x_c, y_c, z_c, w, h, d = x.unbind(-1) b = [ (x_c - 0.5 * w), (y_c - 0.5 * h), (z_c - 0.5 * d), (x_c + 0.5 * w), (y_c + 0.5 * h), (z_c + 0.5 * d), ] return torch.stack(b, dim=-1) def box_xyzxyz_to_cxcyczwhd(x): x0, y0, x1, y1, z0, z1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (z0 + z1) / 2, (x1 - x0), (y1 - y0), (z1 - z0)] return torch.stack(b, dim=-1) # modified from torchvision to also return the union def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :3], boxes2[:, :3]) # [N,M,3] rb = torch.min(boxes1[:, None, 3:], boxes2[:, 3:]) # [N,M,3] whd = (rb - lt).clamp(min=0) # [N,M,3] inter = whd[:, :, 0] * whd[:, :, 1] * whd[:, :, 2] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 3:] >= boxes1[:, :3]).all() assert (boxes2[:, 3:] >= boxes2[:, :3]).all() iou, union = box_iou(boxes1, boxes2) lt = torch.min(boxes1[:, None, :3], boxes2[:, :3]) rb = torch.max(boxes1[:, None, 3:], boxes2[:, 3:]) whd = (rb - lt).clamp(min=0) # [N,M,2] area = whd[:, :, 0] * whd[:, :, 1] * whd[:, :, 2] return iou - (area - union) / area def masks_to_boxes(masks): """Compute the bounding boxes around the provided masks The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. Returns a [N, 4] tensors, with the boxes in xyxy format """ if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float) y, x = torch.meshgrid(y, x) x_mask = masks * x.unsqueeze(0) x_max = x_mask.flatten(1).max(-1)[0] x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] y_mask = masks * y.unsqueeze(0) y_max = y_mask.flatten(1).max(-1)[0] y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] return torch.stack( [ x_min, y_min, torch.full(x_max.shape, 0, dtype=torch.float), x_max, y_max, torch.full(x_max.shape, 50, dtype=torch.float), ], 1, )
craftassist-master
python/craftassist/voxel_models/detection-transformer/box_ops.py
import argparse import os import uuid from pathlib import Path import detection import submitit def parse_args(): detection_parser = detection.get_args_parser() parser = argparse.ArgumentParser("Submitit for detection", parents=[detection_parser]) parser.add_argument( "--partition", default="learnfair", type=str, help="Partition where to submit" ) parser.add_argument( "--ngpus", default=8, type=int, help="Number of gpus to request on each node" ) parser.add_argument("--nodes", default=4, type=int, help="Number of nodes to request") parser.add_argument("--timeout", default=60, type=int, help="Duration of the job") parser.add_argument( "--job_dir", default="", type=str, help="Job dir. Leave empty for automatic." ) parser.add_argument("--use_volta32", action="store_true", help="Big models? Use this") parser.add_argument( "--mail", default="", type=str, help="Email this user when the job finishes if specified" ) parser.add_argument( "--comment", default="", type=str, help="Comment to pass to scheduler, e.g. priority message", ) return parser.parse_args() def get_shared_folder() -> Path: user = os.getenv("USER") if Path("/checkpoint/").is_dir(): p = Path(f"/checkpoint/{user}/experiments") p.mkdir(exist_ok=True) return p raise RuntimeError("No shared folder available") def get_init_file(): # Init file must not exist, but it's parent dir must exist. os.makedirs(str(get_shared_folder()), exist_ok=True) init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init" if init_file.exists(): os.remove(str(init_file)) return init_file class Trainer(object): def __init__(self, args): self.args = args def __call__(self): import detection self._setup_gpu_args() detection.main(self.args) def checkpoint(self): import os import submitit self.args.dist_url = get_init_file().as_uri() checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth") if os.path.exists(checkpoint_file): self.args.resume = checkpoint_file print("Requeuing ", self.args) empty_trainer = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty_trainer) def _setup_gpu_args(self): import submitit from pathlib import Path job_env = submitit.JobEnvironment() self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id))) self.args.gpu = job_env.local_rank self.args.rank = job_env.global_rank self.args.world_size = job_env.num_tasks print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") def main(): args = parse_args() if args.job_dir == "": args.job_dir = get_shared_folder() / "%j" # Note that the folder will depend on the job_id, to easily track experiments executor = submitit.AutoExecutor(folder=args.job_dir, max_num_timeout=30) # executor = submitit.LocalExecutor(folder=get_shared_folder() / "%j") # cluster setup is defined by environment variables num_gpus_per_node = args.ngpus nodes = args.nodes partition = args.partition timeout_min = args.timeout kwargs = {} if args.use_volta32: kwargs["constraint"] = "volta32gb" if args.comment: kwargs["comment"] = args.comment executor.update_parameters( mem_gb=40 * num_gpus_per_node, gpus_per_node=num_gpus_per_node, tasks_per_node=num_gpus_per_node, # one task per GPU cpus_per_task=10, nodes=nodes, timeout_min=timeout_min, # max is 60 * 72 # Below are cluster dependent parameters hostgroup="fblearner_ash_bigsur_fair", partition=partition, signal_delay_s=120, **kwargs, ) executor.update_parameters(name="detectransformer") if args.mail: executor.update_parameters( additional_parameters={"mail-user": args.mail, "mail-type": "END"} ) args.dist_url = get_init_file().as_uri() args.output_dir = args.job_dir trainer = Trainer(args) job = executor.submit(trainer) print("Submitted job_id:", job.job_id) # job.task(0).result() if __name__ == "__main__": main()
craftassist-master
python/craftassist/voxel_models/detection-transformer/run_with_submitit.py
import unittest import torch import box_ops class Tester(unittest.TestCase): def test_box_cxcywh_to_xyxy(self): t = torch.rand(10, 4) r = box_ops.box_xyxy_to_cxcywh(box_ops.box_cxcywh_to_xyxy(t)) self.assertTrue((t - r).abs().max() < 1e-5) if __name__ == "__main__": unittest.main()
craftassist-master
python/craftassist/voxel_models/detection-transformer/test_box_ops.py
import copy import datetime from collections import OrderedDict, defaultdict import numpy as np import torch import torch._six import pycocotools.mask as mask_util import utils from datasets.lvis import LVIS ################################################################# # From LVIS, with following changes: # * fixed LVISEval constructor to accept empty dt # * Removed logger # * LVIS results supporst numpy inputs ################################################################# class Params: def __init__(self, iou_type): """Params for LVIS evaluation API.""" self.img_ids = [] self.cat_ids = [] # np.arange causes trouble. the data point on arange is slightly # larger than the true value self.iou_thrs = np.linspace(0.5, 0.95, np.round((0.95 - 0.5) / 0.05) + 1, endpoint=True) self.rec_thrs = np.linspace(0.0, 1.00, np.round((1.00 - 0.0) / 0.01) + 1, endpoint=True) self.max_dets = 300 self.area_rng = [ [0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2], ] self.area_rng_lbl = ["all", "small", "medium", "large"] self.use_cats = 1 # We bin categories in three bins based how many images of the training # set the category is present in. # r: Rare : < 10 # c: Common : >= 10 and < 100 # f: Frequent: >= 100 self.img_count_lbl = ["r", "c", "f"] self.iou_type = iou_type class LVISResults(LVIS): def __init__(self, lvis_gt, results, max_dets=300): """Constructor for LVIS results. Args: lvis_gt (LVIS class instance, or str containing path of annotation file) results (str containing path of result file or a list of dicts) max_dets (int): max number of detections per image. The official value of max_dets for LVIS is 300. """ super(LVISResults, self).__init__() assert isinstance(lvis_gt, LVIS) self.dataset["images"] = [img for img in lvis_gt.dataset["images"]] if isinstance(results, str): result_anns = self._load_json(results) elif type(results) == np.ndarray: result_anns = self.loadNumpyAnnotations(results) else: result_anns = results if max_dets >= 0: result_anns = self.limit_dets_per_image(result_anns, max_dets) if len(result_anns) > 0 and "bbox" in result_anns[0]: self.dataset["categories"] = copy.deepcopy(lvis_gt.dataset["categories"]) for id, ann in enumerate(result_anns): x1, y1, w, h = ann["bbox"] x2 = x1 + w y2 = y1 + h if "segmentation" not in ann: ann["segmentation"] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann["area"] = w * h ann["id"] = id + 1 elif len(result_anns) > 0 and "segmentation" in result_anns[0]: self.dataset["categories"] = copy.deepcopy(lvis_gt.dataset["categories"]) for id, ann in enumerate(result_anns): # Only support compressed RLE format as segmentation results ann["area"] = mask_util.area(ann["segmentation"]) if "bbox" not in ann: ann["bbox"] = mask_util.toBbox(ann["segmentation"]) ann["id"] = id + 1 self.dataset["annotations"] = result_anns self._create_index() # #FIXME: disabling this check for now # img_ids_in_result = [ann["image_id"] for ann in result_anns] # assert set(img_ids_in_result) == ( # set(img_ids_in_result) & set(self.get_img_ids()) # ), "Results do not correspond to current LVIS set." def limit_dets_per_image(self, anns, max_dets): img_ann = defaultdict(list) for ann in anns: img_ann[ann["image_id"]].append(ann) for img_id, _anns in img_ann.items(): if len(_anns) <= max_dets: continue _anns = sorted(_anns, key=lambda ann: ann["score"], reverse=True) img_ann[img_id] = _anns[:max_dets] return [ann for anns in img_ann.values() for ann in anns] def get_top_results(self, img_id, score_thrs): ann_ids = self.get_ann_ids(img_ids=[img_id]) anns = self.load_anns(ann_ids) return list(filter(lambda ann: ann["score"] > score_thrs, anns)) class LVISEval: def __init__(self, lvis_gt, lvis_dt=None, iou_type="segm"): """Constructor for LVISEval. Args: lvis_gt (LVIS class instance, or str containing path of annotation file) lvis_dt (LVISResult class instance, or str containing path of result file, or list of dict) iou_type (str): segm or bbox evaluation """ if iou_type not in ["bbox", "segm"]: raise ValueError("iou_type: {} is not supported.".format(iou_type)) if isinstance(lvis_gt, LVIS): self.lvis_gt = lvis_gt elif isinstance(lvis_gt, str): self.lvis_gt = LVIS(lvis_gt) else: raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt)) if isinstance(lvis_dt, LVISResults): self.lvis_dt = lvis_dt elif isinstance(lvis_dt, (str, list)): self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt) elif lvis_dt is not None: raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt)) # per-image per-category evaluation results self.eval_imgs = defaultdict(list) self.eval = {} # accumulated evaluation results self._gts = defaultdict(list) # gt for evaluation self._dts = defaultdict(list) # dt for evaluation self.params = Params(iou_type=iou_type) # parameters self.results = OrderedDict() self.stats = [] self.ious = {} # ious between all gts and dts self.params.img_ids = sorted(self.lvis_gt.get_img_ids()) self.params.cat_ids = sorted(self.lvis_gt.get_cat_ids()) def _to_mask(self, anns, lvis): for ann in anns: rle = lvis.ann_to_rle(ann) ann["segmentation"] = rle def _prepare(self): """Prepare self._gts and self._dts for evaluation based on params.""" cat_ids = self.params.cat_ids if self.params.cat_ids else None gts = self.lvis_gt.load_anns( self.lvis_gt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids) ) dts = self.lvis_dt.load_anns( self.lvis_dt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids) ) # convert ground truth to mask if iou_type == 'segm' if self.params.iou_type == "segm": self._to_mask(gts, self.lvis_gt) self._to_mask(dts, self.lvis_dt) # set ignore flag for gt in gts: if "ignore" not in gt: gt["ignore"] = 0 for gt in gts: self._gts[gt["image_id"], gt["category_id"]].append(gt) # For federated dataset evaluation we will filter out all dt for an # image which belong to categories not present in gt and not present in # the negative list for an image. In other words detector is not penalized # for categories about which we don't have gt information about their # presence or absence in an image. img_data = self.lvis_gt.load_imgs(ids=self.params.img_ids) # per image map of categories not present in image img_nl = {d["id"]: d["neg_category_ids"] for d in img_data} # per image list of categories present in image img_pl = defaultdict(set) for ann in gts: img_pl[ann["image_id"]].add(ann["category_id"]) # per image map of categoires which have missing gt. For these # categories we don't penalize the detector for flase positives. self.img_nel = {d["id"]: d["not_exhaustive_category_ids"] for d in img_data} for dt in dts: img_id, cat_id = dt["image_id"], dt["category_id"] if cat_id not in img_nl[img_id] and cat_id not in img_pl[img_id]: continue self._dts[img_id, cat_id].append(dt) self.freq_groups = self._prepare_freq_group() def _prepare_freq_group(self): freq_groups = [[] for _ in self.params.img_count_lbl] cat_data = self.lvis_gt.load_cats(self.params.cat_ids) for idx, _cat_data in enumerate(cat_data): frequency = _cat_data["frequency"] freq_groups[self.params.img_count_lbl.index(frequency)].append(idx) return freq_groups def evaluate(self): """ Run per image evaluation on given images and store results (a list of dict) in self.eval_imgs. """ self.params.img_ids = list(np.unique(self.params.img_ids)) if self.params.use_cats: cat_ids = self.params.cat_ids else: cat_ids = [-1] self._prepare() self.ious = { (img_id, cat_id): self.compute_iou(img_id, cat_id) for img_id in self.params.img_ids for cat_id in cat_ids } # loop through images, area range, max detection number self.eval_imgs = [ self.evaluate_img(img_id, cat_id, area_rng) for cat_id in cat_ids for area_rng in self.params.area_rng for img_id in self.params.img_ids ] def _get_gt_dt(self, img_id, cat_id): """Create gt, dt which are list of anns/dets. If use_cats is true only anns/dets corresponding to tuple (img_id, cat_id) will be used. Else, all anns/dets in image are used and cat_id is not used. """ if self.params.use_cats: gt = self._gts[img_id, cat_id] dt = self._dts[img_id, cat_id] else: gt = [_ann for _cat_id in self.params.cat_ids for _ann in self._gts[img_id, cat_id]] dt = [_ann for _cat_id in self.params.cat_ids for _ann in self._dts[img_id, cat_id]] return gt, dt def compute_iou(self, img_id, cat_id): gt, dt = self._get_gt_dt(img_id, cat_id) if len(gt) == 0 and len(dt) == 0: return [] # Sort detections in decreasing order of score. idx = np.argsort([-d["score"] for d in dt], kind="mergesort") dt = [dt[i] for i in idx] iscrowd = [int(False)] * len(gt) if self.params.iou_type == "segm": ann_type = "segmentation" elif self.params.iou_type == "bbox": ann_type = "bbox" else: raise ValueError("Unknown iou_type for iou computation.") gt = [g[ann_type] for g in gt] dt = [d[ann_type] for d in dt] # compute iou between each dt and gt region # will return array of shape len(dt), len(gt) ious = mask_util.iou(dt, gt, iscrowd) return ious def evaluate_img(self, img_id, cat_id, area_rng): """Perform evaluation for single category and image.""" gt, dt = self._get_gt_dt(img_id, cat_id) if len(gt) == 0 and len(dt) == 0: return None # Add another filed _ignore to only consider anns based on area range. for g in gt: if g["ignore"] or (g["area"] < area_rng[0] or g["area"] > area_rng[1]): g["_ignore"] = 1 else: g["_ignore"] = 0 # Sort gt ignore last gt_idx = np.argsort([g["_ignore"] for g in gt], kind="mergesort") gt = [gt[i] for i in gt_idx] # Sort dt highest score first dt_idx = np.argsort([-d["score"] for d in dt], kind="mergesort") dt = [dt[i] for i in dt_idx] # load computed ious ious = ( self.ious[img_id, cat_id][:, gt_idx] if len(self.ious[img_id, cat_id]) > 0 else self.ious[img_id, cat_id] ) num_thrs = len(self.params.iou_thrs) num_gt = len(gt) num_dt = len(dt) # Array to store the "id" of the matched dt/gt gt_m = np.zeros((num_thrs, num_gt)) dt_m = np.zeros((num_thrs, num_dt)) gt_ig = np.array([g["_ignore"] for g in gt]) dt_ig = np.zeros((num_thrs, num_dt)) for iou_thr_idx, iou_thr in enumerate(self.params.iou_thrs): if len(ious) == 0: break for dt_idx, _dt in enumerate(dt): iou = min([iou_thr, 1 - 1e-10]) # information about best match so far (m=-1 -> unmatched) # store the gt_idx which matched for _dt m = -1 for gt_idx, _ in enumerate(gt): # if this gt already matched continue if gt_m[iou_thr_idx, gt_idx] > 0: continue # if _dt matched to reg gt, and on ignore gt, stop if m > -1 and gt_ig[m] == 0 and gt_ig[gt_idx] == 1: break # continue to next gt unless better match made if ious[dt_idx, gt_idx] < iou: continue # if match successful and best so far, store appropriately iou = ious[dt_idx, gt_idx] m = gt_idx # No match found for _dt, go to next _dt if m == -1: continue # if gt to ignore for some reason update dt_ig. # Should not be used in evaluation. dt_ig[iou_thr_idx, dt_idx] = gt_ig[m] # _dt match found, update gt_m, and dt_m with "id" dt_m[iou_thr_idx, dt_idx] = gt[m]["id"] gt_m[iou_thr_idx, m] = _dt["id"] # For LVIS we will ignore any unmatched detection if that category was # not exhaustively annotated in gt. dt_ig_mask = [ d["area"] < area_rng[0] or d["area"] > area_rng[1] or d["category_id"] in self.img_nel[d["image_id"]] for d in dt ] dt_ig_mask = np.array(dt_ig_mask).reshape((1, num_dt)) # 1 X num_dt dt_ig_mask = np.repeat(dt_ig_mask, num_thrs, 0) # num_thrs X num_dt # Based on dt_ig_mask ignore any unmatched detection by updating dt_ig dt_ig = np.logical_or(dt_ig, np.logical_and(dt_m == 0, dt_ig_mask)) # store results for given image and category return { "image_id": img_id, "category_id": cat_id, "area_rng": area_rng, "dt_ids": [d["id"] for d in dt], "gt_ids": [g["id"] for g in gt], "dt_matches": dt_m, "gt_matches": gt_m, "dt_scores": [d["score"] for d in dt], "gt_ignore": gt_ig, "dt_ignore": dt_ig, } def accumulate(self): """Accumulate per image evaluation results and store the result in self.eval. """ if not self.eval_imgs: print("Warning: Please run evaluate first.") if self.params.use_cats: cat_ids = self.params.cat_ids else: cat_ids = [-1] num_thrs = len(self.params.iou_thrs) num_recalls = len(self.params.rec_thrs) num_cats = len(cat_ids) num_area_rngs = len(self.params.area_rng) num_imgs = len(self.params.img_ids) # -1 for absent categories precision = -np.ones((num_thrs, num_recalls, num_cats, num_area_rngs)) recall = -np.ones((num_thrs, num_cats, num_area_rngs)) # Initialize dt_pointers dt_pointers = {} for cat_idx in range(num_cats): dt_pointers[cat_idx] = {} for area_idx in range(num_area_rngs): dt_pointers[cat_idx][area_idx] = {} # Per category evaluation for cat_idx in range(num_cats): Nk = cat_idx * num_area_rngs * num_imgs for area_idx in range(num_area_rngs): Na = area_idx * num_imgs E = [self.eval_imgs[Nk + Na + img_idx] for img_idx in range(num_imgs)] # Remove elements which are None E = [e for e in E if e is not None] if len(E) == 0: continue # Append all scores: shape (N,) dt_scores = np.concatenate([e["dt_scores"] for e in E], axis=0) dt_ids = np.concatenate([e["dt_ids"] for e in E], axis=0) dt_idx = np.argsort(-dt_scores, kind="mergesort") dt_scores = dt_scores[dt_idx] dt_ids = dt_ids[dt_idx] dt_m = np.concatenate([e["dt_matches"] for e in E], axis=1)[:, dt_idx] dt_ig = np.concatenate([e["dt_ignore"] for e in E], axis=1)[:, dt_idx] gt_ig = np.concatenate([e["gt_ignore"] for e in E]) # num gt anns to consider num_gt = np.count_nonzero(gt_ig == 0) if num_gt == 0: continue tps = np.logical_and(dt_m, np.logical_not(dt_ig)) fps = np.logical_and(np.logical_not(dt_m), np.logical_not(dt_ig)) tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float) fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float) dt_pointers[cat_idx][area_idx] = {"dt_ids": dt_ids, "tps": tps, "fps": fps} for iou_thr_idx, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): tp = np.array(tp) fp = np.array(fp) num_tp = len(tp) rc = tp / num_gt if num_tp: recall[iou_thr_idx, cat_idx, area_idx] = rc[-1] else: recall[iou_thr_idx, cat_idx, area_idx] = 0 # np.spacing(1) ~= eps pr = tp / (fp + tp + np.spacing(1)) pr = pr.tolist() # Replace each precision value with the maximum precision # value to the right of that recall level. This ensures # that the calculated AP value will be less suspectable # to small variations in the ranking. for i in range(num_tp - 1, 0, -1): if pr[i] > pr[i - 1]: pr[i - 1] = pr[i] rec_thrs_insert_idx = np.searchsorted(rc, self.params.rec_thrs, side="left") pr_at_recall = [0.0] * num_recalls try: for _idx, pr_idx in enumerate(rec_thrs_insert_idx): pr_at_recall[_idx] = pr[pr_idx] except Exception: pass precision[iou_thr_idx, :, cat_idx, area_idx] = np.array(pr_at_recall) self.eval = { "params": self.params, "counts": [num_thrs, num_recalls, num_cats, num_area_rngs], "date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "precision": precision, "recall": recall, "dt_pointers": dt_pointers, } def _summarize(self, summary_type, iou_thr=None, area_rng="all", freq_group_idx=None): aidx = [ idx for idx, _area_rng in enumerate(self.params.area_rng_lbl) if _area_rng == area_rng ] if summary_type == "ap": s = self.eval["precision"] if iou_thr is not None: tidx = np.where(iou_thr == self.params.iou_thrs)[0] s = s[tidx] if freq_group_idx is not None: s = s[:, :, self.freq_groups[freq_group_idx], aidx] else: s = s[:, :, :, aidx] else: s = self.eval["recall"] if iou_thr is not None: tidx = np.where(iou_thr == self.params.iou_thrs)[0] s = s[tidx] s = s[:, :, aidx] if len(s[s > -1]) == 0: mean_s = -1 else: mean_s = np.mean(s[s > -1]) return mean_s def summarize(self): """Compute and display summary metrics for evaluation results.""" if not self.eval: raise RuntimeError("Please run accumulate() first.") max_dets = self.params.max_dets self.results["AP"] = self._summarize("ap") self.results["AP50"] = self._summarize("ap", iou_thr=0.50) self.results["AP75"] = self._summarize("ap", iou_thr=0.75) self.results["APs"] = self._summarize("ap", area_rng="small") self.results["APm"] = self._summarize("ap", area_rng="medium") self.results["APl"] = self._summarize("ap", area_rng="large") self.results["APr"] = self._summarize("ap", freq_group_idx=0) self.results["APc"] = self._summarize("ap", freq_group_idx=1) self.results["APf"] = self._summarize("ap", freq_group_idx=2) self.stats = np.zeros((9,)) self.stats[0] = self._summarize("ap") self.stats[1] = self._summarize("ap", iou_thr=0.50) self.stats[2] = self._summarize("ap", iou_thr=0.75) self.stats[3] = self._summarize("ap", area_rng="small") self.stats[4] = self._summarize("ap", area_rng="medium") self.stats[5] = self._summarize("ap", area_rng="large") self.stats[6] = self._summarize("ap", freq_group_idx=0) self.stats[7] = self._summarize("ap", freq_group_idx=1) self.stats[8] = self._summarize("ap", freq_group_idx=2) key = "AR@{}".format(max_dets) self.results[key] = self._summarize("ar") for area_rng in ["small", "medium", "large"]: key = "AR{}@{}".format(area_rng[0], max_dets) self.results[key] = self._summarize("ar", area_rng=area_rng) self.print_results() def run(self): """Wrapper function which calculates the results.""" self.evaluate() self.accumulate() self.summarize() def print_results(self): template = ( " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} catIds={:>3s}] = {:0.3f}" ) for key, value in self.results.items(): max_dets = self.params.max_dets if "AP" in key: title = "Average Precision" _type = "(AP)" else: title = "Average Recall" _type = "(AR)" if len(key) > 2 and key[2].isdigit(): iou_thr = float(key[2:]) / 100 iou = "{:0.2f}".format(iou_thr) else: iou = "{:0.2f}:{:0.2f}".format(self.params.iou_thrs[0], self.params.iou_thrs[-1]) if len(key) > 2 and key[2] in ["r", "c", "f"]: cat_group_name = key[2] else: cat_group_name = "all" if len(key) > 2 and key[2] in ["s", "m", "l"]: area_rng = key[2] else: area_rng = "all" print(template.format(title, _type, iou, area_rng, max_dets, cat_group_name, value)) def get_results(self): if not self.results: print("Warning: results is empty. Call run().") return self.results ################################################################# # end of straight copy from lvis, just fixing constructor ################################################################# class LvisEvaluator(object): def __init__(self, lvis_gt, iou_types): assert isinstance(iou_types, (list, tuple)) # lvis_gt = copy.deepcopy(lvis_gt) self.lvis_gt = lvis_gt self.iou_types = iou_types self.coco_eval = {} for iou_type in iou_types: self.coco_eval[iou_type] = LVISEval(lvis_gt, iou_type=iou_type) self.img_ids = [] self.eval_imgs = {k: [] for k in iou_types} def update(self, predictions): img_ids = list(np.unique(list(predictions.keys()))) self.img_ids.extend(img_ids) for iou_type in self.iou_types: results = self.prepare(predictions, iou_type) lvis_dt = LVISResults(self.lvis_gt, results) lvis_eval = self.coco_eval[iou_type] lvis_eval.lvis_dt = lvis_dt lvis_eval.params.img_ids = list(img_ids) lvis_eval.evaluate() eval_imgs = lvis_eval.eval_imgs eval_imgs = np.asarray(eval_imgs).reshape( len(lvis_eval.params.cat_ids), len(lvis_eval.params.area_rng), len(lvis_eval.params.img_ids), ) self.eval_imgs[iou_type].append(eval_imgs) def synchronize_between_processes(self): for iou_type in self.iou_types: self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2) create_common_lvis_eval( self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type] ) def accumulate(self): for lvis_eval in self.coco_eval.values(): lvis_eval.accumulate() def summarize(self): for iou_type, lvis_eval in self.coco_eval.items(): print("IoU metric: {}".format(iou_type)) lvis_eval.summarize() def prepare(self, predictions, iou_type): if iou_type == "bbox": return self.prepare_for_lvis_detection(predictions) elif iou_type == "segm": return self.prepare_for_lvis_segmentation(predictions) elif iou_type == "keypoints": return self.prepare_for_lvis_keypoint(predictions) else: raise ValueError("Unknown iou type {}".format(iou_type)) def prepare_for_lvis_detection(self, predictions): lvis_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() lvis_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) ] ) return lvis_results def prepare_for_lvis_segmentation(self, predictions): lvis_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue scores = prediction["scores"] labels = prediction["labels"] masks = prediction["masks"] masks = masks > 0.5 scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") lvis_results.extend( [ { "image_id": original_id, "category_id": labels[k], "segmentation": rle, "score": scores[k], } for k, rle in enumerate(rles) ] ) return lvis_results def convert_to_xywh(boxes): xmin, ymin, xmax, ymax = boxes.unbind(1) return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1) def merge(img_ids, eval_imgs): all_img_ids = utils.all_gather(img_ids) all_eval_imgs = utils.all_gather(eval_imgs) merged_img_ids = [] for p in all_img_ids: merged_img_ids.extend(p) merged_eval_imgs = [] for p in all_eval_imgs: merged_eval_imgs.append(p) merged_img_ids = np.array(merged_img_ids) merged_eval_imgs = np.concatenate(merged_eval_imgs, 2) # keep only unique (and in sorted order) images merged_img_ids, idx = np.unique(merged_img_ids, return_index=True) merged_eval_imgs = merged_eval_imgs[..., idx] return merged_img_ids, merged_eval_imgs def create_common_lvis_eval(lvis_eval, img_ids, eval_imgs): img_ids, eval_imgs = merge(img_ids, eval_imgs) img_ids = list(img_ids) eval_imgs = list(eval_imgs.flatten()) lvis_eval.eval_imgs = eval_imgs lvis_eval.params.img_ids = img_ids
craftassist-master
python/craftassist/voxel_models/detection-transformer/lvis_eval.py
import json import numpy as np import copy import torch import torch._six from pycocotools.cocoeval import COCOeval from pycocotools.coco import COCO import pycocotools.mask as mask_util from collections import defaultdict import utils class CocoEvaluator(object): def __init__(self, coco_gt, iou_types): assert isinstance(iou_types, (list, tuple)) coco_gt = copy.deepcopy(coco_gt) self.coco_gt = coco_gt self.iou_types = iou_types self.coco_eval = {} for iou_type in iou_types: self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type) self.img_ids = [] self.eval_imgs = {k: [] for k in iou_types} def update(self, predictions): img_ids = list(np.unique(list(predictions.keys()))) self.img_ids.extend(img_ids) for iou_type in self.iou_types: results = self.prepare(predictions, iou_type) coco_dt = loadRes(self.coco_gt, results) if results else COCO() coco_eval = self.coco_eval[iou_type] coco_eval.cocoDt = coco_dt coco_eval.params.imgIds = list(img_ids) img_ids, eval_imgs = evaluate(coco_eval) self.eval_imgs[iou_type].append(eval_imgs) def synchronize_between_processes(self): for iou_type in self.iou_types: self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2) create_common_coco_eval( self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type] ) def accumulate(self): for coco_eval in self.coco_eval.values(): coco_eval.accumulate() def summarize(self): for iou_type, coco_eval in self.coco_eval.items(): print("IoU metric: {}".format(iou_type)) coco_eval.summarize() def prepare(self, predictions, iou_type): if iou_type == "bbox": return self.prepare_for_coco_detection(predictions) elif iou_type == "segm": return self.prepare_for_coco_segmentation(predictions) elif iou_type == "keypoints": return self.prepare_for_coco_keypoint(predictions) else: raise ValueError("Unknown iou type {}".format(iou_type)) def prepare_for_coco_detection(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xyzwhd(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) ] ) return coco_results def prepare_for_coco_segmentation(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue scores = prediction["scores"] labels = prediction["labels"] masks = prediction["masks"] masks = masks > 0.5 scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "segmentation": rle, "score": scores[k], } for k, rle in enumerate(rles) ] ) return coco_results def prepare_for_coco_keypoint(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xyzwhd(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() keypoints = prediction["keypoints"] keypoints = keypoints.flatten(start_dim=1).tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "keypoints": keypoint, "score": scores[k], } for k, keypoint in enumerate(keypoints) ] ) return coco_results def convert_to_xyzwhd(boxes): xmin, ymin, zmin, xmax, ymax, zmax = boxes.unbind(1) return torch.stack((xmin, ymin, zmin, xmax - xmin, ymax - ymin, zmax - zmin), dim=1) def merge(img_ids, eval_imgs): all_img_ids = utils.all_gather(img_ids) all_eval_imgs = utils.all_gather(eval_imgs) merged_img_ids = [] for p in all_img_ids: merged_img_ids.extend(p) merged_eval_imgs = [] for p in all_eval_imgs: merged_eval_imgs.append(p) merged_img_ids = np.array(merged_img_ids) merged_eval_imgs = np.concatenate(merged_eval_imgs, 2) # keep only unique (and in sorted order) images merged_img_ids, idx = np.unique(merged_img_ids, return_index=True) merged_eval_imgs = merged_eval_imgs[..., idx] return merged_img_ids, merged_eval_imgs def create_common_coco_eval(coco_eval, img_ids, eval_imgs): img_ids, eval_imgs = merge(img_ids, eval_imgs) img_ids = list(img_ids) eval_imgs = list(eval_imgs.flatten()) coco_eval.evalImgs = eval_imgs coco_eval.params.imgIds = img_ids coco_eval._paramsEval = copy.deepcopy(coco_eval.params) ################################################################# # From pycocotools, just removed the prints and fixed # a Python3 bug about unicode not defined ################################################################# # Ideally, pycocotools wouldn't have hard-coded prints # so that we could avoid copy-pasting those two functions def createIndex(self): # create index # print('creating index...') anns, cats, imgs = {}, {}, {} imgToAnns, catToImgs = defaultdict(list), defaultdict(list) if "annotations" in self.dataset: for ann in self.dataset["annotations"]: imgToAnns[ann["image_id"]].append(ann) anns[ann["id"]] = ann if "images" in self.dataset: for img in self.dataset["images"]: imgs[img["id"]] = img if "categories" in self.dataset: for cat in self.dataset["categories"]: cats[cat["id"]] = cat if "annotations" in self.dataset and "categories" in self.dataset: for ann in self.dataset["annotations"]: catToImgs[ann["category_id"]].append(ann["image_id"]) # print('index created!') # create class members self.anns = anns self.imgToAnns = imgToAnns self.catToImgs = catToImgs self.imgs = imgs self.cats = cats maskUtils = mask_util def loadRes(self, resFile): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ res = COCO() res.dataset["images"] = [img for img in self.dataset["images"]] # print('Loading and preparing results...') # tic = time.time() if isinstance(resFile, torch._six.string_classes): anns = json.load(open(resFile)) elif type(resFile) == np.ndarray: anns = self.loadNumpyAnnotations(resFile) else: anns = resFile assert type(anns) == list, "results in not an array of objects" annsImgIds = [ann["image_id"] for ann in anns] assert set(annsImgIds) == ( set(annsImgIds) & set(self.getImgIds()) ), "Results do not correspond to current coco set" if "caption" in anns[0]: imgIds = set([img["id"] for img in res.dataset["images"]]) & set( [ann["image_id"] for ann in anns] ) res.dataset["images"] = [img for img in res.dataset["images"] if img["id"] in imgIds] for id, ann in enumerate(anns): ann["id"] = id + 1 elif "bbox" in anns[0] and not anns[0]["bbox"] == []: res.dataset["categories"] = copy.deepcopy(self.dataset["categories"]) for id, ann in enumerate(anns): bb = ann["bbox"] x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]] if "segmentation" not in ann: ann["segmentation"] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann["area"] = bb[2] * bb[3] ann["id"] = id + 1 ann["iscrowd"] = 0 elif "segmentation" in anns[0]: res.dataset["categories"] = copy.deepcopy(self.dataset["categories"]) for id, ann in enumerate(anns): # now only support compressed RLE format as segmentation results ann["area"] = maskUtils.area(ann["segmentation"]) if "bbox" not in ann: ann["bbox"] = maskUtils.toBbox(ann["segmentation"]) ann["id"] = id + 1 ann["iscrowd"] = 0 elif "keypoints" in anns[0]: res.dataset["categories"] = copy.deepcopy(self.dataset["categories"]) for id, ann in enumerate(anns): s = ann["keypoints"] x = s[0::3] y = s[1::3] x1, x2, y1, y2 = np.min(x), np.max(x), np.min(y), np.max(y) ann["area"] = (x2 - x1) * (y2 - y1) ann["id"] = id + 1 ann["bbox"] = [x1, y1, x2 - x1, y2 - y1] # print('DONE (t={:0.2f}s)'.format(time.time()- tic)) res.dataset["annotations"] = anns createIndex(res) return res def evaluate(self): """ Run per image evaluation on given images and store results (a list of dict) in self.evalImgs :return: None """ # tic = time.time() # print('Running per image evaluation...') p = self.params # add backward compatibility if useSegm is specified in params if p.useSegm is not None: p.iouType = "segm" if p.useSegm == 1 else "bbox" print("useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType)) # print('Evaluate annotation type *{}*'.format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params = p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == "segm" or p.iouType == "bbox": computeIoU = self.computeIoU elif p.iouType == "keypoints": computeIoU = self.computeOks self.ious = { (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds } evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] evalImgs = [ evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] # this is NOT in the pycocotools code, but could be done outside evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds)) self._paramsEval = copy.deepcopy(self.params) # toc = time.time() # print('DONE (t={:0.2f}s).'.format(toc-tic)) return p.imgIds, evalImgs ################################################################# # end of straight copy from pycocotools, just removing the prints #################################################################
craftassist-master
python/craftassist/voxel_models/detection-transformer/coco_eval.py
import math import sys from typing import Iterable import torch import utils from coco_eval import CocoEvaluator from datasets.lvis import LVIS from lvis_eval import LvisEvaluator def train_one_epoch( model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, max_norm: float = 0, ): model.train() criterion.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}")) metric_logger.add_meter("class_error", utils.SmoothedValue(window_size=1, fmt="{value:.2f}")) header = "Epoch: [{}]".format(epoch) print_freq = 10 for samples, targets in metric_logger.log_every(data_loader, print_freq, header): # print('--------------------') samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] outputs = model(samples) print("------ outputs 1---------") print(outputs["pred_masks"].shape) loss_dict = criterion(outputs, targets) weight_dict = criterion.weight_dict losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) loss_dict_reduced_unscaled = {f"{k}_unscaled": v for k, v in loss_dict_reduced.items()} loss_dict_reduced_scaled = { k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict } losses_reduced_scaled = sum(loss_dict_reduced_scaled.values()) loss_value = losses_reduced_scaled.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) print(loss_dict_reduced) sys.exit(1) optimizer.zero_grad() losses.backward() if max_norm > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) optimizer.step() metric_logger.update( loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled ) metric_logger.update(class_error=loss_dict_reduced["class_error"]) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def evaluate(model, criterion, postprocessor, data_loader, base_ds, device, eval_bbox, eval_masks): model.eval() criterion.eval() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter("class_error", utils.SmoothedValue(window_size=1, fmt="{value:.2f}")) header = "Test:" iou_types = [] if eval_masks: iou_types += ["segm"] if eval_bbox: iou_types += ["bbox"] iou_types = tuple(iou_types) if isinstance(base_ds, LVIS): coco_evaluator = LvisEvaluator(base_ds, iou_types) if eval_bbox or eval_masks else None else: coco_evaluator = CocoEvaluator(base_ds, iou_types) if eval_bbox or eval_masks else None # coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75] for samples, targets in metric_logger.log_every(data_loader, 10, header): samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] outputs = model(samples) loss_dict = criterion(outputs, targets) weight_dict = criterion.weight_dict # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) loss_dict_reduced_scaled = { k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict } loss_dict_reduced_unscaled = {f"{k}_unscaled": v for k, v in loss_dict_reduced.items()} metric_logger.update( loss=sum(loss_dict_reduced_scaled.values()), **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled, ) metric_logger.update(class_error=loss_dict_reduced["class_error"]) results = postprocessor(outputs, targets) res = {target["image_id"].item(): output for target, output in zip(targets, results)} if coco_evaluator is not None: coco_evaluator.update(res) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) if coco_evaluator is not None: coco_evaluator.synchronize_between_processes() # accumulate predictions from all images if coco_evaluator is not None: coco_evaluator.accumulate() coco_evaluator.summarize() stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()} if coco_evaluator is not None: if eval_bbox: stats["coco_eval_bbox"] = coco_evaluator.coco_eval["bbox"].stats.tolist() if eval_masks: stats["coco_eval_masks"] = coco_evaluator.coco_eval["segm"].stats.tolist() return stats, coco_evaluator
craftassist-master
python/craftassist/voxel_models/detection-transformer/engine.py
from __future__ import print_function from collections import defaultdict, deque import datetime import pickle import subprocess import time import torch import torch.distributed as dist import os class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, ) def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device="cuda") size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) if local_size != max_size: padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that all processes have the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.all_reduce(values) if average: values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.4f}") data_time = SmoothedValue(fmt="{avg:.4f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" if torch.cuda.is_available(): log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", "max mem: {memory:.0f}", ] ) else: log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] ) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print( "{} Total time: {} ({:.4f} s / it)".format( header, total_time_str, total_time / len(iterable) ) ) def get_sha(): cwd = os.path.dirname(os.path.abspath(__file__)) def _run(command): return subprocess.check_output(command, cwd=cwd).decode("ascii").strip() sha = "N/A" diff = "clean" branch = "N/A" try: sha = _run(["git", "rev-parse", "HEAD"]) subprocess.check_output(["git", "diff"], cwd=cwd) diff = _run(["git", "diff-index", "HEAD"]) diff = "has uncommited changes" if diff else "clean" branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"]) except Exception: pass message = f"sha: {sha}, status: {diff}, branch: {branch}" return message def collate_fn(batch): batch = list(zip(*batch)) batch[0] = NestedTensor.from_tensor_list(batch[0]) return tuple(batch) class NestedTensor(object): def __init__(self, tensors, mask): self.tensors = tensors self.mask = mask def to(self, *args, **kwargs): cast_tensor = self.tensors.to(*args, **kwargs) cast_mask = self.mask.to(*args, **kwargs) if self.mask is not None else None return type(self)(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask @classmethod def from_tensor_list(cls, tensor_list): # TODO make this more general # print('---- nest tensor size ----') # print(tensor_list[1].shape) if tensor_list[0].ndim == 3: # TODO make it support different-sized images max_size = tuple(max(s) for s in zip(*[img.shape for img in tensor_list])) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = (len(tensor_list),) + max_size b, h, w, d = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, h, w, d), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[0], : img.shape[1], : img.shape[2]] = False elif tensor_list[0].ndim == 4: max_size = tuple(max(s) for s in zip(*[img.shape for img in tensor_list])) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = (len(tensor_list),) + max_size b, c, h, w, d = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, c, h, w, d), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2], : img.shape[3]].copy_(img) m[: img.shape[0], : img.shape[1], : img.shape[2], : img.shape[3]] = False else: raise ValueError("not supported") return cls(tensor, mask) def __repr__(self): return repr(self.tensors) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if "RANK" in os.environ and "WORLD_SIZE" in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ["WORLD_SIZE"]) args.gpu = int(os.environ["LOCAL_RANK"]) elif "SLURM_PROCID" in os.environ: args.rank = int(os.environ["SLURM_PROCID"]) args.gpu = args.rank % torch.cuda.device_count() else: print("Not using distributed mode") args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = "nccl" print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True) torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank, ) torch.distributed.barrier() setup_for_distributed(args.rank == 0) def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" if target.numel() == 0: return [torch.zeros([], device=output.device)] maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res
craftassist-master
python/craftassist/voxel_models/detection-transformer/utils.py
import torch import pandas as pd from pathlib import Path import seaborn as sns import matplotlib.pyplot as plt def plot_logs(logs, fields=("class_error", "loss_bbox_unscaled", "mAP"), ewm_col=0): dfs = [pd.read_json(Path(p) / "log.txt", lines=True) for p in logs] fig, axs = plt.subplots(ncols=len(fields), figsize=(16, 5)) for df, color in zip(dfs, sns.color_palette(n_colors=len(logs))): for j, field in enumerate(fields): if field == "loss_huber" and "test_loss_huber" not in df.keys(): field = "loss_bbox_unscaled" if field == "mAP": coco_eval = ( pd.DataFrame(pd.np.stack(df.test_coco_eval.dropna().values)[:, 1]) .ewm(com=ewm_col) .mean() ) axs[j].plot(coco_eval, c=color) else: df.interpolate().ewm(com=ewm_col).mean().plot( y=[f"train_{field}", f"test_{field}"], ax=axs[j], color=[color] * 2, style=["-", "--"], ) for ax, field in zip(axs, fields): ax.legend([Path(p).name for p in logs]) ax.set_title(field) def plot_precision_recall(files, naming_scheme="iter"): if naming_scheme == "exp_id": # name becomes exp_id names = [f.parts[-3] for f in files] elif naming_scheme == "iter": names = [f.stem for f in files] else: raise ValueError(f"not supported {naming_scheme}") fig, axs = plt.subplots(ncols=2, figsize=(16, 5)) for f, color, name in zip(files, sns.color_palette("Blues", n_colors=len(files)), names): data = torch.load(f) # precision is n_iou, n_points, n_cat, n_area, max_det precision = data["precision"] recall = data["params"].recThrs scores = data["scores"] # take precision for all classes, all areas and 100 detections precision = precision[0, :, :, 0, -1].mean(1) scores = scores[0, :, :, 0, -1].mean(1) prec = precision.mean() rec = data["recall"][0, :, 0, -1].mean() print( f"{naming_scheme} {name}: mAP@50={prec * 100: 05.1f}, " + f"score={scores.mean():0.3f}, " + f"f1={2 * prec * rec / (prec + rec + 1e-8):0.3f}" ) axs[0].plot(recall, precision, c=color) axs[1].plot(recall, scores, c=color) axs[0].set_title("Precision / Recall") axs[0].legend(names) axs[1].set_title("Scores / Recall") axs[1].legend(names) return fig, axs
craftassist-master
python/craftassist/voxel_models/detection-transformer/plot_utils.py
import bisect from torch.utils.data.dataset import ConcatDataset as _ConcatDataset class ConcatDataset(_ConcatDataset): """ Same as torch.utils.data.dataset.ConcatDataset, but exposes an extra method """ def get_idxs(self, idx): dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) if dataset_idx == 0: sample_idx = idx else: sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] return dataset_idx, sample_idx def get_in_coco_format(self, idx: int): dataset_idx, sample_idx = self.get_idxs(idx) return self.datasets[dataset_idx].get_in_coco_format(sample_idx) from .voc import VOCDetection from .voc2012 import VOCDetection2012 from .voc import make_voc_transforms def build(image_set, args): ds_2007 = VOCDetection( image_set=image_set, transforms=make_voc_transforms(image_set, args.remove_difficult) ) if image_set == "test": return ds_2007 ds_2012 = VOCDetection2012( image_set=image_set, transforms=make_voc_transforms(image_set, args.remove_difficult) ) return ConcatDataset([ds_2007, ds_2012])
craftassist-master
python/craftassist/voxel_models/detection-transformer/datasets/voc2007_2012.py
import copy import os import torch import torch.utils.data import torchvision import transforms as T from pycocotools import mask as coco_mask class FilterAndRemapCocoCategories(object): def __init__(self, categories, remap=True): self.categories = categories self.remap = remap def __call__(self, image, target): anno = target["annotations"] anno = [obj for obj in anno if obj["category_id"] in self.categories] if not self.remap: target["annotations"] = anno return image, target anno = copy.deepcopy(anno) for obj in anno: obj["category_id"] = self.categories.index(obj["category_id"]) target["annotations"] = anno return image, target def convert_coco_poly_to_mask(segmentations, height, width): masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = torch.as_tensor(mask, dtype=torch.uint8) mask = mask.any(dim=2) masks.append(mask) if masks: masks = torch.stack(masks, dim=0) else: masks = torch.zeros((0, height, width), dtype=torch.uint8) return masks class ConvertCocoPolysToMask(object): def __init__(self, return_masks=False): self.return_masks = return_masks def __call__(self, image, target): w, h = image.size image_id = target["image_id"] image_id = torch.tensor([image_id]) anno = target["annotations"] anno = [obj for obj in anno if "iscrowd" not in obj or obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] # guard against no boxes via resizing boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2].clamp_(min=0, max=w) boxes[:, 1::2].clamp_(min=0, max=h) classes = [obj["category_id"] for obj in anno] classes = torch.tensor(classes, dtype=torch.int64) if self.return_masks: segmentations = [obj["segmentation"] for obj in anno] masks = convert_coco_poly_to_mask(segmentations, h, w) keypoints = None if anno and "keypoints" in anno[0]: keypoints = [obj["keypoints"] for obj in anno] keypoints = torch.as_tensor(keypoints, dtype=torch.float32) num_keypoints = keypoints.shape[0] if num_keypoints: keypoints = keypoints.view(num_keypoints, -1, 3) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] classes = classes[keep] if self.return_masks: masks = masks[keep] if keypoints is not None: keypoints = keypoints[keep] target = {} target["boxes"] = boxes target["labels"] = classes if self.return_masks: target["masks"] = masks target["image_id"] = image_id if keypoints is not None: target["keypoints"] = keypoints # for conversion to coco api area = torch.tensor([obj["area"] for obj in anno]) iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno]) target["area"] = area[keep] target["iscrowd"] = iscrowd[keep] target["orig_size"] = torch.as_tensor([int(h), int(w)]) target["size"] = torch.as_tensor([int(h), int(w)]) return image, target class CocoDetection(torchvision.datasets.CocoDetection): def __init__(self, img_folder, ann_file, transforms, return_masks): super(CocoDetection, self).__init__(img_folder, ann_file) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_masks) def __getitem__(self, idx): img, target = super(CocoDetection, self).__getitem__(idx) image_id = self.ids[idx] target = dict(image_id=image_id, annotations=target) img, target = self.prepare(img, target) if self._transforms is not None: img, target = self._transforms(img, target) return img, target def get_in_coco_format(self, idx): img, target = super(CocoDetection, self).__getitem__(idx) image_id = self.ids[idx] target = dict(image_id=image_id, annotations=target) img, target = self.prepare(img, target) if self._transforms is not None: img, target = self._transforms(img, target) return img, target def make_coco_transforms(image_set): normalize = T.Compose( [T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])] ) scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] transform_train = T.Compose( [ T.RandomHorizontalFlip(), T.RandomSelect( T.RandomResize(scales, max_size=1333), T.Compose( [ T.RandomResize([400, 500, 600]), T.RandomSizeCrop(384, 600), T.RandomResize(scales, max_size=1333), ] ), ), normalize, ] ) transform_val = T.Compose([T.RandomResize([800], max_size=1333), normalize]) transforms = { "train": transform_train, "trainval": transform_train, "val": transform_val, "test": transform_val, } return transforms[image_set] def build(image_set, args): root = "/datasets01/COCO/022719" if args.crowdfree: # has cleaned up training set, val set is unchanged root_ann = "/checkpoint/szagoruyko/detection_transformer_shared/coco_instances_crowdfree" else: root_ann = root mode = "instances" anno_file_template = "{}_{}2017.json" PATHS = { "train": ( "train2017", os.path.join("annotations", anno_file_template.format(mode, "train")), ), "val": ("val2017", os.path.join("annotations", anno_file_template.format(mode, "val"))), # this is a hack, change in the future "trainval": ( "train2017", os.path.join("annotations", anno_file_template.format(mode, "train")), ), "test": ("val2017", os.path.join("annotations", anno_file_template.format(mode, "val"))), } img_folder, ann_file = PATHS[image_set] img_folder = os.path.join(root, img_folder) ann_file = os.path.join(root_ann, ann_file) dataset = CocoDetection( img_folder, ann_file, transforms=make_coco_transforms(image_set), return_masks=args.masks ) return dataset
craftassist-master
python/craftassist/voxel_models/detection-transformer/datasets/coco.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import pickle import numpy as np import torch from torch.utils import data as tds from copy import deepcopy def underdirt(schematic, labels=None, max_shift=0, nothing_id=0): # todo fancier dirt! # FIXME!!!! label as ground where appropriate shift = torch.randint(max_shift + 1, (1,)).item() if shift > 0: new_schematic = torch.LongTensor(schematic.size()) new_schematic[:, shift:, :] = schematic[:, :-shift, :] new_schematic[:, :shift, :] = 3 new_labels = None if labels is not None: new_labels = torch.LongTensor(labels.size()) new_labels[:, shift:, :] = labels[:, :-shift, :] new_labels[:, :shift, :] = nothing_id return new_schematic, new_labels else: return schematic, labels def flip_rotate(c, l=None, idx=None): """ Randomly transform the cube for more data. The transformation is chosen from: 0. original 1. x-z plane rotation 90 2. x-z plane rotation 180 3. x-z plane rotation 270 4. x-axis flip 5. z-axis flip """ idx = np.random.choice(range(6)) if (idx is None) else idx l_ = l if idx == 0: c_ = c l_ = l elif idx >= 1 and idx <= 3: # rotate npc = c.numpy() npc = np.rot90(npc, idx, axes=(0, 2)) # rotate on the x-z plane c_ = torch.from_numpy(npc.copy()) if l is not None: npl = l.numpy() npl = np.rot90(npl, idx, axes=(0, 2)) # rotate on the x-z plane l_ = torch.from_numpy(npl.copy()) else: # flip npc = c.numpy() npc = np.flip(npc, axis=(idx - 4) * 2) # 0 or 2 c_ = torch.from_numpy(npc.copy()) if l is not None: npl = l.numpy() npl = np.flip(npl, axis=(idx - 4) * 2) # 0 or 2 l_ = torch.from_numpy(npl.copy()) return c_, l_, idx def pad_to_sidelength(schematic, labels=None, nothing_id=0, sidelength=32): szs = list(schematic.size()) szs = np.add(szs, -sidelength) pad = [] # this is all backwards bc pytorch pad semantics :( for s in szs: if s >= 0: pad.append(0) else: pad.append(-s) pad.append(0) schematic = torch.nn.functional.pad(schematic, pad[::-1]) if labels is not None: labels = torch.nn.functional.pad(labels, pad[::-1], value=nothing_id) return schematic, labels # TODO cut outliers # TODO simplify def fit_in_sidelength(schematic, labels=None, nothing_id=0, sl=32, max_shift=0): schematic, labels = pad_to_sidelength( schematic, labels=labels, nothing_id=nothing_id, sidelength=sl ) nz = schematic.nonzero() m, _ = nz.median(0) min_y, _ = nz.min(0) min_y = min_y[1] xshift = max(torch.randint(-max_shift, max_shift + 1, (1,)).item() - m[0].item() + sl // 2, 0) zshift = max(torch.randint(-max_shift, max_shift + 1, (1,)).item() - m[2].item() + sl // 2, 0) new_schematic = torch.LongTensor(sl, sl, sl).fill_(1) new_schematic[xshift:, : sl - min_y, zshift:] = schematic[ : sl - xshift, min_y:sl, : sl - zshift ] new_labels = None if labels is not None: new_labels = torch.LongTensor(sl, sl, sl).fill_(nothing_id) new_labels[xshift:, : sl - min_y, zshift:] = labels[: sl - xshift, min_y:sl, : sl - zshift] return new_schematic, new_labels, (xshift, -min_y, zshift) def make_example_from_raw(schematic, labels=None, augment={}, nothing_id=0, sl=32): max_shift = augment.get("max_shift", 0) s, l, o = fit_in_sidelength( schematic, labels=labels, nothing_id=nothing_id, max_shift=max_shift ) if len(augment) > 0: if augment.get("flip_rotate", False): s, l, _ = flip_rotate(s, l=l) m = augment.get("underdirt") if m is not None: # really should fix offset here.....TODO s, l = underdirt(s, labels=l, max_shift=m, nothing_id=nothing_id) s[s == 0] = 1 s -= 1 return s, l, o def swallow_classes(classes, predator, prey_classes, class_map): new_classes = deepcopy(classes) apex = class_map.get(predator, predator) for prey in prey_classes: class_map[prey] = apex new_classes["name2count"][predator] += new_classes["name2count"][prey] del new_classes["name2count"][prey] for prey in prey_classes: for s, t in class_map.items(): if t == prey: class_map[s] = apex return new_classes, class_map def organize_classes(classes, min_occurence): class_map = {} new_classes = deepcopy(classes) for cname in classes["name2count"]: # hacky, should stem this properly if cname[-1] == "s" and classes["name2count"].get(cname[:-1]) is not None: new_classes, class_map = swallow_classes(new_classes, cname[:-1], [cname], class_map) small_classes = [] for cname, count in new_classes["name2count"].items(): if count < min_occurence: small_classes.append(cname) if "none" in small_classes: small_classes.remove("none") new_classes, class_map = swallow_classes(new_classes, "none", small_classes, class_map) if "nothing" in new_classes["name2idx"]: new_classes, class_map = swallow_classes(new_classes, "none", ["nothing"], class_map) counts = sorted(list(new_classes["name2count"].items()), key=lambda x: x[1], reverse=True) new_classes["name2idx"]["none"] = 0 new_classes["idx2name"].append("none") for i in range(len(counts)): cname = counts[i][0] if cname != "none": new_classes["name2idx"][cname] = i new_classes["idx2name"].append(cname) return new_classes, class_map def create_shape_dataset(): pass class SemSegData(tds.Dataset): def __init__( self, shape_data_path=None, house_data_path=None, nexamples=0, shape_pct=0.5, sidelength=32, min_size=10, max_size=30, classes=None, augment={}, house_min_class_occurence=250, shape_min_class_occurence=1, useid=True, shape_save_path=None, ): self.sidelength = sidelength self.useid = useid self.examples = [] self.nexamples = nexamples self.augment = augment print("create semsegdata") # create combined dataset of shapes and houses shape_nexamples = int(nexamples * shape_pct) shape_dataset = SemSegShapeData( data_path=shape_data_path, nexamples=shape_nexamples, sidelength=sidelength, min_size=min_size, max_size=max_size, classes=classes, augment=augment, min_class_occurence=shape_min_class_occurence, useid=useid, save_path=shape_save_path, ) house_nexamples = nexamples - shape_nexamples house_dataset = SemSegHouseData( data_path=house_data_path, nexamples=house_nexamples, sidelength=sidelength, classes=classes, augment=augment, min_class_occurence=house_min_class_occurence, useid=useid, ) self.classes = {"name2idx": {}, "idx2name": [], "name2count": {}} house_classes = house_dataset.get_classes() shape_classes = shape_dataset.get_classes() self.classes = deepcopy(house_classes) print(self.classes) print(shape_classes) for cname in shape_classes["name2idx"]: if cname not in self.classes["name2idx"]: new_idx = len(self.classes["name2idx"]) self.classes["name2idx"][cname] = new_idx self.classes["idx2name"].append(cname) self.classes["name2count"][cname] = shape_classes["name2count"].get(cname, 0) else: if cname in self.classes["name2count"]: self.classes["name2count"][cname] += shape_classes["name2count"].get(cname, 0) else: self.classes["name2count"][cname] = shape_classes["name2count"].get(cname, 0) self.inst_data = shape_dataset.inst_data + house_dataset.inst_data if classes is None: class_map = {} for cname in self.classes["name2idx"]: class_map[cname] = cname for data in self.inst_data: for cname in data[2]: if cname not in class_map: class_map[cname] = "none" else: new_classes = deepcopy(classes) new_classes["name2count"] = {} new_classes["name2count"]["none"] = 0 class_map = {} for cname in new_classes["name2idx"]: class_map[cname] = cname for data in self.inst_data: for cname in data[2]: mapped_name = "none" if cname in class_map: mapped_name = class_map[cname] if mapped_name not in new_classes["name2count"]: new_classes["name2count"][mapped_name] = 0 new_classes["name2count"][mapped_name] += 1 class_map[cname] = mapped_name self.classes = new_classes # this should be 0... self.nothing_id = self.classes["name2idx"]["none"] c = self.classes["name2idx"] for i in range(len(shape_dataset.inst_data)): shape_dataset.inst_data[i] = list(shape_dataset.inst_data[i]) x = shape_dataset.inst_data[i] x[1].apply_(lambda z: c[shape_classes["idx2name"][z]] if z > 0 else self.nothing_id) for i in range(len(house_dataset.inst_data)): house_dataset.inst_data[i] = list(house_dataset.inst_data[i]) x = house_dataset.inst_data[i] x[1].apply_(lambda z: c[house_classes["idx2name"][z]] if z > 0 else self.nothing_id) self.inst_data = shape_dataset.inst_data + house_dataset.inst_data self.nexamples = len(self.inst_data) print( "Generated {} examples consisting of {} shapes and {} houses.".format( len(self.inst_data), len(shape_dataset.inst_data), len(house_dataset.inst_data) ) ) # def get_classes(self): return self.classes def set_classes(self, classes): self.classes = classes def __getitem__(self, index): x = self.inst_data[index] s, l, _ = make_example_from_raw( x[0], labels=x[1], nothing_id=self.nothing_id, sl=self.sidelength, augment=self.augment ) return s, l def __len__(self): return self.nexamples class SemSegShapeData(tds.Dataset): def __init__( self, data_path=None, nexamples=-1, sidelength=32, min_size=10, max_size=30, classes=None, augment={}, min_class_occurence=1, useid=True, save_path=None, ): self.sidelength = sidelength self.useid = useid self.examples = [] self.nexamples = nexamples self.augment = augment if data_path is not None: self.inst_data = pickle.load(open(data_path, "rb")) else: self.inst_data = create_shape_dataset(min=min_size, max=max_size, nexamples=nexamples) if save_path is not None: with open(save_path, "wb") as f: pickle.dump(self.inst_data, f) print("Save generated shape data to {}".format(save_path)) if self.nexamples < 0: self.nexamples = len(self.inst_data) else: self.nexamples = min(len(self.inst_data), self.nexamples) self.inst_data = self.inst_data[: self.nexamples] # TODO separate training and validation data if classes is None: classes = {"name2idx": {}, "idx2name": [], "name2count": {}} for i in range(len(self.inst_data)): for cname in self.inst_data[i][2]: if classes["name2count"].get(cname) is None: classes["name2count"][cname] = 1 else: classes["name2count"][cname] += 1 if classes["name2count"].get("none") is None: classes["name2count"]["none"] = 1 merged_classes, class_map = organize_classes(classes, min_class_occurence) for cname in merged_classes["name2idx"]: class_map[cname] = cname self.classes = merged_classes else: new_classes = deepcopy(classes) new_classes["name2count"] = {} new_classes["name2count"]["none"] = 0 class_map = {} for cname in new_classes["name2idx"]: class_map[cname] = cname for data in self.inst_data: for cname in data[2]: mapped_name = "none" if cname in class_map: mapped_name = class_map[cname] if mapped_name not in new_classes["name2count"]: new_classes["name2count"][mapped_name] = 0 new_classes["name2count"][mapped_name] += 1 class_map[cname] = mapped_name self.classes = new_classes # this should be 0... self.nothing_id = self.classes["name2idx"]["none"] c = self.classes["name2idx"] for i in range(len(self.inst_data)): self.inst_data[i] = list(self.inst_data[i]) x = self.inst_data[i] x[0] = torch.from_numpy(x[0]).long() x[1] = torch.from_numpy(x[1]).long() x[1].apply_(lambda z: c[class_map[x[2][z]]] if z > 0 else self.nothing_id) # def get_classes(self): return self.classes def set_classes(self, classes): self.classes = classes def __getitem__(self, index): x = self.inst_data[index] s, l, _ = make_example_from_raw( x[0], labels=x[1], nothing_id=self.nothing_id, sl=self.sidelength, augment=self.augment ) return s, l def __len__(self): return self.nexamples class SemSegHouseData(tds.Dataset): def __init__( self, data_path, nexamples=-1, sidelength=32, classes=None, augment={}, min_class_occurence=250, useid=True, ): self.sidelength = sidelength self.useid = useid self.examples = [] self.inst_data = [] if data_path: self.inst_data = pickle.load(open(data_path, "rb")) self.nexamples = nexamples self.augment = augment if self.nexamples < 0: self.nexamples = len(self.inst_data) else: self.nexamples = min(len(self.inst_data), self.nexamples) self.inst_data = self.inst_data[: self.nexamples] # print("------- inst data -------") # print(self.inst_data) # TODO separate training and validation data if classes is None: classes = {"name2idx": {}, "idx2name": [], "name2count": {}} for i in range(len(self.inst_data)): for cname in self.inst_data[i][2]: if classes["name2count"].get(cname) is None: classes["name2count"][cname] = 1 else: classes["name2count"][cname] += 1 if classes["name2count"].get("none") is None: classes["name2count"]["none"] = 1 merged_classes, class_map = organize_classes(classes, min_class_occurence) for cname in merged_classes["name2idx"]: class_map[cname] = cname self.classes = merged_classes else: new_classes = deepcopy(classes) new_classes["name2count"] = {} new_classes["name2count"]["none"] = 0 class_map = {} for cname in new_classes["name2idx"]: class_map[cname] = cname for data in self.inst_data: for cname in data[2]: mapped_name = "none" if cname in class_map: mapped_name = class_map[cname] if mapped_name not in new_classes["name2count"]: new_classes["name2count"][mapped_name] = 0 new_classes["name2count"][mapped_name] += 1 class_map[cname] = mapped_name self.classes = new_classes # this should be 0... self.nothing_id = self.classes["name2idx"]["none"] print("class No.: {}".format(len(self.classes["name2idx"]))) # c = self.classes["name2idx"] for i in range(len(self.inst_data)): self.inst_data[i] = list(self.inst_data[i]) x = self.inst_data[i] x[0] = torch.from_numpy(x[0]).long() x[1] = torch.from_numpy(x[1]).long() # x[1].apply_(lambda z: c[class_map[x[2][z]]] if z > 0 else self.nothing_id) self.class_map = class_map # def get_classes(self): return self.classes def set_classes(self, classes): self.classes = classes def __getitem__(self, index): x = self.inst_data[index] s, l, _ = make_example_from_raw( x[0], labels=x[1], nothing_id=self.nothing_id, sl=self.sidelength, augment=self.augment ) w, h, d = x[1].shape inst_len = len(x[2]) - 1 # ignore nothing masks = torch.zeros((inst_len, w, h, d), dtype=torch.uint8) boxes = [] labels = [] for i, inst_name in enumerate(x[2][1:]): cls_id = self.classes["name2idx"][self.class_map[inst_name]] idx = x[1] == cls_id masks[i][idx] = 1 idx = idx.nonzero() values, indices = idx.min(dim=0) x_min, y_min, z_min = values values, indices = idx.max(dim=0) x_max, y_max, z_max = values box = (x_min, y_min, z_min, x_max, y_max, z_max) boxes.append(box) labels.append(cls_id) boxes = torch.tensor(boxes, dtype=torch.float32) labels = torch.tensor(labels) size = torch.tensor((d, h, w)) data = { "masks": masks, "boxes": boxes, "labels": labels, "size": size, "orig_size": size, "image_id": torch.tensor(index), } return x[0], data def __len__(self): return self.nexamples def build(image_set, args): data_path = "/checkpoint/aszlam/minecraft/segmentation_data/training_data.pkl" nexamples = 100 house_dataset = SemSegHouseData(data_path=data_path, nexamples=nexamples) return house_dataset
craftassist-master
python/craftassist/voxel_models/detection-transformer/datasets/house.py
import importlib def build_dataset(image_set, args): # what a hack mod = importlib.import_module("datasets." + args.dataset_file) return mod.build(image_set, args)
craftassist-master
python/craftassist/voxel_models/detection-transformer/datasets/__init__.py
import json import os import time from collections import defaultdict import torchvision from PIL import Image import pycocotools.mask as mask_utils import transforms as T from .coco import ConvertCocoPolysToMask def _isArrayLike(obj): return hasattr(obj, "__iter__") and hasattr(obj, "__len__") class LVIS: def __init__(self, annotation_path=None): """Class for reading and visualizing annotations. Args: annotation_path (str): location of annotation file """ self.anns = {} self.cats = {} self.imgs = {} self.img_ann_map = defaultdict(list) self.cat_img_map = defaultdict(list) self.dataset = {} if annotation_path is not None: print("Loading annotations.") tic = time.time() self.dataset = self._load_json(annotation_path) print("Done (t={:0.2f}s)".format(time.time() - tic)) assert type(self.dataset) == dict, "Annotation file format {} not supported.".format( type(self.dataset) ) self._create_index() def _load_json(self, path): with open(path, "r") as f: return json.load(f) def _create_index(self): print("Creating index.") self.img_ann_map = defaultdict(list) self.cat_img_map = defaultdict(list) self.anns = {} self.cats = {} self.imgs = {} for ann in self.dataset["annotations"]: self.img_ann_map[ann["image_id"]].append(ann) self.anns[ann["id"]] = ann for img in self.dataset["images"]: self.imgs[img["id"]] = img for cat in self.dataset["categories"]: self.cats[cat["id"]] = cat for ann in self.dataset["annotations"]: self.cat_img_map[ann["category_id"]].append(ann["image_id"]) print("Index created.") def get_ann_ids(self, img_ids=None, cat_ids=None, area_rng=None): """Get ann ids that satisfy given filter conditions. Args: img_ids (int array): get anns for given imgs cat_ids (int array): get anns for given cats area_rng (float array): get anns for a given area range. e.g [0, inf] Returns: ids (int array): integer array of ann ids """ if img_ids is not None: img_ids = img_ids if _isArrayLike(img_ids) else [img_ids] if cat_ids is not None: cat_ids = cat_ids if _isArrayLike(cat_ids) else [cat_ids] anns = [] if img_ids is not None: for img_id in img_ids: anns.extend(self.img_ann_map[img_id]) else: anns = self.dataset["annotations"] # return early if no more filtering required if cat_ids is None and area_rng is None: return [_ann["id"] for _ann in anns] cat_ids = set(cat_ids) if area_rng is None: area_rng = [0, float("inf")] ann_ids = [ _ann["id"] for _ann in anns if _ann["category_id"] in cat_ids and _ann["area"] > area_rng[0] and _ann["area"] < area_rng[1] ] return ann_ids def get_cat_ids(self): """Get all category ids. Returns: ids (int array): integer array of category ids """ return list(self.cats.keys()) def get_img_ids(self): """Get all img ids. Returns: ids (int array): integer array of image ids """ return list(self.imgs.keys()) def _load_helper(self, _dict, ids): if ids is None: return list(_dict.values()) elif _isArrayLike(ids): return [_dict[id] for id in ids] else: return [_dict[ids]] def load_anns(self, ids=None): """Load anns with the specified ids. If ids=None load all anns. Args: ids (int array): integer array of annotation ids Returns: anns (dict array) : loaded annotation objects """ return self._load_helper(self.anns, ids) def load_cats(self, ids): """Load categories with the specified ids. If ids=None load all categories. Args: ids (int array): integer array of category ids Returns: cats (dict array) : loaded category dicts """ return self._load_helper(self.cats, ids) def load_imgs(self, ids): """Load categories with the specified ids. If ids=None load all images. Args: ids (int array): integer array of image ids Returns: imgs (dict array) : loaded image dicts """ return self._load_helper(self.imgs, ids) def download(self, save_dir, img_ids=None): """Download images from mscoco.org server. Args: save_dir (str): dir to save downloaded images img_ids (int array): img ids of images to download """ imgs = self.load_imgs(img_ids) if not os.path.exists(save_dir): os.makedirs(save_dir) for img in imgs: file_name = os.path.join(save_dir, img["file_name"]) if not os.path.exists(file_name): from urllib.request import urlretrieve urlretrieve(img["coco_url"], file_name) def ann_to_rle(self, ann): """Convert annotation which can be polygons, uncompressed RLE to RLE. Args: ann (dict) : annotation object Returns: ann (rle) """ img_data = self.imgs[ann["image_id"]] h, w = img_data["height"], img_data["width"] segm = ann["segmentation"] if isinstance(segm, list): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = mask_utils.frPyObjects(segm, h, w) rle = mask_utils.merge(rles) elif isinstance(segm["counts"], list): # uncompressed RLE rle = mask_utils.frPyObjects(segm, h, w) else: # rle rle = ann["segmentation"] return rle def ann_to_mask(self, ann): """Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. Args: ann (dict) : annotation object Returns: binary mask (numpy 2D array) """ rle = self.ann_to_rle(ann) return mask_utils.decode(rle) class LvisDetectionBase(torchvision.datasets.VisionDataset): def __init__(self, root, annFile, transform=None, target_transform=None, transforms=None): super(LvisDetectionBase, self).__init__(root, transforms, transform, target_transform) self.lvis = LVIS(annFile) self.ids = list(sorted(self.lvis.imgs.keys())) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``. """ lvis = self.lvis img_id = self.ids[index] ann_ids = lvis.get_ann_ids(img_ids=img_id) target = lvis.load_anns(ann_ids) path = lvis.load_imgs(img_id)[0]["file_name"] img = Image.open(os.path.join(self.root, path)).convert("RGB") if self.transforms is not None: img, target = self.transforms(img, target) return img, target def __len__(self): return len(self.ids) class LvisDetection(LvisDetectionBase): def __init__(self, img_folder, ann_file, transforms, return_masks): super(LvisDetection, self).__init__(img_folder, ann_file) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_masks) def __getitem__(self, idx): img, target = super(LvisDetection, self).__getitem__(idx) image_id = self.ids[idx] target = dict(image_id=image_id, annotations=target) img, target = self.prepare(img, target) if self._transforms is not None: img, target = self._transforms(img, target) return img, target def get_in_coco_format(self, idx): img, target = super(LvisDetection, self).__getitem__(idx) image_id = self.ids[idx] target = dict(image_id=image_id, annotations=target) img, target = self.prepare(img, target) if self._transforms is not None: img, target = self._transforms(img, target) return img, target def make_lvis_transforms(image_set): normalize = T.Compose( [T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])] ) scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] transform_train = T.Compose( [ T.RandomHorizontalFlip(), T.RandomSelect( T.RandomResize(scales, max_size=1333), T.Compose( [ T.RandomResize([400, 500, 600]), T.RandomCrop((384, 384)), T.RandomResize(scales, max_size=1333), ] ), ), normalize, ] ) transform_val = T.Compose([T.RandomResize([800], max_size=1333), normalize]) transforms = { "train": transform_train, "trainval": transform_train, "val": transform_val, "test": transform_val, } return transforms[image_set] def build(image_set, args): anno_root = "/datasets01/lvis/020520/" anno_file_template = "lvis_v0.5_{}.json" PATHS = { "train": ("/datasets01/COCO/022719/train2017", anno_file_template.format("train")), "val": ("/datasets01/COCO/060817/val2014", anno_file_template.format("val")), # this is a hack, change in the future "trainval": ("/datasets01/COCO/022719/train2017", anno_file_template.format("train")), "test": ("/datasets01/COCO/060817/val2014", anno_file_template.format("val")), } img_folder, ann_file = PATHS[image_set] # img_folder = os.path.join(root, img_folder) ann_file = os.path.join(anno_root, ann_file) dataset = LvisDetection( img_folder, ann_file, transforms=make_lvis_transforms(image_set), return_masks=args.masks ) return dataset
craftassist-master
python/craftassist/voxel_models/detection-transformer/datasets/lvis.py
from .voc import VOCDetection from typing import Iterable import to_coco_api VOC_PATH = "/datasets01/VOC/060817/" class VOCDetection2012(VOCDetection): def __init__(self, image_set: str = "train", transforms: Iterable = None): super(VOCDetection, self).__init__( VOC_PATH, image_set=image_set, year="2012", download=False ) self.prepare = to_coco_api.PrepareInstance() self._transforms = transforms from .voc import make_voc_transforms def build(image_set, args): # if we only use voc2012, then we need to adapt trainval and test to # VOC2012 constraints if image_set == "test": image_set = "val" if image_set == "trainval": image_set = "train" return VOCDetection2012( image_set=image_set, transforms=make_voc_transforms(image_set, args.remove_difficult) )
craftassist-master
python/craftassist/voxel_models/detection-transformer/datasets/voc2012.py
import json import os import numpy as np import torch from PIL import Image import transforms as T from box_ops import masks_to_boxes from panopticapi.utils import rgb2id class CocoPanoptic: def __init__(self, img_folder, ann_folder, ann_file, transforms=None): with open(ann_file, "r") as f: self.coco = json.load(f) # sort 'images' field so that they are aligned with 'annotations' # i.e., in alphabetical order self.coco["images"] = sorted(self.coco["images"], key=lambda x: x["id"]) # sanity check for img, ann in zip(self.coco["images"], self.coco["annotations"]): assert img["file_name"][:-4] == ann["file_name"][:-4] self.img_folder = img_folder self.ann_folder = ann_folder self.transforms = transforms def __getitem__(self, idx): ann_info = self.coco["annotations"][idx] img_path = os.path.join(self.img_folder, ann_info["file_name"].replace(".png", ".jpg")) ann_path = os.path.join(self.ann_folder, ann_info["file_name"]) img = Image.open(img_path).convert("RGB") masks = np.asarray(Image.open(ann_path), dtype=np.uint32) masks = rgb2id(masks) ids = np.array([ann["id"] for ann in ann_info["segments_info"]]) masks = masks == ids[:, None, None] masks = torch.as_tensor(masks, dtype=torch.uint8) labels = torch.tensor( [ann["category_id"] for ann in ann_info["segments_info"]], dtype=torch.int64 ) target = {} target["image_id"] = torch.tensor([ann_info["image_id"]]) target["masks"] = masks target["labels"] = labels w, h = img.size target["boxes"] = masks_to_boxes(masks) target["size"] = torch.as_tensor([int(h), int(w)]) target["orig_size"] = torch.as_tensor([int(h), int(w)]) for name in ["iscrowd", "area"]: target[name] = torch.tensor([ann[name] for ann in ann_info["segments_info"]]) if self.transforms is not None: img, target = self.transforms(img, target) # print('img') # print(img) # print('target') # print(target) return img, target def __len__(self): return len(self.coco["images"]) def get_height_and_width(self, idx): img_info = self.coco["images"][idx] height = img_info["height"] width = img_info["width"] return height, width def make_coco_panoptic_transforms(image_set): normalize = T.Compose( [ T.ToTensor(), # T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ] ) # scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] transform_train = T.Compose( [ # T.RandomHorizontalFlip(), # T.RandomSelect( # T.RandomResize(scales, max_size=1333), # T.Compose([ # T.RandomResize([400, 500, 600]), # T.RandomSizeCrop(384, 600), # T.RandomResize(scales, max_size=1333), # ]) # ), normalize ] ) transform_val = T.Compose([T.RandomResize([800], max_size=1333), normalize]) transforms = { "train": transform_train, "trainval": transform_train, "val": transform_val, "test": transform_val, } return transforms[image_set] def build(image_set, args): img_folder_root = "/datasets01/COCO/022719" ann_folder_root = "/datasets01/COCO/060419" mode = "panoptic" anno_file_template = "{}_{}2017.json" PATHS = { "train": ( "train2017", os.path.join("annotations", anno_file_template.format(mode, "train")), ), "val": ("val2017", os.path.join("annotations", anno_file_template.format(mode, "val"))), # this is a hack, change in the future "trainval": ( "train2017", os.path.join("annotations", anno_file_template.format(mode, "train")), ), "test": ("val2017", os.path.join("annotations", anno_file_template.format(mode, "val"))), } img_folder, ann_file = PATHS[image_set] img_folder_path = os.path.join(img_folder_root, img_folder) ann_folder = os.path.join(ann_folder_root, "{}_{}".format(mode, img_folder)) ann_file = os.path.join(ann_folder_root, ann_file) dataset = CocoPanoptic( img_folder_path, ann_folder, ann_file, transforms=make_coco_panoptic_transforms(image_set) ) return dataset
craftassist-master
python/craftassist/voxel_models/detection-transformer/datasets/coco_panoptic.py
import torchvision from typing import Iterable import to_coco_api import transforms as T VOC_PATH = "/checkpoint/szagoruyko/detection_transformer_shared/datasets01" class VOCDetection(torchvision.datasets.VOCDetection): def __init__(self, image_set: str = "train", transforms: Iterable = None): super().__init__(VOC_PATH, image_set=image_set, year="2007", download=False) self.prepare = to_coco_api.PrepareInstance() self._transforms = transforms def __getitem__(self, idx: int): image, target = super().__getitem__(idx) image, target = self.prepare(image, target) if self._transforms is not None: image, target = self._transforms(image, target) return image, target def get_in_coco_format(self, idx: int): image, target = super().__getitem__(idx) image, target = self.prepare(image, target) if self._transforms is not None: image, target = self._transforms(image, target) return image, target def make_voc_transforms(image_set, remove_difficult): normalize = T.Compose( [T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])] ) transform_train = T.Compose( [ T.RandomHorizontalFlip(), T.RandomSelect( T.RandomResize([400, 500, 600], max_size=1000), T.Compose( [ T.RandomResize([400, 500, 600]), T.RandomCrop((384, 384)), T.RandomResize([400, 500, 600], max_size=1000), ] ), ), normalize, T.RemoveDifficult(remove_difficult), ] ) transform_val = T.Compose([T.RandomResize([600], max_size=1000), normalize]) transforms = { "train": transform_train, "trainval": transform_train, "val": transform_val, "test": transform_val, } return transforms[image_set] def build(image_set, args): return VOCDetection( image_set=image_set, transforms=make_voc_transforms(image_set, args.remove_difficult) )
craftassist-master
python/craftassist/voxel_models/detection-transformer/datasets/voc.py
import copy import torch import torch.nn.functional as F from torch import nn class Transformer(nn.Module): def __init__( self, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, return_intermediate_dec=False, pass_pos_and_query=True, ): super().__init__() self.pass_pos_and_query = pass_pos_and_query # TODO: force norm after in encoder for backcomp encoder_layer = TransformerEncoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before=False ) encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) decoder_layer = TransformerDecoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before ) decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder( decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec, ) self._reset_parameters() self.d_model = d_model self.nhead = nhead def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src, mask, query_embed, pos_embed): # flatten NxCxHxW to HWxNxC bs, c, h, w, d = src.shape src = src.flatten(2).permute(2, 0, 1) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) mask = mask.flatten(1) # print('==> src shape: {}'.format(src.shape)) # print('==> pos emb shape: {}'.format(pos_embed.shape)) if self.pass_pos_and_query: tgt = torch.zeros_like(query_embed) else: src, tgt, query_embed, pos_embed = src + 0.1 * pos_embed, query_embed, None, None # src, tgt, query_embed, pos_embed = src , query_embed, None, None # cnt = 0 # for obj in gc.get_objects(): # try: # if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): # cnt += 1 # except: # pass # print(f'active tensor num: {cnt}') memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) # print('==> memory size: {}'.format(memory.size())) # cnt = 0 # for obj in gc.get_objects(): # try: # if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): # cnt += 1 # except: # pass # print(f'active tensor num: {cnt}') hs = self.decoder( tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed ) # print('==> hs size: {}'.format(hs.size())) # cnt = 0 # for obj in gc.get_objects(): # try: # if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): # cnt += 1 # except: # pass # print(f'active tensor num: {cnt}') # return None return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w, d) # def forward(self, src, mask, query_embed, pos_embed): # # flatten NxCxHxW to HWxNxC # bs, c, h, w, d = src.shape # memory = src.view(h * w * d, bs, c) # hs = src.flatten()[: 3 * 100 * bs * c].view(3, 100, bs, c) # # hs = torch.zeros((3, 100, bs, c)).cuda() + 0.5 # return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w, d) class TransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers, norm=None): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm def forward(self, src, mask=None, src_key_padding_mask=None, pos=None): output = src for i in range(self.num_layers): output = self.layers[i]( output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos ) if self.norm: output = self.norm(output) return output class TransformerDecoder(nn.Module): def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): super().__init__() self.layers = _get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.norm = norm self.return_intermediate = return_intermediate def forward( self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, pos=None, query_pos=None, ): output = tgt intermediate = [] for i in range(self.num_layers): output = self.layers[i]( output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos=pos, query_pos=query_pos, ) if self.return_intermediate: act = output if self.layers[i].normalize_before else self.norm(output) intermediate.append(act) if self.norm: output = self.norm(output) if self.return_intermediate: intermediate.pop() intermediate.append(output) if self.return_intermediate: return torch.stack(intermediate) return output class TransformerEncoderLayer(nn.Module): def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None): q = k = self.with_pos_embed(src, pos) src2 = self.self_attn( q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask )[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src def forward_pre(self, src, src_mask, src_key_padding_mask=None, pos=None): src2 = self.norm1(src) q = k = self.with_pos_embed(src2, pos) src2 = self.self_attn( q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask )[0] src = src + self.dropout1(src2) src2 = self.norm2(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) src = src + self.dropout2(src2) return src def forward(self, src, src_mask, src_key_padding_mask=None, pos=None): if self.normalize_before: return self.forward_pre(src, src_mask, src_key_padding_mask, pos) return self.forward_post(src, src_mask, src_key_padding_mask, pos) class TransformerDecoderLayer(nn.Module): def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward_post( self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, pos=None, query_pos=None, ): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn( q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask )[0] tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2 = self.multihead_attn( query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, )[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt def forward_pre( self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, pos=None, query_pos=None, ): tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn( q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask )[0] tgt = tgt + self.dropout1(tgt2) tgt2 = self.norm2(tgt) tgt2 = self.multihead_attn( query=self.with_pos_embed(tgt2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, )[0] tgt = tgt + self.dropout2(tgt2) tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) return tgt def forward( self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, pos=None, query_pos=None, ): if self.normalize_before: return self.forward_pre( tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos, ) return self.forward_post( tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos, ) def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def build_transformer(args): return Transformer( d_model=args.hidden_dim, dropout=args.dropout, nhead=args.nheads, dim_feedforward=args.dim_feedforward, num_encoder_layers=args.enc_layers, num_decoder_layers=args.dec_layers, normalize_before=args.pre_norm, return_intermediate_dec=True, pass_pos_and_query=args.pass_pos_and_query, ) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
craftassist-master
python/craftassist/voxel_models/detection-transformer/models/detr.py
from itertools import zip_longest import torch from scipy.optimize import linear_sum_assignment from torch import nn from box_ops import generalized_box_iou, box_cxcyczwhd_to_xyzxyz def prepare_outputs(outputs): """ Change convention from outputs = {scores[N], boxes[N]} into a [{scores[0], boxes[0]}, ..., {scores[N], boxes[N]}] """ return [dict(zip_longest(outputs, t)) for t in zip_longest(*outputs.values())] class HungarianMatcher(nn.Module): def __init__(self, cost_class, cost_bbox, cost_giou): super().__init__() self.cost_class = cost_class self.cost_bbox = cost_bbox self.cost_giou = cost_giou assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0" @torch.no_grad() def forward(self, outputs, targets): indices = [] outputs = outputs.copy() outputs["pred_scores"] = outputs["pred_logits"].softmax(dim=-1) outputs = prepare_outputs(outputs) for out, tgt in zip(outputs, targets): cost = self._get_cost_matrix(out, tgt) src_idx, tgt_idx = linear_sum_assignment(cost.cpu()) src_idx, tgt_idx = torch.as_tensor(src_idx), torch.as_tensor(tgt_idx) indices.append((src_idx, tgt_idx)) return indices def _get_cost_matrix(self, out, tgt): out_prob, out_bbox = out["pred_scores"], out["pred_boxes"] tgt_ids, tgt_bbox = tgt["labels"], tgt["boxes"] cost_class = -out_prob[:, tgt_ids] cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1) cost_giou = -generalized_box_iou( box_cxcyczwhd_to_xyzxyz(out_bbox), box_cxcyczwhd_to_xyzxyz(tgt_bbox) ) cost = ( self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou ) return cost class SequentialMatcher(nn.Module): def forward(self, outputs, targets): return [(torch.arange(len(tgt["labels"])),) * 2 for tgt in targets] class LexicographicalMatcher(nn.Module): def __init__(self, lexic="acb"): super().__init__() self.lexic = lexic def forward(self, outputs, targets): indices = [] for tgt in targets: tgt_cls, tgt_box = tgt["labels"], tgt["boxes"] area = tgt_box[:, 2] * tgt_box[:, 3] if self.lexic == "acb": search_list = [ (-a, cl, b) for cl, a, b in zip(tgt_cls.tolist(), area.tolist(), tgt_box.tolist()) ] else: search_list = [ (cl, -a, b) for cl, a, b in zip(tgt_cls.tolist(), area.tolist(), tgt_box.tolist()) ] # argsort from https://stackoverflow.com/questions/3382352/equivalent-of-numpy-argsort-in-basic-python j = sorted(range(len(search_list)), key=search_list.__getitem__) j = torch.as_tensor(j, dtype=torch.int64) i = torch.arange(len(j), dtype=j.dtype) indices.append((i, j)) return indices def build_matcher(args): if args.set_loss == "sequential": matcher = SequentialMatcher() elif args.set_loss == "hungarian": matcher = HungarianMatcher( cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox, cost_giou=args.set_cost_giou, ) elif args.set_loss == "lexicographical": matcher = LexicographicalMatcher() else: raise ValueError( f"Only sequential, lexicographical and hungarian accepted, got {args.set_loss}" ) return matcher
craftassist-master
python/craftassist/voxel_models/detection-transformer/models/matcher.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np import torch import torch.nn as nn def underdirt(schematic, labels=None, max_shift=0, nothing_id=0): # todo fancier dirt! # FIXME!!!! label as ground where appropriate shift = torch.randint(max_shift + 1, (1,)).item() if shift > 0: new_schematic = torch.LongTensor(schematic.size()) new_schematic[:, shift:, :] = schematic[:, :-shift, :] new_schematic[:, :shift, :] = 3 new_labels = None if labels is not None: new_labels = torch.LongTensor(labels.size()) new_labels[:, shift:, :] = labels[:, :-shift, :] new_labels[:, :shift, :] = nothing_id return new_schematic, new_labels else: return schematic, labels def flip_rotate(c, l=None, idx=None): """ Randomly transform the cube for more data. The transformation is chosen from: 0. original 1. x-z plane rotation 90 2. x-z plane rotation 180 3. x-z plane rotation 270 4. x-axis flip 5. z-axis flip """ idx = np.random.choice(range(6)) if (idx is None) else idx l_ = l if idx == 0: c_ = c l_ = l elif idx >= 1 and idx <= 3: # rotate npc = c.numpy() npc = np.rot90(npc, idx, axes=(0, 2)) # rotate on the x-z plane c_ = torch.from_numpy(npc.copy()) if l is not None: npl = l.numpy() npl = np.rot90(npl, idx, axes=(0, 2)) # rotate on the x-z plane l_ = torch.from_numpy(npl.copy()) else: # flip npc = c.numpy() npc = np.flip(npc, axis=(idx - 4) * 2) # 0 or 2 c_ = torch.from_numpy(npc.copy()) if l is not None: npl = l.numpy() npl = np.flip(npl, axis=(idx - 4) * 2) # 0 or 2 l_ = torch.from_numpy(npl.copy()) return c_, l_, idx def pad_to_sidelength(schematic, labels=None, nothing_id=0, sidelength=32): szs = list(schematic.size()) szs = np.add(szs, -sidelength) pad = [] # this is all backwards bc pytorch pad semantics :( for s in szs: if s >= 0: pad.append(0) else: pad.append(-s) pad.append(0) schematic = torch.nn.functional.pad(schematic, pad[::-1]) if labels is not None: labels = torch.nn.functional.pad(labels, pad[::-1], value=nothing_id) return schematic, labels # TODO simplify def fit_in_sidelength(schematic, labels=None, nothing_id=0, sl=32, max_shift=0): schematic, labels = pad_to_sidelength( schematic, labels=labels, nothing_id=nothing_id, sidelength=sl ) nz = schematic.nonzero() m, _ = nz.median(0) min_y, _ = nz.min(0) min_y = min_y[1] xshift = max(torch.randint(-max_shift, max_shift + 1, (1,)).item() - m[0].item() + sl // 2, 0) zshift = max(torch.randint(-max_shift, max_shift + 1, (1,)).item() - m[2].item() + sl // 2, 0) new_schematic = torch.LongTensor(sl, sl, sl).fill_(1) new_schematic[xshift:, : sl - min_y, zshift:] = schematic[ : sl - xshift, min_y:sl, : sl - zshift ] new_labels = None if labels is not None: new_labels = torch.LongTensor(sl, sl, sl).fill_(nothing_id) new_labels[xshift:, : sl - min_y, zshift:] = labels[: sl - xshift, min_y:sl, : sl - zshift] return new_schematic, new_labels, (xshift, -min_y, zshift) def make_example_from_raw(schematic, labels=None, augment={}, nothing_id=0, sl=32): max_shift = augment.get("max_shift", 0) s, l, o = fit_in_sidelength( schematic, labels=labels, nothing_id=nothing_id, max_shift=max_shift ) if len(augment) > 0: if augment.get("flip_rotate", False): s, l, _ = flip_rotate(s, l=l) m = augment.get("underdirt") if m is not None: # really should fix offset here.....TODO s, l = underdirt(s, labels=l, max_shift=m, nothing_id=nothing_id) s[s == 0] = 1 s -= 1 return s, l, o class SemSegNet(nn.Module): def __init__(self, classes=None): super(SemSegNet, self).__init__() # if opts.load: # if opts.load_model != "": # self.load(opts.load_model) # else: # raise ("loading from file specified but no load_filepath specified") # else: # self._build() # self.classes = classes self._build() self.classes = classes def _build(self): try: embedding_dim = 4 except: embedding_dim = 8 try: num_words = 256 except: num_words = 3 try: num_layers = 4 except: num_layers = 4 # 32x32x32 input try: hidden_dim = 128 except: hidden_dim = 64 self.embedding_dim = embedding_dim self.embedding = nn.Embedding(num_words, embedding_dim) self.layers = nn.ModuleList() self.num_layers = num_layers self.layers.append( nn.Sequential( nn.Conv3d(embedding_dim, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) for i in range(num_layers - 1): if i == 0: self.layers.append( nn.Sequential( nn.Conv3d(hidden_dim, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) else: self.layers.append( nn.Sequential( nn.Conv3d(hidden_dim, hidden_dim, kernel_size=5, stride=2, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) # self.out = nn.Conv3d(hidden_dim, opts.num_classes, kernel_size=1) # self.lsm = nn.LogSoftmax(dim=1) # def forward(self, x): # shape = list(x.size()) # shape.insert(1, 128) # ret = torch.zeros(shape).cuda() + 0.5 # return ret def forward(self, x): # FIXME when pytorch is ready for this, embedding # backwards is soooooo slow # z = self.embedding(x) # print('x size==> {}'.format(x.size())) szs = list(x.size()) x = x.view(-1) # print('x view size==> {}'.format(x.size())) # print('embed size==> {}'.format(self.embedding.weight.size())) z = self.embedding.weight.index_select(0, x) # print('z size==> {}'.format(z.size())) szs.append(self.embedding_dim) z = z.view(torch.Size(szs)) # print('z view size==> {}'.format(z.size())) z = z.permute(0, 4, 1, 2, 3).contiguous() # print('z permute size==> {}'.format(z.size())) for i in range(self.num_layers): z = self.layers[i](z) # print('layer {} : z fc after size==> {}'.format(i, z.size())) # out = self.out(z) # print('out size==> {}'.format(out.size())) # rtr = self.lsm(out) # print('return size==> {}'.format(z.size())) return z def save(self, filepath): self.cpu() sds = {} sds["opts"] = self.opts sds["classes"] = self.classes sds["state_dict"] = self.state_dict() torch.save(sds, filepath) if self.opts.cuda: self.cuda() def load(self, filepath): sds = torch.load(filepath) self.opts = sds["opts"] print("loading from file, using opts") print(self.opts) self._build() self.load_state_dict(sds["state_dict"]) self.zero_grad() self.classes = sds["classes"] class Opt: pass class SemSegWrapper: def __init__(self, model, threshold=-1.0, blocks_only=True, cuda=False): if type(model) is str: opts = Opt() opts.load = True opts.load_model = model model = SemSegNet(opts) self.model = model self.cuda = cuda if self.cuda: model.cuda() else: model.cpu() self.classes = model.classes # threshold for relevance; unused rn self.threshold = threshold # if true only label non-air blocks self.blocks_only = blocks_only # this is used by the semseg_process i2n = self.classes["idx2name"] self.tags = [(c, self.classes["name2count"][c]) for c in i2n] assert self.classes["name2idx"]["none"] == 0 @torch.no_grad() def segment_object(self, blocks): self.model.eval() blocks = torch.from_numpy(blocks)[:, :, :, 0] blocks, _, o = make_example_from_raw(blocks) blocks = blocks.unsqueeze(0) if self.cuda: blocks = blocks.cuda() y = self.model(blocks) _, mids = y.squeeze().max(0) locs = mids.nonzero() locs = locs.tolist() if self.blocks_only: return { tuple(np.subtract(l, o)): mids[l[0], l[1], l[2]].item() for l in locs if blocks[0, l[0], l[1], l[2]] > 0 } else: return {tuple(ll for ll in l): mids[l[0], l[1], l[2]].item() for l in locs} if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( "--hidden_dim", type=int, default=128, help="size of hidden dim in fc layer" ) parser.add_argument("--embedding_dim", type=int, default=16, help="size of blockid embedding") parser.add_argument("--num_words", type=int, default=256, help="number of blocks") parser.add_argument("--num_classes", type=int, default=20, help="number of blocks") args = parser.parse_args() N = SemSegNet(args)
craftassist-master
python/craftassist/voxel_models/detection-transformer/models/semseg.py
from collections import OrderedDict import torch import torch.nn.functional as F import torchvision from torch import nn from torchvision.models._utils import IntermediateLayerGetter from utils import NestedTensor from .position_encoding import build_position_encoding from .semseg import SemSegNet class FrozenBatchNorm2d(torch.nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed """ def __init__(self, n): super(FrozenBatchNorm2d, self).__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super(FrozenBatchNorm2d, self)._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def forward(self, x): # move reshapes to the beginning # to make it fuser-friendly w = self.weight.reshape(1, -1, 1, 1) b = self.bias.reshape(1, -1, 1, 1) rv = self.running_var.reshape(1, -1, 1, 1) rm = self.running_mean.reshape(1, -1, 1, 1) eps = 1e-5 scale = w * (rv + eps).rsqrt() bias = b - rm * scale return x * scale + bias class BackboneBase(nn.Module): def __init__( self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool, ): super().__init__() for name, parameter in backbone.named_parameters(): if ( not train_backbone or "layer2" not in name and "layer3" not in name and "layer4" not in name ): parameter.requires_grad_(False) if return_interm_layers: return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} else: return_layers = {"layer4": 0} self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) print("backbone body") print(self.body) self.num_channels = num_channels def forward(self, tensor_list): xs = self.body(tensor_list.tensors) out = OrderedDict() for name, x in xs.items(): mask = F.interpolate(tensor_list.mask[None].float(), size=x.shape[-2:]).bool()[0] out[name] = NestedTensor(x, mask) print("backbone out") print(out) return out class Backbone(BackboneBase): """ResNet backbone with frozen BatchNorm.""" def __init__( self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool ): backbone = getattr(torchvision.models, name)( replace_stride_with_dilation=[False, False, dilation], pretrained=True, norm_layer=FrozenBatchNorm2d, ) num_channels = 512 if name in ("resnet18", "resnet34") else 2048 super().__init__(backbone, train_backbone, num_channels, return_interm_layers) class GroupNorm32(torch.nn.GroupNorm): def __init__(self, num_channels, num_groups=32, **kargs): super().__init__(num_groups, num_channels, **kargs) class GroupNormBackbone(BackboneBase): """ResNet backbone with GroupNorm with 32 channels.""" def __init__( self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool ): name_map = { "resnet50-gn": ("resnet50", "/checkpoint/szagoruyko/imagenet/22014122/checkpoint.pth"), "resnet101-gn": ( "resnet101", "/checkpoint/szagoruyko/imagenet/22080524/checkpoint.pth", ), } backbone = getattr(torchvision.models, name_map[name][0])( replace_stride_with_dilation=[False, False, dilation], pretrained=False, norm_layer=GroupNorm32, ) checkpoint = torch.load(name_map[name][1], map_location="cpu") state_dict = {k[7:]: p for k, p in checkpoint["model"].items()} backbone.load_state_dict(state_dict) num_channels = 512 if name_map[name][0] in ("resnet18", "resnet34") else 2048 super().__init__(backbone, train_backbone, num_channels, return_interm_layers) class SemSegBackBone(nn.Module): def __init__(self): super().__init__() self.backbone = SemSegNet() def forward(self, tensor_list): xs = self.backbone(tensor_list.tensors.long()) out = OrderedDict() x = xs name = "default" mask = F.interpolate(tensor_list.mask[None].float(), size=x.shape[-3:]).bool()[0] out[name] = NestedTensor(x, mask) # for name, x in xs.items(): # mask = F.interpolate(tensor_list.mask[None].float(), size=x.shape[-2:]).bool()[0] # out[name] = NestedTensor(x, mask) return out class Joiner(nn.Sequential): def __init__(self, backbone, position_embedding): super().__init__(backbone, position_embedding) def forward(self, tensor_list): xs = self[0](tensor_list) out = [] pos = [] # print(type(xs)) for name, x in xs.items(): out.append(x) # position encoding pos.append(self[1](x).to(x.tensors.dtype)) return out, pos def build_backbone(args): position_embedding = build_position_encoding(args) train_backbone = args.lr_backbone > 0 return_interm_layers = args.masks if args.backbone in ("resnet50-gn", "resnet101-gn"): backbone = GroupNormBackbone( args.backbone, train_backbone, return_interm_layers, args.dilation ) elif args.backbone in ("semseg"): backbone = SemSegBackBone() else: backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation) model = Joiner(backbone, position_embedding) # 128 for semseg net, should pass arg here instead of hard coding model.num_channels = 128 # backbone.num_channels return model
craftassist-master
python/craftassist/voxel_models/detection-transformer/models/backbone.py
import math import torch from torch import nn class PositionEmbedding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=16, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list): x = tensor_list.tensors mask = tensor_list.mask # print('mask size') # print(mask.shape) not_mask = ~mask z_embed = not_mask.cumsum(1, dtype=torch.float32) y_embed = not_mask.cumsum(2, dtype=torch.float32) x_embed = not_mask.cumsum(3, dtype=torch.float32) # print('x_embed size: {}'.format(x_embed.shape)) # print('y_embed size: {}'.format(y_embed.shape)) # print('z_embed size: {}'.format(z_embed.shape)) if self.normalize: eps = 1e-6 z_embed = z_embed / (z_embed[:, -1:, :, :] + eps) * self.scale y_embed = y_embed / (y_embed[:, :, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (3 * (dim_t // 3) / self.num_pos_feats) # print('dim_t size: {}'.format(dim_t.shape)) # print("pos_X 111: {}".format(x_embed[:, :, :, :, None].shape)) pos_x = x_embed[:, :, :, :, None] / dim_t pos_y = y_embed[:, :, :, :, None] / dim_t pos_z = z_embed[:, :, :, :, None] / dim_t # print('pos_x size 1: {}'.format(pos_x.shape)) pos_x = torch.stack( (pos_x[:, :, :, :, 0::2].sin(), pos_x[:, :, :, :, 1::2].cos()), dim=5 ).flatten(4) pos_y = torch.stack( (pos_y[:, :, :, :, 0::2].sin(), pos_y[:, :, :, :, 1::2].cos()), dim=5 ).flatten(4) pos_z = torch.stack( (pos_y[:, :, :, :, 0::2].sin(), pos_y[:, :, :, :, 1::2].cos()), dim=5 ).flatten(4) # print('pos_x size 2: {}'.format(pos_x.shape)) pos = torch.cat((pos_z, pos_y, pos_x), dim=4).permute(0, 4, 1, 2, 3) return pos # class PositionEmbedding(nn.Module): # """ # This is a more standard version of the position embedding, very similar to the one # used by the Attention is all you need paper, generalized to work on images. # """ # def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): # super().__init__() # self.num_pos_feats = num_pos_feats # self.temperature = temperature # self.normalize = normalize # if scale is not None and normalize is False: # raise ValueError("normalize should be True if scale is passed") # if scale is None: # scale = 2 * math.pi # self.scale = scale # def forward(self, tensor_list): # x = tensor_list.tensors # mask = tensor_list.mask # not_mask = ~mask # y_embed = not_mask.cumsum(1, dtype=torch.float32) # x_embed = not_mask.cumsum(2, dtype=torch.float32) # print('x_embed size: {}'.format(x_embed.shape)) # if self.normalize: # eps = 1e-6 # y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale # x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale # dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) # dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) # print('dim_t size: {}'.format(dim_t.shape)) # pos_x = x_embed[:, :, :, None] / dim_t # pos_y = y_embed[:, :, :, None] / dim_t # print('pos_x size 1: {}'.format(pos_x.shape)) # pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) # pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) # print('pos_x size 2: {}'.format(pos_x.shape)) # pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) # return pos class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, tensor_list): x = tensor_list.tensors h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = ( torch.cat( [x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1)], dim=-1 ) .permute(2, 0, 1) .unsqueeze(0) .repeat(x.shape[0], 1, 1, 1) ) return pos def build_position_encoding(args): N_steps = args.hidden_dim // 3 if args.position_embedding == "v2": # TODO find a better way of exposing other arguments position_embedding = PositionEmbedding(N_steps, normalize=True) elif args.position_embedding == "v3": position_embedding = PositionEmbeddingLearned(N_steps) else: raise ValueError(f"not supported {args.position_embedding}") return position_embedding
craftassist-master
python/craftassist/voxel_models/detection-transformer/models/position_encoding.py
import importlib def build_model(args): # what a hack mod = importlib.import_module("models." + args.model_file) return mod.build(args)
craftassist-master
python/craftassist/voxel_models/detection-transformer/models/__init__.py
import torch import torch.nn.functional as F from torch import nn from torchvision.ops import misc as misc_ops import box_ops # TODO need to do proper packaging as this is getting confusing from utils import NestedTensor, accuracy, get_world_size, is_dist_avail_and_initialized from .backbone import build_backbone from .common import MLP from .detr import build_transformer from .loss_utils import dice_loss, sigmoid_focal_loss from .mask_heads import DETRmask from .matcher import build_matcher class DETR(nn.Module): def __init__(self, backbone, transformer, num_classes, num_queries, aux_loss=False): super().__init__() self.num_queries = num_queries self.transformer = transformer hidden_dim = transformer.d_model self.class_embed = nn.Linear(hidden_dim, num_classes + 1) self.bbox_embed = MLP(hidden_dim, hidden_dim, 6, 3) self.query_embed = nn.Embedding(num_queries, hidden_dim) self.input_proj = nn.Conv3d(backbone.num_channels, hidden_dim, kernel_size=1) self.backbone = backbone self.aux_loss = aux_loss def forward(self, samples: NestedTensor): print("... DTER Forwarding ... ") print(samples.tensors.shape) if not isinstance(samples, NestedTensor): samples = NestedTensor.from_tensor_list(samples) features, pos = self.backbone(samples) src, mask = features[-1].decompose() # (6, bs, num_queries, hidden_dim) hs = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos[-1])[0] print("---- hs size ----") print(hs.shape) outputs_class = self.class_embed(hs) outputs_coord = self.bbox_embed(hs).sigmoid() out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]} if self.aux_loss: out["aux_outputs"] = [ {"pred_logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1]) ] return out class SetCriterion(nn.Module): def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses): super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.eos_coef = eos_coef self.losses = losses empty_weight = torch.ones(self.num_classes + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) def match(self, outputs, targets): assert len(outputs["pred_logits"]) == len(targets) return self.matcher(outputs, targets) def loss_labels(self, outputs, targets, indices, num_boxes, log=True): assert "pred_logits" in outputs src_logits = outputs["pred_logits"] # class loss target_classes_o = [t["labels"][J] for t, (_, J) in zip(targets, indices)] target_classes = torch.full( src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device ) # TODO optimize this for k, (I, _) in enumerate(indices): target_classes[k][I] = target_classes_o[k] loss_ce = F.cross_entropy( src_logits.flatten(0, 1), target_classes.flatten(0, 1), self.empty_weight ) losses = {"loss_ce": loss_ce} if log: # TODO this should probably be a separate loss, not hacked in # this one here idx = self._get_src_permutation_idx(indices) ordered_src_logits = src_logits[idx] target_classes_o = torch.cat(target_classes_o) losses["class_error"] = ( 100 - accuracy(ordered_src_logits.detach(), target_classes_o)[0] ) return losses @torch.no_grad() def loss_cardinality(self, outputs, targets, indices, num_boxes): """ Not really a loss, but well :-) No gradients anyway """ pred_logits = outputs["pred_logits"] device = pred_logits.device tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device) card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) losses = {"cardinality_error": card_err} return losses def loss_boxes(self, outputs, targets, indices, num_boxes): assert "pred_boxes" in outputs # print('------ outputs ---------') # print(outputs['pred_logits'].shape) idx = self._get_src_permutation_idx(indices) src_boxes = outputs["pred_boxes"][idx] target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none") losses = {} losses["loss_bbox"] = loss_bbox.sum() / (num_boxes * 4) if "loss_giou" in self.weight_dict: loss_giou = 1 - torch.diag( box_ops.generalized_box_iou( box_ops.box_cxcyczwhd_to_xyzxyz(src_boxes), box_ops.box_cxcyczwhd_to_xyzxyz(target_boxes), ) ) losses["loss_giou"] = loss_giou.sum() / num_boxes return losses def loss_masks(self, outputs, targets, indices, num_boxes): assert "pred_masks" in outputs # print('---- loss masks ----') src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) src_masks = outputs["pred_masks"] # print('---- src masks ----') # print(src_masks[0][0]) # print('---- targets ----') # print(len(targets)) # print(targets[0]['masks'].shape) # print(targets[0]['labels'].shape) # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = NestedTensor.from_tensor_list( [t["masks"] for t in targets] ).decompose() target_masks = target_masks.to(src_masks) src_masks = src_masks[src_idx] src_masks = misc_ops.interpolate( src_masks[:, None], size=target_masks.shape[-3:], mode="trilinear", align_corners=False ) src_masks = src_masks[:, 0].flatten(1) target_masks = target_masks[tgt_idx].flatten(1) losses = { "loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes), "loss_dice": dice_loss(src_masks, target_masks, num_boxes), } return losses def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat( [torch.full((len(src),), i, dtype=torch.int64) for i, (src, _) in enumerate(indices)] ) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat( [torch.full((len(tgt),), i, dtype=torch.int64) for i, (_, tgt) in enumerate(indices)] ) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): loss_map = { "labels": self.loss_labels, "cardinality": self.loss_cardinality, "boxes": self.loss_boxes, "masks": self.loss_masks, } assert loss in loss_map, f"do you really want to compute {loss} loss?" return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) def forward(self, outputs, targets): outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"} indices = self.matcher(outputs_without_aux, targets) num_boxes = sum([len(t["labels"]) for t in targets]) num_boxes = torch.as_tensor( [num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device ) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_boxes) num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) if "aux_outputs" in outputs: for i, aux_outputs in enumerate(outputs["aux_outputs"]): indices = self.matcher(aux_outputs, targets) for loss in self.losses: if loss == "masks": continue kwargs = {} if loss == "labels": kwargs = {"log": False} l_dict = self.get_loss( loss, aux_outputs, targets, indices, num_boxes, **kwargs ) l_dict = {k + f"_{i}": v for k, v in l_dict.items()} losses.update(l_dict) return losses class PostProcess(nn.Module): def __init__(self, rescale_to_orig_size=False, threshold=0.3): super().__init__() self.rescale_to_orig_size = rescale_to_orig_size self.threshold = threshold def forward(self, outputs, targets): out_logits, out_bbox = outputs["pred_logits"], outputs["pred_boxes"] # convert to [x0, y0, x1, y1, z0, z1] format boxes = [] field = "orig_size" if self.rescale_to_orig_size else "size" out_bbox = box_ops.box_cxcyczwhd_to_xyzxyz(out_bbox) for b, t in zip(out_bbox, targets): img_d, img_h, img_w = t[field].tolist() b = b * torch.tensor( [img_w, img_h, img_d, img_w, img_h, img_d], dtype=torch.float32, device=b.device ) boxes.append(b) prob = F.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) results = [ {"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes) ] if "pred_masks" in outputs: max_h = max([tgt["size"][0] for tgt in targets]) max_w = max([tgt["size"][1] for tgt in targets]) outputs_masks = outputs["pred_masks"] outputs_masks = outputs_masks.squeeze(2) outputs_masks = F.interpolate( outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False ).sigmoid() outputs_masks = (outputs_masks > self.threshold).byte().cpu().detach() out_masks = outputs_masks for i, (cur_mask, t) in enumerate(zip(out_masks, targets)): img_h, img_w = t["size"][0], t["size"][1] results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1) if self.rescale_to_orig_size: results[i]["masks"] = F.interpolate( results[i]["masks"].float(), size=tuple(t["orig_size"].tolist()), mode="nearest", ).byte() return results def build(args): num_classes = 20 if args.dataset_file != "coco" else 91 if args.dataset_file == "lvis": num_classes = 1235 if args.dataset_file == "coco_panoptic": num_classes = 250 # TODO: what is correct number? would be nice to refactor this anyways device = torch.device(args.device) assert not args.masks or args.mask_model != "none" backbone = build_backbone(args) transformer = build_transformer(args) model = DETR( backbone, transformer, num_classes=num_classes, num_queries=args.num_queries, aux_loss=args.aux_loss, ) if args.mask_model != "none": model = DETRmask(model, mask_head=args.mask_model) matcher = build_matcher(args) weight_dict = {"loss_ce": 1, "loss_bbox": args.bbox_loss_coef} if args.giou_loss_coef: weight_dict["loss_giou"] = args.giou_loss_coef if args.masks: weight_dict["loss_mask"] = args.mask_loss_coef weight_dict["loss_dice"] = args.dice_loss_coef # TODO this is a hack if args.aux_loss: aux_weight_dict = {} for i in range(args.dec_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) # print(aux_weight_dict) weight_dict.update(aux_weight_dict) losses = ["labels", "boxes", "cardinality"] if args.masks: losses += ["masks"] criterion = SetCriterion( num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=args.eos_coef, losses=losses, ) criterion.to(device) postprocessor = PostProcess().to(device) return model, criterion, postprocessor
craftassist-master
python/craftassist/voxel_models/detection-transformer/models/model_parallel.py
from torch import nn import torch.nn.functional as F class MLP(nn.Module): """Simple feed forward fully connected, with some options Parameters ---------- input_dim : int Number of input channels hidden_dim : int Number of channels in the hidden layers output_dim : int Number of output channels nb_layers : int Number of layers """ def __init__(self, input_dim, hidden_dim, output_dim, nb_layers=1): super().__init__() self.layers = nn.ModuleList() for i in range(nb_layers): is_last_layer = i == nb_layers - 1 cur_in = input_dim if i == 0 else hidden_dim cur_out = output_dim if is_last_layer else hidden_dim linear = nn.Linear(cur_in, cur_out) self.layers.append(linear) def forward(self, x): # pylint: disable=arguments-differ for i in range(len(self.layers) - 1): x = self.layers[i](x) x = F.relu(x) x = self.layers[-1](x) return x
craftassist-master
python/craftassist/voxel_models/detection-transformer/models/common.py
""" This file provides the definition of the convolutional heads used to predict masks """ import torch import torch.nn as nn import torch.nn.functional as F from utils import NestedTensor class DETRmask(nn.Module): def __init__(self, detr, mask_head="v2"): super().__init__() self.detr = detr hidden_dim, nheads = detr.transformer.d_model, detr.transformer.nhead self.bbox_attention = MHAttentionMap(hidden_dim, hidden_dim, nheads, dropout=0) if mask_head == "smallconv": maskHead = MaskHeadSmallConv mask_dim = hidden_dim + nheads elif mask_head == "v2": maskHead = MaskHeadV2 mask_dim = hidden_dim else: raise RuntimeError(f"Unknown mask model {mask_head}") self.mask_head = maskHead(mask_dim, [256], hidden_dim) def forward(self, samples: NestedTensor): if not isinstance(samples, NestedTensor): samples = NestedTensor.from_tensor_list(samples) features, pos = self.detr.backbone(samples) bs = features[-1].tensors.shape[0] src, mask = features[-1].decompose() src_proj = self.detr.input_proj(src) hs, memory = self.detr.transformer(src_proj, mask, self.detr.query_embed.weight, pos[-1]) outputs_class = self.detr.class_embed(hs) outputs_coord = self.detr.bbox_embed(hs).sigmoid() out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]} if self.detr.aux_loss: out["aux_outputs"] = [ {"pred_logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1]) ] # FIXME h_boxes takes the last one computed, keep this in mind bbox_mask = self.bbox_attention(hs[-1], memory, mask=mask) seg_masks = self.mask_head(src_proj, bbox_mask, [features[-1].tensors]) outputs_seg_masks = seg_masks.view( bs, self.detr.num_queries, seg_masks.shape[-3], seg_masks.shape[-2], seg_masks.shape[-1], ) out["pred_masks"] = outputs_seg_masks return out class MaskHeadSmallConv(nn.Module): """ Simple convolutional head, using group norm. Upsampling is done using a FPN approach """ def __init__(self, dim, fpn_dims, context_dim): super().__init__() inter_dims = [ dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64, ] self.lay1 = torch.nn.Conv3d(dim, dim, 3, padding=1) self.gn1 = torch.nn.GroupNorm(8, dim) self.lay2 = torch.nn.Conv3d(dim, inter_dims[1], 3, padding=1) self.gn2 = torch.nn.GroupNorm(8, inter_dims[1]) self.out_lay = torch.nn.Conv3d(inter_dims[1], 1, 3, padding=1) self.dim = dim for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_uniform_(m.weight, a=1) nn.init.constant_(m.bias, 0) def forward(self, x, bbox_mask, fpns): def expand(tensor, length): return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1, 1).flatten(0, 1) # print(' @@@@ bbox mask') # print(bbox_mask.shape) # print(' @@@@ before maskhead size') # print(x.shape) x = torch.cat([expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1) x = self.lay1(x) x = self.gn1(x) x = F.relu(x) x = self.lay2(x) x = self.gn2(x) x = F.relu(x) x = self.out_lay(x) # print(' @@@@ after maskhead size') # print(x.shape) return x class MaskHeadV2(nn.Module): def __init__(self, dim, fpn_dims, context_dim): super().__init__() # inter_dims = [dim, context_dim // 4, context_dim // 16, context_dim // 64, context_dim // 128] inter_dims = [context_dim // 4, context_dim // 16, context_dim // 64, context_dim // 128] blocks = [] adapters = [] refiners = [] in_dim = dim for i in range(2): out_dim = inter_dims[i] blocks.append( nn.Sequential( nn.Conv2d(in_dim, out_dim, 3, padding=1), # nn.GroupNorm(8, out_dim), # nn.ReLU() ) ) adapters.append(nn.Conv2d(fpn_dims[i], out_dim, 1)) refiners.append( nn.Sequential( nn.Conv2d(out_dim, out_dim, 3, padding=1), nn.GroupNorm(8, out_dim), nn.ReLU() ) ) in_dim = out_dim self.blocks = nn.ModuleList(blocks) self.adapters = nn.ModuleList(adapters) self.refiners = nn.ModuleList(refiners) self.out_lay = nn.Conv2d(in_dim, 1, 3, padding=1) self.dim = dim for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_uniform_(m.weight, a=1) nn.init.constant_(m.bias, 0) def forward(self, x, bbox_mask, fpns): # bbox_mask = bbox_mask.mean(2) bs, num_queries, num_heads = bbox_mask.shape[:3] for fpn, block, adapter, refiner in zip(fpns, self.blocks, self.adapters, self.refiners): x = block(x) adapted_fpn = adapter(fpn) x = F.interpolate(x, size=adapted_fpn.shape[-2:], mode="nearest") x = x.reshape((bs, -1) + x.shape[1:]) + adapted_fpn[:, None] mask = F.interpolate(bbox_mask.flatten(1, 2), size=x.shape[-2:], mode="bilinear") mask = mask.reshape((bs, num_queries, num_heads) + mask.shape[-2:]) x = x.reshape((bs, -1, num_heads, x.shape[2] // num_heads) + x.shape[3:]) x = x * mask[:, :, :, None] x = x.flatten(2, 3) x = x.flatten(0, 1) x = refiner(x) x = self.out_lay(x) return x class MHAttentionMap(nn.Module): def __init__(self, query_dim, hidden_dim, num_heads, dropout=0, bias=True): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.dropout = nn.Dropout(dropout) self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias) self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias) nn.init.zeros_(self.k_linear.bias) nn.init.zeros_(self.q_linear.bias) nn.init.xavier_uniform_(self.k_linear.weight) nn.init.xavier_uniform_(self.q_linear.weight) self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5 def forward(self, q, k, mask=None): # q: (bs, num_queries, hidden_dim) # k: (bs, hiddem_dim, h, w, d) q = self.q_linear(q) k = F.conv3d( k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1), self.k_linear.bias ) qh = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads) kh = k.view( k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-3], k.shape[-2], k.shape[-1], ) weights = torch.einsum("bqnc,bnchwd->bqnhwd", qh * self.normalize_fact, kh) if mask is not None: weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), float("-inf")) weights = F.softmax(weights.flatten(2), dim=-1).view_as(weights) weights = self.dropout(weights) return weights
craftassist-master
python/craftassist/voxel_models/detection-transformer/models/mask_heads.py
""" This file defines the basic loss functions that are used in the project """ import torch.nn.functional as F def dice_loss(inputs, targets, num_boxes): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_boxes def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Adapted to avoid propagation of very certain items (confidence > 97%) Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma: Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes
craftassist-master
python/craftassist/voxel_models/detection-transformer/models/loss_utils.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import os import sys import visdom import torch VOXEL_MODELS_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../") sys.path.append(VOXEL_MODELS_DIR) import plot_voxels as pv import spatial_utils as su import training_utils as tu class GeoscorerDatasetVisualizer: def __init__(self, dataset): self.vis = visdom.Visdom(server="http://localhost") self.sp = pv.SchematicPlotter(self.vis) self.dataset = dataset self.vis_index = 0 self.model = None self.opts = None def set_model(self, model, opts=None): self.model = model if opts: self.opts = opts def visualize(self, use_model=False): if self.vis_index == len(self.dataset): raise Exception("No more examples to visualize in dataset") b = self.dataset[self.vis_index] if "schematic" in b: self.sp.drawGeoscorerPlotly(b["schematic"]) c_sl = b["context"].size()[0] self.vis_index += 1 self.sp.drawGeoscorerPlotly(b["context"]) self.sp.drawGeoscorerPlotly(b["seg"]) target_coord = su.index_to_coord(b["target"].item(), c_sl) combined_voxel = su.combine_seg_context(b["seg"], b["context"], target_coord, seg_mult=3) self.sp.drawGeoscorerPlotly(combined_voxel) if use_model: b = {k: t.unsqueeze(0) for k, t in b.items()} targets, scores = tu.get_scores_from_datapoint(self.model, b, self.opts) max_ind = torch.argmax(scores, dim=1) pred_coord = su.index_to_coord(max_ind, c_sl) b = {k: t.squeeze(0) for k, t in b.items()} predicted_voxel = su.combine_seg_context( b["seg"], b["context"], pred_coord, seg_mult=3 ) self.sp.drawGeoscorerPlotly(predicted_voxel)
craftassist-master
python/craftassist/voxel_models/geoscorer/visualization_utils.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import torch import torch.optim as optim import torch.nn as nn import directional_utils as du def conv3x3x3(in_planes, out_planes, stride=1, bias=True): """3x3x3 convolution with padding""" return nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=bias) def conv3x3x3up(in_planes, out_planes, bias=True): """3x3x3 convolution with padding""" return nn.ConvTranspose3d( in_planes, out_planes, stride=2, kernel_size=3, padding=1, output_padding=1 ) def convbn(in_planes, out_planes, stride=1, bias=True): return nn.Sequential( (conv3x3x3(in_planes, out_planes, stride=stride, bias=bias)), nn.BatchNorm3d(out_planes), nn.ReLU(inplace=True), ) def convbnup(in_planes, out_planes, bias=True): return nn.Sequential( (conv3x3x3up(in_planes, out_planes, bias=bias)), nn.BatchNorm3d(out_planes), nn.ReLU(inplace=True), ) # Return an 32 x 32 x 32 x 3 tensor where each len 3 inner tensor is # the xyz coordinates of that position def create_xyz_tensor(sl): incr_t = torch.tensor(range(sl), dtype=torch.float64) z = incr_t.expand(sl, sl, sl).unsqueeze(3) y = incr_t.unsqueeze(1).expand(sl, sl, sl).unsqueeze(3) x = incr_t.unsqueeze(1).unsqueeze(2).expand(sl, sl, sl).unsqueeze(3) xyz = torch.cat([x, y, z], 3) return xyz class ContextEmbeddingNet(nn.Module): def __init__(self, opts, blockid_embedding): super(ContextEmbeddingNet, self).__init__() self.blockid_embedding_dim = opts.get("blockid_embedding_dim", 8) output_embedding_dim = opts.get("output_embedding_dim", 8) num_layers = opts.get("num_layers", 4) hidden_dim = opts.get("hidden_dim", 64) self.use_direction = opts.get("cont_use_direction", False) self.use_xyz_from_viewer_look = opts.get("cont_use_xyz_from_viewer_look", False) self.c_sl = opts.get("context_side_length", 32) self.xyz = None input_dim = self.blockid_embedding_dim if self.use_direction: input_dim += 5 if self.use_xyz_from_viewer_look: input_dim += 3 self.xyz = create_xyz_tensor(self.c_sl).view(1, -1, 3) self.viewer_look = du.get_viewer_look(self.c_sl) if opts.get("cuda", 0): self.xyz = self.xyz.cuda() self.viewer_look = self.viewer_look.cuda() # A shared embedding for the block id types self.blockid_embedding = blockid_embedding # Create model for converting the context into HxWxL D dim representations self.layers = nn.ModuleList() # B dim block id -> hidden dim, maintain input size self.layers.append( nn.Sequential( nn.Conv3d(input_dim, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) # hidden dim -> hidden dim, maintain input size for i in range(num_layers - 1): self.layers.append( nn.Sequential( nn.Conv3d(hidden_dim, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) # hidden dim -> spatial embedding dim, maintain input size self.out = nn.Linear(hidden_dim, output_embedding_dim) # Input: [context, opt:viewer_pos, opt:viewer_look, opt:direction] # Returns N x D x H x W x L def forward(self, b): bsls = b["context"].size()[1:] if bsls[0] != self.c_sl or bsls[1] != self.c_sl or bsls[2] != self.c_sl: raise Exception( "Size of context should be Nx{}x{}x{} but it is {}".format( self.c_sl, self.c_sl, self.c_sl, b["context"].size() ) ) sizes = list(b["context"].size()) x = b["context"].view(-1) # Get the blockid embedding for each space in the context input z = self.blockid_embedding.weight.index_select(0, x) z = z.float() # Add the embedding dim B sizes.append(self.blockid_embedding_dim) # z: N*D x B if self.use_xyz_from_viewer_look: n_xyz = self.xyz.expand(sizes[0], -1, -1) # Input: viewer pos, viewer look (N x 3), n_xyz (N x D x 3) n_xyz = ( du.get_xyz_viewer_look_coords_batched(b["viewer_pos"], self.viewer_look, n_xyz) .view(-1, 3) .float() ) z = torch.cat([z, n_xyz], 1) # Add the xyz_look_position to the input size list sizes[-1] += 3 if self.use_direction: # direction: N x 5 direction = b["dir_vec"] d = self.c_sl * self.c_sl * self.c_sl direction = direction.unsqueeze(1).expand(-1, d, -1).contiguous().view(-1, 5) direction = direction.float() z = torch.cat([z, direction], 1) # Add the direction emb to the input size list sizes[-1] += 5 z = z.view(torch.Size(sizes)) # N x H x W x L x B ==> N x B x H x W x L z = z.permute(0, 4, 1, 2, 3).contiguous() for i in range(len(self.layers)): z = self.layers[i](z) z = z.permute(0, 2, 3, 4, 1).contiguous() return self.out(z) class SegmentEmbeddingNet(nn.Module): def __init__(self, opts, blockid_embedding): super(SegmentEmbeddingNet, self).__init__() self.blockid_embedding_dim = opts.get("blockid_embedding_dim", 8) spatial_embedding_dim = opts.get("spatial_embedding_dim", 8) hidden_dim = opts.get("hidden_dim", 64) self.s_sl = 8 # TODO make this changeable in model arch # A shared embedding for the block id types self.blockid_embedding = blockid_embedding # Create model for converting the segment into 1 D dim representation # input size: 8x8x8 self.layers = nn.ModuleList() # B dim block id -> hidden dim, maintain input size self.layers.append( nn.Sequential( nn.Conv3d(self.blockid_embedding_dim, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) # hidden dim -> hidden dim # (maintain input size x2, max pool to half) x 3: 8x8x8 ==> 1x1x1 for i in range(3): self.layers.append( nn.Sequential( nn.Conv3d(hidden_dim, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), nn.Conv3d(hidden_dim, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), nn.MaxPool3d(2, stride=2), ) ) # hidden dim -> spatial embedding dim, 1x1x1 self.out = nn.Linear(hidden_dim, spatial_embedding_dim) # Returns N x D x 1 x 1 x 1 def forward(self, b): bsls = b["seg"].size()[1:] if bsls[0] != self.s_sl or bsls[1] != self.s_sl or bsls[2] != self.s_sl: raise Exception("Size of input should be Nx8x8x8 but it is {}".format(b["seg"].size())) sizes = list(b["seg"].size()) seg = b["seg"].view(-1) # Get the blockid embedding for each space in the context input z = self.blockid_embedding.weight.index_select(0, seg) # Add the embedding dim B sizes.append(self.blockid_embedding_dim) z = z.view(torch.Size(sizes)) # N x H x W x L x B ==> N x B x H x W x L z = z.permute(0, 4, 1, 2, 3).contiguous() for i in range(len(self.layers)): z = self.layers[i](z) z = z.permute(0, 2, 3, 4, 1).contiguous() return self.out(z) class SegmentDirectionEmbeddingNet(nn.Module): def __init__(self, opts): super(SegmentDirectionEmbeddingNet, self).__init__() output_embedding_dim = opts.get("output_embedding_dim", 8) self.use_viewer_pos = opts.get("seg_use_viewer_pos", False) self.use_direction = opts.get("seg_use_direction", False) hidden_dim = opts.get("hidden_dim", 64) num_layers = opts.get("num_seg_dir_layers", 3) self.seg_input_dim = opts.get("spatial_embedding_dim", 8) self.c_sl = opts.get("context_side_length", 32) input_dim = self.seg_input_dim if self.use_viewer_pos: input_dim += 3 if self.use_direction: input_dim += 5 # Create model for converting the segment, viewer info, self.layers = nn.ModuleList() self.layers.append(nn.Sequential(nn.Linear(input_dim, hidden_dim), nn.ReLU())) for i in range(num_layers - 1): self.layers.append(nn.Sequential(nn.Linear(hidden_dim, hidden_dim), nn.ReLU())) self.out = nn.Linear(hidden_dim, output_embedding_dim) # In: batch dict, must have s_embeds, viewer_pos, dir_vec # Out: N x D x 1 x 1 x 1 def forward(self, b): if b["s_embeds"].size()[1] != self.seg_input_dim: raise Exception("The seg spatial embed is wrong size: {}".format(b["s_embeds"].size())) inp = [b["s_embeds"]] normalizing_const = self.c_sl * 1.0 / 2.0 if self.use_viewer_pos: inp.append(b["viewer_pos"].float().div_(normalizing_const)) if self.use_direction: inp.append(b["dir_vec"].float()) z = torch.cat(inp, 1) for i in range(len(self.layers)): z = self.layers[i](z) return self.out(z).unsqueeze(2).unsqueeze(3).unsqueeze(4) class ContextSegmentScoringModule(nn.Module): def __init__(self): super(ContextSegmentScoringModule, self).__init__() def forward(self, x): context_emb = x["c_embeds"] # N x 32 x 32 x 32 x D seg_emb = x["s_embeds"] # N x 1 x 1 x 1 x D c_szs = context_emb.size() # N x 32 x 32 x 32 x D batch_dim = c_szs[0] emb_dim = c_szs[4] num_scores = c_szs[1] * c_szs[2] * c_szs[3] # Prepare context for the dot product context_emb = context_emb.view(-1, emb_dim, 1) # N*32^3 x D x 1 # Prepare segment for the dot product seg_emb = seg_emb.view(batch_dim, 1, -1) # N x 1 x D seg_emb = seg_emb.expand(-1, num_scores, -1).contiguous() # N x 32^3 x D seg_emb = seg_emb.view(-1, 1, emb_dim) # N*32^3 x 1 x D # Dot product & reshape # (K x 1 x D) bmm (K x D x 1) = (K x 1 x 1) out = torch.bmm(seg_emb, context_emb) return out.view(batch_dim, -1) class spatial_emb_loss(nn.Module): def __init__(self): super(spatial_emb_loss, self).__init__() self.lsm = nn.LogSoftmax() self.crit = nn.NLLLoss() # format [scores (Nx32^3), targets (N)] def forward(self, inp): assert len(inp) == 2 scores = inp[0] targets = inp[1] logsuminp = self.lsm(scores) return self.crit(logsuminp, targets) class rank_loss(nn.Module): def __init__(self, margin=0.1, nneg=5): super(rank_loss, self).__init__() self.nneg = 5 self.margin = margin self.relu = nn.ReLU() def forward(self, inp): # it is expected that the batch is arranged as pos neg neg ... neg pos neg ... # with self.nneg negs per pos assert inp.shape[0] % (self.nneg + 1) == 0 inp = inp.view(self.nneg + 1, -1) pos = inp[0] neg = inp[1:].contiguous() errors = self.relu(neg - pos.repeat(self.nneg, 1) + self.margin) return errors.mean() class reshape_nll(nn.Module): def __init__(self, nneg=5): super(reshape_nll, self).__init__() self.nneg = nneg self.lsm = nn.LogSoftmax() self.crit = nn.NLLLoss() def forward(self, inp): # it is expected that the batch is arranged as pos neg neg ... neg pos neg ... # with self.nneg negs per pos assert inp.shape[0] % (self.nneg + 1) == 0 inp = inp.view(-1, self.nneg + 1).contiguous() logsuminp = self.lsm(inp) o = torch.zeros(inp.size(0), device=inp.device).long() return self.crit(logsuminp, o) def get_optim(model_params, opts): optim_type = opts.get("optim", "adagrad") lr = opts.get("lr", 0.1) momentum = opts.get("momentum", 0.0) betas = (0.9, 0.999) if optim_type == "adagrad": return optim.Adagrad(model_params, lr=lr) elif optim_type == "sgd": return optim.SGD(model_params, lr=lr, momentum=momentum) elif optim_type == "adam": return optim.Adam(model_params, lr=lr, betas=betas) else: raise Exception("Undefined optim type {}".format(optim_type)) def create_context_segment_modules(opts): possible_params = ["context_net", "seg_net", "seg_direction_net"] # Add all of the modules emb_dict = torch.nn.Embedding(opts["num_words"], opts["blockid_embedding_dim"]) tms = { "context_net": ContextEmbeddingNet(opts, emb_dict), "seg_net": SegmentEmbeddingNet(opts, emb_dict), "score_module": ContextSegmentScoringModule(), "lfn": spatial_emb_loss(), } if opts.get("seg_direction_net", False): tms["seg_direction_net"] = SegmentDirectionEmbeddingNet(opts) # Move everything to the right device if "cuda" in opts and opts["cuda"]: emb_dict.cuda() for n in possible_params: if n in tms: tms[n].cuda() # Setup the optimizer all_params = [] for n in possible_params: if n in tms: all_params.extend(list(tms[n].parameters())) tms["optimizer"] = get_optim(all_params, opts) return tms
craftassist-master
python/craftassist/voxel_models/geoscorer/models.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import torch import time import training_utils as tu def train_epoch(tms, DL, opts): l = 0 error = 0 count = 0 dlit = iter(DL) tu.set_modules(tms, train=True) for i in range(len(DL)): b = dlit.next() targets, scores = tu.get_scores_from_datapoint(tms, b, opts) loss = tms["lfn"]([scores, targets]) max_ind = torch.argmax(scores, dim=1) num_correct = sum(max_ind.eq(targets)).item() error += opts["batchsize"] - num_correct loss.backward() tms["optimizer"].step() l = l + loss.detach().item() count = count + 1 return (l / count, error / (count * opts["batchsize"])) def run_visualization( vis, tms, opts, checkpoint_path=None, num_examples=2, tsleep=1, loadpath=False ): if loadpath and checkpoint_path is not None and checkpoint_path != "": new_tms = tu.get_context_segment_trainer_modules( opts, checkpoint_path=checkpoint_path, backup=False, verbose=True ) else: new_tms = tms tu.set_modules(new_tms, train=False) vis.set_model(new_tms) for n in range(num_examples): vis.visualize(use_model=True) time.sleep(tsleep) if __name__ == "__main__": parser = tu.get_train_parser() opts = vars(parser.parse_args()) # Setup the data, models and optimizer dataset, dataloader = tu.setup_dataset_and_loader(opts) tms = tu.get_context_segment_trainer_modules( opts, opts["checkpoint"], backup=opts["backup"], verbose=True ) # The context and seg net were already moved if opts["cuda"] == 1: tms["score_module"].cuda() tms["lfn"].cuda() # Setup visualization vis = None if opts["visualize_epochs"]: from visualization_utils import GeoscorerDatasetVisualizer vis = GeoscorerDatasetVisualizer(dataset) vis.set_model(tms, opts) run_visualization( vis, tms, opts, checkpoint_path=None, num_examples=2, tsleep=1, loadpath=False ) # Run training for i in range(opts["nepoch"]): train_loss, train_error = train_epoch(tms, dataloader, opts) tu.pretty_log( "train loss {:<5.4f} error {:<5.2f} {}".format(train_loss, train_error * 100, i) ) if opts["checkpoint"] != "": metadata = {"epoch": i, "train_loss": train_loss, "train_error": train_error} tu.save_checkpoint(tms, metadata, opts, opts["checkpoint"]) if opts["visualize_epochs"]: run_visualization(vis, tms, opts, opts["checkpoint"], 2, 1, False)
craftassist-master
python/craftassist/voxel_models/geoscorer/train_spatial_emb.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import json dataset_config = { "inst_dir": [ {"drop_perc": -1.0, "ground_type": None}, {"drop_perc": -1.0, "ground_type": "flat"}, ], "shape_dir": [ {"ground_type": "flat", "max_shift": None}, {"ground_type": "flat", "max_shift": 6}, {"ground_type": "hilly", "max_shift": 6}, ], "autogen_glue_cubes_dir": [ {"fixed_center": True, "ground_type": None}, {"fixed_center": True, "ground_type": "flat"}, {"fixed_center": True, "ground_type": "hilly"}, ], } filename = "run_config.json" with open(filename, "w+") as f: json.dump(dataset_config, f) print("dumped", filename)
craftassist-master
python/craftassist/voxel_models/geoscorer/config_maker.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import argparse from training_utils import get_context_segment_trainer_modules from spatial_utils import index_to_coord class ContextSegmentMergerWrapper(object): """ Wrapper for the geoscorer """ def __init__(self, models_path): if models_path is None: raise Exception("Geoscorer wrapper requires a model path") self.opts = {} tms = get_context_segment_trainer_modules( opts=self.opts, checkpoint_path=models_path, backup=False, verbose=False ) self.context_net = tms["context_net"] self.seg_net = tms["seg_net"] self.score_module = tms["score_module"] self.context_sl = 32 self.seg_sl = 8 self.context_net.eval() self.seg_net.eval() self.score_module.eval() def segment_context_to_pos(self, segment, context): # Coords are in Z, X, Y, so put segment into same coords segment = segment.permute(1, 2, 0).contiguous() batch = {"context": context.unsqueeze(0), "seg": segment.unsqueeze(0)} batch["c_embeds"] = self.context_net(batch) batch["s_embeds"] = self.seg_net(batch) scores = self.score_module(batch) index = scores[0].flatten().max(0)[1] target_coord = index_to_coord(index.item(), self.context_sl) # Then take final coord back into X, Y, Z coords final_target_coord = (target_coord[2], target_coord[0], target_coord[1]) return final_target_coord if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--models_path", type=str, help="path to geoscorer models") args = parser.parse_args() geoscorer = ContextSegmentMergerWrapper(args.models_path)
craftassist-master
python/craftassist/voxel_models/geoscorer/geoscorer_wrapper.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import math import os import random import pickle import torch import torch.utils.data from collections import defaultdict import spatial_utils as su import directional_utils as du def parse_instance_data(inst_data): parsed_instance_data = [] for h in inst_data: S, segs, labels, _ = h segs = segs.astype("int32") blocks = list(zip(*S.nonzero())) # First convert the schematic into sparse segment info offsets = [[i, j, k] for i in range(-1, 2) for j in range(-1, 2) for k in range(-1, 2)] sizes = [len(segs), len(segs[0]), len(segs[0][0])] instances = defaultdict(list) touching = defaultdict(set) for b in blocks: b_w_id = [b[0], b[2], b[1]] b_w_id.append(S[b]) seg_id = segs[b] instances[seg_id].append(b_w_id) for off in offsets: nc = tuple([a + b for a, b in zip(b, off)]) # check out of bounds if not all(e > 0 for e in nc) or not all([nc[i] < sizes[i] for i in range(3)]): continue if segs[nc] != 0 and segs[nc] != seg_id: touching[seg_id].add(segs[nc]) # Then get the width/height/depth metadata metadata = {} for i, blocks in instances.items(): maxs = [0, 0, 0] mins = [sizes[i] for i in range(3)] for b in blocks: maxs = [max(b[i], maxs[i]) for i in range(3)] mins = [min(b[i], mins[i]) for i in range(3)] metadata[i] = {"size": [x - n + 1 for n, x in zip(mins, maxs)], "label": labels[i]} # For now remove houses where there are no touching components # this is only one house if len(touching) == 0: continue parsed_instance_data.append( {"segments": instances, "touching": touching, "metadata": metadata} ) return parsed_instance_data def parse_segments_into_file(dpath, save_path): inst_data = pickle.load(open(dpath, "rb")) parsed_instance_data = parse_instance_data(inst_data) pickle.dump(parsed_instance_data, open(save_path, "wb+")) def convert_tuple_to_block(b): if b[3] < 0 or b[3] > 255: raise Exception("block id out of bounds") return ((b[0], b[1], b[2]), (b[3], 0)) def get_seg_context_sparse(seg_data, drop_perc, rand_drop=True): # first choose a house sd = random.choice(seg_data) # then drop some segs if drop_perc < 0: drop_perc = random.randint(0, 80) * 1.0 / 100 seg_ids = list(sd["segments"].keys()) random.shuffle(seg_ids) num_segs = len(seg_ids) to_keep = math.ceil(num_segs - num_segs * drop_perc) keep_ids = seg_ids[:to_keep] # choose a remaining seg to get a connected one conn_to_target_id = random.choice(keep_ids) if conn_to_target_id not in sd["touching"]: conn_to_target_id = random.choice(list(sd["touching"].keys())) keep_ids.append(conn_to_target_id) # get a connected seg as target target_seg_id = random.choice(list(sd["touching"][conn_to_target_id])) keep_ids = [k for k in keep_ids if k != target_seg_id] # make segment out of blocks from target_seg seg_sparse = [convert_tuple_to_block(b) for b in sd["segments"][target_seg_id]] # make context out of blocks from keep_ids context_sparse = [] for i in set(keep_ids): context_sparse += [convert_tuple_to_block(b) for b in sd["segments"][i]] return seg_sparse, context_sparse def get_inst_seg_example(seg_data, drop_perc, c_sl, s_sl, use_id, ground_type=None): seg_sparse, context_sparse = get_seg_context_sparse(seg_data, drop_perc) target_coord, shift_vec, shifted_seg_sparse = su.convert_sparse_context_seg_to_target_coord_shifted_seg( context_sparse, seg_sparse, c_sl, s_sl ) if ground_type is not None: max_z = max([c[0][2] for c in context_sparse] + [s[0][2] for s in shifted_seg_sparse]) if max_z < c_sl - 1: context_sparse = [((c[0][0], c[0][1], c[0][2] + 1), c[1]) for c in context_sparse] shifted_seg_sparse = [ ((s[0][0], s[0][1], s[0][2] + 1), s[1]) for s in shifted_seg_sparse ] target_coord[2] += 1 su.add_ground_to_context(context_sparse, target_coord, flat=True, random_height=False) schem_sparse = seg_sparse + context_sparse example = su.convert_sparse_context_seg_target_to_example( context_sparse, shifted_seg_sparse, target_coord, c_sl, s_sl, use_id, schem_sparse ) return example # Returns three tensors: 32x32x32 context, 8x8x8 segment, 1 target # TODO: Note that 1/7 segments are larger than 8x8x8 # Only 1/70 are larger than 16x16x16, maybe move to this size seg # Returns three tensors: 32x32x32 context, 8x8x8 segment, 1 target class SegmentContextInstanceData(torch.utils.data.Dataset): def __init__( self, data_dir="/checkpoint/drotherm/minecraft_dataset/vision_training/training3/", nexamples=10000, context_side_length=32, seg_side_length=8, useid=False, use_direction=False, drop_perc=0.8, ground_type=None, ): self.use_direction = use_direction self.c_sl = context_side_length self.s_sl = seg_side_length self.num_examples = nexamples self.useid = useid self.drop_perc = drop_perc self.ground_type = ground_type # Load the parsed data parsed_file = os.path.join(data_dir, "training_parsed.pkl") if not os.path.exists(parsed_file): print(">> Redo inst seg parse") data_path = os.path.join(data_dir, "training_data.pkl") parse_segments_into_file(data_path, parsed_file) self.seg_data = pickle.load(open(parsed_file, "rb")) def _get_example(self): if not self.use_direction: return get_inst_seg_example( self.seg_data, self.drop_perc, self.c_sl, self.s_sl, self.useid, self.ground_type ) else: example = get_inst_seg_example( self.seg_data, self.drop_perc, self.c_sl, self.s_sl, self.useid, self.ground_type ) viewer_pos, viewer_look = du.get_random_viewer_info(self.c_sl) target_coord = torch.tensor(su.index_to_coord(example["target"], self.c_sl)) example["dir_vec"] = du.get_sampled_direction_vec( viewer_pos, viewer_look, target_coord ) example["viewer_pos"] = viewer_pos return example def __getitem__(self, index): return self._get_example() def __len__(self): return abs(self.num_examples) if __name__ == "__main__": import argparse from visualization_utils import GeoscorerDatasetVisualizer parser = argparse.ArgumentParser() parser.add_argument( "--use_direction", action="store_true", help="use direction in example creation" ) parser.add_argument("--useid", action="store_true", help="should we use the block id") parser.add_argument("--drop_perc", type=float, default=0.8, help="should we use the block id") parser.add_argument("--ground_type", type=str, default=None, help="ground type") opts = parser.parse_args() dataset = SegmentContextInstanceData( nexamples=3, use_direction=opts.use_direction, drop_perc=opts.drop_perc, useid=opts.useid, ground_type=opts.ground_type, ) vis = GeoscorerDatasetVisualizer(dataset) for n in range(len(dataset)): vis.visualize()
craftassist-master
python/craftassist/voxel_models/geoscorer/inst_seg_dataset.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np import random import torch import torch.utils.data from shape_dataset import SegmentContextShapeData, SegmentContextShapeDirData from inst_seg_dataset import SegmentContextInstanceData from autogen_dataset import SegmentContextGlueCubesData # Returns three tensors: 32x32x32 context, 8x8x8 segment, 1 target class SegmentContextData(torch.utils.data.Dataset): def __init__( self, nexamples=100000, context_side_length=32, seg_side_length=8, useid=False, ratios={"shape": 1.0}, extra_params={}, config=None, ): self.c_sl = context_side_length self.s_sl = seg_side_length self.num_examples = nexamples self.useid = useid self.examples = [] self.extra_params = extra_params self.ds_names = [k for k, p in ratios.items() if p > 0] self.ds_probs = [ratios[name] for name in self.ds_names] if sum(self.ds_probs) != 1.0: raise Exception("Sum of probs must equal 1.0") if config is None: self.datasets = dict( [(name, [self._get_dataset(name, extra_params)]) for name in self.ds_names] ) else: self.datasets = {} for name in self.ds_names: if name not in config: continue self.datasets[name] = [] for params in config[name]: self.datasets[name].append(self._get_dataset(name, params)) print("Datasets") for name, dss in self.datasets.items(): print(" ", name, len(dss)) def _get_dataset(self, name, extra_params): if name == "inst_dir": drop_perc = extra_params.get("drop_perc", 0.0) ground_type = extra_params.get("ground_type", None) return SegmentContextInstanceData( use_direction=True, nexamples=self.num_examples, drop_perc=drop_perc, context_side_length=self.c_sl, seg_side_length=self.s_sl, useid=self.useid, ground_type=ground_type, ) if name == "inst": drop_perc = extra_params.get("drop_perc", 0.0) return SegmentContextInstanceData( use_direction=False, nexamples=self.num_examples, drop_perc=drop_perc, context_side_length=self.c_sl, seg_side_length=self.s_sl, useid=self.useid, ) if name == "shape": return SegmentContextShapeData( nexamples=self.num_examples, context_side_length=self.c_sl, seg_side_length=self.s_sl, useid=self.useid, ) if name == "shape_dir": ground_type = extra_params.get("ground_type", None) max_shift = self.extra_params.get("max_shift", 0) return SegmentContextShapeDirData( nexamples=self.num_examples, context_side_length=self.c_sl, seg_side_length=self.s_sl, useid=self.useid, ground_type=ground_type, max_shift=max_shift, ) if name == "autogen_glue_cubes_dir": type_name = extra_params.get("type_name", "random") fixed_cube_size = extra_params.get("fixed_cube_size", None) fixed_center = extra_params.get("fixed_center", False) ground_type = extra_params.get("ground_type", None) return SegmentContextGlueCubesData( nexamples=self.num_examples, context_side_length=self.c_sl, seg_side_length=self.s_sl, useid=self.useid, type_name=type_name, use_direction=True, fixed_cube_size=fixed_cube_size, fixed_center=fixed_center, ground_type=ground_type, ) if name == "autogen_glue_cubes": type_name = extra_params.get("type_name", "random") return SegmentContextGlueCubesData( nexamples=self.num_examples, context_side_length=self.c_sl, seg_side_length=self.s_sl, useid=self.useid, type_name=type_name, use_direction=False, ) raise Exception("No dataset with name {}".format(name)) def _get_example(self): ds_name = np.random.choice(self.ds_names, p=self.ds_probs) dataset = random.choice(self.datasets[ds_name]) return dataset._get_example() def __getitem__(self, index): return self._get_example() def __len__(self): return self.num_examples if __name__ == "__main__": from visualization_utils import GeoscorerDatasetVisualizer dataset = SegmentContextData( nexamples=3, useid=False, ratios={"autogen_glue_cubes": 1.0}, extra_params={"min_seg_size": 6}, ) vis = GeoscorerDatasetVisualizer(dataset) for n in range(len(dataset)): vis.visualize()
craftassist-master
python/craftassist/voxel_models/geoscorer/combined_dataset.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np import random import os import sys import argparse import torch import string import json from shutil import copyfile from inspect import currentframe, getframeinfo from datetime import datetime import models import combined_dataset as cd """ General Training Utils """ def pretty_log(log_string): cf = currentframe().f_back filename = getframeinfo(cf).filename.split("/")[-1] print( "{} {}:{} {}".format( datetime.now().strftime("%m/%d/%Y %H:%M:%S"), filename, cf.f_lineno, log_string ) ) sys.stdout.flush() def prepare_variables(b, opts): X = b.long() if opts["cuda"]: X = X.cuda() return X def set_modules(tms, train): for m in ["context_net", "seg_net", "score_module", "seg_direction_net"]: if m not in tms: continue if train: tms[m].train() else: tms[m].eval() def multitensor_collate_fxn(x): regroup_tensors = {n: [] for n in x[0].keys()} use_names = list(x[0].keys()) for t_dict in x: use_names = [n for n in use_names if n in t_dict] for n, t in t_dict.items(): if n not in regroup_tensors: continue regroup_tensors[n].append(t.unsqueeze(0)) use_names = set(use_names) batched_tensors = { n: torch.cat([t.float() for t in tl]) for n, tl in regroup_tensors.items() if n in use_names } return batched_tensors def get_dataloader(dataset, opts, collate_fxn): def init_fn(wid): np.random.seed(torch.initial_seed() % (2 ** 32)) return torch.utils.data.DataLoader( dataset, batch_size=opts["batchsize"], shuffle=True, pin_memory=True, drop_last=True, num_workers=opts["num_workers"], worker_init_fn=init_fn, collate_fn=collate_fxn, ) def setup_dataset_and_loader(opts): extra_params = { "drop_perc": opts.get("drop_perc", 0.0), "fixed_cube_size": opts.get("fixed_cube_size", None), "fixed_center": opts.get("fixed_center", False), "max_shift": opts.get("max_shift", 0), "ground_type": opts.get("ground_type", None), } config = opts.get("dataset_config", None) if config is not None: print("loaded config from", config) with open(config, "r") as f: config = json.load(f) dataset = cd.SegmentContextData( nexamples=opts["epochsize"], useid=opts["useid"], extra_params=extra_params, ratios=parse_dataset_ratios(opts), config=config, ) dataloader = get_dataloader(dataset=dataset, opts=opts, collate_fxn=multitensor_collate_fxn) return dataset, dataloader def get_scores_from_datapoint(tms, batch, opts): batch = {k: prepare_variables(t, opts) for k, t in batch.items()} batch["target"] = batch["target"].squeeze() tms["optimizer"].zero_grad() c_embeds = tms["context_net"](batch) s_embeds = tms["seg_net"](batch) if "seg_direction_net" in tms: if s_embeds.dim() > 2: s_embeds = s_embeds.squeeze() if s_embeds.dim() == 1: s_embeds = s_embeds.unsqueeze(0) batch["s_embeds"] = s_embeds s_embeds = tms["seg_direction_net"](batch) scores = tms["score_module"]({"c_embeds": c_embeds, "s_embeds": s_embeds}) return batch["target"], scores """ Checkpointing """ def check_and_print_opts(curr_opts, old_opts): mismatches = [] print(">> Options:") for opt, val in curr_opts.items(): if opt and val: print(" - {:>20}: {:<30}".format(opt, val)) else: print(" - {}: {}".format(opt, val)) if old_opts and opt in old_opts and old_opts[opt] != val: mismatches.append((opt, val, old_opts[opt])) print("") if len(mismatches) > 0: print(">> Mismatching options:") for m in mismatches: print(" - {:>20}: new '{:<10}' != old '{:<10}'".format(m[0], m[1], m[2])) print("") return True if len(mismatches) > 0 else False def load_context_segment_checkpoint(checkpoint_path, opts, backup=True, verbose=False): if not os.path.isfile(checkpoint_path): check_and_print_opts(opts, None) return {} if backup: random_uid = "".join( [random.choice(string.ascii_letters + string.digits) for n in range(4)] ) backup_path = checkpoint_path + ".backup_" + random_uid copyfile(checkpoint_path, backup_path) print(">> Backing up checkpoint before loading and overwriting:") print(" {}\n".format(backup_path)) checkpoint = torch.load(checkpoint_path) if verbose: print(">> Loading model from checkpoint {}".format(checkpoint_path)) for opt, val in checkpoint["metadata"].items(): print(" - {:>20}: {:<30}".format(opt, val)) print("") check_and_print_opts(opts, checkpoint["options"]) checkpoint_opts_dict = checkpoint["options"] if type(checkpoint_opts_dict) is not dict: checkpoint_opts_dict = vars(checkpoint_opts_dict) for opt, val in checkpoint_opts_dict.items(): opts[opt] = val print(opts) trainer_modules = models.create_context_segment_modules(opts) trainer_modules["context_net"].load_state_dict(checkpoint["model_state_dicts"]["context_net"]) trainer_modules["seg_net"].load_state_dict(checkpoint["model_state_dicts"]["seg_net"]) trainer_modules["optimizer"].load_state_dict(checkpoint["optimizer_state_dict"]) if opts.get("seg_direction_net", False): trainer_modules["seg_direction_net"].load_state_dict( checkpoint["model_state_dicts"]["seg_direction_net"] ) return trainer_modules def get_context_segment_trainer_modules(opts, checkpoint_path=None, backup=False, verbose=False): trainer_modules = load_context_segment_checkpoint(checkpoint_path, opts, backup, verbose) if len(trainer_modules) == 0: trainer_modules = models.create_context_segment_modules(opts) return trainer_modules def save_checkpoint(tms, metadata, opts, path): model_dict = {"context_net": tms["context_net"], "seg_net": tms["seg_net"]} if opts.get("seg_direction_net", False): model_dict["seg_direction_net"] = tms["seg_direction_net"] # Add all models to dicts and move state to cpu state_dicts = {} for model_name, model in model_dict.items(): state_dicts[model_name] = model.state_dict() for n, s in state_dicts[model_name].items(): state_dicts[model_name][n] = s.cpu() # Save to path torch.save( { "metadata": metadata, "model_state_dicts": state_dicts, "optimizer_state_dict": tms["optimizer"].state_dict(), "options": opts, }, path, ) """ Parser Arguments """ def get_train_parser(): parser = argparse.ArgumentParser() # Base Training Flags parser.add_argument("--cuda", type=int, default=1, help="0 for cpu") parser.add_argument("--batchsize", type=int, default=64, help="batchsize") parser.add_argument( "--epochsize", type=int, default=1000, help="number of examples in an epoch" ) parser.add_argument("--nepoch", type=int, default=1000, help="number of epochs") parser.add_argument("--lr", type=float, default=0.1, help="step size for net") parser.add_argument( "--optim", type=str, default="adagrad", help="optim type to use (adagrad|sgd|adam)" ) parser.add_argument("--momentum", type=float, default=0.0, help="momentum") parser.add_argument("--checkpoint", default="", help="where to save model") parser.add_argument("--num_workers", type=int, default=4, help="number of dataloader workers") parser.add_argument( "--backup", action="store_true", help="backup the checkpoint path before saving to it" ) parser.add_argument( "--visualize_epochs", action="store_true", help="use visdom to visualize progress" ) # Model Flags parser.add_argument("--hidden_dim", type=int, default=64, help="size of hidden dim") parser.add_argument("--num_layers", type=int, default=3, help="num layers") parser.add_argument( "--blockid_embedding_dim", type=int, default=8, help="size of blockid embedding" ) parser.add_argument("--context_sidelength", type=int, default=32, help="size of cube") parser.add_argument("--useid", action="store_true", help="use blockid") parser.add_argument( "--num_words", type=int, default=256, help="number of words for the blockid embeds" ) # Dataset Flags parser.add_argument( "--dataset_ratios", type=str, default="shape:1.0", help="comma separated name:prob" ) parser.add_argument("--fixed_cube_size", type=int, default=None, help="fixed_cube_size") parser.add_argument("--fixed_center", action="store_true", help="fixed_center") parser.add_argument( "--drop_perc", type=float, default=0.5, help="perc segs to drop from inst_seg" ) parser.add_argument( "--max_shift", type=int, default=6, help="max amount to offset shape_dir target" ) parser.add_argument( "--ground_type", type=str, default=None, help="ground type to include in datasets" ) parser.add_argument( "--dataset_config", type=str, default=None, help="for more complex training" ) # Directional Placement Flags parser.add_argument("--spatial_embedding_dim", type=int, default=8, help="size of spatial emb") parser.add_argument("--output_embedding_dim", type=int, default=8, help="size of output emb") parser.add_argument("--seg_direction_net", action="store_true", help="use segdirnet module") parser.add_argument("--seg_use_viewer_pos", action="store_true", help="use viewer pos in seg") parser.add_argument("--seg_use_direction", action="store_true", help="use direction in seg") parser.add_argument("--num_seg_dir_layers", type=int, default=3, help="num segdir net layers") parser.add_argument( "--cont_use_direction", action="store_true", help="use direction in context" ) parser.add_argument( "--cont_use_xyz_from_viewer_look", action="store_true", help="use xyz position relative to viewer look in context emb", ) return parser def parse_dataset_ratios(opts): ratios_str = opts["dataset_ratios"] ratio = {} try: l_s = ratios_str.split(",") print("\n>> Using datasets in the following proportions:") for t in l_s: name, prob = t.split(":") ratio[name] = float(prob) print(" - {}: {}".format(name, prob)) print("") except: raise Exception("Failed to parse the dataset ratio string {}".format(ratios_str)) return ratio
craftassist-master
python/craftassist/voxel_models/geoscorer/training_utils.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np import torch import os import sys import random CRAFTASSIST_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../") TEST_DIR = os.path.join(CRAFTASSIST_DIR, "test/") sys.path.append(CRAFTASSIST_DIR) sys.path.append(TEST_DIR) from world import World, Opt, flat_ground_generator """ Generic Spatial Utils """ def get_bounds(sparse_voxel): """ Voxel should either be a schematic, a list of ((x, y, z), (block_id, ?)) objects or a list of coordinates. Returns a list of bounds. """ if len(sparse_voxel) == 0: return [0, 0, 0, 0, 0, 0] # A schematic if len(sparse_voxel[0]) == 2 and len(sparse_voxel[0][0]) == 3 and len(sparse_voxel[0][1]) == 2: x, y, z = list(zip(*list(zip(*sparse_voxel))[0])) # A list or coordinates elif len(sparse_voxel[0]) == 3: x, y, z = list(zip(*sparse_voxel)) else: raise Exception("Unknown schematic format") return min(x), max(x), min(y), max(y), min(z), max(z) def get_side_lengths(bounds): """ Bounds should be a list of [min_x, max_x, min_y, max_y, min_z, max_z]. Returns a list of the side lengths. """ return [x + 1 for x in (bounds[1] - bounds[0], bounds[3] - bounds[2], bounds[5] - bounds[4])] def get_bounds_and_sizes(sparse_voxel): bounds = get_bounds(sparse_voxel) side_lengths = get_side_lengths(bounds) return bounds, side_lengths def coord_to_index(coord, sl): """ Takes a 3D coordinate in a cube and the cube side length. Returns index in flattened 3D array. """ return coord[0] * sl * sl + coord[1] * sl + coord[2] def index_to_coord(index, sl): """ Takes an index into a flattened 3D array and its side length. Returns the coordinate in the cube. """ coord = [] two_d_slice_size = sl * sl coord.append(index // two_d_slice_size) remaining = index % two_d_slice_size coord.append(remaining // sl) coord.append(remaining % sl) return coord def shift_sparse_voxel_to_origin(sparse_voxel): """ Takes a segment, described as a list of tuples of the form: ((x, y, z), (block_id, ?)) Returns the segment in the same form, shifted to the origin, and the shift vec """ bounds = get_bounds(sparse_voxel) shift_zero_vec = [-bounds[0], -bounds[2], -bounds[4]] new_voxel = [] for s in sparse_voxel: new_voxel.append((tuple([sum(x) for x in zip(s[0], shift_zero_vec)]), s[1])) return new_voxel, shift_zero_vec # outputs a dense voxel rep (np array) from a sparse one. # size should be a tuple of (H, W, D) for the desired voxel representation # useid=True puts the block id into the voxel representation, # otherwise put a 1 def densify(blocks, size, center=(0, 0, 0), useid=False): V = np.zeros((size[0], size[1], size[2]), dtype="int32") offsets = (size[0] // 2 - center[0], size[1] // 2 - center[1], size[2] // 2 - center[2]) for b in blocks: x = b[0][0] + offsets[0] y = b[0][1] + offsets[1] z = b[0][2] + offsets[2] if x >= 0 and y >= 0 and z >= 0 and x < size[0] and y < size[1] and z < size[2]: if type(b[1]) is int: V[x, y, z] = b[1] else: V[x, y, z] = b[1][0] if not useid: V[V > 0] = 1 return V, offsets def get_dense_array_from_sl(sparse_shape, sl, useid): center = [sl // 2, sl // 2, sl // 2] shape_dense, _ = np.asarray(densify(sparse_shape, [sl, sl, sl], center=center, useid=useid)) return shape_dense """ Geoscorer Specific Spatial Utils """ def combine_seg_context(seg, context, seg_shift, seg_mult=1): c_sl = context.size()[0] s_sl = seg.size()[0] completed_context = context.clone() # Calculate the region to copy over, sometimes the segment # falls outside the range of the context bounding box cs = [slice(s, min(s + s_sl, c_sl)) for s in seg_shift] ss = [slice(0, s_sl - max(0, s + s_sl - c_sl)) for s in seg_shift] completed_context[cs] = seg_mult * seg[ss] + context[cs] return completed_context def convert_sparse_context_seg_to_target_coord_shifted_seg(context_sparse, seg_sparse, c_sl, s_sl): shifted_seg_sparse, shift_vec = shift_sparse_voxel_to_origin(seg_sparse) target_coord = [-x for x in shift_vec] return target_coord, shift_vec, shifted_seg_sparse def convert_sparse_context_seg_target_to_example( context_sparse, shifted_seg_sparse, target_coord, c_sl, s_sl, useid, schem_sparse=None ): context_dense = get_dense_array_from_sl(context_sparse, c_sl, useid) seg_dense = get_dense_array_from_sl(shifted_seg_sparse, s_sl, useid) target_index = coord_to_index(target_coord, c_sl) example = { "context": torch.from_numpy(context_dense), "seg": torch.from_numpy(seg_dense), "target": torch.tensor([target_index]), } if schem_sparse: schem_dense = get_dense_array_from_sl(schem_sparse, c_sl, useid) example["schematic"] = torch.from_numpy(schem_dense) return example def convert_sparse_context_seg_to_example( context_sparse, seg_sparse, c_sl, s_sl, useid, schem_sparse=None ): context_dense = get_dense_array_from_sl(context_sparse, c_sl, useid) shifted_seg_sparse, shift_vec = shift_sparse_voxel_to_origin(seg_sparse) seg_dense = get_dense_array_from_sl(shifted_seg_sparse, s_sl, useid) target_coord = [-x for x in shift_vec] target_index = coord_to_index(target_coord, c_sl) example = { "context": torch.from_numpy(context_dense), "seg": torch.from_numpy(seg_dense), "target": torch.tensor([target_index]), } if schem_sparse: schem_dense = get_dense_array_from_sl(schem_sparse, c_sl, useid) example["schematic"] = torch.from_numpy(schem_dense) return example def add_ground_to_context(context_sparse, target_coord, flat=True, random_height=True): min_z = min([c[0][2] for c in context_sparse] + [target_coord[2].item()]) max_ground_depth = min_z if max_ground_depth == 0: return if random_height: ground_depth = random.randint(1, max_ground_depth) else: ground_depth = max_ground_depth pos_z = 63 shift = (-16, pos_z - 1 - ground_depth, -16) spec = { "players": [], "item_stacks": [], "mobs": [], "agent": {"pos": (0, pos_z, 0)}, "coord_shift": shift, } world_opts = Opt() world_opts.sl = 32 if flat or max_ground_depth == 1: spec["ground_generator"] = flat_ground_generator spec["ground_args"] = {"ground_depth": ground_depth} else: world_opts.avg_ground_height = max_ground_depth // 2 world_opts.hill_scale = max_ground_depth // 2 world = World(world_opts, spec) ground_blocks = [] for l, d in world.blocks_to_dict().items(): shifted_l = tuple([l[i] - shift[i] for i in range(3)]) xzy_to_xyz = [shifted_l[0], shifted_l[2], shifted_l[1]] ground_blocks.append((xzy_to_xyz, d)) context_sparse += ground_blocks
craftassist-master
python/craftassist/voxel_models/geoscorer/spatial_utils.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np import os import sys import random import torch import torch.utils.data CRAFTASSIST_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../") sys.path.append(CRAFTASSIST_DIR) import shapes import shape_helpers as sh import spatial_utils as su import directional_utils as du # subshapes by everything in a l1 or l2 ball from a point. # put pairs + triples of shapes in frame, sometimes one partially built PERM = torch.randperm(256) r = np.arange(0, 256) / 256 CMAP = np.stack((r, np.roll(r, 80), np.roll(r, 160))) MIN_SIZE = 4 def get_shape(name="random", max_size=20, opts=None): if name != "random" and name not in SHAPENAMES: print(">> Shape name {} not in dict, choosing randomly".format(name)) name = "random" if name == "random": name = random.choice(SHAPENAMES) while name in ("HOLLOW_RECTANGLE", "RECTANGULOID_FRAME", "HOLLOW_TRIANGLE"): name = random.choice(SHAPENAMES) if not opts: opts = SHAPE_HELPERS[name](max_size) opts["labelme"] = False return SHAPEFNS[name](**opts), opts, name def options_cube(max_size): return {"size": np.random.randint(MIN_SIZE, max_size + 1)} def options_hollow_cube(max_size): opts = {} opts["size"] = np.random.randint(MIN_SIZE, max_size + 1) if opts["size"] < 5: opts["thickness"] = 1 else: opts["thickness"] = np.random.randint(1, opts["size"] - 3) return opts def options_rectanguloid(max_size): return {"size": np.random.randint(MIN_SIZE, max_size + 1, size=3)} def options_hollow_rectanguloid(max_size): opts = {} opts["size"] = np.random.randint(MIN_SIZE, max_size + 1, size=3) ms = min(opts["size"]) opts["thickness"] = np.random.randint(1, ms - 3 + 1) return opts def options_sphere(max_size): min_r = MIN_SIZE // 2 max_r = max_size // 2 return {"radius": np.random.randint(min_r, max_r + 1)} def options_spherical_shell(max_size): min_r = MIN_SIZE // 2 max_r = max_size // 2 opts = {} if max_r <= 5: opts["radius"] = np.random.randint(min_r, max_r + 1) opts["thickness"] = 1 else: opts["radius"] = np.random.randint(5, max_r + 1) opts["thickness"] = np.random.randint(1, opts["radius"] - 3) return opts # TODO: can we make this work?? def options_square_pyramid(max_size): min_r = MIN_SIZE max_r = max_size opts = {} opts["radius"] = np.random.randint(min_r, max_r + 1) opts["slope"] = np.random.rand() * 0.4 + 0.8 fullheight = opts["radius"] * opts["slope"] opts["height"] = np.random.randint(0.5 * fullheight, fullheight) return opts def options_square(max_size): return {"size": np.random.randint(MIN_SIZE, max_size + 1), "orient": sh.orientation3()} def options_rectangle(max_size): return {"size": np.random.randint(MIN_SIZE, max_size + 1, size=2), "orient": sh.orientation3()} def options_circle(max_size): min_r = MIN_SIZE // 2 max_r = max_size // 2 return {"radius": np.random.randint(min_r, max_r + 1), "orient": sh.orientation3()} def options_disk(max_size): min_r = MIN_SIZE // 2 max_r = max_size // 2 return {"radius": np.random.randint(min_r, max_r + 1), "orient": sh.orientation3()} def options_triangle(max_size): return {"size": np.random.randint(MIN_SIZE, max_size + 1), "orient": sh.orientation3()} def options_dome(max_size): min_r = MIN_SIZE // 2 max_r = max_size // 2 return {"radius": np.random.randint(min_r, max_r + 1)} # TODO: can we make this work def options_arch(max_size): ms = max(MIN_SIZE + 1, max_size * 2 // 3) return {"size": np.random.randint(MIN_SIZE, ms), "distance": 2 * np.random.randint(2, 5) + 1} def options_ellipsoid(max_size): # these sizes are actually radiuses min_r = MIN_SIZE // 2 max_r = max_size // 2 return {"size": np.random.randint(min_r, max_r + 1, size=3)} def options_tower(max_size): return {"height": np.random.randint(3, max_size + 1), "base": np.random.randint(-4, 6)} def options_empty(max_size): return {} def empty(labelme=False): num = np.random.randint(1, 64) S = [] for i in range(num): pos = np.random.randint(0, 32, 3) bid = np.random.randint(0, 64) S.append((pos, bid)) return S, [] # eventually put ground blocks, add 'floating', 'hill', etc. # TODO hollow is separate tag SHAPENAMES = sh.SHAPE_NAMES SHAPENAMES.append("TOWER") # SHAPENAMES.append("empty") SHAPEFNS = sh.SHAPE_FNS SHAPEFNS["TOWER"] = shapes.tower SHAPEFNS["empty"] = empty SHAPE_HELPERS = { "CUBE": options_cube, "HOLLOW_CUBE": options_hollow_cube, "RECTANGULOID": options_rectanguloid, "HOLLOW_RECTANGULOID": options_hollow_rectanguloid, "SPHERE": options_sphere, "SPHERICAL_SHELL": options_spherical_shell, "PYRAMID": options_square_pyramid, "SQUARE": options_square, "RECTANGLE": options_rectangle, "CIRCLE": options_circle, "DISK": options_disk, "TRIANGLE": options_triangle, "DOME": options_dome, "ARCH": options_arch, "ELLIPSOID": options_ellipsoid, "TOWER": options_tower, "empty": options_empty, } ################################################################################ ################################################################################ def check_l1_dist(a, b, d): return abs(b[0] - a[0]) <= d[0] and abs(b[1] - a[1]) <= d[1] and abs(b[2] - a[2]) <= d[2] def get_rectanguloid_subsegment(S, c, max_chunk=10): bounds, segment_sizes = su.get_bounds_and_sizes(S) max_dists = [] for s in segment_sizes: max_side_len = min(s - 1, max_chunk) max_dist = int(max(max_side_len / 2, 1)) max_dists.append(random.randint(1, max_dist)) return [check_l1_dist(c, b[0], max_dists) for b in S] def get_random_shape_pt(shape, side_length=None): sl = side_length p = random.choice(shape)[0] if not side_length: return p while p[0] >= sl or p[1] >= sl or p[2] >= sl: p = random.choice(shape)[0] return p # Return values: # shape: array of ((3D coords), (block_id, ??)) # seg: array of bool for whether pos is in seg def get_shape_segment(max_chunk=10, side_length=None): shape, _, _ = get_shape() p = get_random_shape_pt(shape, side_length) seg = get_rectanguloid_subsegment(shape, p, max_chunk=max_chunk) s_tries = 0 while all(item for item in seg): p = get_random_shape_pt(shape, side_length) seg = get_rectanguloid_subsegment(shape, p, max_chunk=max_chunk) s_tries += 1 # Get new shape if s_tries > 3: shape, _, _ = get_shape() p = get_random_shape_pt(shape, side_length) seg = get_rectanguloid_subsegment(shape, p, max_chunk=max_chunk) s_tries = 0 return shape, seg def shift_vector_gen(side_length): shift_max = int(side_length / 2) for i in range(side_length): for j in range(side_length): for k in range(side_length): yield (i - shift_max, j - shift_max, k - shift_max) # Returns three tensors: 32x32x32 context, 8x8x8 segment, 1 target class SegmentContextShapeData(torch.utils.data.Dataset): def __init__(self, nexamples=100000, context_side_length=32, seg_side_length=8, useid=False): self.c_sl = context_side_length self.s_sl = seg_side_length self.num_examples = nexamples self.useid = useid self.examples = [] def _get_example(self): schem_sparse, seg = get_shape_segment(max_chunk=self.s_sl - 1, side_length=self.c_sl) seg_inds = set([i for i, use in enumerate(seg) if use]) seg_sparse = [schem_sparse[i] for i in seg_inds] context_sparse = [b for i, b in enumerate(schem_sparse) if i not in seg_inds] return su.convert_sparse_context_seg_to_example( context_sparse, seg_sparse, self.c_sl, self.s_sl, self.useid ) def __getitem__(self, index): return self._get_example() def __len__(self): return self.num_examples def get_two_shape_sparse(c_sl, s_sl): max_s_size = random.randint(MIN_SIZE, s_sl) max_c_size = c_sl - 2 * max_s_size c_shape_sparse, _, nc = get_shape("random", max_c_size) s_shape_sparse, _, ns = get_shape("random", max_s_size) # move segment to (0,0,0) and bound size s_bounds, s_sizes = su.get_bounds_and_sizes(s_shape_sparse) seg_sparse, _ = su.shift_sparse_voxel_to_origin(s_shape_sparse) seg_sparse = [b for b in seg_sparse if all([i < 8 for i in b[0]])] s_bounds, s_sizes = su.get_bounds_and_sizes(seg_sparse) # ensure context isn't too big c_bounds, c_sizes = su.get_bounds_and_sizes(c_shape_sparse) total_sizes = [c + s * 2 for c, s in zip(c_sizes, s_sizes)] for i, size in enumerate(total_sizes): if size > 32: remove = size - 32 remove_to = c_bounds[i * 2] + remove c_shape_sparse = [b for b in c_shape_sparse if b[0][i] >= remove_to] if len(c_shape_sparse) == 0: raise Exception("There should be something in c_shape_sparse {}".format(c_shape_sparse)) c_bounds, c_sizes = su.get_bounds_and_sizes(c_shape_sparse) # shift context center to space center c_center = [sl // 2 for sl in c_sizes] c_space_center = [c_sl // 2 for _ in range(3)] sv = [sc - c for c, sc in zip(c_center, c_space_center)] context_sparse = [ ((b[0][0] + sv[0], b[0][1] + sv[1], b[0][2] + sv[2]), b[1]) for b in c_shape_sparse ] return context_sparse, c_sizes, seg_sparse, s_sizes def get_shape_dir_target(viewer_pos, dir_vec, c_sizes, s_sizes, c_sl, max_shift=0): c_space_center = [c_sl // 2 for _ in range(3)] c_half = [cs // 2 for cs in c_sizes] c_pos = [c_space_center[i] - c_half[i] for i in range(3)] target_coord, dim, dr = du.get_rotated_context_to_seg_origin( viewer_pos, dir_vec, c_pos, c_sizes, s_sizes ) if any([t > c_sl - 1 or t < 0 for t in target_coord]): raise Exception("target coord:", target_coord) if max_shift > 0: # Shift by some precalculated amount and turn into a target shift_constraint = c_space_center[dim] - c_half[dim] - s_sizes[dim] - 2 shift_by = random.randint(0, min(max(shift_constraint, 0), max_shift)) target_coord[dim] += dr * shift_by target = su.coord_to_index(target_coord.tolist(), c_sl) return torch.tensor(target, dtype=torch.int) # Returns a 32x32x32 context, 8x8x8 segment, 6 viewer, 1 direction, 1 target class SegmentContextShapeDirData(torch.utils.data.Dataset): def __init__( self, nexamples=100000, context_side_length=32, seg_side_length=8, useid=False, max_shift=0, ground_type=None, ): self.c_sl = context_side_length self.s_sl = seg_side_length self.num_examples = nexamples self.useid = useid self.examples = [] self.max_shift = max_shift self.ground_type = ground_type def _get_example(self): # note that seg_sparse is not in target location context_sparse, c_sizes, seg_sparse, s_sizes = get_two_shape_sparse(self.c_sl, self.s_sl) viewer_pos, viewer_look = du.get_random_viewer_info(self.c_sl) dir_vec = du.random_dir_vec_tensor() target = get_shape_dir_target( viewer_pos, dir_vec, c_sizes, s_sizes, self.c_sl, self.max_shift ) if self.ground_type is not None: target_coord = su.index_to_coord(target, self.c_sl) su.add_ground_to_context( context_sparse, target_coord, flat=(self.ground_type == "flat") ) context = su.get_dense_array_from_sl(context_sparse, self.c_sl, self.useid) seg = su.get_dense_array_from_sl(seg_sparse, self.s_sl, self.useid) return { "context": torch.from_numpy(context), "seg": torch.from_numpy(seg), "target": torch.tensor([target]), "viewer_pos": viewer_pos, "dir_vec": dir_vec, } def __getitem__(self, index): return self._get_example() def __len__(self): return self.num_examples if __name__ == "__main__": from visualization_utils import GeoscorerDatasetVisualizer dataset = SegmentContextShapeDirData(nexamples=3, ground_type="hilly") vis = GeoscorerDatasetVisualizer(dataset) for n in range(len(dataset)): vis.visualize()
craftassist-master
python/craftassist/voxel_models/geoscorer/shape_dataset.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np import torch import random def get_viewer_look(c_sl): return torch.tensor([c_sl // 2 for _ in range(3)]) def get_random_viewer_info(sl): viewer_pos = torch.tensor(np.random.randint(0, sl, 3)) viewer_look = get_viewer_look(sl) if viewer_pos.eq(viewer_look).sum() == viewer_pos.size(0): if viewer_pos[0] < sl + 1: viewer_pos[0] += 1 else: viewer_pos[0] -= 1 return viewer_pos, viewer_look def get_vector(start, end): return end - start def dim_to_vec(dim): return [(1 if i == dim else 0) for i in range(3)] def dir_vec_to_dim(dir_vec): for i in range(3): if dir_vec[i] == 1: return i raise Exception("dir vec has no dimension") def dr_to_vec(dr): return [1, 0] if dr == 1 else [0, 1] def dir_vec_to_dr(dir_vec): if dir_vec[3] == 1: return 1 elif dir_vec[4] == 1: return -1 else: raise Exception("dir vec has no direction") def dim_dir_to_dir_tensor(dim, dr): dim_l = dim_to_vec(dim) dir_l = dr_to_vec(dr) return torch.tensor(dim_l + dir_l, dtype=torch.long) def dir_vec_to_dim_dir(dir_vec): dim = dir_vec_to_dim(dir_vec) dr = dir_vec_to_dr(dir_vec) return dim, dr def random_dir_vec_tensor(): dim = random.choice([0, 1, 2]) dr = random.choice([-1, 1]) return dim_dir_to_dir_tensor(dim, dr) def normalize(batched_vector): vec = batched_vector.double() norm = torch.norm(vec, dim=1) # Set norm to 1 if it's 0 norm = norm + norm.eq(0).double() expanded_norm = norm.unsqueeze(1).expand(-1, vec.size()[1]) return torch.div(vec, expanded_norm) def get_rotation_matrix(viewer_pos, viewer_look): # VP, VL: N x 3, VP_to_VL: N x 3 vp_to_vl = get_vector(viewer_pos, viewer_look)[:, :2] nlook_vec = normalize(vp_to_vl) nly = nlook_vec[:, 1] # Nlx necessary to correct for the range of acrcos nlx = nlook_vec[:, 0] nlx = nlx.gt(0).double() - nlx.lt(0).double() - nlx.eq(0).double() # Take care of nans created by raising 0 to a power # and then masking the sin theta to 0 as intended base = 1 - nly * nly nan_mask = torch.isnan(torch.pow(base, 0.5)).double() base = base + nan_mask sin_theta = nlx * nan_mask.eq(0).double() * torch.pow(base, 0.5) nly = nly.unsqueeze(1) sin_theta = sin_theta.unsqueeze(1) rm_pt1 = torch.cat([nly, sin_theta], 1).unsqueeze(1) rm_pt2 = torch.cat([-sin_theta, nly], 1).unsqueeze(1) rm = torch.cat([rm_pt1, rm_pt2], 1) return rm def rotate_x_y(coord, rotation_matrix): return torch.mm(coord.unsqueeze(0), rotation_matrix).squeeze(0) def float_equals(a, b, epsilon): return True if abs(a - b) < epsilon else False def get_argmax_list(vals, epsilon=0.0001, minlist=False, maxlen=None): mult = -1 if minlist else 1 max_ind = [] for i, v in enumerate(vals): if not max_ind or float_equals(max_ind[0][1], v, epsilon): if maxlen and len(max_ind) == maxlen: continue max_ind.append((i, v)) elif mult * (v - max_ind[0][1]) > 0: max_ind = [(i, v)] return max_ind def get_firstmax(vals, epsilon=0.0001, minlist=False): return get_argmax_list(vals, epsilon, minlist, 1)[0] # N -> batch size in training # D -> num target coord per element # Viewer pos, viewer_look are N x 3 tensors # Batched target coords is a N x D x 3 tensor # Output is a N x D x 3 tensor def get_xyz_viewer_look_coords_batched(viewer_pos, viewer_look, batched_target_coords): # First verify the sizing and unsqueeze if necessary btc_sizes = batched_target_coords.size() vp_sizes = viewer_pos.size() vl_sizes = viewer_look.size() if len(btc_sizes) > 3 or len(vp_sizes) > 2 or len(vl_sizes) > 2: raise Exception("One input has too many dimensions") if btc_sizes[-1] != 3 or vp_sizes[-1] != 3 or vl_sizes[-1] != 3: raise Exception("The last dimension of all inputs should be size 3") if len(btc_sizes) < 3: for i in range(3 - len(btc_sizes)): batched_target_coords = batched_target_coords.unsqueeze(0) if len(vp_sizes) == 1: viewer_pos = viewer_pos.unsqueeze(0) if len(vl_sizes) == 1: viewer_look = viewer_look.unsqueeze(0) n = batched_target_coords.size()[0] d = batched_target_coords.size()[1] # Handle xy and z separately # XY = N X D x 2 xy = batched_target_coords[:, :, 0:2].double() # Z = N x D x 1 z = batched_target_coords[:, :, 2].unsqueeze(2).double() ## XY # Shift such that viewer pos is the origin # VPXY, VLXY: N x 2 vpxy = viewer_pos.double()[:, 0:2] vlxy = viewer_look.double()[:, 0:2] vpxy_to_vlxy = vlxy - vpxy # VPXY to XY: N x D x 2 vpxy_to_xy = xy - vpxy.unsqueeze(1).expand(n, d, -1) # Rotate them around the viewer position such that a normalized # viewer look vector would be (0, 1) # Rotation_matrix: N x 2 x 2 rotation_matrix = get_rotation_matrix(viewer_pos, viewer_look) # N x 1 x 2 mm N x 2 x 2 ==> N x 1 x 2 ==> N x 2 r_vpxy_to_vlxy = torch.bmm(vpxy_to_vlxy.unsqueeze(1), rotation_matrix).unsqueeze(1) # RM: N x 2 x 2 ==> N x D x 2 x 2 expanded_rm = rotation_matrix.unsqueeze(1).expand(n, d, 2, 2).contiguous().view(-1, 2, 2) # N x D x 2 ==> N*D x 1 x 2 mm N*D x 2 x 2 ==> N*D x 1 x 2 ==> N x D x 2 reshape_vpxy_to_xy = vpxy_to_xy.contiguous().view(-1, 1, 2) r_vpxy_to_xy = torch.bmm(reshape_vpxy_to_xy, expanded_rm).contiguous().view(n, d, 2) # N x D x 2 # Get the xy position in this rotated coord system with rvl as the origin rvl_to_rxy = r_vpxy_to_xy - r_vpxy_to_vlxy.squeeze(1).expand(n, d, 2) ## Z # VLZ = N x 1 vlz = viewer_look.double()[:, 2] # Z = N x D x 1 diffz = z - vlz.view(-1, 1, 1).expand(n, d, -1) ## Combine # rvl_to_rxy: N x D x 2, diffz: N x D x 1 new_xyz = torch.cat([rvl_to_rxy, diffz], 2) return new_xyz def get_dir_dist(viewer_pos, viewer_look, batched_target_coords): if len(batched_target_coords.size()) == 1: batched_target_coords = batched_target_coords.unsqueeze(0) xyz = get_xyz_viewer_look_coords_batched(viewer_pos, viewer_look, batched_target_coords) dist = xyz.abs() direction = xyz.gt(0).double() - xyz.lt(0).double() return direction, dist def get_sampled_direction_vec(viewer_pos, viewer_look, target_coord): directions, dists = get_dir_dist(viewer_pos, viewer_look, target_coord) dists = dists.squeeze() directions = directions.squeeze() ndists = dists / sum(dists) dim = np.random.choice(3, p=ndists) direction = directions[dim].item() return dim_dir_to_dir_tensor(dim, direction) def get_max_direction_vec(viewer_pos, viewer_look, target_coord): directions, dists = get_dir_dist(viewer_pos, viewer_look, target_coord) dists = dists.squeeze() directions = directions.squeeze() ndists = dists / sum(dists) dim = np.argmax(ndists) direction = directions[dim].item() return dim_dir_to_dir_tensor(dim, direction) def convert_origin_to_center(origin, sizes): half = [s // 2 for s in sizes] return [origin[i] + half[i] for i in range(3)] def convert_center_to_origin(center, sizes): half = [s // 2 for s in sizes] return [center[i] - half[i] for i in range(3)] def get_rotated_context_to_seg_origin(viewer_pos, dir_vec, c_pos, c_sizes, s_sizes): c_half = [sl // 2 for sl in c_sizes] s_half = [sl // 2 for sl in s_sizes] c_center = [c_pos[i] + c_half[i] for i in range(3)] dim, dr = dir_vec_to_dim_dir(dir_vec) # These account for the sl // 2 discretization, apply in positive direction # TODO: there must be a way to only use one of these c_offset_even = [1 if c % 2 == 0 else 0 for c in c_sizes] c_offset_odd = [c % 2 for c in c_sizes] # For above below, directly attach in that dir if dim == 2: touch_p = [i for i in c_center] if dr == -1: touch_p[2] -= c_half[2] target_coord = [ touch_p[0] - s_half[0], touch_p[1] - s_half[1], touch_p[2] - s_sizes[2], ] else: touch_p[2] += c_half[2] + c_offset_odd[2] target_coord = [touch_p[0] - s_half[0], touch_p[1] - s_half[1], touch_p[2]] return torch.tensor(target_coord, dtype=torch.int), dim, dr # Find the 4 possible positions c_shift = [c_half[i] + 1 for i in range(2)] possible_touch_points = [] possible_targets = [] shift_dims = [] shift_dirs = [] for sdim in [0, 1]: for sdr in [1, -1]: shift_dims.append(sdim) shift_dirs.append(sdr) tp = [p for p in c_center] tp[sdim] += sdr * c_shift[sdim] if sdr > 0: tp[sdim] -= c_offset_even[sdim] possible_touch_points.append(torch.tensor(tp, dtype=torch.float)) t = [p for p in tp] for d in range(3): if d == sdim: if sdr < 0: t[d] -= s_sizes[d] - 1 else: t[d] -= s_half[d] possible_targets.append(torch.tensor(t, dtype=torch.float)) # Chooose the best touch point based on rotation c_center_t = torch.tensor(c_center, dtype=torch.float) c_to_ts = [get_vector(c_center_t[:2], t[:2]) for t in possible_touch_points] rotation_matrix = get_rotation_matrix( viewer_pos.unsqueeze(0), c_center_t.unsqueeze(0) ).squeeze(0) c_to_t_rotated = [rotate_x_y(c_to_t.double(), rotation_matrix) for c_to_t in c_to_ts] vals = [v[dim] for v in c_to_t_rotated] if dr == 1: max_ind, dist = get_firstmax(vals) else: max_ind, dist = get_firstmax(vals, minlist=True) target_coord = possible_targets[max_ind] return target_coord.int(), shift_dims[max_ind], shift_dirs[max_ind]
craftassist-master
python/craftassist/voxel_models/geoscorer/directional_utils.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np import random import torch import torch.utils.data import spatial_utils as su import directional_utils as du def get_glue_cubes_direction_target_coord(viewer_pos, dir_vec, cube_size, origin_cont, c_sl): # Note: c_sizes and s_sizes are the same for this dataset c_sizes = [cube_size for _ in range(3)] target, _, _ = du.get_rotated_context_to_seg_origin( viewer_pos, dir_vec, origin_cont, c_sizes, c_sizes ) return target def get_glue_cubes_cont_size_loc(c_sl, s_sl, fixed_size=None, center=False): cube_size = fixed_size if not cube_size: cube_size = np.random.randint(1, s_sl + 1) # +1 for inclusive if center: origin_cont = [c_sl // 2 - cube_size // 2 for i in range(3)] else: possible_range = [[cube_size, c_sl - 2 * cube_size] for i in range(3)] origin_cont = [np.random.randint(*possible_range[i]) for i in range(3)] return cube_size, origin_cont def get_sparse_cube_context_seg(cube_size, origin_cont, origin_seg, block_type=None): context_sparse = [] seg_sparse = [] cube_type = block_type if block_type else np.random.randint(1, 256) for i in range(cube_size): for j in range(cube_size): for k in range(cube_size): offset = (i, j, k) context_sparse.append( (tuple([sum(x) for x in zip(offset, origin_cont)]), (cube_type, 0)) ) seg_sparse.append( (tuple([sum(x) for x in zip(offset, origin_seg)]), (cube_type, 0)) ) return context_sparse, seg_sparse def glue_cubes(c_sl, s_sl, dim, direction): if dim < 0 or dim > 2 or direction not in [-1, 1]: raise Exception("Invalid dimension {} or direction {}".format(dim, direction)) cube_size, origin_cont = get_glue_cubes_cont_size_loc(c_sl, s_sl) origin_seg = [i for i in origin_cont] origin_seg[dim] = origin_seg[dim] + direction * cube_size context_sparse, seg_sparse = get_sparse_cube_context_seg(cube_size, origin_cont, origin_seg) return context_sparse, seg_sparse def directional_glue_cubes(c_sl, s_sl, fixed_cube_size=None, fixed_center=False): dir_vec = du.random_dir_vec_tensor() viewer_pos, viewer_look = du.get_random_viewer_info(c_sl) cube_size, origin_cont = get_glue_cubes_cont_size_loc( c_sl, s_sl, fixed_size=fixed_cube_size, center=fixed_center ) target_coord = get_glue_cubes_direction_target_coord( viewer_pos, dir_vec, cube_size, origin_cont, c_sl ) context_sparse, seg_sparse = get_sparse_cube_context_seg( cube_size, origin_cont, target_coord.tolist() ) return { "context_sparse": context_sparse, "seg_sparse": seg_sparse, "target_coord": target_coord, "viewer_pos": viewer_pos, "dir_vec": dir_vec, } # Returns three tensors: 32x32x32 context, 8x8x8 segment, 1 target class SegmentContextGlueCubesData(torch.utils.data.Dataset): def __init__( self, nexamples=100000, context_side_length=32, seg_side_length=8, useid=False, type_name="random", use_direction=False, fixed_cube_size=None, fixed_center=False, ground_type=None, ): self.c_sl = context_side_length self.s_sl = seg_side_length self.num_examples = nexamples self.useid = useid self.examples = [] self.use_direction = use_direction self.fixed_cube_size = fixed_cube_size self.fixed_center = fixed_center self.ground_type = ground_type def _get_example(self): if not self.use_direction: dim = random.choice([0, 1, 2]) dr = random.choice([-1, 1]) context_sparse, seg_sparse = glue_cubes(self.c_sl, self.s_sl, dim, dr) return su.convert_sparse_context_seg_to_example( context_sparse, seg_sparse, self.c_sl, self.s_sl, self.useid ) else: dgc = directional_glue_cubes( self.c_sl, self.s_sl, self.fixed_cube_size, self.fixed_center ) if self.ground_type is not None: flat = self.ground_type == "flat" su.add_ground_to_context(dgc["context_sparse"], dgc["target_coord"], flat=flat) example = su.convert_sparse_context_seg_to_example( dgc["context_sparse"], dgc["seg_sparse"], self.c_sl, self.s_sl, self.useid ) example["target"] = su.coord_to_index(dgc["target_coord"], self.c_sl) example["target"] = example["target"].unsqueeze(0) example["viewer_pos"] = dgc["viewer_pos"] example["dir_vec"] = dgc["dir_vec"] return example def __getitem__(self, index): return self._get_example() def __len__(self): return self.num_examples if __name__ == "__main__": import argparse from visualization_utils import GeoscorerDatasetVisualizer parser = argparse.ArgumentParser() parser.add_argument( "--use_direction", action="store_true", help="use direction in example creation" ) parser.add_argument( "--fixed_center", action="store_true", help="fix the center of the context cube" ) parser.add_argument( "--fixed_cube_size", type=int, default=None, help="fix the size of the cubes" ) parser.add_argument( "--ground_type", type=str, default=None, help="ground type to use (None|flat|hilly)" ) opts = parser.parse_args() dataset = SegmentContextGlueCubesData( nexamples=3, use_direction=opts.use_direction, fixed_center=opts.fixed_center, fixed_cube_size=opts.fixed_cube_size, useid=True, ground_type=opts.ground_type, ) vis = GeoscorerDatasetVisualizer(dataset) for n in range(len(dataset)): vis.visualize()
craftassist-master
python/craftassist/voxel_models/geoscorer/autogen_dataset.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np import torch import pickle import torch.nn as nn from data_loaders import make_example_from_raw class SemSegNet(nn.Module): def __init__(self, opts, classes=None): super(SemSegNet, self).__init__() if opts.load: if opts.load_model != "": self.load(opts.load_model) else: raise ("loading from file specified but no load_filepath specified") if opts.vocab_path != "": self.load_vocab(opts.vocab_path) else: raise ("loading from file specified but no vocab_path specified") else: self.opts = opts self._build() self.classes = classes def _build(self): opts = self.opts try: embedding_dim = opts.embedding_dim except: embedding_dim = 8 try: num_words = opts.num_words except: num_words = 3 try: num_layers = opts.num_layers except: num_layers = 4 # 32x32x32 input try: hidden_dim = opts.hidden_dim except: hidden_dim = 64 self.embedding_dim = embedding_dim self.embedding = nn.Embedding(num_words, embedding_dim) self.layers = nn.ModuleList() self.num_layers = num_layers self.layers.append( nn.Sequential( nn.Conv3d(embedding_dim, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) for i in range(num_layers - 1): self.layers.append( nn.Sequential( nn.Conv3d(hidden_dim, hidden_dim, kernel_size=5, padding=2), nn.BatchNorm3d(hidden_dim), nn.ReLU(inplace=True), ) ) self.out = nn.Conv3d(hidden_dim, opts.num_classes, kernel_size=1) self.lsm = nn.LogSoftmax(dim=1) def forward(self, x): # FIXME when pytorch is ready for this, embedding # backwards is soooooo slow # z = self.embedding(x) szs = list(x.size()) x = x.view(-1) z = self.embedding.weight.index_select(0, x) szs.append(self.embedding_dim) z = z.view(torch.Size(szs)) z = z.permute(0, 4, 1, 2, 3).contiguous() for i in range(self.num_layers): z = self.layers[i](z) return self.lsm(self.out(z)) def save(self, filepath): self.cpu() sds = {} sds["opts"] = self.opts sds["classes"] = self.classes sds["state_dict"] = self.state_dict() torch.save(sds, filepath) if self.opts.cuda: self.cuda() def load_vocab(self, vocab_path): with open(vocab_path, "rb") as file: self.vocab = pickle.load(file) print("Loaded vocab") def load(self, filepath): sds = torch.load(filepath) self.opts = sds["opts"] print("loading from file, using opts") print(self.opts) self._build() self.load_state_dict(sds["state_dict"]) self.zero_grad() self.classes = sds["classes"] class Opt: pass class SemSegWrapper: def __init__(self, model, vocab_path, threshold=-1.0, blocks_only=True, cuda=False): if type(model) is str: opts = Opt() opts.load = True opts.load_model = model opts.vocab_path = vocab_path model = SemSegNet(opts) self.model = model self.cuda = cuda if self.cuda: model.cuda() else: model.cpu() self.classes = model.classes # threshold for relevance; unused rn self.threshold = threshold # if true only label non-air blocks self.blocks_only = blocks_only # this is used by the semseg_process i2n = self.classes["idx2name"] self.tags = [(c, self.classes["name2count"][c]) for c in i2n] assert self.classes["name2idx"]["none"] == 0 @torch.no_grad() def segment_object(self, blocks): self.model.eval() if self.model.vocab: vocab = self.model.vocab vocab_blocks = np.zeros(blocks.shape[:-1]) for x in range(blocks.shape[0]): for y in range(blocks.shape[1]): for z in range(blocks.shape[2]): block_id = blocks[x,y,z,0] meta_id = blocks[x,y,z,1] id_tuple = (block_id, meta_id) # First see if that specific block-meta pair is in the vocab. if id_tuple in vocab: id_ = vocab[id_tuple] # Else, check if the same general material (block-id) exists. elif (block_id, 0) in vocab: id_ = vocab[(block_id, 0)] # If not, the network has no clue what it is, ignore it (treat as air). else: id_ = vocab[(0,0)] vocab_blocks[x,y,z] = id_ else: vocab_blocks = blocks[:, :, :, 0] blocks = torch.from_numpy(vocab_blocks) blocks, _, o = make_example_from_raw(blocks) blocks = blocks.unsqueeze(0) if self.cuda: blocks = blocks.cuda() y = self.model(blocks) _, mids = y.squeeze().max(0) locs = mids.nonzero() locs = locs.tolist() if self.blocks_only: return { tuple(np.subtract(l, o)): mids[l[0], l[1], l[2]].item() for l in locs if blocks[0, l[0], l[1], l[2]] > 0 } else: return {tuple(ll for ll in l): mids[l[0], l[1], l[2]].item() for l in locs} if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( "--hidden_dim", type=int, default=128, help="size of hidden dim in fc layer" ) parser.add_argument("--embedding_dim", type=int, default=16, help="size of blockid embedding") parser.add_argument("--num_words", type=int, default=256, help="number of blocks") parser.add_argument("--num_classes", type=int, default=20, help="number of blocks") args = parser.parse_args() N = SemSegNet(args)
craftassist-master
python/craftassist/voxel_models/semantic_segmentation/semseg_models.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import pickle import numpy as np import torch from torch.utils import data as tds from copy import deepcopy def underdirt(schematic, labels=None, max_shift=0, nothing_id=0): # todo fancier dirt! # FIXME!!!! label as ground where appropriate shift = torch.randint(max_shift + 1, (1,)).item() if shift > 0: new_schematic = torch.LongTensor(schematic.size()) new_schematic[:, shift:, :] = schematic[:, :-shift, :] new_schematic[:, :shift, :] = 3 new_labels = None if labels is not None: new_labels = torch.LongTensor(labels.size()) new_labels[:, shift:, :] = labels[:, :-shift, :] new_labels[:, :shift, :] = nothing_id return new_schematic, new_labels else: return schematic, labels def flip_rotate(c, l=None, idx=None): """ Randomly transform the cube for more data. The transformation is chosen from: 0. original 1. x-z plane rotation 90 2. x-z plane rotation 180 3. x-z plane rotation 270 4. x-axis flip 5. z-axis flip """ idx = np.random.choice(range(6)) if (idx is None) else idx l_ = l if idx == 0: c_ = c l_ = l elif idx >= 1 and idx <= 3: # rotate npc = c.numpy() npc = np.rot90(npc, idx, axes=(0, 2)) # rotate on the x-z plane c_ = torch.from_numpy(npc.copy()) if l is not None: npl = l.numpy() npl = np.rot90(npl, idx, axes=(0, 2)) # rotate on the x-z plane l_ = torch.from_numpy(npl.copy()) else: # flip npc = c.numpy() npc = np.flip(npc, axis=(idx - 4) * 2) # 0 or 2 c_ = torch.from_numpy(npc.copy()) if l is not None: npl = l.numpy() npl = np.flip(npl, axis=(idx - 4) * 2) # 0 or 2 l_ = torch.from_numpy(npl.copy()) return c_, l_, idx def pad_to_sidelength(schematic, labels=None, nothing_id=0, sidelength=32): szs = list(schematic.size()) szs = np.add(szs, -sidelength) pad = [] # this is all backwards bc pytorch pad semantics :( for s in szs: if s >= 0: pad.append(0) else: pad.append(-s) pad.append(0) schematic = torch.nn.functional.pad(schematic, pad[::-1]) if labels is not None: labels = torch.nn.functional.pad(labels, pad[::-1], value=nothing_id) return schematic, labels # TODO cut outliers # TODO simplify def fit_in_sidelength(schematic, labels=None, nothing_id=0, sl=32, max_shift=0): schematic, labels = pad_to_sidelength( schematic, labels=labels, nothing_id=nothing_id, sidelength=sl ) nz = schematic.nonzero() m, _ = nz.median(0) min_y, _ = nz.min(0) min_y = min_y[1] xshift = max(torch.randint(-max_shift, max_shift + 1, (1,)).item() - m[0].item() + sl // 2, 0) zshift = max(torch.randint(-max_shift, max_shift + 1, (1,)).item() - m[2].item() + sl // 2, 0) new_schematic = torch.LongTensor(sl, sl, sl).fill_(1) new_schematic[xshift:, : sl - min_y, zshift:] = schematic[ : sl - xshift, min_y:sl, : sl - zshift ] new_labels = None if labels is not None: new_labels = torch.LongTensor(sl, sl, sl).fill_(nothing_id) new_labels[xshift:, : sl - min_y, zshift:] = labels[: sl - xshift, min_y:sl, : sl - zshift] return new_schematic, new_labels, (xshift, -min_y, zshift) def make_example_from_raw(schematic, labels=None, augment={}, nothing_id=0, sl=32): max_shift = augment.get("max_shift", 0) s, l, o = fit_in_sidelength( schematic, labels=labels, nothing_id=nothing_id, max_shift=max_shift ) if len(augment) > 0: if augment.get("flip_rotate", False): s, l, _ = flip_rotate(s, l=l) m = augment.get("underdirt") if m is not None: # really should fix offset here.....TODO s, l = underdirt(s, labels=l, max_shift=m, nothing_id=nothing_id) s[s == 0] = 1 s -= 1 return s, l, o def swallow_classes(classes, predator, prey_classes, class_map): new_classes = deepcopy(classes) apex = class_map.get(predator, predator) for prey in prey_classes: class_map[prey] = apex new_classes["name2count"][predator] += new_classes["name2count"][prey] del new_classes["name2count"][prey] # if prey in new_classes["name2count"]: # new_classes["name2count"][predator] += new_classes["name2count"][prey] # del new_classes["name2count"][prey] for prey in prey_classes: for s, t in class_map.items(): if t == prey: class_map[s] = apex return new_classes, class_map def organize_classes(classes, min_occurence): class_map = {} new_classes = deepcopy(classes) for cname in classes["name2count"]: # hacky, should stem this properly if cname[-1] == "s" and classes["name2count"].get(cname[:-1]) is not None: new_classes, class_map = swallow_classes(new_classes, cname[:-1], [cname], class_map) small_classes = [] for cname, count in new_classes["name2count"].items(): if count < min_occurence: small_classes.append(cname) new_classes, class_map = swallow_classes(new_classes, "none", small_classes, class_map) new_classes, class_map = swallow_classes(new_classes, "none", ["nothing"], class_map) counts = sorted(list(new_classes["name2count"].items()), key=lambda x: x[1], reverse=True) new_classes["name2idx"]["none"] = 0 new_classes["idx2name"].append("none") for i in range(len(counts)): cname = counts[i][0] if cname != "none": new_classes["name2idx"][cname] = i new_classes["idx2name"].append(cname) return new_classes, class_map def reconcile_classes(classes, to_match): new_to_match = deepcopy(to_match) new_classes = deepcopy(classes) class_map = {} existing_class_names = set(new_to_match["name2idx"].keys()) new_class_names = set(new_classes["name2count"].keys()) to_merge = [n for n in new_class_names if n not in existing_class_names] new_classes, class_map = swallow_classes(new_classes, "none", to_merge, class_map) for key in ["name2idx", "idx2name"]: new_classes[key] = new_to_match[key] return new_classes, class_map class SemSegData(tds.Dataset): def __init__( self, data_path, nexamples=-1, sidelength=32, classes_to_match=None, augment={}, min_class_occurence=250, useid=True, ): self.sidelength = sidelength self.useid = useid self.examples = [] self.inst_data = pickle.load(open(data_path, "rb")) self.nexamples = nexamples self.augment = augment if self.nexamples < 0: self.nexamples = len(self.inst_data) else: self.nexamples = min(len(self.inst_data), self.nexamples) classes = {"name2idx": {}, "idx2name": [], "name2count": {}} for i in range(len(self.inst_data)): for cname in self.inst_data[i][2]: if classes["name2count"].get(cname) is None: classes["name2count"][cname] = 1 else: classes["name2count"][cname] += 1 if classes["name2count"].get("none") is None: classes["name2count"]["none"] = 1 if classes_to_match is None: merged_classes, class_map = organize_classes(classes, min_class_occurence) else: merged_classes, class_map = reconcile_classes(classes, classes_to_match) for cname in merged_classes["name2idx"]: class_map[cname] = cname self.classes = merged_classes # this should be 0... self.nothing_id = self.classes["name2idx"]["none"] c = self.classes["name2idx"] for i in range(len(self.inst_data)): self.inst_data[i] = list(self.inst_data[i]) x = self.inst_data[i] x[0] = torch.from_numpy(x[0]).long() x[1] = torch.from_numpy(x[1]).long() x[1].apply_(lambda z: c[class_map[x[2][z]]] if z > 0 else self.nothing_id) def get_classes(self): return self.classes def set_classes(self, classes): self.classes = classes def __getitem__(self, index): x = self.inst_data[index] s, l, _ = make_example_from_raw( x[0], labels=x[1], nothing_id=self.nothing_id, sl=self.sidelength, augment=self.augment ) return s, l def __len__(self): return self.nexamples
craftassist-master
python/craftassist/voxel_models/semantic_segmentation/data_loaders.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import os import argparse import sys from tqdm import tqdm from data_loaders import SemSegData import torch import torch.nn as nn from torch.utils.data import DataLoader import torch.optim as optim import semseg_models as models from pathlib import Path ################################################## # for debugging ################################################## def print_slices(model, H, r, c, n, data): x, y = data[n] x = x.unsqueeze(0).cuda() yhat = model(x).squeeze() print(x[0, c - r : c + r, H, c - r : c + r].cpu()) print(y[c - r : c + r, H, c - r : c + r]) _, mm = yhat.max(0) print(mm[c - r : c + r, H, c - r : c + r].cpu()) def blocks_from_data(data, n): x, y = data[n] ids = x.nonzero() idl = ids.tolist() blocks = [((b[0], b[1], b[2]), (x[b[0], b[1], b[2]].item() + 1, 0)) for b in idl] return x, y, blocks def semseg_output(S, n, data): x, y, blocks = blocks_from_data(data, n) class_stats = {} for i in range(29): class_stats[train_data.classes["idx2name"][i]] = len((y == i).nonzero()) # print(train_data.classes['idx2name'][i], len((y==i).nonzero())) a = S._watch_single_object(blocks) return class_stats, a ################################################## # training loop ################################################## def get_loss(x, y, yhat, loss): # loss is expected to not reduce preloss = loss(yhat, y) mask = torch.zeros_like(y).float() u = x.float() + x.float().uniform_(0, 1) idx = u.view(-1).gt((1 - args.sample_empty_prob)).nonzero().squeeze() mask.view(-1)[idx] = 1 M = float(idx.size(0)) # FIXME: eventually need to intersect with "none" tags; want to push loss on labeled empty voxels preloss *= mask l = preloss.sum() / M return l def get_accuracy(y, yhat): vals, pred = torch.max(yhat, 1) correct_num = torch.sum(pred == y) total_num = float(torch.numel(y)) acc = correct_num / total_num return acc def validate(model: nn.Module, validation_data: DataLoader, loss, args): losses = [] accs = [] model.eval() with torch.no_grad(): for x, y in tqdm(validation_data): if args.cuda: x = x.cuda() y = y.cuda() yhat = model(x) l = get_loss(x, y, yhat, loss) a = get_accuracy(y, yhat) accs.append(a.item()) losses.append(l.item()) return losses, accs def train_epoch(model, DL, loss, optimizer, args): model.train() losses = [] accs = [] for b in tqdm(DL): x = b[0] y = b[1] if args.cuda: x = x.cuda() y = y.cuda() model.train() yhat = model(x) l = get_loss(x, y, yhat, loss) a = get_accuracy(y, yhat) losses.append(l.item()) accs.append(a.item()) l.backward() optimizer.step() return losses, accs if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--debug", type=int, default=-1, help="no shuffle, keep only debug num examples" ) parser.add_argument("--num_labels", type=int, default=50, help="How many top labels to use") parser.add_argument("--num_epochs", type=int, default=50, help="training epochs") parser.add_argument("--augment", default="none", help="none or maxshift:K_underdirt:J") parser.add_argument("--cuda", action="store_true", help="use cuda") parser.add_argument("--gpu_id", type=int, default=0, help="which gpu to use") parser.add_argument("--batchsize", type=int, default=32, help="batch size") parser.add_argument("--data_dir", default="") parser.add_argument("--save_model", default="", help="where to save model (nowhere if blank)") parser.add_argument( "--load_model", default="", help="from where to load model (nowhere if blank)" ) parser.add_argument("--save_logs", default="/dev/null", help="where to save logs") parser.add_argument( "--hidden_dim", type=int, default=128, help="size of hidden dim in fc layer" ) parser.add_argument("--embedding_dim", type=int, default=4, help="size of blockid embedding") parser.add_argument("--lr", type=float, default=0.01, help="step size for net") parser.add_argument( "--sample_empty_prob", type=float, default=0.01, help="prob of taking gradients on empty locations", ) parser.add_argument("--num_words", default=1024, type=int, help="number of rows in embedding table") parser.add_argument("--ndonkeys", type=int, default=4, help="workers in dataloader") args = parser.parse_args() if args.save_model == "": print("WARNING: No save path specified, model will not be saved.") this_dir = os.path.dirname(os.path.realpath(__file__)) parent_dir = os.path.join(this_dir, "../") sys.path.append(parent_dir) print("loading train data") aug = {} if args.augment != "none": a = args.augment.split("_") aug = {t.split(":")[0]: int(t.split(":")[1]) for t in a} aug["flip_rotate"] = True if args.debug > 0 and len(aug) > 0: print("warning debug and augmentation together?") data_dir = Path(args.data_dir) train_data = SemSegData(data_dir / "training_data.pkl", nexamples=args.debug, augment=aug) print("loaded train") valid_data = SemSegData( data_dir / "validation_data.pkl", classes_to_match=train_data.classes, ) print("loaded valid") shuffle = True if args.debug > 0: shuffle = False print("making dataloader") def make_dataloader(ds): return torch.utils.data.DataLoader( ds, batch_size=args.batchsize, shuffle=shuffle, pin_memory=True, drop_last=True, num_workers=args.ndonkeys, ) rDL = make_dataloader(train_data) valid_dl = make_dataloader(valid_data) args.num_classes = len(train_data.classes["idx2name"]) print("making model") args.load = False if args.load_model != "": args.load = True model = models.SemSegNet(args, classes=train_data.classes) nll = nn.NLLLoss(reduction="none") if args.cuda: model.cuda() nll.cuda() optimizer = optim.Adagrad(model.parameters(), lr=args.lr) print("training") for m in tqdm(range(args.num_epochs)): train_losses, train_accs = train_epoch(model, rDL, nll, optimizer, args) valid_losses, valid_accs = validate(model, valid_dl, nll, args) print(f"\nEpoch {m}:") print(f"Train loss: {sum(train_losses) / len(train_losses)}") print(f"Valid loss: {sum(valid_losses) / len(valid_losses)}") print(f"Train acc: {sum(train_accs) / len(train_accs)}") print(f"Valid acc: {sum(valid_accs) / len(valid_accs)}") if args.save_model != "": model.save(args.save_model)
craftassist-master
python/craftassist/voxel_models/semantic_segmentation/train_semantic_segmentation.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import struct class Decoder: def __init__(self, fp): self.fp = fp self.count = 0 def readByte(self): return self.readStructFmt(">b") def readUByte(self): return self.readStructFmt(">B") def readShort(self): return self.readStructFmt(">h") def readUShort(self): return self.readStructFmt(">H") def readInt(self): return self.readStructFmt(">i") def readUInt(self): return self.readStructFmt(">I") def readLong(self): return self.readStructFmt(">q") def readULong(self): return self.readStructFmt(">Q") def readFloat(self): return self.readStructFmt(">f") def readDouble(self): return self.readStructFmt(">d") def readRaw(self, n): buf = self.fp.read(n) assert n == len(buf) self.count += n return buf def readStructFmt(self, fmt): size = struct.calcsize(fmt) buf = self.fp.read(size) if len(buf) != size: raise EOFError self.count += size return struct.unpack(fmt, buf)[0] def readString(self): length = self.readShort() x = self.readRaw(length).decode("utf-8") assert self.readByte() == 0, "String not null-terminated: {}".format(x) return x def readIntPos(self): return (self.readLong(), self.readLong(), self.readLong()) def readFloatPos(self): return (self.readDouble(), self.readDouble(), self.readDouble()) def readLook(self): return (self.readFloat(), self.readFloat()) def readItem(self): return (self.readShort(), self.readShort(), self.readShort()) def readBlock(self): return (self.readByte(), self.readByte())
craftassist-master
python/logging_plugin/decoder.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ BLOCK_SPREAD = 1 # BLOCK_TO_PICKUPS = 2 # BREWING_COMPLETED = 3 # BREWING_COMPLETING = 4 CHAT = 5 CHUNK_AVAILABLE = 6 # CHUNK_GENERATED = 7 # CHUNK_GENERATING = 8 # CHUNK_UNLOADED = 9 # CHUNK_UNLOADING = 10 COLLECTING_PICKUP = 11 # CRAFTING_NO_RECIPE = 12 # DISCONNECT = 13 # ENTITY_ADD_EFFECT = 14 # ENTITY_CHANGED_WORLD = 15 # ENTITY_CHANGING_WORLD = 16 # ENTITY_TELEPORT = 17 # EXECUTE_COMMAND = 18 EXPLODED = 19 # EXPLODING = 20 # HANDSHAKE = 21 # HOPPER_PULLING_ITEM = 22 # HOPPER_PUSHING_ITEM = 23 KILLED = 24 # KILLING = 25 # LOGIN = 26 # LOGIN_FORGE = 27 # PLAYER_ANIMATION = 28 # PLAYER_BREAKING_BLOCK = 29 PLAYER_BROKEN_BLOCK = 30 PLAYER_DESTROYED = 31 PLAYER_EATING = 32 # PLAYER_FISHED = 33 # PLAYER_FISHING = 34 PLAYER_FOOD_LEVEL_CHANGE = 35 # PLAYER_JOINED = 36 # PLAYER_LEFT_CLICK = 37 PLAYER_MOVING = 38 # PLAYER_OPENING_WINDOW = 39 PLAYER_PLACED_BLOCK = 40 # PLAYER_PLACING_BLOCK = 41 # PLAYER_RIGHT_CLICK = 42 # PLAYER_RIGHT_CLICKING_ENTITY = 43 PLAYER_SHOOTING = 44 PLAYER_SPAWNED = 45 # PLAYER_TOSSING_ITEM = 46 PLAYER_USED_BLOCK = 47 PLAYER_USED_ITEM = 48 # PLAYER_USING_BLOCK = 49 # PLAYER_USING_ITEM = 50 # PLUGINS_LOADED = 51 # PLUGIN_MESSAGE = 52 POST_CRAFTING = 53 PRE_CRAFTING = 54 PROJECTILE_HIT_BLOCK = 55 PROJECTILE_HIT_ENTITY = 56 # SERVER_PING = 57 SPAWNED_ENTITY = 58 SPAWNED_MONSTER = 59 # SPAWNING_ENTITY = 60 # SPAWNING_MONSTER = 61 TAKE_DAMAGE = 62 # TICK = 63 UPDATED_SIGN = 64 # UPDATING_SIGN = 65 WEATHER_CHANGED = 66 # WEATHER_CHANGING = 67 WORLD_STARTED = 68 WORLD_TICK = 69 MONSTER_MOVED = 70 PLAYER_LOOK = 71
craftassist-master
python/logging_plugin/hooks.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np from scipy.misc import imread INF_DEPTH = 100 def plot(blockpath, plt, imgpath=None, depthpath=None, vis=None, out_path=None, size=None): block = np.fromfile(blockpath, np.uint8) if size is None: width = height = int((len(block) / 2) ** 0.5) else: width, height = size try: block = block.reshape((height, width, 2)) except ValueError: print('\nReshape failed. Try using "--size width height"') import sys sys.exit(1) if depthpath is not None: depth = np.fromfile(depthpath, np.float32) depth = depth.reshape((height, width)) depth[depth > INF_DEPTH] = INF_DEPTH else: depth = np.zeros((height, width, "float")) if imgpath is not None: img = imread(imgpath) else: img = np.zeros((height, width), "float") plt.close() plt.subplot(2, 2, 1) plt.imshow(img) plt.title(imgpath) plt.subplot(2, 2, 3) plt.imshow(block[:, :, 0], cmap="prism") center = block[30:-30, 30:-30, 0] max_, min_ = center.max(), center.min() plt.title("block_id range: %d, %d" % (min_, max_)) plt.subplot(2, 2, 4) plt.imshow(depth, cmap="Blues_r") center = depth[50:-50, 50:-50] max_, min_ = center.max(), center.min() plt.title("depth range: %f, %f" % (min_, max_)) if vis is None: if out_path: plt.savefig(out_path) else: plt.show() else: vis.matplot(plt) return block, depth if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--blocks", required=True, help="e.g. path/to/block.135.bin") parser.add_argument("--img", help="e.g. path/to/img.png") parser.add_argument("--depth", help="e.g. path/to/depth.135.bin") parser.add_argument( "--visdom", action="store_true", help="visdom if specified, else matplotlib" ) parser.add_argument("--out_path", help="Output path for image") parser.add_argument( "--size", type=int, nargs="+", help="width and height, e.g. --size 800 600" ) args = parser.parse_args() import matplotlib if args.visdom: import visdom matplotlib.use("Agg") vis = visdom.Visdom(server="http://localhost") else: matplotlib.use("TkAgg") vis = None import matplotlib.pyplot as plt block, depth = plot( args.blocks, plt, imgpath=args.img, depthpath=args.depth, vis=vis, out_path=args.out_path, size=args.size, )
craftassist-master
python/logging_plugin/plot_vision.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import binascii from decoder import Decoder import hooks import util # https://api.cuberite.org/Globals.html dtAttack = 0 etMob = 4 class BaseLogReader: def __init__(self, logdir): self.logdir = logdir fp = open(logdir + "/logging.bin", "rb") self.decoder = Decoder(fp) self.last_tick = -1 self.player_eids = set() def start(self): version_major = self.decoder.readShort() version_minor = self.decoder.readShort() print("Version: {}.{}".format(version_major, version_minor)) while True: try: buf_start = self.decoder.count hook_id = self.decoder.readByte() world_tick = self.decoder.readLong() if world_tick < self.last_tick: raise RuntimeError( "Error: {} < {}\n".format(world_tick, self.last_tick) + "buf_start={} hook_id={}".format(buf_start, hook_id) ) self.last_tick = world_tick self.decode_and_handle_hook(hook_id, world_tick, buf_start) except EOFError: return def decode_and_handle_hook(self, hook_id, world_tick, buf_start): args = [world_tick, buf_start] if hook_id == hooks.WORLD_STARTED: # Check settings.ini hash expected_settings_hash = binascii.hexlify(self.decoder.readRaw(20)).decode("ascii") settings_hashes = util.get_hashes(self.logdir + "/settings.ini") assert ( expected_settings_hash in settings_hashes ), "Bad hash for settings.ini: {} not in {}".format( expected_settings_hash, settings_hashes ) # Check world.ini hash expected_world_hash = binascii.hexlify(self.decoder.readRaw(20)).decode("ascii") world_hashes = util.get_hashes(self.logdir + "/world/world.ini") assert ( expected_world_hash in world_hashes ), "Bad hash for world/world.ini: {} not in {}".format( expected_world_hash, world_hashes ) elif hook_id == hooks.PLAYER_SPAWNED: eid = self.decoder.readLong() name = self.decoder.readString() pos = self.decoder.readFloatPos() look = self.decoder.readLook() args += [eid, name, pos, look] # FIXME: remove when v0.2 patch no longer needed self.player_eids.add(eid) elif hook_id == hooks.PLAYER_DESTROYED: eid = self.decoder.readLong() args += [eid] elif hook_id == hooks.PLAYER_MOVING: eid = self.decoder.readLong() oldpos = self.decoder.readFloatPos() newpos = self.decoder.readFloatPos() args += [eid, oldpos, newpos] elif hook_id == hooks.CHUNK_AVAILABLE: cx, cz = self.decoder.readLong(), self.decoder.readLong() args += [cx, cz] elif hook_id == hooks.BLOCK_SPREAD: pos = self.decoder.readIntPos() source = self.decoder.readByte() args += [pos, source] elif hook_id == hooks.CHAT: eid = self.decoder.readLong() chat = self.decoder.readString() args += [eid, chat] elif hook_id == hooks.COLLECTING_PICKUP: eid = self.decoder.readLong() item = self.decoder.readItem() args += [eid, item] elif hook_id == hooks.KILLED: eid = self.decoder.readLong() args += [eid] elif hook_id == hooks.PLAYER_BROKEN_BLOCK: eid = self.decoder.readLong() pos = self.decoder.readIntPos() face = self.decoder.readByte() block = self.decoder.readBlock() args += [eid, pos, face, block] elif hook_id == hooks.PLAYER_PLACED_BLOCK: eid = self.decoder.readLong() pos = self.decoder.readIntPos() block = self.decoder.readBlock() args += [eid, pos, block] elif hook_id == hooks.PLAYER_USED_BLOCK: eid = self.decoder.readLong() pos = self.decoder.readIntPos() face = self.decoder.readByte() cursor = [self.decoder.readFloat() for _ in range(3)] block = self.decoder.readBlock() args += [eid, pos, face, cursor, block] elif hook_id == hooks.PLAYER_USED_ITEM: eid = self.decoder.readLong() pos = self.decoder.readIntPos() face = self.decoder.readByte() cursor = [self.decoder.readFloat() for _ in range(3)] item = self.decoder.readShort() args += [eid, pos, face, cursor, item] elif hook_id == hooks.POST_CRAFTING: eid = self.decoder.readLong() grid_h, grid_w = self.decoder.readByte(), self.decoder.readByte() grid = [self.decoder.readItem() for _ in range(grid_h * grid_w)] recipe_h, recipe_w = self.decoder.readByte(), self.decoder.readByte() recipe = [self.decoder.readItem() for _ in range(recipe_h * recipe_w)] result = self.decoder.readItem() args += [eid, (grid_h, grid_w, grid), (recipe_h, recipe_w, recipe), result] elif hook_id == hooks.SPAWNED_ENTITY: eid = self.decoder.readLong() etype = self.decoder.readByte() pos = self.decoder.readFloatPos() look = self.decoder.readLook() args += [eid, etype, pos, look] if etype == etMob: mtype = self.decoder.readByte() args += [mtype] elif hook_id == hooks.SPAWNED_MONSTER: eid = self.decoder.readLong() etype = self.decoder.readByte() mobtype = self.decoder.readByte() pos = self.decoder.readFloatPos() look = self.decoder.readLook() args += [eid, etype, mobtype, pos, look] elif hook_id == hooks.TAKE_DAMAGE: eid = self.decoder.readLong() dmgType = self.decoder.readByte() finalDmg = self.decoder.readDouble() rawDmg = self.decoder.readDouble() knockback = self.decoder.readFloatPos() args += [eid, dmgType, finalDmg, rawDmg, knockback] if dmgType == dtAttack: attackerId = self.decoder.readLong() args += [attackerId] elif hook_id == hooks.WEATHER_CHANGED: weather = self.decoder.readByte() args += [weather] elif hook_id == hooks.MONSTER_MOVED: eid = self.decoder.readLong() # patch for broken v0.2, where MONSTER_MOVED and PLAYER_LOOK have # the same hook_id if eid in self.player_eids: hook_id = hooks.PLAYER_LOOK look = self.decoder.readLook() args += [eid, look] else: pos = self.decoder.readFloatPos() look = self.decoder.readLook() args += [eid, pos, look] elif hook_id == hooks.PLAYER_LOOK: eid = self.decoder.readLong() look = self.decoder.readLook() args += [eid, look] else: print("Debug:", args) raise NotImplementedError("Not implemented: hook id {}".format(hook_id)) # Call subclass handler method # e.g. for PLAYER_SPAWNED, call self.on_player_spawned func_name = "on_" + util.get_hook_name(hook_id).lower() func = getattr(self, func_name, lambda *args: None) func(*args)
craftassist-master
python/logging_plugin/base_log_reader.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import hashlib import hooks HOOK_MAP = {getattr(hooks, h): h for h in dir(hooks) if not h.startswith("__")} def get_hook_name(hook_id): return HOOK_MAP[hook_id] def get_hashes(path): with open(path, "rb") as f: contents = f.read() raw_hash = hashlib.sha1(contents).hexdigest() # Cuberite sometimes (?) rewrites .ini files with CRLF nocr_hash = hashlib.sha1(contents.replace(b"\x0d\x0a", b"\x0a")).hexdigest() return (raw_hash, nocr_hash)
craftassist-master
python/logging_plugin/util.py
import os.path import sys sys.path.insert(0, os.path.dirname(__file__))
craftassist-master
python/logging_plugin/__init__.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ from base_log_reader import BaseLogReader import hooks import util class PrintLogReader(BaseLogReader): def __init__(self, *args, ignore_hooks=[], only_hooks=[], **kwargs): super().__init__(*args, **kwargs) assert ( len(only_hooks) == 0 or len(ignore_hooks) == 0 ), "Can't specify both only_hooks and ignore_hooks" for hid, hook_name in util.HOOK_MAP.items(): if (len(ignore_hooks) > 0 and hid in ignore_hooks) or ( len(only_hooks) > 0 and hid not in only_hooks ): continue func_name = "on_" + hook_name.lower() func = lambda *x, name=hook_name: print(*x[:2], name, *x[2:]) setattr(self, func_name, func) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("logdir", help="Cuberite workdir; should contain settings.ini") parser.add_argument("--only", nargs="+", default=[]) parser.add_argument("--ignore", nargs="+", default=[]) args = parser.parse_args() only_hooks = [getattr(hooks, h.upper()) for h in args.only] ignore_hooks = [getattr(hooks, h.upper()) for h in args.ignore] PrintLogReader(args.logdir, only_hooks=only_hooks, ignore_hooks=ignore_hooks).start()
craftassist-master
python/logging_plugin/print_log_reader.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ from matplotlib import pyplot as plt import glob import matplotlib.animation as animation import numpy as np import os.path import time FFMpegWriter = animation.writers["ffmpeg"] def render_video(ob_dir, outfile, dpi=100, max_depth=48): writer = FFMpegWriter(fps=20) fig = plt.figure() with writer.saving(fig, outfile, dpi): t_start = time.time() i = 0 while True: fig.clear() blockfile = os.path.join(ob_dir, "block.{:08}.bin".format(i)) if not os.path.isfile(blockfile): return block = np.fromfile(blockfile, np.uint8).reshape(128, 128) plt.subplot(1, 2, 1) plt.imshow(block, cmap="prism", animated=True) depthfile = os.path.join(ob_dir, "depth.{:08}.bin".format(i)) depth = np.fromfile(depthfile, np.float32).reshape(128, 128) depth[depth > max_depth] = max_depth plt.subplot(1, 2, 2) plt.imshow(depth, cmap="Blues_r", animated=True) plt.title("tick={}".format(i)) writer.grab_frame() i += 1 avg_fps = i / (time.time() - t_start) print("Wrote tick={}, avg_fps={}".format(i, avg_fps)) if __name__ == "__main__": import argparse import tempfile import subprocess from recover_initial_blockmap import recover_initial_blockmap from repo import repo_home parser = argparse.ArgumentParser() parser.add_argument("--logdir", required=True, help="Directory containing logging.bin") parser.add_argument("--outfile", required=True, help="Path to video file to create") parser.add_argument( "--player-name", required=True, help='Name of player whose eyes to "see" through' ) args = parser.parse_args() # Using the seed/config, recover the block map as it was at the start of # the world, including all chunks ever loaded by any player initial_blockmap_dir = recover_initial_blockmap(args.logdir) # Step through each tick, rendering the player's observations to a tempdir ob_dir = tempfile.mkdtemp() print("Writing observations to:", ob_dir) subprocess.check_call( [ os.path.join(repo_home, "bin/log_render"), "--out-dir", ob_dir, "--log-file", os.path.join(args.logdir, "logging.bin"), "--name", args.player_name, "--mca-files", *glob.glob(os.path.join(initial_blockmap_dir, "*.mca")), ] ) print("Wrote observations to:", ob_dir) # Render the video from the raw observations render_video(ob_dir, args.outfile) print("Wrote video to:", args.outfile)
craftassist-master
python/logging_plugin/video.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import math from base_log_reader import BaseLogReader def to_discrete(pos): return tuple(math.floor(p) for p in pos) class PrintLogReader(BaseLogReader): def on_player_spawned(self, tick, buf_start, eid, name, pos, look): print("[{}] Player {} spawned at {}".format(tick, (eid, name), to_discrete(pos))) def on_player_destroyed(self, tick, buf_start, eid): print("[{}] Player {} destroyed".format(tick, eid)) def on_player_moving(self, tick, buf_start, eid, oldpos, newpos): oldpos = to_discrete(oldpos) newpos = to_discrete(newpos) if oldpos == newpos: return dx, dy, dz = tuple(n - o for n, o in zip(newpos, oldpos)) assert all(p in (-1, 0, 1) for p in (dx, dy, dz)), "Bad (dx, dy, dz) == {}".format( (dx, dy, dz) ) if dx == -1: print("[{}] Player {} STEP_NEG_X".format(tick, eid)) elif dx == 1: print("[{}] Player {} STEP_POS_X".format(tick, eid)) if dy == -1: print("[{}] Player {} STEP_NEG_Y".format(tick, eid)) elif dy == 1: print("[{}] Player {} STEP_POS_Y".format(tick, eid)) if dz == -1: print("[{}] Player {} STEP_NEG_Z".format(tick, eid)) elif dz == 1: print("[{}] Player {} STEP_POS_Z".format(tick, eid)) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("logdir", help="Cuberite workdir; should contain settings.ini") args = parser.parse_args() PrintLogReader(args.logdir).start()
craftassist-master
python/logging_plugin/discrete_move_log_reader.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import os import shutil import subprocess import tempfile import sys python_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.insert(0, python_dir) import edit_cuberite_config from repo import repo_home from base_log_reader import BaseLogReader PLUGIN_NAME = "recover_initial" def recover_initial_blockmap(old_workdir): """Given a logdir containing a logging.bin, regenerate the initial blockmap and return the directory with the region (.mca) files. """ workdir = tempfile.mkdtemp() print("Workdir:", workdir, flush=True) # Copy files from old workdir paths = ["Plugins", "settings.ini", "blocks.json", "world/world.ini"] for p in paths: src = os.path.join(old_workdir, p) dst = os.path.join(workdir, p) if os.path.isfile(src): os.makedirs(os.path.dirname(dst), exist_ok=True) shutil.copy(src, dst) elif os.path.isdir(src): shutil.copytree(src, dst) # Remove logging plugin, add recovery plugin settings_ini = os.path.join(workdir, "settings.ini") plugins_dir = os.path.join(workdir, "Plugins") recovery_plugin_dir = os.path.join(plugins_dir, PLUGIN_NAME) edit_cuberite_config.remove_plugin(settings_ini, "logging") edit_cuberite_config.add_plugin(settings_ini, PLUGIN_NAME) if not os.path.isdir(recovery_plugin_dir): shutil.copytree( os.path.join(repo_home, "cuberite_plugins", PLUGIN_NAME), recovery_plugin_dir ) # Read logging.bin to get chunks available, and rewrite recovery plugin chunks = get_chunks_avail(old_workdir) chunks_lua = tuple_list_to_lua(chunks) with open(os.path.join(recovery_plugin_dir, "recover_initial.lua"), "r") as f: recovery_lua = f.read() recovery_lua = recovery_lua.replace("__CHUNKS_TO_LOAD__", chunks_lua) with open(os.path.join(recovery_plugin_dir, "recover_initial.lua"), "w") as f: f.write(recovery_lua) # Start cuberite and wait until the plugin kills it p = subprocess.Popen([repo_home + "/cuberite/Server/Cuberite"], cwd=workdir) p.wait() # Return folder containing region files return os.path.join(workdir, "world/region") def get_chunks_avail(logdir): chunks = [] class ChunkAvailLogReader(BaseLogReader): def on_chunk_available(self, buf_start, hid, cx, cz): chunks.append((cx, cz)) ChunkAvailLogReader(logdir).start() return chunks def tuple_list_to_lua(tuple_list): """Given a list of tuples, return a lua table of tables""" def table(it): return "{" + ",".join(map(str, it)) + "}" return table(table(t) for t in tuple_list) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("workdir") args = parser.parse_args() recover_initial_blockmap(args.workdir)
craftassist-master
python/logging_plugin/recover_initial_blockmap.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import argparse import logging import os import subprocess import numpy as np import sys python_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.insert(0, python_dir) from cuberite_process import CuberiteProcess from repo import repo_home logging.basicConfig(format="%(asctime)s [%(levelname)s]: %(message)s") logging.getLogger().setLevel(logging.DEBUG) def to_unit_vec(yaw, pitch): pitch *= 3.14159 / 180 yaw *= 3.14159 / 180 return np.array( [-1 * np.cos(pitch) * np.sin(yaw), -1 * np.sin(pitch), np.cos(pitch) * np.cos(yaw)] ) def ground_height(blocks): dirt_pct = np.mean(np.mean(blocks[:, :, :, 0] == 2, axis=1), axis=1) if (dirt_pct > 0.25).any(): return np.argmax(dirt_pct) return None def render(npy_p2b, out_dir, port, spp, img_size): npy_file = ( os.path.expanduser("~") + "/minecraft_houses/" + ".".join(npy_p2b.split(".")[1:-2]) + "/schematic.npy" ) schematic = np.load(npy_file) house_name = os.path.basename(os.path.dirname(npy_file)) # remove blocks below ground-level g = ground_height(schematic) schematic = schematic[(g or 0) :, :, :, :] ys, zs, xs = np.nonzero(schematic[:, :, :, 0] > 0) xmid, ymid, zmid = np.mean(xs), np.mean(ys), np.mean(zs) focus = np.array([xmid, ymid + 63, zmid]) # TODO: +63 only works for flat_world seed=0w yaw, distance = list(map(int, npy_p2b.split(".")[-2].split("_"))) look = [yaw, 0] look_xyz = to_unit_vec(*look) camera = focus - (look_xyz * distance) logging.info("Launching cuberite at port {}".format(port)) p = CuberiteProcess( "flat_world", seed=0, game_mode="creative", place_blocks_yzx=schematic, port=port ) logging.info("Destroying cuberite at port {}".format(port)) p.destroy() world_dir = os.path.join(p.workdir, "world") render_view_bin = os.path.join(repo_home, "bin/render_view") assert os.path.isfile( render_view_bin ), "{} not found.\n\nTry running: make render_view".format(render_view_bin) procs = [] chunky_id = "{}_{}".format(yaw, distance) out_file = "{}/chunky.{}.{}.png".format(out_dir, house_name, chunky_id) call = [ str(a) for a in [ "python3", "{}/python/minecraft_render/render.py".format(repo_home), "--world", world_dir, "--out", out_file, "--camera", *camera, "--look", yaw, 0, "--size", *img_size, "--spp", spp, ] ] logging.info("CALL: " + " ".join(call)) procs.append(subprocess.Popen(call)) for p in procs: p.wait() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("npy_p2b") parser.add_argument( "--out-dir", "-o", required=True, help="Directory in which to write vision files" ) parser.add_argument("--spp", type=int, default=25, help="samples per pixel") parser.add_argument("--port", type=int, default=25565) parser.add_argument("--size", type=int, nargs=2, default=[900, 675]) args = parser.parse_args() render(args.npy_p2b, args.out_dir, args.port, args.spp, args.size)
craftassist-master
python/render_vision_dataset/render_3x.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import argparse import glob import logging import os import subprocess import random import numpy as np import sys python_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.insert(0, python_dir) from cuberite_process import CuberiteProcess from repo import repo_home logging.basicConfig(format="%(asctime)s [%(levelname)s]: %(message)s") logging.getLogger().setLevel(logging.DEBUG) def to_unit_vec(yaw, pitch): pitch *= 3.14159 / 180 yaw *= 3.14159 / 180 return np.array( [-1 * np.cos(pitch) * np.sin(yaw), -1 * np.sin(pitch), np.cos(pitch) * np.cos(yaw)] ) def ground_height(blocks): dirt_pct = np.mean(np.mean(blocks[:, :, :, 0] == 2, axis=1), axis=1) if (dirt_pct > 0.25).any(): return np.argmax(dirt_pct) return None def ray_intersect_triangle(p0, p1, triangle): ## Code taken from: # https://www.erikrotteveel.com/python/three-dimensional-ray-tracing-in-python/ # # Tests if a ray starting at point p0, in the direction # p1 - p0, will intersect with the triangle. # # arguments: # p0, p1: numpy.ndarray, both with shape (3,) for x, y, z. # triangle: numpy.ndarray, shaped (3,3), with each row # representing a vertex and three columns for x, y, z. # # returns: # 0 if ray does not intersect triangle, # 1 if it will intersect the triangle, # 2 if starting point lies in the triangle. v0, v1, v2 = triangle u = v1 - v0 v = v2 - v0 normal = np.cross(u, v) b = np.inner(normal, p1 - p0) a = np.inner(normal, v0 - p0) # Here is the main difference with the code in the link. # Instead of returning if the ray is in the plane of the # triangle, we set rI, the parameter at which the ray # intersects the plane of the triangle, to zero so that # we can later check if the starting point of the ray # lies on the triangle. This is important for checking # if a point is inside a polygon or not. if b == 0.0: # ray is parallel to the plane if a != 0.0: # ray is outside but parallel to the plane return 0 else: # ray is parallel and lies in the plane rI = 0.0 else: rI = a / b if rI < 0.0: return 0 w = p0 + rI * (p1 - p0) - v0 denom = np.inner(u, v) * np.inner(u, v) - np.inner(u, u) * np.inner(v, v) si = (np.inner(u, v) * np.inner(w, v) - np.inner(v, v) * np.inner(w, u)) / denom if (si < 0.0) | (si > 1.0): return 0 ti = (np.inner(u, v) * np.inner(w, u) - np.inner(u, u) * np.inner(w, v)) / denom if (ti < 0.0) | (si + ti > 1.0): return 0 if rI == 0.0: # point 0 lies ON the triangle. If checking for # point inside polygon, return 2 so that the loop # over triangles can stop, because it is on the # polygon, thus inside. return 2 return 1 def intersect_cube(xyz, camera, focus): """ Test if ray 'focus - camera' intersects with the cube '(x, y, z) - (x + 1, y + 1, z + 1)' To do this, we check if at least one triangle intersects with the ray """ x, y, z = xyz triangles = [ [[x, y, z], [x + 1, y, z], [x + 1, y + 1, z]], [[x, y, z], [x, y + 1, z], [x + 1, y + 1, z]], [[x, y, z + 1], [x + 1, y, z + 1], [x + 1, y + 1, z + 1]], [[x, y, z + 1], [x, y + 1, z + 1], [x + 1, y + 1, z + 1]], [[x, y, z], [x + 1, y, z], [x + 1, y, z + 1]], [[x, y, z], [x, y, z + 1], [x + 1, y, z + 1]], [[x, y + 1, z], [x + 1, y + 1, z], [x + 1, y + 1, z + 1]], [[x, y + 1, z], [x, y + 1, z + 1], [x + 1, y + 1, z + 1]], [[x, y, z], [x, y + 1, z], [x, y + 1, z + 1]], [[x, y, z], [x, y, z + 1], [x, y + 1, z + 1]], [[x + 1, y, z], [x + 1, y + 1, z], [x + 1, y + 1, z + 1]], [[x + 1, y, z], [x + 1, y, z + 1], [x + 1, y + 1, z + 1]], ] for t in triangles: if ( ray_intersect_triangle( np.array(camera).astype("float32"), np.array(focus).astype("float32"), np.array(t).astype("float32"), ) == 1 ): return True return False def change_one_block(schematic, yaw): ## remove 'air' blocks whose ids are 0s ymax, zmax, xmax, _ = schematic.shape ys, zs, xs, _ = np.nonzero(schematic[:, :, :, :1] > 0) xyzs = list(zip(*[xs, ys, zs])) print("xmax={} ymax={} zmax={}".format(xmax, ymax, zmax)) max_dist = int((xmax ** 2 + zmax ** 2) ** 0.5 / 2) distance_range = (5, max(5, max_dist) + 1) min_camera_height = 1 ## the camera shouldn't be underground pitch_range = (-60, 10) if not xyzs: print("all blocks are air!") return None, None, None while True: focus = random.choice(xyzs) ## randomly select a block as the focus pitch = random.randint(*pitch_range) distance = random.randint(*distance_range) look_xyz = to_unit_vec(*[yaw, pitch]) camera = focus - (look_xyz * distance) if camera[1] <= min_camera_height: continue intersected = [ (np.linalg.norm(np.array(xyz) - camera), xyz) for xyz in xyzs if intersect_cube(xyz, camera, focus) ] ## sort the blocks according to their distances to the camera ## pick the nearest block that intersects with the ray starting at 'camera' ## and looking at 'focus' intersected = sorted(intersected, key=lambda p: p[0]) if len(intersected) > 0 and intersected[0][0] >= distance_range[0]: ## the nearest block should have a distance > 10 break x, y, z = intersected[0][1] ## change a non-zero block to red wool (id: 35, meta: 14) schematic[y][z][x] = [35, 14] return pitch, camera, [x, y, z] def render( npy_file, out_dir, no_chunky, no_vision, port, yaw, pitch, camera, pos, spp, img_size, block_change, ): schematic = np.load(npy_file) house_name = os.path.basename(os.path.dirname(npy_file)) # remove blocks below ground-level g = ground_height(schematic) schematic = schematic[(g or 0) :, :, :, :] if yaw is None: yaw = random.randint(0, 360 - 1) if block_change: pitch, camera, pos = change_one_block(schematic, yaw) # TODO: +63 only works for flat_world seed=0 camera[1] += 63 ## why?? logging.info("Launching cuberite at port {}".format(port)) p = CuberiteProcess( "flat_world", seed=0, game_mode="creative", place_blocks_yzx=schematic, port=port ) logging.info("Destroying cuberite at port {}".format(port)) p.destroy() world_dir = os.path.join(p.workdir, "world") region_dir = os.path.join(world_dir, "region") mca_files = glob.glob(os.path.join(region_dir, "*.mca")) assert len(mca_files) > 0, "No region files at {}".format(region_dir) render_view_bin = os.path.join(repo_home, "bin/render_view") assert os.path.isfile( render_view_bin ), "{} not found.\n\nTry running: make render_view".format(render_view_bin) procs = [] if not no_vision: call = [ str(a) for a in [ render_view_bin, "--out-dir", out_dir, "--mca-files", *mca_files, "--camera", *camera, "--look", yaw, pitch, ] ] logging.info("CALL: " + " ".join(call)) procs.append(subprocess.Popen(call)) if not no_chunky: chunky_id = "_".join(map(str, list(map(int, camera)) + [pitch, yaw] + pos)) call = [ str(a) for a in [ "python3", "{}/python/minecraft_render/render.py".format(repo_home), "--world", world_dir, "--out", "{}/chunky.{}.{}.{}.png".format(out_dir, house_name, chunky_id, int(block_change)), "--camera", *camera, "--look", yaw, pitch, "--size", *img_size, "--spp", spp, ] ] logging.info("CALL: " + " ".join(call)) procs.append(subprocess.Popen(call)) for p in procs: p.wait() return yaw, pitch, camera, pos if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("npy_schematic") parser.add_argument( "--out-dir", "-o", required=True, help="Directory in which to write vision files" ) parser.add_argument( "--no-chunky", action="store_true", help="Skip generation of chunky (human-view) images" ) parser.add_argument("--no-vision", action="store_true", help="Skip generation of agent vision") parser.add_argument("--spp", type=int, default=25, help="samples per pixel") parser.add_argument("--port", type=int, default=25565) parser.add_argument("--size", type=int, nargs=2, default=[300, 225]) args = parser.parse_args() yaw, pitch, camera, pos = render( args.npy_schematic, args.out_dir, args.no_chunky, args.no_vision, args.port, None, None, None, None, args.spp, args.size, True, ) # yaw, pitch, camera, pos = None, None, None, None render( args.npy_schematic, args.out_dir, args.no_chunky, args.no_vision, args.port, yaw, pitch, camera, pos, args.spp, args.size, False, )
craftassist-master
python/render_vision_dataset/render_one_block_change.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import argparse import logging import os import subprocess import random import cv2 import numpy as np import sys python_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.insert(0, python_dir) from cuberite_process import CuberiteProcess from repo import repo_home logging.basicConfig(format="%(asctime)s [%(levelname)s]: %(message)s") logging.getLogger().setLevel(logging.DEBUG) def to_unit_vec(yaw, pitch): pitch *= 3.14159 / 180 yaw *= 3.14159 / 180 return np.array( [-1 * np.cos(pitch) * np.sin(yaw), -1 * np.sin(pitch), np.cos(pitch) * np.cos(yaw)] ) def ground_height(blocks): dirt_pct = np.mean(np.mean(blocks[:, :, :, 0] == 2, axis=1), axis=1) if (dirt_pct > 0.25).any(): return np.argmax(dirt_pct) return None def change_block(schematic, b): x, y, z = b ## change to red wool schematic[y][z][x][0] = 35 schematic[y][z][x][1] = 14 def render(npy_p2b, out_dir, port, spp, img_size, mn=None): npy_file = ( os.path.expanduser("~") + "/minecraft_houses/" + ".".join(npy_p2b.split(".")[1:-2]) + "/schematic.npy" ) schematic = np.load(npy_file) print(schematic.shape) house_name = os.path.basename(os.path.dirname(npy_file)) p2b = np.load(npy_p2b) # remove blocks below ground-level g = ground_height(schematic) schematic = schematic[(g or 0) :, :, :, :] ys, zs, xs = np.nonzero(schematic[:, :, :, 0] > 0) xmid, ymid, zmid = np.mean(xs), np.mean(ys), np.mean(zs) focus = np.array([xmid, ymid + 63, zmid]) # TODO: +63 only works for flat_world seed=0w yaw, distance = list(map(int, npy_p2b.split(".")[-2].split("_"))) look = [yaw, 0] look_xyz = to_unit_vec(*look) camera = focus - (look_xyz * distance) if mn == [0, 0]: M, N = p2b.shape[:2] while True: m = random.randint(0, M - 1) n = random.randint(0, N - 1) if p2b[m][n][0] != -1: break else: m, n = mn print("Select pixel at {}".format((m, n))) print("Mapped block {}".format(p2b[m][n])) change_block(schematic, p2b[m][n]) logging.info("Launching cuberite at port {}".format(port)) p = CuberiteProcess( "flat_world", seed=0, game_mode="creative", place_blocks_yzx=schematic, port=port ) logging.info("Destroying cuberite at port {}".format(port)) p.destroy() world_dir = os.path.join(p.workdir, "world") render_view_bin = os.path.join(repo_home, "bin/render_view") assert os.path.isfile( render_view_bin ), "{} not found.\n\nTry running: make render_view".format(render_view_bin) procs = [] chunky_id = "{}_{}".format(yaw, distance) out_file = "{}/chunky_verify.{}.{}.png".format(out_dir, house_name, chunky_id) call = [ str(a) for a in [ "python3", "{}/python/minecraft_render/render.py".format(repo_home), "--world", world_dir, "--out", out_file, "--camera", *camera, "--look", yaw, 0, "--size", *img_size, "--spp", spp, ] ] logging.info("CALL: " + " ".join(call)) procs.append(subprocess.Popen(call)) for p in procs: p.wait() ## draw the sampled pixel for a better view img = cv2.imread(out_file) cv2.circle(img, (n, m), 2, (255, 0, 0)) cv2.imwrite(out_file, img) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("npy_p2b") parser.add_argument( "--out-dir", "-o", required=True, help="Directory in which to write vision files" ) parser.add_argument("--spp", type=int, default=25, help="samples per pixel") parser.add_argument("--port", type=int, default=25565) parser.add_argument("--size", type=int, nargs=2, default=[300, 225]) parser.add_argument("--mn", type=int, nargs=2, default=[0, 0]) args = parser.parse_args() render(args.npy_p2b, args.out_dir, args.port, args.spp, args.size, args.mn)
craftassist-master
python/render_vision_dataset/render_verify_pixel2block.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import argparse import logging import os import subprocess import random from sklearn.neighbors import KDTree import cv2 import pickle import numpy as np import sys python_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.insert(0, python_dir) from cuberite_process import CuberiteProcess from repo import repo_home logging.basicConfig(format="%(asctime)s [%(levelname)s]: %(message)s") logging.getLogger().setLevel(logging.DEBUG) def rgb2hsv(r, g, b): r, g, b = r / 255.0, g / 255.0, b / 255.0 mx = max(r, g, b) mn = min(r, g, b) df = mx - mn if mx == mn: h = 0 elif mx == r: h = (60 * ((g - b) / df) + 360) % 360 elif mx == g: h = (60 * ((b - r) / df) + 120) % 360 elif mx == b: h = (60 * ((r - g) / df) + 240) % 360 if mx == 0: s = 0 else: s = df / mx v = mx return h, s, v with open(os.path.expanduser("~") + "/minecraft/minecraft_specs/block_images/rgbs.pkl", "rb") as f: block_colors = pickle.load(f) wool_blocks = [(35, 1), (35, 2), (35, 4), (35, 5), (35, 11)] metaid_to_hue = {b[1]: rgb2hsv(*(block_colors[b]))[0] for b in wool_blocks} def to_unit_vec(yaw, pitch): pitch *= 3.14159 / 180 yaw *= 3.14159 / 180 return np.array( [-1 * np.cos(pitch) * np.sin(yaw), -1 * np.sin(pitch), np.cos(pitch) * np.cos(yaw)] ) def ground_height(blocks): dirt_pct = np.mean(np.mean(blocks[:, :, :, 0] == 2, axis=1), axis=1) if (dirt_pct > 0.25).any(): return np.argmax(dirt_pct) return None def randomly_change_blocks(schematic): new_schematic = np.copy(schematic) ymax, zmax, xmax, _ = new_schematic.shape for y in range(ymax): for z in range(zmax): for x in range(xmax): if new_schematic[y][z][x][0] > 0: ## change all non-air blocks to a random wool block new_schematic[y][z][x][0] = 35 new_schematic[y][z][x][1] = random.choice(list(metaid_to_hue.keys())) return new_schematic def add_new_schematic_hue(schematic_hue, new_schematic, i): ymax, zmax, xmax = new_schematic.shape new_schematic_hue = np.zeros((ymax, zmax, xmax), dtype=np.int32) for y in range(ymax): for z in range(zmax): for x in range(xmax): if new_schematic[y][z][x] in metaid_to_hue: new_schematic_hue[y][z][x] = metaid_to_hue[new_schematic[y][z][x]] else: new_schematic_hue[y][z][x] = random.randint(-20000, -10000) schematic_hue[:, :, :, i] = new_schematic_hue def render(npy_file, out_dir, port, spp, img_size): if "p2b" in npy_file: ## we're going to re-compute the correspondence npy_file = os.path.basename(npy_file) tokens = npy_file.split(".") yaw, distance = list(map(int, tokens[-2].split("_"))) npy_file = ( os.path.expanduser("~") + "/minecraft_houses/" + ".".join(tokens[1:-2]) + "/schematic.npy" ) else: yaw, distance = None, None schematic = np.load(npy_file) house_name = os.path.basename(os.path.dirname(npy_file)) # remove blocks below ground-level g = ground_height(schematic) schematic = schematic[(g or 0) :, :, :, :] ys, zs, xs = np.nonzero(schematic[:, :, :, 0] > 0) if len(ys) < 5: print("too few non-air blocks; will not render") return xmid, ymid, zmid = np.mean(xs), np.mean(ys), np.mean(zs) focus = np.array([xmid, ymid + 63, zmid]) # TODO: +63 only works for flat_world seed=0w if yaw is None: yaw = random.randint(0, 360 - 1) sorted_xs = sorted(xs) sorted_zs = sorted(zs) N = len(xs) ## remove head and tail 2% X = sorted_xs[-N // 100] - sorted_xs[N // 100] Z = sorted_zs[-N // 100] - sorted_zs[N // 100] distance = max(X, Z) look = [yaw, 0] look_xyz = to_unit_vec(*look) camera = focus - (look_xyz * distance) repeat = 10 schematic_hue = np.zeros(schematic.shape[:3] + (repeat - 1,), dtype=np.int32) tmp_images = [] for i in range(repeat): if i < repeat - 1: new_schematic = randomly_change_blocks(schematic) add_new_schematic_hue(schematic_hue, new_schematic[:, :, :, 1], i) else: break # do not render the full image again new_schematic = schematic img_size = [s * 3 for s in img_size] logging.info("Launching cuberite at port {}".format(port)) p = CuberiteProcess( "flat_world", seed=0, game_mode="creative", place_blocks_yzx=new_schematic, port=port ) logging.info("Destroying cuberite at port {}".format(port)) p.destroy() world_dir = os.path.join(p.workdir, "world") render_view_bin = os.path.join(repo_home, "bin/render_view") assert os.path.isfile( render_view_bin ), "{} not found.\n\nTry running: make render_view".format(render_view_bin) procs = [] chunky_id = "{}_{}".format(yaw, distance) out_file = "{}/chunky.{}.{}.png".format(out_dir, house_name, chunky_id) if i < repeat - 1: # tmp out file out_file += ".tmp.png" call = [ str(a) for a in [ "python3", "{}/python/minecraft_render/render.py".format(repo_home), "--world", world_dir, "--out", out_file, "--camera", *camera, "--look", yaw, 0, "--size", *img_size, "--spp", spp, ] ] logging.info("CALL: " + " ".join(call)) procs.append(subprocess.Popen(call)) for p in procs: p.wait() if i < repeat - 1: tmp_images.append(cv2.imread(out_file)) os.system("rm -f " + out_file) ## delete the tmp image ## now we need to compute the pixel-to-block correspondence p2b = pixel2block(tmp_images, schematic_hue) ## write the correspondence to disk ## x-y-z is after applying ground_height p2b_file = "{}/p2b.{}.{}.npy".format(out_dir, house_name, chunky_id) np.save(p2b_file, p2b) def pixel2block(random_images, schematic_hue): """ This function returns a numpy array (M,N,3) that indicates which pixel corresponds to which block. If a pixel has [-1, -1, -1], then it means this pixel does not map to any block """ for i in range(len(random_images)): random_images[i] = cv2.cvtColor(random_images[i], cv2.COLOR_BGR2HSV) ## init the ret to all -1s ret = np.ones(random_images[0].shape[:2] + (3,), dtype=np.int32) * -1 ymax, zmax, xmax, _ = schematic_hue.shape schematic_hue = np.reshape(schematic_hue, (-1, schematic_hue.shape[-1])) kdt = KDTree(schematic_hue, leaf_size=2) hue_vecs = [] for m in range(ret.shape[0]): for n in range(ret.shape[1]): ## the original range is [0,179] hue_vecs.append([img[m, n][0] * 2 for img in random_images]) hue_vecs = np.reshape(np.array(hue_vecs), (-1, len(random_images))) query = kdt.query(hue_vecs, k=1, return_distance=False) assert len(query) == ret.shape[0] * ret.shape[1] for i in range(len(query)): m = i // ret.shape[1] n = i % ret.shape[1] y = query[i][0] // (zmax * xmax) z = (query[i][0] % (zmax * xmax)) // xmax x = (query[i][0] % (zmax * xmax)) % xmax ret[m][n] = [x, y, z] return ret if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("npy") parser.add_argument( "--out-dir", "-o", required=True, help="Directory in which to write vision files" ) parser.add_argument("--spp", type=int, default=25, help="samples per pixel") parser.add_argument("--port", type=int, default=25565) parser.add_argument("--size", type=int, nargs=2, default=[300, 225]) args = parser.parse_args() render(args.npy, args.out_dir, args.port, args.spp, args.size)
craftassist-master
python/render_vision_dataset/render_schematic_with_pixel2block-color.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import argparse import glob import logging import os import subprocess import random import struct import numpy as np import sys python_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.insert(0, python_dir) from cuberite_process import CuberiteProcess from repo import repo_home logging.basicConfig(format="%(asctime)s [%(levelname)s]: %(message)s") logging.getLogger().setLevel(logging.DEBUG) y_offset = 63 def to_unit_vec(yaw, pitch): pitch *= 3.14159 / 180 yaw *= 3.14159 / 180 return np.array( [-1 * np.cos(pitch) * np.sin(yaw), -1 * np.sin(pitch), np.cos(pitch) * np.cos(yaw)] ) def ground_height(blocks): dirt_pct = np.mean(np.mean(blocks[:, :, :, 0] == 2, axis=1), axis=1) if (dirt_pct > 0.25).any(): return np.argmax(dirt_pct) return None def render(npy_file, out_dir, port, spp, img_size): no_chunky = "p2b" in npy_file if no_chunky: ## we're going to re-compute the correspondence npy_file = os.path.basename(npy_file) tokens = npy_file.split(".") yaw, distance = list(map(int, tokens[-2].split("_"))) npy_file = ( os.path.expanduser("~") + "/minecraft_houses/" + ".".join(tokens[1:-2]) + "/schematic.npy" ) else: yaw, distance = None, None schematic = np.load(npy_file) house_name = os.path.basename(os.path.dirname(npy_file)) # remove blocks below ground-level g = ground_height(schematic) schematic = schematic[(g or 0) :, :, :, :] Y, Z, X, _ = schematic.shape ys, zs, xs = np.nonzero(schematic[:, :, :, 0] > 0) if len(ys) < 5: print("too few non-air blocks; will not render") return xmid, ymid, zmid = np.mean(xs), np.mean(ys), np.mean(zs) focus = np.array([xmid, ymid + y_offset, zmid]) # TODO: +63 only works for flat_world seed=0w if yaw is None: yaw = random.randint(0, 360 - 1) sorted_xs = sorted(xs) sorted_zs = sorted(zs) N = len(xs) ## remove head and tail 2% X = sorted_xs[-N // 100] - sorted_xs[N // 100] Z = sorted_zs[-N // 100] - sorted_zs[N // 100] distance = max(X, Z) look = [yaw, 0] look_xyz = to_unit_vec(*look) camera = focus - (look_xyz * distance) logging.info("Launching cuberite at port {}".format(port)) p = CuberiteProcess( "flat_world", seed=0, game_mode="creative", place_blocks_yzx=schematic, port=port ) logging.info("Destroying cuberite at port {}".format(port)) p.destroy() world_dir = os.path.join(p.workdir, "world") region_dir = os.path.join(world_dir, "region") mca_files = glob.glob(os.path.join(region_dir, "*.mca")) assert len(mca_files) > 0, "No region files at {}".format(region_dir) render_view_bin = os.path.join(repo_home, "bin/render_view") assert os.path.isfile( render_view_bin ), "{} not found.\n\nTry running: make render_view".format(render_view_bin) procs = [] chunky_id = "{}_{}".format(yaw, distance) out_file = "{}/chunky.{}.{}.png".format(out_dir, house_name, chunky_id) out_bin_prefix = "{}/{}.{}".format(out_dir, house_name, chunky_id) call = [ str(a) for a in [ render_view_bin, "--out-prefix", out_bin_prefix, "--mca-files", *mca_files, "--camera", *camera, "--sizes", *img_size, "--look", yaw, 0, "--block", 0, "--depth", 0, "--blockpos", 1, ] ] logging.info("CALL: " + " ".join(call)) procs.append(subprocess.Popen(call)) if not no_chunky: ## when re-computing the call = [ str(a) for a in [ "python3", "{}/python/minecraft_render/render.py".format(repo_home), "--world", world_dir, "--out", out_file, "--camera", *camera, "--look", yaw, 0, "--size", *img_size, "--spp", spp, ] ] logging.info("CALL: " + " ".join(call)) procs.append(subprocess.Popen(call)) for p in procs: p.wait() ## read the output blockpos bin and convert it to a npy file p2b = read_pixel2block(out_bin_prefix + ".blockpos.bin", X, Y, Z, img_size[0], img_size[1]) os.system("rm -f {}".format(out_bin_prefix + ".blockpos.bin")) ## write the correspondence to disk ## x-y-z is after applying ground_height p2b_file = "{}/p2b.{}.{}.npy".format(out_dir, house_name, chunky_id) np.save(p2b_file, p2b) def read_pixel2block(blockpos_bin, X, Y, Z, width, height): with open(blockpos_bin, "rb") as f: content = f.read() xyz = struct.unpack(width * height * 3 * "i", content) xyz = np.array(xyz, dtype=np.int32) p2b = xyz.reshape(height, width, 3) for h in range(height): for w in range(width): x, y, z = p2b[h][w] y -= y_offset ## check if the block is not on the house if x < 0 or x >= X or y < 0 or y >= Y or z < 0 or z >= Z: p2b[h][w] = [-1, -1, -1] else: p2b[h][w] = [x, y, z] return p2b if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("npy") parser.add_argument( "--out-dir", "-o", required=True, help="Directory in which to write vision files" ) parser.add_argument("--spp", type=int, default=25, help="samples per pixel") parser.add_argument("--port", type=int, default=25565) parser.add_argument("--size", type=int, nargs=2, default=[300, 225]) args = parser.parse_args() render(args.npy, args.out_dir, args.port, args.spp, args.size)
craftassist-master
python/render_vision_dataset/render_schematic_with_pixel2block.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ #!/usr/bin/python import os import sys if __name__ == "__main__": npy_files = sys.argv[1] port = int(sys.argv[2]) home = os.path.expanduser("~") ## for each house, we render four different angles with open(npy_files, "r") as f: lines = f.read().splitlines() for l in lines: os.system( "python render_schematic_with_pixel2block.py %s --out-dir=%s/minecraft/python/stack_agent_this/vision_training/render_results1/new_npys --port=%d" % (l, home, port + 25565) ) ## clean up the bin files # os.system("rm -f %s/render_results/*bin" % home)
craftassist-master
python/render_vision_dataset/render_script.py
import os import threading from flask import Flask import socketio from flask_cors import cross_origin, CORS import mcevent app = None def _dashboard_thread(web_root, ip, port): global app root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) static_folder = os.path.join(root_dir, web_root, "build") print("static_folder:", static_folder) app = Flask(__name__, static_folder=static_folder, static_url_path="") sio = socketio.Server(async_mode="threading", cors_allowed_origins="*") app.wsgi_app = socketio.WSGIApp(sio, app.wsgi_app) mcevent.sio = sio CORS(app, resources={r"*": {"origins": "*"}}) @app.route("/") @cross_origin(origin="*") def index(): return app.send_static_file("index.html") if os.getenv("MCDASHBOARD_PORT"): port = os.getenv("MCDASHBOARD_PORT") print("setting MC dashboard port from env variable MCDASHBOARD_PORT={}".format(port)) if os.getenv("MCDASHBOARD_IP"): ip = os.getenv("MCDASHBOARD_IP") print("setting MC dashboard ip from env variable MCDASHBOARD_IP={}".format(ip)) app.run(ip, threaded=True, port=port, debug=False) def start(web_root="tools/dashboard_web", ip="0.0.0.0", port=8000): t = threading.Thread(target=_dashboard_thread, args=(web_root, ip, port)) t.start()
craftassist-master
python/dashboard/__init__.py
import threading import weakref def _make_id(target): if hasattr(target, "__func__"): return (id(target.__self__), id(target.__func__)) return id(target) NONE_ID = _make_id(None) # A marker for caching NO_RECEIVERS = object() class Signal: """ Base class for all signals Internal attributes: receivers { receiverkey (id) : weakref(receiver) } """ def __init__(self, providing_args=None, use_caching=False): """ Create a new signal. """ self.receivers = [] self.lock = threading.Lock() self.use_caching = use_caching # For convenience we create empty caches even if they are not used. # A note about caching: if use_caching is defined, then for each # distinct sender we cache the receivers that sender has in # 'sender_receivers_cache'. The cache is cleaned when .connect() or # .disconnect() is called and populated on send(). self.sender_receivers_cache = weakref.WeakKeyDictionary() if use_caching else {} self._dead_receivers = False def connect(self, receiver, sender=None, weak=True, dispatch_uid=None): """ Connect receiver to sender for signal. Arguments: receiver A function or an instance method which is to receive signals. Receivers must be hashable objects. If weak is True, then receiver must be weak referenceable. Receivers must be able to accept keyword arguments. If a receiver is connected with a dispatch_uid argument, it will not be added if another receiver was already connected with that dispatch_uid. sender The sender to which the receiver should respond. Must either be a Python object, or None to receive events from any sender. weak Whether to use weak references to the receiver. By default, the module will attempt to use weak references to the receiver objects. If this parameter is false, then strong references will be used. dispatch_uid An identifier used to uniquely identify a particular instance of a receiver. This will usually be a string, though it may be anything hashable. """ if dispatch_uid: lookup_key = (dispatch_uid, _make_id(sender)) else: lookup_key = (_make_id(receiver), _make_id(sender)) if weak: ref = weakref.ref receiver_object = receiver # Check for bound methods if hasattr(receiver, "__self__") and hasattr(receiver, "__func__"): ref = weakref.WeakMethod receiver_object = receiver.__self__ receiver = ref(receiver) weakref.finalize(receiver_object, self._remove_receiver) with self.lock: self._clear_dead_receivers() if not any(r_key == lookup_key for r_key, _ in self.receivers): self.receivers.append((lookup_key, receiver)) self.sender_receivers_cache.clear() def disconnect(self, receiver=None, sender=None, dispatch_uid=None): """ Disconnect receiver from sender for signal. If weak references are used, disconnect need not be called. The receiver will be removed from dispatch automatically. Arguments: receiver The registered receiver to disconnect. May be none if dispatch_uid is specified. sender The registered sender to disconnect dispatch_uid the unique identifier of the receiver to disconnect """ if dispatch_uid: lookup_key = (dispatch_uid, _make_id(sender)) else: lookup_key = (_make_id(receiver), _make_id(sender)) disconnected = False with self.lock: self._clear_dead_receivers() for index in range(len(self.receivers)): (r_key, _) = self.receivers[index] if r_key == lookup_key: disconnected = True del self.receivers[index] break self.sender_receivers_cache.clear() return disconnected def has_listeners(self, sender=None): return bool(self._live_receivers(sender)) def send(self, sender, **named): """ Send signal from sender to all connected receivers. If any receiver raises an error, the error propagates back through send, terminating the dispatch loop. So it's possible that all receivers won't be called if an error is raised. Arguments: sender The sender of the signal. Either a specific object or None. named Named arguments which will be passed to receivers. Return a list of tuple pairs [(receiver, response), ... ]. """ if not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS: return [] return [ (receiver, receiver(signal=self, sender=sender, **named)) for receiver in self._live_receivers(sender) ] def send_robust(self, sender, **named): """ Send signal from sender to all connected receivers catching errors. Arguments: sender The sender of the signal. Can be any Python object (normally one registered with a connect if you actually want something to occur). named Named arguments which will be passed to receivers. Return a list of tuple pairs [(receiver, response), ... ]. If any receiver raises an error (specifically any subclass of Exception), return the error instance as the result for that receiver. """ if not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS: return [] # Call each receiver with whatever arguments it can accept. # Return a list of tuple pairs [(receiver, response), ... ]. responses = [] for receiver in self._live_receivers(sender): try: response = receiver(signal=self, sender=sender, **named) except Exception as err: responses.append((receiver, err)) else: responses.append((receiver, response)) return responses def _clear_dead_receivers(self): # Note: caller is assumed to hold self.lock. if self._dead_receivers: self._dead_receivers = False self.receivers = [ r for r in self.receivers if not (isinstance(r[1], weakref.ReferenceType) and r[1]() is None) ] def _live_receivers(self, sender): """ Filter sequence of receivers to get resolved, live receivers. This checks for weak references and resolves them, then returning only live receivers. """ receivers = None if self.use_caching and not self._dead_receivers: receivers = self.sender_receivers_cache.get(sender) # We could end up here with NO_RECEIVERS even if we do check this case in # .send() prior to calling _live_receivers() due to concurrent .send() call. if receivers is NO_RECEIVERS: return [] if receivers is None: with self.lock: self._clear_dead_receivers() senderkey = _make_id(sender) receivers = [] for (receiverkey, r_senderkey), receiver in self.receivers: if r_senderkey == NONE_ID or r_senderkey == senderkey: receivers.append(receiver) if self.use_caching: if not receivers: self.sender_receivers_cache[sender] = NO_RECEIVERS else: # Note, we must cache the weakref versions. self.sender_receivers_cache[sender] = receivers non_weak_receivers = [] for receiver in receivers: if isinstance(receiver, weakref.ReferenceType): # Dereference the weak reference. receiver = receiver() if receiver is not None: non_weak_receivers.append(receiver) else: non_weak_receivers.append(receiver) return non_weak_receivers def _remove_receiver(self, receiver=None): # Mark that the self.receivers list has dead weakrefs. If so, we will # clean those up in connect, disconnect and _live_receivers while # holding self.lock. Note that doing the cleanup here isn't a good # idea, _remove_receiver() will be called as side effect of garbage # collection, and so the call can happen while we are already holding # self.lock. self._dead_receivers = True def receiver(signal, **kwargs): """ A decorator for connecting receivers to signals. Used by passing in the signal (or list of signals) and keyword arguments to connect:: @receiver(post_save, sender=MyModel) def signal_receiver(sender, **kwargs): ... @receiver([post_save, post_delete], sender=MyModel) def signals_receiver(sender, **kwargs): ... """ def _decorator(func): if isinstance(signal, (list, tuple)): for s in signal: s.connect(func, **kwargs) else: signal.connect(func, **kwargs) return func return _decorator on = receiver
craftassist-master
python/mcevent/dispatcher.py
"""Multi-consumer multi-producer dispatching mechanism Originally based on pydispatch (BSD) https://pypi.org/project/PyDispatcher/2.0.1/ See license.txt for original license. Heavily modified for Django's purposes. """ from .dispatcher import Signal, receiver # NOQA dispatch = Signal() # NOQA class SocketIOMock: mock = True def on(self, event, **kwargs): def _decorator(func): return func return _decorator def emit(*args, **kwargs): pass sio = SocketIOMock() # NOQA
craftassist-master
python/mcevent/__init__.py
import argparse import glob import json import os import shutil import subprocess import uuid # LOOK ANGLES # ----------------- # - chunky definitions of yaw/pitch differ from minecraft's: # -> chunky_pitch = minecraft_pitch - 90 # -> chunk_yaw = 90 - minecraft_yaw # - chunky uses radians, minecraft uses degrees parser = argparse.ArgumentParser() parser.add_argument('--world', required=True, help='path to world files') parser.add_argument('--out', '-o', required=True, help='path to write image') parser.add_argument('--camera', type=float, nargs=3, default=[16, 70, 48]) parser.add_argument('--look', type=float, nargs=2, default=[-90, -90]) parser.add_argument('--focal-offset', type=float, default=30) parser.add_argument('--chunk-min', type=int, default=-1) parser.add_argument('--chunk-max', type=int, default=3) parser.add_argument('--size', type=int, nargs=2, default=[800, 600]) parser.add_argument('--spp', type=int, default=100, help='samples per pixel') REPO_DIR = os.path.dirname(__file__) CHUNKY_DIR = os.path.join(REPO_DIR, 'chunky') SCENES_DIR = os.path.join(REPO_DIR, 'chunky/scenes') def gen_scene_json(args, name): with open(os.path.join(REPO_DIR, 'world.json'), 'r') as f: j = json.load(f) j['name'] = name j['world']['path'] = args.world j['camera']['position']['x'] = args.camera[0] j['camera']['position']['y'] = args.camera[1] j['camera']['position']['z'] = args.camera[2] j['camera']['orientation']['yaw'] = (90 - args.look[0]) * 3.14159 / 180 j['camera']['orientation']['pitch'] = (args.look[1] - 90) * 3.14159 / 180 j['camera']['focalOffset'] = args.focal_offset j['chunkList'] = [[a, b] for a in range(args.chunk_min, args.chunk_max+1) \ for b in range(args.chunk_min, args.chunk_max+1)] j['width'] = args.size[0] j['height'] = args.size[1] return json.dumps(j) if __name__ == '__main__': args = parser.parse_args() name = str(uuid.uuid4()) base_call = 'java -jar -Dchunk.home={0} {0}/ChunkyLauncher.jar'.format(CHUNKY_DIR) # Create scene scene_json = gen_scene_json(args, name) os.makedirs(SCENES_DIR, exist_ok=True) scene_json_path = os.path.join(SCENES_DIR, name + '.json') with open(scene_json_path, 'w') as f: f.write(scene_json) print('Wrote scene to', scene_json_path) # Download minecraft if necessary if not os.path.isfile(os.path.join(CHUNKY_DIR, 'resources/minecraft.jar')): call = '{} -download-mc 1.12'.format(base_call) subprocess.check_call(call.split(' ')) # Run chunky call = '{} -render {}'.format(base_call, name) subprocess.check_call(call.split(' ')) # Move output image pngs = glob.glob(os.path.join(SCENES_DIR, '{}*.png'.format(name))) assert len(pngs) == 1, pngs shutil.move(pngs[0], args.out) print('Wrote image to', args.out) # Clean up for f in glob.glob(os.path.join(SCENES_DIR, '*{}*'.format(name))): os.remove(f)
craftassist-master
python/minecraft_render/render.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ class StopCondition: def __init__(self, agent): self.agent = agent def check(self) -> bool: raise NotImplementedError("Implemented by subclass") class NeverStopCondition(StopCondition): def __init__(self, agent): super().__init__(agent) self.name = "never" def check(self): return False
craftassist-master
python/base_agent/stop_condition.py
from condition import NeverCondition DEFAULT_THROTTLING_TICK = 16 THROTTLING_TICK_UPPER_LIMIT = 64 THROTTLING_TICK_LOWER_LIMIT = 4 # put a counter and a max_count so can't get stuck? class Task(object): def __init__(self): self.memid = None self.interrupted = False self.finished = False self.name = None self.undone = False self.last_stepped_time = None self.throttling_tick = DEFAULT_THROTTLING_TICK self.stop_condition = NeverCondition(None) def step(self, agent): # todo? make it so something stopped by condition can be resumed? if self.stop_condition.check(): self.finished = True return return def add_child_task(self, t, agent, pass_stop_condition=True): # FIXME, this is ugly and dangerous; some conditions might keep state etc? if pass_stop_condition: t.stop_condition = self.stop_condition agent.memory.task_stack_push(t, parent_memid=self.memid) def interrupt(self): self.interrupted = True def check_finished(self): if self.finished: return self.finished def hurry_up(self): self.throttling_tick /= 4 if self.throttling_tick < THROTTLING_TICK_LOWER_LIMIT: self.throttling_tick = THROTTLING_TICK_LOWER_LIMIT def slow_down(self): self.throttling_tick *= 4 if self.throttling_tick > THROTTLING_TICK_UPPER_LIMIT: self.throttling_tick = THROTTLING_TICK_UPPER_LIMIT def __repr__(self): return str(type(self))
craftassist-master
python/base_agent/task.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ from collections import defaultdict, namedtuple import binascii import hashlib import logging import numpy as np import time import traceback from word2number.w2n import word_to_num from typing import Tuple, List, TypeVar import uuid ##FFS FIXME!!!! arrange utils properly, put things in one place XYZ = Tuple[int, int, int] # two points p0(x0, y0, z0), p1(x1, y1, z1) determine a 3d cube(point_at_target) POINT_AT_TARGET = Tuple[int, int, int, int, int, int] IDM = Tuple[int, int] Block = Tuple[XYZ, IDM] Hole = Tuple[List[XYZ], IDM] T = TypeVar("T") # generic type #####FIXME!!!!!! make all these dicts all through code Pos = namedtuple("pos", ["x", "y", "z"]) Look = namedtuple("look", "yaw, pitch") Player = namedtuple("Player", "entityId, name, pos, look") TICKS_PER_SEC = 100 TICKS_PER_MINUTE = 60 * TICKS_PER_SEC TICKS_PER_HOUR = 60 * TICKS_PER_MINUTE TICKS_PER_DAY = 24 * TICKS_PER_HOUR class Time: def __init__(self): self.init_time_raw = time.time() # converts from seconds to internal tick def round_time(self, t): return int(TICKS_PER_SEC * t) def get_time(self): return self.round_time(time.time() - self.init_time_raw) def get_world_hour(self): # returns a fraction of a day. 0 is sunrise, .5 is sunset, 1.0 is next day return (time.localtime()[3] - 8 + time.localtime()[4] / 60) / 24 def add_tick(self, ticks=1): time.sleep(ticks / TICKS_PER_SEC) class ErrorWithResponse(Exception): def __init__(self, chat): self.chat = chat class NextDialogueStep(Exception): pass class TimingWarn(object): """Context manager which logs a warning if elapsed time exceeds some threshold""" def __init__(self, max_time: float): self.max_time = max_time def __enter__(self): self.start_time = time.time() def __exit__(self, exc_type, exc_value, exc_traceback): self.elapsed_time = time.time() - self.start_time if self.elapsed_time >= self.max_time: logging.warn( "Timing exceeded threshold: {}".format(self.elapsed_time) + "\n" + "".join(traceback.format_stack(limit=2)) ) def number_from_span(s): try: n = float(s) except: try: n = float(word_to_num(s)) except: return return n def check_username(hashed_username, username): """Compare the username with the hash to check if they are same""" user, salt = hashed_username.split(":") return user == hashlib.sha256(salt.encode() + username.encode()).hexdigest() def get_bounds(locs): M = np.max(locs, axis=0) m = np.min(locs, axis=0) return m[0], M[0], m[1], M[1], m[2], M[2] def group_by(items, key_fn): """Return a dict of {k: list[x]}, where key_fn(x) == k""" d = defaultdict(list) for x in items: d[key_fn(x)].append(x) return d def hash_user(username): """Encrypt username""" # uuid is used to generate a random number salt = uuid.uuid4().hex return hashlib.sha256(salt.encode() + username.encode()).hexdigest() + ":" + salt def manhat_dist(a, b): """Return mahattan ditance between a and b""" return abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2]) def pos_to_np(pos): """Convert pos to numpy array""" if pos is None: return None return np.array((pos.x, pos.y, pos.z)) def shasum_file(path): """Retrn shasum of the file at path""" sha = hashlib.sha1() with open(path, "rb") as f: block = f.read(2 ** 16) while len(block) != 0: sha.update(block) block = f.read(2 ** 16) return binascii.hexlify(sha.digest()) # TODO make this just a dict, and change in memory and agent # eg in object_looked_at and PlayerNode def to_player_struct(pos, yaw, pitch, eid, name): if len(pos) == 2: pos = Pos(pos[0], 0.0, pos[1]) else: pos = Pos(pos[0], pos[1], pos[2]) look = Look(yaw, pitch) return Player(eid, name, pos, look)
craftassist-master
python/base_agent/base_util.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ MAP_YES = [ "yes", "true", "i agree", "tru dat", "yep", "ya", "yah", "yeah", "definitely", "def", "sure", "ok", "o k", ] MAP_NO = ["no", "nope", "false", "definitely not"] MAP_MAYBE = ["maybe", "unknown", "i don ' t know", "i do not know"] ACTION_ING_MAPPING = { "build": "building", "dance": "dancing", "destroy": "destroying", "dig": "digging", "fill": "filling", "move": "moving", }
craftassist-master
python/base_agent/string_lists.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ """This file has functions to preprocess the chat from user before querying the dialogue manager""" import string from spacy.lang.en import English from typing import List tokenizer = English().Defaults.create_tokenizer() def word_tokenize(st) -> str: chat_with_spaces = insert_spaces(st) return " ".join([str(x) for x in tokenizer(chat_with_spaces)]) def sentence_split(st): st = st.replace(" ?", " .") st = st.replace(" !", " .") st = st.replace(" ...", " .") res = [ " ".join([x for x in sen.lower().split() if x not in string.punctuation]) for sen in st.split(" .") ] return [x for x in res if x != ""] def insert_spaces(chat): updated_chat = "" for i, c in enumerate(chat): # [num , (num , {num , ,num , :num if ( (c in ["[", "(", "{", ",", ":", "x"]) and (i != len(chat) - 1) and (chat[i + 1].isdigit()) ): updated_chat += c + " " # num, , num] , num) , num}, num: # 4x -> 4 x elif ( (c.isdigit()) and (i != len(chat) - 1) and (chat[i + 1] in [",", "]", ")", "}", ":", "x"]) ): updated_chat += c + " " else: updated_chat += c return updated_chat def preprocess_chat(chat: str) -> List[str]: # For debug mode, return as is. if chat == "_debug_" or chat.startswith("_ttad_"): return [chat] # Tokenize tokenized_line = word_tokenize(chat) tokenized_sentences = [sen for sen in sentence_split(tokenized_line)] return tokenized_sentences if __name__ == "__main__": import fileinput for line in fileinput.input(): try: print(preprocess_chat(line)[0]) except IndexError: pass
craftassist-master
python/base_agent/preprocess.py
from typing import List SELFID = "0" * 32 def maybe_and(sql, a): if a: return sql + " AND " else: return sql def maybe_or(sql, a): if a: return sql + " OR " else: return sql # TODO counts def get_property_value(agent_memory, mem, prop): # order of precedence: # 1: main memory table # 2: table corresponding to the nodes .TABLE # 3: triple with the nodes memid as subject and prop as predicate # is it in the main memory table? cols = [c[1] for c in agent_memory._db_read("PRAGMA table_info(Memories)")] if prop in cols: cmd = "SELECT " + prop + " FROM Memories WHERE uuid=?" r = agent_memory._db_read(cmd, mem.memid) return r[0][0] # is it in the mem.TABLE? T = mem.TABLE cols = [c[1] for c in agent_memory._db_read("PRAGMA table_info({})".format(T))] if prop in cols: cmd = "SELECT " + prop + " FROM " + T + " WHERE uuid=?" r = agent_memory._db_read(cmd, mem.memid) return r[0][0] # is it a triple? triples = agent_memory.get_triples(subj=mem.memid, pred_text=prop, return_obj_text="always") if len(triples) > 0: return triples[0][2] return None class MemorySearcher: def __init__(self, self_memid=SELFID, search_data=None): self.self_memid = self_memid self.search_data = search_data def search(self, memory, search_data=None) -> List["ReferenceObjectNode"]: # noqa T484 raise NotImplementedError class ReferenceObjectSearcher(MemorySearcher): def __init__(self, self_memid=SELFID, search_data=None): super().__init__(self_memid=SELFID, search_data=None) def is_filter_empty(self, filter_dict): r = filter_dict.get("special") if r and len(r) > 0: return False r = filter_dict.get("ref_obj_range") if r and len(r) > 0: return False r = filter_dict.get("ref_obj_exact") if r and len(r) > 0: return False r = filter_dict.get("memories_range") if r and len(r) > 0: return False r = filter_dict.get("memories_exact") if r and len(r) > 0: return False t = filter_dict.get("triples") if t and len(t) > 0: return False return True def range_queries(self, r, table, a=False): """ this does x, y, z, pitch, yaw, etc. input format for generates is {"xmin": float, xmax: float, ... , yawmin: float, yawmax: float} """ sql = "" vals = [] for k, v in r.items(): if "min" in k: sql = maybe_and(sql, len(vals) > 0) sql += table + "." + k.replace("min", "") + ">? " vals.append(v) if "max" in k: sql = maybe_and(sql, len(vals) > 0) sql += table + "." + k.replace("max", "") + "<? " vals.append(v) return sql, vals def exact_matches(self, m, table, a=False): sql = "" vals = [] for k, v in m.items(): sql = maybe_and(sql, len(vals) > 0) sql += table + "." + k + "=? " vals.append(v) return sql, vals def triples(self, triples, a=False): # currently does an "and": the memory needs to satisfy all triples vals = [] if not triples: return "", vals sql = "ReferenceObjects.uuid IN (SELECT subj FROM Triples WHERE " for t in triples: sql = maybe_or(sql, len(vals) > 0) vals.append(t["pred_text"]) if t.get("obj_text"): sql += "(pred_text, obj_text)=(?, ?)" vals.append(t["obj_text"]) else: sql += "(pred_text, obj)=(?, ?)" vals.append(t["obj"]) sql += " GROUP BY subj HAVING COUNT(subj)=? )" vals.append(len(triples)) return sql, vals def get_query(self, filter_dict, ignore_self=True): if self.is_filter_empty(filter_dict): query = "SELECT uuid FROM ReferenceObjects" if ignore_self: query += " WHERE uuid !=?" return query, [self.self_memid] else: return query, [] query = ( "SELECT ReferenceObjects.uuid FROM ReferenceObjects" " INNER JOIN Memories as M on M.uuid=ReferenceObjects.uuid" " WHERE " ) args = [] fragment, vals = self.range_queries( filter_dict.get("ref_obj_range", {}), "ReferenceObjects" ) query = maybe_and(query, len(args) > 0) args.extend(vals) query += fragment fragment, vals = self.exact_matches( filter_dict.get("ref_obj_exact", {}), "ReferenceObjects" ) query = maybe_and(query, len(args) > 0 and len(vals) > 0) args.extend(vals) query += fragment fragment, vals = self.range_queries(filter_dict.get("memories_range", {}), "M") query = maybe_and(query, len(args) > 0 and len(vals) > 0) args.extend(vals) query += fragment fragment, vals = self.exact_matches(filter_dict.get("memories_exact", {}), "M") query = maybe_and(query, len(args) > 0 and len(vals) > 0) args.extend(vals) query += fragment fragment, vals = self.triples(filter_dict.get("triples", [])) query = maybe_and(query, len(args) > 0 and len(vals) > 0) args.extend(vals) query += fragment if ignore_self: query += " AND ReferenceObjects.uuid !=?" args.append(self.self_memid) return query, args # flag (default) so that it makes a copy of speaker_look etc so that if the searcher is called # later so it doesn't return the new position of the agent/speaker/speakerlook # how to parse this distinction? def handle_special(self, memory, search_data): d = search_data.get("special") if not d: return [] if d.get("SPEAKER"): return [memory.get_player_by_eid(d["SPEAKER"])] if d.get("SPEAKER_LOOK"): memids = memory._db_read_one( 'SELECT uuid FROM ReferenceObjects WHERE ref_type="attention" AND type_name=?', d["SPEAKER_LOOK"], ) if memids: memid = memids[0] mem = memory.get_location_by_id(memid) return [mem] if d.get("AGENT"): return [memory.get_player_by_eid(d["AGENT"])] if d.get("DUMMY"): return [d["DUMMY"]] return [] def search(self, memory, search_data=None) -> List["ReferenceObjectNode"]: # noqa T484 """Find ref_objs matching the given filters filter_dict has children: "ref_obj_range", dict, with keys "min<column_name>" or "max<column_name>", (that is the string "min" prepended to the column name) and float values vmin and vmax respectively. <column_name> is any column in the ReferenceObjects table that is a numerical value. filters on rows satisfying the inequality <column_entry> > vmin or <column_entry> < vmax "ref_obj_exact", dict, with keys "<column_name>" <column_name> is any column in the ReferenceObjects table checks exact matches to the value "memories_range" and "memories_exact" are the same, but columns in the Memories table "triples" list [t0, t1, ...,, tm]. each t in the list is a dict with form t = {"pred_text": <pred>, "obj_text": <obj>} or t = {"pred_text": <pred>, "obj": <obj_memid>} currently returns memories with all triples matched """ if not search_data: search_data = self.search_data assert search_data if search_data.get("special"): return self.handle_special(memory, search_data) query, args = self.get_query(search_data) self.search_data = search_data memids = [m[0] for m in memory._db_read(query, *args)] return [memory.get_mem_by_id(memid) for memid in memids] if __name__ == "__main__": filter_dict = { "ref_obj_range": {"minx": 3}, "memories_exact": {"create_time": 1}, "triples": [ {"pred_text": "has_tag", "obj_text": "cow"}, {"pred_text": "has_name", "obj_text": "eddie"}, ], }
craftassist-master
python/base_agent/memory_filters.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ """This file defines the DialogueStack class and helper functions to support it.""" import logging from base_agent.base_util import NextDialogueStep, ErrorWithResponse class DialogueStack(object): """This class represents a dialogue stack that holds DialogueObjects on it.""" def __init__(self, agent, memory): self.agent = agent self.memory = memory self.stack = [] def __getitem__(self, i): """Get the ith item on the stack """ return self.stack[i] def peek(self): """Get the item on top of the DialogueStack""" if self.stack: return self.stack[-1] else: return None def clear(self): """clear current stack""" self.old_stack = self.stack self.stack = [] def append(self, dialogue_object): """Append a dialogue_object to stack""" self.stack.append(dialogue_object) def append_new(self, cls, *args, **kwargs): """Construct a new DialogueObject and append to stack""" self.stack.append( cls(agent=self.agent, memory=self.memory, dialogue_stack=self, *args, **kwargs) ) def step(self): """Process and step through the top-of-stack dialogue object.""" if len(self.stack) > 0: # WARNING: check_finished increments the DialogueObject's current_step counter while len(self.stack) > 0 and self.stack[-1].check_finished(): del self.stack[-1] if len(self.stack) == 0: return try: output_chat, step_data = self.stack[-1].step() if output_chat: self.agent.send_chat(output_chat) # Update progeny_data of the current DialogueObject if len(self.stack) > 1 and step_data is not None: logging.info("Update progeny_data={} stack={}".format(step_data, self.stack)) self.stack[-2].update_progeny_data(step_data) except NextDialogueStep: return except ErrorWithResponse as err: self.stack[-1].finished = True self.agent.send_chat(err.chat) return def __len__(self): """Length of stack""" return len(self.stack)
craftassist-master
python/base_agent/dialogue_stack.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ ###TODO put dances back import gzip import logging import numpy as np import os import pickle import sqlite3 import uuid from itertools import zip_longest from typing import cast, Optional, List, Tuple, Sequence, Union from base_agent.base_util import XYZ, Time from base_agent.task import Task from base_agent.memory_filters import ReferenceObjectSearcher from base_agent.memory_nodes import ( # noqa TaskNode, PlayerNode, MemoryNode, ChatNode, TimeNode, LocationNode, ReferenceObjectNode, NamedAbstractionNode, NODELIST, ) SCHEMAS = [os.path.join(os.path.dirname(__file__), "memory_schema.sql")] # TODO when a memory is removed, its last state should be snapshotted to prevent tag weirdness class AgentMemory: def __init__( self, db_file=":memory:", schema_paths=SCHEMAS, db_log_path=None, nodelist=NODELIST, agent_time=None, ): if db_log_path: self._db_log_file = gzip.open(db_log_path + ".gz", "w") self._db_log_idx = 0 self.sql_queries = [] if os.path.isfile(db_file): os.remove(db_file) self.db = sqlite3.connect(db_file) self.task_db = {} self._safe_pickle_saved_attrs = {} self.init_time_interface(agent_time) for schema_path in schema_paths: with open(schema_path, "r") as f: self._db_script(f.read()) self.all_tables = [ c[0] for c in self._db_read("SELECT name FROM sqlite_master WHERE type='table';") ] self.nodes = {} for node in nodelist: self.nodes[node.NODE_TYPE] = node # create a "self" memory to reference in Triples self.self_memid = "0" * len(uuid.uuid4().hex) self._db_write( "INSERT INTO Memories VALUES (?,?,?,?,?,?)", self.self_memid, "Self", 0, 0, -1, False ) self.tag(self.self_memid, "_agent") self.tag(self.self_memid, "_self") self.ref_searcher = ReferenceObjectSearcher(self_memid=self.self_memid) def __del__(self): if getattr(self, "_db_log_file", None): self._db_log_file.close() def init_time_interface(self, agent_time=None): self.time = agent_time or Time() def get_time(self): return self.time.get_time() def get_world_time(self): return self.time.get_world_time() def add_tick(self, ticks=1): self.time.add_tick(ticks) # TODO list of all "updatable" mems, do a mem.update() ? def update(self, agent): pass ######################## ### Workspace memory ### ######################## def set_memory_updated_time(self, memid): self._db_write("UPDATE Memories SET updated_time=? WHERE uuid=?", self.get_time(), memid) def set_memory_attended_time(self, memid): self._db_write("UPDATE Memories SET attended_time=? WHERE uuid=?", self.get_time(), memid) def update_recent_entities(self, mems=[]): logging.info("update_recent_entities {}".format(mems)) for mem in mems: mem.update_recently_attended() # for now, no archives in recent entities def get_recent_entities(self, memtype, time_window=12000) -> List["MemoryNode"]: r = self._db_read( """SELECT uuid FROM Memories WHERE node_type=? AND attended_time >= ? and is_snapshot=0 ORDER BY attended_time DESC""", memtype, self.get_time() - time_window, ) return [self.get_mem_by_id(memid, memtype) for memid, in r] ############### ### General ### ############### def get_node_from_memid(self, memid: str) -> str: (r,) = self._db_read_one("SELECT node_type FROM Memories WHERE uuid=?", memid) return r def get_mem_by_id(self, memid: str, node_type: str = None) -> "MemoryNode": if node_type is None: node_type = self.get_node_from_memid(memid) if node_type is None: return MemoryNode(self, memid) return self.nodes.get(node_type, MemoryNode)(self, memid) # does not search archived mems for now def get_all_tagged_mems(self, tag: str) -> List["MemoryNode"]: memids = self.get_memids_by_tag(tag) return [self.get_mem_by_id(memid) for memid in memids] def check_memid_exists(self, memid: str, table: str) -> bool: return bool(self._db_read_one("SELECT * FROM {} WHERE uuid=?".format(table), memid)) # TODO forget should be a method of the memory object def forget(self, memid: str, hard=True): if not hard: self.add_triple(subj=memid, pred_text="has_tag", obj_text="_forgotten") else: self._db_write("DELETE FROM Memories WHERE uuid=?", memid) # TODO this less brutally. might want to remember some # triples where the subject or object has been removed # eventually we might have second-order relations etc, this could set # off a chain reaction self.remove_memid_triple(memid, role="both") ########################## ### ReferenceObjects ### ########################## def get_reference_objects(self, filter_dict): return self.ref_searcher.search(self, search_data=filter_dict) ################# ### Triples ### ################# # TODO should add a MemoryNode and a .create() def add_triple( self, subj: str = "", # this is a memid if given obj: str = "", # this is a memid if given subj_text: str = "", pred_text: str = "has_tag", obj_text: str = "", confidence: float = 1.0, ): """ adds (subj, pred, obj) triple to the triplestore. *_text is the name field of a NamedAbstraction; if such a NamedAbstraction does not exist, this builds it as a side effect. subj and obj can be memids or text, but pred_text is required """ assert subj or subj_text assert obj or obj_text assert not (subj and subj_text) assert not (obj and obj_text) memid = uuid.uuid4().hex pred = NamedAbstractionNode.create(self, pred_text) if not obj: obj = NamedAbstractionNode.create(self, obj_text) if not subj: subj = NamedAbstractionNode.create(self, subj_text) if not subj_text: subj_text = None # noqa T484 if not obj_text: obj_text = None # noqa T484 self._db_write( "INSERT INTO Triples VALUES (?, ?, ?, ?, ?, ?, ?, ?)", memid, subj, subj_text, pred, pred_text, obj, obj_text, confidence, ) def tag(self, subj_memid: str, tag_text: str): self.add_triple(subj=subj_memid, pred_text="has_tag", obj_text=tag_text) def untag(self, subj_memid: str, tag_text: str): self._db_write( 'DELETE FROM Triples WHERE subj=? AND pred_text="has_tag" AND obj_text=?', subj_memid, tag_text, ) # does not search archived mems for now # assumes tag is tag text def get_memids_by_tag(self, tag: str) -> List[str]: r = self._db_read( 'SELECT DISTINCT(Memories.uuid) FROM Memories INNER JOIN Triples as T ON T.subj=Memories.uuid WHERE T.pred_text="has_tag" AND T.obj_text=? AND Memories.is_snapshot=0', tag, ) return [x for (x,) in r] def get_tags_by_memid(self, subj_memid: str, return_text: bool = True) -> List[str]: if return_text: return_clause = "obj_text" else: return_clause = "obj" q = ( "SELECT DISTINCT(" + return_clause + ') FROM Triples WHERE pred_text="has_tag" AND subj=?' ) r = self._db_read(q, subj_memid) return [x for (x,) in r] # does not search archived mems for now # TODO clean up input? def get_triples( self, subj: str = None, obj: str = None, subj_text: str = None, pred_text: str = None, obj_text: str = None, return_obj_text: str = "if_exists", ) -> List[Tuple[str, str, str]]: """ gets triples from the triplestore. if return_obj_text == "if_exists", will return the obj_text if it exists, and the memid otherwise if return_obj_text == "always", returns the obj_text even if it is None if return_obj_text == "never", returns the obj memid subj is always returned as a memid even when searched as text. need at least one non-None part of the triple, and text should not not be input for a part of a triple where a memid is set """ assert any([subj or subj_text, pred_text, obj or obj_text]) # search by memid or by text, but not both assert not (subj and subj_text) assert not (obj and obj_text) pairs = [ ("subj", subj), ("subj_text", subj_text), ("pred_text", pred_text), ("obj", obj), ("obj_text", obj_text), ] args = [x[1] for x in pairs if x[1] is not None] where = [x[0] + "=?" for x in pairs if x[1] is not None] if len(where) == 1: where_clause = where[0] else: where_clause = " AND ".join(where) return_clause = "subj, pred_text, obj, obj_text " sql = ( "SELECT " + return_clause + "FROM Triples INNER JOIN Memories as M ON Triples.subj=M.uuid WHERE M.is_snapshot=0 AND " + where_clause ) r = self._db_read(sql, *args) # subj is always returned as memid, even if pred and obj are returned as text # pred is always returned as text if return_obj_text == "if_exists": l = [(s, pt, ot) if ot else (s, pt, o) for (s, pt, o, ot) in r] elif return_obj_text == "always": l = [(s, pt, ot) for (s, pt, o, ot) in r] else: l = [(s, pt, o) for (s, pt, o, ot) in r] return cast(List[Tuple[str, str, str]], l) def remove_memid_triple(self, memid: str, role="subj"): if role == "subj" or role == "both": self._db_write("DELETE FROM Triples WHERE subj=?", memid) if role == "obj" or role == "both": self._db_write("DELETE FROM Triples WHERE obj=?", memid) ############### ### Chats ### ############### def add_chat(self, speaker_memid: str, chat: str) -> str: return ChatNode.create(self, speaker_memid, chat) def get_chat_by_id(self, memid: str) -> "ChatNode": return ChatNode(self, memid) def get_recent_chats(self, n=1) -> List["ChatNode"]: """Return a list of at most n chats""" r = self._db_read("SELECT uuid FROM Chats ORDER BY time DESC LIMIT ?", n) return [ChatNode(self, m) for m, in reversed(r)] def get_most_recent_incoming_chat(self, after=-1) -> Optional["ChatNode"]: r = self._db_read_one( """ SELECT uuid FROM Chats WHERE speaker != ? AND time >= ? ORDER BY time DESC LIMIT 1 """, self.self_memid, after, ) if r: return ChatNode(self, r[0]) else: return None ################# ### Players ### ################# # TODO consolidate anything using eid def get_player_by_eid(self, eid) -> Optional["PlayerNode"]: r = self._db_read_one("SELECT uuid FROM ReferenceObjects WHERE eid=?", eid) if r: return PlayerNode(self, r[0]) else: return None def get_player_by_name(self, name) -> Optional["PlayerNode"]: r = self._db_read_one( 'SELECT uuid FROM ReferenceObjects WHERE ref_type="player" AND name=?', name ) # r = self._db_read_one("SELECT uuid FROM Players WHERE name=?", name) if r: return PlayerNode(self, r[0]) else: return None def get_players_tagged(self, *tags) -> List["PlayerNode"]: tags += ("_player",) memids = set.intersection(*[set(self.get_memids_by_tag(t)) for t in tags]) return [self.get_player_by_id(memid) for memid in memids] def get_player_by_id(self, memid) -> "PlayerNode": return PlayerNode(self, memid) ################### ### Locations ### ################### def add_location(self, xyz: XYZ) -> str: return LocationNode.create(self, xyz) def get_location_by_id(self, memid: str) -> "LocationNode": return LocationNode(self, memid) ############### ### Times ### ############### def add_time(self, t: int) -> str: return TimeNode.create(self, t) def get_time_by_id(self, memid: str) -> "TimeNode": return TimeNode(self, memid) # ############### # ### Sets ### # ############### # # def add_set(self, memid_list): # set_memid = SetNode.create(self) # self.add_objs_to_set(set_memid, memid_list) # return SetNode(self, set_memid) # # def add_objs_to_set(self, set_memid, memid_list): # for mid in memid_list: # self.add_triple(mid, "set_member_", set_memid) ############### ### Tasks ### ############### def task_stack_push( self, task: Task, parent_memid: str = None, chat_effect: bool = False ) -> "TaskNode": memid = TaskNode.create(self, task) # Relations if parent_memid: self.add_triple(subj=memid, pred_text="_has_parent_task", obj=parent_memid) if chat_effect: chat = self.get_most_recent_incoming_chat() assert chat is not None, "chat_effect=True with no incoming chats" self.add_triple(subj=chat.memid, pred_text="chat_effect_", obj=memid) # Return newly created object return TaskNode(self, memid) def task_stack_update_task(self, memid: str, task: Task): self._db_write("UPDATE Tasks SET pickled=? WHERE uuid=?", self.safe_pickle(task), memid) def task_stack_peek(self) -> Optional["TaskNode"]: r = self._db_read_one( """ SELECT uuid FROM Tasks WHERE finished_at < 0 AND paused = 0 ORDER BY created_at DESC LIMIT 1 """ ) if r: return TaskNode(self, r[0]) else: return None def task_stack_pop(self) -> Optional["TaskNode"]: """Return the 'TaskNode' of the stack head and mark finished""" mem = self.task_stack_peek() if mem is None: raise ValueError("Called task_stack_pop with empty stack") self._db_write("UPDATE Tasks SET finished_at=? WHERE uuid=?", self.get_time(), mem.memid) return mem def task_stack_pause(self) -> bool: """Pause the stack and return True iff anything was stopped""" return self._db_write("UPDATE Tasks SET paused=1 WHERE finished_at < 0") > 0 def task_stack_clear(self): self._db_write("DELETE FROM Tasks WHERE finished_at < 0") def task_stack_resume(self) -> bool: """Resume stopped tasks. Return True if there was something to resume.""" return self._db_write("UPDATE Tasks SET paused=0") > 0 def task_stack_find_lowest_instance( self, cls_names: Union[str, Sequence[str]] ) -> Optional["TaskNode"]: """Find and return the lowest item in the stack of the given class(es)""" names = [cls_names] if type(cls_names) == str else cls_names (memid,) = self._db_read_one( "SELECT uuid FROM Tasks WHERE {} ORDER BY created_at LIMIT 1".format( " OR ".join(["action_name=?" for _ in names]) ), *names, ) if memid is not None: return TaskNode(self, memid) else: return None def task_stack_get_all(self) -> List["TaskNode"]: r = self._db_read( """ SELECT uuid FROM Tasks WHERE paused=0 AND finished_at<0 ORDER BY created_at """ ) return [TaskNode(self, memid) for memid, in r] def get_last_finished_root_task(self, action_name: str = None, recency: int = None): q = """ SELECT uuid FROM Tasks WHERE finished_at >= ? {} ORDER BY created_at DESC """.format( " AND action_name=?" if action_name else "" ) if recency is None: recency = self.time.round_time(300) args: List = [self.get_time() - recency] if action_name: args.append(action_name) memids = [r[0] for r in self._db_read(q, *args)] for memid in memids: if self._db_read_one( "SELECT uuid FROM Triples WHERE pred_text='_has_parent_task' AND subj=?", memid ): # not a root task continue return TaskNode(self, memid) # raise ValueError("Called get_last_finished_root_task with no finished root tasks") def get_task_by_id(self, memid: str) -> "TaskNode": return TaskNode(self, memid) ################# ### Time ### ################# def hurry_up(self): if self.task_stack_peek() is None: return # send chat? task_mem = self.task_stack_peek() task_mem.task.hurry_up() self.task_stack_update_task(task_mem.memid, task_mem.task) def slow_down(self): if self.task_stack_peek() is None: return # send chat? task_mem = self.task_stack_peek() task_mem.task.slow_down() self.task_stack_update_task(task_mem.memid, task_mem.task) ######################### ### Database Access ### ######################### def _db_read(self, query, *args) -> List[Tuple]: args = tuple(a.item() if isinstance(a, np.number) else a for a in args) try: c = self.db.cursor() c.execute(query, args) query = query.replace("?", "{}").format(*args) if query not in self.sql_queries: self.sql_queries.append(query) r = c.fetchall() c.close() return r except: logging.error("Bad read: {} : {}".format(query, args)) raise def _db_read_one(self, query, *args) -> Tuple: args = tuple(a.item() if isinstance(a, np.number) else a for a in args) try: c = self.db.cursor() c.execute(query, args) query = query.replace("?", "{}").format(*args) if query not in self.sql_queries: self.sql_queries.append(query) r = c.fetchone() c.close() return r except: logging.error("Bad read: {} : {}".format(query, args)) raise def _db_write(self, query: str, *args) -> int: """Return the number of rows affected""" args = tuple(a.item() if isinstance(a, np.number) else a for a in args) try: c = self.db.cursor() c.execute(query, args) query = query.replace("?", "{}").format(*args) if query not in self.sql_queries: self.sql_queries.append(query) self.db.commit() c.close() self._write_to_db_log(query, *args) return c.rowcount except: logging.error("Bad write: {} : {}".format(query, args)) raise def _db_script(self, script: str): c = self.db.cursor() c.executescript(script) self.db.commit() c.close() self._write_to_db_log(script, no_format=True) #################### ### DB LOGGING ### #################### def get_db_log_idx(self): return self._db_log_idx def _write_to_db_log(self, s: str, *args, no_format=False): if not getattr(self, "_db_log_file", None): return # sub args in for ? split = s.split("?") final = b"" for sub, arg in zip_longest(split, args, fillvalue=""): final += str(sub).encode("utf-8") if type(arg) == str and arg != "": # put quotes around string args final += '"{}"'.format(arg).encode("utf-8") else: final += str(arg).encode("utf-8") # remove newlines, add semicolon if not no_format: final = final.strip().replace(b"\n", b" ") + b";\n" # write to file self._db_log_file.write(final) self._db_log_file.flush() self._db_log_idx += 1 ###################### ### MISC HELPERS ### ###################### def dump(self, sql_file, dict_memory_file=None): sql_file.write("\n".join(self.db.iterdump())) if dict_memory_file is not None: import io import pickle assert type(dict_memory_file) == io.BufferedWriter dict_memory = {"task_db": self.task_db} pickle.dump(dict_memory, dict_memory_file) def safe_pickle(self, obj): # little bit scary... if not hasattr(obj, "pickled_attrs_id"): if hasattr(obj, "memid"): obj.pickled_attrs_id = obj.memid else: try: obj.pickled_attrs_id = uuid.uuid4().hex except: pass for attr in ["memory", "agent_memory", "new_tasks_fn", "stop_condition", "movement"]: if hasattr(obj, attr): if self._safe_pickle_saved_attrs.get(obj.pickled_attrs_id) is None: self._safe_pickle_saved_attrs[obj.pickled_attrs_id] = {} val = getattr(obj, attr) delattr(obj, attr) setattr(obj, "__had_attr_" + attr, True) self._safe_pickle_saved_attrs[obj.pickled_attrs_id][attr] = val return pickle.dumps(obj) def safe_unpickle(self, bs): obj = pickle.loads(bs) if hasattr(obj, "pickled_attrs_id"): for attr in ["memory", "agent_memory", "new_tasks_fn", "stop_condition", "movement"]: if hasattr(obj, "__had_attr_" + attr): delattr(obj, "__had_attr_" + attr) setattr(obj, attr, self._safe_pickle_saved_attrs[obj.pickled_attrs_id][attr]) return obj
craftassist-master
python/base_agent/sql_memory.py
import os import sys sys.path.append(os.path.dirname(__file__))
craftassist-master
python/base_agent/__init__.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ class BaseAgent: def __init__(self, opts, name=None): self.opts = opts self.name = name or "bot" self.count = 0 self.init_memory() self.init_controller() self.init_perception() def start(self): while True: # count forever try: self.step() except Exception as e: self.handle_exception(e) def step(self): self.perceive() self.memory.update(self) # maybe place tasks on the stack, based on memory/perception self.controller_step() # step topmost task on stack self.task_step() self.count += 1 def perceive(self): """ Get information from the world and store it in memory. """ raise NotImplementedError def controller_step(self): """ interpret commands, carry out dialogues, etc. place tasks on the task stack. """ raise NotImplementedError def task_step(self): """ run the current task on the stack. interact with the world """ raise NotImplementedError def handle_exception(self, e): """ handle/log exceptions """ raise NotImplementedError
craftassist-master
python/base_agent/core.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np from memory_filters import ReferenceObjectSearcher, get_property_value from base_util import TICKS_PER_SEC, TICKS_PER_MINUTE, TICKS_PER_HOUR # attribute has function signature list(mems) --> list(float) class Attribute: def __init__(self, agent): self.agent = agent def __call__(self, mems): raise NotImplementedError("Implemented by subclass") class TableColumn(Attribute): def __init__(self, agent, attribute): super().__init__(agent) self.attribute = attribute def __call__(self, mems): return [get_property_value(self.agent.memory, mem, self.attribute) for mem in mems] class LinearExtentAttribute(Attribute): """ computes the (perhaps signed) length between two points in space. if "relative_direction"=="AWAY", unsigned length if "relative_direction" in ["LEFT", "RIGHT" ...] projected onto a special direction and signed. the "arrow" goes from "source" to "destination", e.g. if destination is more LEFT than source, "LEFT" will be positive if "relative_direction" in ["INSIDE", "OUTSIDE"], signed length is shifted towards zero so that 0 is at the boundary of the source. This is not implemented yet FIXME!! One of the two points in space is given by the positions of a reference object either given directly as a memory, or given as FILTERs to search the other is the list element input into the call """ def __init__(self, agent, location_data, mem=None, fixed_role="source"): super().__init__(agent) self.coordinate_transforms = agent.coordinate_transforms self.location_data = location_data self.fixed_role = fixed_role self.frame = location_data.get("frame") or "AGENT" # TODO generalize/formalize this # TODO: currently stores look vecs/orientations at creation, # build mechanism to update orientations, e.g. if giving directions # "first you turn left, then go 7 steps forward, turn right, go 7 steps forward" # need this in grammar too # TODO store fixed pitch/yaw etc. with arxiv memories, not raw try: if self.frame == "AGENT": # TODO handle this appropriately! yaw, pitch = agent.memory._db_read( "SELECT yaw, pitch FROM ReferenceObjects WHERE uuid=?", agent.memory.self_memid )[0] elif self.frame == "ABSOLUTE": yaw, pitch = self.coordinate_transforms.yaw_pitch( self.coordinate_transforms.DIRECTIONS["FRONT"] ) # this is another player/agent; it is assumed that the frame has been replaced with # with the eid of the player/agent else: # TODO error if eid not found; but then parent/helper should have caught it? # TODO error properly if eid is a ref object, but pitch or yaw are null yaw, pitch = agent.memory._db_read( "SELECT yaw, pitch FROM ReferenceObjects WHERE eid=?", self.frame )[0] except: # TODO handle this better raise Exception( "Unable to find the yaw, pitch in the given frame; maybe can't find the eid?" ) self.yaw = yaw self.pitch = pitch self.mem = mem self.searcher = "mem" # put a "NULL" mem in input to not build a searcher if not self.mem: d = self.location_data.get(fixed_role) if d: self.searchers = ReferenceObjectSearcher(search_data=d) def extent(self, source, destination): # source and destination are arrays in this function # arrow goes from source to destination: diff = np.subtract(source, destination) if self.location_data["relative_direction"] in ["INSIDE", "OUTSIDE"]: raise Exception("inside and outside not yet implemented in linear extent") if self.location_data["relative_direction"] in [ "LEFT", "RIGHT", "UP", "DOWN", "FRONT", "BACK", ]: reldir_vec = self.coordinate_transforms.DIRECTIONS[ self.location_data["relative_direction"] ] # this should be an inverse transform so we set inverted=True dir_vec = self.coordinate_transforms.transform( reldir_vec, self.yaw, self.pitch, inverted=True ) return diff @ dir_vec else: # AWAY return np.linalg.norm(diff) def __call__(self, mems): if not self.mem: fixed_mem = self.searcher.search(self.agent.memory) # FIXME!!! handle mem not found else: fixed_mem = self.mem # FIMXE TODO store and use an arxiv if we don't want position to track! if self.fixed_role == "source": return [self.extent(fixed_mem.get_pos(), mem.get_pos()) for mem in mems] else: return [self.extent(mem.get_pos(), fixed_mem.get_pos()) for mem in mems] # a value has a get_value() method; and get_value should not have # any inputs class ComparisonValue: def __init__(self, agent): self.agent = agent def get_value(self): raise NotImplementedError("Implemented by subclass") # TODO more composable less ugly, more ML friendly class ScaledValue(ComparisonValue): def __init__(self, value, scale): self.value = value self.scale = scale def get_value(self): return self.scale * self.value.get_value() # TODO feet, meters, inches, centimeters, degrees, etc. # each of these converts a measure into the agents internal units, # e.g. seconds/minutes/hours to ticks # inches/centimeters/feet to meters or blocks (assume 1 block in mc equals 1 meter in real world) conversion_factors = { "seconds": TICKS_PER_SEC, "minutes": TICKS_PER_MINUTE, "hours": TICKS_PER_HOUR, } def convert_comparison_value(comparison_value, unit): if not unit: return comparison_value assert conversion_factors.get(unit) return ScaledValue(comparison_value, conversion_factors[unit]) class FixedValue(ComparisonValue): def __init__(self, agent, value): super().__init__(agent) self.value = value def get_value(self): return self.value # TODO store more in memory, # or at least # make some TimeNodes as side effects # WARNING: elapsed mode uses get_time at construction as 0 class TimeValue(ComparisonValue): """ modes are elapsed, time, and world_time. if "elapsed" or "time" uses memory.get_time as timer if "elapsed", value is offset by time at creation if "world_time" uses memory.get_world_time """ def __init__(self, agent, mode="elapsed"): self.mode = mode self.offset = 0.0 if self.mode == "elapsed": self.offset = agent.memory.get_time() self.get_time = agent.memory.get_time elif self.mode == "time": self.get_time = agent.memory.get_time else: # world_time self.get_time = agent.memory.get_world_time def get_value(self): return self.get_time() - self.offset # TODO unit conversions? class MemoryColumnValue(ComparisonValue): def __init__(self, agent, search_data, mem=None): super().__init__(agent) self.search_data = search_data # TODO expand beyond ref objects self.mem = mem if not self.mem: self.searcher = ReferenceObjectSearcher(search_data=search_data) def get_value(self): if self.mem: return self.search_data["attribute"]([self.mem])[0] mems = self.searcher.search(self.agent.memory) if len(mems) > 0: # TODO/FIXME! deal with more than 1 better return self.search_data["attribute"](mems)[0] else: return class LinearExtentValue(ComparisonValue): # this is a linear extent with both source and destination filled. # e.g. "when you are as far from the house as the cow is from the house" # but NOT for "when the cow is 3 steps from the house" # in the latter case, one of the two entities will be given by the filters def __init__(self, agent, linear_exent_attribute, mem=None, search_data=None): super().__init__(agent) self.linear_extent_attribute = linear_exent_attribute assert mem or search_data self.searcher = None self.mem = mem if not self.mem: self.searcher = ReferenceObjectSearcher(search_data=search_data) def get_value(self): if self.mem: mems = [self.mem] else: mems = self.searcher.search(self.agent.memory) if len(mems) > 0: # TODO/FIXME! deal with more than 1 better return self.linear_extent_attribute(mems)[0] else: return class Condition: def __init__(self, agent): self.agent = agent def check(self) -> bool: raise NotImplementedError("Implemented by subclass") class NeverCondition(Condition): def __init__(self, agent): super().__init__(agent) self.name = "never" def check(self): return False class AndCondition(Condition): """ conditions should be an iterable""" def __init__(self, agent, conditions): super().__init__(agent) self.name = "and" self.conditions = conditions def check(self): for c in self.conditions: if not c.check(): return False return True class OrCondition(Condition): """ conditions should be an iterable""" def __init__(self, agent, conditions): super().__init__(agent) self.name = "or" self.conditions = conditions def check(self): for c in self.conditions: if c.check(): return True return False # start_time and end_time are in (0, 1) # 0 is sunrise, .5 is sunset def build_special_time_condition(agent, start_time, end_time, epsilon=0.01): value_left = TimeValue(agent, mode="world_time") if end_time > 0: start = Comparator( comparison_type="GREATER_THAN_EQUAL", value_left=value_left, value_right=start_time ) end = Comparator( comparison_type="LESS_THAN_EQUAL", value_left=value_left, value_right=end_time ) return AndCondition(agent, [start, end]) else: return Comparator( comparison_type="CLOSE_TO", value_left=value_left, value_right=start_time, epsilon=epsilon, ) # TODO make this more ML friendly? # eventually do "x minutes before condition"? how? # KEEPS state (did the event occur- starts timer then) class TimeCondition(Condition): """ if event is None, the timer starts now if event is not None, it should be a condition, timer starts on the condition being true This time condition is true when the comparator between timer (as value_left) and the comparator's value_right is true if comparator is a string, it should be "SUNSET" / "SUNRISE" / "DAY" / "NIGHT" / "AFTERNOON" / "MORNING" else it should be built in the parent, and the value_right should be commeasurable (properly scaled) """ def __init__(self, agent, comparator, event=None): super().__init__(agent) self.special = None self.event = event if type(comparator) is str: if comparator == "SUNSET": self.special = build_special_time_condition(agent, 0.5, -1) elif comparator == "SUNRISE": self.special = build_special_time_condition(agent, 0.0, -1) elif comparator == "MORNING": self.special = build_special_time_condition(agent, 0, 0.25) elif comparator == "AFTERNOON": self.special = build_special_time_condition(agent, 0.25, 0.5) elif comparator == "DAY": self.special = build_special_time_condition(agent, 0.0, 0.5) elif comparator == "NIGHT": self.special = build_special_time_condition(agent, 0.5, 1.0) else: raise NotImplementedError("unknown special time condition type: " + comparator) else: if not event: comparator.value_left = TimeValue(agent, mode="elapsed") self.comparator = comparator def check(self): if not self.event: return self.comparator.check() else: if self.event.check(): self.comparator.value_left = TimeValue(self.agent, mode="elapsed") self.event = None return self.comparator.check() class Comparator(Condition): def __init__( self, agent, comparison_type="EQUAL", value_left=None, value_right=None, epsilon=0 ): super().__init__(agent) self.comparison_type = comparison_type self.value_left = value_left self.value_right = value_right self.epsilon = epsilon # raise errors if no value left or right? # raise errors if strings compared with > < etc.? # FIXME handle type mismatches # TODO less types, use NotCondition # TODO MOD_EQUAL, MOD_CLOSE def check(self): value_left = self.value_left.get_value() value_right = self.value_right.get_value() if not self.value_left: return False if not value_right: return False if self.comparison_type == "GREATER_THAN_EQUAL": return value_left >= value_right elif self.comparison_type == "GREATER_THAN": return value_left > value_right elif self.comparison_type == "EQUAL": return value_left == value_right elif self.comparison_type == "NOT_EQUAL": return value_left != value_right elif self.comparison_type == "LESS_THAN": return value_left < value_right elif self.comparison_type == "CLOSE_TO": return abs(value_left - value_right) <= self.epsilon else: # self.comparison_type == "LESS_THAN_EQUAL": return value_left <= value_right
craftassist-master
python/base_agent/condition.py
""" Copyright (c) Facebook, Inc. and its affiliates. """ import copy import json import logging import os import re import spacy from typing import Tuple, Dict, Optional from glob import glob import sentry_sdk import preprocess from base_agent.memory_nodes import ProgramNode from base_agent.dialogue_manager import DialogueManager from base_agent.dialogue_objects import ( BotCapabilities, BotGreet, DialogueObject, Say, coref_resolve, process_spans, ) from mcevent import sio from post_process_logical_form import post_process_logical_form ###TODO wrap these, clean up # For QA model dirname = os.path.dirname(__file__) web_app_filename = os.path.join(dirname, "../craftassist/webapp_data.json") from base_util import hash_user sp = spacy.load("en_core_web_sm") class NSPDialogueManager(DialogueManager): def __init__(self, agent, dialogue_object_classes, opts): super(NSPDialogueManager, self).__init__(agent, None) # "dialogue_object_classes" should be a dict with keys # interpeter, get_memory, and put_memory; # the values are the corresponding classes self.dialogue_objects = dialogue_object_classes self.QA_model = None # the following are still scripted and are handled directly from here self.botCapabilityQuery = [ "what can you do", "what else can you do", "what do you know", "tell me what you can do", "what things can you do", "what are your capabilities", "show me what you can do", "what are you capable of", "help me", "help", "do something", ] safety_words_path = opts.ground_truth_data_dir + "safety.txt" if os.path.isfile(safety_words_path): self.safety_words = self.get_safety_words(safety_words_path) else: self.safety_words = [] # Load bot greetings greetings_path = opts.ground_truth_data_dir + "greetings.json" if os.path.isfile(greetings_path): self.botGreetings = json.load(open(greetings_path)) else: self.botGreetings = {"hello": ["hi", "hello", "hey"], "goodbye": ["bye"]} logging.info("using QA_model_path={}".format(opts.QA_nsp_model_path)) logging.info("using model_dir={}".format(opts.nsp_model_dir)) # Instantiate the QA model if opts.QA_nsp_model_path: from ttad.ttad_model.ttad_model_wrapper import ActionDictBuilder self.QA_model = ActionDictBuilder( opts.QA_nsp_model_path, embeddings_path=opts.nsp_embeddings_path, action_tree_path=opts.nsp_grammar_path, ) # Instantiate the main model if opts.nsp_data_dir is not None: from ttad.ttad_transformer_model.query_model import TTADBertModel as Model self.model = Model(model_dir=opts.nsp_model_dir, data_dir=opts.nsp_data_dir) self.debug_mode = False # if web_app option is enabled self.webapp_dict = {} self.web_app = opts.web_app if self.web_app: logging.info("web_app flag has been enabled") logging.info("writing to file: %r " % (web_app_filename)) # os.system("python ./python/craftassist/web_app_socket.py &") # ground_truth_data is the ground truth action dict from templated # generations and will be queried first if checked in. self.ground_truth_actions = {} if not opts.no_ground_truth: if os.path.isdir(opts.ground_truth_data_dir): files = glob(opts.ground_truth_data_dir + "datasets/*.txt") for dataset in files: with open(dataset) as f: for line in f.readlines(): text, logical_form = line.strip().split("|") clean_text = text.strip('"') self.ground_truth_actions[clean_text] = json.loads(logical_form) self.dialogue_object_parameters = { "agent": self.agent, "memory": self.agent.memory, "dialogue_stack": self.dialogue_stack, } @sio.on("queryParser") def query_parser(sid, data): logging.info("inside query parser.....") logging.info(data) x = self.get_logical_form(s=data["chat"], model=self.model) logging.info(x) payload = {"action_dict": x} sio.emit("render_parser_output", payload) def add_to_dict(self, chat_message, action_dict): # , text): print("adding %r dict for message : %r" % (action_dict, chat_message)) self.webapp_dict[chat_message] = {"action_dict": action_dict} # , "text": text} with open(web_app_filename, "w") as f: json.dump(self.webapp_dict, f) def maybe_get_dialogue_obj(self, chat: Tuple[str, str]) -> Optional[DialogueObject]: """Process a chat and maybe modify the dialogue stack""" if len(self.dialogue_stack) > 0 and self.dialogue_stack[-1].awaiting_response: return None # chat is a single line command speaker, chatstr = chat preprocessed_chatstrs = preprocess.preprocess_chat(chatstr) # Push appropriate DialogueObjects to stack if incomign chat # is one of the scripted ones if any([chat in self.botCapabilityQuery for chat in preprocessed_chatstrs]): return BotCapabilities(**self.dialogue_object_parameters) for greeting_type in self.botGreetings: if any([chat in self.botGreetings[greeting_type] for chat in preprocessed_chatstrs]): return BotGreet(greeting_type, **self.dialogue_object_parameters) # NOTE: preprocessing in model code is different, this shouldn't break anything logical_form = self.get_logical_form(s=preprocessed_chatstrs[0], model=self.model) return self.handle_logical_form(speaker, logical_form, preprocessed_chatstrs[0]) def handle_logical_form(self, speaker: str, d: Dict, chatstr: str) -> Optional[DialogueObject]: """Return the appropriate DialogueObject to handle an action dict "d" "d" should have spans resolved by corefs not yet resolved to a specific MemoryObject """ coref_resolve(self.agent.memory, d, chatstr) logging.info('logical form post-coref "{}" -> {}'.format(hash_user(speaker), d)) ProgramNode.create(self.agent.memory, d) if d["dialogue_type"] == "NOOP": return Say("I don't know how to answer that.", **self.dialogue_object_parameters) elif d["dialogue_type"] == "HUMAN_GIVE_COMMAND": return self.dialogue_objects["interpreter"]( speaker, d, **self.dialogue_object_parameters ) elif d["dialogue_type"] == "PUT_MEMORY": return self.dialogue_objects["put_memory"]( speaker, d, **self.dialogue_object_parameters ) elif d["dialogue_type"] == "GET_MEMORY": logging.info("this model out: %r" % (d)) logging.info("querying QA model now") if self.QA_model: QA_model_d = self.get_logical_form( s=chatstr, model=self.QA_model, chat_as_list=True ) logging.info("QA model out: %r" % (QA_model_d)) if ( QA_model_d["dialogue_type"] != "GET_MEMORY" ): # this happens sometimes when new model sayas its an Answer action but previous says noop return Say( "I don't know how to answer that.", **self.dialogue_object_parameters ) return self.dialogue_objects["get_memory"]( speaker, QA_model_d, **self.dialogue_object_parameters ) else: return self.dialogue_objects["get_memory"]( speaker, d, **self.dialogue_object_parameters ) else: raise ValueError("Bad dialogue_type={}".format(d["dialogue_type"])) def get_logical_form(self, s: str, model, chat_as_list=False) -> Dict: """Query model to get the logical form""" if s in self.ground_truth_actions: d = self.ground_truth_actions[s] logging.info('Found gt action for "{}"'.format(s)) else: logging.info("Querying the semantic parsing model") if chat_as_list: d = model.parse([s]) else: d = model.parse(chat=s) # self.ttad_model.parse(chat=s) # perform lemmatization on the chat logging.info('chat before lemmatization "{}"'.format(s)) lemmatized_chat = sp(s) chat = " ".join(str(word.lemma_) for word in lemmatized_chat) logging.info('chat after lemmatization "{}"'.format(chat)) # Get the words from indices in spans process_spans(d, re.split(r" +", s), re.split(r" +", chat)) logging.info('ttad pre-coref "{}" -> {}'.format(chat, d)) # web app if self.web_app: # get adtt output # t = "" # try: # t = adtt.adtt(d) # except: # t = "" self.add_to_dict(chat_message=s, action_dict=d) # log to sentry sentry_sdk.capture_message( json.dumps({"type": "ttad_pre_coref", "in_original": s, "out": d}) ) sentry_sdk.capture_message( json.dumps({"type": "ttad_pre_coref", "in_lemmatized": chat, "out": d}) ) logging.info('logical form before grammar update "{}'.format(d)) d = post_process_logical_form(copy.deepcopy(d)) logging.info('logical form after grammar fix "{}"'.format(d)) return d
craftassist-master
python/base_agent/nsp_dialogue_manager.py
import uuid import ast from typing import Optional, List, Dict, cast from base_util import XYZ, POINT_AT_TARGET, to_player_struct from task import Task class MemoryNode: TABLE_COLUMNS = ["uuid"] PROPERTIES_BLACKLIST = ["agent_memory", "forgetme"] NODE_TYPE: Optional[str] = None @classmethod def new(cls, agent_memory, snapshot=False) -> str: memid = uuid.uuid4().hex t = agent_memory.get_time() agent_memory._db_write( "INSERT INTO Memories VALUES (?,?,?,?,?,?)", memid, cls.NODE_TYPE, t, t, t, snapshot ) return memid def __init__(self, agent_memory, memid: str): self.agent_memory = agent_memory self.memid = memid def get_tags(self) -> List[str]: return self.agent_memory.get_tags_by_memid(self.memid) def get_properties(self) -> Dict[str, str]: blacklist = self.PROPERTIES_BLACKLIST + self._more_properties_blacklist() return {k: v for k, v in self.__dict__.items() if k not in blacklist} def update_recently_attended(self) -> None: self.agent_memory.set_memory_attended_time(self.memid) self.snapshot(self.agent_memory) def _more_properties_blacklist(self) -> List[str]: """Override in subclasses to add additional keys to the properties blacklist""" return [] def snapshot(self, agent_memory): """Override in subclasses if necessary to properly snapshot.""" read_cmd = "SELECT " for r in self.TABLE_COLUMNS: read_cmd += r + ", " read_cmd = read_cmd.strip(", ") read_cmd += " FROM " + self.TABLE + " WHERE uuid=?" data = agent_memory._db_read_one(read_cmd, self.memid) if not data: raise ("tried to snapshot nonexistent memory") archive_memid = self.new(agent_memory, snapshot=True) new_data = list(data) new_data[0] = archive_memid if hasattr(self, "ARCHIVE_TABLE"): archive_table = self.ARCHIVE_TABLE else: archive_table = self.TABLE write_cmd = "INSERT INTO " + archive_table + "(" qs = "" for r in self.TABLE_COLUMNS: write_cmd += r + ", " qs += "?, " write_cmd = write_cmd.strip(", ") write_cmd += ") VALUES (" + qs.strip(", ") + ")" agent_memory._db_write(write_cmd, *new_data) link_archive_to_mem(agent_memory, self.memid, archive_memid) def link_archive_to_mem(agent_memory, memid, archive_memid): agent_memory.add_triple(subj=archive_memid, pred_text="_archive_of", obj=memid) agent_memory.add_triple(subj=memid, pred_text="_has_archive", obj=archive_memid) class ProgramNode(MemoryNode): """represents logical forms (outputs from the semantic parser)""" TABLE_COLUMNS = ["uuid", "logical_form"] TABLE = "Programs" NODE_TYPE = "Program" def __init__(self, agent_memory, memid: str): super().__init__(agent_memory, memid) text = self.agent_memory._db_read_one( "SELECT logical_form FROM Programs WHERE uuid=?", self.memid ) self.logical_form = ast.literal_eval(text) @classmethod def create(cls, memory, logical_form, snapshot=False) -> str: memid = cls.new(memory, snapshot=snapshot) memory._db_write( "INSERT INTO Programs(uuid, logical_form) VALUES (?,?)", memid, format(logical_form) ) return memid class NamedAbstractionNode(MemoryNode): """a abstract concept with a name, to be used in triples""" TABLE_COLUMNS = ["uuid", "name"] TABLE = "NamedAbstractions" NODE_TYPE = "NamedAbstraction" def __init__(self, agent_memory, memid: str): super().__init__(agent_memory, memid) name = self.agent_memory._db_read_one( "SELECT name FROM NamedAbstractions WHERE uuid=?", self.memid ) self.name = name @classmethod def create(cls, memory, name, snapshot=False) -> str: memid = memory._db_read_one("SELECT uuid FROM NamedAbstractions WHERE name=?", name) if memid: return memid[0] memid = cls.new(memory, snapshot=snapshot) memory._db_write("INSERT INTO NamedAbstractions(uuid, name) VALUES (?,?)", memid, name) return memid # the table entry just has the memid and a modification time, # actual set elements are handled as triples class SetNode(MemoryNode): """ for representing sets of objects, so that it is easier to build complex relations using RDF/triplestore format. is currently fetal- not used in main codebase yet """ TABLE_COLUMNS = ["uuid"] TABLE = "SetMems" NODE_TYPE = "Set" def __init__(self, agent_memory, memid: str): super().__init__(agent_memory, memid) # FIXME put the member triples @classmethod def create(cls, memory, snapshot=False) -> str: memid = cls.new(memory, snapshot=snapshot) memory._db_write("INSERT INTO SetMems(uuid) VALUES (?)", memid, memory.get_time()) return memid def get_members(self): return self.agent_memory.get_triples(pred_text="set_member_", obj=self.memid) def snapshot(self, agent_memory): return SetNode.create(agent_memory, snapshot=True) class ReferenceObjectNode(MemoryNode): """ generic memory node for anything that has a spatial location and can be used a spatial reference (e.g. to the left of the x).""" TABLE = "ReferenceObjects" NODE_TYPE = "ReferenceObject" ARCHIVE_TABLE = "ArchivedReferenceObjects" def get_pos(self) -> XYZ: raise NotImplementedError("must be implemented in subclass") def get_point_at_target(self) -> POINT_AT_TARGET: raise NotImplementedError("must be implemented in subclass") def get_bounds(self): raise NotImplementedError("must be implemented in subclass") class PlayerNode(ReferenceObjectNode): """ represents humans and other agents that can affect the world """ TABLE_COLUMNS = ["uuid", "eid", "name", "x", "y", "z", "pitch", "yaw", "ref_type"] NODE_TYPE = "Player" def __init__(self, agent_memory, memid: str): super().__init__(agent_memory, memid) eid, name, x, y, z, pitch, yaw = self.agent_memory._db_read_one( "SELECT eid, name, x, y, z, pitch, yaw FROM ReferenceObjects WHERE uuid=?", self.memid ) self.eid = eid self.name = name self.pos = (x, y, z) self.pitch = pitch self.yaw = yaw @classmethod def create(cls, memory, player_struct) -> str: memid = cls.new(memory) memory._db_write( "INSERT INTO ReferenceObjects(uuid, eid, name, x, y, z, pitch, yaw, ref_type) VALUES (?,?,?,?,?,?,?,?,?)", memid, player_struct.entityId, player_struct.name, player_struct.pos.x, player_struct.pos.y, player_struct.pos.z, player_struct.look.pitch, player_struct.look.yaw, "player", ) memory.tag(memid, "_player") memory.tag(memid, "_physical_object") memory.tag(memid, "_animate") # this is a hack until memory_filters does "not" memory.tag(memid, "_not_location") return memid @classmethod def update(cls, memory, p, memid) -> str: cmd = "UPDATE ReferenceObjects SET eid=?, name=?, x=?, y=?, z=?, pitch=?, yaw=? WHERE " cmd = cmd + "uuid=?" memory._db_write( cmd, p.entityId, p.name, p.pos.x, p.pos.y, p.pos.z, p.look.pitch, p.look.yaw, memid ) return memid def get_pos(self) -> XYZ: x, y, z = self.agent_memory._db_read_one( "SELECT x, y, z FROM ReferenceObjects WHERE uuid=?", self.memid ) self.pos = (x, y, z) return self.pos # TODO: use a smarter way to get point_at_target def get_point_at_target(self) -> POINT_AT_TARGET: x, y, z = self.pos # use the block above the player as point_at_target return cast(POINT_AT_TARGET, (x, y + 1, z, x, y + 1, z)) def get_bounds(self): x, y, z = self.pos return x, x, y, y, z, z def get_struct(self): return to_player_struct(self.pos, self.yaw, self.pitch, self.eid, self.name) class SelfNode(PlayerNode): """special PLayerNode for representing the agent's self""" TABLE_COLUMNS = ["uuid", "eid", "name", "x", "y", "z", "pitch", "yaw", "ref_type"] NODE_TYPE = "Self" # locations should always be archives? class LocationNode(ReferenceObjectNode): """ReferenceObjectNode representing a raw location (a point in space) """ TABLE_COLUMNS = ["uuid", "x", "y", "z", "ref_type"] NODE_TYPE = "Location" def __init__(self, agent_memory, memid: str): super().__init__(agent_memory, memid) x, y, z = self.agent_memory._db_read_one( "SELECT x, y, z FROM ReferenceObjects WHERE uuid=?", self.memid ) self.location = (x, y, z) self.pos = (x, y, z) @classmethod def create(cls, memory, xyz: XYZ) -> str: memid = cls.new(memory) memory._db_write( "INSERT INTO ReferenceObjects(uuid, x, y, z, ref_type) VALUES (?, ?, ?, ?, ?)", memid, xyz[0], xyz[1], xyz[2], "location", ) return memid def get_bounds(self): x, y, z = self.pos return x, x, y, y, z, z def get_pos(self) -> XYZ: return self.pos def get_point_at_target(self) -> POINT_AT_TARGET: x, y, z = self.pos return cast(POINT_AT_TARGET, (x, y, z, x, y, z)) # locations should always be archives? class AttentionNode(LocationNode): """ReferenceObjectNode representing spatial attention""" TABLE_COLUMNS = ["uuid", "x", "y", "z", "type_name", "ref_type"] NODE_TYPE = "Attention" def __init__(self, agent_memory, memid: str): super().__init__(agent_memory, memid) # we use the type_name field to store whose attention it is attender = self.agent_memory._db_read_one( "SELECT type_name FROM ReferenceObjects WHERE uuid=?", self.memid ) self.attender = attender @classmethod def create(cls, memory, xyz: XYZ, attender=None) -> str: memid = cls.new(memory) memory._db_write( "INSERT INTO ReferenceObjects(uuid, x, y, z, type_name, ref_type) VALUES (?, ?, ?, ?, ?, ?)", memid, xyz[0], xyz[1], xyz[2], attender, "attention", ) return memid class TimeNode(MemoryNode): """represents a temporal 'location' """ TABLE_COLUMNS = ["uuid", "time"] TABLE = "Times" NODE_TYPE = "Time" def __init__(self, agent_memory, memid: str): super().__init__(agent_memory, memid) t = self.agent_memory._db_read_one("SELECT time FROM Times WHERE uuid=?", self.memid) self.time = t @classmethod def create(cls, memory, time: int) -> str: memid = cls.new(memory) memory._db_write("INSERT INTO Times(uuid, time) VALUES (?, ?)", memid, time) return memid class ChatNode(MemoryNode): """represents a chat/utterance from another agent/human """ TABLE_COLUMNS = ["uuid", "speaker", "chat", "time"] TABLE = "Chats" NODE_TYPE = "Time" def __init__(self, agent_memory, memid: str): super().__init__(agent_memory, memid) speaker, chat_text, time = self.agent_memory._db_read_one( "SELECT speaker, chat, time FROM Chats WHERE uuid=?", self.memid ) self.speaker_id = speaker self.chat_text = chat_text self.time = time @classmethod def create(cls, memory, speaker: str, chat: str) -> str: memid = cls.new(memory) memory._db_write( "INSERT INTO Chats(uuid, speaker, chat, time) VALUES (?, ?, ?, ?)", memid, speaker, chat, memory.get_time(), ) return memid class TaskNode(MemoryNode): """ represents a task object that was placed on the agent's task_stack """ TABLE_COLUMNS = ["uuid", "action_name", "pickled", "paused", "created_at", "finished_at"] TABLE = "Tasks" NODE_TYPE = "Task" def __init__(self, agent_memory, memid: str): super().__init__(agent_memory, memid) pickled, created_at, finished_at, action_name = self.agent_memory._db_read_one( "SELECT pickled, created_at, finished_at, action_name FROM Tasks WHERE uuid=?", memid ) self.task = self.agent_memory.safe_unpickle(pickled) self.created_at = created_at self.finished_at = finished_at self.action_name = action_name @classmethod def create(cls, memory, task: Task) -> str: memid = cls.new(memory) task.memid = memid # FIXME: this shouldn't be necessary, merge Task and TaskNode? memory._db_write( "INSERT INTO Tasks (uuid, action_name, pickled, created_at) VALUES (?,?,?,?)", memid, task.__class__.__name__, memory.safe_pickle(task), memory.get_time(), ) return memid def get_chat(self) -> Optional[ChatNode]: """Return the memory of the chat that caused this task's creation, or None""" triples = self.agent_memory.get_triples(pred_text="chat_effect_", obj=self.memid) if triples: chat_id, _, _ = triples[0] return ChatNode(self.agent_memory, chat_id) else: return None def get_parent_task(self) -> Optional["TaskNode"]: """Return the 'TaskNode' of the parent task, or None""" triples = self.agent_memory.get_triples(subj=self.memid, pred_text="_has_parent_task") if len(triples) == 0: return None elif len(triples) == 1: _, _, parent_memid = triples[0] return TaskNode(self.agent_memory, parent_memid) else: raise AssertionError("Task {} has multiple parents: {}".format(self.memid, triples)) def get_root_task(self) -> Optional["TaskNode"]: mem = self parent = self.get_parent_task() while parent is not None: mem = parent parent = mem.get_parent_task() return mem def get_child_tasks(self) -> List["TaskNode"]: """Return tasks that were spawned beause of this task""" r = self.agent_memory.get_triples(pred_text="_has_parent_task", obj=self.memid) memids = [m for m, _, _ in r] return [TaskNode(self.agent_memory, m) for m in memids] def all_descendent_tasks(self, include_root=False) -> List["TaskNode"]: """Return a list of 'TaskNode' objects whose _has_parent_task root is this task If include_root is True, include this node in the list. Tasks are returned in the order they were finished. """ descendents = [] q = [self] while q: task = q.pop() children = task.get_child_tasks() descendents.extend(children) q.extend(children) if include_root: descendents.append(self) return sorted(descendents, key=lambda t: t.finished_at) def __repr__(self): return "<TaskNode: {}>".format(self.task) # list of nodes to register in memory NODELIST = [ TaskNode, ChatNode, LocationNode, AttentionNode, SetNode, TimeNode, PlayerNode, SelfNode, ProgramNode, NamedAbstractionNode, ]
craftassist-master
python/base_agent/memory_nodes.py
""" Copyright (c) Facebook, Inc. and its affiliates. The current control flow of dialogue is: 1. A chat comes in and Dialogue manager reads it or the bot triggers a dialogue because of memory/perception/task state 2. The dialogue manager puts a DialogueObject on the DialogueStack. 3. The DialogueStack calls .step() which in turn calls the DialogueObject.step() that performs some action as implemented in the step method. The step could also possibly interact with the agent's memory. And finally the step() makes a call and decides if the DialogueObject is finished. - The step() returns a string: maybe_chat, a dict: maybe_data. - The step()'s outputs are read by the manager which can decide to put another DialogueObject on the stack. The maybe_data from the output of the dialogue object's step() can contain a 'push' key; this overrides the manager's decision on what to push to the stack. Control flow for interpreter and clarification: The interpreter is also a kind of DialogueObject, and a clarification step is the interpreter returning control to the DialogueManager, which pushes a ConfirmTask or ConfirmReferenceObject as a DialogueObject onto the DialogueStack. The manager takes as an input: the agent and the model used for manager. It creates a DialogueStack. agent_mem, dialogue_stack, dialogue_object_data, where dialogue_object_data is for explicit commands to force the manager to return a specific Dialogue object to put on the stack. """ import logging from typing import Tuple, Optional from dialogue_stack import DialogueStack from .dialogue_objects import DialogueObject, Say class DialogueManager(object): def __init__(self, agent, model): self.agent = agent self.dialogue_stack = DialogueStack(agent, agent.memory) self.model = model def get_safety_words(self, safety_words_path): """Read a list of safety words to prevent abuse.""" with open(safety_words_path) as f: safety_lines = f.readlines() safety_words = [] for l in safety_lines: w = l.strip("\n").lower() if w != "" and w[0] != "<" and w[0] != "#": safety_words.append(w) return safety_words def is_safe(self, string): safety_set = set(self.safety_words) cmd_set = set(string.lower().split()) notsafe = len(cmd_set & safety_set) > 0 return not notsafe # the dialogue manager model should access the task stack and chat history # through the agent's memory, adding the most recent chat here as convenience # maybe add a get_new_chat to memory and don't pass? # chat is a (speaker, str) tuple def step(self, chat: Tuple[str, str]): # check safety if not self.is_safe(chat[1]): self.dialogue_stack.append_new(Say, "Please don't be rude.") return if chat[1]: logging.info("Dialogue stack pre-run_model: {}".format(self.dialogue_stack.stack)) # NOTE: the model is responsible for not putting a new # object on the stack if it sees that whatever is on # the stack should continue. # TODO: Maybe we need a HoldOn dialogue object? obj = self.maybe_get_dialogue_obj(chat) if obj is not None: self.dialogue_stack.append(obj) # Always call dialogue_stack.step(), even if chat is empty if len(self.dialogue_stack) > 0: self.dialogue_stack.step() def maybe_get_dialogue_obj(self, chat: Tuple[str, str]) -> Optional[DialogueObject]: raise NotImplementedError("Must implement maybe_get_dialogue_object in subclass")
craftassist-master
python/base_agent/dialogue_manager.py