python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.zero_shot_intent_recognition.zero_shot_intent_model import ZeroShotIntentModel
NeMo-main
nemo/collections/nlp/models/zero_shot_intent_recognition/__init__.py
# Copyright 2018 The HuggingFace Inc. team. # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict, List, Optional, Union import numpy as np import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from nemo.collections.nlp.data.zero_shot_intent_recognition.zero_shot_intent_dataset import ( ZeroShotIntentDataset, ZeroShotIntentInferenceDataset, calc_class_weights_from_dataloader, ) from nemo.collections.nlp.models import TextClassificationModel from nemo.core.classes.common import PretrainedModelInfo from nemo.utils import logging __all__ = ['ZeroShotIntentModel'] class ZeroShotIntentModel(TextClassificationModel): """TextClassificationModel to be trained on two- or three-class textual entailment data, to be used for zero shot intent recognition.""" def __init__(self, cfg: DictConfig, trainer: Trainer = None): super().__init__(cfg=cfg, trainer=trainer) def _setup_dataloader_from_config(self, cfg: DictConfig) -> 'torch.utils.data.DataLoader': data_dir = self._cfg.dataset.data_dir file_name = cfg.file_name input_file = os.path.join(data_dir, file_name) if not os.path.exists(input_file): raise FileNotFoundError( f"File {input_file} not found. Please check file paths and file names in the config." ) dataset = ZeroShotIntentDataset( file_path=input_file, tokenizer=self.tokenizer, max_seq_length=self._cfg.dataset.max_seq_length, sent1_col=self._cfg.dataset.sentence_1_column, sent2_col=self._cfg.dataset.sentence_2_column, label_col=self._cfg.dataset.label_column, num_classes=self.cfg.dataset.num_classes, use_cache=self._cfg.dataset.use_cache, ) return torch.utils.data.DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=cfg.get("num_workers", 0), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) def setup_training_data(self, train_data_config: Optional[DictConfig]): if not train_data_config or not train_data_config.file_name: logging.info( f"Dataloader config or file_name for the training set is missing, so no data loader for test is created!" ) self._test_dl = None return self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config) # calculate the class weights to be used in the loss function if self.cfg.dataset.class_balancing == 'weighted_loss': self.class_weights = calc_class_weights_from_dataloader( self._train_dl, self.cfg.dataset.num_classes, self.cfg.dataset.data_dir ) else: self.class_weights = None # we need to create/update the loss module by using the weights calculated from the training data self.create_loss_module() def setup_validation_data(self, val_data_config: Optional[DictConfig]): if not val_data_config or not val_data_config.file_name: logging.info( f"Dataloader config or file_path for the validation data set is missing, so no data loader for test is created!" ) self._test_dl = None return self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig]): if not test_data_config or not test_data_config.file_name: logging.info( f"Dataloader config or file_path for the test data set is missing, so no data loader for test is created!" ) self._test_dl = None return self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config) def _setup_infer_dataloader( self, queries: List[str], candidate_labels: List[str], hypothesis_template=str, batch_size=1, max_seq_length: int = -1, ) -> 'torch.utils.data.DataLoader': """ Setup method for inference data loader. Here the premise-hypothesis pairs are made from queries and candidate labels. Args: queries: the queries to classify candidate_labels: strings to be used as labels hypothesis_template: the template used to turn each label into an NLI-style hypothesis. Must include a {} or similar syntax for the candidate label to be inserted. batch_size: batch size to use during inference max_seq_length: maximum length of queries, default is -1 for no limit Returns: A pytorch DataLoader. """ dataset = ZeroShotIntentInferenceDataset( queries=queries, candidate_labels=candidate_labels, tokenizer=self.tokenizer, max_seq_length=max_seq_length, hypothesis_template=hypothesis_template, ) return torch.utils.data.DataLoader( dataset=dataset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=False, drop_last=False, collate_fn=dataset.collate_fn, ) def predict( self, queries: Union[str, List[str]], candidate_labels: Union[str, List[str]], hypothesis_template='This example is {}.', batch_size=1, multi_label=True, entailment_idx=1, contradiction_idx=0, ) -> List[Dict]: """ Given a list of queries and a list of candidate labels, return a ranked list of labels and scores for each query. Example usage: queries = ["I'd like a veggie burger, fries, and a coke", "Turn off the lights in the living room",] candidate_labels = ["Food order", "Change lighting"] model.predict(queries, candidate_labels) Example output: [{'sentence': "I'd like a veggie burger, fries, and a coke", 'labels': ['Food order', 'Change lighting'], 'scores': [0.8557153344154358, 0.12036784738302231]}, {'sentence': 'Turn off the lights in the living room', 'labels': ['Change lighting', 'Food order'], 'scores': [0.8506497144699097, 0.06594637036323547]}] Args: queries: the query or list of queries to classify candidate_labels: string or list of strings to be used as labels hypothesis_template: the template used to turn each label into an NLI-style hypothesis. Must include a {} or similar syntax for the candidate label to be inserted. batch_size: the batch size to use for inference. multi_label: whether or not multiple candidate labels can be true. If False, the scores are normalized such that all class probabilities sum to 1. If True, the labels are considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment score vs. the contradiction score. entailment_idx: the index of the "entailment" class in the trained model; models trained on MNLI using NeMo's glue_benchmark.py or zero_shot_intent_model.py use an index of 1 by default. contradiction_idx: the index of the "contradiction" class in the trained model; models trained on MNLI using NeMo's glue_benchmark.py or zero_shot_intent_model.py use an index of 0 by default. Returns: list of dictionaries; one dict per input query. Each dict has keys "sentence", "labels", "scores". labels and scores are parallel lists (with each score corresponding to the label at the same index), sorted from highest to lowest score. """ if not queries: raise ValueError("No queries were passed for classification!") if not candidate_labels: raise ValueError("No candidate labels were provided!") queries = [queries] if isinstance(queries, str) else queries candidate_labels = [candidate_labels] if isinstance(candidate_labels, str) else candidate_labels if len(candidate_labels) == 1: multi_label = True mode = self.training try: device = 'cuda' if torch.cuda.is_available() else 'cpu' # Switch model to evaluation mode self.eval() self.to(device) infer_datalayer = self._setup_infer_dataloader( queries, candidate_labels, hypothesis_template=hypothesis_template, batch_size=batch_size, max_seq_length=self._cfg.dataset.max_seq_length, ) all_batch_logits = [] for batch in infer_datalayer: input_ids, input_type_ids, input_mask, _ = batch logits = self.forward( input_ids=input_ids.to(device), token_type_ids=input_type_ids.to(device), attention_mask=input_mask.to(device), ) all_batch_logits.append(logits.detach().cpu().numpy()) all_logits = np.concatenate(all_batch_logits) outputs = all_logits.reshape((len(queries), len(candidate_labels), -1)) if not multi_label: # softmax the "entailment" logits over all candidate labels entail_logits = outputs[..., entailment_idx] scores = np.exp(entail_logits) / np.exp(entail_logits).sum(-1, keepdims=True) else: # softmax over the entailment vs. contradiction dim for each label independently entail_contr_logits = outputs[..., [contradiction_idx, entailment_idx]] scores = np.exp(entail_contr_logits) / np.exp(entail_contr_logits).sum(-1, keepdims=True) scores = scores[..., 1] result = [] for i in range(len(queries)): sorted_idxs = list(reversed(scores[i].argsort())) result.append( { "sentence": queries[i], "labels": [candidate_labels[j] for j in sorted_idxs], "scores": scores[i][sorted_idxs].tolist(), } ) finally: # set mode back to its original value self.train(mode=mode) return result @classmethod def list_available_models(cls) -> List[PretrainedModelInfo]: """ This method returns a list of pre-trained models which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] result.append( PretrainedModelInfo( pretrained_model_name="zeroshotintent_en_bert_base_uncased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/zeroshotintent_en_bert_base_uncased/versions/1.4.1/files/zeroshotintent_en_bert_base_uncased.nemo", description="ZeroShotIntentModel trained by fine tuning BERT-base-uncased on the MNLI (Multi-Genre Natural Language Inference) dataset, which achieves an accuracy of 84.9% and 84.8% on the matched and mismatched dev sets, respectively.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="zeroshotintent_en_megatron_uncased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/zeroshotintent_en_megatron_uncased/versions/1.4.1/files/zeroshotintent_en_megatron_uncased.nemo", description="ZeroShotIntentModel trained by fine tuning Megatron-BERT-345m=M-uncased on the MNLI (Multi-Genre Natural Language Inference) dataset, which achieves an accuracy of 90.0% and 89.9% on the matched and mismatched dev sets, respectively", ) ) return result
NeMo-main
nemo/collections/nlp/models/zero_shot_intent_recognition/zero_shot_intent_model.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from transformers import AutoTokenizer from nemo.collections.common.losses import MultiSimilarityLoss from nemo.collections.nlp.data import EntityLinkingDataset from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.core.classes.common import typecheck from nemo.core.classes.exportable import Exportable from nemo.core.neural_types import LogitsType, NeuralType from nemo.utils import logging __all__ = ['EntityLinkingModel'] class EntityLinkingModel(NLPModel, Exportable): """ Second stage pretraining of BERT based language model for entity linking task. An implementation of Liu et. al's NAACL 2021 paper Self-Alignment Pretraining for Biomedical Entity Representations. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"logits": NeuralType(('B', 'D'), LogitsType())} def __init__(self, cfg: DictConfig, trainer: Trainer = None): """Initializes the SAP-BERT model for entity linking.""" # tokenizer needed before super().__init__() so dataset and loader can process data self._setup_tokenizer(cfg.tokenizer) super().__init__(cfg=cfg, trainer=trainer) # Token to use for the self-alignment loss, typically the first token, [CLS] self._idx_conditioned_on = 0 self.loss = MultiSimilarityLoss() def _setup_tokenizer(self, cfg: DictConfig): tokenizer = AutoTokenizer.from_pretrained( cfg.tokenizer_name, vocab_file=cfg.vocab_file, do_lower_case=cfg.do_lower_case ) self.tokenizer = tokenizer @typecheck() def forward(self, input_ids, token_type_ids, attention_mask): hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] # normalize to unit sphere logits = torch.nn.functional.normalize(hidden_states[:, self._idx_conditioned_on], p=2, dim=1) return logits def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ input_ids, token_type_ids, attention_mask, concept_ids = batch logits = self.forward(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask) train_loss = self.loss(logits=logits, labels=concept_ids) # No hard examples found in batch, # shouldn't use this batch to update model weights if train_loss == 0: train_loss = None lr = None else: lr = self._optimizer.param_groups[0]["lr"] self.log("train_loss", train_loss) self.log("lr", lr, prog_bar=True) return {"loss": train_loss, "lr": lr} def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ input_ids, input_type_ids, input_mask, concept_ids = batch with torch.no_grad(): logits = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) val_loss = self.loss(logits=logits, labels=concept_ids) # No hard examples found in batch, # val loss not used to update model weights if val_loss == 0: val_loss = None else: self.log("val_loss", val_loss) logging.info(f"val loss: {val_loss}") loss = {"val_loss": val_loss} self.validation_step_outputs.append(loss) return loss def on_validation_epoch_end(self): """ Called at the end of validation to aggregate outputs. Args: outputs: list of individual outputs of each validation step. Returns: """ if self.validation_step_outputs: avg_loss = torch.stack( [x["val_loss"] for x in self.validation_step_outputs if x["val_loss"] != None] ).mean() self.log(f"val_loss", avg_loss, prog_bar=True) self.validation_step_outputs.clear() # free memory return {"val_loss": avg_loss} def setup_training_data(self, train_data_config: Optional[DictConfig]): if not train_data_config or not train_data_config.data_file: logging.info( f"Dataloader config or file_path or processed data path for the train dataset is missing, \ so no data loader for train is created!" ) self._train_dl = None return self._train_dl = self.setup_dataloader(cfg=train_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig]): if not val_data_config or not val_data_config.data_file: logging.info( f"Dataloader config or file_path or processed data path for the val dataset is missing, \ so no data loader for validation is created!" ) self._validation_dl = None return self._validation_dl = self.setup_dataloader(cfg=val_data_config) def setup_dataloader(self, cfg: Dict, is_index_data: bool = False) -> 'torch.utils.data.DataLoader': dataset = EntityLinkingDataset( tokenizer=self.tokenizer, data_file=cfg.data_file, max_seq_length=cfg.max_seq_length, is_index_data=is_index_data, ) return torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, collate_fn=dataset.collate_fn, shuffle=cfg.get("shuffle", True), num_workers=cfg.get("num_workers", 2), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) @classmethod def list_available_models(cls) -> Optional[Dict[str, str]]: pass @classmethod def from_pretrained(cls, name: str): pass
NeMo-main
nemo/collections/nlp/models/entity_linking/entity_linking_model.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.entity_linking.entity_linking_model import EntityLinkingModel
NeMo-main
nemo/collections/nlp/models/entity_linking/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.question_answering.qa_base_model import BaseQAModel from nemo.collections.nlp.models.question_answering.qa_bert_model import BERTQAModel from nemo.collections.nlp.models.question_answering.qa_gpt_model import GPTQAModel from nemo.collections.nlp.models.question_answering.qa_model import QAModel from nemo.collections.nlp.models.question_answering.qa_s2s_model import S2SQAModel
NeMo-main
nemo/collections/nlp/models/question_answering/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from typing import Optional import torch from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from torch.cuda.amp import autocast from nemo.collections.common.losses import SpanningLoss from nemo.collections.nlp.data import SquadDataset from nemo.collections.nlp.data.question_answering_squad.qa_squad_processing import ( EVALUATION_MODE, INFERENCE_MODE, TRAINING_MODE, ) from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common import TokenClassifier from nemo.collections.nlp.parts.utils_funcs import tensor2list from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.utils import logging __all__ = ['QAModel'] class QAModel(NLPModel): """ BERT encoder with QA head training. """ def __init__(self, cfg: DictConfig, trainer: Trainer = None): super().__init__(cfg=cfg, trainer=trainer) self.classifier = TokenClassifier( hidden_size=self.hidden_size, num_classes=cfg.token_classifier.num_classes, num_layers=cfg.token_classifier.num_layers, activation=cfg.token_classifier.activation, log_softmax=cfg.token_classifier.log_softmax, dropout=cfg.token_classifier.dropout, use_transformer_init=cfg.token_classifier.use_transformer_init, ) self.loss = SpanningLoss() @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): with autocast(): hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] logits = self.classifier(hidden_states=hidden_states) return logits def training_step(self, batch, batch_idx): input_ids, input_type_ids, input_mask, unique_ids, start_positions, end_positions = batch logits = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) loss, _, _ = self.loss(logits=logits, start_positions=start_positions, end_positions=end_positions) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', loss) self.log('lr', lr, prog_bar=True) return {'loss': loss, 'lr': lr} def validation_step(self, batch, batch_idx): if self.trainer.testing: prefix = 'test' else: prefix = 'val' input_ids, input_type_ids, input_mask, unique_ids, start_positions, end_positions = batch logits = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) loss, start_logits, end_logits = self.loss( logits=logits, start_positions=start_positions, end_positions=end_positions ) tensors = { 'unique_ids': unique_ids, 'start_logits': start_logits, 'end_logits': end_logits, } loss = {f'{prefix}_loss': loss, f'{prefix}_tensors': tensors} self.validation_step_outputs.append(loss) if prefix == 'val' else self.test_step_outputs.append(loss) return loss def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def on_validation_epoch_end(self): if self.trainer.testing: prefix = 'test' outputs = self.test_step_outputs else: prefix = 'val' outputs = self.validation_step_outputs avg_loss = torch.stack([x[f'{prefix}_loss'] for x in outputs]).mean() unique_ids = torch.cat([x[f'{prefix}_tensors']['unique_ids'] for x in outputs]) start_logits = torch.cat([x[f'{prefix}_tensors']['start_logits'] for x in outputs]) end_logits = torch.cat([x[f'{prefix}_tensors']['end_logits'] for x in outputs]) all_unique_ids = [] all_start_logits = [] all_end_logits = [] if torch.distributed.is_initialized(): world_size = torch.distributed.get_world_size() for ind in range(world_size): all_unique_ids.append(torch.empty_like(unique_ids)) all_start_logits.append(torch.empty_like(start_logits)) all_end_logits.append(torch.empty_like(end_logits)) torch.distributed.all_gather(all_unique_ids, unique_ids) torch.distributed.all_gather(all_start_logits, start_logits) torch.distributed.all_gather(all_end_logits, end_logits) else: all_unique_ids.append(unique_ids) all_start_logits.append(start_logits) all_end_logits.append(end_logits) exact_match, f1, all_predictions, all_nbest = -1, -1, [], [] if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0: unique_ids = [] start_logits = [] end_logits = [] for u in all_unique_ids: unique_ids.extend(tensor2list(u)) for u in all_start_logits: start_logits.extend(tensor2list(u)) for u in all_end_logits: end_logits.extend(tensor2list(u)) eval_dataset = self._test_dl.dataset if self.trainer.testing else self._validation_dl.dataset exact_match, f1, all_predictions, all_nbest = eval_dataset.evaluate( unique_ids=unique_ids, start_logits=start_logits, end_logits=end_logits, n_best_size=self._cfg.dataset.n_best_size, max_answer_length=self._cfg.dataset.max_answer_length, version_2_with_negative=self._cfg.dataset.version_2_with_negative, null_score_diff_threshold=self._cfg.dataset.null_score_diff_threshold, do_lower_case=self._cfg.dataset.do_lower_case, ) logging.info(f"{prefix} exact match {exact_match}") logging.info(f"{prefix} f1 {f1}") self.log(f'{prefix}_loss', avg_loss) self.log(f'{prefix}_exact_match', exact_match) self.log(f'{prefix}_f1', f1) self.validation_step_outputs.clear() if prefix == 'val' else self.test_step_outputs.clear() # free memory def on_test_epoch_end(self): return self.on_validation_epoch_end() @torch.no_grad() def inference( self, file: str, batch_size: int = 1, num_samples: int = -1, output_nbest_file: Optional[str] = None, output_prediction_file: Optional[str] = None, ): """ Get prediction for unlabeled inference data Args: file: inference data batch_size: batch size to use during inference num_samples: number of samples to use of inference data. Default: -1 if all data should be used. output_nbest_file: optional output file for writing out nbest list output_prediction_file: optional output file for writing out predictions Returns: model predictions, model nbest list """ # store predictions for all queries in a single list all_predictions = [] all_nbest = [] mode = self.training device = 'cuda' if torch.cuda.is_available() else 'cpu' try: # Switch model to evaluation mode self.eval() self.to(device) logging_level = logging.get_verbosity() logging.set_verbosity(logging.WARNING) dataloader_cfg = { "batch_size": batch_size, "file": file, "shuffle": False, "num_samples": num_samples, 'num_workers': 2, 'pin_memory': False, 'drop_last': False, } dataloader_cfg = OmegaConf.create(dataloader_cfg) infer_datalayer = self._setup_dataloader_from_config(cfg=dataloader_cfg, mode=INFERENCE_MODE) all_logits = [] all_unique_ids = [] for i, batch in enumerate(infer_datalayer): input_ids, token_type_ids, attention_mask, unique_ids = batch logits = self.forward( input_ids=input_ids.to(device), token_type_ids=token_type_ids.to(device), attention_mask=attention_mask.to(device), ) all_logits.append(logits) all_unique_ids.append(unique_ids) logits = torch.cat(all_logits) unique_ids = tensor2list(torch.cat(all_unique_ids)) s, e = logits.split(dim=-1, split_size=1) start_logits = tensor2list(s.squeeze(-1)) end_logits = tensor2list(e.squeeze(-1)) (all_predictions, all_nbest, scores_diff) = infer_datalayer.dataset.get_predictions( unique_ids=unique_ids, start_logits=start_logits, end_logits=end_logits, n_best_size=self._cfg.dataset.n_best_size, max_answer_length=self._cfg.dataset.max_answer_length, version_2_with_negative=self._cfg.dataset.version_2_with_negative, null_score_diff_threshold=self._cfg.dataset.null_score_diff_threshold, do_lower_case=self._cfg.dataset.do_lower_case, ) with open(file, 'r') as test_file_fp: test_data = json.load(test_file_fp)["data"] id_to_question_mapping = {} for title in test_data: for par in title["paragraphs"]: for question in par["qas"]: id_to_question_mapping[question["id"]] = question["question"] for question_id in all_predictions: all_predictions[question_id] = (id_to_question_mapping[question_id], all_predictions[question_id]) if output_nbest_file is not None: with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest, indent=4) + "\n") if output_prediction_file is not None: with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") finally: # set mode back to its original value self.train(mode=mode) logging.set_verbosity(logging_level) return all_predictions, all_nbest def setup_training_data(self, train_data_config: Optional[DictConfig]): if not train_data_config or not train_data_config.file: logging.info( f"Dataloader config or file_path for the train is missing, so no data loader for test is created!" ) self._test_dl = None return self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config, mode=TRAINING_MODE) def setup_validation_data(self, val_data_config: Optional[DictConfig]): if not val_data_config or not val_data_config.file: logging.info( f"Dataloader config or file_path for the validation is missing, so no data loader for test is created!" ) self._test_dl = None return self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config, mode=EVALUATION_MODE) def setup_test_data(self, test_data_config: Optional[DictConfig]): if not test_data_config or test_data_config.file is None: logging.info( f"Dataloader config or file_path for the test is missing, so no data loader for test is created!" ) self._test_dl = None return self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, mode=EVALUATION_MODE) def _setup_dataloader_from_config(self, cfg: DictConfig, mode: str): dataset = SquadDataset( tokenizer=self.tokenizer, data_file=cfg.file, keep_doc_spans='all', # self._cfg.dataset.keep_doc_spans, doc_stride=self._cfg.dataset.doc_stride, max_query_length=self._cfg.dataset.max_query_length, max_seq_length=self._cfg.dataset.max_seq_length, version_2_with_negative=self._cfg.dataset.version_2_with_negative, num_samples=cfg.num_samples, mode=mode, use_cache=self._cfg.dataset.use_cache, ) dl = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, collate_fn=dataset.collate_fn, drop_last=cfg.drop_last, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, ) return dl @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv1.1_bertbase", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv1_1_bertbase/versions/1.0.0rc1/files/qa_squadv1.1_bertbase.nemo", description="Question answering model finetuned from NeMo BERT Base Uncased on SQuAD v1.1 dataset which obtains an exact match (EM) score of 82.78% and an F1 score of 89.97%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv2.0_bertbase", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv2_0_bertbase/versions/1.0.0rc1/files/qa_squadv2.0_bertbase.nemo", description="Question answering model finetuned from NeMo BERT Base Uncased on SQuAD v2.0 dataset which obtains an exact match (EM) score of 75.04% and an F1 score of 78.08%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv1_1_bertlarge", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv1_1_bertlarge/versions/1.0.0rc1/files/qa_squadv1.1_bertlarge.nemo", description="Question answering model finetuned from NeMo BERT Large Uncased on SQuAD v1.1 dataset which obtains an exact match (EM) score of 85.44% and an F1 score of 92.06%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv2.0_bertlarge", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv2_0_bertlarge/versions/1.0.0rc1/files/qa_squadv2.0_bertlarge.nemo", description="Question answering model finetuned from NeMo BERT Large Uncased on SQuAD v2.0 dataset which obtains an exact match (EM) score of 80.22% and an F1 score of 83.05%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv1_1_megatron_cased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv1_1_megatron_cased/versions/1.0.0rc1/files/qa_squadv1.1_megatron_cased.nemo", description="Question answering model finetuned from Megatron Cased on SQuAD v1.1 dataset which obtains an exact match (EM) score of 88.18% and an F1 score of 94.07%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv2.0_megatron_cased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv2_0_megatron_cased/versions/1.0.0rc1/files/qa_squadv2.0_megatron_cased.nemo", description="Question answering model finetuned from Megatron Cased on SQuAD v2.0 dataset which obtains an exact match (EM) score of 84.73% and an F1 score of 87.89%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv1.1_megatron_uncased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv1_1_megatron_uncased/versions/1.0.0rc1/files/qa_squadv1.1_megatron_uncased.nemo", description="Question answering model finetuned from Megatron Unased on SQuAD v1.1 dataset which obtains an exact match (EM) score of 87.61% and an F1 score of 94.00%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv2.0_megatron_uncased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv2_0_megatron_uncased/versions/1.0.0rc1/files/qa_squadv2.0_megatron_uncased.nemo", description="Question answering model finetuned from Megatron Uncased on SQuAD v2.0 dataset which obtains an exact match (EM) score of 84.48% and an F1 score of 87.65%.", ) ) return result
NeMo-main
nemo/collections/nlp/models/question_answering/qa_model.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from typing import List, Optional import numpy as np import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from transformers.models.bert.tokenization_bert import BasicTokenizer from nemo.collections.common.losses import SpanningLoss from nemo.collections.common.parts.utils import _compute_softmax from nemo.collections.nlp.data.question_answering.data_processor.qa_processing import QAProcessor from nemo.collections.nlp.data.question_answering.dataset.qa_bert_dataset import BERTQADataset from nemo.collections.nlp.metrics.qa_metrics import QAMetrics from nemo.collections.nlp.models.question_answering.qa_base_model import BaseQAModel from nemo.collections.nlp.modules.common import TokenClassifier from nemo.collections.nlp.parts.utils_funcs import tensor2list from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.utils import logging class BERTQAModel(BaseQAModel): """ BERT model with a QA (token classification) head """ def __init__(self, cfg: DictConfig, trainer: Trainer = None): super().__init__(cfg=cfg, trainer=trainer, no_lm_init=False) self.classifier = TokenClassifier( hidden_size=self.hidden_size, num_classes=cfg.token_classifier.num_classes, num_layers=cfg.token_classifier.num_layers, activation=cfg.token_classifier.activation, log_softmax=cfg.token_classifier.log_softmax, dropout=cfg.token_classifier.dropout, use_transformer_init=cfg.token_classifier.use_transformer_init, ) self.loss = SpanningLoss() def training_step(self, batch, batch_idx): input_ids, input_type_ids, input_mask, unique_ids, start_positions, end_positions = batch logits = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) loss, _, _ = self.loss(logits=logits, start_positions=start_positions, end_positions=end_positions) lr = self._optimizer.param_groups[0]['lr'] self.log('lr', lr, prog_bar=True) self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) return {'loss': loss, 'lr': lr} def validation_step(self, batch, batch_idx): prefix = "test" if self.trainer.testing else "val" input_ids, input_type_ids, input_mask, unique_ids, start_positions, end_positions = batch logits = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) loss, start_logits, end_logits = self.loss( logits=logits, start_positions=start_positions, end_positions=end_positions ) tensors = { 'unique_ids': unique_ids, 'start_logits': start_logits, 'end_logits': end_logits, } loss = {f'{prefix}_loss': loss, f'{prefix}_tensors': tensors} if prefix == "val": self.validation_step_outputs.append(loss) else: self.test_step_outputs.append(loss) return loss def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def on_validation_epoch_end(self): prefix = "test" if self.trainer.testing else "val" if prefix == 'val': avg_loss = torch.stack([x[f'{prefix}_loss'] for x in self.validation_step_outputs]).mean() unique_ids = torch.cat([x[f'{prefix}_tensors']['unique_ids'] for x in self.validation_step_outputs]) start_logits = torch.cat([x[f'{prefix}_tensors']['start_logits'] for x in self.validation_step_outputs]) end_logits = torch.cat([x[f'{prefix}_tensors']['end_logits'] for x in self.validation_step_outputs]) self.validation_step_outputs.clear() # free memory else: avg_loss = torch.stack([x[f'{prefix}_loss'] for x in self.test_step_outputs]).mean() unique_ids = torch.cat([x[f'{prefix}_tensors']['unique_ids'] for x in self.test_step_outputs]) start_logits = torch.cat([x[f'{prefix}_tensors']['start_logits'] for x in self.test_step_outputs]) end_logits = torch.cat([x[f'{prefix}_tensors']['end_logits'] for x in self.test_step_outputs]) self.test_step_outputs.clear() # free memory all_unique_ids = [] all_start_logits = [] all_end_logits = [] if torch.distributed.is_initialized(): world_size = torch.distributed.get_world_size() for ind in range(world_size): all_unique_ids.append(torch.empty_like(unique_ids)) all_start_logits.append(torch.empty_like(start_logits)) all_end_logits.append(torch.empty_like(end_logits)) torch.distributed.all_gather(all_unique_ids, unique_ids) torch.distributed.all_gather(all_start_logits, start_logits) torch.distributed.all_gather(all_end_logits, end_logits) else: all_unique_ids.append(unique_ids) all_start_logits.append(start_logits) all_end_logits.append(end_logits) eval_results, all_predictions, all_nbest = {}, [], [] if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0: unique_ids = [] start_logits = [] end_logits = [] for u in all_unique_ids: unique_ids.extend(tensor2list(u)) for u in all_start_logits: start_logits.extend(tensor2list(u)) for u in all_end_logits: end_logits.extend(tensor2list(u)) eval_dataset = self._test_dl.dataset if self.trainer.testing else self._validation_dl.dataset eval_results, _, _ = self.evaluate( eval_dataset.features, eval_dataset.examples, eval_dataset.processor, unique_ids=unique_ids, start_logits=start_logits, end_logits=end_logits, n_best_size=self._cfg.dataset.n_best_size, max_answer_length=self._cfg.dataset.max_answer_length, version_2_with_negative=self._cfg.dataset.version_2_with_negative, null_score_diff_threshold=self._cfg.dataset.null_score_diff_threshold, do_lower_case=self._cfg.dataset.do_lower_case, ) self.log(f'{prefix}_loss', avg_loss) for eval_key in eval_results: logging.info(f"{prefix} {eval_key}: {eval_results[eval_key]}") self.log(f"{prefix}_{eval_key}", eval_results[eval_key]) def on_test_epoch_end(self): return self.on_validation_epoch_end() @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): with torch.cuda.amp.autocast(): hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] logits = self.classifier(hidden_states=hidden_states) return logits @torch.no_grad() def inference( self, file: str, batch_size: int = 1, num_samples: int = -1, output_nbest_file: Optional[str] = None, output_prediction_file: Optional[str] = None, ): """ Get prediction for unlabeled inference data Args: file: inference data batch_size: batch size to use during inference num_samples: number of samples to use of inference data. Default: -1 if all data should be used. output_nbest_file: optional output file for writing out nbest list output_prediction_file: optional output file for writing out predictions Returns: model predictions, model nbest list """ # store predictions for all queries in a single list all_predictions = [] all_nbest = [] mode = self.training device = "cuda" if isinstance(self.trainer.device_ids, list) else "cpu" try: # Switch model to evaluation mode self.eval() self.to(device) logging_level = logging.get_verbosity() logging.set_verbosity(logging.WARNING) infer_datalayer = self.setup_inference_data( file, batch_size=batch_size, num_samples=num_samples, num_workers=2, ) all_logits = [] all_unique_ids = [] for i, batch in enumerate(infer_datalayer): input_ids, token_type_ids, attention_mask, unique_ids = batch logits = self.forward( input_ids=input_ids.to(device), token_type_ids=token_type_ids.to(device), attention_mask=attention_mask.to(device), ) all_logits.append(logits) all_unique_ids.append(unique_ids) logits = torch.cat(all_logits) unique_ids = tensor2list(torch.cat(all_unique_ids)) s, e = logits.split(dim=-1, split_size=1) start_logits = tensor2list(s.squeeze(-1)) end_logits = tensor2list(e.squeeze(-1)) (all_predictions, all_nbest, scores_diff) = self.get_predictions( infer_datalayer.dataset.features, infer_datalayer.dataset.examples, infer_datalayer.dataset.processor, unique_ids=unique_ids, start_logits=start_logits, end_logits=end_logits, n_best_size=self._cfg.dataset.n_best_size, max_answer_length=self._cfg.dataset.max_answer_length, version_2_with_negative=self._cfg.dataset.version_2_with_negative, null_score_diff_threshold=self._cfg.dataset.null_score_diff_threshold, do_lower_case=self._cfg.dataset.do_lower_case, ) if output_prediction_file: QAMetrics.dump_predicted_answers_to_file( output_prediction_file, infer_datalayer.dataset.examples, all_predictions, ) if output_nbest_file: QAMetrics.dump_nbest_predictions_to_file( output_nbest_file, infer_datalayer.dataset.examples, all_nbest, keys_to_dump=["text", "probability"], ) finally: # set mode back to its original value self.train(mode=mode) logging.set_verbosity(logging_level) return all_predictions, all_nbest def evaluate( self, features: List, examples: List, processor: object, unique_ids: List[str], start_logits: List[List[float]], end_logits: List[List[float]], n_best_size: int, max_answer_length: int, do_lower_case: bool, version_2_with_negative: bool, null_score_diff_threshold: float, ): (all_predictions, all_nbest_json, scores_diff_json) = self.get_predictions( features, examples, processor, unique_ids, start_logits, end_logits, n_best_size, max_answer_length, do_lower_case, version_2_with_negative, null_score_diff_threshold, ) eval_results = QAMetrics.evaluate_predictions(examples, all_predictions) return eval_results, all_predictions, all_nbest_json def get_predictions( self, features: List, examples: List, processor: object, unique_ids: List[int], start_logits: List[List[float]], end_logits: List[List[float]], n_best_size: int, max_answer_length: int, do_lower_case: bool, version_2_with_negative: bool, null_score_diff_threshold: float, ): example_index_to_features = collections.defaultdict(list) unique_id_to_pos = {} for index, unique_id in enumerate(unique_ids): unique_id_to_pos[unique_id] = index for feature in features: example_index_to_features[feature.example_index].append(feature) _PrelimPrediction = collections.namedtuple( "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"] ) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(examples): # finish this loop if we went through all batch examples if example_index >= len(unique_ids): break curr_features = example_index_to_features[example_index] doc_tokens, _, _, _, _ = BERTQADataset.get_doc_tokens_and_offset_from_context_id( example.context_id, example.start_position_character, example.is_impossible, example.answer_text, processor.doc_id_to_context_text, ) prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 # large and positive score_null = 1000000 # the paragraph slice with min null score min_null_feature_index = 0 # start logit at the slice with min null score null_start_logit = 0 # end logit at the slice with min null score null_end_logit = 0 for (feature_index, feature) in enumerate(curr_features): pos = unique_id_to_pos[feature.unique_id] start_indexes = self._get_best_indexes(start_logits[pos], n_best_size) end_indexes = self._get_best_indexes(end_logits[pos], n_best_size) # if we could have irrelevant answers, # get the min score of irrelevant if version_2_with_negative: feature_null_score = start_logits[pos][0] + end_logits[pos][0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = start_logits[pos][0] null_end_logit = end_logits[pos][0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, # e.g., predict that the start of the span is in the # question. We throw out all invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=start_logits[pos][start_index], end_logit=end_logits[pos][end_index], ) ) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit, ) ) prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple("NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = curr_features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = doc_tokens[orig_doc_start : (orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = self._get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't include the empty option in the n-best, include it if version_2_with_negative: if "" not in seen_predictions: nbest.append(_NbestPrediction(text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could only # have single null pred. We just create a nonce prediction # in this case to avoid failure. if len(nbest) == 1: nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["question"] = example.question_text output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = ( entry.start_logit if (isinstance(entry.start_logit, float) or isinstance(entry.start_logit, int)) else list(entry.start_logit) ) output["end_logit"] = ( entry.end_logit if (isinstance(entry.end_logit, float) or isinstance(entry.end_logit, int)) else list(entry.end_logit) ) nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - # the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - best_non_null_entry.end_logit scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json return all_predictions, all_nbest_json, scores_diff_json def _setup_dataloader_from_config(self, cfg: DictConfig, mode: str): processor = QAProcessor(cfg.file, mode) dataset = BERTQADataset( data_file=cfg.file, processor=processor, tokenizer=self.tokenizer, keep_doc_spans=self._cfg.dataset.keep_doc_spans, doc_stride=self._cfg.dataset.doc_stride, max_query_length=self._cfg.dataset.max_query_length, max_seq_length=self._cfg.dataset.max_seq_length, version_2_with_negative=self._cfg.dataset.version_2_with_negative, num_samples=cfg.num_samples, mode=mode, use_cache=self._cfg.dataset.use_cache, ) data_loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, collate_fn=dataset.collate_fn, drop_last=cfg.drop_last, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, ) return data_loader def _get_best_indexes(self, logits, n_best_size): """ Get the n-best logits from a list """ best_indices = np.argsort(logits)[::-1] return best_indices[:n_best_size] def _get_final_text(self, pred_text: str, orig_text: str, do_lower_case: bool, verbose_logging: bool = False): """ Project the tokenized prediction back to the original text. When we created the data, we kept track of the alignment between original (whitespace tokenized) tokens and our WordPiece tokenized tokens. So now `orig_text` contains the span of our original text corresponding to the span that we predicted. However, `orig_text` may contain extra characters that we don't want in our prediction. For example, let's say: pred_text = steve smith orig_text = Steve Smith's We don't want to return `orig_text` because it contains the extra "'s". We don't want to return `pred_text` because it's already been normalized (the SQuAD eval script also does punctuation stripping/lower casing but our tokenizer does additional normalization like stripping accent characters). What we really want to return is "Steve Smith". Therefore, we have to apply a semi-complicated alignment heuristic between `pred_text` and `orig_text` to get a character-to-character alignment. This can fail in certain cases in which case we just return `orig_text` """ def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return ns_text, ns_to_s_map # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: logging.warning("Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: logging.warning( "Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text, ) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in tok_ns_to_s_map.items(): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: logging.warning("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: logging.warning("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position : (orig_end_position + 1)] return output_text @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv1.1_bertbase", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv1_1_bertbase/versions/1.0.0rc1/files/qa_squadv1.1_bertbase.nemo", description="Question answering model finetuned from NeMo BERT Base Uncased on SQuAD v1.1 dataset which obtains an exact match (EM) score of 82.78% and an F1 score of 89.97%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv2.0_bertbase", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv2_0_bertbase/versions/1.0.0rc1/files/qa_squadv2.0_bertbase.nemo", description="Question answering model finetuned from NeMo BERT Base Uncased on SQuAD v2.0 dataset which obtains an exact match (EM) score of 75.04% and an F1 score of 78.08%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv1_1_bertlarge", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv1_1_bertlarge/versions/1.0.0rc1/files/qa_squadv1.1_bertlarge.nemo", description="Question answering model finetuned from NeMo BERT Large Uncased on SQuAD v1.1 dataset which obtains an exact match (EM) score of 85.44% and an F1 score of 92.06%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv2.0_bertlarge", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv2_0_bertlarge/versions/1.0.0rc1/files/qa_squadv2.0_bertlarge.nemo", description="Question answering model finetuned from NeMo BERT Large Uncased on SQuAD v2.0 dataset which obtains an exact match (EM) score of 80.22% and an F1 score of 83.05%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv1_1_megatron_cased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv1_1_megatron_cased/versions/1.0.0rc1/files/qa_squadv1.1_megatron_cased.nemo", description="Question answering model finetuned from Megatron Cased on SQuAD v1.1 dataset which obtains an exact match (EM) score of 88.18% and an F1 score of 94.07%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv2.0_megatron_cased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv2_0_megatron_cased/versions/1.0.0rc1/files/qa_squadv2.0_megatron_cased.nemo", description="Question answering model finetuned from Megatron Cased on SQuAD v2.0 dataset which obtains an exact match (EM) score of 84.73% and an F1 score of 87.89%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv1.1_megatron_uncased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv1_1_megatron_uncased/versions/1.0.0rc1/files/qa_squadv1.1_megatron_uncased.nemo", description="Question answering model finetuned from Megatron Unased on SQuAD v1.1 dataset which obtains an exact match (EM) score of 87.61% and an F1 score of 94.00%.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="qa_squadv2.0_megatron_uncased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/qa_squadv2_0_megatron_uncased/versions/1.0.0rc1/files/qa_squadv2.0_megatron_uncased.nemo", description="Question answering model finetuned from Megatron Uncased on SQuAD v2.0 dataset which obtains an exact match (EM) score of 84.48% and an F1 score of 87.65%.", ) ) return result
NeMo-main
nemo/collections/nlp/models/question_answering/qa_bert_model.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from typing import List, Optional import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from transformers import AutoModelForCausalLM from nemo.collections.nlp.data.question_answering.data_processor.qa_processing import QAProcessor from nemo.collections.nlp.data.question_answering.dataset.qa_gpt_dataset import GPTQADataset from nemo.collections.nlp.metrics.qa_metrics import QAMetrics from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel from nemo.collections.nlp.models.question_answering.qa_base_model import BaseQAModel from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.utils import logging class GPTQAModel(BaseQAModel): def __init__(self, cfg: DictConfig, trainer: Trainer = None): self.cfg = cfg self.setup_tokenizer(cfg.tokenizer) self.tokenizer.tokenizer.pad_token = self.tokenizer.tokenizer.eos_token self.epoch_number = 0 super().__init__(cfg=cfg, trainer=trainer, no_lm_init=True) if self.cfg.library == "huggingface": self.language_model = AutoModelForCausalLM.from_pretrained(cfg.language_model.pretrained_model_name) self.language_model.resize_token_embeddings(len(self.tokenizer.tokenizer)) if self.cfg.language_model.lm_checkpoint: self.language_model.load_state_dict(torch.load(self.cfg.language_model.lm_checkpoint)) elif self.cfg.library == "megatron": self.language_model = MegatronGPTModel.restore_from(cfg.language_model.lm_checkpoint, trainer=trainer) def training_step(self, batch, batch_idx): input_ids, input_attn_mask, _, _, labels = batch loss, _ = self(input_ids, input_attn_mask, labels) lr = self._optimizer.param_groups[0]['lr'] self.log('lr', lr, prog_bar=True) self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) return {'loss': loss} def validation_step(self, batch, batch_idx): prefix = "test" if self.trainer.testing else "val" input_ids, input_attn_mask, unique_ids, training_mask_end, labels = batch loss, per_sample_perplexity = self.forward(input_ids, input_attn_mask, labels) generated_answers = self._generate_candidates(input_ids, input_attn_mask, training_mask_end) labels[labels == -100] = self.tokenizer.tokenizer.pad_token_id loss = { "unique_ids": unique_ids, f"{prefix}_loss": loss, "per_sample_perplexity": per_sample_perplexity, "input": self.tokenizer.tokenizer.batch_decode(input_ids, skip_special_tokens=True), "ground_truth_answers": self.tokenizer.tokenizer.batch_decode(labels, skip_special_tokens=True), "generated_answers": generated_answers, } if prefix == 'val': self.validation_step_outputs.append(loss) else: self.test_step_outputs.append(loss) return loss def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def on_validation_epoch_end(self): prefix = "test" if self.trainer.testing else "val" if prefix == 'val': loss_terms = [x[f"{prefix}_loss"] for x in self.validation_step_outputs] generated_answers, unique_ids, per_sample_perplexity = QAMetrics.convert_dict_outputs_to_lists( self.validation_step_outputs, ["generated_answers", "unique_ids", "per_sample_perplexity"] ) self.validation_step_outputs.clear() # free memory else: loss_terms = [x[f"{prefix}_loss"] for x in self.test_step_outputs] generated_answers, unique_ids, per_sample_perplexity = QAMetrics.convert_dict_outputs_to_lists( self.test_step_outputs, ["generated_answers", "unique_ids", "per_sample_perplexity"] ) self.test_step_outputs.clear() # free memory avg_loss = torch.stack(loss_terms).mean() eval_dataset = self._test_dl.dataset if self.trainer.testing else self._validation_dl.dataset eval_results, _, _ = self.evaluate( eval_dataset.features, eval_dataset.examples, unique_ids, per_sample_perplexity, generated_answers, ) self.log(f'{prefix}_loss', avg_loss) for eval_key in eval_results: logging.info(f"{prefix} {eval_key}: {eval_results[eval_key]}") self.log(f"{prefix}_{eval_key}", eval_results[eval_key]) def on_test_epoch_end(self): self.on_validation_epoch_end() @typecheck() def forward(self, input_ids, input_attn_mask, labels): loss, per_sample_perplexity = None, None if self.cfg.library == "huggingface": output = self.language_model(input_ids=input_ids, attention_mask=input_attn_mask, labels=labels) loss, lm_logits = output['loss'], output['logits'] shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() per_sample_perplexity = self._get_per_sample_perplexity(shift_logits, shift_labels) elif self.cfg.library == "megatron": raise NotImplementedError() return loss, per_sample_perplexity @torch.no_grad() def inference( self, file: str, batch_size: int = 1, num_samples: int = -1, output_prediction_file: Optional[str] = None, output_nbest_file: Optional[str] = None, ): all_predictions = [] mode = self.training device = "cuda" if isinstance(self.trainer.device_ids, list) else "cpu" if self.cfg.library == "huggingface": try: self.eval() self.to(device) logging_level = logging.get_verbosity() logging.set_verbosity(logging.WARNING) inference_dl = self.setup_inference_data(file, batch_size=batch_size, num_samples=num_samples) outputs = self._inference(inference_dl, device) generated_answers, unique_ids, per_sample_perplexity = QAMetrics.convert_dict_outputs_to_lists( outputs, ["generated_answers", "unique_ids", "per_sample_perplexity"] ) all_predictions, all_nbest_perdictions = self._get_predictions( inference_dl.dataset.features, inference_dl.dataset.examples, unique_ids, per_sample_perplexity, generated_answers, ) if output_prediction_file: QAMetrics.dump_predicted_answers_to_file( output_prediction_file, inference_dl.dataset.examples, all_predictions ) if output_nbest_file: QAMetrics.dump_nbest_predictions_to_file( output_nbest_file, inference_dl.dataset.examples, all_nbest_perdictions, keys_to_dump=["generated_text", "perplexity"], ) finally: # set mode back to its original value self.train(mode=mode) logging.set_verbosity(logging_level) elif self.cfg.library == 'megatron': raise ValueError("Megatron Inference is not supported by GPTQAModel") return all_predictions, all_nbest_perdictions def evaluate( self, features, examples, unique_ids, per_sample_perplexity, generated_texts, ): all_predictions, all_nbest_predictions = self._get_predictions( features, examples, unique_ids, per_sample_perplexity, generated_texts, ) eval_results = QAMetrics.evaluate_predictions(examples, all_predictions) return eval_results, all_predictions, all_nbest_predictions def _setup_dataloader_from_config(self, cfg: DictConfig, mode: str): processor = QAProcessor(cfg.file, mode) dataset = GPTQADataset( data_file=cfg.file, processor=processor, tokenizer=self.tokenizer, keep_doc_spans=self._cfg.dataset.keep_doc_spans, doc_stride=self._cfg.dataset.doc_stride, max_query_length=self._cfg.dataset.max_query_length, max_seq_length=self._cfg.dataset.max_seq_length, max_answer_length=self._cfg.dataset.max_answer_length, check_if_answer_in_context=self._cfg.dataset.check_if_answer_in_context, num_samples=cfg.num_samples, mode=mode, use_cache=self._cfg.dataset.use_cache, ) data_loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, collate_fn=dataset.collate_fn, drop_last=cfg.drop_last, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, ) return data_loader def _get_predictions( self, features, examples: List, unique_ids: List[int], per_sample_perplexity: List, generated_texts: List, ): unique_id_to_pos = {} for index, unique_id in enumerate(unique_ids): unique_id_to_pos[unique_id] = index example_index_to_features = collections.defaultdict(list) for feature in features: example_index_to_features[feature.example_index].append(feature) _PrelimPrediction = collections.namedtuple( "PrelimPrediction", ["feature_index", "perplexity", "generated_text"] ) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(examples): # finish this loop if we went through all batch examples if example_index >= len(unique_ids): break curr_features = example_index_to_features[example_index] prelim_predictions = [] for (feature_index, feature) in enumerate(curr_features): pos = unique_id_to_pos[feature.unique_id] curr_perplexity = per_sample_perplexity[pos] curr_generated_text = generated_texts[pos] prelim_prediction = _PrelimPrediction(feature_index, curr_perplexity, curr_generated_text) prelim_predictions.append(prelim_prediction) prelim_predictions = sorted(prelim_predictions, key=lambda x: x.perplexity) all_predictions[example.qas_id] = prelim_predictions[0].generated_text all_nbest_json[example.qas_id] = [pred._asdict() for pred in prelim_predictions] return all_predictions, all_nbest_json def _inference(self, inference_dl, device): outputs = [] for i, batch in enumerate(inference_dl): input_ids, input_attn_mask, unique_ids, training_mask_end = batch input_ids, input_attn_mask, training_mask_end = ( tensor.to(device) for tensor in [input_ids, input_attn_mask, training_mask_end] ) input_ids, input_attn_mask, labels, generated_texts = self._prep_inference_labels( input_ids, input_attn_mask, training_mask_end, device ) _, per_sample_perplexity = self.forward(input_ids, input_attn_mask, labels) labels[labels == -100] = self.tokenizer.tokenizer.pad_token_id outputs.append( { "unique_ids": unique_ids, "per_sample_perplexity": per_sample_perplexity, "generated_answers": generated_texts, } ) return outputs def _prep_inference_labels(self, input_ids, input_attn_mask, training_mask_end, device): # generate answers by decoding inputs and format into ipnut template decoded_inputs = self.tokenizer.tokenizer.batch_decode(input_ids, skip_special_tokens=True) generated_texts = self._generate_candidates(input_ids, input_attn_mask, training_mask_end) inputs_with_answer = [ f"{inp}{ans}{self.tokenizer.tokenizer.eos_token}" if ans else f"{inp}{self.tokenizer.tokenizer.eos_token}" for inp, ans in zip(decoded_inputs, generated_texts) ] # encode template with generated answers encoded_dict = self.tokenizer.tokenizer( inputs_with_answer, truncation=True, max_length=self._cfg.dataset.max_seq_length, padding="max_length", return_tensors="pt", ) input_ids, input_attn_mask = ( tensor.to(device) for tensor in [encoded_dict["input_ids"], encoded_dict["attention_mask"]] ) labels = GPTQADataset.update_labels_for_no_pad_loss(input_ids, training_mask_end, input_attn_mask) if len(labels.shape) == 1: labels = torch.unsqueeze(labels, 0) labels = labels.to(device) return input_ids, input_attn_mask, labels, generated_texts def _generate_candidates(self, input_ids, input_attn_mask, training_mask_end): num_tokens_to_generate = self.cfg.tokens_to_generate if self.cfg.library == "huggingface": generated_token_ids = [] max_length = 0 for i in range(input_ids.size(0)): param_dict = { "input_ids": input_ids[i : i + 1, : training_mask_end[i]], "max_length": training_mask_end[i] + num_tokens_to_generate, "pad_token_id": self.tokenizer.tokenizer.pad_token_id, } generated_token_ids.append(self.language_model.generate(**param_dict)) max_length = max(max_length, generated_token_ids[-1].size(1)) # pad each generated to ensure they are of same length in dim 1, therefore stack-able generated_token_ids = [ torch.cat( [i, torch.ones((1, max_length - i.size(1))).to(i.device) * self.tokenizer.tokenizer.pad_token_id], axis=-1, ) for i in generated_token_ids ] generated_token_ids = torch.cat(generated_token_ids, axis=0) generated_answers = self._get_answers_from_generated_tokens( generated_token_ids, training_mask_end=training_mask_end ) elif self.cfg.library == 'megatron': raise ValueError("Megatron Generation is not supported by GPTQAModel") return generated_answers def _get_answers_from_generated_tokens(self, token_ids, training_mask_end=None): answers = [] for i in range(token_ids.size(0)): start_point = 0 if training_mask_end is None else training_mask_end[i].item() stop_point = token_ids.size(1) for j in range(start_point, stop_point): if token_ids.data[i, j] == self.tokenizer.tokenizer.pad_token_id: stop_point = j break curr_answer = self.tokenizer.tokenizer.decode( token_ids[i, start_point:stop_point], skip_special_tokens=True ).strip() answers.append(curr_answer) return answers @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] return result
NeMo-main
nemo/collections/nlp/models/question_answering/qa_gpt_model.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from typing import List, Optional import torch from omegaconf import DictConfig, OmegaConf, open_dict from pytorch_lightning import Trainer from torch.cuda.amp import autocast from transformers import AutoModelForSeq2SeqLM from nemo.collections.nlp.data.question_answering.data_processor.qa_processing import QAProcessor from nemo.collections.nlp.data.question_answering.dataset.qa_s2s_dataset import S2SQADataset from nemo.collections.nlp.metrics.qa_metrics import QAMetrics from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model from nemo.collections.nlp.models.question_answering.qa_base_model import BaseQAModel from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.utils import logging class S2SQAModel(BaseQAModel): def __init__(self, cfg: DictConfig, trainer: Trainer = None): self.cfg = cfg if self.cfg.library == "huggingface": self.setup_tokenizer(cfg.tokenizer) elif self.cfg.library == "megatron": # supporting MegatronT5Model in precision = fp16 t5_cfg = MegatronT5Model.restore_from( restore_path=cfg.language_model.lm_checkpoint, trainer=trainer, return_config=True ) # Override the T5 configuration with the one from the config file. OmegaConf.set_struct(t5_cfg, True) with open_dict(t5_cfg): t5_cfg.masked_softmax_fusion = False t5_cfg.precision = 16 language_model = MegatronT5Model.restore_from( restore_path=cfg.language_model.lm_checkpoint, trainer=trainer, override_config_path=t5_cfg ) self.tokenizer = language_model.tokenizer super().__init__(cfg=cfg, trainer=trainer, no_lm_init=True) if self.cfg.library == "huggingface": self.language_model = AutoModelForSeq2SeqLM.from_pretrained(cfg.language_model.pretrained_model_name) self.language_model.resize_token_embeddings(len(self.tokenizer.tokenizer)) if self.cfg.language_model.lm_checkpoint: self.language_model.load_state_dict(torch.load(self.cfg.language_model.lm_checkpoint)) elif self.cfg.library == "megatron": self.language_model = language_model def training_step(self, batch, batch_idx): input_ids, input_attn_mask, unique_ids, labels = batch loss, _ = self.forward(input_ids, input_attn_mask, labels) lr = self._optimizer.param_groups[0]['lr'] self.log('lr', lr, prog_bar=True) self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) return {'loss': loss} def validation_step(self, batch, batch_idx): prefix = "test" if self.trainer.testing else "val" input_ids, input_attn_mask, unique_ids, labels = batch loss, per_sample_perplexity = self.forward(input_ids, input_attn_mask, labels) generated_answers = self._generate_candidates(input_ids, input_attn_mask) labels[labels == -100] = self.tokenizer.tokenizer.pad_token_id loss = { "unique_ids": unique_ids, f"{prefix}_loss": loss, "per_sample_perplexity": per_sample_perplexity, "input": self.tokenizer.tokenizer.batch_decode(input_ids, skip_special_tokens=True), "ground_truth_answers": self.tokenizer.tokenizer.batch_decode(labels, skip_special_tokens=True), "generated_answers": generated_answers, } if prefix == 'val': self.validation_step_outputs.append(loss) else: self.test_step_outputs.append(loss) return loss def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def on_validation_epoch_end(self): prefix = "test" if self.trainer.testing else "val" if prefix == 'val': loss_terms = [x[f"{prefix}_loss"] for x in self.validation_step_outputs] generated_answers, unique_ids, per_sample_perplexity = QAMetrics.convert_dict_outputs_to_lists( self.validation_step_outputs, ["generated_answers", "unique_ids", "per_sample_perplexity"] ) self.validation_step_outputs.clear() # free memory else: loss_terms = [x[f"{prefix}_loss"] for x in self.test_step_outputs] generated_answers, unique_ids, per_sample_perplexity = QAMetrics.convert_dict_outputs_to_lists( self.test_step_outputs, ["generated_answers", "unique_ids", "per_sample_perplexity"] ) self.test_step_outputs.clear() # free memory avg_loss = torch.stack(loss_terms).mean() eval_dataset = self._test_dl.dataset if self.trainer.testing else self._validation_dl.dataset eval_results, _, _ = self.evaluate( eval_dataset.features, eval_dataset.examples, unique_ids, per_sample_perplexity, generated_answers, ) self.log(f'{prefix}_loss', avg_loss) for eval_key in eval_results: logging.info(f"{prefix} {eval_key}: {eval_results[eval_key]}") self.log(f"{prefix}_{eval_key}", eval_results[eval_key]) def on_test_epoch_end(self): self.on_validation_epoch_end() @typecheck() def forward(self, input_ids, input_attn_mask, labels): loss, per_sample_perplexity = None, None if self.cfg.library == "huggingface": with autocast(enabled=False): output = self.language_model(input_ids=input_ids, attention_mask=input_attn_mask, labels=labels) loss = output['loss'] lm_logits = output['logits'] per_sample_perplexity = self._get_per_sample_perplexity(lm_logits, labels) elif self.cfg.library == "megatron": labels = torch.where(labels != -100, labels, torch.zeros_like(labels)) output_attn_masks = torch.where(labels > 0, torch.ones_like(labels), torch.zeros_like(labels)) unmasked_unreduced_loss = self.language_model( input_ids, labels[:, :-1], input_attn_mask, output_attn_masks[:, :-1], lm_labels=labels[:, 1:], ) loss = self.language_model.loss_func(output_attn_masks[:, 1:], unmasked_unreduced_loss) per_sample_perplexity = torch.exp(unmasked_unreduced_loss) return loss, per_sample_perplexity @torch.no_grad() def inference( self, file: str, batch_size: int = 1, num_samples: int = -1, output_prediction_file: Optional[str] = None, output_nbest_file: Optional[str] = None, ): all_predictions = [] mode = self.training device = "cuda" if isinstance(self.trainer.device_ids, list) else "cpu" if self.cfg.library == "huggingface": try: # switch model to evaluation mode self.eval() self.to(device) logging_level = logging.get_verbosity() logging.set_verbosity(logging.WARNING) inference_dl = self.setup_inference_data(file, batch_size=batch_size, num_samples=num_samples) outputs = self._inference(inference_dl, device) generated_answers, unique_ids, per_sample_perplexity = QAMetrics.convert_dict_outputs_to_lists( outputs, ["generated_answers", "unique_ids", "per_sample_perplexity"] ) all_predictions, all_nbest_predictions = self._get_predictions( inference_dl.dataset.features, inference_dl.dataset.examples, unique_ids, per_sample_perplexity, generated_answers, ) if output_prediction_file: QAMetrics.dump_predicted_answers_to_file( output_prediction_file, inference_dl.dataset.examples, all_predictions ) if output_nbest_file: QAMetrics.dump_nbest_predictions_to_file( output_nbest_file, inference_dl.dataset.examples, all_nbest_predictions, keys_to_dump=["generated_text", "perplexity"], ) finally: # set mode back to its original value self.train(mode=mode) logging.set_verbosity(logging_level) elif self.cfg.library == 'megatron': raise ValueError("Megatron Inference is not supported by S2SQAModel") return all_predictions, all_nbest_predictions def evaluate( self, features, examples, unique_ids, per_sample_perplexity, generated_texts, ): all_predictions, all_nbest_json = self._get_predictions( features, examples, unique_ids, per_sample_perplexity, generated_texts, ) eval_results = QAMetrics.evaluate_predictions(examples, all_predictions) return eval_results, all_predictions, all_nbest_json def _setup_dataloader_from_config(self, cfg: DictConfig, mode: str): processor = QAProcessor(cfg.file, mode) dataset = S2SQADataset( data_file=cfg.file, processor=processor, tokenizer=self.tokenizer, keep_doc_spans=self._cfg.dataset.keep_doc_spans, doc_stride=self._cfg.dataset.doc_stride, max_query_length=self._cfg.dataset.max_query_length, max_seq_length=self._cfg.dataset.max_seq_length, max_answer_length=self._cfg.dataset.max_answer_length, check_if_answer_in_context=self._cfg.dataset.check_if_answer_in_context, num_samples=cfg.num_samples, mode=mode, use_cache=self._cfg.dataset.use_cache, ) data_loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, collate_fn=dataset.collate_fn, drop_last=cfg.drop_last, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, ) return data_loader def _get_predictions( self, features, examples: List, unique_ids: List[int], per_sample_perplexity: List, generated_texts: List, ): unique_id_to_pos = {} for index, unique_id in enumerate(unique_ids): unique_id_to_pos[unique_id] = index example_index_to_features = collections.defaultdict(list) for feature in features: example_index_to_features[feature.example_index].append(feature) _PrelimPrediction = collections.namedtuple( "PrelimPrediction", ["feature_index", "perplexity", "generated_text"] ) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(examples): # finish this loop if we went through all batch examples if example_index >= len(unique_ids): break curr_features = example_index_to_features[example_index] prelim_predictions = [] for (feature_index, feature) in enumerate(curr_features): pos = unique_id_to_pos[feature.unique_id] curr_perplexity = per_sample_perplexity[pos] curr_generated_text = generated_texts[pos] prelim_prediction = _PrelimPrediction(feature_index, curr_perplexity, curr_generated_text) prelim_predictions.append(prelim_prediction) prelim_predictions = sorted(prelim_predictions, key=lambda x: x.perplexity) all_predictions[example.qas_id] = prelim_predictions[0].generated_text all_nbest_json[example.qas_id] = [pred._asdict() for pred in prelim_predictions] return all_predictions, all_nbest_json def _inference(self, inference_dl, device): outputs = [] for i, batch in enumerate(inference_dl): # get predictions input_ids, input_attn_mask, unique_ids = batch input_ids, input_attn_mask = (tensor.to(device) for tensor in [input_ids, input_attn_mask]) generated_texts = self._generate_candidates(input_ids, input_attn_mask) labels = self._prep_inference_labels(generated_texts, device) _, per_sample_perplexity = self.forward(input_ids, input_attn_mask, labels) labels[labels == -100] = self.tokenizer.tokenizer.pad_token_id outputs.append( { "unique_ids": unique_ids, "per_sample_perplexity": per_sample_perplexity, "generated_answers": generated_texts, } ) return outputs def _prep_inference_labels(self, generated_texts, device): encoded_output_dict = self.tokenizer.tokenizer( generated_texts, truncation=True, max_length=self._cfg.dataset.max_answer_length, padding="max_length", return_tensors="pt", ) input_ids = encoded_output_dict["input_ids"].to(device) labels = torch.squeeze(input_ids) labels[labels == self.tokenizer.tokenizer.pad_token_id] = -100 if len(labels.shape) == 1: labels = torch.unsqueeze(labels, 0) labels = labels.to(device) return labels def _generate_candidates(self, input_ids, input_attn_mask): num_tokens_to_generate = self.cfg.tokens_to_generate if self.cfg.library == "huggingface": param_dict = { "input_ids": input_ids, "attention_mask": input_attn_mask, "max_length": num_tokens_to_generate, } generated_tokens = self.language_model.generate(**param_dict) generated_answers = self.tokenizer.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True,) generated_answers = [ans.strip() for ans in generated_answers] elif self.cfg.library == 'megatron': raise ValueError("Megatron Generation is not supported by S2SQAModel") return generated_answers @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] return result
NeMo-main
nemo/collections/nlp/models/question_answering/qa_s2s_model.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from nemo.collections.nlp.data.question_answering.data_processor.qa_processing import ( EVALUATION_MODE, INFERENCE_MODE, TRAINING_MODE, ) from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.utils import logging class BaseQAModel(NLPModel): def __init__(self, cfg: DictConfig, trainer: Trainer = None, no_lm_init=True): self.cfg = cfg super().__init__(cfg=cfg, trainer=trainer, no_lm_init=no_lm_init) def setup_training_data(self, train_data_config: Optional[DictConfig]): if not train_data_config or not train_data_config.file: logging.info( f"Dataloader config or file_path for the train is missing, so no data loader for test is created!" ) self._test_dl = None return self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config, mode=TRAINING_MODE) def setup_validation_data(self, val_data_config: Optional[DictConfig]): if not val_data_config or not val_data_config.file: logging.info( f"Dataloader config or file_path for the validation is missing, so no data loader for test is created!" ) self._test_dl = None return self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config, mode=EVALUATION_MODE) def setup_test_data(self, test_data_config: Optional[DictConfig]): if not test_data_config or test_data_config.file is None: logging.info( f"Dataloader config or file_path for the test is missing, so no data loader for test is created!" ) self._test_dl = None return self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, mode=EVALUATION_MODE) def setup_inference_data(self, input_file, batch_size=1, num_samples=-1, num_workers=2): dataloader_cfg = { "batch_size": batch_size, "file": input_file, "shuffle": False, "num_samples": num_samples, 'num_workers': num_workers, 'pin_memory': False, 'drop_last': False, } dataloader_cfg = OmegaConf.create(dataloader_cfg) inference_dl = self._setup_dataloader_from_config(cfg=dataloader_cfg, mode=INFERENCE_MODE) return inference_dl def _setup_dataloader_from_config(self, cfg: DictConfig, mode: str): raise NotImplementedError() @torch.no_grad() def _get_per_sample_perplexity(self, logits, labels): """ Returns average perplexity for each sample in the batch """ loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction='none') unreduced_loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1),) unreduced_loss = unreduced_loss.reshape(labels.shape) mask_0 = unreduced_loss != 0 per_sample_perplexity = torch.exp((unreduced_loss * mask_0).sum(axis=1) / mask_0.sum(axis=1)) return per_sample_perplexity
NeMo-main
nemo/collections/nlp/models/question_answering/qa_base_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pathlib from typing import Dict, List, Optional import torch from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from torch.utils.data import DataLoader from nemo.collections.common.losses import AggregatorLoss, CrossEntropyLoss from nemo.collections.nlp.data.intent_slot_classification import ( IntentSlotClassificationDataset, IntentSlotDataDesc, IntentSlotInferenceDataset, ) from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common import SequenceTokenClassifier from nemo.collections.nlp.parts.utils_funcs import tensor2list from nemo.core.classes import typecheck from nemo.core.classes.common import PretrainedModelInfo from nemo.utils import logging class IntentSlotClassificationModel(NLPModel): def __init__(self, cfg: DictConfig, trainer: Trainer = None): """ Initializes BERT Joint Intent and Slot model. """ self.max_seq_length = cfg.language_model.max_seq_length # init superclass # Check the presence of data_dir. if not cfg.data_dir or not os.path.exists(cfg.data_dir): # Set default values of data_desc. self._set_defaults_data_desc(cfg) else: self.data_dir = cfg.data_dir # Update configuration of data_desc. self._set_data_desc_to_cfg(cfg, cfg.data_dir, cfg.train_ds, cfg.validation_ds) super().__init__(cfg=cfg, trainer=trainer) # Initialize Classifier. self._reconfigure_classifier() def _set_defaults_data_desc(self, cfg): """ Method makes sure that cfg.data_desc params are set. If not, set's them to "dummy" defaults. """ if not hasattr(cfg, "data_desc"): OmegaConf.set_struct(cfg, False) cfg.data_desc = {} # Intents. cfg.data_desc.intent_labels = " " cfg.data_desc.intent_label_ids = {" ": 0} cfg.data_desc.intent_weights = [1] # Slots. cfg.data_desc.slot_labels = " " cfg.data_desc.slot_label_ids = {" ": 0} cfg.data_desc.slot_weights = [1] cfg.data_desc.pad_label = "O" OmegaConf.set_struct(cfg, True) def _set_data_desc_to_cfg(self, cfg, data_dir, train_ds, validation_ds): """ Method creates IntentSlotDataDesc and copies generated values to cfg.data_desc. """ # Save data from data desc to config - so it can be reused later, e.g. in inference. data_desc = IntentSlotDataDesc(data_dir=data_dir, modes=[train_ds.prefix, validation_ds.prefix]) OmegaConf.set_struct(cfg, False) if not hasattr(cfg, "data_desc") or cfg.data_desc is None: cfg.data_desc = {} # Intents. cfg.data_desc.intent_labels = list(data_desc.intents_label_ids.keys()) cfg.data_desc.intent_label_ids = data_desc.intents_label_ids cfg.data_desc.intent_weights = data_desc.intent_weights # Slots. cfg.data_desc.slot_labels = list(data_desc.slots_label_ids.keys()) cfg.data_desc.slot_label_ids = data_desc.slots_label_ids cfg.data_desc.slot_weights = data_desc.slot_weights cfg.data_desc.pad_label = data_desc.pad_label # for older(pre - 1.0.0.b3) configs compatibility if not hasattr(cfg, "class_labels") or cfg.class_labels is None: cfg.class_labels = {} cfg.class_labels = OmegaConf.create( {'intent_labels_file': 'intent_labels.csv', 'slot_labels_file': 'slot_labels.csv'} ) slot_labels_file = os.path.join(data_dir, pathlib.Path(cfg.class_labels.slot_labels_file).name) intent_labels_file = os.path.join(data_dir, pathlib.Path(cfg.class_labels.intent_labels_file).name) self._save_label_ids(data_desc.slots_label_ids, slot_labels_file) self._save_label_ids(data_desc.intents_label_ids, intent_labels_file) self.register_artifact('class_labels.intent_labels_file', intent_labels_file) self.register_artifact('class_labels.slot_labels_file', slot_labels_file) OmegaConf.set_struct(cfg, True) def _save_label_ids(self, label_ids: Dict[str, int], filename: str) -> None: """ Saves label ids map to a file """ with open(filename, 'w') as out: labels, _ = zip(*sorted(label_ids.items(), key=lambda x: x[1])) out.write('\n'.join(labels)) logging.info(f'Labels: {label_ids}') logging.info(f'Labels mapping saved to : {out.name}') def _reconfigure_classifier(self): """ Method reconfigures the classifier depending on the settings of model cfg.data_desc """ self.classifier = SequenceTokenClassifier( hidden_size=self.hidden_size, num_intents=len(self.cfg.data_desc.intent_labels), num_slots=len(self.cfg.data_desc.slot_labels), dropout=self.cfg.head.fc_dropout, num_layers=self.cfg.head.num_output_layers, log_softmax=False, ) # define losses if self.cfg.class_balancing == 'weighted_loss': # You may need to increase the number of epochs for convergence when using weighted_loss self.intent_loss = CrossEntropyLoss(logits_ndim=2, weight=self.cfg.data_desc.intent_weights) self.slot_loss = CrossEntropyLoss(logits_ndim=3, weight=self.cfg.data_desc.slot_weights) else: self.intent_loss = CrossEntropyLoss(logits_ndim=2) self.slot_loss = CrossEntropyLoss(logits_ndim=3) self.total_loss = AggregatorLoss( num_inputs=2, weights=[self.cfg.intent_loss_weight, 1.0 - self.cfg.intent_loss_weight] ) # setup to track metrics self.intent_classification_report = ClassificationReport( num_classes=len(self.cfg.data_desc.intent_labels), label_ids=self.cfg.data_desc.intent_label_ids, dist_sync_on_step=True, mode='micro', ) self.slot_classification_report = ClassificationReport( num_classes=len(self.cfg.data_desc.slot_labels), label_ids=self.cfg.data_desc.slot_label_ids, dist_sync_on_step=True, mode='micro', ) def update_data_dir_for_training(self, data_dir: str, train_ds, validation_ds) -> None: """ Update data directory and get data stats with Data Descriptor. Also, reconfigures the classifier - to cope with data with e.g. different number of slots. Args: data_dir: path to data directory """ logging.info(f'Setting data_dir to {data_dir}.') self.data_dir = data_dir # Update configuration with new data. self._set_data_desc_to_cfg(self.cfg, data_dir, train_ds, validation_ds) # Reconfigure the classifier for different settings (number of intents, slots etc.). self._reconfigure_classifier() def update_data_dir_for_testing(self, data_dir) -> None: """ Update data directory. Args: data_dir: path to data directory """ logging.info(f'Setting data_dir to {data_dir}.') self.data_dir = data_dir @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): """ No special modification required for Lightning, define it as you normally would in the `nn.Module` in vanilla PyTorch. """ hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] intent_logits, slot_logits = self.classifier(hidden_states=hidden_states) return intent_logits.float(), slot_logits.float() def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ # forward pass input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask, intent_labels, slot_labels = batch intent_logits, slot_logits = self( input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask ) # calculate combined loss for intents and slots intent_loss = self.intent_loss(logits=intent_logits, labels=intent_labels) slot_loss = self.slot_loss(logits=slot_logits, labels=slot_labels, loss_mask=loss_mask) train_loss = self.total_loss(loss_1=intent_loss, loss_2=slot_loss) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', train_loss) self.log('lr', lr, prog_bar=True) return { 'loss': train_loss, 'lr': lr, } def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask, intent_labels, slot_labels = batch intent_logits, slot_logits = self( input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask ) # calculate combined loss for intents and slots intent_loss = self.intent_loss(logits=intent_logits, labels=intent_labels) slot_loss = self.slot_loss(logits=slot_logits, labels=slot_labels, loss_mask=loss_mask) val_loss = self.total_loss(loss_1=intent_loss, loss_2=slot_loss) # calculate accuracy metrics for intents and slot reporting # intents preds = torch.argmax(intent_logits, axis=-1) self.intent_classification_report.update(preds, intent_labels) # slots subtokens_mask = subtokens_mask > 0.5 preds = torch.argmax(slot_logits, axis=-1)[subtokens_mask] slot_labels = slot_labels[subtokens_mask] self.slot_classification_report.update(preds, slot_labels) loss = { 'val_loss': val_loss, 'intent_tp': self.intent_classification_report.tp, 'intent_fn': self.intent_classification_report.fn, 'intent_fp': self.intent_classification_report.fp, 'slot_tp': self.slot_classification_report.tp, 'slot_fn': self.slot_classification_report.fn, 'slot_fp': self.slot_classification_report.fp, } self.validation_step_outputs.append(loss) return loss def on_validation_epoch_end(self): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ prefix = "test" if self.trainer.testing else "val" if prefix == "val": outputs = self.validation_step_outputs else: outputs = self.test_step_outputs avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() # calculate metrics and log classification report (separately for intents and slots) intent_precision, intent_recall, intent_f1, intent_report = self.intent_classification_report.compute() logging.info(f'Intent report: {intent_report}') slot_precision, slot_recall, slot_f1, slot_report = self.slot_classification_report.compute() logging.info(f'Slot report: {slot_report}') self.log(f'{prefix}_loss', avg_loss) self.log('intent_precision', intent_precision) self.log('intent_recall', intent_recall) self.log('intent_f1', intent_f1) self.log('slot_precision', slot_precision) self.log('slot_recall', slot_recall) self.log('slot_f1', slot_f1) self.intent_classification_report.reset() self.slot_classification_report.reset() self.validation_step_outputs.clear() if prefix == 'val' else self.test_step_outputs.clear() return { f'{prefix}_loss': avg_loss, 'intent_precision': intent_precision, 'intent_recall': intent_recall, 'intent_f1': intent_f1, 'slot_precision': slot_precision, 'slot_recall': slot_recall, 'slot_f1': slot_f1, } def test_step(self, batch, batch_idx): """ Lightning calls this inside the test loop with the data from the test dataloader passed in as `batch`. """ loss = self.validation_step(batch, batch_idx) self.test_step_outputs.append(loss) return loss def on_test_epoch_end(self): """ Called at the end of test to aggregate outputs. :param outputs: list of individual outputs of each test step. """ return self.on_validation_epoch_end() def setup_training_data(self, train_data_config: Optional[DictConfig]): self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig]): self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig]): self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config) def _setup_dataloader_from_config(self, cfg: DictConfig): input_file = f'{self.data_dir}/{cfg.prefix}.tsv' slot_file = f'{self.data_dir}/{cfg.prefix}_slots.tsv' if not (os.path.exists(input_file) and os.path.exists(slot_file)): raise FileNotFoundError( f'{input_file} or {slot_file} not found. Please refer to the documentation for the right format \ of Intents and Slots files.' ) dataset = IntentSlotClassificationDataset( input_file=input_file, slot_file=slot_file, tokenizer=self.tokenizer, max_seq_length=self.max_seq_length, num_samples=cfg.num_samples, pad_label=self.cfg.data_desc.pad_label, ignore_extra_tokens=self.cfg.ignore_extra_tokens, ignore_start_end=self.cfg.ignore_start_end, ) return DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, drop_last=cfg.drop_last, collate_fn=dataset.collate_fn, ) def _setup_infer_dataloader(self, queries: List[str], test_ds) -> 'torch.utils.data.DataLoader': """ Setup function for a infer data loader. Args: queries: text batch_size: batch size to use during inference Returns: A pytorch DataLoader. """ dataset = IntentSlotInferenceDataset( tokenizer=self.tokenizer, queries=queries, max_seq_length=-1, do_lower_case=False ) return torch.utils.data.DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_size=test_ds.batch_size, shuffle=test_ds.shuffle, num_workers=test_ds.num_workers, pin_memory=test_ds.pin_memory, drop_last=test_ds.drop_last, ) def predict_from_examples(self, queries: List[str], test_ds) -> List[List[str]]: """ Get prediction for the queries (intent and slots) Args: queries: text sequences test_ds: Dataset configuration section. Returns: predicted_intents, predicted_slots: model intent and slot predictions """ predicted_intents = [] predicted_slots = [] mode = self.training try: device = 'cuda' if torch.cuda.is_available() else 'cpu' # Retrieve intent and slot vocabularies from configuration. intent_labels = self.cfg.data_desc.intent_labels slot_labels = self.cfg.data_desc.slot_labels # Initialize tokenizer. # if not hasattr(self, "tokenizer"): # self._setup_tokenizer(self.cfg.tokenizer) # Initialize modules. # self._reconfigure_classifier() # Switch model to evaluation mode self.eval() self.to(device) # Dataset. infer_datalayer = self._setup_infer_dataloader(queries, test_ds) for batch in infer_datalayer: input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask = batch intent_logits, slot_logits = self.forward( input_ids=input_ids.to(device), token_type_ids=input_type_ids.to(device), attention_mask=input_mask.to(device), ) # predict intents and slots for these examples # intents intent_preds = tensor2list(torch.argmax(intent_logits, axis=-1)) # convert numerical outputs to Intent and Slot labels from the dictionaries for intent_num in intent_preds: if intent_num < len(intent_labels): predicted_intents.append(intent_labels[int(intent_num)]) else: # should not happen predicted_intents.append("Unknown Intent") # slots slot_preds = torch.argmax(slot_logits, axis=-1) for slot_preds_query, mask_query in zip(slot_preds, subtokens_mask): query_slots = '' for slot, mask in zip(slot_preds_query, mask_query): if mask == 1: if slot < len(slot_labels): query_slots += slot_labels[int(slot)] + ' ' else: query_slots += 'Unknown_slot ' predicted_slots.append(query_slots.strip()) finally: # set mode back to its original value self.train(mode=mode) return predicted_intents, predicted_slots @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] model = PretrainedModelInfo( pretrained_model_name="Joint_Intent_Slot_Assistant", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemonlpmodels/versions/1.0.0a5/files/Joint_Intent_Slot_Assistant.nemo", description="This models is trained on this https://github.com/xliuhw/NLU-Evaluation-Data dataset which includes 64 various intents and 55 slots. Final Intent accuracy is about 87%, Slot accuracy is about 89%.", ) result.append(model) return result
NeMo-main
nemo/collections/nlp/models/intent_slot_classification/intent_slot_classification_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.intent_slot_classification.intent_slot_classification_model import ( IntentSlotClassificationModel, ) from nemo.collections.nlp.models.intent_slot_classification.multi_label_intent_slot_classification_model import ( MultiLabelIntentSlotClassificationModel, )
NeMo-main
nemo/collections/nlp/models/intent_slot_classification/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import List, Optional, Tuple import numpy as np import numpy.typing as npt import torch from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from sklearn.metrics import f1_score, precision_score, recall_score from torch.utils.data import DataLoader from nemo.collections.common.losses import AggregatorLoss, BCEWithLogitsLoss, CrossEntropyLoss from nemo.collections.nlp.data.intent_slot_classification import ( MultiLabelIntentSlotClassificationDataset, MultiLabelIntentSlotDataDesc, ) from nemo.collections.nlp.metrics.classification_report import ClassificationReport, MultiLabelClassificationReport from nemo.collections.nlp.models.intent_slot_classification import IntentSlotClassificationModel from nemo.collections.nlp.modules.common import SequenceTokenClassifier from nemo.collections.nlp.parts.utils_funcs import tensor2list from nemo.core.classes.common import PretrainedModelInfo from nemo.utils import logging class MultiLabelIntentSlotClassificationModel(IntentSlotClassificationModel): def __init__(self, cfg: DictConfig, trainer: Trainer = None): """ Initializes BERT Joint Intent and Slot model. Args: cfg: configuration object trainer: trainer for Pytorch Lightning """ self.max_seq_length = cfg.language_model.max_seq_length # Optimal Threshold self.threshold = 0.5 self.max_f1 = 0 # Check the presence of data_dir. if not cfg.data_dir or not os.path.exists(cfg.data_dir): # Set default values of data_desc. self._set_defaults_data_desc(cfg) else: self.data_dir = cfg.data_dir # Update configuration of data_desc. self._set_data_desc_to_cfg(cfg, cfg.data_dir, cfg.train_ds, cfg.validation_ds) # init superclass super().__init__(cfg=cfg, trainer=trainer) # Initialize Classifier. self._reconfigure_classifier() def _set_data_desc_to_cfg( self, cfg: DictConfig, data_dir: str, train_ds: DictConfig, validation_ds: DictConfig ) -> None: """ Creates MultiLabelIntentSlotDataDesc and copies generated values to Configuration object's data descriptor. Args: cfg: configuration object data_dir: data directory train_ds: training dataset file name validation_ds: validation dataset file name Returns: None """ # Save data from data desc to config - so it can be reused later, e.g. in inference. data_desc = MultiLabelIntentSlotDataDesc(data_dir=data_dir, modes=[train_ds.prefix, validation_ds.prefix]) OmegaConf.set_struct(cfg, False) if not hasattr(cfg, "data_desc") or cfg.data_desc is None: cfg.data_desc = {} # Intents. cfg.data_desc.intent_labels = list(data_desc.intents_label_ids.keys()) cfg.data_desc.intent_label_ids = data_desc.intents_label_ids cfg.data_desc.intent_weights = data_desc.intent_weights # Slots. cfg.data_desc.slot_labels = list(data_desc.slots_label_ids.keys()) cfg.data_desc.slot_label_ids = data_desc.slots_label_ids cfg.data_desc.slot_weights = data_desc.slot_weights cfg.data_desc.pad_label = data_desc.pad_label # for older(pre - 1.0.0.b3) configs compatibility if not hasattr(cfg, "class_labels") or cfg.class_labels is None: cfg.class_labels = {} cfg.class_labels = OmegaConf.create( {"intent_labels_file": "intent_labels.csv", "slot_labels_file": "slot_labels.csv",} ) slot_labels_file = os.path.join(data_dir, cfg.class_labels.slot_labels_file) intent_labels_file = os.path.join(data_dir, cfg.class_labels.intent_labels_file) self._save_label_ids(data_desc.slots_label_ids, slot_labels_file) self._save_label_ids(data_desc.intents_label_ids, intent_labels_file) self.register_artifact("class_labels.intent_labels_file", intent_labels_file) self.register_artifact("class_labels.slot_labels_file", slot_labels_file) OmegaConf.set_struct(cfg, True) def _reconfigure_classifier(self) -> None: """ Method reconfigures the classifier depending on the settings of model cfg.data_desc """ self.classifier = SequenceTokenClassifier( hidden_size=self.bert_model.config.hidden_size, num_intents=len(self.cfg.data_desc.intent_labels), num_slots=len(self.cfg.data_desc.slot_labels), dropout=self.cfg.head.fc_dropout, num_layers=self.cfg.head.num_output_layers, log_softmax=False, ) # define losses if self.cfg.class_balancing == "weighted_loss": # You may need to increase the number of epochs for convergence when using weighted_loss self.intent_loss = BCEWithLogitsLoss(logits_ndim=2, pos_weight=self.cfg.data_desc.intent_weights) self.slot_loss = CrossEntropyLoss(logits_ndim=3, weight=self.cfg.data_desc.slot_weights) else: self.intent_loss = BCEWithLogitsLoss(logits_ndim=2) self.slot_loss = CrossEntropyLoss(logits_ndim=3) self.total_loss = AggregatorLoss( num_inputs=2, weights=[self.cfg.intent_loss_weight, 1.0 - self.cfg.intent_loss_weight], ) # setup to track metrics self.intent_classification_report = MultiLabelClassificationReport( num_classes=len(self.cfg.data_desc.intent_labels), label_ids=self.cfg.data_desc.intent_label_ids, dist_sync_on_step=True, mode="micro", ) self.slot_classification_report = ClassificationReport( num_classes=len(self.cfg.data_desc.slot_labels), label_ids=self.cfg.data_desc.slot_label_ids, dist_sync_on_step=True, mode="micro", ) def validation_step(self, batch, batch_idx) -> None: """ Validation Loop. Pytorch Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. Args: batch: batches of data from DataLoader batch_idx: batch idx from DataLoader Returns: None """ (input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask, intent_labels, slot_labels,) = batch intent_logits, slot_logits = self( input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask, ) # calculate combined loss for intents and slots intent_loss = self.intent_loss(logits=intent_logits, labels=intent_labels) slot_loss = self.slot_loss(logits=slot_logits, labels=slot_labels, loss_mask=loss_mask) val_loss = self.total_loss(loss_1=intent_loss, loss_2=slot_loss) intent_probabilities = torch.round(torch.sigmoid(intent_logits)) self.intent_classification_report.update(intent_probabilities, intent_labels) # slots subtokens_mask = subtokens_mask > 0.5 preds = torch.argmax(slot_logits, axis=-1)[subtokens_mask] slot_labels = slot_labels[subtokens_mask] self.slot_classification_report.update(preds, slot_labels) loss = { "val_loss": val_loss, "intent_tp": self.intent_classification_report.tp, "intent_fn": self.intent_classification_report.fn, "intent_fp": self.intent_classification_report.fp, "slot_tp": self.slot_classification_report.tp, "slot_fn": self.slot_classification_report.fn, "slot_fp": self.slot_classification_report.fp, } self.validation_step_outputs.append(loss) return loss def _setup_dataloader_from_config(self, cfg: DictConfig) -> DataLoader: """ Creates the DataLoader from the configuration object Args: cfg: configuration object Returns: DataLoader for model's data """ input_file = f"{self.data_dir}/{cfg.prefix}.tsv" slot_file = f"{self.data_dir}/{cfg.prefix}_slots.tsv" intent_dict_file = self.data_dir + "/dict.intents.csv" lines = open(intent_dict_file, "r").readlines() lines = [line.strip() for line in lines if line.strip()] num_intents = len(lines) if not (os.path.exists(input_file) and os.path.exists(slot_file)): raise FileNotFoundError( f"{input_file} or {slot_file} not found. Please refer to the documentation for the right format \ of Intents and Slots files." ) dataset = MultiLabelIntentSlotClassificationDataset( input_file=input_file, slot_file=slot_file, num_intents=num_intents, tokenizer=self.tokenizer, max_seq_length=self.max_seq_length, num_samples=cfg.num_samples, pad_label=self.cfg.data_desc.pad_label, ignore_extra_tokens=self.cfg.ignore_extra_tokens, ignore_start_end=self.cfg.ignore_start_end, ) return DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, drop_last=cfg.drop_last, collate_fn=dataset.collate_fn, ) def prediction_probabilities(self, queries: List[str], test_ds: DictConfig) -> npt.NDArray: """ Get prediction probabilities for the queries (intent and slots) Args: queries: text sequences test_ds: Dataset configuration section. Returns: numpy array of intent probabilities """ probabilities = [] mode = self.training try: device = "cuda" if torch.cuda.is_available() else "cpu" # Switch model to evaluation mode self.eval() self.to(device) # Dataset. infer_datalayer = self._setup_infer_dataloader(queries, test_ds) for batch in infer_datalayer: input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask = batch intent_logits, slot_logits = self.forward( input_ids=input_ids.to(device), token_type_ids=input_type_ids.to(device), attention_mask=input_mask.to(device), ) # predict intents for these examples probabilities.append(torch.sigmoid(intent_logits).detach().cpu().numpy()) probabilities = np.concatenate(probabilities) finally: # set mode back to its original value self.train(mode=mode) return probabilities def optimize_threshold(self, test_ds: DictConfig, file_name: str) -> None: """ Set the optimal threshold of the model from performance on validation set. This threshold is used to round the logits to 0 or 1. Args: test_ds: location of test dataset file_name: name of input file to retrieve validation set Returns: None """ input_file = f"{self.data_dir}/{file_name}.tsv" with open(input_file, "r") as f: input_lines = f.readlines()[1:] # Skipping headers at index 0 dataset = list(input_lines) metrics_labels, sentences = [], [] for input_line in dataset: sentence = input_line.strip().split("\t")[0] sentences.append(sentence) parts = input_line.strip().split("\t")[1:][0] parts = list(map(int, parts.split(","))) parts = [1 if label in parts else 0 for label in range(len(self.cfg.data_desc.intent_labels))] metrics_labels.append(parts) # Retrieve class probabilities for each sentence intent_probabilities = self.prediction_probabilities(sentences, test_ds) metrics_dict = {} # Find optimal logits rounding threshold for intents for i in np.arange(0.5, 0.96, 0.01): predictions = (intent_probabilities >= i).tolist() precision = precision_score(metrics_labels, predictions, average='micro') recall = recall_score(metrics_labels, predictions, average='micro') f1 = f1_score(metrics_labels, predictions, average='micro') metrics_dict[i] = [precision, recall, f1] max_precision = max(metrics_dict, key=lambda x: metrics_dict[x][0]) max_recall = max(metrics_dict, key=lambda x: metrics_dict[x][1]) max_f1_score = max(metrics_dict, key=lambda x: metrics_dict[x][2]) logging.info( f'Best Threshold for F1-Score: {max_f1_score}, [Precision, Recall, F1-Score]: {metrics_dict[max_f1_score]}' ) logging.info( f'Best Threshold for Precision: {max_precision}, [Precision, Recall, F1-Score]: {metrics_dict[max_precision]}' ) logging.info( f'Best Threshold for Recall: {max_recall}, [Precision, Recall, F1-Score]: {metrics_dict[max_recall]}' ) if metrics_dict[max_f1_score][2] > self.max_f1: self.max_f1 = metrics_dict[max_f1_score][2] logging.info(f'Setting Threshold to: {max_f1_score}') self.threshold = max_f1_score def predict_from_examples( self, queries: List[str], test_ds: DictConfig, threshold: float = None ) -> Tuple[List[List[Tuple[str, float]]], List[str], List[List[int]]]: """ Get prediction for the queries (intent and slots) Args: queries: text sequences test_ds: Dataset configuration section. threshold: Threshold for rounding prediction logits Returns: predicted_intents: model intent predictions with their probabilities Example: [[('flight', 0.84)], [('airfare', 0.54), ('flight', 0.73), ('meal', 0.24)]] predicted_slots: model slot predictions Example: ['O B-depart_date.month_name B-depart_date.day_number', 'O O B-flight_stop O O O'] predicted_vector: model intent predictions for each individual query. Binary values within each list indicate whether a class is prediced for the given query (1 for True, 0 for False) Example: [[1,0,0,0,0,0], [0,0,1,0,0,0]] """ predicted_intents = [] if threshold is None: threshold = self.threshold logging.info(f'Using threshold = {threshold}') predicted_slots = [] predicted_vector = [] mode = self.training try: device = "cuda" if torch.cuda.is_available() else "cpu" # Retrieve intent and slot vocabularies from configuration. intent_labels = self.cfg.data_desc.intent_labels slot_labels = self.cfg.data_desc.slot_labels # Switch model to evaluation mode self.eval() self.to(device) # Dataset. infer_datalayer = self._setup_infer_dataloader(queries, test_ds) for batch in infer_datalayer: input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask = batch intent_logits, slot_logits = self.forward( input_ids=input_ids.to(device), token_type_ids=input_type_ids.to(device), attention_mask=input_mask.to(device), ) # predict intents and slots for these examples # intents intent_preds = tensor2list(torch.sigmoid(intent_logits)) # convert numerical outputs to Intent and Slot labels from the dictionaries for intents in intent_preds: intent_lst = [] temp_list = [] for intent_num, probability in enumerate(intents): if probability >= threshold: intent_lst.append((intent_labels[int(intent_num)], round(probability, 2))) temp_list.append(1) else: temp_list.append(0) predicted_vector.append(temp_list) predicted_intents.append(intent_lst) # slots slot_preds = torch.argmax(slot_logits, axis=-1) temp_slots_preds = [] for slot_preds_query, mask_query in zip(slot_preds, subtokens_mask): temp_slots = "" query_slots = "" for slot, mask in zip(slot_preds_query, mask_query): if mask == 1: if slot < len(slot_labels): query_slots += slot_labels[int(slot)] + " " temp_slots += f"{slot} " else: query_slots += "Unknown_slot " temp_slots += "0 " predicted_slots.append(query_slots.strip()) temp_slots_preds.append(temp_slots) finally: # set mode back to its original value self.train(mode=mode) return predicted_intents, predicted_slots, predicted_vector @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ To be added """ result = [] return result
NeMo-main
nemo/collections/nlp/models/intent_slot_classification/multi_label_intent_slot_classification_model.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from time import perf_counter from typing import Dict, Optional import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from nemo.collections.common.losses import CrossEntropyLoss from nemo.collections.nlp.data.spellchecking_asr_customization import ( SpellcheckingAsrCustomizationDataset, SpellcheckingAsrCustomizationTestDataset, TarredSpellcheckingAsrCustomizationDataset, bert_example, ) from nemo.collections.nlp.data.text_normalization_as_tagging.utils import read_label_map from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common.token_classifier import TokenClassifier from nemo.collections.nlp.parts.utils_funcs import tensor2list from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.core.neural_types import LogitsType, NeuralType from nemo.utils import logging from nemo.utils.decorators import experimental __all__ = ["SpellcheckingAsrCustomizationModel"] @experimental class SpellcheckingAsrCustomizationModel(NLPModel): """ https://arxiv.org/abs/2306.02317 BERT-based model for Spellchecking ASR Customization. It takes as input ASR hypothesis and candidate customization entries. It labels the hypothesis with correct entry index or 0. Example input: [CLS] a s t r o n o m e r s _ d i d i e _ s o m o n _ a n d _ t r i s t i a n _ g l l o [SEP] d i d i e r _ s a u m o n [SEP] a s t r o n o m i e [SEP] t r i s t a n _ g u i l l o t [SEP] ... Input segments: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 Example output: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 0 ... """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return { "logits": NeuralType(('B', 'T', 'D'), LogitsType()), } @property def input_module(self): return self @property def output_module(self): return self def __init__(self, cfg: DictConfig, trainer: Trainer = None) -> None: super().__init__(cfg=cfg, trainer=trainer) # Label map contains 11 labels: 0 for nothing, 1..10 for target candidate ids label_map_file = self.register_artifact("label_map", cfg.label_map, verify_src_exists=True) # Semiotic classes for this model consist only of classes CUSTOM(means fragment containing custom candidate) and PLAIN (any other single-character fragment) # They are used only during validation step, to calculate accuracy for CUSTOM and PLAIN classes separately semiotic_classes_file = self.register_artifact( "semiotic_classes", cfg.semiotic_classes, verify_src_exists=True ) self.label_map = read_label_map(label_map_file) self.semiotic_classes = read_label_map(semiotic_classes_file) self.num_labels = len(self.label_map) self.num_semiotic_labels = len(self.semiotic_classes) self.id_2_tag = {tag_id: tag for tag, tag_id in self.label_map.items()} self.id_2_semiotic = {semiotic_id: semiotic for semiotic, semiotic_id in self.semiotic_classes.items()} self.max_sequence_len = cfg.get('max_sequence_len', self.tokenizer.tokenizer.model_max_length) # Setup to track metrics # We will have (len(self.semiotic_classes) + 1) labels. # Last one stands for WRONG (span in which the predicted tags don't match the labels) # This is needed to feed the sequence of classes to classification_report during validation label_ids = self.semiotic_classes.copy() label_ids["WRONG"] = len(self.semiotic_classes) self.tag_classification_report = ClassificationReport( len(self.semiotic_classes) + 1, label_ids=label_ids, mode='micro', dist_sync_on_step=True ) self.hidden_size = cfg.hidden_size # hidden size is doubled because in forward we concatenate embeddings for characters and embeddings for subwords self.logits = TokenClassifier( self.hidden_size * 2, num_classes=self.num_labels, num_layers=1, log_softmax=False, dropout=0.1 ) self.loss_fn = CrossEntropyLoss(logits_ndim=3) self.builder = bert_example.BertExampleBuilder( self.label_map, self.semiotic_classes, self.tokenizer.tokenizer, self.max_sequence_len ) @typecheck() def forward( self, input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, ): """ Same BERT-based model is used to calculate embeddings for sequence of single characters and for sequence of subwords. Then we concatenate subword embeddings to each character corresponding to this subword. We return logits for each character x 11 labels: 0 - character doesn't belong to any candidate, 1..10 - character belongs to candidate with this id. # Arguments input_ids: token_ids for single characters; .shape = [batch_size, char_seq_len]; .dtype = int64 input_mask: mask for input_ids(1 - real, 0 - padding); .shape = [batch_size, char_seq_len]; .dtype = int64 segment_ids: segment types for input_ids (0 - ASR-hypothesis, 1..10 - candidate); .shape = [batch_size, char_seq_len]; .dtype = int64 input_ids_for_subwords: token_ids for subwords; .shape = [batch_size, subword_seq_len]; .dtype = int64 input_mask_for_subwords: mask for input_ids_for_subwords(1 - real, 0 - padding); .shape = [batch_size, subword_seq_len]; .dtype = int64 segment_ids_for_subwords: segment types for input_ids_for_subwords (0 - ASR-hypothesis, 1..10 - candidate); .shape = [batch_size, subword_seq_len]; .dtype = int64 character_pos_to_subword_pos: tensor mapping character position in the input sequence to subword position; .shape = [batch_size, char_seq_len]; .dtype = int64 """ # src_hiddens.shape = [batch_size, char_seq_len, bert_hidden_size]; .dtype=float32 src_hiddens = self.bert_model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask) # src_hiddens_for_subwords.shape = [batch_size, subword_seq_len, bert_hidden_size]; .dtype=float32 src_hiddens_for_subwords = self.bert_model( input_ids=input_ids_for_subwords, token_type_ids=segment_ids_for_subwords, attention_mask=input_mask_for_subwords, ) # Next three commands concatenate subword embeddings to each character embedding of the corresponding subword # index.shape = [batch_size, char_seq_len, bert_hidden_size]; .dtype=int64 index = character_pos_to_subword_pos.unsqueeze(-1).expand((-1, -1, src_hiddens_for_subwords.shape[2])) # src_hiddens_2.shape = [batch_size, char_seq_len, bert_hidden_size]; .dtype=float32 src_hiddens_2 = torch.gather(src_hiddens_for_subwords, 1, index) # src_hiddens.shape = [batch_size, char_seq_len, bert_hidden_size * 2]; .dtype=float32 src_hiddens = torch.cat((src_hiddens, src_hiddens_2), 2) # logits.shape = [batch_size, char_seq_len, num_labels]; num_labels=11: ids from 0 to 10; .dtype=float32 logits = self.logits(hidden_states=src_hiddens) return logits # Training def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ ( input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, labels_mask, labels, _, ) = batch logits = self.forward( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, input_ids_for_subwords=input_ids_for_subwords, input_mask_for_subwords=input_mask_for_subwords, segment_ids_for_subwords=segment_ids_for_subwords, character_pos_to_subword_pos=character_pos_to_subword_pos, ) loss = self.loss_fn(logits=logits, labels=labels, loss_mask=labels_mask) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', loss) self.log('lr', lr, prog_bar=True) return {'loss': loss, 'lr': lr} # Validation and Testing def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ ( input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, labels_mask, labels, spans, ) = batch logits = self.forward( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, input_ids_for_subwords=input_ids_for_subwords, input_mask_for_subwords=input_mask_for_subwords, segment_ids_for_subwords=segment_ids_for_subwords, character_pos_to_subword_pos=character_pos_to_subword_pos, ) tag_preds = torch.argmax(logits, dim=2) # Update tag classification_report for input_mask_seq, segment_seq, prediction_seq, label_seq, span_seq in zip( input_mask.tolist(), segment_ids.tolist(), tag_preds.tolist(), labels.tolist(), spans.tolist() ): # Here we want to track whether the predicted output matches ground truth labels for each whole span. # We construct the special input for classification report, for example: # span_labels = [PLAIN, PLAIN, PLAIN, PLAIN, CUSTOM, CUSTOM] # span_predictions = [PLAIN, WRONG, PLAIN, PLAIN, WRONG, CUSTOM] # Note that the number of PLAIN and CUSTOM occurrences in the report is not comparable, # because PLAIN is for characters, and CUSTOM is for phrases. span_labels = [] span_predictions = [] plain_cid = self.semiotic_classes["PLAIN"] wrong_cid = self.tag_classification_report.num_classes - 1 # First we loop through all predictions for input characters with label=0, they are regarded as separate spans with PLAIN class. # It either stays as PLAIN if the model prediction is 0, or turns to WRONG. for i in range(len(segment_seq)): if input_mask_seq[i] == 0: continue if segment_seq[i] > 0: # token does not belong to ASR-hypothesis => it's over break if label_seq[i] == 0: span_labels.append(plain_cid) if prediction_seq[i] == 0: span_predictions.append(plain_cid) else: span_predictions.append(wrong_cid) # if label_seq[i] != 0 then it belongs to CUSTOM span and will be handled later # Second we loop through spans tensor which contains only spans for CUSTOM class. # It stays as CUSTOM if all predictions for the whole span are equal to the labels, otherwise it turns to WRONG. for cid, start, end in span_seq: if cid == -1: break span_labels.append(cid) if prediction_seq[start:end] == label_seq[start:end]: span_predictions.append(cid) else: span_predictions.append(wrong_cid) if len(span_labels) != len(span_predictions): raise ValueError( "Length mismatch: len(span_labels)=" + str(len(span_labels)) + "; len(span_predictions)=" + str(len(span_predictions)) ) self.tag_classification_report( torch.tensor(span_predictions).to(self.device), torch.tensor(span_labels).to(self.device) ) val_loss = self.loss_fn(logits=logits, labels=labels, loss_mask=labels_mask) return {'val_loss': val_loss} def validation_epoch_end(self, outputs): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() # Calculate metrics and classification report # Note that in our task recall = accuracy, and the recall column is the per class accuracy _, tag_accuracy, _, tag_report = self.tag_classification_report.compute() logging.info("Total tag accuracy: " + str(tag_accuracy)) logging.info(tag_report) self.log('val_loss', avg_loss, prog_bar=True) self.log('tag accuracy', tag_accuracy) self.tag_classification_report.reset() def test_step(self, batch, batch_idx): """ Lightning calls this inside the test loop with the data from the test dataloader passed in as `batch`. """ return self.validation_step(batch, batch_idx) def test_epoch_end(self, outputs): """ Called at the end of test to aggregate outputs. :param outputs: list of individual outputs of each test step. """ return self.validation_epoch_end(outputs) # Functions for inference @torch.no_grad() def infer(self, dataloader_cfg: DictConfig, input_name: str, output_name: str) -> None: """ Main function for Inference Args: dataloader_cfg: config for dataloader input_name: Input file with tab-separated text records. Each record consists of 2 items: - ASR hypothesis - candidate phrases separated by semicolon output_name: Output file with tab-separated text records. Each record consists of 2 items: - ASR hypothesis - candidate phrases separated by semicolon - list of possible replacements with probabilities (start, pos, candidate_id, prob), separated by semicolon - list of labels, predicted for each letter (for debug purposes) Returns: None """ mode = self.training device = "cuda" if torch.cuda.is_available() else "cpu" try: # Switch model to evaluation mode self.eval() self.to(device) logging_level = logging.get_verbosity() logging.set_verbosity(logging.WARNING) infer_datalayer = self._setup_infer_dataloader(dataloader_cfg, input_name) all_tag_preds = ( [] ) # list(size=number of sentences) of lists(size=number of letters) of tag predictions (best candidate_id for each letter) all_possible_replacements = ( [] ) # list(size=number of sentences) of lists(size=number of potential replacements) of tuples(start, pos, candidate_id, prob) for batch in iter(infer_datalayer): ( input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, fragment_indices, ) = batch # tag_logits.shape = [batch_size, char_seq_len, num_labels]; num_labels=11: ids from 0 to 10; .dtype=float32 tag_logits = self.forward( input_ids=input_ids.to(self.device), input_mask=input_mask.to(self.device), segment_ids=segment_ids.to(self.device), input_ids_for_subwords=input_ids_for_subwords.to(self.device), input_mask_for_subwords=input_mask_for_subwords.to(self.device), segment_ids_for_subwords=segment_ids_for_subwords.to(self.device), character_pos_to_subword_pos=character_pos_to_subword_pos.to(self.device), ) # fragment_indices.shape=[batsh_size, num_fragments, 3], where last dimension is [start, end, label], where label is candidate id from 1 to 10 # Next we want to convert predictions for separate letters to probabilities for each whole fragment from fragment_indices. # To achieve this we first sum the letter logits in each fragment and divide by its length. # (We use .cumsum and then difference between end and start to get sum per fragment). # Then we convert logits to probs with softmax and for each fragment extract only the prob for given label. # Finally we get a list of tuples (start, end, label, prob) indices_len = fragment_indices.shape[1] # this padding adds a row of zeros (size=num_labels) as first element of sequence in second dimension. This is needed for cumsum operations. padded_logits = torch.nn.functional.pad(tag_logits, pad=(0, 0, 1, 0)) ( batch_size, seq_len, num_labels, ) = padded_logits.shape # seq_len is +1 compared to that of tag_logits, because of padding # cumsum.shape=[batch_size, seq_len, num_labels] cumsum = padded_logits.cumsum(dim=1) # the size -1 is inferred from other dimensions. We get rid of batch dimension. cumsum_view = cumsum.view(-1, num_labels) word_index = ( torch.ones((batch_size, indices_len), dtype=torch.long) * torch.arange(batch_size).reshape((-1, 1)) * seq_len ).view(-1) lower_index = (fragment_indices[..., 0]).view(-1) + word_index higher_index = (fragment_indices[..., 1]).view(-1) + word_index d_index = (higher_index - lower_index).reshape((-1, 1)).to(self.device) # word lengths dlog = cumsum_view[higher_index, :] - cumsum_view[lower_index, :] # sum of logits # word_logits.shape=[batch_size, indices_len, num_labels] word_logits = (dlog / d_index.float()).view(batch_size, indices_len, num_labels) # convert logits to probs, same shape word_probs = torch.nn.functional.softmax(word_logits, dim=-1).to(self.device) # candidate_index.shape=[batch_size, indices_len] candidate_index = fragment_indices[:, :, 2].to(self.device) # candidate_probs.shape=[batch_size, indices_len] candidate_probs = torch.take_along_dim(word_probs, candidate_index.unsqueeze(2), dim=-1).squeeze(2) for i in range(batch_size): possible_replacements = [] for j in range(indices_len): start, end, candidate_id = ( int(fragment_indices[i][j][0]), int(fragment_indices[i][j][1]), int(fragment_indices[i][j][2]), ) if candidate_id == 0: # this is padding continue prob = round(float(candidate_probs[i][j]), 5) if prob < 0.01: continue # -1 because in the output file we will not have a [CLS] token possible_replacements.append( str(start - 1) + " " + str(end - 1) + " " + str(candidate_id) + " " + str(prob) ) all_possible_replacements.append(possible_replacements) # torch.argmax(tag_logits, dim=-1) gives a tensor of best predicted labels with shape [batch_size, char_seq_len], .dtype = int64 # character_preds is list of lists of predicted labels character_preds = tensor2list(torch.argmax(tag_logits, dim=-1)) all_tag_preds.extend(character_preds) if len(all_possible_replacements) != len(all_tag_preds) or len(all_possible_replacements) != len( infer_datalayer.dataset.examples ): raise IndexError( "number of sentences mismatch: len(all_possible_replacements)=" + str(len(all_possible_replacements)) + "; len(all_tag_preds)=" + str(len(all_tag_preds)) + "; len(infer_datalayer.dataset.examples)=" + str(len(infer_datalayer.dataset.examples)) ) # save results to file with open(output_name, "w", encoding="utf-8") as out: for i in range(len(infer_datalayer.dataset.examples)): hyp, ref = infer_datalayer.dataset.hyps_refs[i] num_letters = hyp.count(" ") + 1 tag_pred_str = " ".join(list(map(str, all_tag_preds[i][1 : (num_letters + 1)]))) possible_replacements_str = ";".join(all_possible_replacements[i]) out.write(hyp + "\t" + ref + "\t" + possible_replacements_str + "\t" + tag_pred_str + "\n") except Exception as e: raise ValueError("Error processing file " + input_name) finally: # set mode back to its original value self.train(mode=mode) logging.set_verbosity(logging_level) # Functions for processing data def setup_training_data(self, train_data_config: Optional[DictConfig]): if not train_data_config or not train_data_config.data_path: logging.info( f"Dataloader config or file_path for the train is missing, so no data loader for train is created!" ) self._train_dl = None return self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config, data_split="train") def setup_validation_data(self, val_data_config: Optional[DictConfig]): if not val_data_config or not val_data_config.data_path: logging.info( f"Dataloader config or file_path for the validation is missing, so no data loader for validation is created!" ) self._validation_dl = None return self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config, data_split="val") def setup_test_data(self, test_data_config: Optional[DictConfig]): if not test_data_config or test_data_config.data_path is None: logging.info( f"Dataloader config or file_path for the test is missing, so no data loader for test is created!" ) self._test_dl = None return self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, data_split="test") def _setup_dataloader_from_config(self, cfg: DictConfig, data_split: str): start_time = perf_counter() logging.info(f'Creating {data_split} dataset') if cfg.get("use_tarred_dataset", False): dataset = TarredSpellcheckingAsrCustomizationDataset( cfg.data_path, shuffle_n=cfg.get("tar_shuffle_n", 100), global_rank=self.global_rank, world_size=self.world_size, pad_token_id=self.builder._pad_id, ) else: input_file = cfg.data_path dataset = SpellcheckingAsrCustomizationDataset(input_file=input_file, example_builder=self.builder) dl = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=cfg.shuffle, collate_fn=dataset.collate_fn ) running_time = perf_counter() - start_time logging.info(f'Took {running_time} seconds') return dl def _setup_infer_dataloader(self, cfg: DictConfig, input_name: str) -> 'torch.utils.data.DataLoader': """ Setup function for a infer data loader. Args: cfg: config dictionary containing data loader params like batch_size, num_workers and pin_memory input_name: path to input file. Returns: A pytorch DataLoader. """ dataset = SpellcheckingAsrCustomizationTestDataset(input_name, example_builder=self.builder) return torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg["batch_size"], shuffle=False, num_workers=cfg.get("num_workers", 0), pin_memory=cfg.get("pin_memory", False), drop_last=False, collate_fn=dataset.collate_fn, ) @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: return None
NeMo-main
nemo/collections/nlp/models/spellchecking_asr_customization/spellchecking_model.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.spellchecking_asr_customization.spellchecking_model import ( SpellcheckingAsrCustomizationModel, )
NeMo-main
nemo/collections/nlp/models/spellchecking_asr_customization/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum import itertools import random from typing import List, Optional import numpy as np import torch from omegaconf.dictconfig import DictConfig from omegaconf.listconfig import ListConfig from pytorch_lightning.trainer.trainer import Trainer from sacrebleu import corpus_bleu from nemo.collections.nlp.data.common.sequence_to_sequence_dataset import ( BinarizedMemmapSequenceToSequenceDataset, TextMemmapSequenceToSequenceDataset, ) from nemo.collections.nlp.data.language_modeling.megatron.base_dataset_utils import ( get_datasets_weights_and_num_samples, ) from nemo.collections.nlp.data.language_modeling.megatron.blendable_dataset import BlendableDataset from nemo.collections.nlp.data.language_modeling.megatron.megatron_batch_samplers import ( MegatronPretrainingBatchSampler, ) from nemo.collections.nlp.data.language_modeling.megatron.xlm_dataset import ( BinarizedMemmapCrossLingualMLMAndTranslationDataset, TextMemmapCrossLingualMLMAndTranslationDataset, ) from nemo.collections.nlp.models.language_modeling.megatron_lm_encoder_decoder_model import ( MegatronLMEncoderDecoderModel, ) from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model from nemo.collections.nlp.models.machine_translation.mt_enc_dec_model import MTEncDecModel from nemo.collections.nlp.modules.common.megatron.megatron_export import DecEmb, EncEmb, TokensHeadEmb from nemo.collections.nlp.modules.common.megatron.utils import get_iterator_k_split from nemo.collections.nlp.parts.nlp_overrides import GlobalBatchDataFetcher from nemo.collections.nlp.parts.utils_funcs import get_last_rank from nemo.core.classes import Exportable from nemo.utils import AppState, logging, timers try: from apex.transformer.pipeline_parallel.utils import ( _reconfigure_microbatch_calculator, get_micro_batch_size, get_num_microbatches, ) HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import parallel_state from megatron.core.pipeline_parallel.schedules import get_forward_backward_func HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = ["MegatronNMTModel"] class MultilingualModelType(enum.Enum): one_to_many = 1 many_to_one = 2 many_to_many = 3 class MegatronNMTModel(MegatronLMEncoderDecoderModel, Exportable): """ Megatron NMT training """ def __init__(self, cfg: DictConfig, trainer: Trainer): # All of the lines below need to be set when the parent class calls self._build_tokenizer() self.encoder_tokenizer_library = cfg.encoder_tokenizer.get('library', 'yttm') self.decoder_tokenizer_library = cfg.decoder_tokenizer.get('library', 'yttm') self.multilingual_lang_tokens = {} self.src_language = cfg.get("src_language", None) self.tgt_language = cfg.get("tgt_language", None) self.multilingual = cfg.get("multilingual", False) self.multilingual_ids = [] self.validate_input_ids = cfg.get("validate_input_ids", True) self.objective = cfg.train_ds.get("objective", "nmt") if self.objective == 'nmt-xlm': if not self.multilingual: raise ValueError("nmt-xlm objective requires model.multilingual=True") if self.multilingual: self.multilingual_type = self._determine_multilingual_training_type() self._setup_multilingual_special_tokens() else: self.multilingual_type = None super().__init__(cfg, trainer=trainer) def _determine_multilingual_training_type(self): """Determines whether we are doing one-many, many-one, or many-many training based on the config.""" if self.objective == 'nmt-xlm': return MultilingualModelType.many_to_many if isinstance(self.src_language, ListConfig) and isinstance(self.tgt_language, ListConfig): return MultilingualModelType.many_to_many elif isinstance(self.src_language, ListConfig): return MultilingualModelType.many_to_one elif isinstance(self.tgt_language, ListConfig): return MultilingualModelType.one_to_many else: raise ValueError( f"Invalid multilingual training config: {self.src_language}, {self.tgt_language}. Must have either src/tgt as a list of languages." ) def _setup_multilingual_special_tokens(self): if self.multilingual_type == MultilingualModelType.many_to_many: if self.objective == 'nmt-xlm': unique_langs = set(self.src_language + self.tgt_language) else: # We don't take a set() for tgt_language here because the same lang can appear multiple times. unique_langs = set(self.tgt_language) for lng in unique_langs: self.multilingual_lang_tokens["<" + lng + ">"] = "<" + lng + ">" elif self.multilingual_type == MultilingualModelType.many_to_one: # Do nothing here since many -> one does not need special tokens for the target language. pass elif self.multilingual_type == MultilingualModelType.one_to_many: for lng in self.tgt_language: self.multilingual_lang_tokens["<" + lng + ">"] = "<" + lng + ">" else: raise ValueError(f"Invalid multilingual training type: {self.multilingual_type}") def setup(self, stage=None): # NOTE: super().__init__ will try and setup train/val/test datasets, but we sidestep this using a if self._train_ds is not None condition # We then set things up for real only once setup() of this class is called. resume_checkpoint_path = self.trainer.ckpt_path if resume_checkpoint_path: init_consumed_samples = self._extract_consumed_samples_from_ckpt(resume_checkpoint_path) else: init_consumed_samples = 0 self.init_consumed_samples = init_consumed_samples if stage == 'predict': return # If the user wants to manually override train and validation dataloaders before calling `.fit()` if self._train_dl is not None and self._validation_dl is not None: return self.build_train_valid_test_datasets() self.setup_training_data(self._cfg.train_ds) self.setup_validation_data(self._cfg.validation_ds) if hasattr(self._cfg, 'test_ds'): self.setup_test_data(self._cfg.test_ds) # when using pipeline model parallel the final stage need to initialize word embeddings if parallel_state.get_pipeline_model_parallel_world_size() > 1: assert ( self.cfg.share_token_embeddings ), "share_word_embedding must be True when using pipeline model parallel > 1" assert ( self.cfg.share_decoder_tokens_head_embeddings ), "share_decoder_tokens_head_embeddings must be True when using pipeline model parallel > 1" self.enc_dec_model.sync_initial_word_embeddings() if ( self.cfg.encoder.get('position_embedding_type') != 'relative' and self.cfg.decoder.get('position_embedding_type') != 'relative' ): self.enc_dec_model.sync_initial_position_embeddings() # Synchronize RPE embeddings across pipeline parallel ranks. else: if self.cfg.encoder.get('position_embedding_type', 'learned_absolute') == 'relative': self.enc_dec_model.sync_initial_encoder_relative_position_embeddings() if self.cfg.decoder.get('position_embedding_type', 'learned_absolute') == 'relative': self.enc_dec_model.sync_initial_decoder_relative_position_embeddings() if self.cfg.decoder.get( 'position_embedding_type', 'learned_absolute' ) == 'relative' and not self.cfg.decoder.get('relative_position_bias_self_attention_only', True): self.enc_dec_model.sync_initial_decoder_cross_attention_relative_position_embeddings() def _build_tokenizer(self): # Instantiates tokenizers and register to be saved with NeMo Model archive # After this call, there will be self.encoder_tokenizer and self.decoder_tokenizer # Which can convert between tokens and token_ids for SRC and TGT languages correspondingly. encoder_tokenizer_model = self.register_artifact( "encoder_tokenizer.model", self._cfg.encoder_tokenizer.get('model') ) decoder_tokenizer_model = self.register_artifact( "decoder_tokenizer.model", self._cfg.decoder_tokenizer.get('model') ) self.encoder_tokenizer, self.decoder_tokenizer = MTEncDecModel.setup_enc_dec_tokenizers( encoder_tokenizer_library=self.encoder_tokenizer_library, encoder_tokenizer_model=encoder_tokenizer_model, encoder_bpe_dropout=self._cfg.encoder_tokenizer.get('bpe_dropout', 0.0) if self._cfg.encoder_tokenizer.get('bpe_dropout', 0.0) is not None else 0.0, encoder_model_name=self._cfg.encoder_tokenizer.get('type', None), encoder_r2l=self._cfg.encoder_tokenizer.get('r2l', False), decoder_tokenizer_library=self.decoder_tokenizer_library, encoder_tokenizer_vocab_file=self._cfg.encoder_tokenizer.get('vocab_file', None), decoder_tokenizer_model=decoder_tokenizer_model, decoder_bpe_dropout=self._cfg.decoder_tokenizer.get('bpe_dropout', 0.0) if self._cfg.decoder_tokenizer.get('bpe_dropout', 0.0) is not None else 0.0, decoder_model_name=self._cfg.encoder_tokenizer.get('type', None), decoder_r2l=self._cfg.decoder_tokenizer.get('r2l', False), encoder_sentencepiece_legacy=self._cfg.encoder_tokenizer.get('sentencepiece_legacy', False), decoder_sentencepiece_legacy=self._cfg.decoder_tokenizer.get('sentencepiece_legacy', False), ) def _build_vocab(self): if hasattr(self.cfg, "data") and self.cfg.train_ds.get('objective', 'nmt') != 'nmt-xlm': if hasattr(self.cfg.data, "dataset_type"): # This happens only when restoring a pre-trained model. We need to add all of the special tokens that were added while pre-training to avoid a checkpoint shape mismatch while restoring. MegatronT5Model.add_special_tokens_to_tokenizer( tokenizer=self.encoder_tokenizer, tokenizer_cfg=self.cfg.encoder_tokenizer, dataset_type=self.cfg.data.dataset_type, ) MegatronT5Model.add_special_tokens_to_tokenizer( tokenizer=self.decoder_tokenizer, tokenizer_cfg=self.cfg.decoder_tokenizer, dataset_type=self.cfg.data.dataset_type, ) if self.cfg.train_ds.get('objective', 'nmt') == 'nmt-xlm': if self.cfg.encoder_tokenizer.library != 'sentencepiece': raise ValueError( f"NMT-XLM objective requires sentencepiece tokenizer, but got encoder tokenizer library : {self.cfg.encoder_tokenizer.library}" ) if self.cfg.decoder_tokenizer.library != 'sentencepiece': raise ValueError( f"NMT-XLM objective requires sentencepiece tokenizer, but got decoder tokenizer library : {self.cfg.decoder_tokenizer.library}" ) MegatronT5Model.add_special_tokens_to_tokenizer( tokenizer=self.encoder_tokenizer, tokenizer_cfg=self.cfg.encoder_tokenizer, dataset_type='ul2', ) MegatronT5Model.add_special_tokens_to_tokenizer( tokenizer=self.decoder_tokenizer, tokenizer_cfg=self.cfg.decoder_tokenizer, dataset_type='ul2', ) # Set up pre and post processors as well. # NOTE: multilingual language tokens are set up after other special tokens such as eos, pad, sentinel tokens etc are added. if self.multilingual: ( self.source_processor_list, self.target_processor_list, self.multilingual_lang_to_id, ) = MTEncDecModel.setup_multilingual_ids_and_processors( src_language=self.src_language, tgt_language=self.tgt_language, encoder_tokenizer=self.encoder_tokenizer, # Multilingual training requires shared tokenizers. decoder_tokenizer=self.decoder_tokenizer, encoder_tokenizer_library=self.encoder_tokenizer_library, decoder_tokenizer_library=self.decoder_tokenizer_library, ) self.multilingual_ids = list(self.multilingual_lang_to_id.values()) else: # After this call, the model will have self.source_processor and self.target_processor objects self.source_processor, self.target_processor = MTEncDecModel.setup_pre_and_post_processing_utils( self.src_language, self.tgt_language, self.encoder_tokenizer_library, self.decoder_tokenizer_library, ) self.multilingual_ids = [None] self.padded_vocab_size = self._vocab_size_with_padding( orig_vocab_size=self.encoder_tokenizer.vocab_size, make_vocab_size_divisible_by=self._cfg.get('make_vocab_size_divisible_by', 128), tensor_model_parallel_size=self._cfg.get('tensor_model_parallel_size', 1), ) def fwd_bwd_step(self, dataloader_iter, batch_idx, forward_only): """ Dataloader produces a global batch which is turned into a list of microbatches. The list of microbatches is then piped through the pipeline using Apex fwd/bwd functions. """ batch = next(dataloader_iter) if isinstance(batch, dict): # convert to list if not already converted. batch = self._process_batch(batch) # Get seq length of batch encoder_seq_length = batch[0].size(1) decoder_seq_length = batch[1].size(1) tensor_shape = [encoder_seq_length, get_micro_batch_size(), self.cfg.encoder.hidden_size] data_iter = get_iterator_k_split(batch, get_num_microbatches()) return self._execute_fwd_bwd_function( data_iterator=data_iter, forward_only=forward_only, tensor_shape=tensor_shape, decoder_seq_length=decoder_seq_length, ) def eval_step(self, dataloader_iter, batch_idx, dataloader_idx=0): # Check if iterator is exhausted dataloader_iter, done = self._val_iterator_done(dataloader_iter) if done: return # Need to squeze dim 0 for old NMT datasets since things are pre-batched and we ask the dataloader for batch size 1. batch = next(dataloader_iter) batch = [x.squeeze(dim=0) if x.ndim == 3 else x for x in batch] batch = self.process_global_batch_for_text_translation_datasets(batch) # Eval step requires text datasets so we need to reconfigure MBS on each batch. app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=batch['text_enc'].size(0) * parallel_state.get_data_parallel_world_size(), micro_batch_size=batch['text_enc'].size(0), data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # This returns the averaged loss across data-parallel groups. reduced_loss = self.fwd_bwd_step(itertools.chain([batch]), batch_idx, True) tokens_enc, labels, enc_mask = batch['text_enc'], batch['labels'], batch['enc_mask'] predicted_tokens_ids, _ = self.decode( tokens_enc, enc_mask, tokens_enc.size(1) + self._cfg.max_generation_delta, # Generate up to src-length + max generation delta. TODO: Implement better stopping when everything hits <EOS>. tokenizer=self.decoder_tokenizer, ) if self.multilingual: source_processor = self.source_processor_list[dataloader_idx] target_processor = self.target_processor_list[dataloader_idx] else: source_processor = self.source_processor target_processor = self.target_processor # Post-process the translations and inputs to log. preds = self.postprocess_outputs( outputs=predicted_tokens_ids, tokenizer=self.decoder_tokenizer, processor=target_processor, ) labels = self.postprocess_outputs( outputs=labels, tokenizer=self.decoder_tokenizer, processor=target_processor, ) encoder_inputs = self.postprocess_outputs( outputs=tokens_enc, tokenizer=self.encoder_tokenizer, processor=source_processor, ) loss_dict = { 'inputs': encoder_inputs, 'translations': preds, 'ground_truths': labels, } if isinstance(reduced_loss, dict): loss_dict.update(reduced_loss) else: loss_dict['loss'] = reduced_loss if type(self.trainer.val_dataloaders) == list and len(self.trainer.val_dataloaders) > 1: self.validation_step_outputs[dataloader_idx].append(loss_dict) else: self.validation_step_outputs.append(loss_dict) return loss_dict def postprocess_outputs(self, outputs, tokenizer, processor): # Convert ids to lists. outputs = outputs.cpu().numpy().tolist() # Filter out the special tokens and de-tokenize. results = [] for item in outputs: if tokenizer.eos_id in item: idx = item.index(tokenizer.eos_id) item = item[:idx] # Legacy sentencepiece detokenization still preserves special tokens which messes up exact string match. if hasattr(tokenizer, 'special_token_to_id'): item = [id for id in item if id not in tokenizer.special_token_to_id.values()] item = tokenizer.ids_to_text(item) results.append(item) if processor is not None: results = [processor.detokenize(item.split(' ')) for item in results] return results def validation_step(self, dataloader_iter, batch_idx, dataloader_idx=0): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ return self.eval_step(dataloader_iter, batch_idx, dataloader_idx) def _setup_eval_dataloader_from_config(self, cfg: DictConfig, dataset): rank = parallel_state.get_data_parallel_rank() world_size = parallel_state.get_data_parallel_world_size() dataloaders = [] for _dataset in dataset: sampler = torch.utils.data.distributed.DistributedSampler( _dataset, num_replicas=world_size, rank=rank, shuffle=False ) dataloaders.append( torch.utils.data.DataLoader( dataset=_dataset, batch_size=1, sampler=sampler, num_workers=cfg.get("num_workers", 0), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), shuffle=False, persistent_workers=True if cfg.get("num_workers", 0) > 0 else False, ) ) return dataloaders def on_validation_epoch_end(self): return self.eval_epoch_end(self.validation_step_outputs, 'val') def on_test_epoch_end(self): return self.eval_epoch_end(self.test_step_outputs, 'test') def eval_epoch_end(self, outputs, mode): if not outputs: return if isinstance(outputs[0], dict): outputs = [outputs] loss_list = [] bleu_score_list = [] for dataloader_idx, output in enumerate(outputs): if parallel_state.is_pipeline_last_stage(): # only the last pipeline parallel stages return loss averaged_loss = torch.stack([x['loss'] for x in output]).mean() else: averaged_loss = torch.tensor(0.0).to(self.device) # we can only log on one rank if it is rank zero so we broadcast from last rank torch.distributed.broadcast(averaged_loss, get_last_rank()) # averaged_loss = average_losses_across_data_parallel_group([x['loss'] for x in output]) inputs = list(itertools.chain(*[x['inputs'] for x in output])) translations = list(itertools.chain(*[x['translations'] for x in output])) ground_truths = list(itertools.chain(*[x['ground_truths'] for x in output])) assert len(translations) == len(inputs) assert len(translations) == len(ground_truths) # Gather translations and ground truths from all workers tr_gt_inp = [None for _ in range(parallel_state.get_data_parallel_world_size())] # we also need to drop pairs where ground truth is an empty string torch.distributed.all_gather_object( tr_gt_inp, [(t, g, i) for (t, g, i) in zip(translations, ground_truths, inputs)], group=parallel_state.get_data_parallel_group(), ) # if parallel_state.get_data_parallel_rank() == 0: if self.global_rank == 0: _translations = [] _ground_truths = [] _inputs = [] # Deduplicate sentences that may have been distributed across multiple data parallel ranks. gt_inp_set = set() for rank in range(0, parallel_state.get_data_parallel_world_size()): for t, g, i in tr_gt_inp[rank]: if g + i not in gt_inp_set: gt_inp_set.add(g + i) _translations.append(t) _ground_truths.append(g) _inputs.append(i) if self.tgt_language in ['ja']: sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="ja-mecab") elif self.tgt_language in ['zh']: sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="zh") else: sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="13a") bleu_score = sacre_bleu.score dataset_name = "Validation" if mode == 'val' else "Test" logging.info(f"{dataset_name}, Dataloader index: {dataloader_idx}, Set size: {len(_translations)}") logging.info(f"{dataset_name}, Dataloader index: {dataloader_idx}, SacreBLEU = {bleu_score}") logging.info(f"{dataset_name}, Dataloader index: {dataloader_idx}, Translation Examples:") logging.info('============================================================') for example_idx in range(0, 3): random_index = random.randint(0, len(_translations) - 1) logging.info(" " + '\u0332'.join(f"Example {example_idx}:")) logging.info(f" Input: {_inputs[random_index]}") logging.info(f" Prediction: {_translations[random_index]}") logging.info(f" Ground Truth: {_ground_truths[random_index]}") logging.info('============================================================') else: bleu_score = 0.0 bleu_score = torch.FloatTensor([bleu_score]).to(self.device) # BLEU score is computed on global rank 0 only and then broadcasted to other ranks. torch.distributed.all_reduce(bleu_score, op=torch.distributed.ReduceOp.SUM) bleu_score = bleu_score.cpu().item() loss_list.append(averaged_loss.cpu().numpy()) bleu_score_list.append(bleu_score) if dataloader_idx == 0: if self.multilingual: self._log_multilingual_bleu_and_loss(dataloader_idx, bleu_score, averaged_loss, mode) else: self.log(f'{mode}_sacreBLEU', bleu_score, batch_size=1) self.log(f'{mode}_loss', averaged_loss, prog_bar=True, batch_size=1) else: if self.multilingual: self._log_multilingual_bleu_and_loss(dataloader_idx, bleu_score, averaged_loss, mode) else: self.log(f'{mode}_sacreBLEU_dl_index_{dataloader_idx}', bleu_score, batch_size=1) self.log(f'{mode}_loss_dl_index_{dataloader_idx}', averaged_loss, prog_bar=False, batch_size=1) outputs[dataloader_idx].clear() # free memory if len(loss_list) > 1: self.log(f"{mode}_loss_avg", np.mean(loss_list), sync_dist=True, batch_size=1) self.log(f"{mode}_sacreBLEU_avg", np.mean(bleu_score_list), batch_size=1) app_state = AppState() if hasattr(self, "_train_ds"): _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=self._cfg.train_ds.global_batch_size, micro_batch_size=self._cfg.train_ds.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) def _log_multilingual_bleu_and_loss(self, dataloader_idx, bleu_score, loss, mode): """ Function to log multilingual BLEU scores with the right source-target language string instead of just the dataloader idx. """ # Check if one-many or many-one and log with lang ids instead of dataloader_idx if isinstance(self.src_language, ListConfig): translation_lang_string = f'{self.src_language[dataloader_idx]}-{self.tgt_language}' else: translation_lang_string = f'{self.src_language}-{self.tgt_language[dataloader_idx]}' self.log(f'{mode}_sacreBLEU_{translation_lang_string}', bleu_score, sync_dist=True, batch_size=1) self.log(f'{mode}_loss_{translation_lang_string}', loss, sync_dist=True, batch_size=1) def setup_validation_data(self, val_data_config: Optional[DictConfig]): if hasattr(self, '_validation_ds'): self._validation_dl = self._setup_eval_dataloader_from_config( cfg=val_data_config, dataset=self._validation_ds ) def setup_test_data(self, test_data_config: Optional[DictConfig]): if hasattr(self, '_test_ds'): self._test_dl = self._setup_eval_dataloader_from_config(cfg=test_data_config, dataset=self._test_ds) def setup_training_data(self, train_data_config: Optional[DictConfig]): if hasattr(self, '_train_ds'): consumed_samples = self.compute_consumed_samples(0) self._train_dl = self._setup_megatron_dataloader_from_config( cfg=train_data_config, dataset=self._train_ds, consumed_samples=consumed_samples ) def _setup_megatron_dataloader_from_config(self, cfg, dataset, consumed_samples): logging.info(f'Building dataloader with consumed samples: {consumed_samples}') if isinstance(dataset, BlendableDataset): collate_fn = dataset.datasets[0].collate_fn else: collate_fn = dataset.collate_fn batch_sampler = MegatronPretrainingBatchSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=cfg.micro_batch_size, global_batch_size=cfg.global_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), drop_last=True, ) return torch.utils.data.DataLoader( dataset, batch_sampler=batch_sampler, collate_fn=collate_fn, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, persistent_workers=True if cfg.num_workers > 0 else False, ) def process_global_batch_for_text_translation_datasets(self, batch): """Override parent process_batch since TranslationDataset does not return dictionaries.""" # Convert each microbatch into a dictionary. src_ids, src_mask, tgt_ids, tgt_mask, labels = batch batch = { 'text_enc': src_ids, 'text_dec': tgt_ids, 'labels': labels, 'enc_mask': src_mask.long(), # super().process_batch() expects torch.int64 'dec_mask': tgt_mask.long(), # super().process_batch() expects torch.int64 'loss_mask': tgt_mask.long(), # super().process_batch() expects torch.int64 } # Parent function will pad microbatches to the same length. return self._process_global_batch_without_megatron_batch_sampler([batch], tokenizer=self.encoder_tokenizer) def _build_eval_dataset(self, data_cfg): # Set up prepend IDs for validation datasets even if not multingual. if self._cfg.train_ds.get('objective', 'nmt') == 'nmt-xlm' or ( self.multilingual and self.multilingual_type != MultilingualModelType.many_to_one ): multilingual_ids = [self.multilingual_lang_to_id[lang] for lang in self.cfg.tgt_language] dataset = MTEncDecModel._setup_eval_dataset_from_config( cfg=data_cfg, multilingual=True, multilingual_ids=multilingual_ids, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, add_bos_eos_to_encoder=self._cfg.train_ds.get('objective', 'nmt') != 'nmt-xlm', # nmt-xlm does not add bos/eos to encoder while training so make sure this happens for validation as well. ) else: num_eval_datasets = len(data_cfg.src_file_name) if isinstance(data_cfg.src_file_name, ListConfig) else 1 multilingual_ids = [None] * num_eval_datasets dataset = MTEncDecModel._setup_eval_dataset_from_config( cfg=data_cfg, multilingual=self.multilingual, multilingual_ids=multilingual_ids, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, ) return dataset def build_train_valid_test_datasets(self): """Builds the train, validation, and test datasets.""" self._train_ds = self.build_memmap_dataset_from_config(self._cfg.train_ds) if self._cfg.validation_ds.get("dataset_type", "text") != "text": raise ValueError(f"Validation dataset type must be 'text', found {self._cfg.validation_ds.dataset_type}") self._validation_ds = self._build_eval_dataset(self._cfg.validation_ds) if hasattr(self._cfg, 'test_ds'): self._test_ds = self._build_eval_dataset(self._cfg.test_ds) def _instantiate_memmap_dataset( self, cfg, src_file, tgt_file, src_language, tgt_language, num_samples, prepend_id=None ): if cfg.dataset_type == 'bin_memmap': if cfg.get("objective", "nmt") == "nmt": dataset = BinarizedMemmapSequenceToSequenceDataset( src_dataset_prefix=src_file, tgt_dataset_prefix=tgt_file, src_tokenizer=self.encoder_tokenizer, tgt_tokenizer=self.decoder_tokenizer, max_src_seq_length=cfg.max_seq_length, max_tgt_seq_length=cfg.max_seq_length, max_num_samples=num_samples[0], seed=self._cfg.seed, prepend_id=prepend_id, ) elif cfg.get("objective", "nmt") == "nmt-xlm": # Pass sentinel tokens to the dataset after removing language tokens. additional_special_ids = self.encoder_tokenizer.additional_special_tokens_ids sentinel_tokens = [id for id in additional_special_ids if id not in self.multilingual_ids] dataset = BinarizedMemmapCrossLingualMLMAndTranslationDataset( src_dataset_prefix=src_file, tgt_dataset_prefix=tgt_file, src_tokenizer=self.encoder_tokenizer, tgt_tokenizer=self.decoder_tokenizer, src_language=src_language, tgt_language=tgt_language, max_src_seq_length=cfg.max_seq_length // 2, max_tgt_seq_length=cfg.max_seq_length // 2, max_seq_length_dec=cfg.max_seq_length, max_num_samples=num_samples[0], sampling_ratios=cfg.sampling_ratios, sentinel_tokens=sentinel_tokens, seed=self._cfg.seed, ) elif cfg.dataset_type == 'text_memmap': if cfg.get("objective", "nmt") == "nmt": dataset = TextMemmapSequenceToSequenceDataset( src_file_name=src_file, tgt_file_name=tgt_file, src_tokenizer=self.encoder_tokenizer, tgt_tokenizer=self.decoder_tokenizer, max_src_seq_length=cfg.max_seq_length, max_tgt_seq_length=cfg.max_seq_length, max_num_samples=num_samples[0], seed=self._cfg.seed, prepend_id=prepend_id, ) elif cfg.get("objective", "nmt") == "nmt-xlm": additional_special_ids = self.encoder_tokenizer.additional_special_tokens_ids sentinel_tokens = [id for id in additional_special_ids if id not in self.multilingual_ids] dataset = TextMemmapCrossLingualMLMAndTranslationDataset( src_file_name=src_file, tgt_file_name=tgt_file, src_tokenizer=self.encoder_tokenizer, tgt_tokenizer=self.decoder_tokenizer, src_language=src_language, tgt_language=tgt_language, max_src_seq_length=cfg.max_seq_length // 2, max_tgt_seq_length=cfg.max_seq_length // 2, max_seq_length_dec=cfg.max_seq_length, max_num_samples=num_samples[0], sampling_ratios=cfg.sampling_ratios, sentinel_tokens=sentinel_tokens, seed=self._cfg.seed, ) return dataset def build_memmap_dataset_from_config(self, cfg: DictConfig): """Builds a memmap dataset from a existing binary based o nthe provided config.""" is_src_listconfig = isinstance(cfg.src_file_name, ListConfig) is_tgt_listconfig = isinstance(cfg.tgt_file_name, ListConfig) # If multilingual, make sure both source and target are list configs if self.multilingual: if not (is_src_listconfig and is_tgt_listconfig): raise ValueError( f"Multilingual datasets must be configured with a ListConfig for both src_file_name and tgt_file_name" ) if is_src_listconfig and not is_tgt_listconfig or is_tgt_listconfig and not is_src_listconfig: raise ValueError( f"Datasets must be configured with a ListConfig for both src_file_name and tgt_file_name or neither. Found only one of them as listconfig." ) if is_src_listconfig and is_tgt_listconfig: if len(cfg.src_file_name) != len(cfg.tgt_file_name): raise ValueError(f"Datasets must have the same number of files in src_file_name and tgt_file_name") if cfg.concat_sampling_probabilities is None or not isinstance( cfg.concat_sampling_probabilities, ListConfig ): raise ValueError( f"concat_sampling_probabilities must be a ListConfig with the same number of files in src_file_name and tgt_file_name, found {cfg.concat_sampling_probabilities}" ) if len(cfg.concat_sampling_probabilities) != len(cfg.src_file_name): raise ValueError( f"concat_sampling_probabilities must be of the same size as src_file_name and tgt_file_name. Provided size {len(cfg.concat_sampling_probabilities)}, number of datasets {len(cfg.src_file_name)}" ) # Construct the data prefix list for `get_datasets_weights_and_num_samples()` that is of the format [weight1,file_name1,weight2,file_name2,...] data_prefix = [] for weight, prefix in zip(cfg.concat_sampling_probabilities, cfg.src_file_name): data_prefix.append(weight) data_prefix.append(prefix) num_train_samples = [self.trainer.max_steps * self._cfg.global_batch_size] _, _, num_train_samples_per_dataset = get_datasets_weights_and_num_samples(data_prefix, num_train_samples) num_train_samples_after_blend = sum([x[0] for x in num_train_samples_per_dataset]) datasets = [] # For many -> one multilingual or bilingual models, we don't need to prepend a language token ID if not self.multilingual or self.multilingual_type == MultilingualModelType.many_to_one: multilingual_ids = [None] * len(cfg.src_file_name) # For one -> many and many -> many multilingual models, we need to prepend a language token ID else: multilingual_ids = [self.multilingual_lang_to_id[lang] for lang in self.cfg.tgt_language] for idx, (src_file, tgt_file, num_samples) in enumerate( zip(cfg.src_file_name, cfg.tgt_file_name, num_train_samples_per_dataset) ): dataset = self._instantiate_memmap_dataset( cfg=cfg, src_file=src_file, tgt_file=tgt_file, num_samples=num_samples, prepend_id=multilingual_ids[idx], src_language=self.src_language if not isinstance(self.src_language, ListConfig) else self.src_language[idx], tgt_language=self.tgt_language if not isinstance(self.tgt_language, ListConfig) else self.tgt_language[idx], ) datasets.append(dataset) dataset = BlendableDataset( datasets=datasets, weights=cfg.concat_sampling_probabilities, size=num_train_samples_after_blend ) else: dataset = self._instantiate_memmap_dataset( cfg=cfg, src_file=cfg.src_file_name, tgt_file=cfg.tgt_file_name, num_samples=[self.trainer.max_steps * self._cfg.global_batch_size], src_language=self.src_language, tgt_language=self.tgt_language, ) return dataset def list_available_models(self): pass def on_validation_epoch_start(self): app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=parallel_state.get_data_parallel_world_size(), micro_batch_size=1, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) @torch.no_grad() def translate( self, text: List[str], source_lang: str = None, target_lang: str = None, return_beam_scores: bool = False, log_timing: bool = False, ) -> List[str]: """ Translates list of sentences from source language to target language. Should be regular text, this method performs its own tokenization/de-tokenization Args: text: list of strings to translate source_lang: if not "ignore", corresponding MosesTokenizer and MosesPunctNormalizer will be run target_lang: if not "ignore", corresponding MosesDecokenizer will be run return_beam_scores: if True, returns a list of translations and their corresponding beam scores. log_timing: if True, prints timing information. Returns: list of translated strings """ # __TODO__: This will reset both source and target processors even if you want to reset just one. # NOTE: This will also set up appropriate source and target processors for a given src/tgt language for multilingual models instead of creating a list of them. if source_lang is not None or target_lang is not None: self.source_processor, self.target_processor = MTEncDecModel.setup_pre_and_post_processing_utils( source_lang, target_lang, self.encoder_tokenizer_library, self.decoder_tokenizer_library ) mode = self.training prepend_ids = [] if self.multilingual and self.multilingual_type != MultilingualModelType.many_to_one: if target_lang is None: raise ValueError("target_lang needs to be specified to run inference for multilingual model.") tgt_symbol = self.encoder_tokenizer.token_to_id('<' + target_lang + '>') if tgt_symbol in self.multilingual_ids: prepend_ids = [tgt_symbol] else: print("WARNING: Target language ID not found in multilingual model. Prepending nothing.") if log_timing: timer = timers.NamedTimer() else: timer = None cache = { "timer": timer, } try: self.eval() self.training = False src, src_mask = MTEncDecModel.prepare_inference_batch( text=text, prepend_ids=prepend_ids, target=False, source_processor=self.source_processor, target_processor=self.target_processor, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, device=self.device, ) with torch.inference_mode(): predicted_tokens_ids, _ = self.decode( src, src_mask, src.size(1) + self._cfg.max_generation_delta, # Generate up to src-length + max generation delta. TODO: Implement better stopping when everything hits <EOS>. tokenizer=self.decoder_tokenizer, ) best_translations = self.postprocess_outputs( outputs=predicted_tokens_ids, tokenizer=self.decoder_tokenizer, processor=self.target_processor ) return_val = best_translations finally: self.train(mode=mode) if log_timing: timing = timer.export() timing["mean_src_length"] = src_mask.sum().cpu().item() / src_mask.shape[0] tgt, tgt_mask = self.prepare_inference_batch( text=best_translations, prepend_ids=prepend_ids, target=True, source_processor=self.source_processor, target_processor=self.target_processor, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, device=self.device, ) timing["mean_tgt_length"] = tgt_mask.sum().cpu().item() / tgt_mask.shape[0] if type(return_val) is tuple: return_val = return_val + (timing,) else: return_val = (return_val, timing) return return_val def itn_translate_tn( self, text: List[str], source_lang: str = None, target_lang: str = None, return_beam_scores: bool = False, log_timing: bool = False, inverse_normalizer=None, normalizer=None, prepend_tgt_lang_id: bool = False, ) -> List[str]: """ Calls the translate() method with the option of running ITN (inverse text-normalization) on the input and TN (text-normalization) on the output. Pipeline : ITN -> translate -> TN NOTE: ITN and TN objects must be initialized with the right languages. Args: text: list of strings to translate source_lang: if not "ignore", corresponding MosesTokenizer and MosesPunctNormalizer will be run target_lang: if not "ignore", corresponding MosesDecokenizer will be run return_beam_scores: if True, returns a list of translations and their corresponding beam scores. log_timing: if True, prints timing information. inverse_normalizer: instance of nemo_text_processing.inverse_text_normalization.inverse_normalize.InverseNormalizer normalizer: instance of nemo_text_processing.text_normalization.normalize.Normalizer Returns: list of translated strings """ if inverse_normalizer is not None: text = [inverse_normalizer.normalize(example) for example in text] translations = self.translate( text, source_lang, target_lang, return_beam_scores, log_timing, prepend_tgt_lang_id ) if normalizer is not None: translations = [normalizer.normalize(example) for example in translations] return translations def on_test_start(self) -> None: self.trainer.test_loop._data_fetcher = GlobalBatchDataFetcher() @property def encoder(self): return EncEmb( self.enc_dec_model.encoder_embedding, self.enc_dec_model.enc_dec_model.encoder, self.enc_dec_model.encoder_relative_position_embedding, self.device, ) @property def decoder(self): return DecEmb( self.enc_dec_model.decoder_embedding, self.enc_dec_model.enc_dec_model.decoder, self.enc_dec_model.decoder_relative_position_embedding, self.device, ) @property def log_softmax(self): return TokensHeadEmb(self.enc_dec_model.decoder_embedding, self.enc_dec_model.tokens_head, self.device) @property def input_module(self): return self.encoder def list_export_subnets(self): return ['encoder', 'log_softmax', 'decoder']
NeMo-main
nemo/collections/nlp/models/machine_translation/megatron_nmt_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.machine_translation.mt_enc_dec_bottleneck_model import MTBottleneckModel from nemo.collections.nlp.models.machine_translation.mt_enc_dec_model import MTEncDecModel
NeMo-main
nemo/collections/nlp/models/machine_translation/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json import os import random from collections import OrderedDict from math import ceil from pathlib import Path from typing import Dict, List, Optional, Union import numpy as np import torch import torch.distributed as dist import torch.utils.data as pt_data from omegaconf import DictConfig, ListConfig, OmegaConf from pytorch_lightning import Trainer from pytorch_lightning.utilities import rank_zero_only from sacrebleu import corpus_bleu from nemo.collections.common.data import ConcatDataset from nemo.collections.common.losses import NLLLoss, SmoothedCrossEntropyLoss from nemo.collections.common.metrics import GlobalAverageLossMetric from nemo.collections.common.parts import transformer_weights_init from nemo.collections.common.tokenizers.bytelevel_tokenizers import ByteLevelProcessor from nemo.collections.common.tokenizers.chinese_tokenizers import ChineseProcessor from nemo.collections.common.tokenizers.en_ja_tokenizers import EnJaProcessor, JaMecabProcessor from nemo.collections.common.tokenizers.indic_tokenizers import IndicProcessor from nemo.collections.common.tokenizers.moses_tokenizers import MosesProcessor from nemo.collections.common.tokenizers.tabular_tokenizer import TabularTokenizer from nemo.collections.nlp.data import TarredTranslationDataset, TranslationDataset from nemo.collections.nlp.models.enc_dec_nlp_model import EncDecNLPModel from nemo.collections.nlp.models.machine_translation.mt_enc_dec_config import MTEncDecModelConfig from nemo.collections.nlp.modules.common import TokenClassifier from nemo.collections.nlp.modules.common.lm_utils import get_transformer from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer from nemo.collections.nlp.modules.common.transformer import BeamSearchSequenceGenerator, TopKSequenceGenerator from nemo.core.classes import Exportable from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.utils import logging, model_utils, timers __all__ = ['MTEncDecModel'] class MTEncDecModel(EncDecNLPModel, Exportable): """ Encoder-decoder machine translation model. """ def __init__(self, cfg: MTEncDecModelConfig, trainer: Trainer = None): cfg = model_utils.convert_model_config_to_dict_config(cfg) # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable # Global_rank and local_rank is set by LightningModule in Lightning 1.2.0 self.world_size = 1 if trainer is not None: self.world_size = trainer.num_nodes * trainer.num_devices cfg = model_utils.maybe_update_config_version(cfg) self.src_language = cfg.get("src_language", None) self.tgt_language = cfg.get("tgt_language", None) self.multilingual = cfg.get("multilingual", False) self.multilingual_ids = [] self.special_tokens = {} self.encoder_tokenizer_library = cfg.encoder_tokenizer.get('library', 'yttm') self.decoder_tokenizer_library = cfg.decoder_tokenizer.get('library', 'yttm') self.validate_input_ids = cfg.get("validate_input_ids", True) if self.multilingual: if isinstance(self.src_language, ListConfig) and isinstance(self.tgt_language, ListConfig): raise ValueError( "cfg.src_language and cfg.tgt_language cannot both be lists. We only support many-to-one or one-to-many multilingual models." ) elif isinstance(self.src_language, ListConfig): pass elif isinstance(self.tgt_language, ListConfig): for lng in self.tgt_language: self.special_tokens["<" + lng + ">"] = "<" + lng + ">" else: raise ValueError( "Expect either cfg.src_language or cfg.tgt_language to be a list when multilingual=True." ) self.shared_embeddings = cfg.get("shared_embeddings", False) # Instantiates tokenizers and register to be saved with NeMo Model archive # After this call, ther will be self.encoder_tokenizer and self.decoder_tokenizer # Which can convert between tokens and token_ids for SRC and TGT languages correspondingly. encoder_tokenizer_model, decoder_tokenizer_model, encoder_vocab_file = None, None, None if cfg.encoder_tokenizer.get('tokenizer_model') is not None: encoder_tokenizer_model = self.register_artifact( "encoder_tokenizer.tokenizer_model", cfg.encoder_tokenizer.get('tokenizer_model') ) if cfg.decoder_tokenizer.get('tokenizer_model') is not None: decoder_tokenizer_model = self.register_artifact( "decoder_tokenizer.tokenizer_model", cfg.decoder_tokenizer.get('tokenizer_model') ) if cfg.encoder_tokenizer.get('vocab_file') is not None: encoder_vocab_file = ( self.register_artifact("encoder_tokenizer.vocab_file", cfg.encoder_tokenizer.get('vocab_file')), ) encoder_tokenizer, decoder_tokenizer = MTEncDecModel.setup_enc_dec_tokenizers( encoder_tokenizer_library=self.encoder_tokenizer_library, encoder_tokenizer_model=encoder_tokenizer_model, encoder_bpe_dropout=cfg.encoder_tokenizer.get('bpe_dropout', 0.0) if cfg.encoder_tokenizer.get('bpe_dropout', 0.0) is not None else 0.0, encoder_model_name=cfg.encoder.get('model_name') if hasattr(cfg.encoder, 'model_name') else None, encoder_r2l=cfg.encoder_tokenizer.get('r2l', False), decoder_tokenizer_library=self.decoder_tokenizer_library, encoder_tokenizer_vocab_file=encoder_vocab_file, decoder_tokenizer_model=decoder_tokenizer_model, decoder_bpe_dropout=cfg.decoder_tokenizer.get('bpe_dropout', 0.0) if cfg.decoder_tokenizer.get('bpe_dropout', 0.0) is not None else 0.0, decoder_model_name=cfg.decoder.get('model_name') if hasattr(cfg.decoder, 'model_name') else None, decoder_r2l=cfg.decoder_tokenizer.get('r2l', False), special_tokens=self.special_tokens, encoder_sentencepiece_legacy=cfg.encoder_tokenizer.get('sentencepiece_legacy', False), decoder_sentencepiece_legacy=cfg.decoder_tokenizer.get('sentencepiece_legacy', False), ) self.encoder_tokenizer, self.decoder_tokenizer = encoder_tokenizer, decoder_tokenizer if self.multilingual: ( self.source_processor_list, self.target_processor_list, self.multilingual_lang_to_id, ) = MTEncDecModel.setup_multilingual_ids_and_processors( self.src_language, self.tgt_language, self.encoder_tokenizer, self.decoder_tokenizer, self.encoder_tokenizer_library, self.decoder_tokenizer_library, ) self.multilingual_ids = list(self.multilingual_lang_to_id.values()) else: # After this call, the model will have self.source_processor and self.target_processor objects self.source_processor, self.target_processor = MTEncDecModel.setup_pre_and_post_processing_utils( self.src_language, self.tgt_language, self.encoder_tokenizer_library, self.decoder_tokenizer_library ) self.multilingual_ids = [None] # TODO: Why is this base constructor call so late in the game? super().__init__(cfg=cfg, trainer=trainer) # encoder from NeMo, Megatron-LM, or HuggingFace encoder_cfg_dict = OmegaConf.to_container(cfg.get('encoder')) encoder_cfg_dict['vocab_size'] = self.encoder_vocab_size library = encoder_cfg_dict.pop('library', 'nemo') model_name = encoder_cfg_dict.pop('model_name', None) pretrained = encoder_cfg_dict.pop('pretrained', False) checkpoint_file = encoder_cfg_dict.pop('checkpoint_file', None) if isinstance(self.encoder_tokenizer, TabularTokenizer): # TabularTokenizer does not include a padding token, so this uses the prior default of 0. encoder_padding_idx = 0 else: encoder_padding_idx = self.encoder_tokenizer.pad_id self.encoder = get_transformer( library=library, model_name=model_name, pretrained=pretrained, config_dict=encoder_cfg_dict, encoder=True, pre_ln_final_layer_norm=encoder_cfg_dict.get('pre_ln_final_layer_norm', False), checkpoint_file=checkpoint_file, padding_idx=encoder_padding_idx, ) # decoder from NeMo, Megatron-LM, or HuggingFace decoder_cfg_dict = OmegaConf.to_container(cfg.get('decoder')) decoder_cfg_dict['vocab_size'] = self.decoder_vocab_size library = decoder_cfg_dict.pop('library', 'nemo') model_name = decoder_cfg_dict.pop('model_name', None) pretrained = decoder_cfg_dict.pop('pretrained', False) if isinstance(self.decoder_tokenizer, TabularTokenizer): # TabularTokenizer does not include a padding token, so this uses the prior default of 0. decoder_padding_idx = 0 else: decoder_padding_idx = self.decoder_tokenizer.pad_id self.decoder = get_transformer( library=library, model_name=model_name, pretrained=pretrained, config_dict=decoder_cfg_dict, encoder=False, pre_ln_final_layer_norm=decoder_cfg_dict.get('pre_ln_final_layer_norm', False), padding_idx=decoder_padding_idx, ) # validate hidden_size of encoder and decoder self._validate_encoder_decoder_hidden_size() self.log_softmax = TokenClassifier( hidden_size=self.decoder.hidden_size, num_classes=self.decoder_vocab_size, activation=cfg.head.activation, log_softmax=cfg.head.log_softmax, dropout=cfg.head.dropout, use_transformer_init=cfg.head.use_transformer_init, ) self.beam_search = BeamSearchSequenceGenerator( embedding=self.decoder.embedding, decoder=self.decoder.decoder, log_softmax=self.log_softmax, max_sequence_length=self.decoder.max_sequence_length, beam_size=cfg.beam_size, bos=self.decoder_tokenizer.bos_id, pad=self.decoder_tokenizer.pad_id, eos=self.decoder_tokenizer.eos_id, len_pen=cfg.len_pen, max_delta_length=cfg.max_generation_delta, ) # tie embedding weights if self.shared_embeddings: if not cfg.get("shared_tokenizer", True): raise ValueError("shared_tokenizer cannot be False when shared_embeddings is True") # validate vocabulary size and embedding dimension if ( self.encoder.embedding.token_embedding.weight.shape != self.decoder.embedding.token_embedding.weight.shape ): raise ValueError( f"Cannot tie encoder and decoder embeddings due to mismatch in embedding sizes " f"(num_embeddings, embedding_dim): {self.encoder.embedding.token_embedding.weight.shape} (encoder) " f"{self.decoder.embedding.token_embedding.weight.shape} (decoder)" ) self.encoder.embedding.token_embedding.weight = self.decoder.embedding.token_embedding.weight # tie weights of embedding and softmax matrices self.log_softmax.mlp.layer0.weight = self.decoder.embedding.token_embedding.weight # TODO: encoder and decoder with different hidden size? std_init_range = 1 / self.encoder.hidden_size ** 0.5 # initialize weights if not using pretrained encoder/decoder if not self._cfg.encoder.get('pretrained', False): self.encoder.apply(lambda module: transformer_weights_init(module, std_init_range)) if not self._cfg.decoder.get('pretrained', False): self.decoder.apply(lambda module: transformer_weights_init(module, std_init_range)) self.log_softmax.apply(lambda module: transformer_weights_init(module, std_init_range)) self.loss_fn = SmoothedCrossEntropyLoss( pad_id=self.decoder_tokenizer.pad_id, label_smoothing=cfg.label_smoothing ) self.eval_loss_fn = NLLLoss(ignore_index=self.decoder_tokenizer.pad_id) @classmethod def setup_multilingual_ids_and_processors( cls, src_language, tgt_language, encoder_tokenizer, decoder_tokenizer, encoder_tokenizer_library, decoder_tokenizer_library, ): multilingual_ids = OrderedDict() # Determine all of the language IDs that need to be added as special tokens. if isinstance(src_language, ListConfig) and isinstance(tgt_language, ListConfig): assert len(src_language) == len(tgt_language) all_languages = list(set(tgt_language + src_language)) elif isinstance(tgt_language, ListConfig): all_languages = tgt_language elif not isinstance(src_language, ListConfig) and not isinstance(tgt_language, ListConfig): all_languages = [src_language, tgt_language] else: all_languages = [] # If target is a list config, then add all language ID tokens to the tokenizer. # When both src, tgt are lists, we concat and take a unique of all lang IDs. # If only tgt lang is a list, then we only add those lang IDs to the tokenizer. if all_languages != []: for lng in all_languages: if len(encoder_tokenizer.text_to_ids(f"<{lng}>")) != 1: encoder_tokenizer.add_special_tokens({f"<{lng}>": f"<{lng}>"}) if len(decoder_tokenizer.text_to_ids(f"<{lng}>")) != 1: decoder_tokenizer.add_special_tokens({f"<{lng}>": f"<{lng}>"}) # Make sure that we are adding the same language ID to both tokenizers. If this assert fails it means the tokenizers were different to begin with. assert encoder_tokenizer.text_to_ids(f"<{lng}>")[0] == decoder_tokenizer.text_to_ids(f"<{lng}>")[0] multilingual_ids[lng] = encoder_tokenizer.text_to_ids(f"<{lng}>")[0] if isinstance(src_language, ListConfig) and not isinstance(tgt_language, ListConfig): tgt_language = [tgt_language] * len(src_language) elif isinstance(tgt_language, ListConfig) and not isinstance(src_language, ListConfig): src_language = [src_language] * len(tgt_language) else: pass source_processor_list = [] target_processor_list = [] for src_lng, tgt_lng in zip(src_language, tgt_language): src_prcsr, tgt_prscr = MTEncDecModel.setup_pre_and_post_processing_utils( src_lng, tgt_lng, encoder_tokenizer_library, decoder_tokenizer_library ) source_processor_list.append(src_prcsr) target_processor_list.append(tgt_prscr) return source_processor_list, target_processor_list, multilingual_ids def _validate_encoder_decoder_hidden_size(self): """ Validate encoder and decoder hidden sizes, and enforce same size. Can be overridden by child classes to support encoder/decoder different hidden_size. """ if self.encoder.hidden_size != self.decoder.hidden_size: raise ValueError( f"Class does not support encoder.hidden_size ({self.encoder.hidden_size}) != decoder.hidden_size ({self.decoder.hidden_size}). Please use bottleneck architecture instead (i.e., model.encoder.arch = 'seq2seq' in conf/aayn_bottleneck.yaml)" ) @classmethod def filter_predicted_ids(cls, ids, decoder_tokenizer): ids[ids >= decoder_tokenizer.vocab_size] = decoder_tokenizer.unk_id return ids def test_encoder_ids(self, ids, raise_error=False): invalid_ids = torch.logical_or((ids >= self.encoder_tokenizer.vocab_size).any(), (ids < 0).any(),) if raise_error and invalid_ids: raise ValueError("Encoder ids are out of range (tip: check encoder tokenizer)") return not invalid_ids def test_decoder_ids(self, ids, raise_error=False): invalid_ids = torch.logical_or((ids >= self.decoder_tokenizer.vocab_size).any(), (ids < 0).any(),) if raise_error and invalid_ids: raise ValueError("Decoder ids are out of range (tip: check decoder tokenizer)") return not invalid_ids @typecheck() def forward(self, src, src_mask, tgt, tgt_mask): if self.validate_input_ids: # test src/tgt for id range (i.e., hellp in catching wrong tokenizer) self.test_encoder_ids(src, raise_error=True) self.test_decoder_ids(tgt, raise_error=True) src_hiddens = self.encoder(input_ids=src, encoder_mask=src_mask) tgt_hiddens = self.decoder( input_ids=tgt, decoder_mask=tgt_mask, encoder_embeddings=src_hiddens, encoder_mask=src_mask ) log_probs = self.log_softmax(hidden_states=tgt_hiddens) return log_probs def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ # forward pass for i in range(len(batch)): if batch[i].ndim == 3: # Dataset returns already batched data and the first dimension of size 1 added by DataLoader # is excess. batch[i] = batch[i].squeeze(dim=0) src_ids, src_mask, tgt_ids, tgt_mask, labels = batch log_probs = self(src_ids, src_mask, tgt_ids, tgt_mask) train_loss = self.loss_fn(log_probs=log_probs, labels=labels) tensorboard_logs = { 'train_loss': train_loss, 'lr': self._optimizer.param_groups[0]['lr'], } return {'loss': train_loss, 'log': tensorboard_logs} def eval_step(self, batch, batch_idx, mode, dataloader_idx=0): for i in range(len(batch)): if batch[i].ndim == 3: # Dataset returns already batched data and the first dimension of size 1 added by DataLoader # is excess. batch[i] = batch[i].squeeze(dim=0) if self.multilingual: self.source_processor = self.source_processor_list[dataloader_idx] self.target_processor = self.target_processor_list[dataloader_idx] src_ids, src_mask, tgt_ids, tgt_mask, labels = batch log_probs = self(src_ids, src_mask, tgt_ids, tgt_mask) eval_loss = self.eval_loss_fn(log_probs=log_probs, labels=labels) # this will run encoder twice -- TODO: potentially fix inputs, translations = self.batch_translate(src=src_ids, src_mask=src_mask) if dataloader_idx == 0: getattr(self, f'{mode}_loss')(loss=eval_loss, num_measurements=log_probs.shape[0] * log_probs.shape[1]) else: getattr(self, f'{mode}_loss_{dataloader_idx}')( loss=eval_loss, num_measurements=log_probs.shape[0] * log_probs.shape[1] ) np_tgt = tgt_ids.detach().cpu().numpy() ground_truths = [self.decoder_tokenizer.ids_to_text(tgt) for tgt in np_tgt] ground_truths = [self.target_processor.detokenize(tgt.split(' ')) for tgt in ground_truths] num_non_pad_tokens = np.not_equal(np_tgt, self.decoder_tokenizer.pad_id).sum().item() return { 'inputs': inputs, 'translations': translations, 'ground_truths': ground_truths, 'num_non_pad_tokens': num_non_pad_tokens, } def test_step(self, batch, batch_idx, dataloader_idx=0): loss = self.eval_step(batch, batch_idx, 'test', dataloader_idx) if type(self.trainer.test_dataloaders) == list and len(self.trainer.test_dataloaders) > 1: self.test_step_outputs[dataloader_idx].append(loss) else: self.test_step_outputs.append(loss) @rank_zero_only def log_param_stats(self): for name, p in self.named_parameters(): if p.requires_grad: self.trainer.logger.experiment.add_histogram(name + '_hist', p, global_step=self.global_step) self.trainer.logger.experiment.add_scalars( name, {'mean': p.mean(), 'stddev': p.std(), 'max': p.max(), 'min': p.min()}, global_step=self.global_step, ) def validation_step(self, batch, batch_idx, dataloader_idx=0): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ loss = self.eval_step(batch, batch_idx, 'val', dataloader_idx) if type(self.trainer.val_dataloaders) == list and len(self.trainer.val_dataloaders) > 1: self.validation_step_outputs[dataloader_idx].append(loss) else: self.validation_step_outputs.append(loss) return loss def eval_epoch_end(self, outputs, mode, global_rank): # if user specifies one validation dataloader, then PTL reverts to giving a list of dictionary instead of a list of list of dictionary if isinstance(outputs[0], dict): outputs = [outputs] loss_list = [] sb_score_list = [] for dataloader_idx, output in enumerate(outputs): if dataloader_idx == 0: eval_loss = getattr(self, f'{mode}_loss').compute() else: eval_loss = getattr(self, f'{mode}_loss_{dataloader_idx}').compute() inputs = list(itertools.chain(*[x['inputs'] for x in output])) translations = list(itertools.chain(*[x['translations'] for x in output])) ground_truths = list(itertools.chain(*[x['ground_truths'] for x in output])) assert len(translations) == len(inputs) assert len(translations) == len(ground_truths) # Gather translations and ground truths from all workers tr_and_gt = [None for _ in range(self.world_size)] # we also need to drop pairs where ground truth is an empty string dist.all_gather_object( tr_and_gt, [(t, g) for (t, g) in zip(translations, ground_truths) if g.strip() != ''] ) if global_rank == 0: _translations = [] _ground_truths = [] for rank in range(0, self.world_size): _translations += [t for (t, g) in tr_and_gt[rank]] _ground_truths += [g for (t, g) in tr_and_gt[rank]] if self.multilingual and isinstance(self.tgt_language, ListConfig): tgt_language = self.tgt_language[dataloader_idx] else: tgt_language = self.tgt_language if tgt_language in ['ja', 'ja-mecab']: sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="ja-mecab") elif tgt_language in ['zh']: sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="zh") else: sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="13a") # because the reduction op later is average (over word_size) sb_score = sacre_bleu.score * self.world_size dataset_name = "Validation" if mode == 'val' else "Test" logging.info( f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Set size: {len(translations)}" ) logging.info( f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Val Loss = {eval_loss}" ) logging.info( f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Sacre BLEU = {sb_score / self.world_size}" ) logging.info( f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Translation Examples:" ) for i in range(0, 3): ind = random.randint(0, len(translations) - 1) logging.info(" " + '\u0332'.join(f"Example {i}:")) logging.info(f" Input: {inputs[ind]}") logging.info(f" Prediction: {translations[ind]}") logging.info(f" Ground Truth: {ground_truths[ind]}") else: sb_score = 0.0 loss_list.append(eval_loss.cpu().numpy()) sb_score_list.append(sb_score) if dataloader_idx == 0: self.log(f"{mode}_loss", eval_loss, sync_dist=True) self.log(f"{mode}_sacreBLEU", sb_score, sync_dist=True) getattr(self, f'{mode}_loss').reset() else: self.log(f"{mode}_loss_dl_index_{dataloader_idx}", eval_loss, sync_dist=True) self.log(f"{mode}_sacreBLEU_dl_index_{dataloader_idx}", sb_score, sync_dist=True) getattr(self, f'{mode}_loss_{dataloader_idx}').reset() outputs[dataloader_idx].clear() # free memory if len(loss_list) > 1: self.log(f"{mode}_loss_avg", np.mean(loss_list), sync_dist=True) self.log(f"{mode}_sacreBLEU_avg", np.mean(sb_score_list), sync_dist=True) def on_validation_epoch_end(self): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ self.eval_epoch_end(self.validation_step_outputs, 'val', self.global_rank) def on_test_epoch_end(self): self.eval_epoch_end(self.test_step_outputs, 'test', self.global_rank) @classmethod def setup_enc_dec_tokenizers( cls, encoder_tokenizer_library=None, encoder_tokenizer_model=None, encoder_bpe_dropout=0.0, encoder_model_name=None, encoder_r2l=False, encoder_tokenizer_vocab_file=None, decoder_tokenizer_library=None, decoder_tokenizer_model=None, decoder_bpe_dropout=0.0, decoder_model_name=None, decoder_r2l=False, encoder_sentencepiece_legacy=False, decoder_sentencepiece_legacy=False, special_tokens={}, ): supported_tokenizers = ['yttm', 'huggingface', 'sentencepiece', 'megatron', 'byte-level'] if ( encoder_tokenizer_library not in supported_tokenizers or decoder_tokenizer_library not in supported_tokenizers ): raise NotImplementedError(f"Currently we only support tokenizers in {supported_tokenizers}.") encoder_tokenizer = get_nmt_tokenizer( library=encoder_tokenizer_library, tokenizer_model=encoder_tokenizer_model, bpe_dropout=encoder_bpe_dropout, model_name=encoder_model_name, vocab_file=encoder_tokenizer_vocab_file, special_tokens=special_tokens, use_fast=False, r2l=encoder_r2l, legacy=encoder_sentencepiece_legacy, ) decoder_tokenizer = get_nmt_tokenizer( library=decoder_tokenizer_library, tokenizer_model=decoder_tokenizer_model, bpe_dropout=decoder_bpe_dropout, model_name=decoder_model_name, vocab_file=None, special_tokens=special_tokens, use_fast=False, r2l=decoder_r2l, legacy=decoder_sentencepiece_legacy, ) # validate no token is negative for sentencepiece tokenizers for tok_name, tok_library, tok_model, legacy in [ ("encoder_tokenizer", encoder_tokenizer_library, encoder_tokenizer, encoder_sentencepiece_legacy), ("decoder_tokenizer", decoder_tokenizer_library, decoder_tokenizer, decoder_sentencepiece_legacy), ]: if tok_library == 'sentencepiece': negative_tokens = [] for n in ["eos_id", "bos_id", "unk_id", "pad_id"]: v = getattr(tok_model.tokenizer, n)() if v < 0: negative_tokens.append(f"{n}={v}") if negative_tokens and not legacy: raise ValueError( f"{tok_name}=sentencepiece has invalid negative special tokens = {negative_tokens}" ) # If using the legacy sentencepiece tokenizer, we can add the missing tokens as "special" tokens. else: # If using sentencepiece legacy, eos, bos and pad need to be set/added differently. if legacy: # bos, eos, pad and unk may be present in the provided spm .model file, if they are, use it. if not hasattr(tok_model, 'pad_token'): if hasattr(tok_model.tokenizer, 'pad_id') and tok_model.tokenizer.pad_id() > 0: tok_model.pad_token = tok_model.tokenizer.id_to_piece(tok_model.tokenizer.pad_id()) else: tok_model.add_special_tokens({'pad_token': '<pad>'}) else: tok_model.add_special_tokens({'pad_token': '<pad>'}) if not hasattr(tok_model, 'bos_token'): if hasattr(tok_model.tokenizer, 'bos_id') and tok_model.tokenizer.bos_id() > 0: tok_model.bos_token = tok_model.tokenizer.id_to_piece(tok_model.tokenizer.bos_id()) else: tok_model.add_special_tokens({'bos_token': '<bos>'}) else: tok_model.add_special_tokens({'bos_token': '<s>'}) if not hasattr(tok_model, 'eos_token'): if hasattr(tok_model.tokenizer, 'eos_id') and tok_model.tokenizer.eos_id() > 0: tok_model.eos_token = tok_model.tokenizer.id_to_piece(tok_model.tokenizer.eos_id()) else: tok_model.add_special_tokens({'eos_token': '<eos>'}) else: tok_model.add_special_tokens({'eos_token': '</s>'}) return encoder_tokenizer, decoder_tokenizer def setup_training_data(self, train_data_config: Optional[DictConfig]): self._train_ds = MTEncDecModel._setup_dataset_from_config( cfg=train_data_config, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, global_rank=self.global_rank, world_size=self.world_size, multilingual=self.multilingual, multilingual_ids=self.multilingual_ids, ) self._train_dl = MTEncDecModel._setup_dataloader_from_config(cfg=train_data_config, dataset=self._train_ds,) # Need to set this because if using an IterableDataset, the length of the dataloader is the total number # of samples rather than the number of batches, and this messes up the tqdm progress bar. # So we set the number of steps manually (to the correct number) to fix this. if 'use_tarred_dataset' in train_data_config and train_data_config['use_tarred_dataset']: # We also need to check if limit_train_batches is already set. # If it's an int, we assume that the user has set it to something sane, i.e. <= # training batches, # and don't change it. Otherwise, adjust batches accordingly if it's a float (including 1.0). if self._trainer is not None and isinstance(self._trainer.limit_train_batches, float): self._trainer.limit_train_batches = int( self._trainer.limit_train_batches * ceil(len(self._train_dl.dataset) / self.world_size) ) elif self._trainer is None: logging.warning( "Model Trainer was not set before constructing the dataset, incorrect number of " "training batches will be used. Please set the trainer and rebuild the dataset." ) def setup_multiple_validation_data(self, val_data_config: Union[DictConfig, Dict]): self.setup_validation_data(val_data_config) def setup_multiple_test_data(self, test_data_config: Union[DictConfig, Dict]): self.setup_test_data(test_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig]): self._validation_ds = MTEncDecModel._setup_eval_dataset_from_config( cfg=val_data_config, multilingual=self.multilingual, multilingual_ids=self.multilingual_ids, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, ) self._validation_dl = MTEncDecModel._setup_eval_dataloader_from_config( cfg=val_data_config, datasets=self._validation_ds ) # Need to set this because if using an IterableDataset, the length of the dataloader is the total number # of samples rather than the number of batches, and this messes up the tqdm progress bar. # So we set the number of steps manually (to the correct number) to fix this. if 'use_tarred_dataset' in val_data_config and val_data_config['use_tarred_dataset']: # We also need to check if limit_val_batches is already set. # If it's an int, we assume that the user has set it to something sane, i.e. <= # validation batches, # and don't change it. Otherwise, adjust batches accordingly if it's a float (including 1.0). if self._trainer is not None and isinstance(self._trainer.limit_val_batches, float): self._trainer.limit_val_batches = int( self._trainer.limit_val_batches * ceil(len(self._validation_dl.dataset) / self.world_size) ) elif self._trainer is None: logging.warning( "Model Trainer was not set before constructing the dataset, incorrect number of " "validation batches will be used. Please set the trainer and rebuild the dataset." ) # instantiate Torchmetric for each val dataloader if self._validation_dl is not None: for dataloader_idx in range(len(self._validation_dl)): if dataloader_idx == 0: setattr( self, f'val_loss', GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True), ) else: setattr( self, f'val_loss_{dataloader_idx}', GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True), ) def setup_test_data(self, test_data_config: Optional[DictConfig]): self._test_ds = MTEncDecModel._setup_eval_dataset_from_config( cfg=test_data_config, multilingual=self.multilingual, multilingual_ids=self.multilingual_ids, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, ) self._test_dl = MTEncDecModel._setup_eval_dataloader_from_config(cfg=test_data_config, datasets=self._test_ds) # instantiate Torchmetric for each test dataloader if self._test_dl is not None: for dataloader_idx in range(len(self._test_dl)): if dataloader_idx == 0: setattr( self, f'test_loss', GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True), ) else: setattr( self, f'test_loss_{dataloader_idx}', GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True), ) @classmethod def _setup_dataset_from_config( cls, cfg: DictConfig, encoder_tokenizer, decoder_tokenizer, global_rank, world_size, multilingual, multilingual_ids, ): if cfg.get("use_tarred_dataset", False) or cfg.get("dataset_type", "") == "tarred": if cfg.get("metadata_file") is None: raise FileNotFoundError("Trying to use tarred data set but could not find metadata path in config.") metadata_file_list = cfg.get('metadata_file') tar_files_list = cfg.get('tar_files', None) if isinstance(metadata_file_list, str): metadata_file_list = [metadata_file_list] if tar_files_list is not None and isinstance(tar_files_list, str): tar_files_list = [tar_files_list] if tar_files_list is not None and len(tar_files_list) != len(metadata_file_list): raise ValueError('The config must have the same number of tarfile paths and metadata file paths.') datasets = [] for idx, metadata_file in enumerate(metadata_file_list): with open(metadata_file) as metadata_reader: metadata = json.load(metadata_reader) if tar_files_list is None: tar_files = metadata.get('tar_files') if tar_files is not None: # update absolute path of tar files based on metadata_file path valid_tar_files = [] metadata_basedir = os.path.abspath(os.path.dirname(metadata_file)) updated_fn = 0 for fn in tar_files: # if a file does not exist, look in metadata file directory if os.path.exists(fn): valid_fn = fn else: updated_fn += 1 valid_fn = os.path.join(metadata_basedir, os.path.basename(fn)) if not os.path.exists(valid_fn): raise RuntimeError( f"File in tarred dataset is missing from absolute and relative paths {fn}" ) valid_tar_files.append(valid_fn) tar_files = valid_tar_files logging.info(f'Updated the path of {updated_fn} tarred files') logging.info(f'Loading from tarred dataset {tar_files}') else: tar_files = tar_files_list[idx] if metadata.get('tar_files') is not None: logging.info( f'Tar file paths found in both cfg and metadata using one in cfg by default - {tar_files}' ) dataset = TarredTranslationDataset( text_tar_filepaths=tar_files, metadata_path=metadata_file, encoder_tokenizer=encoder_tokenizer, decoder_tokenizer=decoder_tokenizer, shuffle_n=cfg.get("tar_shuffle_n", 100), shard_strategy=cfg.get("shard_strategy", "scatter"), global_rank=global_rank, world_size=world_size, reverse_lang_direction=cfg.get("reverse_lang_direction", False), prepend_id=multilingual_ids[idx] if multilingual else None, ) datasets.append(dataset) if len(datasets) > 1: dataset = ConcatDataset( datasets=datasets, sampling_technique=cfg.get('concat_sampling_technique'), sampling_temperature=cfg.get('concat_sampling_temperature'), sampling_probabilities=cfg.get('concat_sampling_probabilities'), global_rank=global_rank, world_size=world_size, ) else: dataset = datasets[0] else: src_file_list = cfg.src_file_name tgt_file_list = cfg.tgt_file_name if isinstance(src_file_list, str): src_file_list = [src_file_list] if isinstance(tgt_file_list, str): tgt_file_list = [tgt_file_list] if len(src_file_list) != len(tgt_file_list): raise ValueError('The same number of filepaths must be passed in for source and target.') datasets = [] for idx, src_file in enumerate(src_file_list): dataset = TranslationDataset( dataset_src=str(Path(src_file).expanduser()), dataset_tgt=str(Path(tgt_file_list[idx]).expanduser()), tokens_in_batch=cfg.tokens_in_batch, clean=cfg.get("clean", False), max_seq_length=cfg.get("max_seq_length", 512), min_seq_length=cfg.get("min_seq_length", 1), max_seq_length_diff=cfg.get("max_seq_length_diff", 512), max_seq_length_ratio=cfg.get("max_seq_length_ratio", 512), cache_ids=cfg.get("cache_ids", False), cache_data_per_node=cfg.get("cache_data_per_node", False), use_cache=cfg.get("use_cache", False), reverse_lang_direction=cfg.get("reverse_lang_direction", False), prepend_id=multilingual_ids[idx] if multilingual else None, ) dataset.batchify(encoder_tokenizer, decoder_tokenizer) datasets.append(dataset) if len(datasets) > 1: dataset = ConcatDataset( datasets=datasets, shuffle=cfg.get('shuffle'), sampling_technique=cfg.get('concat_sampling_technique'), sampling_temperature=cfg.get('concat_sampling_temperature'), sampling_probabilities=cfg.get('concat_sampling_probabilities'), global_rank=global_rank, world_size=world_size, ) else: dataset = datasets[0] return dataset @classmethod def _setup_dataloader_from_config(cls, cfg, dataset): if cfg.shuffle: sampler = pt_data.RandomSampler(dataset) else: sampler = pt_data.SequentialSampler(dataset) return torch.utils.data.DataLoader( dataset=dataset, batch_size=1, sampler=None if ( cfg.get("use_tarred_dataset", False) or cfg.get("dataset_type", "") == "tarred" or isinstance(dataset, ConcatDataset) ) else sampler, num_workers=cfg.get("num_workers", 2), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) def replace_beam_with_sampling(self, topk=500): self.beam_search = TopKSequenceGenerator( embedding=self.decoder.embedding, decoder=self.decoder.decoder, log_softmax=self.log_softmax, max_sequence_length=self.beam_search.max_seq_length, beam_size=topk, bos=self.decoder_tokenizer.bos_id, pad=self.decoder_tokenizer.pad_id, eos=self.decoder_tokenizer.eos_id, ) @classmethod def _setup_eval_dataset_from_config( cls, cfg: DictConfig, multilingual: bool, multilingual_ids, encoder_tokenizer, decoder_tokenizer, add_bos_eos_to_encoder=True, ): src_file_name = cfg.get('src_file_name') tgt_file_name = cfg.get('tgt_file_name') if src_file_name is None or tgt_file_name is None: raise ValueError( 'Validation dataloader needs both cfg.src_file_name and cfg.tgt_file_name to not be None.' ) else: # convert src_file_name and tgt_file_name to list of strings if isinstance(src_file_name, str): src_file_list = [src_file_name] elif isinstance(src_file_name, ListConfig): src_file_list = src_file_name else: raise ValueError("cfg.src_file_name must be string or list of strings") if isinstance(tgt_file_name, str): tgt_file_list = [tgt_file_name] elif isinstance(tgt_file_name, ListConfig): tgt_file_list = tgt_file_name else: raise ValueError("cfg.tgt_file_name must be string or list of strings") if len(src_file_list) != len(tgt_file_list): raise ValueError('The same number of filepaths must be passed in for source and target validation.') datasets = [] prepend_idx = 0 for idx, src_file in enumerate(src_file_list): if multilingual: prepend_idx = idx dataset = TranslationDataset( dataset_src=str(Path(src_file).expanduser()), dataset_tgt=str(Path(tgt_file_list[idx]).expanduser()), tokens_in_batch=cfg.tokens_in_batch, clean=cfg.get("clean", False), max_seq_length=cfg.get("max_seq_length", 512), min_seq_length=cfg.get("min_seq_length", 1), max_seq_length_diff=cfg.get("max_seq_length_diff", 512), max_seq_length_ratio=cfg.get("max_seq_length_ratio", 512), cache_ids=cfg.get("cache_ids", False), cache_data_per_node=cfg.get("cache_data_per_node", False), use_cache=cfg.get("use_cache", False), reverse_lang_direction=cfg.get("reverse_lang_direction", False), prepend_id=multilingual_ids[prepend_idx] if multilingual else None, add_bos_eos_to_encoder=add_bos_eos_to_encoder, ) dataset.batchify(encoder_tokenizer, decoder_tokenizer) datasets.append(dataset) return datasets @classmethod def _setup_eval_dataloader_from_config(cls, cfg, datasets): dataloaders = [] for dataset in datasets: if cfg.shuffle: sampler = pt_data.RandomSampler(dataset) else: sampler = pt_data.SequentialSampler(dataset) dataloaders.append( torch.utils.data.DataLoader( dataset=dataset, batch_size=1, sampler=None if (cfg.get("use_tarred_dataset", False) or isinstance(datasets[0], ConcatDataset)) else sampler, num_workers=cfg.get("num_workers", 2), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) ) return dataloaders @classmethod def setup_pre_and_post_processing_utils( cls, source_lang, target_lang, encoder_tokenizer_library, decoder_tokenizer_library ): """ Creates source and target processor objects for input and output pre/post-processing. """ source_processor, target_processor = None, None if encoder_tokenizer_library == 'byte-level': source_processor = ByteLevelProcessor() elif (source_lang == 'en' and target_lang == 'ja') or (source_lang == 'ja' and target_lang == 'en'): source_processor = EnJaProcessor(source_lang) elif source_lang == 'ja-mecab': source_processor = JaMecabProcessor() elif source_lang == 'zh': source_processor = ChineseProcessor() elif source_lang == 'hi': source_processor = IndicProcessor(source_lang) elif source_lang == 'ignore': source_processor = None elif source_lang is not None and source_lang not in ['ja', 'zh', 'hi']: source_processor = MosesProcessor(source_lang) if decoder_tokenizer_library == 'byte-level': target_processor = ByteLevelProcessor() elif (source_lang == 'en' and target_lang == 'ja') or (source_lang == 'ja' and target_lang == 'en'): target_processor = EnJaProcessor(target_lang) elif target_lang == 'ja-mecab': target_processor = JaMecabProcessor() elif target_lang == 'zh': target_processor = ChineseProcessor() elif target_lang == 'hi': target_processor = IndicProcessor(target_lang) elif target_lang == 'ignore': target_processor = None elif target_lang is not None and target_lang not in ['ja', 'zh', 'hi']: target_processor = MosesProcessor(target_lang) return source_processor, target_processor @classmethod def ids_to_postprocessed_text(cls, beam_ids, tokenizer, processor, filter_beam_ids=True): if filter_beam_ids: beam_ids = MTEncDecModel.filter_predicted_ids(beam_ids, decoder_tokenizer=tokenizer) translations = [tokenizer.ids_to_text(tr) for tr in beam_ids.cpu().numpy()] if processor is not None: translations = [processor.detokenize(translation.split(' ')) for translation in translations] return translations @torch.no_grad() def batch_translate( self, src: torch.LongTensor, src_mask: torch.LongTensor, return_beam_scores: bool = False, cache={} ): """ Translates a minibatch of inputs from source language to target language. Args: src: minibatch of inputs in the src language (batch x seq_len) src_mask: mask tensor indicating elements to be ignored (batch x seq_len) Returns: translations: a list strings containing detokenized translations inputs: a list of string containing detokenized inputs """ mode = self.training timer = cache.get("timer", None) try: self.eval() if timer is not None: timer.start("encoder") src_hiddens = self.encoder(input_ids=src, encoder_mask=src_mask) if timer is not None: timer.stop("encoder") timer.start("sampler") best_translations = self.beam_search( encoder_hidden_states=src_hiddens, encoder_input_mask=src_mask, return_beam_scores=return_beam_scores ) if timer is not None: timer.stop("sampler") if return_beam_scores: all_translations, scores, best_translations = best_translations scores = scores.view(-1) all_translations = MTEncDecModel.ids_to_postprocessed_text( all_translations, self.decoder_tokenizer, self.target_processor, filter_beam_ids=True ) best_translations = MTEncDecModel.ids_to_postprocessed_text( best_translations, self.decoder_tokenizer, self.target_processor, filter_beam_ids=True ) inputs = MTEncDecModel.ids_to_postprocessed_text( src, self.encoder_tokenizer, self.source_processor, filter_beam_ids=False ) finally: self.train(mode=mode) if return_beam_scores: return inputs, all_translations, scores.data.cpu().numpy().tolist(), best_translations return inputs, best_translations @classmethod def prepare_inference_batch( cls, text, prepend_ids=[], target=False, source_processor=None, target_processor=None, encoder_tokenizer=None, decoder_tokenizer=None, device=None, ): inputs = [] processor = source_processor if not target else target_processor tokenizer = encoder_tokenizer if not target else decoder_tokenizer for txt in text: txt = txt.rstrip("\n") if processor is not None: txt = processor.normalize(txt) txt = processor.tokenize(txt) ids = tokenizer.text_to_ids(txt) ids = prepend_ids + [tokenizer.bos_id] + ids + [tokenizer.eos_id] inputs.append(ids) max_len = max(len(txt) for txt in inputs) src_ids_ = np.ones((len(inputs), max_len)) * tokenizer.pad_id for i, txt in enumerate(inputs): src_ids_[i][: len(txt)] = txt src_mask = torch.FloatTensor((src_ids_ != tokenizer.pad_id)).to(device) src = torch.LongTensor(src_ids_).to(device) return src, src_mask @torch.no_grad() def translate( self, text: List[str], source_lang: str = None, target_lang: str = None, return_beam_scores: bool = False, log_timing: bool = False, ) -> List[str]: """ Translates list of sentences from source language to target language. Should be regular text, this method performs its own tokenization/de-tokenization Args: text: list of strings to translate source_lang: if not "ignore", corresponding MosesTokenizer and MosesPunctNormalizer will be run target_lang: if not "ignore", corresponding MosesDecokenizer will be run return_beam_scores: if True, returns a list of translations and their corresponding beam scores. log_timing: if True, prints timing information. Returns: list of translated strings """ # __TODO__: This will reset both source and target processors even if you want to reset just one. if source_lang is not None or target_lang is not None: self.source_processor, self.target_processor = MTEncDecModel.setup_pre_and_post_processing_utils( source_lang, target_lang, self.encoder_tokenizer_library, self.decoder_tokenizer_library ) mode = self.training prepend_ids = [] if self.multilingual: if source_lang is None or target_lang is None: raise ValueError("Expect source_lang and target_lang to infer for multilingual model.") src_symbol = self.encoder_tokenizer.token_to_id('<' + source_lang + '>') tgt_symbol = self.encoder_tokenizer.token_to_id('<' + target_lang + '>') if src_symbol in self.multilingual_ids: prepend_ids = [src_symbol] elif tgt_symbol in self.multilingual_ids: prepend_ids = [tgt_symbol] if log_timing: timer = timers.NamedTimer() else: timer = None cache = { "timer": timer, } try: self.eval() src, src_mask = MTEncDecModel.prepare_inference_batch( text=text, prepend_ids=prepend_ids, target=False, source_processor=self.source_processor, target_processor=self.target_processor, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, device=self.device, ) if return_beam_scores: _, all_translations, scores, best_translations = self.batch_translate( src, src_mask, return_beam_scores=True, cache=cache, ) return_val = all_translations, scores, best_translations else: _, best_translations = self.batch_translate(src, src_mask, return_beam_scores=False, cache=cache) return_val = best_translations finally: self.train(mode=mode) if log_timing: timing = timer.export() timing["mean_src_length"] = src_mask.sum().cpu().item() / src_mask.shape[0] tgt, tgt_mask = self.prepare_inference_batch( text=best_translations, prepend_ids=prepend_ids, target=True, source_processor=self.source_processor, target_processor=self.target_processor, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, device=self.device, ) timing["mean_tgt_length"] = tgt_mask.sum().cpu().item() / tgt_mask.shape[0] if type(return_val) is tuple: return_val = return_val + (timing,) else: return_val = (return_val, timing) return return_val def itn_translate_tn( self, text: List[str], source_lang: str = None, target_lang: str = None, return_beam_scores: bool = False, log_timing: bool = False, inverse_normalizer=None, normalizer=None, ) -> List[str]: """ Calls the translate() method with the option of running ITN (inverse text-normalization) on the input adn TN (text-normalization) on the output. Pipeline : ITN -> translate -> TN NOTE: ITN and TN objects must be initialized with the right languages. Args: text: list of strings to translate source_lang: if not "ignore", corresponding MosesTokenizer and MosesPunctNormalizer will be run target_lang: if not "ignore", corresponding MosesDecokenizer will be run return_beam_scores: if True, returns a list of translations and their corresponding beam scores. log_timing: if True, prints timing information. inverse_normalizer: instance of nemo_text_processing.inverse_text_normalization.inverse_normalize.InverseNormalizer normalizer: instance of nemo_text_processing.text_normalization.normalize.Normalizer Returns: list of translated strings """ if inverse_normalizer is not None: text = [inverse_normalizer.normalize(example) for example in text] translations = self.translate(text, source_lang, target_lang, return_beam_scores, log_timing) if normalizer is not None: translations = [normalizer.normalize(example) for example in translations] return translations # EncDecRNNTModel is exported in 2 parts def list_export_subnets(self): return ['encoder', 'decoder'] @classmethod def list_available_models(cls) -> Optional[Dict[str, str]]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] model = PretrainedModelInfo( pretrained_model_name="nmt_en_de_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_de_transformer12x2/versions/1.0.0rc1/files/nmt_en_de_transformer12x2.nemo", description="En->De translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_de_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_de_en_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_de_en_transformer12x2/versions/1.0.0rc1/files/nmt_de_en_transformer12x2.nemo", description="De->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_de_en_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_es_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_es_transformer12x2/versions/1.0.0rc1/files/nmt_en_es_transformer12x2.nemo", description="En->Es translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_es_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_es_en_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_es_en_transformer12x2/versions/1.0.0rc1/files/nmt_es_en_transformer12x2.nemo", description="Es->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_es_en_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_fr_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_fr_transformer12x2/versions/1.0.0rc1/files/nmt_en_fr_transformer12x2.nemo", description="En->Fr translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_fr_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_fr_en_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_fr_en_transformer12x2/versions/1.0.0rc1/files/nmt_fr_en_transformer12x2.nemo", description="Fr->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_fr_en_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_ru_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_ru_transformer6x6/versions/1.0.0rc1/files/nmt_en_ru_transformer6x6.nemo", description="En->Ru translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_ru_transformer6x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_ru_en_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_ru_en_transformer6x6/versions/1.0.0rc1/files/nmt_ru_en_transformer6x6.nemo", description="Ru->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_ru_en_transformer6x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_zh_en_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_zh_en_transformer6x6/versions/1.0.0rc1/files/nmt_zh_en_transformer6x6.nemo", description="Zh->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_zh_en_transformer6x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_zh_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_zh_transformer6x6/versions/1.0.0rc1/files/nmt_en_zh_transformer6x6.nemo", description="En->Zh translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_zh_transformer6x6", ) result.append(model) # English <-> Hindi models model = PretrainedModelInfo( pretrained_model_name="nmt_hi_en_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_hi_en_transformer12x2/versions/v1.0.0/files/nmt_hi_en_transformer12x2.nemo", description="Hi->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_hi_en_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_hi_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_hi_transformer12x2/versions/v1.0.0/files/nmt_en_hi_transformer12x2.nemo", description="En->Hi translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_hi_transformer12x2", ) result.append(model) # De/Fr/Es -> English models model = PretrainedModelInfo( pretrained_model_name="mnmt_deesfr_en_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_deesfr_en_transformer12x2/versions/1.2.0/files/mnmt_deesfr_en_transformer12x2.nemo", description="De/Es/Fr->En multilingual many-one translation model. The model has 12 encoder and 2 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_deesfr_en_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="mnmt_deesfr_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_deesfr_en_transformer24x6/versions/1.2.0/files/mnmt_deesfr_en_transformer24x6.nemo", description="De/Es/Fr->En multilingual many-one translation model. The model has 24 encoder and 6 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_deesfr_en_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="mnmt_deesfr_en_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_deesfr_en_transformer6x6/versions/1.2.0/files/mnmt_deesfr_en_transformer6x6.nemo", description="De/Es/Fr->En multilingual many-one translation model. The model has 6 encoder and 6 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_deesfr_en_transformer6x6", ) result.append(model) # English -> De/Fr/Es models model = PretrainedModelInfo( pretrained_model_name="mnmt_en_deesfr_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_en_deesfr_transformer12x2/versions/1.2.0/files/mnmt_en_deesfr_transformer12x2.nemo", description="En->De/Es/Fr multilingual one-many translation model. The model has 12 encoder and 2 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_en_deesfr_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="mnmt_en_deesfr_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_en_deesfr_transformer24x6/versions/1.2.0/files/mnmt_en_deesfr_transformer24x6.nemo", description="En->De/Es/Fr multilingual one-many translation model. The model has 24 encoder and 6 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_en_deesfr_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="mnmt_en_deesfr_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_en_deesfr_transformer6x6/versions/1.2.0/files/mnmt_en_deesfr_transformer6x6.nemo", description="En->De/Es/Fr multilingual one-many translation model. The model has 6 encoder and 6 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_en_deesfr_transformer6x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="mnmt_en_deesfr_transformerbase", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_en_deesfr_transformerbase/versions/1.2.0/files/mnmt_en_deesfr_transformerbase.nemo", description="En->De/Es/Fr multilingual one-many translation model. The model has 6 encoder and 6 decoder layers with hidden dim 512. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_en_deesfr_transformerbase", ) result.append(model) # 24x6 models model = PretrainedModelInfo( pretrained_model_name="nmt_en_de_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_de_transformer24x6/versions/1.5/files/en_de_24x6.nemo", description="En->De translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_de_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_de_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_de_en_transformer24x6/versions/1.5/files/de_en_24x6.nemo", description="De->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_de_en_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_es_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_es_transformer24x6/versions/1.5/files/en_es_24x6.nemo", description="En->Es translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_es_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_es_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_es_en_transformer24x6/versions/1.5/files/es_en_24x6.nemo", description="Es->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_es_en_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_fr_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_fr_transformer24x6/versions/1.5/files/en_fr_24x6.nemo", description="En->Fr translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_fr_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_fr_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_fr_en_transformer24x6/versions/1.5/files/fr_en_24x6.nemo", description="Fr->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_fr_en_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_ru_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_ru_transformer24x6/versions/1.5/files/en_ru_24x6.nemo", description="En->Ru translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_ru_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_ru_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_ru_en_transformer24x6/versions/1.5/files/ru_en_24x6.nemo", description="Ru->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_ru_en_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_zh_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_zh_transformer24x6/versions/1.5/files/en_zh_24x6.nemo", description="En->Zh translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_zh_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_zh_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_zh_en_transformer24x6/versions/1.5/files/zh_en_24x6.nemo", description="Zh->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_zh_en_transformer24x6", ) result.append(model) return result
NeMo-main
nemo/collections/nlp/models/machine_translation/mt_enc_dec_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional import numpy as np import torch from pytorch_lightning import Trainer from nemo.collections.common.losses import NLLLoss from nemo.collections.nlp.models.machine_translation.mt_enc_dec_config import MTBottleneckModelConfig from nemo.collections.nlp.models.machine_translation.mt_enc_dec_model import MTEncDecModel from nemo.core.classes.common import typecheck from nemo.utils import timers __all__ = ['MTBottleneckModel'] def build_linear_or_identity(input_dim, output_dim): """ Auxiliary method to return FC layer when input_dim != output_dim else return identity """ if input_dim != output_dim: model = torch.nn.Linear(input_dim, output_dim) else: model = torch.nn.Identity() return model class MTBottleneckModel(MTEncDecModel): """ Machine translation model which supports bottleneck architecture, NLL, VAE, and MIM loss. Supported losses: 1) nll - Conditional cross entropy (the usual NMT loss) 2) mim - MIM learning framework. A latent variable model with good reconstruction and compressed latent representation. https://arxiv.org/pdf/2003.02645.pdf 3) vae - VAE learning framework. A latent variable model which learns good probability estimation over observations and a regularized latent representation. https://arxiv.org/pdf/1312.6114.pdf """ def __init__(self, cfg: MTBottleneckModelConfig, trainer: Trainer = None): super().__init__(cfg=cfg, trainer=trainer) self.model_type: str = cfg.get("model_type", "nll") self.min_logv: float = cfg.get("min_logv", -6) self.latent_size: int = cfg.get("latent_size", -1) self.non_recon_warmup_batches: int = cfg.get("non_recon_warmup_batches", 200000) self.recon_per_token: bool = cfg.get("recon_per_token", True) self.log_timing: bool = cfg.get("log_timing", True) # if True, translation uses the mean of latent for VAE and MIM self.deterministic_translate = True # latent_size -1 will take value of encoder.hidden_size if self.latent_size < 0: self.latent_size = self.encoder.hidden_size if not self.recon_per_token: # disable reduction for train and eval loss self.eval_loss_fn = NLLLoss(ignore_index=self.decoder_tokenizer.pad_id, reduction='none') self.loss_fn._per_token_reduction = False if self.model_type not in ["nll", "mim", "vae"]: raise ValueError(f"Unknown model_type = {self.model_type}") # project bridge dimension back to decoder hidden dimensions self.latent2hidden = build_linear_or_identity(self.latent_size, self.decoder.hidden_size) if self.model_type == "nll": # project dimension of encoder hidden to latent dimension self.hidden2latent_mean = build_linear_or_identity(self.encoder.hidden_size, self.latent_size) else: # MIM or VAE requires two independent projections for mean/variance # project dimension of encoder hidden to latent dimension self.hidden2latent_mean = torch.nn.Linear(self.encoder.hidden_size, self.latent_size) # for probabilistic latent variable models we also need variance self.hidden2latent_logv = torch.nn.Linear(self.encoder.hidden_size, self.latent_size) def _validate_encoder_decoder_hidden_size(self): """ Validate encoder and decoder hidden sizes, and enforce same size. We support here encoder/decoder with different hidden_size, so do nothing. """ pass def eval_epoch_end(self, outputs, mode, global_rank): # call parent for logging super().eval_epoch_end(outputs, mode, global_rank) # if user specifies one validation dataloader, then PTL reverts to giving a list of dictionary instead of a list of list of dictionary if isinstance(outputs[0], dict): outputs = [outputs] for dataloader_idx, output in enumerate(outputs): # add logs if available in outputs log_dict = {} for x in output: if "log" in x: for k, v in x["log"].items(): log_dict[k] = log_dict.get(k, []) + [v] for k, v in log_dict.items(): if dataloader_idx == 0: self.log(f"{mode}_{k}", np.mean(v), sync_dist=True) else: self.log(f"{mode}_{k}_dl_index_{dataloader_idx}", np.mean(v), sync_dist=True) @classmethod def list_available_models(cls) -> Optional[Dict[str, str]]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] return result def encode_latent(self, hidden): """ Sample latent code z with reparameterization from bridge for probabilistic latent variable models (e.g., mim, vae), or return value for non-probabilistic models (nll) """ # all models have mean z_mean = self.hidden2latent_mean(hidden) if self.model_type == "nll": # reconstruction only z = z_mean z_logv = torch.zeros_like(z) else: # mim or vae # sample posterior q(z|x) for MIM and VAE z_logv = self.hidden2latent_logv(hidden) # avoid numerical instability for MIM z_logv = z_logv.clamp_min(self.min_logv) # sample z with reparameterization e = torch.randn_like(z_mean) z = e * torch.exp(0.5 * z_logv) + z_mean return z, z_mean, z_logv def loss( self, z, z_mean, z_logv, z_mask, tgt_log_probs, tgt, tgt_mask, tgt_labels, train=False, return_info=False ): """ Compute the loss from latent (z) and target (x). train - If True enables loss annealing, and label smoothing """ recon_loss_fn = self.loss_fn if train else self.eval_loss_fn info_dict = {} if self.recon_per_token: log_p_x_given_z_per_token = -recon_loss_fn(log_probs=tgt_log_probs, labels=tgt_labels) log_p_x_given_z = log_p_x_given_z_per_token log_p_x_given_z_per_token = log_p_x_given_z_per_token.detach() else: # averaging of log_p_x_given_z per sample output_mask = (tgt_labels != self.decoder_tokenizer.pad_id).type_as(tgt_log_probs) log_p_x_given_z_per_token = ( -recon_loss_fn(log_probs=tgt_log_probs, labels=tgt_labels,).view(tgt_log_probs.shape[:2]) * output_mask ) # probability per sample log_p_x_given_z = log_p_x_given_z_per_token.sum(-1).mean() tokens = output_mask.sum() log_p_x_given_z_per_token = log_p_x_given_z_per_token.sum().detach() / tokens info_dict["log_p_x_given_z"] = log_p_x_given_z.detach().cpu() info_dict["log_p_x_given_z_per_token"] = log_p_x_given_z_per_token.detach().cpu() # loss warmup during training only if train: trainer = self.trainer # if we do not have a trainer ignore annealing if trainer is None: # ignore warmup and auxiliary loss warmup_coef = 1.0 else: global_step = self.trainer.global_step warmup_coef = min(global_step / self.non_recon_warmup_batches, 1) else: # ignore warmup and auxiliary loss warmup_coef = 1.0 info_dict["warmup_coef_recon"] = warmup_coef if self.model_type in ["mim", "vae"]: # tokens = tgt_mask.sum() q_z_given_x = torch.distributions.Normal(loc=z_mean, scale=torch.exp(0.5 * z_logv),) # average latent distribution to match averaging of observations if self.recon_per_token: # average latent per dimension - to heuristically match per-token reconstruction log_q_z_given_x = q_z_given_x.log_prob(z).mean(-1).mean(-1).mean() else: log_q_z_given_x = q_z_given_x.log_prob(z).sum(-1).sum(-1).mean() # build prior distribution p_z = torch.distributions.Normal(loc=torch.zeros_like(z), scale=torch.ones_like(z),) if self.recon_per_token: # average latent distribution similar to averaging of observations log_p_z = p_z.log_prob(z).mean(-1).mean(-1).mean() else: log_p_z = p_z.log_prob(z).sum(-1).sum(-1).mean() if self.model_type == "mim": loss_terms = 0.5 * (log_q_z_given_x + log_p_z) elif self.model_type == "vae": # KL divergence -Dkl( q(z|x) || p(z) ) loss_terms = log_p_z - log_q_z_given_x # show loss value for reconstruction but train with MIM/VAE loss loss = -(log_p_x_given_z + warmup_coef * loss_terms) info_dict["log_q_z_given_x"] = log_q_z_given_x.detach().cpu() info_dict["log_var_q_z_given_x"] = z_logv.detach().mean().cpu() info_dict["log_p_z"] = log_p_z.detach().cpu() info_dict["kl_div_q_p"] = (log_q_z_given_x - log_p_z).detach().cpu() elif self.model_type == "nll": loss = -log_p_x_given_z if return_info: return loss, info_dict else: return loss @typecheck() def forward(self, src, src_mask, tgt, tgt_mask, timer=None): """ return_info - if True, returns loss, info_dict with additional information regarding the loss that can be logged """ if self.validate_input_ids: # test src/tgt for id range (i.e., hellp in catching wrong tokenizer) self.test_encoder_ids(src, raise_error=True) self.test_decoder_ids(tgt, raise_error=True) if timer is not None: timer.start("encoder") enc_hiddens, enc_mask = self.encoder(input_ids=src, encoder_mask=src_mask, return_mask=True,) # build posterior distribution q(x|z) z, z_mean, z_logv = self.encode_latent(hidden=enc_hiddens) z_mask = enc_mask if timer is not None: timer.stop("encoder") if timer is not None: timer.start("decoder") # decoding cross attention context context_hiddens = self.latent2hidden(z) tgt_hiddens = self.decoder( input_ids=tgt, decoder_mask=tgt_mask, encoder_embeddings=context_hiddens, encoder_mask=enc_mask, ) # build decoding distribution tgt_log_probs = self.log_softmax(hidden_states=tgt_hiddens) if timer is not None: timer.stop("decoder") return z, z_mean, z_logv, z_mask, tgt_log_probs @torch.no_grad() def batch_translate( self, src: torch.LongTensor, src_mask: torch.LongTensor, return_beam_scores: bool = False, cache={} ): """ Translates a minibatch of inputs from source language to target language. Args: src: minibatch of inputs in the src language (batch x seq_len) src_mask: mask tensor indicating elements to be ignored (batch x seq_len) Returns: translations: a list strings containing detokenized translations inputs: a list of string containing detokenized inputs """ mode = self.training timer = cache.get("timer", None) try: self.eval() # build posterior distribution q(x|z) if ("z" not in cache) or ("z_mean" not in cache) or ("z_mask" not in cache): if timer is not None: timer.start("encoder") enc_hiddens, enc_mask = self.encoder(input_ids=src, encoder_mask=src_mask, return_mask=True) z, z_mean, _ = self.encode_latent(hidden=enc_hiddens) if timer is not None: timer.stop("encoder") else: enc_mask = cache["z_mask"] z = cache["z"] z_mean = cache["z_mean"] if getattr(self, "deterministic_translate", True): z = z_mean if timer is not None: timer.start("sampler") # decoding cross attention context context_hiddens = self.latent2hidden(z) best_translations = self.beam_search( encoder_hidden_states=context_hiddens, encoder_input_mask=enc_mask, return_beam_scores=return_beam_scores, ) if timer is not None: timer.stop("sampler") if return_beam_scores: all_translations, scores, best_translations = best_translations scores = scores.view(-1) all_translations = self.ids_to_postprocessed_text( all_translations, self.decoder_tokenizer, self.target_processor, filter_beam_ids=True ) best_translations = self.ids_to_postprocessed_text( best_translations, self.decoder_tokenizer, self.target_processor, filter_beam_ids=True ) inputs = self.ids_to_postprocessed_text( src, self.encoder_tokenizer, self.source_processor, filter_beam_ids=False ) finally: self.train(mode=mode) if return_beam_scores: return inputs, all_translations, scores.data.cpu().numpy().tolist(), best_translations return inputs, best_translations def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ # forward pass for i in range(len(batch)): if batch[i].ndim == 3: # Dataset returns already batched data and the first dimension of size 1 added by DataLoader # is excess. batch[i] = batch[i].squeeze(dim=0) src_ids, src_mask, tgt_ids, tgt_mask, labels = batch z, z_mean, z_logv, z_mask, tgt_log_probs = self(src_ids, src_mask, tgt_ids, tgt_mask) train_loss, info_dict = self.loss( z=z, z_mean=z_mean, z_logv=z_logv, z_mask=z_mask, tgt_log_probs=tgt_log_probs, tgt=tgt_ids, tgt_mask=tgt_mask, tgt_labels=labels, train=True, return_info=True, ) tensorboard_logs = { 'train_loss': train_loss, 'lr': self._optimizer.param_groups[0]['lr'], } tensorboard_logs.update(info_dict) return {'loss': train_loss, 'log': tensorboard_logs} def eval_step(self, batch, batch_idx, mode, dataloader_idx=0): if self.log_timing: timer = timers.NamedTimer() else: timer = None for i in range(len(batch)): if batch[i].ndim == 3: # Dataset returns already batched data and the first dimension of size 1 added by DataLoader # is excess. batch[i] = batch[i].squeeze(dim=0) if self.multilingual: self.source_processor = self.source_processor_list[dataloader_idx] self.target_processor = self.target_processor_list[dataloader_idx] src_ids, src_mask, tgt_ids, tgt_mask, labels = batch z, z_mean, z_logv, z_mask, tgt_log_probs = self(src_ids, src_mask, tgt_ids, tgt_mask, timer=timer) eval_loss, info_dict = self.loss( z=z, z_mean=z_mean, z_logv=z_logv, z_mask=z_mask, tgt_log_probs=tgt_log_probs, tgt=tgt_ids, tgt_mask=tgt_mask, tgt_labels=labels, train=False, return_info=True, ) # pass cache to sampler in order to reuse encoder's output cache = dict(z=z, z_mean=z_mean, z_mask=z_mask, timer=timer,) inputs, translations = self.batch_translate(src=src_ids, src_mask=src_mask, cache=cache) num_measurements = labels.shape[0] * labels.shape[1] if dataloader_idx == 0: getattr(self, f'{mode}_loss')( loss=eval_loss, num_measurements=num_measurements, ) else: getattr(self, f'{mode}_loss_{dataloader_idx}')( loss=eval_loss, num_measurements=num_measurements, ) np_tgt = tgt_ids.detach().cpu().numpy() ground_truths = [self.decoder_tokenizer.ids_to_text(tgt) for tgt in np_tgt] ground_truths = [self.target_processor.detokenize(tgt.split(' ')) for tgt in ground_truths] num_non_pad_tokens = np.not_equal(np_tgt, self.decoder_tokenizer.pad_id).sum().item() # collect logs log_dict = {k: v.detach().cpu().numpy() if torch.is_tensor(v) else v for k, v in info_dict.items()} # add timing if required if timer is not None: for k, v in timer.export().items(): log_dict[f"{k}_timing"] = v return { 'inputs': inputs, 'translations': translations, 'ground_truths': ground_truths, 'num_non_pad_tokens': num_non_pad_tokens, 'log': log_dict, }
NeMo-main
nemo/collections/nlp/models/machine_translation/mt_enc_dec_bottleneck_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Optional, Tuple from omegaconf.omegaconf import MISSING from nemo.collections.nlp.data.machine_translation.machine_translation_dataset import TranslationDataConfig from nemo.collections.nlp.models.enc_dec_nlp_model import EncDecNLPModelConfig from nemo.collections.nlp.modules.common.token_classifier import TokenClassifierConfig from nemo.collections.nlp.modules.common.tokenizer_utils import TokenizerConfig from nemo.collections.nlp.modules.common.transformer.transformer import ( NeMoTransformerConfig, NeMoTransformerEncoderConfig, ) from nemo.collections.nlp.modules.common.transformer.transformer_bottleneck import ( NeMoTransformerBottleneckDecoderConfig, NeMoTransformerBottleneckEncoderConfig, ) from nemo.core.config.modelPT import OptimConfig, SchedConfig @dataclass class MTSchedConfig(SchedConfig): name: str = 'InverseSquareRootAnnealing' warmup_ratio: Optional[float] = None last_epoch: int = -1 # TODO: Refactor this dataclass to to support more optimizers (it pins the optimizer to Adam-like optimizers). @dataclass class MTOptimConfig(OptimConfig): name: str = 'adam' lr: float = 1e-3 betas: Tuple[float, float] = (0.9, 0.98) weight_decay: float = 0.0 sched: Optional[MTSchedConfig] = MTSchedConfig() @dataclass class MTEncDecModelConfig(EncDecNLPModelConfig): # machine translation configurations num_val_examples: int = 3 num_test_examples: int = 3 max_generation_delta: int = 10 label_smoothing: Optional[float] = 0.0 beam_size: int = 4 len_pen: float = 0.0 src_language: Any = 'en' # Any = str or List[str] tgt_language: Any = 'en' # Any = str or List[str] find_unused_parameters: Optional[bool] = True shared_tokenizer: Optional[bool] = True multilingual: Optional[bool] = False preproc_out_dir: Optional[str] = None validate_input_ids: Optional[bool] = True shared_embeddings: bool = False # network architecture configuration encoder_tokenizer: Any = MISSING encoder: Any = MISSING decoder_tokenizer: Any = MISSING decoder: Any = MISSING head: TokenClassifierConfig = TokenClassifierConfig(log_softmax=True) # dataset configurations train_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=True, shuffle=True, cache_ids=False, use_cache=False, ) validation_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=False, shuffle=False, cache_ids=False, use_cache=False, ) test_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=False, shuffle=False, cache_ids=False, use_cache=False, ) optim: Optional[OptimConfig] = MTOptimConfig() @dataclass class AAYNBaseConfig(MTEncDecModelConfig): # Attention is All You Need Base Configuration encoder_tokenizer: TokenizerConfig = TokenizerConfig(library='yttm') decoder_tokenizer: TokenizerConfig = TokenizerConfig(library='yttm') encoder: NeMoTransformerEncoderConfig = NeMoTransformerEncoderConfig( library='nemo', model_name=None, pretrained=False, hidden_size=512, inner_size=2048, num_layers=6, num_attention_heads=8, ffn_dropout=0.1, attn_score_dropout=0.1, attn_layer_dropout=0.1, ) decoder: NeMoTransformerConfig = NeMoTransformerConfig( library='nemo', model_name=None, pretrained=False, hidden_size=512, inner_size=2048, num_layers=6, num_attention_heads=8, ffn_dropout=0.1, attn_score_dropout=0.1, attn_layer_dropout=0.1, ) @dataclass class MTBottleneckModelConfig(AAYNBaseConfig): model_type: str = 'nll' min_logv: float = -6 latent_size: int = -1 # -1 will take value of encoder hidden non_recon_warmup_batches: int = 200000 recon_per_token: bool = True log_timing: bool = True encoder: NeMoTransformerBottleneckEncoderConfig = NeMoTransformerBottleneckEncoderConfig( library='nemo', model_name=None, pretrained=False, hidden_size=512, inner_size=2048, num_layers=6, num_attention_heads=8, ffn_dropout=0.1, attn_score_dropout=0.1, attn_layer_dropout=0.1, arch='seq2seq', hidden_steps=32, hidden_blocks=1, hidden_init_method='params', ) decoder: NeMoTransformerBottleneckDecoderConfig = NeMoTransformerBottleneckDecoderConfig( library='nemo', model_name=None, pretrained=False, inner_size=2048, num_layers=6, num_attention_heads=8, ffn_dropout=0.1, attn_score_dropout=0.1, attn_layer_dropout=0.1, arch='seq2seq', )
NeMo-main
nemo/collections/nlp/models/machine_translation/mt_enc_dec_config.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Dict, Optional import numpy as np import torch from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from nemo.collections.nlp.data import BertInformationRetrievalDataset from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common.lm_utils import get_lm_model from nemo.core.classes.common import typecheck __all__ = ['BaseIRModel'] class BaseIRModel(NLPModel): """ Base class for information retrieval models. """ def __init__(self, cfg: DictConfig, trainer: Trainer = None): self.setup_tokenizer(cfg.tokenizer) super().__init__(cfg=cfg, trainer=trainer) @typecheck() def forward(self, *args): pass def compute_scores_and_loss(self, inputs): pass @staticmethod def get_lm_model_with_padded_embedding(cfg: DictConfig): """ Function which ensures that vocabulary size is divisivble by 8 for faster mixed precision training. """ model = get_lm_model( config_file=cfg.language_model.config_file, config_dict=OmegaConf.to_container(cfg.language_model.config) if cfg.language_model.config else None, vocab_file=cfg.tokenizer.vocab_file, trainer=trainer, cfg=cfg, ) vocab_size, hidden_size = model.config.vocab_size, model.config.hidden_size tokens_to_add = 8 * math.ceil(vocab_size / 8) - vocab_size zeros = torch.zeros((tokens_to_add, hidden_size)) model.embeddings.word_embeddings.weight.data = torch.cat((model.embeddings.word_embeddings.weight.data, zeros)) return model @staticmethod def calculate_mean_reciprocal_rank(query2passages, query2rel): """ Helper function which calculates mean reciprocal rank. Args: query2passages: dict which contains passage ids and corresponding scores for each query query2rel: dict which contains ids of relevant passages for each query """ reciprocal_ranks = [] for query in query2passages: indices = np.argsort(query2passages[query]["scores"])[::-1] sorted_psgs = query2passages[query]["psg_ids"][indices] reciprocal_ranks.append(0) for i, psg_id in enumerate(sorted_psgs): if psg_id in query2rel[query]: reciprocal_ranks[-1] = 1 / (i + 1) break return np.mean(reciprocal_ranks) def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ scores, train_loss = self.compute_scores_and_loss(batch[:-2]) tensorboard_logs = {"train_loss": train_loss, "lr": self._optimizer.param_groups[0]["lr"]} return {"loss": train_loss, "log": tensorboard_logs} def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ scores, val_loss = self.compute_scores_and_loss(batch[:-2]) query_ids, passage_ids = batch[-2:] data_for_val = { "val_loss": val_loss, "scores": scores, "query_ids": query_ids, "passage_ids": passage_ids, } self.validation_step_outputs.append(data_for_val) return data_for_val def on_validation_epoch_end(self): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ query_ids = torch.cat([x["query_ids"] for x in self.validation_step_outputs]) passage_ids = torch.cat([x["passage_ids"] for x in self.validation_step_outputs]) scores = torch.cat([x["scores"] for x in self.validation_step_outputs]) all_query_ids, all_passage_ids, all_scores = [], [], [] if torch.distributed.is_initialized(): world_size = torch.distributed.get_world_size() for ind in range(world_size): all_query_ids.append(torch.empty_like(query_ids)) all_passage_ids.append(torch.empty_like(passage_ids)) all_scores.append(torch.empty_like(scores)) torch.distributed.all_gather(all_query_ids, query_ids) torch.distributed.all_gather(all_passage_ids, passage_ids) torch.distributed.all_gather(all_scores, scores) else: all_query_ids.append(query_ids) all_passage_ids.append(passage_ids) all_scores.append(scores) val_mrr = 0 if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0: query2passages, query2rels = {}, {} processed_queries = set() for i in range(len(all_query_ids)): query_ids = all_query_ids[i].detach().cpu().numpy() passage_ids = all_passage_ids[i].detach().cpu().numpy() scores = all_scores[i].detach().cpu().numpy() for j, query_id in enumerate(query_ids): if query_id not in processed_queries: processed_queries.add(query_id) query2passages[query_id] = { "psg_ids": passage_ids[j], "scores": scores[j], } query2rels[query_id] = [passage_ids[j][0]] else: query2passages[query_id]["psg_ids"] = np.concatenate( (query2passages[query_id]["psg_ids"], passage_ids[j][1:]) ) query2passages[query_id]["scores"] = np.concatenate( (query2passages[query_id]["scores"], scores[j][1:]) ) val_mrr = self.calculate_mean_reciprocal_rank(query2passages, query2rels) val_loss = torch.stack([x["val_loss"] for x in self.validation_step_outputs]).mean() self.validation_step_outputs.clear() # free memory tensorboard_logs = { "val_mrr": val_mrr, "val_loss": val_loss, } return {"log": tensorboard_logs} def setup_training_data(self, train_data_config: Optional[DictConfig]): self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig]): self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig]): self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config) def _setup_dataloader_from_config(self, cfg: DictConfig): dataset = BertInformationRetrievalDataset( tokenizer=self.tokenizer, passages=cfg.passages, queries=cfg.queries, query_to_passages=cfg.query_to_passages, num_negatives=cfg.num_negatives, psg_cache_format=cfg.get("psg_cache_format", "pkl"), max_query_length=cfg.get("max_query_length", 31), max_passage_length=cfg.get("max_passage_length", 190), ) return torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=cfg.get("num_workers", 2), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) @classmethod def list_available_models(cls) -> Optional[Dict[str, str]]: pass
NeMo-main
nemo/collections/nlp/models/information_retrieval/base_ir_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.information_retrieval.bert_dpr_model import BertDPRModel from nemo.collections.nlp.models.information_retrieval.bert_joint_ir_model import BertJointIRModel
NeMo-main
nemo/collections/nlp/models/information_retrieval/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from nemo.collections.common.losses import SmoothedCrossEntropyLoss from nemo.collections.nlp.data import BertInformationRetrievalDataset from nemo.collections.nlp.models.information_retrieval.base_ir_model import BaseIRModel from nemo.collections.nlp.modules.common.tokenizer_utils import get_tokenizer from nemo.core.classes.common import typecheck from nemo.core.neural_types import ChannelType, LogitsType, MaskType, NeuralType __all__ = ["BertDPRModel"] class BertDPRModel(BaseIRModel): """ Information retrieval model which encodes query and passage separately with two different BERT encoders and computes their similarity score as a dot-product between corresponding [CLS] token representations. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "q_input_ids": NeuralType(("B", "T"), ChannelType()), "q_attention_mask": NeuralType(("B", "T"), MaskType()), "q_token_type_ids": NeuralType(("B", "T"), ChannelType()), "p_input_ids": NeuralType(("B", "T"), ChannelType()), "p_attention_mask": NeuralType(("B", "T"), MaskType()), "p_token_type_ids": NeuralType(("B", "T"), ChannelType()), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"logits": NeuralType(("B", "D"), LogitsType())} def __init__(self, cfg: DictConfig, trainer: Trainer = None): model_name = cfg.language_model.pretrained_model_name self.tokenizer = get_tokenizer(tokenizer_name=model_name) super().__init__(cfg=cfg, trainer=trainer) self.q_encoder = self.get_lm_model_with_padded_embedding(cfg) self.p_encoder = self.get_lm_model_with_padded_embedding(cfg) self.loss = SmoothedCrossEntropyLoss(pad_id=self.tokenizer.pad_id) @typecheck() def forward( self, q_input_ids, q_token_type_ids, q_attention_mask, p_input_ids, p_token_type_ids, p_attention_mask, ): q_vectors = self.q_encoder( input_ids=q_input_ids, token_type_ids=q_token_type_ids, attention_mask=q_attention_mask, ) q_vectors = q_vectors[:, 0] batch_size, hidden_size = q_vectors.size() p_vectors = self.p_encoder( input_ids=p_input_ids, token_type_ids=p_token_type_ids, attention_mask=p_attention_mask, ) num_passages = p_vectors.shape[0] // batch_size p_vectors = p_vectors[:, 0].view(-1, num_passages, hidden_size) p_positives, p_negatives = p_vectors[:, 0], p_vectors[:, 1:] scores = torch.cat( (torch.matmul(q_vectors, p_positives.T), torch.einsum("ij,ipj->ip", q_vectors, p_negatives),), dim=1, ) return scores def compute_scores_and_loss(self, inputs): (q_input_ids, q_input_mask, q_input_type_ids, p_input_ids, p_input_mask, p_input_type_ids,) = inputs batch_size, num_passages, p_seq_length = p_input_ids.size() q_seq_length = q_input_ids.size()[-1] scores = self( q_input_ids=q_input_ids.view(-1, q_seq_length), q_token_type_ids=q_input_type_ids.view(-1, q_seq_length), q_attention_mask=q_input_mask.view(-1, q_seq_length), p_input_ids=p_input_ids.view(-1, p_seq_length), p_token_type_ids=p_input_type_ids.view(-1, p_seq_length), p_attention_mask=p_input_mask.view(-1, p_seq_length), ).view(batch_size, 1, batch_size + num_passages - 1) normalized_scores = torch.log_softmax(scores, dim=-1) labels = torch.arange(batch_size)[:, None].long().to(normalized_scores.device) loss = self.loss(log_probs=normalized_scores, labels=labels, output_mask=torch.ones_like(labels),) scores = scores[:, 0] scores = torch.cat((torch.diag(scores)[:, None], scores[:, batch_size:]), dim=1,) return scores, loss def _setup_dataloader_from_config(self, cfg: DictConfig): dataset = BertInformationRetrievalDataset( tokenizer=self.tokenizer, passages=cfg.passages, queries=cfg.queries, query_to_passages=cfg.query_to_passages, num_negatives=cfg.num_negatives, psg_cache_format=cfg.get("psg_cache_format", "pkl"), max_query_length=cfg.get("max_query_length", 31), max_passage_length=cfg.get("max_passage_length", 190), preprocess_fn="preprocess_dpr", ) return torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=cfg.get("num_workers", 2), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), )
NeMo-main
nemo/collections/nlp/models/information_retrieval/bert_dpr_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from nemo.collections.common.losses import SmoothedCrossEntropyLoss from nemo.collections.nlp.models.information_retrieval.base_ir_model import BaseIRModel from nemo.collections.nlp.modules.common import SequenceRegression from nemo.collections.nlp.modules.common.tokenizer_utils import get_tokenizer from nemo.core.classes.common import typecheck from nemo.core.neural_types import NeuralType __all__ = ["BertJointIRModel"] class BertJointIRModel(BaseIRModel): """ Information retrieval model which jointly encodes both query and passage and passes them to BERT encoder followed by a fully-connected layer for similarity score prediction. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return self.bert_model.input_types @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return self.sim_score_regressor.output_types def __init__(self, cfg: DictConfig, trainer: Trainer = None): model_name = cfg.language_model.pretrained_model_name self.tokenizer = get_tokenizer(tokenizer_name=model_name) super().__init__(cfg=cfg, trainer=trainer) self.bert_model = self.get_lm_model_with_padded_embedding(cfg) hidden_size = self.bert_model.config.hidden_size self.sim_score_regressor = SequenceRegression( hidden_size=hidden_size, num_layers=1, dropout=cfg.language_model.sim_score_dropout, ) self.loss = SmoothedCrossEntropyLoss(pad_id=self.tokenizer.pad_id) @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, ) if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] scores = self.sim_score_regressor(hidden_states=hidden_states) return scores def compute_scores_and_loss(self, inputs): input_ids, input_mask, input_type_ids = inputs batch_size, num_passages, seq_length = input_ids.size() unnormalized_scores = self( input_ids=input_ids.view(-1, seq_length), attention_mask=input_mask.view(-1, seq_length), token_type_ids=input_type_ids.view(-1, seq_length), ).view(batch_size, 1, num_passages) scores = torch.log_softmax(unnormalized_scores, dim=-1) labels = torch.zeros_like(input_ids[:, :1, 0]) loss = self.loss(log_probs=scores, labels=labels, output_mask=torch.ones_like(labels)) return unnormalized_scores[:, 0], loss
NeMo-main
nemo/collections/nlp/models/information_retrieval/bert_joint_ir_model.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict, Optional, Union import numpy as np import torch from omegaconf import DictConfig, OmegaConf, open_dict from pytorch_lightning import Trainer from torch.utils.data import DataLoader from transformers import AutoModelForSeq2SeqLM from nemo.collections.nlp.data.dialogue import DialogueSGDDataProcessor from nemo.collections.nlp.data.dialogue.data_processor.mellon_qa_data_processor import DialogueMellonQADataProcessor from nemo.collections.nlp.data.dialogue.data_processor.ms_marco_data_processor import DialogueMSMarcoDataProcessor from nemo.collections.nlp.data.dialogue.dataset.dialogue_s2s_generation_dataset import DialogueS2SGenerationDataset from nemo.collections.nlp.metrics.dialogue_metrics import DialogueGenerationMetrics from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.core.classes.common import PretrainedModelInfo from nemo.utils import logging try: from apex.transformer.pipeline_parallel.utils import _reconfigure_microbatch_calculator HAVE_APEX = True except: HAVE_APEX = False __all__ = ['DialogueS2SGenerationModel'] class DialogueS2SGenerationModel(NLPModel): def __init__( self, cfg: DictConfig, trainer: Trainer = None, ): self.cfg = cfg self.data_prepared = False self.epoch_number = 0 if self.cfg.library == "huggingface": self.setup_tokenizer(cfg.tokenizer) elif self.cfg.library == "megatron": # supporting MegatronT5Model in precision = fp16 t5_cfg = MegatronT5Model.restore_from( restore_path=cfg.language_model.lm_checkpoint, trainer=trainer, return_config=True ) # Override the T5 configuration with the one from the config file. OmegaConf.set_struct(t5_cfg, True) with open_dict(t5_cfg): t5_cfg.masked_softmax_fusion = False t5_cfg.precision = 16 t5_cfg.encoder_arch = 'transformer' t5_cfg.decoder_arch = 'transformer' language_model = MegatronT5Model.restore_from( restore_path=cfg.language_model.lm_checkpoint, trainer=trainer, override_config_path=t5_cfg ) self.tokenizer = language_model.tokenizer super().__init__(cfg=cfg, trainer=trainer, no_lm_init=True) if self.cfg.library == "huggingface": self.language_model = AutoModelForSeq2SeqLM.from_pretrained(cfg.language_model.pretrained_model_name) self.language_model.resize_token_embeddings(len(self.tokenizer.tokenizer)) if self.cfg.language_model.lm_checkpoint: self.language_model.load_state_dict(torch.load(self.cfg.language_model.lm_checkpoint)) elif self.cfg.library == "megatron": self.language_model = language_model def training_step(self, batch, batch_idx): input_ids, attn_masks, labels = batch loss = self(input_ids, attn_masks, labels) self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) return {'loss': loss} def validation_step(self, batch, batch_idx): loss = self.eval_step_helper(batch=batch) self.validation_step_outputs.append(loss) return loss def on_validation_epoch_end(self): self.eval_epoch_end(self.validation_step_outputs, mode='val') self.validation_step_outputs.clear() # free memory def on_test_epoch_end(self): self.eval_epoch_end(self.test_step_outputs, mode='test') self.test_step_outputs.clear() # free memory def eval_epoch_end(self, outputs, mode='val'): generated_field = [] ground_truth_field = [] inputs = [] loss = [] for output in outputs: generated_field += output["generated_field"] ground_truth_field += output["ground_truth_field"] inputs += output["input"] loss.append(output["loss"].item()) os.makedirs(self.cfg.dataset.dialogues_example_dir, exist_ok=True) filename = os.path.join( self.cfg.dataset.dialogues_example_dir, f"{mode}_predictions_epoch{self.epoch_number}.jsonl" ) DialogueGenerationMetrics.save_predictions( filename, generated_field, ground_truth_field, inputs, ) label_acc = np.mean([int(generated_field[i] == ground_truth_field[i]) for i in range(len(generated_field))]) precision, recall, f1 = DialogueGenerationMetrics.get_f1(generated_field, ground_truth_field) bleu = DialogueGenerationMetrics.get_bleu(generated_field, ground_truth_field) avg_loss = np.mean(loss) ppl = np.exp(avg_loss) self.log('{}_accuracy'.format(mode), label_acc * 100) self.log('precision', precision) self.log('recall', recall) self.log('f1', f1) self.log('bleu', bleu) self.log('{}_loss'.format(mode), avg_loss) self.log('{}_ppl'.format(mode), ppl) if mode == 'val': self.epoch_number += 1 if self.cfg.save_model: filename = '{}/val_loss-{}-epoch-{}-answer-extender.bin'.format( self.cfg.dataset.dialogues_example_dir, avg_loss, self.epoch_number ) torch.save(self.language_model.state_dict(), filename) def test_step(self, batch, batch_idx): loss = self.eval_step_helper(batch=batch, mode='test') self.test_step_outputs.append(loss) return loss # for inference only def predict_step(self, batch, batch_idx, dataloader_idx=None): # return self(batch) raise NotImplementedError() def forward(self, input_ids, attention_masks, labels): if self.cfg.library == "huggingface": output = self.language_model(input_ids=input_ids, attention_mask=attention_masks, labels=labels) loss = output['loss'] elif self.cfg.library == "megatron": labels = torch.where(labels != -100, labels, torch.zeros_like(labels)) decoder_attn_masks = torch.where(labels > 0, torch.ones_like(labels), torch.zeros_like(labels)) unmasked_unreduced_loss = self.language_model( input_ids, labels[:, :-1], attention_masks, decoder_attn_masks[:, :-1], lm_labels=labels[:, 1:] ) loss = self.language_model.loss_func(decoder_attn_masks[:, 1:].contiguous(), unmasked_unreduced_loss) return loss def prepare_megatron_generation(self, labels, input_ids, template_length): """ # adapted from MegatronGPTModel._bucketize_gpt_inference """ batch_size = labels.size(0) prompt_tags = [self.prompt_tags[0]] * batch_size if self.prompt_tags else None batch_tokens = input_ids.tolist() # unpad tokens lens = template_length indxs = [index for index in range(batch_size)] for lenn, index in zip(lens, indxs): batch_tokens[index] = batch_tokens[index][:lenn] # chunk tokens by same length pre_buckets, lens = [], list(set(lens.tolist())) for lenn in lens: pre_buckets.append([(tokens, index) for index, tokens in enumerate(batch_tokens) if len(tokens) == lenn]) buckets, positions, bucket_prompt_tags = [], [], [] # get buckets and prompts initial positions for bucket in pre_buckets: buckets.append(torch.tensor([item[0] for item in bucket]).to(device=labels.device)) positions.append([item[1] for item in bucket]) # bucket prompt tags identically to their corresponding examples if prompt_tags: bucket_prompt_tags.append([prompt_tags[item[1]] for item in bucket]) # Flatten position list positions = [item for sublist in positions for item in sublist] # Flatten buckets and bucket_prompt_tags # temp fix for megatron complete issue. However, this is also slower than bucketized inference buckets = [item.unsqueeze(0) for sublist in buckets for item in sublist] bucket_prompt_tags = [[item] for sublist in bucket_prompt_tags for item in sublist] request = {"tokens": buckets, "prompt_tags": bucket_prompt_tags} return positions, request def post_process_megatron_generation(self, outputs): text_outputs = [output[0] for output in outputs] generated_tokens = self.tokenizer.tokenizer(text_outputs, padding=True, return_tensors="pt").data["input_ids"] return generated_tokens def generate_candidates(self, input_ids, attn_masks, labels): tokens_to_generate = self.cfg.tokens_to_generate if self.cfg.library == "huggingface": param_dict = { "input_ids": input_ids, "attention_mask": attn_masks, "max_length": tokens_to_generate, } generated_tokens = self.language_model.generate(**param_dict) elif self.cfg.library == 'megatron': _reconfigure_microbatch_calculator( rank=0, # This doesn't matter since it is only used for logging rampup_batch_size=None, global_batch_size=1, micro_batch_size=1, # Make sure that there is no "grad acc" while decoding. data_parallel_size=1, # We check above to make sure that dataparallel size is always 1 at inference. ) generated_tokens, _ = self.language_model.decode(input_ids, attn_masks, tokens_to_generate) generated_field = self.process_into_structured_fields(generated_tokens) ground_truth_field = self.process_into_structured_fields(labels) return generated_field, ground_truth_field def process_into_structured_fields(self, full_seq_ids, template_length=None): structured_field = [] for i in range(full_seq_ids.size(0)): start_point = 0 if template_length is None else template_length[i].item() stop_point = full_seq_ids.size(1) for j in range(start_point, stop_point): if full_seq_ids.data[i, j] in [self.tokenizer.tokenizer.pad_token_id, -100] and j != 0: stop_point = j break token_ids = full_seq_ids[i, start_point:stop_point] one_generated_field = self.tokenizer.tokenizer.decode(token_ids, skip_special_tokens=True).strip() structured_field.append(one_generated_field) return structured_field def eval_step_helper(self, batch, mode='val'): input_ids, attn_masks, labels = batch loss = self(input_ids, attn_masks, labels) self.log("{}_loss".format(mode), loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) generated_field, ground_truth_field = self.generate_candidates(input_ids, attn_masks, labels) return { 'loss': loss, 'input': self.tokenizer.tokenizer.batch_decode(input_ids, skip_special_tokens=True), 'generated_field': generated_field, 'ground_truth_field': ground_truth_field, } def prepare_data(self): """ Preprocessed schema and dialogues and caches this """ if self.data_prepared: return if self._cfg.dataset.task == "ms_marco": self.dialogues_processor = DialogueMSMarcoDataProcessor( data_dir=self._cfg.dataset.data_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset ) elif self._cfg.dataset.task == "sgd_generation": self.dialogues_processor = DialogueSGDDataProcessor( data_dir=self._cfg.dataset.data_dir, dialogues_example_dir=self._cfg.dataset.dialogues_example_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset, ) elif self._cfg.dataset.task == "mellon_qa": self.dialogues_processor = DialogueMellonQADataProcessor( data_dir=self._cfg.dataset.data_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset ) else: raise ValueError("Only ms_marco, sgd_generation and mellon_qa supported for Dialogue GPT Generation Model") self.data_prepared = True def update_data_dirs(self, data_dir: str, dialogues_example_dir: str): """ Update data directories Args: data_dir: path to data directory dialogues_example_dir: path to preprocessed dialogues example directory, if not exists will be created. """ if not os.path.exists(data_dir): raise ValueError(f"{data_dir} is not found") self._cfg.dataset.data_dir = data_dir self._cfg.dataset.dialogues_example_dir = dialogues_example_dir logging.info(f'Setting model.dataset.data_dir to {data_dir}.') logging.info(f'Setting model.dataset.dialogues_example_dir to {dialogues_example_dir}.') def setup_training_data(self, train_data_config: Optional[DictConfig] = None): self.prepare_data() self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config, split=train_data_config.ds_item) def setup_multiple_validation_data(self, val_data_config: Optional[DictConfig] = None): return self.setup_validation_data(val_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig] = None): self.prepare_data() self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config, split=val_data_config.ds_item) def setup_multiple_test_data(self, test_data_config: Union[DictConfig, Dict]): self.setup_test_data(test_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig] = None): self.prepare_data() self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, split=test_data_config.ds_item) def _setup_dataloader_from_config(self, cfg: DictConfig, split: str) -> DataLoader: dataset_cfg = self._cfg.dataset data_dir = dataset_cfg.data_dir if not os.path.exists(data_dir): raise FileNotFoundError(f"Data directory is not found at: {data_dir}.") dataset = DialogueS2SGenerationDataset( dataset_split=split, dialogues_processor=self.dialogues_processor, tokenizer=self.dialogues_processor._tokenizer, cfg=dataset_cfg, ) dl = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, collate_fn=dataset.collate_fn, drop_last=cfg.drop_last, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, ) return dl @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] return result
NeMo-main
nemo/collections/nlp/models/dialogue/dialogue_s2s_generation_model.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os from typing import Dict, Optional, Union import numpy as np import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from torch.utils.data import DataLoader from transformers import AutoModelWithLMHead from nemo.collections.nlp.data.dialogue.data_processor.mellon_qa_data_processor import DialogueMellonQADataProcessor from nemo.collections.nlp.data.dialogue.data_processor.ms_marco_data_processor import DialogueMSMarcoDataProcessor from nemo.collections.nlp.data.dialogue.dataset.dialogue_gpt_generation_dataset import DialogueGPTGenerationDataset from nemo.collections.nlp.metrics.dialogue_metrics import DialogueGenerationMetrics from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel from nemo.collections.nlp.models.language_modeling.megatron_gpt_prompt_learning_model import ( MegatronGPTPromptLearningModel, ) from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.core.classes.common import PretrainedModelInfo from nemo.utils import logging __all__ = ['DialogueGPTGenerationModel'] NUM_TASKS = 1 # focussing on intent currently 6 # number of multi-head tasks class DialogueGPTGenerationModel(NLPModel): def __init__( self, cfg: DictConfig, trainer: Trainer = None, ): self.cfg = cfg self.data_prepared = False self.setup_tokenizer(cfg.tokenizer) self.tokenizer.tokenizer.pad_token = self.tokenizer.tokenizer.eos_token self.epoch_number = 0 self.prompt_learning = self.cfg.prompt_learning super().__init__(cfg=cfg, trainer=trainer, no_lm_init=True) if self.cfg.library == "huggingface": self.language_model = AutoModelWithLMHead.from_pretrained(cfg.language_model.pretrained_model_name) self.language_model.resize_token_embeddings(len(self.tokenizer.tokenizer)) if self.cfg.language_model.lm_checkpoint: self.language_model.load_state_dict(torch.load(self.cfg.language_model.lm_checkpoint)) elif self.cfg.library == "megatron": if self.prompt_learning: # removing tokenizer cfg as this triggers tokenizer construction which is not helpful here as we have a separate tokenizer new_cfg = copy.copy(cfg) del new_cfg.tokenizer self.language_model = MegatronGPTPromptLearningModel(new_cfg, trainer) else: self.language_model = MegatronGPTModel.restore_from(cfg.language_model.lm_checkpoint, trainer=trainer) def training_step(self, batch, batch_idx): input_ids, attn_masks, labels, _, _ = batch loss = self(input_ids, attn_masks, labels, inference=False) self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) return {'loss': loss} def validation_step(self, batch, batch_idx): loss = self.eval_step_helper(batch=batch) self.validation_step_outputs.append(loss) return loss def on_validation_epoch_end(self): self.eval_epoch_end(self.validation_step_outputs, mode='val') self.validation_step_outputs.clear() # free memory def on_test_epoch_end(self): self.eval_epoch_end(self.test_step_outputs, mode='test') self.test_step_outputs.clear() # free memory def eval_epoch_end(self, outputs, mode='val'): generated_field = [] ground_truth_field = [] inputs = [] loss = [] for output in outputs: generated_field += output["generated_field"] ground_truth_field += output["ground_truth_field"] inputs += output["input"] loss.append(output["loss"].item()) os.makedirs(self.cfg.dataset.dialogues_example_dir, exist_ok=True) filename = os.path.join( self.cfg.dataset.dialogues_example_dir, f"{mode}_predictions_epoch{self.epoch_number}.jsonl" ) DialogueGenerationMetrics.save_predictions( filename, generated_field, ground_truth_field, inputs, ) label_acc = np.mean([int(generated_field[i] == ground_truth_field[i]) for i in range(len(generated_field))]) precision, recall, f1 = DialogueGenerationMetrics.get_f1(generated_field, ground_truth_field) bleu = DialogueGenerationMetrics.get_bleu(generated_field, ground_truth_field) avg_loss = np.mean(loss) ppl = np.exp(avg_loss) self.log('{}_accuracy'.format(mode), label_acc * 100) self.log('precision', precision) self.log('recall', recall) self.log('f1', f1) self.log('bleu', bleu) self.log('{}_loss'.format(mode), avg_loss) self.log('{}_ppl'.format(mode), ppl) if mode == 'val': self.epoch_number += 1 if self.cfg.save_model: filename = '{}/val_loss-{}-epoch-{}-answer-extender.bin'.format( self.cfg.dataset.dialogues_example_dir, avg_loss, self.epoch_number ) torch.save(self.language_model.state_dict(), filename) def test_step(self, batch, batch_idx): loss = self.eval_step_helper(batch=batch, mode='test') self.test_step_outputs.append(loss) return loss # for inference only def predict_step(self, batch, batch_idx, dataloader_idx=None): # return self(batch) raise NotImplementedError() def forward(self, input_ids, attention_mask, labels, inference=True): if self.cfg.library == "huggingface": output = self.language_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) loss = output['loss'] elif self.cfg.library == "megatron": num_prompt_tokens = ( len(self.language_model.pseudo_token_ids) if hasattr(self.language_model, 'pseudo_token_ids') else 0 ) position_ids = torch.arange( start=0, end=num_prompt_tokens + input_ids.size(1), dtype=torch.long, device=input_ids.device, ) position_ids = position_ids.unsqueeze(0).repeat(input_ids.size(0), 1) prompt_ids = torch.tensor([0] * input_ids.size(0)) if self.prompt_learning else None attn_mask_add_on = torch.ones((attention_mask.size(0), num_prompt_tokens), device=attention_mask.device) full_attention_mask = torch.cat([attn_mask_add_on, attention_mask], axis=-1) full_attention_mask_expand = torch.tril( full_attention_mask.unsqueeze(2).tile(full_attention_mask.size(1)) ).unsqueeze(1) attn_mask = full_attention_mask_expand > 0 prompt_token_labels = torch.full( size=(input_ids.size(0), num_prompt_tokens), fill_value=self.tokenizer.tokenizer.pad_token_id, dtype=torch.long, ) if self.prompt_learning: prompt_token_labels.data = torch.LongTensor( np.tile(np.array(self.language_model.pseudo_token_ids), (input_ids.size(0), 1)) ) prompt_token_labels = prompt_token_labels.to(input_ids.device) input_ids_new = torch.cat([torch.zeros_like(prompt_token_labels), input_ids], axis=1) make_up_last_column_input_ids = ( torch.ones_like(input_ids_new[:, -1:]) * self.tokenizer.tokenizer.pad_token_id ) left_shifted_input_ids = torch.cat([input_ids_new[:, 1:], make_up_last_column_input_ids], axis=-1) if self.prompt_learning: unmasked_unreduced_loss = self.language_model( input_ids_new, position_ids, attn_mask, labels=left_shifted_input_ids, taskname_ids=prompt_ids, inference=inference, ) else: unmasked_unreduced_loss = self.language_model( input_ids, position_ids, attn_mask, labels=left_shifted_input_ids ) if isinstance(unmasked_unreduced_loss, tuple): unmasked_unreduced_loss = unmasked_unreduced_loss[0] labels = torch.cat([prompt_token_labels, labels], axis=1) make_up_last_column_labels = torch.ones_like(labels[:, -1:]) * self.tokenizer.tokenizer.pad_token_id new_labels = torch.cat([labels[:, 1:], make_up_last_column_labels], axis=-1) filler = torch.zeros_like(new_labels) labels_mask_0 = torch.where(new_labels != -100, new_labels, filler) labels_mask = labels_mask_0 > 0 loss = self.mask_and_reduce_loss(labels_mask, unmasked_unreduced_loss) return loss def mask_and_reduce_loss(self, loss_mask, output_tensor): losses = output_tensor.float() loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() return loss def setup(self, stage=None): super().setup(stage) if self.cfg.library == "megatron" and self.prompt_learning: self.language_model.init_new_prompts() def prepare_megatron_generation(self, labels, input_ids, template_length): """ # adapted from MegatronGPTModel._bucketize_gpt_inference """ batch_size = labels.size(0) prompt_tags = [self.prompt_tags[0]] * batch_size if self.prompt_learning else None batch_tokens = input_ids.tolist() # unpad tokens lens = template_length indxs = [index for index in range(batch_size)] for lenn, index in zip(lens, indxs): batch_tokens[index] = batch_tokens[index][:lenn] # chunk tokens by same length pre_buckets, lens = [], list(set(lens.tolist())) for lenn in lens: pre_buckets.append([(tokens, index) for index, tokens in enumerate(batch_tokens) if len(tokens) == lenn]) buckets, positions, bucket_prompt_tags = [], [], [] # get buckets and prompts initial positions for bucket in pre_buckets: buckets.append(torch.tensor([item[0] for item in bucket]).to(device=labels.device)) positions.append([item[1] for item in bucket]) # bucket prompt tags identically to their corresponding examples if prompt_tags: bucket_prompt_tags.append([prompt_tags[item[1]] for item in bucket]) # Flatten position list positions = [item for sublist in positions for item in sublist] # Flatten buckets and bucket_prompt_tags # temp fix for megatron complete issue. However, this is also slower than bucketized inference buckets = [item.unsqueeze(0) for sublist in buckets for item in sublist] bucket_prompt_tags = [[item] for sublist in bucket_prompt_tags for item in sublist] request = {"tokens": buckets, "prompt_tags": bucket_prompt_tags} return positions, request def post_process_megatron_generation(self, outputs): text_outputs = [output[0] for output in outputs] generated_tokens = self.tokenizer.tokenizer(text_outputs, padding=True, return_tensors="pt").data["input_ids"] return generated_tokens def generate_candidates(self, labels, template_length, input_ids, attn_masks): tokens_to_generate = self.cfg.tokens_to_generate if self.cfg.library == "huggingface": generated_tokens = [] max_length = 0 for i in range(input_ids.size(0)): param_dict = { "input_ids": input_ids[i : i + 1, : template_length[i]], "max_length": template_length[i] + tokens_to_generate, "pad_token_id": self.tokenizer.tokenizer.pad_token_id, } generated_tokens.append(self.language_model.generate(**param_dict)) max_length = max(max_length, generated_tokens[-1].size(1)) # pad each generated to ensure they are of same length in dim 1, therefore stack-able generated_tokens = [ torch.cat( [i, torch.ones((1, max_length - i.size(1))).to(i.device) * self.tokenizer.tokenizer.pad_token_id], axis=-1, ) for i in generated_tokens ] generated_tokens = torch.cat(generated_tokens, axis=0) elif self.cfg.library == "megatron": positions, request = self.prepare_megatron_generation(labels, input_ids, template_length) outputs = self.language_model.complete(request, positions, tokens_to_generate) generated_tokens = self.post_process_megatron_generation(outputs) generated_field = self.process_into_structured_fields(generated_tokens, template_length=template_length) ground_truth_field = self.process_into_structured_fields(labels, template_length=template_length) return generated_field, ground_truth_field def process_into_structured_fields(self, full_seq_ids, template_length=None): structured_field = [] for i in range(full_seq_ids.size(0)): start_point = 0 if template_length is None else template_length[i].item() stop_point = full_seq_ids.size(1) for j in range(start_point, stop_point): if full_seq_ids.data[i, j] == self.tokenizer.tokenizer.pad_token_id: stop_point = j break one_generated_field = self.tokenizer.tokenizer.decode(full_seq_ids[i, start_point:stop_point]).strip() structured_field.append(one_generated_field) return structured_field def eval_step_helper(self, batch, mode='val'): input_ids, attn_masks, labels, template_length, utterance_length = batch loss = self(input_ids, attn_masks, labels) self.log("{}_loss".format(mode), loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) # autoregressively generate candidates (possibly with constraint) generated_field, ground_truth_field = self.generate_candidates(labels, template_length, input_ids, attn_masks) return { 'loss': loss, 'input': self.tokenizer.tokenizer.batch_decode(input_ids, skip_special_tokens=True), 'generated_field': generated_field, 'ground_truth_field': ground_truth_field, } def prepare_data(self): """ Preprocessed schema and dialogues and caches this """ if self.data_prepared: return if self._cfg.dataset.task == "ms_marco": self.dialogues_processor = DialogueMSMarcoDataProcessor( data_dir=self._cfg.dataset.data_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset ) elif self._cfg.dataset.task == "mellon_qa": self.dialogues_processor = DialogueMellonQADataProcessor( data_dir=self._cfg.dataset.data_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset ) else: raise ValueError("Only ms_marco and mellon_qa supported for Dialogue GPT Generation Model") self.data_prepared = True def update_data_dirs(self, data_dir: str, dialogues_example_dir: str): """ Update data directories Args: data_dir: path to data directory dialogues_example_dir: path to preprocessed dialogues example directory, if not exists will be created. """ if not os.path.exists(data_dir): raise ValueError(f"{data_dir} is not found") self._cfg.dataset.data_dir = data_dir self._cfg.dataset.dialogues_example_dir = dialogues_example_dir logging.info(f'Setting model.dataset.data_dir to {data_dir}.') logging.info(f'Setting model.dataset.dialogues_example_dir to {dialogues_example_dir}.') def setup_training_data(self, train_data_config: Optional[DictConfig] = None): self.prepare_data() self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config, split=train_data_config.ds_item) def setup_multiple_validation_data(self, val_data_config: Optional[DictConfig] = None): return self.setup_validation_data(val_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig] = None): self.prepare_data() self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config, split=val_data_config.ds_item) def setup_multiple_test_data(self, test_data_config: Union[DictConfig, Dict]): self.setup_test_data(test_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig] = None): self.prepare_data() self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, split=test_data_config.ds_item) def _setup_dataloader_from_config(self, cfg: DictConfig, split: str) -> DataLoader: dataset_cfg = self._cfg.dataset data_dir = dataset_cfg.data_dir if not os.path.exists(data_dir): raise FileNotFoundError(f"Data directory is not found at: {data_dir}.") dataset = DialogueGPTGenerationDataset( dataset_split=split, dialogues_processor=self.dialogues_processor, tokenizer=self.dialogues_processor._tokenizer, cfg=dataset_cfg, ) dl = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, collate_fn=dataset.collate_fn, drop_last=cfg.drop_last, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, ) return dl @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] return result
NeMo-main
nemo/collections/nlp/models/dialogue/dialogue_gpt_generation_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict, List, Optional import torch from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from torch.utils.data import DataLoader from nemo.collections.common.losses import AggregatorLoss, CrossEntropyLoss from nemo.collections.nlp.data.dialogue.data_processor.assistant_data_processor import DialogueAssistantDataProcessor from nemo.collections.nlp.data.dialogue.dataset.dialogue_bert_dataset import ( DialogueBERTDataset, DialogueIntentSlotInferenceDataset, ) from nemo.collections.nlp.data.intent_slot_classification import IntentSlotDataDesc from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.metrics.dialogue_metrics import DialogueClassificationMetrics from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common import SequenceTokenClassifier from nemo.collections.nlp.parts.utils_funcs import tensor2list from nemo.core.classes import typecheck from nemo.core.classes.common import PretrainedModelInfo from nemo.utils import logging class IntentSlotClassificationModel(NLPModel): def __init__(self, cfg: DictConfig, trainer: Trainer = None): """ Initializes BERT Joint Intent and Slot model. """ self.max_seq_length = cfg.dataset.max_seq_length self.cfg = cfg # Check the presence of data_dir. if not cfg.dataset.data_dir or not os.path.exists(cfg.dataset.data_dir): # Set default values of data_desc. self._set_defaults_data_desc(cfg) else: self.data_dir = cfg.dataset.data_dir # Update configuration of data_desc. self._set_data_desc_to_cfg(cfg, cfg.dataset.data_dir, cfg.train_ds, cfg.validation_ds) # init superclass super().__init__(cfg=cfg, trainer=trainer) # Initialize Classifier. self._reconfigure_classifier() def _set_defaults_data_desc(self, cfg): """ Method makes sure that cfg.data_desc params are set. If not, set's them to "dummy" defaults. """ if not hasattr(cfg, "data_desc"): OmegaConf.set_struct(cfg, False) cfg.data_desc = {} # Intents. cfg.data_desc.intent_labels = " " cfg.data_desc.intent_label_ids = {" ": 0} cfg.data_desc.intent_weights = [1] # Slots. cfg.data_desc.slot_labels = " " cfg.data_desc.slot_label_ids = {" ": 0} cfg.data_desc.slot_weights = [1] cfg.data_desc.pad_label = "O" OmegaConf.set_struct(cfg, True) def _set_data_desc_to_cfg(self, cfg, data_dir, train_ds, validation_ds): """ Method creates IntentSlotDataDesc and copies generated values to cfg.data_desc. """ # Save data from data desc to config - so it can be reused later, e.g. in inference. data_desc = IntentSlotDataDesc(data_dir=data_dir, modes=[train_ds.prefix, validation_ds.prefix]) OmegaConf.set_struct(cfg, False) if not hasattr(cfg, "data_desc") or cfg.data_desc is None: cfg.data_desc = {} # Intents. cfg.data_desc.intent_labels = list(data_desc.intents_label_ids.keys()) cfg.data_desc.intent_label_ids = data_desc.intents_label_ids cfg.data_desc.intent_weights = data_desc.intent_weights # Slots. cfg.data_desc.slot_labels = list(data_desc.slots_label_ids.keys()) cfg.data_desc.slot_label_ids = data_desc.slots_label_ids cfg.data_desc.slot_weights = data_desc.slot_weights cfg.data_desc.pad_label = data_desc.pad_label # for older(pre - 1.0.0.b3) configs compatibility if not hasattr(cfg, "class_labels") or cfg.class_labels is None: cfg.class_labels = {} cfg.class_labels = OmegaConf.create( {'intent_labels_file': 'intent_labels.csv', 'slot_labels_file': 'slot_labels.csv'} ) slot_labels_file = os.path.join(data_dir, cfg.class_labels.slot_labels_file) intent_labels_file = os.path.join(data_dir, cfg.class_labels.intent_labels_file) self._save_label_ids(data_desc.slots_label_ids, slot_labels_file) self._save_label_ids(data_desc.intents_label_ids, intent_labels_file) self.register_artifact('class_labels.intent_labels_file', intent_labels_file) self.register_artifact('class_labels.slot_labels_file', slot_labels_file) OmegaConf.set_struct(cfg, True) def _save_label_ids(self, label_ids: Dict[str, int], filename: str) -> None: """ Saves label ids map to a file """ with open(filename, 'w') as out: labels, _ = zip(*sorted(label_ids.items(), key=lambda x: x[1])) out.write('\n'.join(labels)) logging.info(f'Labels: {label_ids}') logging.info(f'Labels mapping saved to : {out.name}') def _reconfigure_classifier(self): """ Method reconfigures the classifier depending on the settings of model cfg.data_desc """ self.classifier = SequenceTokenClassifier( hidden_size=self.hidden_size, num_intents=len(self.cfg.data_desc.intent_labels), num_slots=len(self.cfg.data_desc.slot_labels), dropout=self.cfg.classifier_head.fc_dropout, num_layers=self.cfg.classifier_head.num_output_layers, log_softmax=False, ) # define losses if self.cfg.class_balancing == 'weighted_loss': # You may need to increase the number of epochs for convergence when using weighted_loss self.intent_loss = CrossEntropyLoss(logits_ndim=2, weight=self.cfg.data_desc.intent_weights) self.slot_loss = CrossEntropyLoss(logits_ndim=3, weight=self.cfg.data_desc.slot_weights) else: self.intent_loss = CrossEntropyLoss(logits_ndim=2) self.slot_loss = CrossEntropyLoss(logits_ndim=3) self.total_loss = AggregatorLoss( num_inputs=2, weights=[self.cfg.intent_loss_weight, 1.0 - self.cfg.intent_loss_weight] ) # setup to track metrics self.intent_classification_report = ClassificationReport( num_classes=len(self.cfg.data_desc.intent_labels), label_ids=self.cfg.data_desc.intent_label_ids, dist_sync_on_step=True, mode='micro', ) self.slot_classification_report = ClassificationReport( num_classes=len(self.cfg.data_desc.slot_labels), label_ids=self.cfg.data_desc.slot_label_ids, dist_sync_on_step=True, mode='micro', ) def update_data_dir_for_training(self, data_dir: str, train_ds, validation_ds) -> None: """ Update data directory and get data stats with Data Descriptor. Also, reconfigures the classifier - to cope with data with e.g. different number of slots. Args: data_dir: path to data directory """ logging.info(f'Setting data_dir to {data_dir}.') self.data_dir = data_dir # Update configuration with new data. self._set_data_desc_to_cfg(self.cfg, data_dir, train_ds, validation_ds) # Reconfigure the classifier for different settings (number of intents, slots etc.). self._reconfigure_classifier() def update_data_dir_for_testing(self, data_dir) -> None: """ Update data directory. Args: data_dir: path to data directory """ logging.info(f'Setting data_dir to {data_dir}.') self.data_dir = data_dir @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): """ No special modification required for Lightning, define it as you normally would in the `nn.Module` in vanilla PyTorch. """ if self._cfg.tokenizer.get('library', '') == 'megatron': hidden_states, _ = self.bert_model(input_ids, attention_mask, tokentype_ids=token_type_ids, lm_labels=None) else: hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) intent_logits, slot_logits = self.classifier(hidden_states=hidden_states) return intent_logits, slot_logits def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ # forward pass input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask, intent_labels, slot_labels = batch intent_logits, slot_logits = self( input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask ) # calculate combined loss for intents and slots intent_loss = self.intent_loss(logits=intent_logits, labels=intent_labels) slot_loss = self.slot_loss(logits=slot_logits, labels=slot_labels, loss_mask=loss_mask) train_loss = self.total_loss(loss_1=intent_loss, loss_2=slot_loss) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', train_loss) self.log('lr', lr, prog_bar=True) return { 'loss': train_loss, 'lr': lr, } def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask, intent_labels, slot_labels = batch intent_logits, slot_logits = self( input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask ) # calculate combined loss for intents and slots intent_loss = self.intent_loss(logits=intent_logits, labels=intent_labels) slot_loss = self.slot_loss(logits=slot_logits, labels=slot_labels, loss_mask=loss_mask) val_loss = self.total_loss(loss_1=intent_loss, loss_2=slot_loss) # calculate accuracy metrics for intents and slot reporting # intents intent_preds = torch.argmax(intent_logits, axis=-1) self.intent_classification_report.update(intent_preds, intent_labels) # slots subtokens_mask = subtokens_mask > 0.5 slot_preds = torch.argmax(slot_logits, axis=-1) self.slot_classification_report.update(slot_preds[subtokens_mask], slot_labels[subtokens_mask]) loss = { 'val_loss': val_loss, 'intent_tp': self.intent_classification_report.tp, 'intent_fn': self.intent_classification_report.fn, 'intent_fp': self.intent_classification_report.fp, 'slot_tp': self.slot_classification_report.tp, 'slot_fn': self.slot_classification_report.fn, 'slot_fp': self.slot_classification_report.fp, 'intent_preds': intent_preds, 'intent_labels': intent_labels, 'slot_preds': slot_preds, 'slot_labels': slot_labels, 'input': input_ids, 'subtokens_mask': subtokens_mask, } self.validation_step_outputs.append(loss) return loss @staticmethod def get_continuous_slots(slot_ids, utterance_tokens): """ Extract continuous spans of slot_ids Args: Slot_ids: list of str representing slot of each word token For instance, 'O', 'email_address', 'email_address', 'email_address', 'O', 'O', 'O', 'O'] Corresponds to ['enter', 'atdfd@yahoo', 'dot', 'com', 'into', 'my', 'contact', 'list'] Returns: list of str where each element is a slot name-value pair e.g. ['email_address(atdfd@yahoo dot com)'] """ slot_id_stack = [] position_stack = [] for i, slot_id in enumerate(slot_ids): if not slot_id_stack or slot_id != slot_id_stack[-1]: slot_id_stack.append(slot_id) position_stack.append([]) position_stack[-1].append(i) slot_id_to_start_and_exclusive_end = { slot_id_stack[i]: [position_stack[i][0], position_stack[i][-1] + 1] for i in range(len(position_stack)) if slot_id_stack[i] != 'O' } slot_to_words = { slot: ' '.join(utterance_tokens[position[0] : position[1]]) for slot, position in slot_id_to_start_and_exclusive_end.items() } slot_name_and_values = ["{}({})".format(slot, value) for slot, value in slot_to_words.items()] return slot_name_and_values def get_utterance_tokens(self, token_ids, token_masks): """ Get utterance tokens based on initial utterance tokenization using token_masks, which shows the starting subtoken of each utterance token. Args: token_ids: IntTensor of size (max_seq_len, ) token_masks: BoolTensor of size (max_seq_len, ) Returns token_list: List of Str (list of tokens with len <= max_seq_len) """ tokens_stack = [] tokens = self.tokenizer.tokenizer.convert_ids_to_tokens(token_ids) for token_idx, token in enumerate(tokens): if token_masks[token_idx].item(): tokens_stack.append([token]) elif tokens_stack: clean_token = ( token.replace("##", '') .replace(self.tokenizer.tokenizer.sep_token, '') .replace(self.tokenizer.tokenizer.pad_token, '') ) tokens_stack[-1].append(clean_token) token_list = [''.join(token) for token in tokens_stack] return token_list def get_unified_metrics(self, outputs): slot_preds = [] slot_labels = [] subtokens_mask = [] inputs = [] intent_preds = [] intent_labels = [] for output in outputs: slot_preds += output['slot_preds'] slot_labels += output["slot_labels"] subtokens_mask += output["subtokens_mask"] inputs += output["input"] intent_preds += output["intent_preds"] intent_labels += output["intent_labels"] ground_truth_labels = self.convert_intent_ids_to_intent_names(intent_labels) generated_labels = self.convert_intent_ids_to_intent_names(intent_preds) predicted_slots = self.mask_unused_subword_slots(slot_preds, subtokens_mask) ground_truth_slots = self.mask_unused_subword_slots(slot_labels, subtokens_mask) all_generated_slots = [] all_ground_truth_slots = [] all_utterances = [] for i in range(len(predicted_slots)): utterance_tokens = self.get_utterance_tokens(inputs[i], subtokens_mask[i]) ground_truth_slot_names = ground_truth_slots[i].split() predicted_slot_names = predicted_slots[i].split() processed_ground_truth_slots = IntentSlotClassificationModel.get_continuous_slots( ground_truth_slot_names, utterance_tokens ) processed_predicted_slots = IntentSlotClassificationModel.get_continuous_slots( predicted_slot_names, utterance_tokens ) all_generated_slots.append(processed_predicted_slots) all_ground_truth_slots.append(processed_ground_truth_slots) all_utterances.append(' '.join(utterance_tokens)) os.makedirs(self.cfg.dataset.dialogues_example_dir, exist_ok=True) filename = os.path.join(self.cfg.dataset.dialogues_example_dir, "predictions.jsonl") DialogueClassificationMetrics.save_predictions( filename, generated_labels, all_generated_slots, ground_truth_labels, all_ground_truth_slots, ['' for i in range(len(generated_labels))], ['' for i in range(len(generated_labels))], all_utterances, ) ( slot_precision, slot_recall, slot_f1, slot_joint_goal_accuracy, ) = DialogueClassificationMetrics.get_slot_filling_metrics(all_generated_slots, all_ground_truth_slots) return slot_precision, slot_recall, slot_f1, slot_joint_goal_accuracy def on_validation_epoch_end(self): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ prefix = "test" if self.trainer.testing else "val" if prefix == "val": outputs = self.validation_step_outputs else: outputs = self.test_step_outputs ( unified_slot_precision, unified_slot_recall, unified_slot_f1, unified_slot_joint_goal_accuracy, ) = self.get_unified_metrics(outputs) avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() # calculate metrics and log classification report (separately for intents and slots) intent_precision, intent_recall, intent_f1, intent_report = self.intent_classification_report.compute() logging.info(f'Intent report: {intent_report}') slot_precision, slot_recall, slot_f1, slot_report = self.slot_classification_report.compute() logging.info(f'Slot report: {slot_report}') self.log(f'{prefix}_loss', avg_loss) self.log('intent_precision', intent_precision) self.log('intent_recall', intent_recall) self.log('intent_f1', intent_f1) self.log('slot_precision', slot_precision) self.log('slot_recall', slot_recall) self.log('slot_f1', slot_f1) self.log('unified_slot_precision', unified_slot_precision) self.log('unified_slot_recall', unified_slot_recall) self.log('unified_slot_f1', unified_slot_f1) self.log('unified_slot_joint_goal_accuracy', unified_slot_joint_goal_accuracy) self.intent_classification_report.reset() self.slot_classification_report.reset() self.validation_step_outputs.clear() if prefix == 'val' else self.test_step_outputs.clear() return { 'val_loss': avg_loss, 'intent_precision': intent_precision, 'intent_recall': intent_recall, 'intent_f1': intent_f1, 'slot_precision': slot_precision, 'slot_recall': slot_recall, 'slot_f1': slot_f1, 'unified_slot_precision': unified_slot_precision, 'unified_slot_recall': unified_slot_recall, 'unified_slot_f1': unified_slot_f1, 'unified_slot_joint_goal_accuracy': unified_slot_joint_goal_accuracy, } def test_step(self, batch, batch_idx): """ Lightning calls this inside the test loop with the data from the test dataloader passed in as `batch`. """ loss = self.validation_step(batch, batch_idx) self.test_step_outputs.append(loss) return loss def on_test_epoch_end(self): """ Called at the end of test to aggregate outputs. :param outputs: list of individual outputs of each test step. """ return self.on_validation_epoch_end() def setup_training_data(self, train_data_config: Optional[DictConfig]): self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config, dataset_split='train') def setup_validation_data(self, val_data_config: Optional[DictConfig]): self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config, dataset_split='dev') def setup_test_data(self, test_data_config: Optional[DictConfig]): self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, dataset_split='test') def _setup_dataloader_from_config(self, cfg: DictConfig, dataset_split: str): data_processor = DialogueAssistantDataProcessor(self.data_dir, self.tokenizer, cfg=self.cfg.dataset) dataset = DialogueBERTDataset( dataset_split, data_processor, self.tokenizer, self.cfg.dataset, # this is the model.dataset cfg, which is diff from train_ds cfg etc ) return DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, drop_last=cfg.drop_last, collate_fn=dataset.collate_fn, ) def _setup_infer_dataloader(self, queries: List[str], test_ds) -> 'torch.utils.data.DataLoader': """ Setup function for a infer data loader. Args: queries: text batch_size: batch size to use during inference Returns: A pytorch DataLoader. """ dataset = DialogueIntentSlotInferenceDataset( tokenizer=self.tokenizer, queries=queries, max_seq_length=-1, do_lower_case=False ) return torch.utils.data.DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_size=test_ds.batch_size, shuffle=test_ds.shuffle, num_workers=test_ds.num_workers, pin_memory=test_ds.pin_memory, drop_last=test_ds.drop_last, ) def update_data_dirs(self, data_dir: str, dialogues_example_dir: str): """ Update data directories Args: data_dir: path to data directory dialogues_example_dir: path to preprocessed dialogues example directory, if not exists will be created. """ if not os.path.exists(data_dir): raise ValueError(f"{data_dir} is not found") self.cfg.dataset.data_dir = data_dir self.cfg.dataset.dialogues_example_dir = dialogues_example_dir logging.info(f'Setting model.dataset.data_dir to {data_dir}.') logging.info(f'Setting model.dataset.dialogues_example_dir to {dialogues_example_dir}.') def predict_from_examples(self, queries: List[str], test_ds) -> List[List[str]]: """ Get prediction for the queries (intent and slots) Args: queries: text sequences test_ds: Dataset configuration section. Returns: predicted_intents, predicted_slots: model intent and slot predictions """ predicted_intents = [] predicted_slots = [] mode = self.training device = 'cuda' if torch.cuda.is_available() else 'cpu' # Switch model to evaluation mode self.eval() self.to(device) # Dataset. infer_datalayer = self._setup_infer_dataloader(queries, test_ds) for batch in infer_datalayer: input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask = batch intent_logits, slot_logits = self.forward( input_ids=input_ids.to(device), token_type_ids=input_type_ids.to(device), attention_mask=input_mask.to(device), ) # predict intents intent_preds = tensor2list(torch.argmax(intent_logits, axis=-1)) predicted_intents += self.convert_intent_ids_to_intent_names(intent_preds) # predict slots slot_preds = torch.argmax(slot_logits, axis=-1) predicted_slots += self.mask_unused_subword_slots(slot_preds, subtokens_mask) # set mode back to its original value self.train(mode=mode) return predicted_intents, predicted_slots def convert_intent_ids_to_intent_names(self, intent_preds): # Retrieve intent and slot vocabularies from configuration. intent_labels = self.cfg.data_desc.intent_labels predicted_intents = [] # convert numerical outputs to Intent and Slot labels from the dictionaries for intent_num in intent_preds: # if intent_num < len(intent_labels): predicted_intents.append(intent_labels[int(intent_num)]) # else: # # should not happen # predicted_intents.append("Unknown Intent") return predicted_intents def mask_unused_subword_slots(self, slot_preds, subtokens_mask): # Retrieve intent and slot vocabularies from configuration. slot_labels = self.cfg.data_desc.slot_labels predicted_slots = [] for slot_preds_query, mask_query in zip(slot_preds, subtokens_mask): query_slots = '' for slot, mask in zip(slot_preds_query, mask_query): if mask == 1: # if slot < len(slot_labels): query_slots += slot_labels[int(slot)] + ' ' # else: # query_slots += 'Unknown_slot ' predicted_slots.append(query_slots.strip()) return predicted_slots @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] model = PretrainedModelInfo( pretrained_model_name="Joint_Intent_Slot_Assistant", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemonlpmodels/versions/1.0.0a5/files/Joint_Intent_Slot_Assistant.nemo", description="This models is trained on this https://github.com/xliuhw/NLU-Evaluation-Data dataset which includes 64 various intents and 55 slots. Final Intent accuracy is about 87%, Slot accuracy is about 89%.", ) result.append(model) return result
NeMo-main
nemo/collections/nlp/models/dialogue/intent_slot_classification_model.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.dialogue.dialogue_gpt_classification_model import DialogueGPTClassificationModel from nemo.collections.nlp.models.dialogue.dialogue_zero_shot_intent_model import DialogueZeroShotIntentModel from nemo.collections.nlp.models.dialogue.intent_slot_classification_model import IntentSlotClassificationModel from nemo.collections.nlp.models.dialogue.sgdqa_model import SGDQAModel
NeMo-main
nemo/collections/nlp/models/dialogue/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' This file contains code artifacts adapted from the original implementation: https://github.com/google-research/google-research/blob/master/schema_guided_dst/baseline/train_and_predict.py ''' import os from typing import List, Optional import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from torch.utils.data import DataLoader from nemo.collections.nlp.data.dialogue import DialogueSGDBERTDataset, DialogueSGDDataProcessor from nemo.collections.nlp.data.dialogue.sgd.evaluate import evaluate, get_in_domain_services from nemo.collections.nlp.data.dialogue.sgd.prediction_utils import write_predictions_to_file from nemo.collections.nlp.losses import SGDDialogueStateLoss from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules import SGDDecoder, SGDEncoder from nemo.collections.nlp.parts.utils_funcs import tensor2list from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.utils import logging __all__ = ['SGDQAModel'] class SGDQAModel(NLPModel): """ Dialogue State Tracking Model SGD-QA (https://arxiv.org/abs/2105.08049) The SGD-QA model is a fast multi-pass schema-guided state-tracking model, that is trained on the Google schema-guided state tracking dataset (https://arxiv.org/abs/1909.05855). The model takes dialogue as input and outputs the dialogue state, which includes slot-value pairs. The model consists of two components: a neural natural language understanding model (NLU), and a rule-based state tracker. The NLU takes in a dialogue turn and different schema (entity) information options and outputs their match score. The state tracker takes the highest rated entities and composes the dialogue state across turns. """ @property def output_module(self): return self.decoder def __init__(self, cfg: DictConfig, trainer: Trainer = None): self.data_prepared = False super().__init__(cfg=cfg, trainer=trainer) self.encoder = SGDEncoder(hidden_size=self.bert_model.config.hidden_size, dropout=self._cfg.encoder.dropout) self.decoder = SGDDecoder(embedding_dim=self.bert_model.config.hidden_size) self.loss = SGDDialogueStateLoss(reduction="mean") @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): token_embeddings = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) if isinstance(token_embeddings, tuple): token_embeddings = token_embeddings[0] encoded_utterance, token_embeddings = self.encoder(hidden_states=token_embeddings) ( logit_intent_status, logit_req_slot_status, logit_cat_slot_status, logit_cat_slot_value_status, logit_noncat_slot_status, logit_spans, ) = self.decoder( encoded_utterance=encoded_utterance, token_embeddings=token_embeddings, utterance_mask=attention_mask ) return ( logit_intent_status, logit_req_slot_status, logit_cat_slot_status, logit_cat_slot_value_status, logit_noncat_slot_status, logit_spans, ) def training_step(self, batch, batch_idx): ( example_id_num, service_id, utterance_ids, token_type_ids, attention_mask, intent_status, requested_slot_status, categorical_slot_status, categorical_slot_value_status, noncategorical_slot_status, noncategorical_slot_value_start, noncategorical_slot_value_end, start_char_idx, end_char_idx, task_mask, ) = batch ( logit_intent_status, logit_req_slot_status, logit_cat_slot_status, logit_cat_slot_value_status, logit_noncat_slot_status, logit_spans, ) = self(input_ids=utterance_ids, token_type_ids=token_type_ids, attention_mask=attention_mask) loss = self.loss( logit_intent_status=logit_intent_status, intent_status=intent_status, logit_req_slot_status=logit_req_slot_status, requested_slot_status=requested_slot_status, logit_cat_slot_status=logit_cat_slot_status, categorical_slot_status=categorical_slot_status, logit_cat_slot_value_status=logit_cat_slot_value_status, categorical_slot_value_status=categorical_slot_value_status, logit_noncat_slot_status=logit_noncat_slot_status, noncategorical_slot_status=noncategorical_slot_status, logit_spans=logit_spans, noncategorical_slot_value_start=noncategorical_slot_value_start, noncategorical_slot_value_end=noncategorical_slot_value_end, task_mask=task_mask, ) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', loss) self.log('lr', lr, prog_bar=True) return { 'loss': loss, 'lr': lr, } def validation_step(self, batch: List[torch.Tensor], batch_idx: int, dataloader_idx: int = 0) -> dict: """ Called at every validation step to aggregate and postprocess outputs on each GPU Args: batch: input batch at validation step batch_idx: batch index dataloader_idx: dataloader index """ loss, tensors = self.eval_step_helper(batch=batch) self.log(f'val_loss', loss) if type(self.trainer.val_dataloaders) == list and len(self.trainer.val_dataloaders) > 1: self.validation_step_outputs[dataloader_idx].append({f'val_loss': loss, f'tensors': tensors}) else: self.validation_step_outputs.append({f'val_loss': loss, f'tensors': tensors}) return {f'val_loss': loss, f'tensors': tensors} def test_step(self, batch: List[torch.Tensor], batch_idx: int, dataloader_idx: int = 0) -> dict: """ Called at every test step to aggregate and postprocess outputs on each GPU Args: batch: input batch at test step batch_idx: batch index dataloader_idx: dataloader index """ loss, tensors = self.eval_step_helper(batch=batch) if type(self.trainer.test_dataloaders) == list and len(self.trainer.test_dataloaders) > 1: self.test_step_outputs[dataloader_idx].append({f'test_loss': loss, f'tensors': tensors}) else: self.test_step_outputs.append({f'test_loss': loss, f'tensors': tensors}) return {f'test_loss': loss, f'tensors': tensors} def eval_step_helper(self, batch: List[torch.Tensor]): """ Helper called at every validation/test step to aggregate and postprocess outputs on each GPU Args: batch: input batch at step Returns: loss: averaged batch loss tensors: collection of aggregated output tensors across all GPU workers """ ( example_id_num, service_id, utterance_ids, token_type_ids, attention_mask, intent_status, requested_slot_status, categorical_slot_status, categorical_slot_value_status, noncategorical_slot_status, noncategorical_slot_value_start, noncategorical_slot_value_end, start_char_idx, end_char_idx, task_mask, ) = batch ( logit_intent_status, logit_req_slot_status, logit_cat_slot_status, logit_cat_slot_value_status, logit_noncat_slot_status, logit_spans, ) = self(input_ids=utterance_ids, token_type_ids=token_type_ids, attention_mask=attention_mask) loss = self.loss( logit_intent_status=logit_intent_status, intent_status=intent_status, logit_req_slot_status=logit_req_slot_status, requested_slot_status=requested_slot_status, logit_cat_slot_status=logit_cat_slot_status, categorical_slot_status=categorical_slot_status, logit_cat_slot_value_status=logit_cat_slot_value_status, categorical_slot_value_status=categorical_slot_value_status, logit_noncat_slot_status=logit_noncat_slot_status, noncategorical_slot_status=noncategorical_slot_status, logit_spans=logit_spans, noncategorical_slot_value_start=noncategorical_slot_value_start, noncategorical_slot_value_end=noncategorical_slot_value_end, task_mask=task_mask, ) all_example_id_num = [] all_service_id = [] all_logit_intent_status = [] all_logit_req_slot_status = [] all_logit_cat_slot_status = [] all_logit_cat_slot_value_status = [] all_logit_noncat_slot_status = [] all_logit_spans = [] all_start_char_idx = [] all_end_char_idx = [] if self.trainer.num_devices and self.trainer.world_size > 1: world_size = self.trainer.world_size for ind in range(world_size): all_example_id_num.append(torch.empty_like(example_id_num)) all_service_id.append(torch.empty_like(service_id)) all_logit_intent_status.append(torch.empty_like(logit_intent_status)) all_logit_req_slot_status.append(torch.empty_like(logit_req_slot_status)) all_logit_cat_slot_status.append(torch.empty_like(logit_cat_slot_status)) all_logit_cat_slot_value_status.append(torch.empty_like(logit_cat_slot_value_status)) all_logit_noncat_slot_status.append(torch.empty_like(logit_noncat_slot_status)) all_logit_spans.append(torch.empty_like(logit_spans)) all_start_char_idx.append(torch.empty_like(start_char_idx)) all_end_char_idx.append(torch.empty_like(end_char_idx)) torch.distributed.all_gather(all_example_id_num, example_id_num) torch.distributed.all_gather(all_service_id, service_id) torch.distributed.all_gather(all_logit_intent_status, logit_intent_status) torch.distributed.all_gather(all_logit_req_slot_status, logit_req_slot_status) torch.distributed.all_gather(all_logit_cat_slot_status, logit_cat_slot_status) torch.distributed.all_gather(all_logit_cat_slot_value_status, logit_cat_slot_value_status) torch.distributed.all_gather(all_logit_noncat_slot_status, logit_noncat_slot_status) torch.distributed.all_gather(all_logit_spans, logit_spans) torch.distributed.all_gather(all_start_char_idx, start_char_idx) torch.distributed.all_gather(all_end_char_idx, end_char_idx) else: all_example_id_num.append(example_id_num) all_service_id.append(service_id) all_logit_intent_status.append(logit_intent_status) all_logit_req_slot_status.append(logit_req_slot_status) all_logit_cat_slot_status.append(logit_cat_slot_status) all_logit_cat_slot_value_status.append(logit_cat_slot_value_status) all_logit_noncat_slot_status.append(logit_noncat_slot_status) all_logit_spans.append(logit_spans) all_start_char_idx.append(start_char_idx) all_end_char_idx.append(end_char_idx) # after this: all_x is list of tensors, of length world_size example_id_num = torch.cat(all_example_id_num) service_id = torch.cat(all_service_id) logit_intent_status = torch.cat(all_logit_intent_status) logit_req_slot_status = torch.cat(all_logit_req_slot_status) logit_cat_slot_status = torch.cat(all_logit_cat_slot_status) logit_cat_slot_value_status = torch.cat(all_logit_cat_slot_value_status) logit_noncat_slot_status = torch.cat(all_logit_noncat_slot_status) logit_spans = torch.cat(all_logit_spans) start_char_idx = torch.cat(all_start_char_idx) end_char_idx = torch.cat(all_end_char_idx) intent_status = torch.nn.Sigmoid()(logit_intent_status) # Scores are output for each requested slot. req_slot_status = torch.nn.Sigmoid()(logit_req_slot_status) # For categorical slots, the status of each slot and the predicted value are output. cat_slot_status_dist = torch.nn.Softmax(dim=-1)(logit_cat_slot_status) cat_slot_status = torch.argmax(logit_cat_slot_status, axis=-1) cat_slot_status_p = torch.max(cat_slot_status_dist, axis=-1)[0] cat_slot_value_status = torch.nn.Sigmoid()(logit_cat_slot_value_status) # For non-categorical slots, the status of each slot and the indices for spans are output. noncat_slot_status_dist = torch.nn.Softmax(dim=-1)(logit_noncat_slot_status) noncat_slot_status = torch.argmax(logit_noncat_slot_status, axis=-1) noncat_slot_status_p = torch.max(noncat_slot_status_dist, axis=-1)[0] softmax = torch.nn.Softmax(dim=1) scores = softmax(logit_spans) start_scores, end_scores = torch.unbind(scores, dim=-1) batch_size, max_num_tokens = end_scores.size() # Find the span with the maximum sum of scores for start and end indices. total_scores = torch.unsqueeze(start_scores, axis=2) + torch.unsqueeze(end_scores, axis=1) start_idx = torch.arange(max_num_tokens, device=total_scores.get_device()).view(1, -1, 1) end_idx = torch.arange(max_num_tokens, device=total_scores.get_device()).view(1, 1, -1) invalid_index_mask = (start_idx > end_idx).repeat(batch_size, 1, 1) total_scores = torch.where( invalid_index_mask, torch.zeros(total_scores.size(), device=total_scores.get_device(), dtype=total_scores.dtype), total_scores, ) max_span_index = torch.argmax(total_scores.view(-1, max_num_tokens ** 2), axis=-1) max_span_p = torch.max(total_scores.view(-1, max_num_tokens ** 2), axis=-1)[0] span_start_index = torch.floor_divide(max_span_index, max_num_tokens) span_end_index = torch.fmod(max_span_index, max_num_tokens) tensors = { 'example_id_num': example_id_num, 'service_id': service_id, 'intent_status': intent_status, 'req_slot_status': req_slot_status, 'cat_slot_status': cat_slot_status, 'cat_slot_status_p': cat_slot_status_p, 'cat_slot_value_status': cat_slot_value_status, 'noncat_slot_status': noncat_slot_status, 'noncat_slot_status_p': noncat_slot_status_p, 'noncat_slot_p': max_span_p, 'noncat_slot_start': span_start_index, 'noncat_slot_end': span_end_index, 'noncat_alignment_start': start_char_idx, 'noncat_alignment_end': end_char_idx, } return loss, tensors def multi_validation_epoch_end(self, outputs: List[dict], dataloader_idx: int = 0): """ Called at the end of validation to post process outputs into human readable format Args: outputs: list of individual outputs of each validation step dataloader_idx: dataloader index """ avg_loss = torch.stack([x[f'val_loss'] for x in outputs]).mean() split = self._validation_names[dataloader_idx][:-1] dataloader = self._validation_dl[dataloader_idx] metrics = self.multi_eval_epoch_end_helper(outputs=outputs, split=split, dataloader=dataloader) for k, v in metrics.items(): self.log(f'{split}_{k}', v, rank_zero_only=True) self.log(f'val_loss', avg_loss, prog_bar=True, rank_zero_only=True) def multi_test_epoch_end(self, outputs: List[dict], dataloader_idx: int = 0): """ Called at the end of test to post process outputs into human readable format Args: outputs: list of individual outputs of each test step dataloader_idx: dataloader index """ avg_loss = torch.stack([x[f'test_loss'] for x in outputs]).mean() split = self._test_names[dataloader_idx][:-1] dataloader = self._test_dl[dataloader_idx] metrics = self.multi_eval_epoch_end_helper(outputs=outputs, split=split, dataloader=dataloader) for k, v in metrics.items(): self.log(f'{split}_{k}', v, rank_zero_only=True) self.log(f'test_loss', avg_loss, prog_bar=True, rank_zero_only=True) def multi_eval_epoch_end_helper( self, outputs: List[dict], split: str, dataloader: torch.utils.data.DataLoader ) -> dict: """ Helper called at the end of evaluation to post process outputs into human readable format Args: outputs: list of individual outputs of each step split: data split dataloader: dataloader Returns: metrics: metrics collection """ def get_str_example_id(split: str, ids_to_service_names_dict: dict, example_id_num: torch.Tensor) -> str: """ Constructs string representation of example ID Args: split: evaluation data split ids_to_service_names_dict: id to service name mapping example_id_num: tensor example id """ def format_turn_id(ex_id_num): dialog_id_1, dialog_id_2, turn_id, service_id, model_task_id, slot_intent_id, value_id = ex_id_num return "{}-{}_{:05d}-{:02d}-{}-{}-{}-{}".format( split, dialog_id_1, dialog_id_2, turn_id, ids_to_service_names_dict[service_id], model_task_id, slot_intent_id, value_id, ) return list(map(format_turn_id, tensor2list(example_id_num))) def combine_predictions_in_example(predictions: dict, batch_size: int): ''' Combines predicted values to a single example. Args: predictions: predictions ordered by keys then batch batch_size: batch size Returns: examples_preds: predictions ordered by batch then key ''' examples_preds = [{} for _ in range(batch_size)] for k, v in predictions.items(): if k != 'example_id': v = torch.chunk(v, batch_size) for i in range(batch_size): if k == 'example_id': examples_preds[i][k] = v[i] else: examples_preds[i][k] = v[i].view(-1) return examples_preds example_id_num = torch.cat([x[f'tensors']['example_id_num'] for x in outputs]) service_id = torch.cat([x[f'tensors']['service_id'] for x in outputs]) intent_status = torch.cat([x[f'tensors']['intent_status'] for x in outputs]) req_slot_status = torch.cat([x[f'tensors']['req_slot_status'] for x in outputs]) cat_slot_status = torch.cat([x[f'tensors']['cat_slot_status'] for x in outputs]) cat_slot_status_p = torch.cat([x[f'tensors']['cat_slot_status_p'] for x in outputs]) cat_slot_value_status = torch.cat([x[f'tensors']['cat_slot_value_status'] for x in outputs]) noncat_slot_status = torch.cat([x[f'tensors']['noncat_slot_status'] for x in outputs]) noncat_slot_status_p = torch.cat([x[f'tensors']['noncat_slot_status_p'] for x in outputs]) noncat_slot_p = torch.cat([x[f'tensors']['noncat_slot_p'] for x in outputs]) noncat_slot_start = torch.cat([x[f'tensors']['noncat_slot_start'] for x in outputs]) noncat_slot_end = torch.cat([x[f'tensors']['noncat_slot_end'] for x in outputs]) noncat_alignment_start = torch.cat([x[f'tensors']['noncat_alignment_start'] for x in outputs]) noncat_alignment_end = torch.cat([x[f'tensors']['noncat_alignment_end'] for x in outputs]) ids_to_service_names_dict = self.dialogues_processor.schemas._services_id_to_vocab example_id = get_str_example_id(dataloader.dataset, ids_to_service_names_dict, example_id_num) metrics = {} try: prediction_dir = self.trainer.log_dir if self.trainer.log_dir is not None else "" except: prediction_dir = "" if self.trainer.global_rank == 0: prediction_dir = os.path.join( prediction_dir, 'predictions', 'pred_res_{}_{}'.format(split, self._cfg.dataset.task_name) ) os.makedirs(prediction_dir, exist_ok=True) input_json_files = DialogueSGDDataProcessor.get_dialogue_files( self._cfg.dataset.data_dir, split, self._cfg.dataset.task_name ) predictions = {} predictions['example_id'] = example_id predictions['service_id'] = service_id predictions['intent_status'] = intent_status predictions['req_slot_status'] = req_slot_status predictions['cat_slot_status'] = cat_slot_status predictions['cat_slot_status_p'] = cat_slot_status_p predictions['cat_slot_value_status'] = cat_slot_value_status predictions['noncat_slot_status'] = noncat_slot_status predictions['noncat_slot_status_p'] = noncat_slot_status_p predictions['noncat_slot_p'] = noncat_slot_p predictions['noncat_slot_start'] = noncat_slot_start predictions['noncat_slot_end'] = noncat_slot_end predictions['noncat_alignment_start'] = noncat_alignment_start predictions['noncat_alignment_end'] = noncat_alignment_end in_domain_services = get_in_domain_services( os.path.join(self._cfg.dataset.data_dir, split, "schema.json"), self.dialogues_processor.get_seen_services("train"), ) predictions = combine_predictions_in_example(predictions, service_id.shape[0]) # write predictions to file in Dstc8/SGD format write_predictions_to_file( predictions, input_json_files, output_dir=prediction_dir, schemas=self.dialogues_processor.schemas, state_tracker=self._cfg.dataset.state_tracker, eval_debug=False, in_domain_services=in_domain_services, ) metrics = evaluate( prediction_dir, self._cfg.dataset.data_dir, split, in_domain_services, joint_acc_across_turn=self._cfg.dataset.joint_acc_across_turn, use_fuzzy_match=self._cfg.dataset.use_fuzzy_match, ) return metrics def prepare_data(self): """ Preprocessed schema and dialogues and caches this """ if self.data_prepared: return self.dialogues_processor = DialogueSGDDataProcessor( data_dir=self._cfg.dataset.data_dir, dialogues_example_dir=self._cfg.dataset.dialogues_example_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset, ) self.data_prepared = True def update_data_dirs(self, data_dir: str, dialogues_example_dir: str): """ Update data directories Args: data_dir: path to data directory dialogues_example_dir: path to preprocessed dialogues example directory, if not exists will be created. """ if not os.path.exists(data_dir): raise ValueError(f"{data_dir} is not found") self._cfg.dataset.data_dir = data_dir self._cfg.dataset.dialogues_example_dir = dialogues_example_dir logging.info(f'Setting model.dataset.data_dir to {data_dir}.') logging.info(f'Setting model.dataset.dialogues_example_dir to {dialogues_example_dir}.') def setup_training_data(self, train_data_config: Optional[DictConfig] = None): self.prepare_data() self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config, split=train_data_config.ds_item) def setup_validation_data(self, val_data_config: Optional[DictConfig] = None): self.prepare_data() self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config, split=val_data_config.ds_item) def setup_test_data(self, test_data_config: Optional[DictConfig] = None): self.prepare_data() self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, split=test_data_config.ds_item) def _setup_dataloader_from_config(self, cfg: DictConfig, split: str) -> DataLoader: dataset_cfg = self._cfg.dataset data_dir = dataset_cfg.data_dir if not os.path.exists(data_dir): raise FileNotFoundError(f"Data directory is not found at: {data_dir}.") # dataset = SGDDataset(dataset_split=split, dialogues_processor=self.dialogues_processor) dataset = DialogueSGDBERTDataset( dataset_split=split, dialogues_processor=self.dialogues_processor, tokenizer=self.dialogues_processor._tokenizer, schemas=self.dialogues_processor.schemas, schema_config=self.dialogues_processor.schema_config, cfg=dataset_cfg, ) dl = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, collate_fn=dataset.collate_fn, drop_last=cfg.drop_last, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, ) return dl @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] result.append( PretrainedModelInfo( pretrained_model_name="sgdqa_bertbasecased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/sgdqa_bertbasecased/versions/1.0.0/files/sgdqa_bertbasecased.nemo", description="Dialogue State Tracking model finetuned from NeMo BERT Base Cased on Google SGD dataset which has a joint goal accuracy of 59.72% on dev set and 45.85% on test set.", ) ) return result
NeMo-main
nemo/collections/nlp/models/dialogue/sgdqa_model.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import copy import os import random from typing import Dict, Optional, Union import numpy as np import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from torch.utils.data import DataLoader from transformers import AutoModelWithLMHead from nemo.collections.nlp.data.dialogue import DialogueGPTClassificationDataset, DialogueSGDDataProcessor from nemo.collections.nlp.data.dialogue.data_processor.assistant_data_processor import DialogueAssistantDataProcessor from nemo.collections.nlp.data.dialogue.data_processor.design_data_processor import DialogueDesignDataProcessor from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.metrics.dialogue_metrics import DialogueClassificationMetrics from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel from nemo.collections.nlp.models.language_modeling.megatron_gpt_prompt_learning_model import ( MegatronGPTPromptLearningModel, ) from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common import VirtualPromptSource, VirtualPromptStyle from nemo.collections.nlp.modules.common.text_generation_utils import ( get_default_sampling_params, megatron_gpt_generate, ) from nemo.collections.nlp.modules.common.transformer.text_generation import LengthParam from nemo.collections.nlp.parts.nlp_overrides import NLPSaveRestoreConnector from nemo.core.classes.common import PretrainedModelInfo from nemo.utils import logging __all__ = ['DialogueGPTClassificationModel'] class DialogueGPTClassificationModel(NLPModel): def __init__( self, cfg: DictConfig, trainer: Trainer = None, ): self.cfg = cfg self.eval_mode = cfg.dataset.eval_mode self.data_prepared = False self.epoch_number = 0 self.prompt_learning = self.cfg.prompt_learning super().__init__(cfg=cfg, trainer=trainer, no_lm_init=True) if self.cfg.library == "huggingface": self.language_model = AutoModelWithLMHead.from_pretrained(cfg.language_model.pretrained_model_name) self.language_model.resize_token_embeddings(len(self.tokenizer.tokenizer)) self.unreduced_loss_fct = torch.nn.CrossEntropyLoss(reduction='none') elif self.cfg.library == "megatron": if self.prompt_learning: if os.path.exists(cfg.prompt_learning_nemo_path): self.language_model = MegatronGPTPromptLearningModel.restore_from( cfg.prompt_learning_nemo_path, trainer=trainer, save_restore_connector=NLPSaveRestoreConnector(), ) else: # removing tokenizer cfg as this triggers tokenizer construction which is not helpful here as we have a separate tokenizer new_cfg = copy.copy(cfg) del new_cfg.tokenizer new_cfg.nemo_path = cfg.prompt_learning_nemo_path self.language_model = MegatronGPTPromptLearningModel(new_cfg, trainer) else: self.language_model = MegatronGPTModel.restore_from(cfg.language_model.lm_checkpoint, trainer=trainer) all_labels = list( self._train_dl.dataset.all_possible_labels.union( self._validation_dl.dataset.all_possible_labels, self._test_dl.dataset.all_possible_labels ) ) self.label_to_ids = collections.defaultdict(int) for i in range(len(all_labels)): self.label_to_ids[all_labels[i]] = i self.all_existing_labels = set(self.label_to_ids.keys()) self.token_to_words = {} self.classification_report = ClassificationReport( num_classes=len(self.label_to_ids) + 1, mode='micro', label_ids=self.label_to_ids, dist_sync_on_step=True ) def setup_optimizer_param_groups(self): """ ModelPT override for prompt learning. Optimizer will get self._optimizer_param_groups. Makes two optimizer param groups, one for the frozen model params and one for the prompt-table/prompt-encoder params. The learning rate for the frozen model's params will always be zero effectively freezing the model's params but still allowing for the needed gradients to be passed around in pipeline parallel models. The prompt-encoder and/or prompt table will use the learning rate set by the user. """ if not self.prompt_learning: super().setup_optimizer_param_groups() return # Freeze frozen model for param in self.language_model.frozen_model.parameters(): param.requires_grad = False virtual_prompt_params = {'params': []} if self.language_model.frozen_model.model.pre_process: virtual_prompt_params['params'].extend([param for param in self.language_model.prompt_table.parameters()]) if self.language_model.virtual_prompt_source == VirtualPromptSource.PROMPT_ENCODER: virtual_prompt_params['params'].extend( [param for param in self.language_model.prompt_encoder.parameters()] ) self._optimizer_param_groups = (virtual_prompt_params,) def training_step(self, batch, batch_idx): ( input_ids, attn_masks, labels, candidate_input_ids, candidate_attn_masks, template_length, utterance_length, correct_candidate, ) = batch # construct training samples as generating " Answer: yes/no" after "<utterance> <label_type>: <candidate_label>" if self.eval_mode == "binary_score": new_input_ids = [] new_attn_masks = [] for i in range(candidate_input_ids.size(0)): # in some datasets like assistant, there might be 60+ possible intents with 1 correct intent # therefore we might not want to use all possible intents as negative samples # instead use {binary_score_subsample_ratio} negative samples for every positive sample if self.cfg.dataset.binary_score_subsample: new_input_ids.append(candidate_input_ids[i, 2 * correct_candidate[i].item(), :]) new_attn_masks.append(candidate_attn_masks[i, 2 * correct_candidate[i].item(), :]) possible_negatives = [] for j in range(0, candidate_input_ids.size(1), 2): if j > 0 and torch.equal(candidate_input_ids[i, j, :], candidate_input_ids[i, 0, :]): break if j != 2 * correct_candidate[i].item(): possible_negatives.append(j) negative_samples = random.choices( possible_negatives, k=int(self.cfg.dataset.binary_score_subsample_ratio) ) for negative_sample in negative_samples: new_input_ids.append(candidate_input_ids[i, negative_sample, :]) new_attn_masks.append(candidate_attn_masks[i, negative_sample, :]) else: for j in range(0, candidate_input_ids.size(1), 2): if j > 0 and torch.equal(candidate_input_ids[i, j, :], candidate_input_ids[i, 0, :]): break new_input_ids.append(candidate_input_ids[i, j, :]) new_attn_masks.append(candidate_attn_masks[i, j, :]) input_ids = torch.stack(new_input_ids) attn_masks = torch.stack(new_attn_masks) labels = self.get_binary_score_labels(input_ids) loss, _ = self(input_ids, attn_masks, labels, inference=False) self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) return {'loss': loss} def validation_step(self, batch, batch_idx): loss = self.eval_step_helper(batch=batch) self.validation_step_outputs.append(loss) return loss def on_validation_epoch_end(self): self.eval_epoch_end(self.validation_step_outputs, mode='val') self.validation_step_outputs.clear() # free memory def on_test_epoch_end(self): self.eval_epoch_end(self.test_step_outputs, mode='test') self.test_step_outputs.clear() # free memory def eval_epoch_end(self, outputs, mode='val'): generated_field = [] ground_truth_field = [] inputs = [] for output in outputs: generated_field += output["generated_field"] ground_truth_field += output["ground_truth_field"] inputs += output["input"] with_slots = self.cfg.dataset.target_template == "with_slots" generated_labels, generated_slots = DialogueClassificationMetrics.split_label_and_slots( generated_field, with_slots=with_slots ) ground_truth_labels, ground_truth_slots = DialogueClassificationMetrics.split_label_and_slots( ground_truth_field, with_slots=with_slots ) os.makedirs(self.cfg.dataset.dialogues_example_dir, exist_ok=True) filename = os.path.join( self.cfg.dataset.dialogues_example_dir, f"{mode}_predictions_epoch{self.epoch_number}.jsonl" ) DialogueClassificationMetrics.save_predictions( filename, generated_labels, generated_slots, ground_truth_labels, ground_truth_slots, generated_field, ground_truth_field, inputs, ) label_acc = np.mean([int(generated_labels[i] == ground_truth_labels[i]) for i in range(len(generated_labels))]) generated_field_ids = torch.tensor([self.label_to_ids[label] for label in generated_labels], dtype=int).to( self.classification_report.device ) ground_truth_field_ids = torch.tensor( [self.label_to_ids[label] for label in ground_truth_labels], dtype=int ).to(self.classification_report.device) tp, fn, fp, _ = self.classification_report(generated_field_ids, ground_truth_field_ids) precision, recall, f1, report = self.classification_report.compute() self.classification_report.reset() ( slot_precision, slot_recall, slot_f1, slot_joint_goal_accuracy, ) = DialogueClassificationMetrics.get_slot_filling_metrics(generated_slots, ground_truth_slots) logging.info(report) self.log('{}_precision'.format(self.cfg.dataset.field), precision) self.log('{}_f1'.format(self.cfg.dataset.field), f1) self.log('{}_recall'.format(self.cfg.dataset.field), recall) self.log('{}_{}_accuracy'.format(mode, self.cfg.dataset.field), label_acc * 100) self.log('slot_precision', slot_precision) self.log('slot_recall', slot_recall) self.log('slot_f1', slot_f1) self.log('slot_joint_goal_accuracy', slot_joint_goal_accuracy) if mode == 'val': self.epoch_number += 1 if self.cfg.save_model: filename = '{}/epoch-{}-model.bin'.format(self.cfg.dataset.dialogues_example_dir, self.epoch_number) torch.save(self.language_model.state_dict(), filename) def test_step(self, batch, batch_idx): loss = self.eval_step_helper(batch=batch, mode='test') self.test_step_outputs.append(loss) return loss # for inference only def predict_step(self, batch, batch_idx, dataloader_idx=None): # return self(batch) raise NotImplementedError() def on_train_end(self): if self.prompt_learning: self.language_model.on_train_end() def get_prompt_token_labels_for_megatron_gpt(self, input_ids, num_prompt_tokens): prompt_token_labels = torch.full( size=(input_ids.size(0), num_prompt_tokens), fill_value=self.tokenizer.tokenizer.pad_token_id, dtype=torch.long, ) if self.prompt_learning: prompt_token_labels.data = torch.LongTensor( np.tile(np.array(self.language_model.pseudo_token_ids), (input_ids.size(0), 1)) ) prompt_token_labels = prompt_token_labels.to(input_ids.device) return prompt_token_labels def get_virtual_prompt_ids_for_megatron_gpt(self, input_ids): if ( self.cfg.virtual_prompt_style == VirtualPromptStyle.P_TUNING or not self.prompt_learning or self.trainer.testing ): prompt_ids = torch.tensor([0] * input_ids.size(0)).to(input_ids.device) if self.prompt_learning else None else: total_virtual_tokens = self.cfg.task_templates[0].total_virtual_tokens init_text = self.cfg.task_templates[0].taskname init_text_ids = self.tokenizer.text_to_ids(init_text) init_text_ids = torch.tensor(init_text_ids).to(input_ids.device) prompt_ids = init_text_ids.repeat(input_ids.size(0), 1)[:, :total_virtual_tokens] return prompt_ids def forward(self, input_ids, attention_mask, labels, inference=True): if self.cfg.library == "huggingface": output = self.language_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) loss = output['loss'] # calculate loss per sample b_logits = output['logits'] shift_logits = b_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() unreduced_loss = self.unreduced_loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) ) loss_per_sample = torch.mean(unreduced_loss.view(shift_labels.size()), dim=-1) elif self.cfg.library == "megatron": num_prompt_tokens = ( len(self.language_model.pseudo_token_ids) if hasattr(self.language_model, 'pseudo_token_ids') else 0 ) position_ids = torch.arange( start=0, end=num_prompt_tokens + input_ids.size(1), dtype=torch.long, device=input_ids.device, ) prompt_ids = self.get_virtual_prompt_ids_for_megatron_gpt(input_ids) attn_mask_add_on = torch.ones((attention_mask.size(0), num_prompt_tokens), device=attention_mask.device) full_attention_mask = torch.cat([attn_mask_add_on, attention_mask], axis=-1) full_attention_mask_expand = torch.tril( full_attention_mask.unsqueeze(2).tile(full_attention_mask.size(1)) ).unsqueeze(1) attn_mask = full_attention_mask_expand <= 0 prompt_token_labels = self.get_prompt_token_labels_for_megatron_gpt(input_ids, num_prompt_tokens) input_ids_new = torch.cat([prompt_token_labels, input_ids], axis=1) make_up_last_column_input_ids = ( torch.ones_like(input_ids_new[:, -1:]) * self.tokenizer.tokenizer.pad_token_id ) left_shifted_input_ids = torch.cat([input_ids_new[:, 1:], make_up_last_column_input_ids], axis=-1) if self.prompt_learning: unmasked_unreduced_loss = self.language_model( input_ids_new, position_ids, attn_mask, labels=left_shifted_input_ids, taskname_ids=prompt_ids, inference=inference, ) else: unmasked_unreduced_loss = self.language_model( input_ids, position_ids, attn_mask, labels=left_shifted_input_ids ) if isinstance(unmasked_unreduced_loss, tuple): unmasked_unreduced_loss = unmasked_unreduced_loss[0] labels = torch.cat([prompt_token_labels, labels], axis=1) make_up_last_column_labels = torch.ones_like(labels[:, -1:]) * self.tokenizer.tokenizer.pad_token_id new_labels = torch.cat([labels[:, 1:], make_up_last_column_labels], axis=-1) filler = torch.zeros_like(new_labels) labels_mask_0 = torch.where(new_labels != -100, new_labels, filler) labels_mask = labels_mask_0 > 0 loss = self.mask_and_reduce_loss(labels_mask, unmasked_unreduced_loss) loss_per_sample = self.mask_and_reduce_loss_per_sample(labels_mask, unmasked_unreduced_loss) return loss, loss_per_sample def mask_and_reduce_loss_per_sample(self, loss_mask, unmasked_unreduced_loss): """ Mask and reduce loss based on each sample in batch Useful for ranking candidates with the same prompt in batch based on loss """ losses = unmasked_unreduced_loss.float() loss_mask = loss_mask.view(-1).float() masked_loss = losses.view(-1) * loss_mask loss_per_sample = torch.mean(masked_loss.view(unmasked_unreduced_loss.size()), dim=-1) return loss_per_sample def mask_and_reduce_loss(self, loss_mask, output_tensor): losses = output_tensor.float() loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() return loss def decode(self, tokens): if tokens not in self.token_to_words: self.token_to_words[tokens] = self.tokenizer.tokenizer.decode(tokens) return self.token_to_words[tokens] def binary_score_candidates( self, candidate_input_ids, candidate_attn_masks, utterance_length, labels, template_length, correct_candidate, minus_negative=True, inference=False, ): best_candidate_input_ids = [] for i in range(candidate_input_ids.size(0)): best_j = 0 lowest_loss = float("inf") for j in range(0, candidate_input_ids.size(1), 2): if j > 0 and torch.equal(candidate_input_ids[i, j, :], candidate_input_ids[i, 0, :]): break start_yes = j if j // 2 == correct_candidate[i].item() else j + 1 cand_loss = self( candidate_input_ids[i, start_yes : start_yes + 1, :], candidate_attn_masks[i, start_yes : start_yes + 1, :], self.get_binary_score_labels(candidate_input_ids[i, start_yes : start_yes + 1, :]), inference=inference, ) considered_loss = cand_loss.item() if minus_negative: start_no = j + 1 if j // 2 == correct_candidate[i].item() else j negative_cand_loss = self( candidate_input_ids[i, start_no : start_no + 1, :], candidate_attn_masks[i, start_no : start_no + 1, :], self.get_binary_score_labels(candidate_input_ids[i, start_no : start_no + 1, :]), inference=inference, ) considered_loss -= negative_cand_loss.item() if considered_loss < lowest_loss: best_j = start_yes lowest_loss = considered_loss best_candidate_input_ids.append(candidate_input_ids[i, best_j, :]) candidate_tokens = torch.stack(best_candidate_input_ids) generated_field, ground_truth_field = self.process_into_structured_fields( candidate_tokens, labels, template_length=template_length ) return generated_field, ground_truth_field def get_binary_score_labels(self, input_ids): # mask out every token except the last token for yes/no/true/false labels = torch.zeros_like(input_ids) for i in range(input_ids.size(0)): for j in range(input_ids.size(1)): if input_ids.data[0, j] == self.tokenizer.tokenizer.pad_token_id: stop_point = j break last_point = stop_point - 1 labels.data[i, last_point] = input_ids[i, last_point] return labels def rank_candidates( self, candidate_input_ids, candidate_attn_masks, utterance_length, labels, template_length, minus_prior=True, inference=False, ): best_candidate_input_ids = [] for i in range(candidate_input_ids.size(0)): # candidates are padded with first candidate to ensure equal number of candidates in batch # run for loop to strip redundant candidates last_j = candidate_input_ids.size(1) for j in range(1, candidate_input_ids.size(1)): if torch.equal(candidate_input_ids[i, j, :], candidate_input_ids[i, 0, :]): last_j = j break utterance_end = utterance_length[i].item() # this might cause GPU memory pressure there are many candidates # if OOM, re-write to do this in a for loop with as many as train_ds.batch_size _, loss_per_sample = self( candidate_input_ids[i, :last_j, :], candidate_attn_masks[i, :last_j, :], candidate_input_ids[i, :last_j, :], inference=inference, ) if minus_prior: _, utterance_free_cand_loss_per_sample = self( candidate_input_ids[i, :last_j, utterance_end:], candidate_attn_masks[i, :last_j, utterance_end:], candidate_input_ids[i, :last_j, utterance_end:], inference=inference, ) considered_loss = loss_per_sample - utterance_free_cand_loss_per_sample else: considered_loss = loss_per_sample best_j = torch.argmin(considered_loss) best_candidate_input_ids.append(candidate_input_ids[i, best_j, :]) candidate_tokens = torch.stack(best_candidate_input_ids) generated_field, ground_truth_field = self.process_into_structured_fields( candidate_tokens, labels, template_length=template_length ) return generated_field, ground_truth_field def generate_candidates(self, labels, template_length, input_ids, attn_masks): tokens_to_generate = self.cfg.tokens_to_generate if self.cfg.library == "huggingface": generated_tokens = [] max_length = 0 for i in range(input_ids.size(0)): param_dict = { "input_ids": input_ids[i : i + 1, : template_length[i]], "max_length": template_length[i] + tokens_to_generate, "pad_token_id": self.tokenizer.tokenizer.pad_token_id, } generated_tokens.append(self.language_model.generate(**param_dict)) max_length = max(max_length, generated_tokens[-1].size(1)) # pad each generated to ensure they are of same length in dim 1, therefore stack-able generated_tokens = [ torch.cat( [i, torch.ones((1, max_length - i.size(1))).to(i.device) * self.tokenizer.tokenizer.pad_token_id], axis=-1, ) for i in generated_tokens ] generated_tokens = torch.cat(generated_tokens, axis=0) num_prompt_tokens = 0 elif self.cfg.library == "megatron": prompt_ids = self.get_virtual_prompt_ids_for_megatron_gpt(input_ids) num_prompt_tokens = ( len(self.language_model.pseudo_token_ids) if hasattr(self.language_model, 'pseudo_token_ids') else 0 ) prompt_token_labels = self.get_prompt_token_labels_for_megatron_gpt(input_ids, num_prompt_tokens) input_ids_without_answers = [ torch.cat( [ input_ids[i, : template_length[i]], torch.ones((input_ids.size(1) - template_length[i].item(),)).to(input_ids.device) * self.tokenizer.tokenizer.pad_token_id, ], axis=-1, ).type(input_ids.dtype) for i in range(input_ids.size(0)) ] input_ids_without_answers = torch.stack(input_ids_without_answers) input_ids_new = torch.cat( [ prompt_token_labels, input_ids_without_answers, torch.ones((input_ids.size(0), tokens_to_generate)).to(input_ids.device) * self.tokenizer.tokenizer.pad_token_id, ], axis=1, ).type(input_ids.dtype) tokens_for_generation = (input_ids_new, template_length + num_prompt_tokens) length_param: LengthParam = {"min_length": 0, "max_length": tokens_to_generate} generated_dict = megatron_gpt_generate( self.language_model, tokens_for_generation, self.tokenizer, length_param, get_default_sampling_params(), task_ids=prompt_ids, ) generated_tokens = torch.LongTensor(generated_dict['token_ids']) generated_field, ground_truth_field = self.process_into_structured_fields( generated_tokens, labels, template_length=template_length + num_prompt_tokens ) return generated_field, ground_truth_field def eval_step_helper(self, batch, mode='val'): ( input_ids, attn_masks, labels, candidate_input_ids, candidate_attn_masks, template_length, utterance_length, correct_candidate, ) = batch inference = mode == 'test' loss, _ = self(input_ids, attn_masks, labels, inference=inference) self.log("{}_loss".format(mode), loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) # ranking using perplexity of candidates following the "<utterance> <label_type>:" if self.eval_mode == "ranking": generated_field, ground_truth_field = self.rank_candidates( candidate_input_ids, candidate_attn_masks, utterance_length, labels, template_length, inference=inference, ) # autoregressively generate candidates (possibly with constraint) elif self.eval_mode == "generation": generated_field, ground_truth_field = self.generate_candidates( labels, template_length, input_ids, attn_masks ) # comparing likelihood based on the perplexity of generating " Answer: yes" after "<utterance> <label_type>: <candidate_label>" # (optionally, the difference of that with " Answer: no" using the flag minus_negative=True) elif self.eval_mode == "binary_score": generated_field, ground_truth_field = self.binary_score_candidates( candidate_input_ids, candidate_attn_masks, utterance_length, labels, template_length, correct_candidate, inference=inference, ) else: raise ValueError( "{} is not among supported options (ranking, generation, binary_score)".format(self.eval_mode) ) return { 'loss': loss, 'input': self.tokenizer.tokenizer.batch_decode(input_ids, skip_special_tokens=True), 'generated_field': generated_field, 'ground_truth_field': ground_truth_field, } def process_into_structured_fields(self, generated_tokens, labels, template_length=None): generated_field = [] for i in range(generated_tokens.size(0)): start_point = 0 if template_length is None else template_length[i].item() stop_point = generated_tokens.size(1) for j in range(start_point, stop_point): if generated_tokens.data[i, j] == self.tokenizer.tokenizer.pad_token_id: stop_point = j break # this is to account for the tokens ' Answer: ' + 'yes'/'no'/'true'/'false' if self.eval_mode == "binary_score": stop_point -= 3 one_generated_field = self.decode(generated_tokens[i, start_point:stop_point]).strip() generated_field.append(one_generated_field) ground_truth_field = self.process_ground_truth_field(labels) return generated_field, ground_truth_field def process_ground_truth_field(self, labels): ground_truth_field = [] for i in range(labels.size(0)): correct_label = tuple( [j for j in labels.data[i] if j != self.tokenizer.tokenizer.pad_token_id and j != -100] ) ground_truth_field.append(self.decode(correct_label).strip()) return ground_truth_field def prepare_data(self): """ Preprocessed schema and dialogues and caches this """ if self.data_prepared: return if self._cfg.dataset.task == 'sgd': self.dialogues_processor = DialogueSGDDataProcessor( data_dir=self._cfg.dataset.data_dir, dialogues_example_dir=self._cfg.dataset.dialogues_example_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset, ) elif self._cfg.dataset.task in ['assistant', "zero_shot"]: self.dialogues_processor = DialogueAssistantDataProcessor( data_dir=self._cfg.dataset.data_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset ) elif self._cfg.dataset.task == 'design': self.dialogues_processor = DialogueDesignDataProcessor( data_dir=self._cfg.dataset.data_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset, ) else: raise ValueError("Only sgd, assistant, zero_shot, design supported for Dialogue GPT Classification Model") self.data_prepared = True def setup(self, stage=None): super().setup(stage) if self.cfg.library == "megatron" and self.prompt_learning and stage == "fit": if self.cfg.virtual_prompt_style == VirtualPromptStyle.P_TUNING: self.language_model.init_prompt_encoder() else: raise ValueError( "Use model.virtual_prompt_style='p-tuning' with model.p_tuning.encoder_type='embedding' to enable prompt-tuning." ) def update_data_dirs(self, data_dir: str, dialogues_example_dir: str): """ Update data directories Args: data_dir: path to data directory dialogues_example_dir: path to preprocessed dialogues example directory, if not exists will be created. """ if not os.path.exists(data_dir): raise ValueError(f"{data_dir} is not found") self._cfg.dataset.data_dir = data_dir self._cfg.dataset.dialogues_example_dir = dialogues_example_dir logging.info(f'Setting model.dataset.data_dir to {data_dir}.') logging.info(f'Setting model.dataset.dialogues_example_dir to {dialogues_example_dir}.') def setup_training_data(self, train_data_config: Optional[DictConfig] = None): self.prepare_data() self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config, split=train_data_config.ds_item) def setup_multiple_validation_data(self, val_data_config: Optional[DictConfig] = None): return self.setup_validation_data(val_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig] = None): self.prepare_data() self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config, split=val_data_config.ds_item) def setup_multiple_test_data(self, test_data_config: Union[DictConfig, Dict]): self.setup_test_data(test_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig] = None): self.prepare_data() self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, split=test_data_config.ds_item) def _setup_dataloader_from_config(self, cfg: DictConfig, split: str) -> DataLoader: dataset_cfg = self._cfg.dataset data_dir = dataset_cfg.data_dir if not os.path.exists(data_dir): raise FileNotFoundError(f"Data directory is not found at: {data_dir}.") dataset = DialogueGPTClassificationDataset( dataset_split=split, dialogues_processor=self.dialogues_processor, tokenizer=self.dialogues_processor._tokenizer, cfg=dataset_cfg, ) dl = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, collate_fn=dataset.collate_fn, drop_last=cfg.drop_last, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, ) return dl @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] return result
NeMo-main
nemo/collections/nlp/models/dialogue/dialogue_gpt_classification_model.py
# Copyright 2022 The HuggingFace Inc. team. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Optional import numpy as np import torch import torch.nn.functional as F from omegaconf import DictConfig from pytorch_lightning import Trainer from transformers import AutoModel from nemo.collections.nlp.data.dialogue import DialogueSGDDataProcessor from nemo.collections.nlp.data.dialogue.data_processor.assistant_data_processor import DialogueAssistantDataProcessor from nemo.collections.nlp.data.dialogue.data_processor.design_data_processor import DialogueDesignDataProcessor from nemo.collections.nlp.data.dialogue.dataset.dialogue_nearest_neighbour_dataset import ( DialogueNearestNeighbourDataset, ) from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.metrics.dialogue_metrics import DialogueGenerationMetrics from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.core.classes.common import PretrainedModelInfo from nemo.utils import logging __all__ = ['DialogueNearestNeighbourModel'] class DialogueNearestNeighbourModel(NLPModel): """Dialogue Nearest Neighbour Model identifies the intent of an utterance using the cosine similarity between sentence embeddings of the utterance and various label descriptions """ def __init__(self, cfg: DictConfig, trainer: Trainer = None): self.cfg = cfg super().__init__(cfg=cfg, trainer=trainer) if self.cfg.library == "huggingface": self.language_model = AutoModel.from_pretrained(self.cfg.language_model.pretrained_model_name) def _setup_dataloader_from_config(self, cfg: DictConfig, dataset_split) -> 'torch.utils.data.DataLoader': if self._cfg.dataset.task == "zero_shot": self.data_processor = DialogueAssistantDataProcessor( self.cfg.data_dir, self.tokenizer, cfg=self.cfg.dataset ) elif self._cfg.dataset.task == "design": self.data_processor = DialogueDesignDataProcessor( data_dir=self._cfg.dataset.data_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset ) elif self._cfg.dataset.task == 'sgd': self.data_processor = DialogueSGDDataProcessor( data_dir=self._cfg.dataset.data_dir, dialogues_example_dir=self._cfg.dataset.dialogues_example_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset, ) else: raise ValueError("Only zero_shot, design and sgd supported for Zero Shot Intent Model") dataset = DialogueNearestNeighbourDataset( dataset_split, self.data_processor, self.tokenizer, self.cfg.dataset, # this is the model.dataset cfg, which is diff from train_ds cfg etc ) return torch.utils.data.DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=cfg.get("num_workers", 0), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) def forward(self, input_ids, attention_mask): if self.cfg.library == 'huggingface': output = self.language_model(input_ids=input_ids, attention_mask=attention_mask) return output def training_step(self, batch, batch_idx): raise NotImplementedError def test_step(self, batch, batch_idx): loss = self.validation_step(batch, batch_idx, mode='test') self.test_step_outputs.append(loss) return loss @staticmethod def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def validation_step(self, batch, batch_idx, mode='val'): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ input_ids, input_mask, labels = batch preds = [] gts = [] inputs = [] for i in range(input_ids.size(0)): output = self.forward(input_ids=input_ids[i], attention_mask=input_mask[i]) sentence_embeddings = DialogueNearestNeighbourModel.mean_pooling(output, input_mask[i]) sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) cos_sim = F.cosine_similarity(sentence_embeddings[:1, :], sentence_embeddings[1:, :]) pred = torch.argmax(cos_sim).item() + 1 gt = torch.argmax(labels[i][1:]).item() + 1 preds.append(input_ids[i, pred]) gts.append(input_ids[i, gt]) inputs.append(input_ids[i, 0]) loss = {'preds': torch.stack(preds), 'labels': torch.stack(gts), 'inputs': torch.stack(inputs)} self.validation_step_outputs.append(loss) return loss def multi_test_epoch_end(self, outputs, dataloader_idx): return self.on_validation_epoch_end() def on_validation_epoch_end(self): """ Get metrics based on the candidate label with the highest predicted likelihood and the ground truth label for intent """ prefix = "test" if self.trainer.testing else "val" if prefix == "val": outputs = self.validation_step_outputs else: outputs = self.test_step_outputs output_preds = torch.cat([output['preds'] for output in outputs], dim=0) output_labels = torch.cat([output['labels'] for output in outputs], dim=0) inputs = torch.cat([output['inputs'] for output in outputs], dim=0) decoded_preds = self.tokenizer.tokenizer.batch_decode(output_preds, skip_special_tokens=True) decoded_labels = self.tokenizer.tokenizer.batch_decode(output_labels, skip_special_tokens=True) decoded_inputs = self.tokenizer.tokenizer.batch_decode(inputs, skip_special_tokens=True) prompt_len = len(self.cfg.dataset.prompt_template.strip()) predicted_labels = [i[prompt_len:].strip() for i in decoded_preds] ground_truth_labels = [i[prompt_len:].strip() for i in decoded_labels] os.makedirs(self.cfg.dataset.dialogues_example_dir, exist_ok=True) filename = os.path.join(self.cfg.dataset.dialogues_example_dir, "test_predictions.jsonl") DialogueGenerationMetrics.save_predictions( filename, predicted_labels, ground_truth_labels, decoded_inputs, ) label_to_ids = {label: idx for idx, label in enumerate(list(set(predicted_labels + ground_truth_labels)))} self.classification_report = ClassificationReport( num_classes=len(label_to_ids), mode='micro', label_ids=label_to_ids, dist_sync_on_step=True ).to(output_preds[0].device) predicted_label_ids = torch.tensor([label_to_ids[label] for label in predicted_labels]).to( output_preds[0].device ) ground_truth_label_ids = torch.tensor([label_to_ids[label] for label in ground_truth_labels]).to( output_preds[0].device ) tp, fn, fp, _ = self.classification_report(predicted_label_ids, ground_truth_label_ids) precision, recall, f1, report = self.classification_report.compute() label_acc = np.mean([int(predicted_labels[i] == ground_truth_labels[i]) for i in range(len(predicted_labels))]) logging.info(report) self.log('unified_precision', precision) self.log('unified_f1', f1) self.log('unified_recall', recall) self.log('unfied_accuracy', label_acc * 100) self.classification_report.reset() self.validation_step_outputs.clear() if prefix == 'val' else self.test_step_outputs.clear() def setup_training_data(self, train_data_config: Optional[DictConfig]): if not train_data_config: logging.info( f"Dataloader config or file_name for the training set is missing, so no data loader for test is created!" ) self._test_dl = None return self._train_dl = self._setup_dataloader_from_config(train_data_config, "train") # self.create_loss_module() def setup_validation_data(self, val_data_config: Optional[DictConfig]): if not val_data_config: logging.info( f"Dataloader config or file_path for the validation data set is missing, so no data loader for test is created!" ) self._test_dl = None return self._validation_dl = self._setup_dataloader_from_config(val_data_config, "dev") def setup_multiple_test_data(self, test_data_config: Optional[DictConfig]): self.setup_test_data(test_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig]): if not test_data_config: logging.info( f"Dataloader config or file_path for the test data set is missing, so no data loader for test is created!" ) self._test_dl = None return self._test_dl = self._setup_dataloader_from_config(test_data_config, "test") @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained models which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] return result
NeMo-main
nemo/collections/nlp/models/dialogue/dialogue_nearest_neighbour_model.py
# Copyright 2018 The HuggingFace Inc. team. # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from collections import defaultdict from typing import Dict, List, Optional, Union import numpy as np import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from transformers import AutoModelForSequenceClassification, AutoTokenizer from nemo.collections.nlp.data.dialogue import DialogueSGDDataProcessor from nemo.collections.nlp.data.dialogue.data_processor.assistant_data_processor import DialogueAssistantDataProcessor from nemo.collections.nlp.data.dialogue.data_processor.design_data_processor import DialogueDesignDataProcessor from nemo.collections.nlp.data.dialogue.dataset.dialogue_zero_shot_intent_dataset import DialogueZeroShotIntentDataset from nemo.collections.nlp.data.zero_shot_intent_recognition.zero_shot_intent_dataset import ( ZeroShotIntentInferenceDataset, calc_class_weights_from_dataloader, ) from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.metrics.dialogue_metrics import DialogueGenerationMetrics from nemo.collections.nlp.models import TextClassificationModel from nemo.core.classes.common import PretrainedModelInfo from nemo.utils import logging __all__ = ['DialogueZeroShotIntentModel'] class DialogueZeroShotIntentModel(TextClassificationModel): """TextClassificationModel to be trained on two- or three-class textual entailment data, to be used for zero shot intent recognition.""" def __init__(self, cfg: DictConfig, trainer: Trainer = None): self.cfg = cfg super().__init__(cfg=cfg, trainer=trainer) if self.cfg.library == 'megatron': # zero shot intent classification loading # cannot directly load as .nemo uses the pre-refactor model # therefore transfer its attributes over if self.cfg.original_nemo_checkpoint is not None: original_model = DialogueZeroShotIntentModel.restore_from(self.cfg.original_nemo_checkpoint) self.classifier = original_model.classifier self.bert_model = original_model.bert_model self.loss = original_model.loss self.classification_report = original_model.classification_report elif self.cfg.library == "huggingface": self.nli_model = AutoModelForSequenceClassification.from_pretrained('facebook/bart-large-mnli') self.bert_model = self.nli_model.model self.classifier = self.nli_model.classification_head original_model = DialogueZeroShotIntentModel.restore_from(self.cfg.original_nemo_checkpoint) self.loss = original_model.loss self.classification_report = original_model.classification_report self.tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large-mnli') self.tokenizer.max_seq_length = self.cfg.dataset.max_seq_length def _setup_dataloader_from_config(self, cfg: DictConfig, dataset_split) -> 'torch.utils.data.DataLoader': if self._cfg.dataset.task == "zero_shot": self.data_processor = DialogueAssistantDataProcessor( self.cfg.data_dir, self.tokenizer, cfg=self.cfg.dataset ) elif self._cfg.dataset.task == "design": self.data_processor = DialogueDesignDataProcessor( data_dir=self._cfg.dataset.data_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset ) elif self._cfg.dataset.task == 'sgd': self.data_processor = DialogueSGDDataProcessor( data_dir=self._cfg.dataset.data_dir, dialogues_example_dir=self._cfg.dataset.dialogues_example_dir, tokenizer=self.tokenizer, cfg=self._cfg.dataset, ) else: raise ValueError("Only zero_shot, design and sgd supported for Zero Shot Intent Model") dataset = DialogueZeroShotIntentDataset( dataset_split, self.data_processor, self.tokenizer, self.cfg.dataset, # this is the model.dataset cfg, which is diff from train_ds cfg etc ) return torch.utils.data.DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=cfg.get("num_workers", 0), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) def forward(self, input_ids, attention_mask, token_type_ids): if self.cfg.library == 'megatron': hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] logits = self.classifier(hidden_states=hidden_states) elif self.cfg.library == 'huggingface': output = self.nli_model(input_ids=input_ids, attention_mask=attention_mask) logits = output['logits'] return logits def setup_training_data(self, train_data_config: Optional[DictConfig]): if not train_data_config: logging.info( f"Dataloader config or file_name for the training set is missing, so no data loader for test is created!" ) self._test_dl = None return self._train_dl = self._setup_dataloader_from_config(train_data_config, "train") # calculate the class weights to be used in the loss function if self.cfg.dataset.class_balancing == 'weighted_loss': self.class_weights = calc_class_weights_from_dataloader( self._train_dl, self.cfg.dataset.num_classes, self.cfg.dataset.data_dir ) else: self.class_weights = None # we need to create/update the loss module by using the weights calculated from the training data self.create_loss_module() def setup_validation_data(self, val_data_config: Optional[DictConfig]): if not val_data_config: logging.info( f"Dataloader config or file_path for the validation data set is missing, so no data loader for test is created!" ) self._test_dl = None return self._validation_dl = self._setup_dataloader_from_config(val_data_config, "dev") def setup_test_data(self, test_data_config: Optional[DictConfig]): if not test_data_config: logging.info( f"Dataloader config or file_path for the test data set is missing, so no data loader for test is created!" ) self._test_dl = None return self._test_dl = self._setup_dataloader_from_config(test_data_config, "test") def _setup_infer_dataloader( self, queries: List[str], candidate_labels: List[str], hypothesis_template=str, batch_size=1, max_seq_length: int = -1, ) -> 'torch.utils.data.DataLoader': """ Setup method for inference data loader. Here the premise-hypothesis pairs are made from queries and candidate labels. Args: queries: the queries to classify candidate_labels: strings to be used as labels hypothesis_template: the template used to turn each label into an NLI-style hypothesis. Must include a {} or similar syntax for the candidate label to be inserted. batch_size: batch size to use during inference max_seq_length: maximum length of queries, default is -1 for no limit Returns: A pytorch DataLoader. """ dataset = ZeroShotIntentInferenceDataset( queries=queries, candidate_labels=candidate_labels, tokenizer=self.tokenizer, max_seq_length=max_seq_length, hypothesis_template=hypothesis_template, ) return torch.utils.data.DataLoader( dataset=dataset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=False, drop_last=False, collate_fn=dataset.collate_fn, ) def validation_step(self, batch, batch_idx, split='val'): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ input_ids, input_type_ids, input_mask, labels = batch logits = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) val_loss = self.loss(logits=logits, labels=labels) preds = torch.argmax(logits, axis=-1) tp, fn, fp, _ = self.classification_report(preds, labels) loss = { 'val_loss': val_loss, 'tp': tp, 'fn': fn, 'fp': fp, 'logits': logits, 'input_ids': input_ids, 'labels': labels, } self.validation_step_outputs.append(loss) return loss def on_validation_epoch_end(self, split="val"): """ Get metrics based on the candidate label with the highest predicted likelihood and the ground truth label for intent """ output_logits = torch.cat([output['logits'] for output in self.validation_step_outputs], dim=0) output_input_ids = torch.cat([output['input_ids'] for output in self.validation_step_outputs], dim=0) output_labels = torch.cat([output['labels'] for output in self.validation_step_outputs], dim=0) if self.cfg.library == 'huggingface': entail_logits = output_logits[..., 2] decoded_input_ids = [self.tokenizer.decode(output_input_ids[i]) for i in range(len(output_input_ids))] utterance_candidate_pairs = [i.split(self.tokenizer.sep_token) for i in decoded_input_ids] utterances = [ i[0].replace(self.tokenizer.bos_token, '').replace(self.tokenizer.eos_token, '') for i in utterance_candidate_pairs ] elif self.cfg.library == 'megatron': entail_logits = output_logits[..., 1] decoded_input_ids = [ self.tokenizer.tokenizer.decode(output_input_ids[i]) for i in range(len(output_input_ids)) ] utterance_candidate_pairs = [i.split(self.tokenizer.tokenizer.sep_token) for i in decoded_input_ids] utterances = [ i[0].replace(self.tokenizer.tokenizer.bos_token, '').replace(self.tokenizer.tokenizer.eos_token, '') for i in utterance_candidate_pairs ] # account for uncased tokenization candidates = [ i[1] .replace(self.cfg.dataset.prompt_template.lower(), '') .replace(self.cfg.dataset.prompt_template, '') .strip() for i in utterance_candidate_pairs ] utterance_to_idx = defaultdict(list) for idx, utterance in enumerate(utterances): utterance_to_idx[utterance].append(idx) predicted_labels = [] ground_truth_labels = [] utterances = [] for utterance, idxs in utterance_to_idx.items(): utterance_candidates = [candidates[idx] for idx in idxs] logits = [entail_logits[idx].item() for idx in idxs] labels = [output_labels[idx].item() for idx in idxs] correct_candidate = utterance_candidates[np.argmax(labels)] predicted_candidate = utterance_candidates[np.argmax(logits)] predicted_labels.append(predicted_candidate) ground_truth_labels.append(correct_candidate) utterances.append(utterance) os.makedirs(self.cfg.dataset.dialogues_example_dir, exist_ok=True) filename = os.path.join(self.cfg.dataset.dialogues_example_dir, "test_predictions.jsonl") DialogueGenerationMetrics.save_predictions( filename, predicted_labels, ground_truth_labels, utterances, ) label_to_ids = {label: idx for idx, label in enumerate(list(set(predicted_labels + ground_truth_labels)))} self.classification_report = ClassificationReport( num_classes=len(label_to_ids), mode='micro', label_ids=label_to_ids, dist_sync_on_step=True ).to(output_logits[0].device) predicted_label_ids = torch.tensor([label_to_ids[label] for label in predicted_labels]).to( output_logits[0].device ) ground_truth_label_ids = torch.tensor([label_to_ids[label] for label in ground_truth_labels]).to( output_logits[0].device ) tp, fn, fp, _ = self.classification_report(predicted_label_ids, ground_truth_label_ids) precision, recall, f1, report = self.classification_report.compute() label_acc = np.mean([int(predicted_labels[i] == ground_truth_labels[i]) for i in range(len(predicted_labels))]) avg_loss = torch.stack([x[f'val_loss'] for x in self.validation_step_outputs]).mean() logging.info(report) self.log('unified_precision', precision) self.log('unified_f1', f1) self.log('unified_recall', recall) self.log('unfied_accuracy', label_acc * 100) self.log('val_loss', avg_loss, prog_bar=True) self.validation_step_outputs.clear() # free memory self.classification_report.reset() def predict( self, queries: Union[str, List[str]], candidate_labels: Union[str, List[str]], hypothesis_template='This example is {}.', batch_size=1, multi_label=True, entailment_idx=1, contradiction_idx=0, ) -> List[Dict]: """ Given a list of queries and a list of candidate labels, return a ranked list of labels and scores for each query. Example usage: queries = ["I'd like a veggie burger, fries, and a coke", "Turn off the lights in the living room",] candidate_labels = ["Food order", "Change lighting"] model.predict(queries, candidate_labels) Example output: [{'sentence': "I'd like a veggie burger, fries, and a coke", 'labels': ['Food order', 'Change lighting'], 'scores': [0.8557153344154358, 0.12036784738302231]}, {'sentence': 'Turn off the lights in the living room', 'labels': ['Change lighting', 'Food order'], 'scores': [0.8506497144699097, 0.06594637036323547]}] Args: queries: the query or list of queries to classify candidate_labels: string or list of strings to be used as labels hypothesis_template: the template used to turn each label into an NLI-style hypothesis. Must include a {} or similar syntax for the candidate label to be inserted. batch_size: the batch size to use for inference. multi_label: whether or not multiple candidate labels can be true. If False, the scores are normalized such that all class probabilities sum to 1. If True, the labels are considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment score vs. the contradiction score. entailment_idx: the index of the "entailment" class in the trained model; models trained on MNLI using NeMo's glue_benchmark.py or zero_shot_intent_model.py use an index of 1 by default. contradiction_idx: the index of the "contradiction" class in the trained model; models trained on MNLI using NeMo's glue_benchmark.py or zero_shot_intent_model.py use an index of 0 by default. Returns: list of dictionaries; one dict per input query. Each dict has keys "sentence", "labels", "scores". labels and scores are parallel lists (with each score corresponding to the label at the same index), sorted from highest to lowest score. """ if not queries: raise ValueError("No queries were passed for classification!") if not candidate_labels: raise ValueError("No candidate labels were provided!") queries = [queries] if isinstance(queries, str) else queries candidate_labels = [candidate_labels] if isinstance(candidate_labels, str) else candidate_labels if len(candidate_labels) == 1: multi_label = True mode = self.training try: device = 'cuda' if torch.cuda.is_available() else 'cpu' # Switch model to evaluation mode self.eval() self.to(device) infer_datalayer = self._setup_infer_dataloader( queries, candidate_labels, hypothesis_template=hypothesis_template, batch_size=batch_size, max_seq_length=self._cfg.dataset.max_seq_length, ) all_batch_logits = [] for batch in infer_datalayer: input_ids, input_type_ids, input_mask, _ = batch logits = self.forward( input_ids=input_ids.to(device), token_type_ids=input_type_ids.to(device), attention_mask=input_mask.to(device), ) all_batch_logits.append(logits.detach().cpu().numpy()) all_logits = np.concatenate(all_batch_logits) outputs = all_logits.reshape((len(queries), len(candidate_labels), -1)) if not multi_label: # softmax the "entailment" logits over all candidate labels entail_logits = outputs[..., entailment_idx] scores = np.exp(entail_logits) / np.exp(entail_logits).sum(-1, keepdims=True) else: # softmax over the entailment vs. contradiction dim for each label independently entail_contr_logits = outputs[..., [contradiction_idx, entailment_idx]] scores = np.exp(entail_contr_logits) / np.exp(entail_contr_logits).sum(-1, keepdims=True) scores = scores[..., 1] result = [] for i in range(len(queries)): sorted_idxs = list(reversed(scores[i].argsort())) result.append( { "sentence": queries[i], "labels": [candidate_labels[j] for j in sorted_idxs], "scores": scores[i][sorted_idxs].tolist(), } ) finally: # set mode back to its original value self.train(mode=mode) return result @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained models which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] result.append( PretrainedModelInfo( pretrained_model_name="zeroshotintent_en_bert_base_uncased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/zeroshotintent_en_bert_base_uncased/versions/1.4.1/files/zeroshotintent_en_bert_base_uncased.nemo", description="DialogueZeroShotIntentModel trained by fine tuning BERT-base-uncased on the MNLI (Multi-Genre Natural Language Inference) dataset, which achieves an accuracy of 84.9% and 84.8% on the matched and mismatched dev sets, respectively.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="zeroshotintent_en_megatron_uncased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/zeroshotintent_en_megatron_uncased/versions/1.4.1/files/zeroshotintent_en_megatron_uncased.nemo", description="DialogueZeroShotIntentModel trained by fine tuning Megatron-BERT-345m=M-uncased on the MNLI (Multi-Genre Natural Language Inference) dataset, which achieves an accuracy of 90.0% and 89.9% on the matched and mismatched dev sets, respectively", ) ) return result
NeMo-main
nemo/collections/nlp/models/dialogue/dialogue_zero_shot_intent_model.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.text_normalization_as_tagging.thutmose_tagger import ThutmoseTaggerModel
NeMo-main
nemo/collections/nlp/models/text_normalization_as_tagging/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from time import perf_counter from typing import Dict, List, Optional import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from nemo.collections.common.losses import CrossEntropyLoss from nemo.collections.nlp.data.text_normalization_as_tagging import ( ThutmoseTaggerDataset, ThutmoseTaggerTestDataset, bert_example, tagging, ) from nemo.collections.nlp.data.text_normalization_as_tagging.utils import read_label_map, read_semiotic_classes from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common.token_classifier import TokenClassifier from nemo.collections.nlp.parts.utils_funcs import tensor2list from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.core.neural_types import LogitsType, NeuralType from nemo.utils import logging from nemo.utils.decorators import experimental __all__ = ["ThutmoseTaggerModel"] @experimental class ThutmoseTaggerModel(NLPModel): """ BERT-based tagging model for ITN, inspired by LaserTagger approach. It maps spoken-domain input words to tags: KEEP, DELETE, or any of predefined replacement tags which correspond to a written-domain fragment. Example: one hundred thirty four -> _1 <DELETE> 3 4_ """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return { "logits": NeuralType(('B', 'T', 'D'), LogitsType()), "semiotic_logits": NeuralType(('B', 'T', 'D'), LogitsType()), } @property def input_module(self): return self @property def output_module(self): return self def __init__(self, cfg: DictConfig, trainer: Trainer = None) -> None: super().__init__(cfg=cfg, trainer=trainer) label_map_file = self.register_artifact("label_map", cfg.label_map, verify_src_exists=True) semiotic_classes_file = self.register_artifact( "semiotic_classes", cfg.semiotic_classes, verify_src_exists=True ) self.label_map = read_label_map(label_map_file) self.semiotic_classes = read_semiotic_classes(semiotic_classes_file) self.num_labels = len(self.label_map) self.num_semiotic_labels = len(self.semiotic_classes) self.id_2_tag = {tag_id: tagging.Tag(tag) for tag, tag_id in self.label_map.items()} self.id_2_semiotic = {semiotic_id: semiotic for semiotic, semiotic_id in self.semiotic_classes.items()} self.max_sequence_len = cfg.get('max_sequence_len', self.tokenizer.tokenizer.model_max_length) # setup to track metrics # we will have (len(self.semiotic_classes) + 1) labels # last one stands for WRONG (span in which the predicted tags don't match the labels) # this is needed to feed the sequence of classes to classification_report during validation label_ids = self.semiotic_classes.copy() label_ids["WRONG"] = len(self.semiotic_classes) self.tag_classification_report = ClassificationReport( len(self.semiotic_classes) + 1, label_ids=label_ids, mode='micro', dist_sync_on_step=True ) self.tag_multiword_classification_report = ClassificationReport( len(self.semiotic_classes) + 1, label_ids=label_ids, mode='micro', dist_sync_on_step=True ) self.semiotic_classification_report = ClassificationReport( len(self.semiotic_classes) + 1, label_ids=label_ids, mode='micro', dist_sync_on_step=True ) self.hidden_size = cfg.hidden_size self.logits = TokenClassifier( self.hidden_size, num_classes=self.num_labels, num_layers=1, log_softmax=False, dropout=0.1 ) self.semiotic_logits = TokenClassifier( self.hidden_size, num_classes=self.num_semiotic_labels, num_layers=1, log_softmax=False, dropout=0.1 ) self.loss_fn = CrossEntropyLoss(logits_ndim=3) self.builder = bert_example.BertExampleBuilder( self.label_map, self.semiotic_classes, self.tokenizer.tokenizer, self.max_sequence_len ) @typecheck() def forward(self, input_ids, input_mask, segment_ids): src_hiddens = self.bert_model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask) tag_logits = self.logits(hidden_states=src_hiddens) semiotic_logits = self.semiotic_logits(hidden_states=src_hiddens) return tag_logits, semiotic_logits # Training def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ input_ids, input_mask, segment_ids, labels_mask, labels, semiotic_labels, _ = batch tag_logits, semiotic_logits = self.forward(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids) loss_on_tags = self.loss_fn(logits=tag_logits, labels=labels, loss_mask=labels_mask) loss_on_semiotic = self.loss_fn(logits=semiotic_logits, labels=semiotic_labels, loss_mask=labels_mask) loss = loss_on_tags + loss_on_semiotic lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', loss) self.log('lr', lr, prog_bar=True) return {'loss': loss, 'lr': lr} # Validation and Testing def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ input_ids, input_mask, segment_ids, labels_mask, tag_labels, semiotic_labels, semiotic_spans = batch tag_logits, semiotic_logits = self.forward(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids) tag_preds = torch.argmax(tag_logits, dim=2) semiotic_preds = torch.argmax(semiotic_logits, dim=2) # Update tag classification_report predictions, labels = tag_preds.tolist(), tag_labels.tolist() for prediction, label, semiotic in zip(predictions, labels, semiotic_spans): # Here we want to track whether the predicted output matches ground truth labels # for each whole semiotic span # so we construct the special input for classification report, for example: # label = [PLAIN, PLAIN, DATE, PLAIN, LETTERS, PLAIN] # pred = [PLAIN, PLAIN, WRONG, PLAIN, LETTERS, PLAIN] span_labels = [] span_predictions = [] for cid, start, end in semiotic: if cid == -1: break span_labels.append(cid) if prediction[start:end] == label[start:end]: span_predictions.append(cid) else: span_predictions.append(self.tag_classification_report.num_classes - 1) # this stands for WRONG if len(span_labels) != len(span_predictions): raise ValueError( "Length mismatch: len(span_labels)=" + str(len(span_labels)) + "; len(span_predictions)=" + str(len(span_predictions)) ) self.tag_classification_report( torch.tensor(span_predictions).to(self.device), torch.tensor(span_labels).to(self.device) ) # We collect a separate classification_report for multiword replacements, as they are harder for the model multiword_span_labels = [] multiword_span_predictions = [] for cid, start, end in semiotic: if cid == -1: break # this is a trick to determine if label consists of a single replacement # - it will be repeated for each input subtoken if len(set(label[start:end])) == 1: continue multiword_span_labels.append(cid) if prediction[start:end] == label[start:end]: multiword_span_predictions.append(cid) else: # this stands for WRONG multiword_span_predictions.append(self.tag_classification_report.num_classes - 1) if len(multiword_span_labels) != len(multiword_span_predictions): raise ValueError( "Length mismatch: len(multiword_span_labels)=" + str(len(multiword_span_labels)) + "; len(multiword_span_predictions)=" + str(len(multiword_span_predictions)) ) self.tag_multiword_classification_report( torch.tensor(multiword_span_predictions).to(self.device), torch.tensor(multiword_span_labels).to(self.device), ) # Update semiotic classification_report predictions, labels = semiotic_preds.tolist(), semiotic_labels.tolist() for prediction, label, semiotic in zip(predictions, labels, semiotic_spans): # Here we want to track whether the predicted output matches ground truth labels for whole semiotic span # so we construct the special input for classification report, for example: # label = [PLAIN, PLAIN, DATE, PLAIN, LETTERS, PLAIN] # pred = [PLAIN, PLAIN, WRONG, PLAIN, LETTERS, PLAIN] span_labels = [] span_predictions = [] for cid, start, end in semiotic: if cid == -1: break span_labels.append(cid) if prediction[start:end] == label[start:end]: span_predictions.append(cid) else: span_predictions.append(self.tag_classification_report.num_classes - 1) # this stands for WRONG if len(span_labels) != len(span_predictions): raise ValueError( "Length mismatch: len(span_labels)=" + str(len(span_labels)) + "; len(span_predictions)=" + str(len(span_predictions)) ) self.semiotic_classification_report( torch.tensor(span_predictions).to(self.device), torch.tensor(span_labels).to(self.device) ) val_loss_tag = self.loss_fn(logits=tag_logits, labels=tag_labels, loss_mask=labels_mask) val_loss_semiotic = self.loss_fn(logits=semiotic_logits, labels=semiotic_labels, loss_mask=labels_mask) val_loss = val_loss_tag + val_loss_semiotic return {'val_loss': val_loss} def on_validation_epoch_end(self, outputs): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() # calculate metrics and classification report # In our task recall = accuracy, and the recall column - is the per class accuracy _, tag_accuracy, _, tag_report = self.tag_classification_report.compute() _, tag_multiword_accuracy, _, tag_multiword_report = self.tag_multiword_classification_report.compute() _, semiotic_accuracy, _, semiotic_report = self.semiotic_classification_report.compute() logging.info("Total tag accuracy: " + str(tag_accuracy)) logging.info(tag_report) logging.info("Only multiword tag accuracy: " + str(tag_multiword_accuracy)) logging.info(tag_multiword_report) logging.info("Total semiotic accuracy: " + str(semiotic_accuracy)) logging.info(semiotic_report) self.log('val_loss', avg_loss, prog_bar=True) self.log('tag accuracy', tag_accuracy) self.log('tag multiword accuracy', tag_multiword_accuracy) self.log('semiotic accuracy', semiotic_accuracy) self.tag_classification_report.reset() self.tag_multiword_classification_report.reset() self.semiotic_classification_report.reset() def test_step(self, batch, batch_idx): """ Lightning calls this inside the test loop with the data from the test dataloader passed in as `batch`. """ return self.validation_step(batch, batch_idx) def on_test_epoch_end(self, outputs): """ Called at the end of test to aggregate outputs. :param outputs: list of individual outputs of each test step. """ return self.on_validation_epoch_end(outputs) # Functions for inference @torch.no_grad() def _infer(self, sents: List[str]) -> List[List[int]]: """ Main function for Inference Args: sents: A list of input sentences (lowercase spoken-domain words separated by space). Returns: all_preds: A list of tab-separated text records, same size as input list. Each record consists of 4 items: - final output text - input words - tags predicted for input words - tags after swap preprocessing - semiotic labels predicted for input words """ # all input sentences go into one batch dataloader_cfg = {"batch_size": len(sents), "num_workers": 3, "pin_memory": False} infer_datalayer = self._setup_infer_dataloader(dataloader_cfg, sents) batch = next(iter(infer_datalayer)) input_ids, input_mask, segment_ids = batch tag_logits, semiotic_logits = self.forward( input_ids=input_ids.to(self.device), input_mask=input_mask.to(self.device), segment_ids=segment_ids.to(self.device), ) all_preds = [] for i, sent in enumerate(sents): example = self.builder.build_bert_example(source=sent, infer=True) tag_preds = tensor2list(torch.argmax(tag_logits[i], dim=-1)) semiotic_preds = tensor2list(torch.argmax(semiotic_logits[i], dim=-1)) # this mask is required by get_token_labels example.features["labels_mask"] = [0] + [1] * (len(semiotic_preds) - 2) + [0] example.features["tag_labels"] = tag_preds example.features["semiotic_labels"] = semiotic_preds tags = [self.id_2_tag[label_id] for label_id in example.get_token_labels("tag_labels")] semiotic_labels = [ self.id_2_semiotic[label_id] for label_id in example.get_token_labels("semiotic_labels") ] prediction, inp_str, tag_str, tag_with_swap_str = example.editing_task.realize_output( tags, semiotic_labels ) all_preds.append( prediction + "\t" + inp_str + "\t" + tag_str + "\t" + tag_with_swap_str + "\t" + " ".join(semiotic_labels) ) return all_preds # Functions for processing data def setup_training_data(self, train_data_config: Optional[DictConfig]): if not train_data_config or not train_data_config.data_path: logging.info( f"Dataloader config or file_path for the train is missing, so no data loader for train is created!" ) self._train_dl = None return self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config, data_split="train") def setup_validation_data(self, val_data_config: Optional[DictConfig]): if not val_data_config or not val_data_config.data_path: logging.info( f"Dataloader config or file_path for the validation is missing, so no data loader for validation is created!" ) self._validation_dl = None return self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config, data_split="val") def setup_test_data(self, test_data_config: Optional[DictConfig]): if not test_data_config or test_data_config.data_path is None: logging.info( f"Dataloader config or file_path for the test is missing, so no data loader for test is created!" ) self._test_dl = None return self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, data_split="test") def _setup_dataloader_from_config(self, cfg: DictConfig, data_split: str): start_time = perf_counter() logging.info(f'Creating {data_split} dataset') input_file = cfg.data_path dataset = ThutmoseTaggerDataset(input_file=input_file, example_builder=self.builder) dl = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=cfg.shuffle, collate_fn=dataset.collate_fn ) running_time = perf_counter() - start_time logging.info(f'Took {running_time} seconds') return dl def _setup_infer_dataloader(self, cfg: DictConfig, queries: List[str]) -> 'torch.utils.data.DataLoader': """ Setup function for a infer data loader. Args: cfg: config dictionary containing data loader params like batch_size, num_workers and pin_memory queries: text Returns: A pytorch DataLoader. """ dataset = ThutmoseTaggerTestDataset(sents=queries, example_builder=self.builder) return torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg["batch_size"], shuffle=False, num_workers=cfg.get("num_workers", 0), pin_memory=cfg.get("pin_memory", False), drop_last=False, collate_fn=dataset.collate_fn, ) @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: result = [ PretrainedModelInfo( pretrained_model_name="itn_en_thutmose_bert", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/itn_en_thutmose_bert/versions/1.9.0/files/itn_en_thutmose_bert.nemo", description="A single-pass tagger-based English model for inverse text normalization based" "on BERT, trained on 2 mln sentences from Google Text Normalization Dataset", ), PretrainedModelInfo( pretrained_model_name="itn_ru_thutmose_bert", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/itn_ru_thutmose_bert/versions/1.11.0/files/itn_ru_thutmose_bert.nemo", description="A single-pass tagger-based Russian model for inverse text normalization based" "on BERT, trained on 2 mln sentences from Google Text Normalization Dataset", ), ] return result
NeMo-main
nemo/collections/nlp/models/text_normalization_as_tagging/thutmose_tagger.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.text2sparql.text2sparql_model import Text2SparqlModel
NeMo-main
nemo/collections/nlp/models/text2sparql/__init__.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, MeetKai Inc. All rights reserved. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional, Tuple import torch from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from transformers import AutoModel, BartForConditionalGeneration, EncoderDecoderModel from nemo.collections.common.metrics import Perplexity from nemo.collections.nlp.data.text2sparql import Text2SparqlDataset from nemo.collections.nlp.modules.common.tokenizer_utils import get_tokenizer from nemo.core.classes.common import typecheck from nemo.core.classes.modelPT import ModelPT from nemo.core.neural_types import ChannelType, MaskType, NeuralType from nemo.utils import logging __all__ = ["Text2SparqlModel"] class Text2SparqlModel(ModelPT): @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "attention_mask": NeuralType(('B', 'T'), MaskType(), optional=True), "decoder_input_ids": NeuralType(('B', 'T'), ChannelType(), optional=True), "labels": NeuralType(('B', 'T'), ChannelType(), optional=True), } def __init__(self, cfg: DictConfig, trainer: Trainer = None): # must assign tokenizers before init if cfg.language_model.pretrained_model_name: if cfg.language_model.pretrained_encoder_model_name or cfg.language_model.pretrained_decoder_model_name: raise ValueError( "Must have either pretrained_model_name or both pretrained_encoder_model name and " "pretrained_decoder_model_name." ) # setup tokenizer self.encoder_tokenizer = self.setup_tokenizer(cfg.encoder_tokenizer) self.encoder_add_special_tokens = cfg.encoder_tokenizer.add_special_tokens # set decoder to encoder self.decoder_tokenizer = self.encoder_tokenizer self.decoder_add_special_tokens = self.encoder_add_special_tokens else: if not ( cfg.language_model.pretrained_encoder_model_name and cfg.language_model.pretrained_decoder_model_name ): raise ValueError("Both encoder and decoder must be specified") # setup tokenizers self.encoder_tokenizer = self.setup_tokenizer(cfg.encoder_tokenizer) self.encoder_add_special_tokens = cfg.encoder_tokenizer.add_special_tokens self.decoder_tokenizer = self.setup_tokenizer(cfg.decoder_tokenizer) self.decoder_add_special_tokens = cfg.decoder_tokenizer.add_special_tokens if not self.encoder_tokenizer: raise TypeError("encoder_tokenizer failed to initialize") if not self.decoder_tokenizer: raise TypeError("decoder_tokenizer failed to initialize") # init superclass super().__init__(cfg=cfg, trainer=trainer) # must assign modules after init if cfg.language_model.pretrained_model_name: # Setup end-to-end model if "bart" in cfg.language_model.pretrained_model_name: self.model = BartForConditionalGeneration.from_pretrained(cfg.language_model.pretrained_model_name) else: self.model = AutoModel.from_pretrained(cfg.language_model.pretrained_model_name) else: if not ( cfg.language_model.pretrained_encoder_model_name and cfg.language_model.pretrained_decoder_model_name ): raise ValueError("Both encoder and decoder must be specified") # Setup encoder/decoder model self.model = EncoderDecoderModel.from_encoder_decoder_pretrained( encoder=cfg.language_model.pretrained_encoder_model_name, decoder=cfg.language_model.pretrained_decoder_model_name, ) self.validation_perplexity = Perplexity() self.setup_optimization(cfg.optim) @typecheck() def forward( self, input_ids: torch.Tensor, attention_mask: torch.Tensor = None, decoder_input_ids: torch.Tensor = None, labels: torch.Tensor = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]: """ No special modification required for Lightning, define it as you normally would in the `nn.Module` in vanilla PyTorch. """ outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, labels=labels, return_dict=False, ) return outputs @typecheck.disable_checks() def generate(self, input_ids: torch.Tensor) -> torch.Tensor: """Wraps huggingface EncoderDecoder.generate().""" outputs = self.model.generate( input_ids=input_ids, pad_token_id=self.encoder_tokenizer.pad_id, bos_token_id=self.encoder_tokenizer.bos_id, eos_token_id=self.encoder_tokenizer.eos_id, decoder_start_token_id=self.decoder_tokenizer.bos_id, **self._cfg.generate, ) return outputs def training_step(self, batch: Tuple, batch_idx: int) -> Dict: """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. Loss calculation from HuggingFace's BartForConditionalGeneration. """ input_ids, input_mask, decoder_input_ids, labels = batch loss = self.forward( input_ids=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids, labels=labels, )[0] tensorboard_logs = {"train_loss": loss, "lr": self._optimizer.param_groups[0]["lr"]} return {"loss": loss, "log": tensorboard_logs} def validation_step(self, batch: Tuple, batch_idx: int) -> Dict: """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. Loss calculation from HuggingFace's BartForConditionalGeneration. """ input_ids, input_mask, decoder_input_ids, labels = batch loss, logits = self.forward( input_ids=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids, labels=labels, )[:2] self.validation_perplexity(logits=logits) tensorboard_logs = {"val_loss": loss} return {"val_loss": loss, "log": tensorboard_logs} def on_validation_epoch_end(self, outputs: List[Dict]) -> Dict: """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean() perplexity = self.validation_perplexity.compute() tensorboard_logs = {"val_loss": avg_loss, "perplexity": perplexity} logging.info(f"evaluation perplexity {perplexity.item()}") self.log("val_loss", avg_loss) return {"val_loss": avg_loss, "log": tensorboard_logs} @typecheck.disable_checks() def test_step(self, batch: Tuple, batch_idx: int) -> torch.Tensor: """Lightning calls this inside the test loop with data from the test dataloader.""" input_ids, input_mask, decoder_input_ids, labels = batch sequences = self.generate(input_ids=input_ids) return sequences @typecheck.disable_checks() def on_test_epoch_end(self, outputs: List[torch.Tensor]) -> Dict[str, List[str]]: """Called at the end of test to aggregate outputs and decode them.""" texts = [self.encoder_tokenizer.ids_to_text(seq) for batch in outputs for seq in batch] self.test_output = [{"texts": texts}] return {"texts": texts} def setup_tokenizer(self, cfg: DictConfig): tokenizer = get_tokenizer( tokenizer_name=cfg.tokenizer_name, tokenizer_model=cfg.tokenizer_model, special_tokens=OmegaConf.to_container(cfg.special_tokens) if cfg.special_tokens else None, vocab_file=cfg.vocab_file, ) return tokenizer def setup_training_data(self, train_data_config: Optional[DictConfig]): self._train_dl = self.setup_dataloader_from_config(cfg=train_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig]): self._validation_dl = self.setup_dataloader_from_config(cfg=val_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig]): self._test_dl = self.setup_dataloader_from_config(cfg=test_data_config) def setup_dataloader_from_config(self, cfg: DictConfig): dataset = Text2SparqlDataset( filepath=cfg.filepath, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, encoder_add_special_tokens=self.encoder_add_special_tokens, decoder_add_special_tokens=self.decoder_add_special_tokens, max_seq_length=self._cfg.max_seq_length, num_samples=cfg.get("num_samples", -1), convert_labels=self._cfg.convert_labels, ) return torch.utils.data.DataLoader( dataset=dataset, batch_size=self._cfg.batch_size, shuffle=cfg.shuffle, num_workers=cfg.get("num_workers", 2), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), collate_fn=dataset.collate_fn, ) @classmethod def list_available_models(cls) -> Optional[Dict[str, str]]: pass
NeMo-main
nemo/collections/nlp/models/text2sparql/text2sparql_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.glue_benchmark.glue_benchmark_model import GLUEModel
NeMo-main
nemo/collections/nlp/models/glue_benchmark/__init__.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef __all__ = ['compute_metrics'] def accuracy(preds: List[int], labels: List[int]): return {"acc": (preds == labels).mean()} def acc_and_f1(preds: List[int], labels: List[int]): accuracy = (preds == labels).mean() f1 = f1_score(y_true=labels, y_pred=preds) return {"acc": accuracy, "f1": f1} def mcc(preds: List[int], labels: List[int]): return {"mcc": matthews_corrcoef(labels, preds)} def pearson_and_spearman(preds: List[int], labels: List[int]): pearson_corr = pearsonr(preds, labels)[0] spearman_corr = spearmanr(preds, labels)[0] return {"pearson": pearson_corr, "spearmanr": spearman_corr, "pear+spear av": (pearson_corr + spearman_corr) / 2} def compute_metrics(task_name: str, preds: List[int], labels: List[int]) -> Dict[str, float]: """ Computes metrics for GLUE tasks Args: task_name: GLUE task name preds: model predictions labels: golden labels Returns: metrics """ if len(preds) != len(labels): raise ValueError("Predictions and labels must have the same length") metric_fn = accuracy if task_name == 'cola': metric_fn = mcc elif task_name in ['mrpc', 'qqp']: metric_fn = acc_and_f1 elif task_name == 'sts-b': metric_fn = pearson_and_spearman return metric_fn(preds, labels)
NeMo-main
nemo/collections/nlp/models/glue_benchmark/metrics_for_glue.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict, Optional, Union import numpy as np import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from nemo.collections.common.losses import CrossEntropyLoss, MSELoss from nemo.collections.nlp.data.glue_benchmark.glue_benchmark_dataset import GLUE_TASKS_NUM_LABELS, GLUEDataset from nemo.collections.nlp.models.glue_benchmark.metrics_for_glue import compute_metrics from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common import SequenceClassifier, SequenceRegression from nemo.collections.nlp.parts.utils_funcs import list2str, tensor2list from nemo.core.classes import typecheck from nemo.core.neural_types import NeuralType from nemo.utils import logging __all__ = ['GLUEModel'] ''' Some transformer of this code were adapted from the HuggingFace library at https://github.com/huggingface/transformers Example of running a pretrained BERT model on the 9 GLUE tasks, read more about GLUE benchmark here: https://gluebenchmark.com Download the GLUE data by running the script: https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e Some of these tasks have a small dataset and training can lead to high variance in the results between different runs. Below is the median on 5 runs (with different seeds) for each of the metrics on the dev set of the benchmark with an uncased BERT base model (the checkpoint bert-base-uncased) (source https://github.com/huggingface/transformers/tree/master/examples#glue). Task Metric Result CoLA Matthew's corr 48.87 SST-2 Accuracy 91.74 MRPC F1/Accuracy 90.70/86.27 STS-B Person/Spearman corr. 91.39/91.04 QQP Accuracy/F1 90.79/87.66 MNLI Matched acc./Mismatched acc. 83.70/84.83 QNLI Accuracy 89.31 RTE Accuracy 71.43 WNLI Accuracy 43.66 ''' class GLUEModel(NLPModel): @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return self.bert_model.input_types @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return self.pooler.output_types @property def output_module(self): return self.pooler def __init__(self, cfg: DictConfig, trainer: Trainer = None): """ Initializes model to use BERT model for GLUE tasks. """ if cfg.task_name not in cfg.supported_tasks: raise ValueError(f'{cfg.task_name} not in supported task. Choose from {cfg.supported_tasks}') self.task_name = cfg.task_name # needed to setup validation on multiple datasets # MNLI task has two separate dev sets: matched and mismatched if not self._is_model_being_restored(): if self.task_name == "mnli": cfg.validation_ds.ds_item = [ os.path.join(cfg.dataset.data_dir, 'dev_matched.tsv'), os.path.join(cfg.dataset.data_dir, 'dev_mismatched.tsv'), ] else: cfg.validation_ds.ds_item = os.path.join(cfg.dataset.data_dir, cfg.validation_ds.ds_item) cfg.train_ds.ds_item = os.path.join(cfg.dataset.data_dir, cfg.train_ds.ds_item) logging.info(f'Using {cfg.validation_ds.ds_item} for model evaluation.') super().__init__(cfg=cfg, trainer=trainer) num_labels = GLUE_TASKS_NUM_LABELS[self.task_name] # uses [CLS] token for classification (the first token) if self.task_name == "sts-b": self.pooler = SequenceRegression(hidden_size=self.bert_model.config.hidden_size) self.loss = MSELoss() else: self.pooler = SequenceClassifier( hidden_size=self.bert_model.config.hidden_size, num_classes=num_labels, log_softmax=False ) self.loss = CrossEntropyLoss() def update_data_dir(self, data_dir: str) -> None: """ Update data directory and get data stats with Data Descriptor Weights are later used to setup loss Args: data_dir: path to data directory """ self._cfg.dataset.data_dir = data_dir logging.info(f'Setting model.dataset.data_dir to {data_dir}.') if self.task_name == "mnli": self._cfg.validation_ds.ds_item = [ os.path.join(data_dir, 'dev_matched.tsv'), os.path.join(data_dir, 'dev_mismatched.tsv'), ] else: self._cfg.validation_ds.ds_item = os.path.join(data_dir, 'dev.tsv') self._cfg.train_ds.ds_item = os.path.join(data_dir, 'train.tsv') logging.info(f'Using {self._cfg.validation_ds.ds_item} for model evaluation.') @typecheck() def forward(self, input_ids, token_type_ids, attention_mask): hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] output = self.pooler(hidden_states=hidden_states) return output def training_step(self, batch, batch_idx): input_ids, input_type_ids, input_mask, labels = batch model_output = self(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) if self.task_name == "sts-b": loss = self.loss(preds=model_output, labels=labels) else: loss = self.loss(logits=model_output, labels=labels) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', loss) self.log('lr', lr, prog_bar=True) return { 'loss': loss, 'lr': lr, } def validation_step(self, batch, batch_idx, dataloader_idx=0): input_ids, input_type_ids, input_mask, labels = batch model_output = self(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) if self.task_name == "sts-b": val_loss = self.loss(preds=model_output, labels=labels) else: val_loss = self.loss(logits=model_output, labels=labels) if self.task_name != 'sts-b': model_output = torch.argmax(model_output, 1) eval_tensors = {'preds': model_output, 'labels': labels} return {'val_loss': val_loss, 'eval_tensors': eval_tensors} def multi_validation_epoch_end(self, outputs, dataloader_idx: int = 0): """ Called at the end of validation to aggregate outputs. outputs: list of individual outputs of each validation step. """ avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() preds = torch.cat([x['eval_tensors']['preds'] for x in outputs]) labels = torch.cat([x['eval_tensors']['labels'] for x in outputs]) all_preds = [] all_labels = [] if torch.distributed.is_initialized(): world_size = torch.distributed.get_world_size() for ind in range(world_size): all_preds.append(torch.empty_like(preds)) all_labels.append(torch.empty_like(labels)) torch.distributed.all_gather(all_preds, preds) torch.distributed.all_gather(all_labels, labels) else: all_preds.append(preds) all_labels.append(labels) if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0: preds = [] labels = [] for p in all_preds: preds.extend(tensor2list(p)) for l in all_labels: labels.extend(tensor2list(l)) results = compute_metrics(self.task_name, np.array(preds), np.array(labels)) val_name = self._validation_names[dataloader_idx].upper() logging.info(f'{val_name} evaluation: {results}') # writing labels and predictions to a file in output_dir is specified in the config output_dir = self._cfg.output_dir if output_dir: os.makedirs(output_dir, exist_ok=True) filename = os.path.join(output_dir, f'{self.task_name}_{val_name}.txt') logging.info(f'Saving labels and predictions to {filename}') with open(filename, 'w') as f: f.write('labels\t' + list2str(labels) + '\n') f.write('preds\t' + list2str(preds) + '\n') self.log('val_loss', avg_loss) if self.trainer.is_global_zero: for k, v in results.items(): self.log(f'{val_name}_{k}', v, rank_zero_only=True) def setup_training_data(self, train_data_config: Optional[DictConfig] = None): if train_data_config is None: train_data_config = self._cfg.train_ds self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig] = None): if val_data_config is None: val_data_config = self._cfg.validation_ds self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config) def setup_multiple_validation_data(self, val_data_config: Union[DictConfig, Dict] = None): if val_data_config is None: val_data_config = self._cfg.validation_ds return super().setup_multiple_validation_data(val_data_config) def _setup_dataloader_from_config(self, cfg: DictConfig): file_name = cfg.ds_item if not os.path.exists(file_name): raise FileNotFoundError( "GLUE datasets not found. For more details on how to get the data, see: " "https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e" ) dataset = GLUEDataset( file_name=file_name, task_name=self.task_name, tokenizer=self.tokenizer, max_seq_length=self._cfg.dataset.max_seq_length, use_cache=self._cfg.dataset.use_cache, ) return torch.utils.data.DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=self._cfg.dataset.num_workers, pin_memory=self._cfg.dataset.pin_memory, drop_last=self._cfg.dataset.drop_last, ) @classmethod def list_available_models(cls) -> Optional[Dict[str, str]]: pass
NeMo-main
nemo/collections/nlp/models/glue_benchmark/glue_benchmark_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict, List, Optional import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from nemo.collections.common.losses import CrossEntropyLoss from nemo.collections.nlp.data.text_classification import TextClassificationDataset, calc_class_weights from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common import SequenceClassifier from nemo.collections.nlp.parts.utils_funcs import tensor2list from nemo.core.classes.common import typecheck from nemo.core.classes.exportable import Exportable from nemo.utils import logging __all__ = ['TextClassificationModel'] class TextClassificationModel(NLPModel, Exportable): def __init__(self, cfg: DictConfig, trainer: Trainer = None): """Initializes the BERTTextClassifier model.""" # shared params for dataset and data loaders self.dataset_cfg = cfg.dataset self.class_weights = None super().__init__(cfg=cfg, trainer=trainer) self.classifier = SequenceClassifier( hidden_size=self.hidden_size, num_classes=cfg.dataset.num_classes, num_layers=cfg.classifier_head.num_output_layers, activation='relu', log_softmax=False, dropout=cfg.classifier_head.fc_dropout, use_transformer_init=True, idx_conditioned_on=0, ) self.create_loss_module() # setup to track metrics self.classification_report = ClassificationReport( num_classes=cfg.dataset.num_classes, mode='micro', dist_sync_on_step=True ) # register the file containing the labels into the artifacts to get stored in the '.nemo' file later if 'class_labels' in cfg and 'class_labels_file' in cfg.class_labels and cfg.class_labels.class_labels_file: self.register_artifact('class_labels.class_labels_file', cfg.class_labels.class_labels_file) def create_loss_module(self): # create the loss module if it is not yet created by the training data loader if not hasattr(self, 'loss'): if hasattr(self, 'class_weights') and self.class_weights: # You may need to increase the number of epochs for convergence when using weighted_loss self.loss = CrossEntropyLoss(weight=self.class_weights) else: self.loss = CrossEntropyLoss() @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): """ No special modification required for Lightning, define it as you normally would in the `nn.Module` in vanilla PyTorch. """ hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] logits = self.classifier(hidden_states=hidden_states) return logits.float() def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ # forward pass input_ids, input_type_ids, input_mask, labels = batch logits = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) train_loss = self.loss(logits=logits, labels=labels) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', train_loss) self.log('lr', lr, prog_bar=True) return { 'loss': train_loss, 'lr': lr, } def validation_step(self, batch, batch_idx, split="val"): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ input_ids, input_type_ids, input_mask, labels = batch logits = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) val_loss = self.loss(logits=logits, labels=labels) preds = torch.argmax(logits, axis=-1) tp, fn, fp, _ = self.classification_report(preds, labels) loss = {f'{split}_loss': val_loss, 'tp': tp, 'fn': fn, 'fp': fp} if split == 'val': self.validation_step_outputs.append(loss) elif split == 'test': self.test_step_outputs.append(loss) return loss def on_validation_epoch_end(self, split="val"): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ avg_loss = torch.tensor(0) if split == 'val': avg_loss = torch.stack([x[f'val_loss'] for x in self.validation_step_outputs]).mean() self.validation_step_outputs.clear() # free memory elif split == 'test': avg_loss = torch.stack([x[f'test_loss'] for x in self.test_step_outputs]).mean() self.test_step_outputs.clear() # free memory # calculate metrics and classification report precision, recall, f1, report = self.classification_report.compute() logging.info(f'{split}_report: {report}') self.log(f'{split}_loss', avg_loss, prog_bar=True) self.log(f'{split}_precision', precision) self.log(f'{split}_f1', f1) self.log(f'{split}_recall', recall) self.classification_report.reset() def test_step(self, batch, batch_idx): """ Lightning calls this inside the test loop with the data from the test dataloader passed in as `batch`. """ return self.validation_step(batch, batch_idx, 'test') def on_test_epoch_end(self): """ Called at the end of test to aggregate outputs. :param outputs: list of individual outputs of each test step. """ return self.on_validation_epoch_end(split='test') def setup_training_data(self, train_data_config: Optional[DictConfig]): if not train_data_config or not train_data_config.file_path: logging.info( f"Dataloader config or file_path for the train is missing, so no data loader for test is created!" ) self._test_dl = None return self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config) # calculate the class weights to be used in the loss function if self.cfg.dataset.class_balancing == 'weighted_loss': self.class_weights = calc_class_weights(train_data_config.file_path, self.cfg.dataset.num_classes) else: self.class_weights = None # we need to create/update the loss module by using the weights calculated from the training data self.create_loss_module() def setup_validation_data(self, val_data_config: Optional[DictConfig]): if not val_data_config or not val_data_config.file_path: logging.info( f"Dataloader config or file_path for the validation is missing, so no data loader for test is created!" ) self._test_dl = None return self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig]): if not test_data_config or not test_data_config.file_path: logging.info( f"Dataloader config or file_path for the test is missing, so no data loader for test is created!" ) self._test_dl = None return self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config) def _setup_dataloader_from_config(self, cfg: Dict) -> 'torch.utils.data.DataLoader': input_file = cfg.file_path if not os.path.exists(input_file): raise FileNotFoundError( f'{input_file} not found! The data should be be stored in TAB-separated files \n\ "validation_ds.file_path" and "train_ds.file_path" for train and evaluation respectively. \n\ Each line of the files contains text sequences, where words are separated with spaces. \n\ The label of the example is separated with TAB at the end of each line. \n\ Each line of the files should follow the format: \n\ [WORD][SPACE][WORD][SPACE][WORD][...][TAB][LABEL]' ) dataset = TextClassificationDataset( tokenizer=self.tokenizer, input_file=input_file, max_seq_length=self.dataset_cfg.max_seq_length, num_samples=cfg.get("num_samples", -1), shuffle=cfg.shuffle, use_cache=self.dataset_cfg.use_cache, ) return torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=cfg.get("num_workers", 0), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), collate_fn=dataset.collate_fn, ) @torch.no_grad() def classifytext(self, queries: List[str], batch_size: int = 1, max_seq_length: int = -1) -> List[int]: """ Get prediction for the queries Args: queries: text sequences batch_size: batch size to use during inference max_seq_length: sequences longer than max_seq_length will get truncated. default -1 disables truncation. Returns: all_preds: model predictions """ # store predictions for all queries in a single list all_preds = [] mode = self.training device = next(self.parameters()).device try: # Switch model to evaluation mode self.eval() logging_level = logging.get_verbosity() logging.set_verbosity(logging.WARNING) dataloader_cfg = {"batch_size": batch_size, "num_workers": 3, "pin_memory": False} infer_datalayer = self._setup_infer_dataloader(dataloader_cfg, queries, max_seq_length) for i, batch in enumerate(infer_datalayer): input_ids, input_type_ids, input_mask, subtokens_mask = batch logits = self.forward( input_ids=input_ids.to(device), token_type_ids=input_type_ids.to(device), attention_mask=input_mask.to(device), ) preds = tensor2list(torch.argmax(logits, axis=-1)) all_preds.extend(preds) finally: # set mode back to its original value self.train(mode=mode) logging.set_verbosity(logging_level) return all_preds def _setup_infer_dataloader( self, cfg: Dict, queries: List[str], max_seq_length: int = -1 ) -> 'torch.utils.data.DataLoader': """ Setup function for a infer data loader. Args: cfg: config dictionary containing data loader params like batch_size, num_workers and pin_memory queries: text max_seq_length: maximum length of queries, default is -1 for no limit Returns: A pytorch DataLoader. """ dataset = TextClassificationDataset(tokenizer=self.tokenizer, queries=queries, max_seq_length=max_seq_length) return torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg["batch_size"], shuffle=False, num_workers=cfg.get("num_workers", 0), pin_memory=cfg.get("pin_memory", False), drop_last=False, collate_fn=dataset.collate_fn, ) @classmethod def list_available_models(cls) -> Optional[Dict[str, str]]: pass
NeMo-main
nemo/collections/nlp/models/text_classification/text_classification_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.text_classification.text_classification_model import TextClassificationModel
NeMo-main
nemo/collections/nlp/models/text_classification/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from time import perf_counter from typing import Dict, List, Optional import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from torch import nn from transformers import AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification from transformers.tokenization_utils_base import BatchEncoding from nemo.collections.nlp.data.text_normalization import TextNormalizationTaggerDataset, constants from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.models.duplex_text_normalization.utils import has_numbers from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.core.neural_types import ChannelType, LogitsType, MaskType, NeuralType from nemo.utils import logging __all__ = ['DuplexTaggerModel'] class DuplexTaggerModel(NLPModel): """ Transformer-based (duplex) tagger model for TN/ITN. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "attention_mask": NeuralType(('B', 'T'), MaskType(), optional=True), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"logits": NeuralType(('B', 'T', 'D'), LogitsType())} @property def input_module(self): return self @property def output_module(self): return self def __init__(self, cfg: DictConfig, trainer: Trainer = None): self.tokenizer = AutoTokenizer.from_pretrained(cfg.tokenizer, add_prefix_space=True) super().__init__(cfg=cfg, trainer=trainer) self.num_labels = len(constants.ALL_TAG_LABELS) self.mode = cfg.get('mode', 'joint') self.model = AutoModelForTokenClassification.from_pretrained(cfg.transformer, num_labels=self.num_labels) self.transformer_name = cfg.transformer self.max_sequence_len = cfg.get('max_sequence_len', self.tokenizer.model_max_length) # Loss Functions self.loss_fct = nn.CrossEntropyLoss(ignore_index=constants.LABEL_PAD_TOKEN_ID) # setup to track metrics self.classification_report = ClassificationReport( self.num_labels, constants.LABEL_IDS, mode='micro', dist_sync_on_step=True ) # Language self.lang = cfg.get('lang', None) @typecheck() def forward(self, input_ids, attention_mask): logits = self.model(input_ids=input_ids, attention_mask=attention_mask).logits return logits # Training def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ num_labels = self.num_labels # Apply Transformer tag_logits = self.forward(input_ids=batch['input_ids'], attention_mask=batch['attention_mask']) # Loss train_loss = self.loss_fct(tag_logits.view(-1, num_labels), batch['labels'].view(-1)) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', train_loss) self.log('lr', lr, prog_bar=True) return {'loss': train_loss, 'lr': lr} # Validation and Testing def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ # Apply Transformer tag_logits = self.forward(input_ids=batch['input_ids'], attention_mask=batch['attention_mask']) tag_preds = torch.argmax(tag_logits, dim=2) # Update classification_report predictions, labels = tag_preds.tolist(), batch['labels'].tolist() for prediction, label in zip(predictions, labels): cur_preds = [p for (p, l) in zip(prediction, label) if l != constants.LABEL_PAD_TOKEN_ID] cur_labels = [l for (p, l) in zip(prediction, label) if l != constants.LABEL_PAD_TOKEN_ID] self.classification_report( torch.tensor(cur_preds).to(self.device), torch.tensor(cur_labels).to(self.device) ) def on_validation_epoch_end(self): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ # calculate metrics and classification report precision, _, _, report = self.classification_report.compute() logging.info(report) self.log('val_token_precision', precision) self.classification_report.reset() def test_step(self, batch, batch_idx): """ Lightning calls this inside the test loop with the data from the test dataloader passed in as `batch`. """ return self.validation_step(batch, batch_idx) def on_test_epoch_end(self): """ Called at the end of test to aggregate outputs. :param outputs: list of individual outputs of each test step. """ return self.on_validation_epoch_end() # Functions for inference @torch.no_grad() def _infer(self, sents: List[List[str]], inst_directions: List[str]): """ Main function for Inference Args: sents: A list of inputs tokenized by a basic tokenizer. inst_directions: A list of str where each str indicates the direction of the corresponding instance (i.e., INST_BACKWARD for ITN or INST_FORWARD for TN). Returns: all_tag_preds: A list of list where each list contains the raw tag predictions for the corresponding input words in sents. nb_spans: A list of ints where each int indicates the number of semiotic spans in input words. span_starts: A list of lists where each list contains the starting locations of semiotic spans in input words. span_ends: A list of lists where each list contains the ending locations of semiotic spans in input words. """ self.eval() # Append prefix texts = [] for ix, sent in enumerate(sents): if inst_directions[ix] == constants.INST_BACKWARD: prefix = constants.ITN_PREFIX elif inst_directions[ix] == constants.INST_FORWARD: prefix = constants.TN_PREFIX texts.append([prefix] + sent) # Apply the model encodings = self.tokenizer(texts, is_split_into_words=True, padding=True, truncation=True, return_tensors='pt') inputs = encodings encodings_reduced = None # check that the length of the 'input_ids' equals as least the length of the original input # if an input symbol is missing in the tokenizer's vocabulary (such as emoji or a Chinese character), it could be skipped len_texts = [len(x) for x in texts] len_ids = [ len(self.tokenizer.convert_ids_to_tokens(x, skip_special_tokens=True)) for x in encodings['input_ids'] ] idx_valid = [i for i, (t, enc) in enumerate(zip(len_texts, len_ids)) if enc >= t] if len(idx_valid) != len(texts): logging.warning( 'Some of the examples have symbols that were skipped during the tokenization. Such examples will be skipped.' ) for i in range(len(texts)): if i not in idx_valid: logging.warning(f'Invalid input: {texts[i]}') # skip these sentences and fall back to the input # exclude invalid examples from the encodings encodings_reduced = {k: tensor[idx_valid, :] for k, tensor in encodings.items()} for k, tensor in encodings_reduced.items(): if tensor.ndim == 1: encodings_reduced[k] = tensor.unsqueeze(dim=0) inputs = BatchEncoding(data=encodings_reduced) # skip the batch if no valid inputs are present if encodings_reduced and encodings_reduced['input_ids'].numel() == 0: # -1 to exclude tag for the prompt token all_tag_preds = [[constants.SAME_TAG] * (len(x) - 1) for x in texts] nb_spans = [0] * len(texts) span_starts = [] * len(texts) span_ends = [] * len(texts) return all_tag_preds, nb_spans, span_starts, span_ends logits = self.model(**inputs.to(self.device)).logits pred_indexes = torch.argmax(logits, dim=-1).tolist() # Extract all_tag_preds for words all_tag_preds = [] batch_size, max_len = encodings['input_ids'].size() pred_idx = 0 for ix in range(batch_size): if ix in idx_valid: # remove first special token and task prefix token raw_tag_preds = [constants.ALL_TAG_LABELS[p] for p in pred_indexes[pred_idx][2:]] tag_preds, previous_word_idx = [], None word_ids = encodings.word_ids(batch_index=ix)[2:] for jx, word_idx in enumerate(word_ids): if word_idx is None: continue if word_idx != previous_word_idx: tag_preds.append(raw_tag_preds[jx]) # without special token at index 0 previous_word_idx = word_idx pred_idx += 1 else: # for excluded examples, use SAME tags for all words tag_preds = [constants.SAME_TAG] * (len(texts[ix]) - 1) all_tag_preds.append(tag_preds) # Post-correction of simple tagger mistakes, i.e. I- tag is proceeding the B- tag in a span all_tag_preds = [ self._postprocess_tag_preds(words, inst_dir, ps) for words, inst_dir, ps in zip(sents, inst_directions, all_tag_preds) ] # Decoding nb_spans, span_starts, span_ends = self.decode_tag_preds(all_tag_preds) return all_tag_preds, nb_spans, span_starts, span_ends def _postprocess_tag_preds(self, words: List[str], inst_dir: str, preds: List[str]): """ Function for postprocessing the raw tag predictions of the model. It corrects obvious mistakes in the tag predictions such as a TRANSFORM span starts with I_TRANSFORM_TAG (instead of B_TRANSFORM_TAG). Args: words: The words in the input sentence inst_dir: The direction of the instance (i.e., constants.INST_BACKWARD or INST_FORWARD). preds: The raw tag predictions Returns: The processed raw tag predictions """ final_preds = [] for ix, p in enumerate(preds): # a TRANSFORM span starts with I_TRANSFORM_TAG, change to B_TRANSFORM_TAG if p == constants.I_PREFIX + constants.TRANSFORM_TAG: if ix == 0 or (not constants.TRANSFORM_TAG in final_preds[ix - 1]): final_preds.append(constants.B_PREFIX + constants.TRANSFORM_TAG) continue # a span has numbers but does not have TRANSFORM tags (for TN) if inst_dir == constants.INST_FORWARD: if has_numbers(words[ix]) and (not constants.TRANSFORM_TAG in p): final_preds.append(constants.B_PREFIX + constants.TRANSFORM_TAG) continue # Convert B-TASK tag to B-SAME tag if p == constants.B_PREFIX + constants.TASK_TAG: final_preds.append(constants.B_PREFIX + constants.SAME_TAG) continue # Default final_preds.append(p) return final_preds def decode_tag_preds(self, tag_preds: List[List[str]]): """ Decoding the raw tag predictions to locate the semiotic spans in the input texts. Args: tag_preds: A list of list where each list contains the raw tag predictions for the corresponding input words. Returns: nb_spans: A list of ints where each int indicates the number of semiotic spans in each input. span_starts: A list of lists where each list contains the starting locations of semiotic spans in an input words. span_ends: A list of lists where each list contains the inclusive ending locations of semiotic spans in an input words. """ nb_spans, span_starts, span_ends = [], [], [] for i, preds in enumerate(tag_preds): cur_nb_spans, cur_span_start = 0, None cur_span_starts, cur_span_ends = [], [] for ix, pred in enumerate(preds + ['EOS']): if pred != constants.I_PREFIX + constants.TRANSFORM_TAG: if not cur_span_start is None: cur_nb_spans += 1 cur_span_starts.append(cur_span_start) cur_span_ends.append(ix - 1) cur_span_start = None if pred == constants.B_PREFIX + constants.TRANSFORM_TAG: cur_span_start = ix nb_spans.append(cur_nb_spans) span_starts.append(cur_span_starts) span_ends.append(cur_span_ends) return nb_spans, span_starts, span_ends # Functions for processing data def setup_training_data(self, train_data_config: Optional[DictConfig]): if not train_data_config or not train_data_config.data_path: logging.info( f"Dataloader config or file_path for the train is missing, so no data loader for train is created!" ) self._train_dl = None return self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config, data_split="train") def setup_validation_data(self, val_data_config: Optional[DictConfig]): if not val_data_config or not val_data_config.data_path: logging.info( f"Dataloader config or file_path for the validation is missing, so no data loader for validation is created!" ) self._validation_dl = None return self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config, data_split="val") def setup_test_data(self, test_data_config: Optional[DictConfig]): if not test_data_config or test_data_config.data_path is None: logging.info( f"Dataloader config or file_path for the test is missing, so no data loader for test is created!" ) self._test_dl = None return self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, data_split="test") def _setup_dataloader_from_config(self, cfg: DictConfig, data_split: str): start_time = perf_counter() logging.info(f'Creating {data_split} dataset') input_file = cfg.data_path tagger_data_augmentation = cfg.get('tagger_data_augmentation', False) dataset = TextNormalizationTaggerDataset( input_file=input_file, tokenizer=self.tokenizer, tokenizer_name=self.transformer_name, mode=self.mode, tagger_data_augmentation=tagger_data_augmentation, lang=self.lang, max_seq_length=self.max_sequence_len, use_cache=cfg.get('use_cache', False), max_insts=cfg.get('max_insts', -1), ) data_collator = DataCollatorForTokenClassification(self.tokenizer) dl = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=cfg.shuffle, collate_fn=data_collator ) running_time = perf_counter() - start_time logging.info(f'Took {running_time} seconds') return dl def input_example(self): """ Generates input examples for tracing etc. Returns: A tuple of input examples. """ sample = next(self.parameters()) input_ids = torch.randint(low=0, high=2048, size=(2, 16), device=sample.device) attention_mask = torch.randint(low=0, high=1, size=(2, 16), device=sample.device) return tuple([input_ids, attention_mask]) @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] result.append( PretrainedModelInfo( pretrained_model_name="neural_text_normalization_t5", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/neural_text_normalization_t5/versions/1.5.0/files/neural_text_normalization_t5_tagger.nemo", description="Text Normalization model's tagger model.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="itn_en_t5", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/itn_en_t5/versions/1.11.0/files/itn_en_t5_tagger.nemo", description="English Inverse Text Normalization model's tagger model.", ) ) return result
NeMo-main
nemo/collections/nlp/models/duplex_text_normalization/duplex_tagger.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from collections import defaultdict from math import ceil from typing import Dict, List, Optional, Union import torch from omegaconf import DictConfig from pytorch_lightning import Trainer from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, DataCollatorForSeq2Seq import nemo.collections.nlp.data.text_normalization.constants as constants from nemo.collections.common.tokenizers.moses_tokenizers import MosesProcessor from nemo.collections.nlp.data.text_normalization import TextNormalizationTestDataset from nemo.collections.nlp.data.text_normalization.decoder_dataset import ( TarredTextNormalizationDecoderDataset, TextNormalizationDecoderDataset, ) from nemo.collections.nlp.models.duplex_text_normalization.utils import get_formatted_string from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.core.neural_types import ChannelType, LabelsType, LossType, MaskType, NeuralType from nemo.utils import logging try: from nemo_text_processing.text_normalization.normalize_with_audio import NormalizerWithAudio PYNINI_AVAILABLE = True except (ImportError, ModuleNotFoundError): PYNINI_AVAILABLE = False __all__ = ['DuplexDecoderModel'] class DuplexDecoderModel(NLPModel): """ Transformer-based (duplex) decoder model for TN/ITN. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "decoder_input_ids": NeuralType(('B', 'T'), ChannelType()), "attention_mask": NeuralType(('B', 'T'), MaskType(), optional=True), "labels": NeuralType(('B', 'T'), LabelsType()), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"loss": NeuralType((), LossType())} def __init__(self, cfg: DictConfig, trainer: Trainer = None): # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable # Global_rank and local_rank is set by LightningModule in Lightning 1.2.0 self.world_size = 1 if trainer is not None: self.world_size = trainer.num_nodes * trainer.num_devices self.tokenizer = AutoTokenizer.from_pretrained(cfg.tokenizer) super().__init__(cfg=cfg, trainer=trainer, no_lm_init=True) self.model = AutoModelForSeq2SeqLM.from_pretrained(cfg.transformer) self.max_sequence_len = cfg.get('max_sequence_len', self.tokenizer.model_max_length) self.mode = cfg.get('mode', 'joint') self.transformer_name = cfg.transformer # Language self.lang = cfg.get('lang', None) # Covering Grammars self.cg_normalizer = None # Default # We only support integrating with English TN covering grammars at the moment self.use_cg = cfg.get('use_cg', False) and self.lang == constants.ENGLISH if self.use_cg: self.setup_cgs(cfg) # setup processor for detokenization self.processor = MosesProcessor(lang_id=self.lang) # Setup covering grammars (if enabled) def setup_cgs(self, cfg: DictConfig): """ Setup covering grammars (if enabled). :param cfg: Configs of the decoder model. """ self.use_cg = True self.neural_confidence_threshold = cfg.get('neural_confidence_threshold', 0.99) self.n_tagged = cfg.get('n_tagged', 1) input_case = 'cased' # input_case is cased by default if hasattr(self.tokenizer, 'do_lower_case') and self.tokenizer.do_lower_case: input_case = 'lower_cased' if PYNINI_AVAILABLE: self.cg_normalizer = NormalizerWithAudio(input_case=input_case, lang=self.lang) else: self.cg_normalizer = None logging.warning( "`nemo_text_processing` is not installed, see https://github.com/NVIDIA/NeMo-text-processing for details" ) @typecheck() def forward(self, input_ids, decoder_input_ids, attention_mask, labels): outputs = self.model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, labels=labels ) return outputs.loss # Training def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ # tarred dataset contains batches, and the first dimension of size 1 added by the DataLoader # (batch_size is set to 1) is redundant if batch['input_ids'].ndim == 3: batch = {k: v.squeeze(dim=0) for k, v in batch.items()} # Apply Transformer train_loss = self.forward( input_ids=batch['input_ids'], decoder_input_ids=batch['decoder_input_ids'], attention_mask=batch['attention_mask'], labels=batch['labels'], ) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', train_loss) self.log('lr', lr, prog_bar=True) return {'loss': train_loss, 'lr': lr} # Validation and Testing def validation_step(self, batch, batch_idx, dataloader_idx=0, split="val"): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ # Apply Transformer val_loss = self.forward( input_ids=batch['input_ids'], decoder_input_ids=batch['decoder_input_ids'], attention_mask=batch['attention_mask'], labels=batch['labels'], ) labels_str = self.tokenizer.batch_decode( torch.ones_like(batch['labels']) * ((batch['labels'] == -100) * 100) + batch['labels'], skip_special_tokens=True, ) generated_texts, _, _ = self._generate_predictions( input_ids=batch['input_ids'], model_max_len=self.max_sequence_len ) results = defaultdict(int) for idx, class_id in enumerate(batch['semiotic_class_id']): direction = constants.TASK_ID_TO_MODE[batch['direction'][idx][0].item()] class_name = self._val_id_to_class[dataloader_idx][class_id[0].item()] pred_result = TextNormalizationTestDataset.is_same( generated_texts[idx], labels_str[idx], constants.DIRECTIONS_TO_MODE[direction] ) results[f"correct_{class_name}_{direction}"] += torch.tensor(pred_result, dtype=torch.int).to(self.device) results[f"total_{class_name}_{direction}"] += torch.tensor(1).to(self.device) results[f"{split}_loss"] = val_loss return dict(results) def multi_validation_epoch_end(self, outputs: List, dataloader_idx=0, split="val"): """ Called at the end of validation to aggregate outputs. Args: outputs: list of individual outputs of each validation step. """ avg_loss = torch.stack([x[f'{split}_loss'] for x in outputs]).mean() # create a dictionary to store all the results results = {} directions = [constants.TN_MODE, constants.ITN_MODE] if self.mode == constants.JOINT_MODE else [self.mode] for class_name in self._val_class_to_id[dataloader_idx]: for direction in directions: results[f"correct_{class_name}_{direction}"] = 0 results[f"total_{class_name}_{direction}"] = 0 for key in results: count = [x[key] for x in outputs if key in x] count = torch.stack(count).sum() if len(count) > 0 else torch.tensor(0).to(self.device) results[key] = count all_results = defaultdict(list) if torch.distributed.is_initialized(): world_size = torch.distributed.get_world_size() for ind in range(world_size): for key, v in results.items(): all_results[key].append(torch.empty_like(v)) for key, v in results.items(): torch.distributed.all_gather(all_results[key], v) else: for key, v in results.items(): all_results[key].append(v) if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0: if split == "test": val_name = self._test_names[dataloader_idx].upper() else: val_name = self._validation_names[dataloader_idx].upper() final_results = defaultdict(int) for key, v in all_results.items(): for _v in v: final_results[key] += _v.item() accuracies = defaultdict(dict) for key, value in final_results.items(): if "total_" in key: _, class_name, mode = key.split('_') correct = final_results[f"correct_{class_name}_{mode}"] if value == 0: accuracies[mode][class_name] = (0, correct, value) else: acc = round(correct / value * 100, 3) accuracies[mode][class_name] = (acc, correct, value) for mode, values in accuracies.items(): report = f"Accuracy {mode.upper()} task {val_name}:\n" report += '\n'.join( [ get_formatted_string((class_name, f'{v[0]}% ({v[1]}/{v[2]})'), str_max_len=24) for class_name, v in values.items() ] ) # calculate average across all classes all_total = 0 all_correct = 0 for _, class_values in values.items(): _, correct, total = class_values all_correct += correct all_total += total all_acc = round((all_correct / all_total) * 100, 3) if all_total > 0 else 0 report += '\n' + get_formatted_string( ('AVG', f'{all_acc}% ({all_correct}/{all_total})'), str_max_len=24 ) logging.info(report) accuracies[mode]['AVG'] = [all_acc] self.log(f'{split}_loss', avg_loss) if self.trainer.is_global_zero: for mode in accuracies: for class_name, values in accuracies[mode].items(): self.log(f'{val_name}_{mode.upper()}_acc_{class_name.upper()}', values[0], rank_zero_only=True) return { f'{split}_loss': avg_loss, } def test_step(self, batch, batch_idx, dataloader_idx: int = 0): """ Lightning calls this inside the test loop with the data from the test dataloader passed in as `batch`. """ return self.validation_step(batch, batch_idx, dataloader_idx, split="test") def multi_test_epoch_end(self, outputs, dataloader_idx: int = 0): """ Called at the end of test to aggregate outputs. outputs: list of individual outputs of each test step. """ return self.multi_validation_epoch_end(outputs, dataloader_idx, split="test") @torch.no_grad() def _generate_predictions(self, input_ids: torch.Tensor, model_max_len: int = 512): """ Generates predictions """ outputs = self.model.generate( input_ids, output_scores=True, return_dict_in_generate=True, max_length=model_max_len ) generated_ids, sequence_toks_scores = outputs['sequences'], outputs['scores'] generated_texts = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_texts, generated_ids, sequence_toks_scores # Functions for inference @torch.no_grad() def _infer( self, sents: List[List[str]], nb_spans: List[int], span_starts: List[List[int]], span_ends: List[List[int]], inst_directions: List[str], ): """ Main function for Inference Args: sents: A list of inputs tokenized by a basic tokenizer. nb_spans: A list of ints where each int indicates the number of semiotic spans in each input. span_starts: A list of lists where each list contains the starting locations of semiotic spans in an input. span_ends: A list of lists where each list contains the ending locations of semiotic spans in an input. inst_directions: A list of str where each str indicates the direction of the corresponding instance (i.e., INST_BACKWARD for ITN or INST_FORWARD for TN). Returns: A list of lists where each list contains the decoded spans for the corresponding input. """ self.eval() if sum(nb_spans) == 0: return [[]] * len(sents) model, tokenizer = self.model, self.tokenizer ctx_size = constants.DECODE_CTX_SIZE extra_id_0 = constants.EXTRA_ID_0 extra_id_1 = constants.EXTRA_ID_1 """ Build all_inputs - extracted spans to be transformed by the decoder model Inputs for TN direction have "0" prefix, while the backward, ITN direction, has prefix "1" "input_centers" - List[str] - ground-truth labels for the span """ input_centers, input_dirs, all_inputs = [], [], [] for ix, sent in enumerate(sents): cur_inputs = [] for jx in range(nb_spans[ix]): cur_start = span_starts[ix][jx] cur_end = span_ends[ix][jx] ctx_left = sent[max(0, cur_start - ctx_size) : cur_start] ctx_right = sent[cur_end + 1 : cur_end + 1 + ctx_size] span_words = sent[cur_start : cur_end + 1] span_words_str = ' '.join(span_words) input_centers.append(span_words_str) input_dirs.append(inst_directions[ix]) # Build cur_inputs if inst_directions[ix] == constants.INST_BACKWARD: cur_inputs = [constants.ITN_PREFIX] if inst_directions[ix] == constants.INST_FORWARD: cur_inputs = [constants.TN_PREFIX] cur_inputs += ctx_left cur_inputs += [extra_id_0] + span_words_str.split(' ') + [extra_id_1] cur_inputs += ctx_right all_inputs.append(' '.join(cur_inputs)) # Apply the decoding model batch = tokenizer(all_inputs, padding=True, return_tensors='pt') input_ids = batch['input_ids'].to(self.device) generated_texts, generated_ids, sequence_toks_scores = self._generate_predictions( input_ids=input_ids, model_max_len=self.max_sequence_len ) # Use covering grammars (if enabled) if self.use_cg: # Compute sequence probabilities sequence_probs = torch.ones(len(all_inputs)).to(self.device) for ix, cur_toks_scores in enumerate(sequence_toks_scores): cur_generated_ids = generated_ids[:, ix + 1].tolist() cur_toks_probs = torch.nn.functional.softmax(cur_toks_scores, dim=-1) # Compute selected_toks_probs selected_toks_probs = [] for jx, _id in enumerate(cur_generated_ids): if _id != self.tokenizer.pad_token_id: selected_toks_probs.append(cur_toks_probs[jx, _id]) else: selected_toks_probs.append(1) selected_toks_probs = torch.tensor(selected_toks_probs).to(self.device) sequence_probs *= selected_toks_probs # For TN cases where the neural model is not confident, use CGs neural_confidence_threshold = self.neural_confidence_threshold for ix, (_dir, _input, _prob) in enumerate(zip(input_dirs, input_centers, sequence_probs)): if _dir == constants.INST_FORWARD and _prob < neural_confidence_threshold: try: cg_outputs = self.cg_normalizer.normalize(text=_input, verbose=False, n_tagged=self.n_tagged) generated_texts[ix] = list(cg_outputs)[0] except: # if there is any exception, fall back to the input generated_texts[ix] = _input # Prepare final_texts final_texts, span_ctx = [], 0 for nb_span in nb_spans: cur_texts = [] for i in range(nb_span): cur_texts.append(generated_texts[span_ctx]) span_ctx += 1 final_texts.append(cur_texts) return final_texts # Functions for processing data def setup_training_data(self, train_data_config: Optional[DictConfig]): if not train_data_config or not train_data_config.data_path: logging.info( f"Dataloader config or file_path for the train is missing, so no data loader for train is created!" ) self.train_dataset, self._train_dl = None, None return self.train_dataset, self._train_dl = self._setup_dataloader_from_config( cfg=train_data_config, data_split="train" ) # Need to set this because if using an IterableDataset, the length of the dataloader is the total number # of samples rather than the number of batches, and this messes up the tqdm progress bar. # So we set the number of steps manually (to the correct number) to fix this. if 'use_tarred_dataset' in train_data_config and train_data_config['use_tarred_dataset']: # We also need to check if limit_train_batches is already set. # If it's an int, we assume that the user has set it to something sane, i.e. <= # training batches, # and don't change it. Otherwise, adjust batches accordingly if it's a float (including 1.0). if self._trainer is not None and isinstance(self._trainer.limit_train_batches, float): self._trainer.limit_train_batches = int( self._trainer.limit_train_batches * ceil(len(self._train_dl.dataset) / self.world_size) ) elif self._trainer is None: logging.warning( "Model Trainer was not set before constructing the dataset, incorrect number of " "training batches will be used. Please set the trainer and rebuild the dataset." ) def setup_validation_data(self, val_data_config: Optional[DictConfig]): if not val_data_config or not val_data_config.data_path: logging.info( f"Dataloader config or file_path for the validation is missing, so no data loader for validation is created!" ) self.validation_dataset, self._validation_dl = None, None return self.validation_dataset, self._validation_dl = self._setup_dataloader_from_config( cfg=val_data_config, data_split="val" ) # Need to set this because if using an IterableDataset, the length of the dataloader is the total number # of samples rather than the number of batches, and this messes up the tqdm progress bar. # So we set the number of steps manually (to the correct number) to fix this. if 'use_tarred_dataset' in val_data_config and val_data_config['use_tarred_dataset']: # We also need to check if limit_val_batches is already set. # If it's an int, we assume that the user has set it to something sane, i.e. <= # validation batches, # and don't change it. Otherwise, adjust batches accordingly if it's a float (including 1.0). if self._trainer is not None and isinstance(self._trainer.limit_val_batches, float): self._trainer.limit_val_batches = int( self._trainer.limit_val_batches * ceil(len(self._validation_dl.dataset) / self.world_size) ) elif self._trainer is None: logging.warning( "Model Trainer was not set before constructing the dataset, incorrect number of " "validation batches will be used. Please set the trainer and rebuild the dataset." ) def setup_multiple_validation_data(self, val_data_config: Union[DictConfig, Dict] = None): if val_data_config is None: val_data_config = self._cfg.validation_ds return super().setup_multiple_validation_data(val_data_config) def setup_multiple_test_data(self, test_data_config: Union[DictConfig, Dict] = None): if test_data_config is None: test_data_config = self._cfg.test_ds return super().setup_multiple_test_data(test_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig]): if not test_data_config or test_data_config.data_path is None: logging.info( f"Dataloader config or file_path for the test is missing, so no data loader for test is created!" ) self.test_dataset, self._test_dl = None, None return self.test_dataset, self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, data_split="test") def _setup_dataloader_from_config(self, cfg: DictConfig, data_split: str): logging.info(f"Creating {data_split} dataset") shuffle = cfg["shuffle"] if cfg.get("use_tarred_dataset", False): logging.info('Tarred dataset') metadata_file = cfg["tar_metadata_file"] if metadata_file is None or not os.path.exists(metadata_file): raise FileNotFoundError(f"Trying to use tarred dataset but could not find {metadata_file}.") with open(metadata_file, "r") as f: metadata = json.load(f) num_batches = metadata["num_batches"] tar_files = os.path.join(os.path.dirname(metadata_file), metadata["text_tar_filepaths"]) logging.info(f"Loading {tar_files}") dataset = TarredTextNormalizationDecoderDataset( text_tar_filepaths=tar_files, num_batches=num_batches, shuffle_n=cfg.get("tar_shuffle_n", 4 * cfg['batch_size']) if shuffle else 0, shard_strategy=cfg.get("shard_strategy", "scatter"), global_rank=self.global_rank, world_size=self.world_size, ) dl = torch.utils.data.DataLoader( dataset=dataset, batch_size=1, sampler=None, num_workers=cfg.get("num_workers", 2), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) else: input_file = cfg.data_path if not os.path.exists(input_file): raise ValueError(f"{input_file} not found.") dataset = TextNormalizationDecoderDataset( input_file=input_file, tokenizer=self.tokenizer, tokenizer_name=self.transformer_name, mode=self.mode, max_len=self.max_sequence_len, decoder_data_augmentation=cfg.get('decoder_data_augmentation', False) if data_split == "train" else False, lang=self.lang, use_cache=cfg.get('use_cache', False), max_insts=cfg.get('max_insts', -1), do_tokenize=True, ) # create and save class names to class_ids mapping for validation # (each validation set might have different classes) if data_split in ['val', 'test']: if not hasattr(self, "_val_class_to_id"): self._val_class_to_id = [] self._val_id_to_class = [] self._val_class_to_id.append(dataset.label_ids_semiotic) self._val_id_to_class.append({v: k for k, v in dataset.label_ids_semiotic.items()}) data_collator = DataCollatorForSeq2Seq( self.tokenizer, model=self.model, label_pad_token_id=constants.LABEL_PAD_TOKEN_ID, padding=True ) dl = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=shuffle, collate_fn=data_collator, num_workers=cfg.get("num_workers", 3), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) return dataset, dl @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] result.append( PretrainedModelInfo( pretrained_model_name="neural_text_normalization_t5", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/neural_text_normalization_t5/versions/1.5.0/files/neural_text_normalization_t5_decoder.nemo", description="Text Normalization model's decoder model.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="itn_en_t5", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/itn_en_t5/versions/1.11.0/files/itn_en_t5_decoder.nemo", description="English Inverse Text Normalization model's decoder model.", ) ) return result
NeMo-main
nemo/collections/nlp/models/duplex_text_normalization/duplex_decoder.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.duplex_text_normalization.duplex_decoder import DuplexDecoderModel from nemo.collections.nlp.models.duplex_text_normalization.duplex_tagger import DuplexTaggerModel from nemo.collections.nlp.models.duplex_text_normalization.duplex_tn import DuplexTextNormalizationModel
NeMo-main
nemo/collections/nlp/models/duplex_text_normalization/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from math import ceil from time import perf_counter from typing import List import numpy as np import torch.nn as nn from tqdm import tqdm from nemo.collections.nlp.data.text_normalization import TextNormalizationTestDataset, constants from nemo.collections.nlp.data.text_normalization.utils import input_preprocessing from nemo.collections.nlp.models.duplex_text_normalization.utils import get_formatted_string from nemo.utils import logging try: from nemo_text_processing.text_normalization.data_loader_utils import post_process_punct PYNINI_AVAILABLE = True except (ImportError, ModuleNotFoundError): PYNINI_AVAILABLE = False __all__ = ['DuplexTextNormalizationModel'] class DuplexTextNormalizationModel(nn.Module): """ DuplexTextNormalizationModel is a wrapper class that can be used to encapsulate a trained tagger and a trained decoder. The class is intended to be used for inference only (e.g., for evaluation). """ def __init__(self, tagger, decoder, lang): super(DuplexTextNormalizationModel, self).__init__() self.tagger = tagger self.decoder = decoder self.lang = lang def evaluate( self, dataset: TextNormalizationTestDataset, batch_size: int, errors_log_fp: str, verbose: bool = True ): """ Function for evaluating the performance of the model on a dataset Args: dataset: The dataset to be used for evaluation. batch_size: Batch size to use during inference. You can set it to be 1 (no batching) if you want to measure the running time of the model per individual example (assuming requests are coming to the model one-by-one). errors_log_fp: Path to the file for logging the errors verbose: if true prints and logs various evaluation results Returns: results: A Dict containing the evaluation results (e.g., accuracy, running time) """ results = {} error_f = open(errors_log_fp, 'w+') # Apply the model on the dataset ( all_run_times, all_dirs, all_inputs, all_targets, all_classes, all_nb_spans, all_span_starts, all_span_ends, all_output_spans, ) = ([], [], [], [], [], [], [], [], []) all_tag_preds, all_final_preds = [], [] nb_iters = int(ceil(len(dataset) / batch_size)) for i in tqdm(range(nb_iters)): start_idx = i * batch_size end_idx = (i + 1) * batch_size batch_insts = dataset[start_idx:end_idx] ( batch_dirs, batch_inputs, batch_targets, batch_classes, batch_nb_spans, batch_span_starts, batch_span_ends, ) = zip(*batch_insts) # Inference and Running Time Measurement batch_start_time = perf_counter() batch_tag_preds, batch_output_spans, batch_final_preds = self._infer( batch_inputs, batch_dirs, processed=True ) batch_run_time = (perf_counter() - batch_start_time) * 1000 # milliseconds all_run_times.append(batch_run_time) # Update all_dirs, all_inputs, all_tag_preds, all_final_preds and all_targets all_dirs.extend(batch_dirs) all_inputs.extend(batch_inputs) all_tag_preds.extend(batch_tag_preds) all_final_preds.extend(batch_final_preds) all_targets.extend(batch_targets) all_classes.extend(batch_classes) all_nb_spans.extend(batch_nb_spans) all_span_starts.extend(batch_span_starts) all_span_ends.extend(batch_span_ends) all_output_spans.extend(batch_output_spans) # Metrics tn_error_ctx, itn_error_ctx = 0, 0 for direction in constants.INST_DIRECTIONS: ( cur_dirs, cur_inputs, cur_tag_preds, cur_final_preds, cur_targets, cur_classes, cur_nb_spans, cur_span_starts, cur_span_ends, cur_output_spans, ) = ([], [], [], [], [], [], [], [], [], []) for dir, _input, tag_pred, final_pred, target, cls, nb_spans, span_starts, span_ends, output_spans in zip( all_dirs, all_inputs, all_tag_preds, all_final_preds, all_targets, all_classes, all_nb_spans, all_span_starts, all_span_ends, all_output_spans, ): if dir == direction: cur_dirs.append(dir) cur_inputs.append(_input) cur_tag_preds.append(tag_pred) cur_final_preds.append(final_pred) cur_targets.append(target) cur_classes.append(cls) cur_nb_spans.append(nb_spans) cur_span_starts.append(span_starts) cur_span_ends.append(span_ends) cur_output_spans.append(output_spans) nb_instances = len(cur_final_preds) cur_targets_sent = [" ".join(x) for x in cur_targets] sent_accuracy = TextNormalizationTestDataset.compute_sent_accuracy( cur_final_preds, cur_targets_sent, cur_dirs ) class_accuracy = TextNormalizationTestDataset.compute_class_accuracy( [x.split() for x in cur_inputs], cur_targets, cur_tag_preds, cur_dirs, cur_output_spans, cur_classes, cur_nb_spans, cur_span_ends, ) if verbose: logging.info(f'\n============ Direction {direction} ============') logging.info(f'Sentence Accuracy: {sent_accuracy}') logging.info(f'nb_instances: {nb_instances}') if not isinstance(class_accuracy, str): log_class_accuracies = "" for key, value in class_accuracy.items(): log_class_accuracies += f"\n\t{key}:\t{value[0]}\t{value[1]}/{value[2]}" else: log_class_accuracies = class_accuracy logging.info(f'class accuracies: {log_class_accuracies}') # Update results results[direction] = { 'sent_accuracy': sent_accuracy, 'nb_instances': nb_instances, "class_accuracy": log_class_accuracies, } # Write errors to log file for _input, tag_pred, final_pred, target, classes in zip( cur_inputs, cur_tag_preds, cur_final_preds, cur_targets_sent, cur_classes ): if not TextNormalizationTestDataset.is_same(final_pred, target, direction): if direction == constants.INST_BACKWARD: error_f.write('Backward Problem (ITN)\n') itn_error_ctx += 1 elif direction == constants.INST_FORWARD: error_f.write('Forward Problem (TN)\n') tn_error_ctx += 1 formatted_input_str = get_formatted_string(self.decoder.processor.tokenize(_input).split()) formatted_tag_pred_str = get_formatted_string(tag_pred) class_str = " ".join(classes) error_f.write(f'Original Input : {_input}\n') error_f.write(f'Input : {formatted_input_str}\n') error_f.write(f'Predicted Tags : {formatted_tag_pred_str}\n') error_f.write(f'Ground Classes : {class_str}\n') error_f.write(f'Predicted Str : {final_pred}\n') error_f.write(f'Ground-Truth : {target}\n') error_f.write('\n') results['itn_error_ctx'] = itn_error_ctx results['tn_error_ctx'] = tn_error_ctx # Running Time avg_running_time = np.average(all_run_times) / batch_size # in ms if verbose: logging.info(f'Average running time (normalized by batch size): {avg_running_time} ms') results['running_time'] = avg_running_time # Close log file error_f.close() logging.info(f'Errors are saved at {errors_log_fp}.') return results # Functions for inference def _infer(self, sents: List[str], inst_directions: List[str], processed=False): """ Main function for Inference If the 'joint' mode is used, "sents" will include both spoken and written forms on each input sentence, and "inst_directions" will include both constants.INST_BACKWARD and constants.INST_FORWARD Args: sents: A list of input texts. inst_directions: A list of str where each str indicates the direction of the corresponding instance \ (i.e., constants.INST_BACKWARD for ITN or constants.INST_FORWARD for TN). processed: Set to True when used with TextNormalizationTestDataset, the data is already tokenized with moses, repetitive moses tokenization could lead to the number of tokens and class span mismatch Returns: tag_preds: A list of lists where the inner list contains the tag predictions from the tagger for each word in the input text. output_spans: A list of lists where each list contains the decoded semiotic spans from the decoder for an input text. final_outputs: A list of str where each str is the final output text for an input text. """ original_sents = [s for s in sents] # Separate into words if not processed: sents = [input_preprocessing(x, lang=self.lang) for x in sents] sents = [self.decoder.processor.tokenize(x).split() for x in sents] else: sents = [x.split() for x in sents] # Tagging # span_ends included, returns index wrt to words in input without auxiliary words tag_preds, nb_spans, span_starts, span_ends = self.tagger._infer(sents, inst_directions) output_spans = self.decoder._infer(sents, nb_spans, span_starts, span_ends, inst_directions) # Prepare final outputs final_outputs = [] for ix, (sent, tags) in enumerate(zip(sents, tag_preds)): try: cur_words, jx, span_idx = [], 0, 0 cur_spans = output_spans[ix] while jx < len(sent): tag, word = tags[jx], sent[jx] if constants.SAME_TAG in tag: cur_words.append(word) jx += 1 else: jx += 1 cur_words.append(cur_spans[span_idx]) span_idx += 1 while jx < len(sent) and tags[jx] == constants.I_PREFIX + constants.TRANSFORM_TAG: jx += 1 if processed: # for Class-based evaluation, don't apply Moses detokenization cur_output_str = " ".join(cur_words) else: # detokenize the output with Moses and fix punctuation marks to match the input # for interactive inference or inference from a file cur_output_str = self.decoder.processor.detokenize(cur_words) if PYNINI_AVAILABLE: cur_output_str = post_process_punct(input=original_sents[ix], normalized_text=cur_output_str) else: logging.warning( "`pynini` not installed, please install via nemo_text_processing/pynini_install.sh" ) final_outputs.append(cur_output_str) except IndexError: logging.warning(f"Input sent is too long and will be skipped - {original_sents[ix]}") final_outputs.append(original_sents[ix]) return tag_preds, output_spans, final_outputs
NeMo-main
nemo/collections/nlp/models/duplex_text_normalization/duplex_tn.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple __all__ = ['has_numbers'] def has_numbers(input_str: str): """ Check if a string has a number character """ return any(char.isdigit() for char in input_str) def get_formatted_string(strs: Tuple[str], str_max_len: int = 10, space_len: int = 2): """ Get a nicely formatted string from a list of strings""" padded_strs = [] for cur_str in strs: cur_str = cur_str + ' ' * (str_max_len - len(cur_str)) padded_strs.append(cur_str[:str_max_len]) spaces = ' ' * space_len return spaces.join(padded_strs)
NeMo-main
nemo/collections/nlp/models/duplex_text_normalization/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from math import ceil from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import torch from omegaconf import DictConfig, open_dict from pytorch_lightning import Trainer from torch.nn import Linear from tqdm import tqdm from nemo.collections.common.losses.cross_entropy import CrossEntropyLoss from nemo.collections.nlp.models.token_classification.punctuation_capitalization_model import ( PunctuationCapitalizationModel, ) from nemo.collections.nlp.modules.common.transformer import TransformerDecoder from nemo.core.classes.common import PretrainedModelInfo from nemo.core.classes.mixins import adapter_mixins from nemo.utils import logging try: import nemo.collections.asr as nemo_asr from nemo.collections.asr.parts.submodules.conformer_modules import ConformerLayer ASR_AVAILABLE = True except (ImportError, ModuleNotFoundError): ASR_AVAILABLE = False __all__ = ['PunctuationCapitalizationLexicalAudioModel'] def update_model_config_to_support_adapter(model_cfg): with open_dict(model_cfg): adapter_metadata = adapter_mixins.get_registered_adapter(model_cfg.encoder._target_) if adapter_metadata is not None: model_cfg.encoder._target_ = adapter_metadata.adapter_class_path return model_cfg class PunctuationCapitalizationLexicalAudioModel(PunctuationCapitalizationModel): """ A model for restoring punctuation and capitalization in text using lexical and audio features. The model consists of a language model and two multilayer perceptrons (MLP) on top the fusion of LM and AM. The first MLP serves for punctuation prediction and the second is for capitalization prediction. You can use only BERT-like HuggingFace language models (model ``forward`` method accepts ``input_ids``, ``token_types_ids``, ``attention_mask`` arguments). See more about model config options :ref:`here<model-config-label>`. And any :class:`~nemo.collections.asr.models.EncDecCTCModel` which has encoder module which is used as an AM. For training and testing use dataset :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset.BertPunctuationCapitalizationDataset` with parameter ``use_audio`` set to ``True``, for training on huge amounts of data which cannot be loaded into memory simultaneously use :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_tarred_dataset.BertPunctuationCapitalizationTarredDataset` with parameter ``use_audio`` set to ``True``. Args: cfg: a model configuration. It should follow dataclass :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_config.PunctuationCapitalizationLexicalAudioModelConfig` See an example of full config in `nemo/examples/nlp/token_classification/conf/punctuation_capitalization_lexical_audio_config.yaml <https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/token_classification/conf/punctuation_capitalization_lexical_audio_config.yaml>`_ trainer: an instance of a PyTorch Lightning trainer """ def __init__(self, cfg: DictConfig, trainer: Trainer = None) -> None: super().__init__(cfg, trainer) if not ASR_AVAILABLE: raise ModuleNotFoundError( 'Nemo ASR was not installed, see https://github.com/NVIDIA/NeMo#installation for installation instructions' ) if os.path.exists(cfg.audio_encoder.pretrained_model): audio_cfg = nemo_asr.models.ASRModel.restore_from(cfg.audio_encoder.pretrained_model, return_config=True) else: audio_cfg = nemo_asr.models.ASRModel.from_pretrained( cfg.audio_encoder.pretrained_model, return_config=True ) if cfg.audio_encoder.get('adapter', None): if cfg.audio_encoder.adapter.enable: audio_cfg = update_model_config_to_support_adapter(audio_cfg) if os.path.exists(cfg.audio_encoder.pretrained_model): self.audio_encoder = nemo_asr.models.ASRModel.restore_from( cfg.audio_encoder.pretrained_model, override_config_path=audio_cfg ) else: self.audio_encoder = nemo_asr.models.ASRModel.from_pretrained( cfg.audio_encoder.pretrained_model, override_config_path=audio_cfg ) if cfg.audio_encoder.adapter.get('enable', False): with open_dict(cfg): cfg.audio_encoder.adapter.config.in_features = self.audio_encoder.cfg.decoder.feat_in self.audio_encoder.add_adapter(name='audio_adapter', cfg=cfg.audio_encoder.adapter.config) self.audio_encoder.set_enabled_adapters(enabled=True) self.audio_encoder.freeze() self.audio_encoder.unfreeze_enabled_adapters() self.fusion = TransformerDecoder( num_layers=cfg.audio_encoder.fusion.num_layers, hidden_size=self.bert_model(**self.bert_model.input_example()[0]).size()[-1], inner_size=cfg.audio_encoder.fusion.inner_size, num_attention_heads=cfg.audio_encoder.fusion.num_attention_heads, ) if hasattr(self.audio_encoder.cfg, 'decoder.feat_in'): self.audio_proj = Linear( self.audio_encoder.cfg.decoder.feat_in, self.bert_model(**self.bert_model.input_example()[0]).size()[-1], ) else: self.audio_proj = Linear( self.audio_encoder.cfg.encoder.d_model, self.bert_model(**self.bert_model.input_example()[0]).size()[-1], ) if cfg.audio_encoder.freeze.get('is_enabled', False): for param in self.audio_encoder.parameters(): param.requires_grad = False for i in range(cfg.audio_encoder.freeze.get('num_layers')): self.audio_encoder.add_module( f'conf_encoder_{i}', ConformerLayer( d_model=cfg.audio_encoder.freeze.get('d_model'), d_ff=cfg.audio_encoder.freeze.get('d_ff') ), ) if cfg.get('restore_lexical_encoder_from', None) and not self._is_model_being_restored(): if os.path.exists(cfg.get('restore_lexical_encoder_from')): self.bert_model = ( PunctuationCapitalizationModel.restore_from(cfg.restore_lexical_encoder_from) .to(self.device) .bert_model ) else: raise ValueError(f'Provided path {cfg.get("restore_lexical_encoder_from")} does not exists') if hasattr(self.audio_encoder, 'decoder'): del self.audio_encoder.decoder if hasattr(self.audio_encoder, '_wer'): del self.audio_encoder._wer if hasattr(self.audio_encoder, 'loss'): del self.audio_encoder.loss if hasattr(self.audio_encoder, 'decoder_losses'): del self.audio_encoder.decoder_losses if cfg.get('use_weighted_loss', False): punct_freq = torch.tensor( list(self.train_dataloader().dataset.punct_label_frequencies.values()), dtype=torch.float ) punct_weight = 1 - (punct_freq - punct_freq.min()) / punct_freq.max() capit_freq = torch.tensor( list(self.train_dataloader().dataset.capit_label_frequencies.values()), dtype=torch.float ) capit_weight = 1 - (capit_freq - capit_freq.min()) / capit_freq.max() self.loss_punct = CrossEntropyLoss(logits_ndim=3, weight=punct_weight) self.loss_capit = CrossEntropyLoss(logits_ndim=3, weight=capit_weight) else: self.loss_punct = self.loss self.loss_capit = self.loss self.set_max_audio_length(1024) def _make_step(self, batch: Dict[str, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: punct_logits, capit_logits = self( input_ids=batch['input_ids'], token_type_ids=batch['segment_ids'], attention_mask=batch['input_mask'], features=batch['features'], features_length=batch['features_length'], ) punct_loss = self.loss_punct(logits=punct_logits, labels=batch['punct_labels'], loss_mask=batch['loss_mask']) capit_loss = self.loss_capit(logits=capit_logits, labels=batch['capit_labels'], loss_mask=batch['loss_mask']) loss = self.agg_loss(loss_1=punct_loss, loss_2=capit_loss) return loss, punct_logits, capit_logits def forward( self, input_ids: torch.Tensor, attention_mask: torch.Tensor, token_type_ids: Optional[torch.Tensor] = None, features: torch.Tensor = None, features_length: torch.Tensor = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Executes a forward pass through the model. For more details see ``forward`` method of :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_config.PunctuationCapitalizationLexicalAudioModelConfig` and ``forward`` method of :class:'~nemo.collections.asr.models.EncDecCTCModel' Args: input_ids (:obj:`torch.Tensor`): an integer torch tensor of shape ``[Batch, Time]``. Contains encoded source tokens. attention_mask (:obj:`torch.Tensor`): a boolean torch tensor of shape ``[Batch, Time]``. Contains an attention mask for excluding paddings. token_type_ids (:obj:`torch.Tensor`): an integer torch Tensor of shape ``[Batch, Time]``. Contains an index of segment to which a token belongs. If ``token_type_ids`` is not ``None``, then it should be a zeros tensor. features (:obj:`torch.Tensor`): tensor that represents a batch of raw audio signals, of shape [B, T]. T here represents timesteps, with 1 second of audio represented as sample_rate number of floating point values. features_length (:obj:`torch.Tensor`): Vector of length B, that contains the individual lengths of the audio sequences. Returns: :obj:`Tuple[torch.Tensor, torch.Tensor]`: a tuple containing - ``punct_logits`` (:obj:`torch.Tensor`): a float torch tensor of shape ``[Batch, Time, NumPunctuationLabels]`` containing punctuation logits - ``capit_logits`` (:obj:`torch.Tensor`): a float torch tensor of shape ``[Batch, Time, NumCapitalizationLabels]`` containing capitalization logits """ self.update_max_seq_length(seq_length=features.size(1), device=features.device) lexical_hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) if isinstance(lexical_hidden_states, tuple): lexical_hidden_states = lexical_hidden_states[0] processed_signal, processed_signal_length = self.audio_encoder.preprocessor( input_signal=features, length=features_length, ) if self.audio_encoder.spec_augmentation is not None and self.training: processed_signal = self.audio_encoder.spec_augmentation( input_spec=processed_signal, length=processed_signal_length ) audio_hidden_states, audio_hidden_states_length = self.audio_encoder.encoder( audio_signal=processed_signal, length=processed_signal_length ) audio_hidden_states = audio_hidden_states.permute(0, 2, 1) audio_hidden_states = self.audio_proj(audio_hidden_states) fused = self.fusion( lexical_hidden_states, attention_mask, audio_hidden_states, self.make_pad_mask(audio_hidden_states.size(1), audio_hidden_states_length), ) punct_logits = self.punct_classifier(hidden_states=fused) capit_logits = self.capit_classifier(hidden_states=fused) return punct_logits, capit_logits def make_pad_mask(self, max_audio_length, seq_lens): """Make masking for padding.""" mask = self.seq_range[:max_audio_length].expand(seq_lens.size(0), -1) < seq_lens.unsqueeze(-1) return mask def update_max_seq_length(self, seq_length: int, device): if torch.distributed.is_initialized(): global_max_len = torch.tensor([seq_length], dtype=torch.float32, device=device) # Update across all ranks in the distributed system torch.distributed.all_reduce(global_max_len, op=torch.distributed.ReduceOp.MAX) seq_length = global_max_len.int().item() if seq_length > self.max_audio_length: self.set_max_audio_length(seq_length) def set_max_audio_length(self, max_audio_length): """ Sets maximum input length. Pre-calculates internal seq_range mask. """ self.max_audio_length = max_audio_length device = next(self.parameters()).device seq_range = torch.arange(0, self.max_audio_length, device=device) if hasattr(self, 'seq_range'): self.seq_range = seq_range else: self.register_buffer('seq_range', seq_range, persistent=False) def add_punctuation_capitalization( self, queries: List[str], batch_size: int = None, max_seq_length: int = 64, step: int = 8, margin: int = 16, return_labels: bool = False, dataloader_kwargs: Dict[str, Any] = None, audio_queries: Optional[Union[List[bytes], List[str]]] = None, target_sr: Optional[int] = None, ) -> List[str]: """ Adds punctuation and capitalization to the queries. Use this method for inference. Parameters ``max_seq_length``, ``step``, ``margin`` are for controlling the way queries are split into segments which are processed by the model. Parameter ``max_seq_length`` is a length of a segment after tokenization including special tokens [CLS] in the beginning and [SEP] in the end of a segment. Parameter ``step`` is a shift between consequent segments. Parameter ``margin`` is used to exclude negative effect of subtokens near borders of segments which have only one side context. If segments overlap, probabilities of overlapping predictions are multiplied and then the label with corresponding to the maximum probability is selected. Args: queries (:obj:`List[str]`): lower cased text without punctuation. batch_size (:obj:`List[str]`, `optional`): batch size to use during inference. If ``batch_size`` parameter is not provided, then it will be equal to length of ``queries`` list. max_seq_length (:obj:`int`, `optional`, defaults to :obj:`64`): maximum sequence length of a segment after tokenization including :code:`[CLS]` and :code:`[SEP]` tokens. step (:obj:`int`, `optional`, defaults to :obj:`8`): relative shift of consequent segments into which long queries are split. Long queries are split into segments which can overlap. Parameter ``step`` controls such overlapping. Imagine that queries are tokenized into characters, ``max_seq_length=5``, and ``step=2``. In such case, query ``"hello"`` is tokenized into segments ``[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]``. margin (:obj:`int`, `optional`, defaults to :obj:`16`): number of subtokens in the beginning and the end of segments which are not used for prediction computation. The first segment does not have left margin and the last segment does not have right margin. For example, if an input sequence is tokenized into characters, ``max_seq_length=5``, ``step=1``, and ``margin=1``, then query ``"hello"`` will be tokenized into segments ``[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'e', 'l', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]``. These segments are passed to the model. Before final predictions computation, margins are removed. In the next list, subtokens which logits are not used for final predictions computation are marked with asterisk: ``[['[CLS]'*, 'h', 'e', 'l'*, '[SEP]'*], ['[CLS]'*, 'e'*, 'l', 'l'*, '[SEP]'*], ['[CLS]'*, 'l'*, 'l', 'o', '[SEP]'*]]``. return_labels (:obj:`bool`, `optional`, defaults to :obj:`False`): whether to return labels in NeMo format (see :ref:`nlp/punctuation_and_capitalization/NeMo Data Format`) instead of queries with restored punctuation and capitalization. dataloader_kwargs (:obj:`Dict[str, Any]`, `optional`): an optional dictionary with parameters of PyTorch data loader. May include keys: ``'num_workers'``, ``'pin_memory'``, ``'worker_init_fn'``, ``'prefetch_factor'``, ``'persistent_workers'``. audio_queries (:obj:`List[str]`, `optional`): paths to audio files. target_sr (:obj:`int`, `optional`): target sample rate for audios. Returns: :obj:`List[str]`: a list of queries with restored capitalization and punctuation if ``return_labels=False``, else a list of punctuation and capitalization labels strings for all queries """ if len(queries) == 0: return [] if batch_size is None: batch_size = len(queries) logging.info(f'Using batch size {batch_size} for inference') result: List[str] = [] mode = self.training try: self.eval() infer_datalayer = self._setup_infer_dataloader( queries, batch_size, max_seq_length, step, margin, dataloader_kwargs, audio_queries, target_sr ) # Predicted labels for queries. List of labels for every query all_punct_preds: List[List[int]] = [[] for _ in queries] all_capit_preds: List[List[int]] = [[] for _ in queries] # Accumulated probabilities (or product of probabilities acquired from different segments) of punctuation # and capitalization. Probabilities for words in a query are extracted using `subtokens_mask`. Probabilities # for newly processed words are appended to the accumulated probabilities. If probabilities for a word are # already present in `acc_probs`, old probabilities are replaced with a product of old probabilities # and probabilities acquired from new segment. Segments are processed in an order they appear in an # input query. When all segments with a word are processed, a label with the highest probability # (or product of probabilities) is chosen and appended to an appropriate list in `all_preds`. After adding # prediction to `all_preds`, probabilities for a word are removed from `acc_probs`. acc_punct_probs: List[Optional[np.ndarray]] = [None for _ in queries] acc_capit_probs: List[Optional[np.ndarray]] = [None for _ in queries] d = self.device for batch_i, batch in tqdm( enumerate(infer_datalayer), total=ceil(len(infer_datalayer.dataset) / batch_size), unit="batch" ): ( inp_ids, inp_type_ids, inp_mask, subtokens_mask, start_word_ids, query_ids, is_first, is_last, features, features_length, ) = batch punct_logits, capit_logits = self.forward( input_ids=inp_ids.to(d), token_type_ids=inp_type_ids.to(d), attention_mask=inp_mask.to(d), features=features.to(d), features_length=features_length.to(d), ) _res = self._transform_logit_to_prob_and_remove_margins_and_extract_word_probs( punct_logits, capit_logits, subtokens_mask, start_word_ids, margin, is_first, is_last ) punct_probs, capit_probs, start_word_ids = _res for i, (q_i, start_word_id, bpp_i, bcp_i) in enumerate( zip(query_ids, start_word_ids, punct_probs, capit_probs) ): for all_preds, acc_probs, b_probs_i in [ (all_punct_preds, acc_punct_probs, bpp_i), (all_capit_preds, acc_capit_probs, bcp_i), ]: if acc_probs[q_i] is None: acc_probs[q_i] = b_probs_i else: all_preds[q_i], acc_probs[q_i] = self._move_acc_probs_to_token_preds( all_preds[q_i], acc_probs[q_i], start_word_id - len(all_preds[q_i]), ) acc_probs[q_i] = self._update_accumulated_probabilities(acc_probs[q_i], b_probs_i) for all_preds, acc_probs in [(all_punct_preds, acc_punct_probs), (all_capit_preds, acc_capit_probs)]: for q_i, (pred, prob) in enumerate(zip(all_preds, acc_probs)): if prob is not None: all_preds[q_i], acc_probs[q_i] = self._move_acc_probs_to_token_preds(pred, prob, len(prob)) for i, query in enumerate(queries): result.append( self._get_labels(all_punct_preds[i], all_capit_preds[i]) if return_labels else self._apply_punct_capit_predictions(query, all_punct_preds[i], all_capit_preds[i]) ) finally: # set mode back to its original value self.train(mode=mode) return result @classmethod def list_available_models(cls) -> List[PretrainedModelInfo]: return []
NeMo-main
nemo/collections/nlp/models/token_classification/punctuation_capitalization_lexical_audio_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.token_classification.punctuation_capitalization_config import ( PunctuationCapitalizationModelConfig, ) from nemo.collections.nlp.models.token_classification.punctuation_capitalization_lexical_audio_model import ( PunctuationCapitalizationLexicalAudioModel, ) from nemo.collections.nlp.models.token_classification.punctuation_capitalization_model import ( PunctuationCapitalizationModel, ) from nemo.collections.nlp.models.token_classification.token_classification_model import TokenClassificationModel
NeMo-main
nemo/collections/nlp/models/token_classification/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import warnings from math import ceil from pathlib import Path from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import torch from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from tqdm import tqdm from nemo.collections.common.losses import AggregatorLoss, CrossEntropyLoss from nemo.collections.common.metrics import GlobalAverageLossMetric from nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset import ( BertPunctuationCapitalizationDataset, PunctuationCapitalizationEvalDataConfig, PunctuationCapitalizationTrainDataConfig, load_label_ids, raise_not_equal_labels_error, ) from nemo.collections.nlp.data.token_classification.punctuation_capitalization_infer_dataset import ( BertPunctuationCapitalizationInferDataset, ) from nemo.collections.nlp.data.token_classification.punctuation_capitalization_tarred_dataset import ( BertPunctuationCapitalizationTarredDataset, ) from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.models.token_classification.punctuation_capitalization_config import ( is_legacy_model_config, legacy_model_config_to_new_model_config, ) from nemo.collections.nlp.modules.common import TokenClassifier from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.core.classes.exportable import Exportable from nemo.core.neural_types import LogitsType, NeuralType from nemo.utils import logging __all__ = ['PunctuationCapitalizationModel'] class PunctuationCapitalizationModel(NLPModel, Exportable): """ A model for restoring punctuation and capitalization in text. The model is usually used together with ASR model because ASR models often return text without punctuation and capitalization. The model consists of a language model and two multilayer perceptrons (MLP) on top the language model. The first MLP serves for punctuation prediction and the second is for capitalization prediction. You can use only BERT-like HuggingFace language models (model ``forward`` method accepts ``input_ids``, ``token_types_ids``, ``attention_mask`` arguments). See more about model config options :ref:`here<model-config-label>`. Use method :meth:`~add_punctuation_capitalization` for model inference. For training and testing use dataset :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset.BertPunctuationCapitalizationDataset`, for training on huge amounts of data which cannot be loaded into memory simultaneously use :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_tarred_dataset.BertPunctuationCapitalizationTarredDataset`. Args: cfg: a model configuration. It should follow dataclass :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_config.PunctuationCapitalizationModelConfig` See an example of full config in `nemo/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml <https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml>`_ trainer: an instance of a PyTorch Lightning trainer """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Neural types of a :meth:`forward` method output.""" return { "punct_logits": NeuralType(('B', 'T', 'C'), LogitsType()), "capit_logits": NeuralType(('B', 'T', 'C'), LogitsType()), } def __init__(self, cfg: DictConfig, trainer: Trainer = None) -> None: """Initializes BERT Punctuation and Capitalization model.""" if is_legacy_model_config(cfg): cfg = legacy_model_config_to_new_model_config(cfg) # For structure of `self.metrics` attribute see `self._setup_metrics_dictionary` method. self.metrics: Optional[torch.nn.ModuleDict] = None self.label_ids_are_set: bool = False self.punct_label_ids: Optional[Dict[str, int]] = None self.capit_label_ids: Optional[Dict[str, int]] = None super().__init__(cfg=cfg, trainer=trainer) if not self.label_ids_are_set: self._set_label_ids() self.punct_classifier = TokenClassifier( hidden_size=self.hidden_size, num_classes=len(self.punct_label_ids), activation=cfg.punct_head.activation, log_softmax=False, dropout=cfg.punct_head.fc_dropout, num_layers=cfg.punct_head.num_fc_layers, use_transformer_init=cfg.punct_head.use_transformer_init, ) self.capit_classifier = TokenClassifier( hidden_size=self.hidden_size, num_classes=len(self.capit_label_ids), activation=cfg.capit_head.activation, log_softmax=False, dropout=cfg.capit_head.fc_dropout, num_layers=cfg.capit_head.num_fc_layers, use_transformer_init=cfg.capit_head.use_transformer_init, ) self.loss = CrossEntropyLoss(logits_ndim=3) self.agg_loss = AggregatorLoss(num_inputs=2) @typecheck() def forward( self, input_ids: torch.Tensor, attention_mask: torch.Tensor, token_type_ids: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, torch.Tensor]: """ Executes a forward pass through the model. For more details see ``forward`` method of HuggingFace BERT-like (models which accept ``input_ids``, ``attention_mask``, ``token_type_ids`` arguments) models. Args: input_ids (:obj:`torch.Tensor`): an integer torch tensor of shape ``[Batch, Time]``. Contains encoded source tokens. attention_mask (:obj:`torch.Tensor`): a boolean torch tensor of shape ``[Batch, Time]``. Contains an attention mask for excluding paddings. token_type_ids (:obj:`torch.Tensor`): an integer torch Tensor of shape ``[Batch, Time]``. Contains an index of segment to which a token belongs. If ``token_type_ids`` is not ``None``, then it should be a zeros tensor. Returns: :obj:`Tuple[torch.Tensor, torch.Tensor]`: a tuple containing - ``punct_logits`` (:obj:`torch.Tensor`): a float torch tensor of shape ``[Batch, Time, NumPunctuationLabels]`` containing punctuation logits - ``capit_logits`` (:obj:`torch.Tensor`): a float torch tensor of shape ``[Batch, Time, NumCapitalizationLabels]`` containing capitalization logits """ hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] punct_logits = self.punct_classifier(hidden_states=hidden_states) capit_logits = self.capit_classifier(hidden_states=hidden_states) return punct_logits.float(), capit_logits.float() def _make_step(self, batch: Dict[str, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: punct_logits, capit_logits = self( input_ids=batch['input_ids'], token_type_ids=batch['segment_ids'], attention_mask=batch['input_mask'] ) punct_loss = self.loss(logits=punct_logits, labels=batch['punct_labels'], loss_mask=batch['loss_mask']) capit_loss = self.loss(logits=capit_logits, labels=batch['capit_labels'], loss_mask=batch['loss_mask']) loss = self.agg_loss(loss_1=punct_loss, loss_2=capit_loss) return loss, punct_logits, capit_logits def training_step(self, batch: Dict[str, torch.Tensor], batch_idx: int) -> Dict[str, Union[torch.Tensor, float]]: """ Lightning calls this inside the training loop with the data from the training dataloader passed in as ``batch``. Args: batch: a dictionary with following items: - ``'input_ids'`` (:obj:`torch.Tensor`): an integer torch tensor of shape ``[Batch, Time]`` containing encoded source text - ``'segment_ids'`` (:obj:`torch.Tensor`): a zeros integer torch tensor of shape ``[Batch, Time]`` - ``'input_mask'`` (:obj:`torch.Tensor`): a boolean torch tensor of shape ``[Batch, Time]``. Serves as attention mask. should be ``False`` on padding tokens and ``True`` on other tokens. - ``'loss_mask'`` (:obj:`torch.Tensor`): a boolean torch tensor of shape ``[Batch, Time]``. Which token to compute loss on. See more details in description of parameters ``ignore_start_end`` and ``ignore_extra_tokens`` of a class :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset.BertPunctuationCapitalizationDataset` - ``'punct_labels'`` (:obj:`torch.Tensor`): a ``long`` torch tensor of shape ``[Batch, Time]``. Contains encoded punctuation labels - ``'capit_labels'`` (:obj:`torch.Tensor`): a ``long`` torch tensor of shape ``[Batch, Time]``. Contains encoded capitalization labels - ``'subtokens_mask'`` (:obj:`torch.Tensor`): not required for training and can be omitted batch_idx (:obj:`int`): an index of batch. Mandatory Lightning parameter Returns: :obj:`Dict[str, Union[torch.Tensor, float]]`: a dictionary with 2 items: - ``'loss'`` (:obj:`torch.Tensor`): torch tensor containing mean aggregated punctuation and capitalization loss - ``'lr'`` (:obj:`float`): a float containing learning rate """ loss, _, _ = self._make_step(batch) lr = self._optimizer.param_groups[0]['lr'] self.log('lr', lr, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'lr': lr} def eval_step(self, batch: Dict[str, torch.Tensor], mode: str, dataloader_idx: int) -> Dict[str, None]: """ A method called by :meth:`validation_step` and :meth:`test_step`. Performs forward pass and updates metrics. Args: batch (:obj:`Dict[str, torch.Tensor]`): a dictionary with following items: - ``'input_ids'`` (:obj:`torch.Tensor`): an integer torch tensor of shape ``[Batch, Time]`` containing encoded source text. - ``'subtokens_mask'`` (:obj:`torch.Tensor`): a boolean torch tensor of shape ``[Batch, Time]``. An element of this item is ``True`` if corresponding token from ``'input_ids'`` element is the first token in some word. - ``'segment_ids'`` (:obj:`torch.Tensor`): a zeros integer torch tensor of shape ``[Batch, Time]``. - ``'input_mask'`` (:obj:`torch.Tensor`): a boolean torch tensor of shape ``[Batch, Time]``. Serves as attention mask. should be ``False`` on padding tokens and ``True`` on other tokens. - ``'loss_mask'`` (:obj:`torch.Tensor`): a boolean torch tensor of shape ``[Batch, Time]``. Which token to compute loss on. See more details in description of parameters ``ignore_start_end`` and ``ignore_extra_tokens`` of class :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset.BertPunctuationCapitalizationDataset`. - ``'punct_labels'`` (:obj:`torch.Tensor`): a long torch tensor of shape ``[Batch, Time]``. Contains encoded punctuation labels. - ``'capit_labels'`` (:obj:`torch.Tensor`): a long torch tensor of shape ``[Batch, Time]``. Contains encoded capitalization labels. mode: either ``'validation'`` or ``'test'`` depending on caller method. dataloader_idx: NeMo parameter for multi dataset validation. Returns: :obj:`Dict[str, None]`: a dictionary containing items ``'loss'``, ``'punct_class_report'``, ``'capit_class_report'`` which values are ``None``. Values are ``None`` because metrics are computed using ``torchmetrics``. """ loss, punct_logits, capit_logits = self._make_step(batch) subtokens_mask = batch['subtokens_mask'] punct_preds = torch.argmax(punct_logits, axis=-1)[subtokens_mask] punct_labels = batch['punct_labels'][subtokens_mask] capit_preds = torch.argmax(capit_logits, axis=-1)[subtokens_mask] capit_labels = batch['capit_labels'][subtokens_mask] self.metrics[mode]['loss'][dataloader_idx]( loss=loss, num_measurements=batch['loss_mask'].sum().to(loss.device) ) self.metrics[mode]['punct_class_report'][dataloader_idx](punct_preds, punct_labels) self.metrics[mode]['capit_class_report'][dataloader_idx](capit_preds, capit_labels) # torchmetrics are used for metrics computation return {'loss': None, 'punct_class_report': None, 'capit_class_report': None} def validation_step( self, batch: Dict[str, torch.Tensor], batch_idx: int, dataloader_idx: int = 0 ) -> Dict[str, None]: """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as ``batch``. See more details in :meth:`eval_step`. Args: batch (:obj:`dict`): see :meth:`eval_step` for the ``batch`` parameter explanation batch_idx (:obj:`int`): an index of a batch in a dataset. A mandatory Lightning parameter dataloader_idx (:obj:`int`): a NeMo parameter for performing testing on multiple datasets Returns: :obj:`Dict[str, None]`: a dictionary containing items ``'loss'``, ``'punct_class_report'``, ``'capit_class_report'`` which values are ``None``. Values are ``None`` because metrics are computed using ``torchmetrics``. """ loss = self.eval_step(batch, 'val', dataloader_idx) if type(self.trainer.val_dataloaders) == list and len(self.trainer.val_dataloaders) > 1: self.validation_step_outputs[dataloader_idx].append(loss) else: self.validation_step_outputs.append(loss) return loss def test_step(self, batch: Dict[str, torch.Tensor], batch_idx: int, dataloader_idx: int = 0) -> Dict[str, None]: """ Lightning calls this inside the test loop with the data from the test dataloader passed in as ``batch``. See more details in :meth:`eval_step`. Args: batch (:obj:`dict`): see :meth:`eval_step` for the ``batch`` parameter explanation batch_idx (:obj:`int`): an index of a batch in a dataset. A mandatory Lightning parameter dataloader_idx (:obj:`int`): a NeMo parameter for performing testing on multiple datasets Returns: :obj:`Dict[str, None]`: a dictionary containing items ``'loss'``, ``'punct_class_report'``, ``'capit_class_report'`` which values are ``None``. Values are ``None`` because metrics are computed using ``torchmetrics``. """ loss = self.eval_step(batch, 'test', dataloader_idx) if type(self.trainer.test_dataloaders) == list and len(self.trainer.test_dataloaders) > 1: self.test_step_outputs[dataloader_idx].append(loss) else: self.test_step_outputs.append(loss) return loss def on_train_epoch_end(self) -> None: """ Called at the end of training epoch. This method properly shuffles :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset.BertPunctuationCapitalizationDataset`. Regular data loader shuffling only permutes batches. Args: outputs (:obj:`pytorch_lightning.utilities.types.EPOCH_OUTPUT`): an output of all training steps. It is a mandatory PyTorch Lightning parameter, and it is not used in this method """ shuffle = self._cfg.train_ds.get('shuffle') if shuffle is None: # Encountered legacy config shuffle = not self.cfg.train_ds.get('use_tarred_dataset', False) if shuffle: if isinstance(self.train_dataloader().dataset, BertPunctuationCapitalizationDataset): self.train_dataloader().dataset.repack_batches_with_shuffle() def _multi_eval_epoch_end(self, mode: str, dataloader_idx: int) -> Dict[str, Dict[str, torch.Tensor]]: loss = self.metrics[mode]['loss'][dataloader_idx].compute() self.metrics[mode]['loss'][dataloader_idx].reset() punct_res = self.metrics[mode]['punct_class_report'][dataloader_idx].compute() punct_precision, punct_recall, punct_f1, punct_report = punct_res self.metrics[mode]['punct_class_report'][dataloader_idx].reset() capit_res = self.metrics[mode]['capit_class_report'][dataloader_idx].compute() capit_precision, capit_recall, capit_f1, capit_report = capit_res self.metrics[mode]['capit_class_report'][dataloader_idx].reset() log_dict = { 'log': { f'{mode}_loss': loss, f'{mode}_punct_precision': punct_precision, f'{mode}_punct_f1': punct_f1, f'{mode}_punct_recall': punct_recall, f'{mode}_capit_precision': capit_precision, f'{mode}_capit_f1': capit_f1, f'{mode}_capit_recall': capit_recall, } } logging.info(f'Punctuation report: {punct_report}') logging.info(f'Capitalization report: {capit_report}') return log_dict def multi_validation_epoch_end(self, outputs: Any, dataloader_idx: int = 0) -> Dict[str, Dict[str, torch.Tensor]]: """ Called at the end of validation to compute and log metrics. """ return self._multi_eval_epoch_end('val', dataloader_idx) def multi_test_epoch_end(self, outputs: Any, dataloader_idx: int = 0) -> Dict[str, Dict[str, torch.Tensor]]: """ Called at the end of model testing to compute and log metrics. """ return self._multi_eval_epoch_end('test', dataloader_idx) def update_config_after_restoring_from_checkpoint(self, **kwargs) -> None: """ Set new values for some sections of config. Useful after restoring from checkpoint for fine-tuning and testing if config parameters of a restored checkpoint are not suitable. For ``class_labels``, ``common_dataset_parameters``, ``train_ds``, ``validation_ds``, ``test_ds``, there is no need to provide values for all items in an updated config section. If an item is omitted in this method parameter, then corresponding item in model config does not change. If the entire updated section is missing in the model config, then omitted items from this method parameters are set according to default values listed :ref:`here <run-config-label>`. .. warning:: Parameter ``optim`` is processed in a special way. ``optim`` contents are used not for updating of model config, but for replacement of entire config section. If one of parameters ``train_ds``, ``validation_ds``, ``test_ds``, is provided but its value is ``None``, then corresponding section is replaced with ``None``. .. warning:: You may change values of parameters related to label ids: - ``common_dataset_parameters.punct_label_ids``, - ``common_dataset_parameters.capit_label_ids``, - ``common_dataset_parameters.label_vocab_dir``, - ``class_labels.punct_labels_file``, - ``class_labels.capit_labels_file``, yet label ids in these parameters must be equal to label ids loaded from checkpoint. Otherwise, an error will be raised. Keyword Args: class_labels (:obj:`Union[DictConfig, Dict[str, str]]`): names of label id files used as label id dictionaries. See more in :ref:`class labels' config<class-labels-config-label>`. common_dataset_parameters (:obj:`Union[DictConfig, Dict[str, Any]]`, `optional`): see more in :ref:`common dataset parameters config<common-dataset-parameters-config-label>`. train_ds (:obj:`Union[DictConfig, Dict[str, Any]]`, `optional`): configuration of training dataset. See possible options in :ref:`data config<data-config-label>`. validation_ds (:obj:`Union[DictConfig, Dict[str, Any]]`, `optional`): configuration of validation dataset. See possible options in :ref:`data config<data-config-label>`. test_ds (:obj:`Union[DictConfig, Dict[str, Any]]`, `optional`): configuration of test dataset. See possible options in :ref:`data config<data-config-label>`. optim (:obj:`Union[DictConfig, Dict[str, Any]]`, `optional`): optimization configuration. See possible options in :ref:`optimization<optimization-label>` and in `primer <https://github.com/NVIDIA/NeMo/blob/main/tutorials/00_NeMo_Primer.ipynb>`_ tutorial. """ allowed_keys = {'class_labels', 'common_dataset_parameters', 'train_ds', 'validation_ds', 'test_ds', 'optim'} unexpected_keys = set(kwargs) - allowed_keys if unexpected_keys: raise ValueError( f"Found unexpected keyword arguments: {unexpected_keys}. You can use only {allowed_keys}." ) if 'class_labels' in kwargs: if kwargs['class_labels'] is None: raise ValueError( f"'class_labels' parameters is `None`, whereas you cannot remove section 'class_labels' from model " f"config." ) self._cfg.class_labels = OmegaConf.merge(self._cfg.class_labels, OmegaConf.create(kwargs['class_labels'])) if 'common_dataset_parameters' in kwargs: if kwargs['common_dataset_parameters'] is None: raise ValueError( f"'common_dataset_parameters' item is `None`, whereas you cannot remove section" f"'common_dataset_parameters' from model config." ) self._cfg.common_dataset_parameters = OmegaConf.merge( self._cfg.common_dataset_parameters, OmegaConf.create(kwargs['common_dataset_parameters']) ) self._check_label_config_parameters() if 'train_ds' in kwargs: if kwargs['train_ds'] is None: self._cfg.train_ds = None else: if 'train_ds' in self._cfg and self._cfg.train_ds is not None: base = self._cfg.train_ds else: base = OmegaConf.structured(PunctuationCapitalizationTrainDataConfig) self._cfg.train_ds = OmegaConf.merge(base, OmegaConf.create(kwargs['train_ds'])) if 'validation_ds' in kwargs: if kwargs['validation_ds'] is None: self._cfg.validation_ds = None else: if 'validation_ds' in self._cfg and self._cfg.validation_ds is not None: base = self._cfg.validation_ds else: base = OmegaConf.structured(PunctuationCapitalizationEvalDataConfig) self._cfg.validation_ds = OmegaConf.merge(base, OmegaConf.create(kwargs['validation_ds'])) if 'test_ds' in kwargs: if kwargs['test_ds'] is None: self._cfg.test_ds = None else: if 'test_ds' in self._cfg and self._cfg.test_ds is not None: base = self._cfg.test_ds else: base = OmegaConf.structured(PunctuationCapitalizationEvalDataConfig) self._cfg.test_ds = OmegaConf.merge(base, OmegaConf.create(kwargs['test_ds'])) if 'optim' in kwargs: self._cfg.optim = kwargs['optim'] def setup_training_data(self, train_data_config: Optional[Union[Dict[str, Any], DictConfig]] = None) -> None: """ Sets up training data: creates dataset and sets data loader. If parameter ``train_data_config`` is not provided, then :ref:`config<model-config-label>` section ``train_ds`` will be used. Args: train_data_config (:obj:`Union[Dict[str, Any], DictConfig]`, `optional`): a dictionary that should contain only fields present in :ref:`data config<data-config-label>`. If some of the fields are missing, then they will be set according to :ref:`data config<data-config-label>` defaults. If ``train_data_config`` parameter is not set, then ``train_ds`` item of model config is used. Here model config is a configuration used for model instantiation. """ if train_data_config is not None: train_data_config = OmegaConf.create(train_data_config) train_data_config = OmegaConf.merge( OmegaConf.structured(PunctuationCapitalizationTrainDataConfig), train_data_config ) if train_data_config is None: train_data_config = self._cfg.train_ds self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config, train=True) # Need to set this because if using an IterableDataset, the length of the dataloader is the total number # of samples rather than the number of batches, and this messes up the tqdm progress bar. # So we set the number of steps manually (to the correct number) to fix this. if 'use_tarred_dataset' in train_data_config and train_data_config['use_tarred_dataset']: # We also need to check if limit_train_batches is already set. # If it's an int, we assume that the user has set it to something sane, i.e. <= # training batches, # and don't change it. Otherwise, adjust batches accordingly if it's a float (including 1.0). if self._trainer is not None and isinstance(self._trainer.limit_train_batches, float): self._trainer.limit_train_batches = int( self._trainer.limit_train_batches * ceil(len(self._train_dl.dataset) / self.world_size) ) elif self._trainer is None: logging.warning( "Model Trainer was not set before constructing the dataset, incorrect number of " "training batches will be used. Please set the trainer and rebuild the dataset." ) self.punct_label_ids = self._train_dl.dataset.punct_label_ids.copy() self.capit_label_ids = self._train_dl.dataset.capit_label_ids.copy() self.label_ids_are_set = True if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0: label_vocab_dir = self._cfg.common_dataset_parameters.label_vocab_dir if label_vocab_dir is None: punct_label_ids_file, capit_label_ids_file = self._train_dl.dataset.save_labels_and_get_file_paths( self._cfg.class_labels.punct_labels_file, self._cfg.class_labels.capit_labels_file ) else: punct_label_ids_file = Path(label_vocab_dir).expanduser() / self._cfg.class_labels.punct_labels_file capit_label_ids_file = Path(label_vocab_dir).expanduser() / self._cfg.class_labels.capit_labels_file self.register_artifact('class_labels.punct_labels_file', str(punct_label_ids_file)) self.register_artifact('class_labels.capit_labels_file', str(capit_label_ids_file)) def _get_eval_metrics_kwargs( self, ) -> Tuple[ Dict[str, bool], Dict[str, Union[bool, str, int, Dict[str, int]]], Dict[str, Union[bool, str, int, Dict[str, int]]], ]: loss_kw = {'dist_sync_on_step': False, 'take_avg_loss': True} punct_kw = { 'num_classes': len(self.punct_label_ids), 'label_ids': self.punct_label_ids, 'mode': 'macro', 'dist_sync_on_step': False, } capit_kw = { 'num_classes': len(self.capit_label_ids), 'label_ids': self.capit_label_ids, 'mode': 'macro', 'dist_sync_on_step': False, } return loss_kw, punct_kw, capit_kw def _setup_metrics_dictionary(self) -> None: eval_metrics = torch.nn.ModuleDict( { "loss": torch.nn.ModuleList([]), "punct_class_report": torch.nn.ModuleList([]), "capit_class_report": torch.nn.ModuleList([]), } ) self.metrics = torch.nn.ModuleDict({"val": eval_metrics, "test": copy.deepcopy(eval_metrics)}) def setup_validation_data(self, val_data_config: Optional[Union[Dict[str, Any], DictConfig]] = None) -> None: """ Sets up validation data: creates dataset and sets data loader. If parameter ``val_data_config`` is not provided, then ``validation_ds`` :ref:`config <model-config-label>` section will be used. Here model config is a configuration used for model instantiation. Args: val_data_config (:obj:`Union[Dict[str, Any], DictConfig]`, `optional`): a dictionary that should contain only fields present in data config :ref:`description<data-config-label>`. If some of the fields are missing, then they will be set according to data config :ref:`description<data-config-label>` defaults. If ``val_data_config`` parameter is not set, then ``validation_ds`` item of model config is used. Here model config is a configuration used for model instantiation. """ if val_data_config is not None: val_data_config = OmegaConf.create(val_data_config) val_data_config = OmegaConf.merge( OmegaConf.structured(PunctuationCapitalizationEvalDataConfig), val_data_config ) if self.metrics is None: self._setup_metrics_dictionary() if val_data_config is None: val_data_config = self._cfg.validation_ds self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config, train=False) # Need to set this because if using an IterableDataset, the length of the dataloader is the total number # of samples rather than the number of batches, and this messes up the tqdm progress bar. # So we set the number of steps manually (to the correct number) to fix this. if 'use_tarred_dataset' in val_data_config and val_data_config['use_tarred_dataset']: # We also need to check if limit_val_batches is already set. # If it's an int, we assume that the user has set it to something sane, i.e. <= # validation batches, # and don't change it. Otherwise, adjust batches accordingly if it's a float (including 1.0). if self._trainer is not None and isinstance(self._trainer.limit_val_batches, float): self._trainer.limit_val_batches = int( self._trainer.limit_val_batches * ceil(len(self._validation_dl.dataset) / self.world_size) ) elif self._trainer is None: logging.warning( "Model Trainer was not set before constructing the dataset, incorrect number of " "validation batches will be used. Please set the trainer and rebuild the dataset." ) loss_kw, punct_kw, capit_kw = self._get_eval_metrics_kwargs() self.metrics['val']['loss'].append(GlobalAverageLossMetric(**loss_kw)) self.metrics['val']['punct_class_report'].append(ClassificationReport(**punct_kw)) self.metrics['val']['capit_class_report'].append(ClassificationReport(**capit_kw)) def setup_test_data(self, test_data_config: Optional[Union[Dict[str, Any], DictConfig]] = None) -> None: """ Sets up test data: creates dataset and sets data loader. If parameter ``test_data_config`` is not provided, then ``test_ds`` config section will be used. See more about in data config :ref:`description <data-config-label>` and model config :ref:`description<model-config-label>`. Args: test_data_config (:obj:`Union[Dict[str, Any], DictConfig]`, `optional`): a dictionary that should contain only fields present in data config :ref:`description<data-config-label>`. If some of the fields are missing, then they will be set according to data config :ref:`description <data-config-label>` defaults. If ``test_data_config`` parameter is not set, then ``test_ds`` item of :ref:`model config <model-config-label>` is used. Here model config is a configuration used for model instantiation. """ if test_data_config is not None: test_data_config = OmegaConf.create(test_data_config) test_data_config = OmegaConf.merge( OmegaConf.structured(PunctuationCapitalizationEvalDataConfig), test_data_config ) if self.metrics is None: self._setup_metrics_dictionary() if test_data_config is None: test_data_config = self._cfg.test_ds self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config, train=False) # Check for multiple dataloaders here as it may not get called in ModelPT when models are being restored if type(self._test_dl) == list and len(self._test_dl) > 1: for _ in range(len(self._test_dl)): self.test_step_outputs.append([]) loss_kw, punct_kw, capit_kw = self._get_eval_metrics_kwargs() self.metrics['test']['loss'].append(GlobalAverageLossMetric(**loss_kw)) self.metrics['test']['punct_class_report'].append(ClassificationReport(**punct_kw)) self.metrics['test']['capit_class_report'].append(ClassificationReport(**capit_kw)) def _check_label_config_parameters(self) -> None: """ Checks that config items ``common_dataset_parameters.punct_label_ids`` and ``common_dataset_parameters.punct_label_vocab_file``, ``common_dataset_parameters.capit_label_ids`` and ``common_dataset_parameters.capit_label_vocab_file`` contain identical label ids. Of course, if any of these parameters is ``None``, then check is not performed. In addition, this method checks that ``common_dataset_parameters.pad_label`` has id ``0`` in punctuation and capitalization label ids. """ pli = self._cfg.common_dataset_parameters.punct_label_ids cli = self._cfg.common_dataset_parameters.capit_label_ids pad_label = self._cfg.common_dataset_parameters.pad_label plvf, clvf = self._extract_label_vocab_files_from_config() for label_ids, label_vocab_file, already_set_label_ids, label_ids_name, label_vocab_name in [ (pli, plvf, self.punct_label_ids, 'punct_label_ids', 'punct_label_vocab_file'), (cli, clvf, self.capit_label_ids, 'capit_label_ids', 'capit_label_vocab_file'), ]: if label_vocab_file is not None: file_label_ids = load_label_ids(label_vocab_file) if label_ids is not None and label_vocab_file is not None: if label_ids != file_label_ids: raise_not_equal_labels_error( first_labels=label_ids, second_labels=file_label_ids, first_labels_desc=f"Labels passed in config parameter " f"`model.common_dataset_parameters.{label_ids_name}`", second_labels_desc=f"Labels loaded from file {plvf} passed in config " f"parameter `model.common_dataset_parameters.{label_vocab_name}", ) if already_set_label_ids is not None: config_label_ids = label_ids if label_vocab_file is None else file_label_ids if config_label_ids is not None: if label_vocab_file is None: config_label_ids_source = ( f"Labels passed in config parameter `model.common_dataset_parameters.{label_ids_name}`" ) else: config_label_ids_source = ( f"Labels loaded from file {plvf} passed in config parameter " f"`model.common_dataset_parameters.{label_vocab_name}`" ) if already_set_label_ids != config_label_ids: raise_not_equal_labels_error( first_labels=config_label_ids, second_labels=already_set_label_ids, first_labels_desc=config_label_ids_source, second_labels_desc=f"Labels which are already set in an attribute " f"`PunctuationCapitalizationModel.{label_ids_name}`", ) if plvf is not None: pli = load_label_ids(plvf) if clvf is not None: cli = load_label_ids(clvf) for label_ids, parameter_name in [ (pli, 'punct_label_vocab_file' if pli is None else 'punct_label_ids'), (cli, 'capit_label_vocab_file' if cli is None else 'capit_label_ids'), ]: if label_ids is not None and label_ids[pad_label] != 0: raise ValueError( f"Pad label '{pad_label}' has non zero id {label_ids[pad_label]} in " f"`model.common_dataset_parameters.{parameter_name}`." ) def _extract_label_vocab_files_from_config(self) -> Tuple[Optional[Path], Optional[Path]]: if self._is_model_being_restored(): punct_label_vocab_file = self._cfg.class_labels.punct_labels_file capit_label_vocab_file = self._cfg.class_labels.capit_labels_file else: if self._cfg.common_dataset_parameters.label_vocab_dir is None: punct_label_vocab_file, capit_label_vocab_file = None, None else: label_vocab_dir = Path(self._cfg.common_dataset_parameters.label_vocab_dir).expanduser() punct_label_vocab_file = label_vocab_dir / self._cfg.class_labels.punct_labels_file capit_label_vocab_file = label_vocab_dir / self._cfg.class_labels.capit_labels_file return punct_label_vocab_file, capit_label_vocab_file def _set_label_ids(self) -> None: """ Set model attributes ``punct_label_ids`` and ``capit_label_ids`` based on label ids passed in config item ``common_dataset_parameters``. This method also registers artifacts ``class_labels.punct_labels_file`` and ``class_labels.capit_labels_file``. This method is called if you do not plan to infer label ids from training file with labels. If training file with labels is going to be used, then calling :meth:`~setup_training_data` is enough to set ``punct_label_ids`` and ``capit_label_ids`` and register label artifacts. """ punct_label_vocab_file, capit_label_vocab_file = self._extract_label_vocab_files_from_config() if punct_label_vocab_file is not None: punct_labels_file = self.register_artifact('class_labels.punct_labels_file', str(punct_label_vocab_file)) if punct_labels_file is None: logging.warning( f"The artifact `class_labels.punct_labels_file` was not found in checkpoint. Will rely on " f"`punct_label_ids` parameter" ) self.punct_label_ids = OmegaConf.to_container(self._cfg.common_dataset_parameters.punct_label_ids) else: self.punct_label_ids = load_label_ids( self.register_artifact('class_labels.punct_labels_file', str(punct_label_vocab_file)) ) elif self._cfg.common_dataset_parameters.punct_label_ids is not None: self.punct_label_ids = OmegaConf.to_container(self._cfg.common_dataset_parameters.punct_label_ids) else: raise ValueError( f"Could not set attribute `punct_label_ids`. Config parameters " f"`model.common_dataset_parameters.punct_label_ids`, " f"`model.common_dataset_parameters.punct_label_vocab_file` are not set. Another way to set " f"`punct_label_ids` is calling method `setup_training_data`. That way punctuation label ids will be " f"inferred from training set." ) if capit_label_vocab_file is not None: capit_labels_file = self.register_artifact('class_labels.capit_labels_file', str(capit_label_vocab_file)) if capit_labels_file is None: logging.warning( f"The artifact `class_labels.capit_labels_file` was not found in checkpoint. Will rely on " f"`capit_label_ids` parameter" ) self.capit_label_ids = OmegaConf.to_container(self._cfg.common_dataset_parameters.capit_label_ids) else: self.capit_label_ids = load_label_ids( self.register_artifact('class_labels.capit_labels_file', str(capit_label_vocab_file)) ) elif self._cfg.common_dataset_parameters.capit_label_ids is not None: self.capit_label_ids = OmegaConf.to_container(self._cfg.common_dataset_parameters.capit_label_ids) else: raise ValueError( f"Could not set attribute `capit_label_ids`. Config parameters " f"`model.common_dataset_parameters.capit_label_ids`, " f"`model.common_dataset_parameters.capit_label_vocab_file` are not set. Another way to set " f"`capit_label_ids` is calling method `setup_training_data`. That way capitalization label ids will " f"be inferred from training set." ) self.label_ids_are_set = True def _setup_dataloader_from_config(self, cfg: DictConfig, train: bool) -> torch.utils.data.DataLoader: """ Creates dataset and data loader according to config ``cfg``. If ``train=False`` and attributes ``punct_label_ids`` and ``capit_label_ids`` are not set, then this method sets the attributes and registers label artifacts. Args: cfg (:obj:`DictConfig`): a config which follows dataclass :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset.PunctuationCapitalizationEvalDataConfig` Note that list ``ds_item`` is not supported because list ``ds_item`` is unpacked by NeMo core instruments train (:obj:`bool`): whether train data is set. If ``True``, then label ids are not set in this function """ self._check_label_config_parameters() if not self.label_ids_are_set and not train: self._set_label_ids() if cfg.use_tarred_dataset: if cfg.tar_metadata_file is None: raise ValueError( f"If parameter `use_tarred_dataset` is `True`, then a field `tar_metadata_file` has to be a path " f"to tarred dataset metadata file, whereas `None` is given." ) tar_metadata_file = Path(cfg.ds_item) / cfg.tar_metadata_file dataset = BertPunctuationCapitalizationTarredDataset( metadata_file=tar_metadata_file, tokenizer=self.tokenizer, pad_label=self._cfg.common_dataset_parameters.pad_label, ignore_extra_tokens=self._cfg.common_dataset_parameters.ignore_extra_tokens, ignore_start_end=self._cfg.common_dataset_parameters.ignore_start_end, world_size=self.world_size, global_rank=self.global_rank, shuffle_n=cfg.tar_shuffle_n, shard_strategy=cfg.shard_strategy, label_info_save_dir=cfg.label_info_save_dir, use_audio=cfg.use_audio, ) dataset.check_for_label_consistency_with_model_config( self.punct_label_ids, self.capit_label_ids, self._cfg.class_labels, self._cfg.common_dataset_parameters, ) else: if cfg.text_file is None or cfg.labels_file is None: raise ValueError( f"If parameter `use_tarred_dataset` is `False`, then fields `text_file` and `labels_file` in " f"dataset config must not be `None`. Whereas `text_file={cfg.text_file}` and " f"`label_file={cfg.labels_file}`." ) if cfg.tokens_in_batch is None and cfg.use_bucketing: raise ValueError( f"If `use_tarred_dataset` is `False`, then you need to provide `tokens_in_batch` parameter." ) text_file, labels_file, = Path(cfg.ds_item) / cfg.text_file, Path(cfg.ds_item) / cfg.labels_file if cfg.audio_file: audio_file = Path(cfg.ds_item) / cfg.audio_file if self.label_ids_are_set: label_kwargs = {'punct_label_ids': self.punct_label_ids, 'capit_label_ids': self.capit_label_ids} else: punct_label_vocab_file, capit_label_vocab_file = self._extract_label_vocab_files_from_config() label_kwargs = { 'punct_label_ids': self._cfg.common_dataset_parameters.punct_label_ids, 'capit_label_ids': self._cfg.common_dataset_parameters.capit_label_ids, 'punct_label_vocab_file': punct_label_vocab_file, 'capit_label_vocab_file': capit_label_vocab_file, } if train: number_of_batches_is_multiple_of = 1 if self._trainer is None: warnings.warn( 'A model attribute `trainer` is not set before training dataset setting. If training is ' 'resumed from checkpoint, then current epoch data loading can be distorted: some batches ' 'may be processed several times and some can be not processed at all. `trainer.current_epoch`' ' is used as random seed for shuffling batches. Now 0 will be used. If the ' 'checkpoint was created not during initial epoch a shuffling of the dataset will ' 'be different. You may try use `exp_manager()` function and ' '`PunctuationCapitalizationModel.set_trainer()` method before ' '`PunctuationCapitalizationModel.setup_training_data()` method.' ) batch_shuffling_random_seed = 0 else: batch_shuffling_random_seed = self._trainer.current_epoch else: batch_shuffling_random_seed = 0 if self._trainer is None: warnings.warn( 'A model attribute `trainer` is not set before test or validation dataset setting. If more ' 'than 1 GPU is used for testing, then some examples may be tested several times because ' 'number of batches may be not evenly divisible by number of processes. This leads to ' 'distortion of metrics. See more in description of `number_of_batches_is_multiple_of` ' 'parameter of class `BertPunctuationCapitalizationDataset` initializer and ' 'https://pytorch.org/docs/stable/data.html#multi-process-data-loading. You may try to use ' '`PunctuationCapitalizationModel.set_trainer()` method before ' '`PunctuationCapitalizationModel.setup_validation_data()` and ' '`PunctuationCapitalizationModel.setup_test_data()` methods.' ) number_of_batches_is_multiple_of = 1 else: number_of_batches_is_multiple_of = self._trainer.num_nodes * self._trainer.num_devices if cfg.cache_dir is None: cache_dir = cfg.cache_dir else: # If pickled features are saved `cache_dir` not in the same directory with original data files, then # a full path to data directory have to be appended to `cache_dir`. This is done to avoid collisions # cache for different datasets is saved to same `cache_dir`. cache_dir = Path(cfg.cache_dir).joinpath('fsroot', *text_file.expanduser().resolve().parts[1:-1]) dataset = BertPunctuationCapitalizationDataset( tokenizer=self.tokenizer, text_file=text_file, labels_file=labels_file, pad_label=self._cfg.common_dataset_parameters.pad_label, **label_kwargs, max_seq_length=cfg.max_seq_length, ignore_extra_tokens=self._cfg.common_dataset_parameters.ignore_extra_tokens, ignore_start_end=self._cfg.common_dataset_parameters.ignore_start_end, use_cache=cfg.use_cache, num_samples=cfg.num_samples, tokens_in_batch=cfg.tokens_in_batch, n_jobs=cfg.n_jobs, number_of_batches_is_multiple_of=number_of_batches_is_multiple_of, batch_shuffling_random_seed=batch_shuffling_random_seed, verbose=cfg.verbose, get_label_frequencies=cfg.get_label_frequences, cache_dir=cache_dir, label_info_save_dir=cfg.label_info_save_dir, audio_file=audio_file if cfg.audio_file else None, sample_rate=cfg.sample_rate, use_audio=cfg.use_audio, use_bucketing=cfg.use_bucketing, preload_audios=cfg.preload_audios, ) if cfg.shuffle and cfg.use_tarred_dataset: logging.warning(f"Shuffling in dataloader is not supported for tarred dataset.") shuffle = False else: shuffle = cfg.shuffle return torch.utils.data.DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_size=1 if cfg.use_bucketing else cfg.batch_size, shuffle=shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, drop_last=cfg.drop_last, persistent_workers=cfg.persistent_workers if cfg.num_workers > 0 else False, ) def _setup_infer_dataloader( self, queries: List[str], batch_size: int, max_seq_length: int, step: int, margin: int, dataloader_kwargs: Optional[Dict[str, Any]], audio_queries: Optional[Union[List[bytes], List[str]]] = None, target_sr: Optional[int] = None, ) -> torch.utils.data.DataLoader: """ Setup function for an infer data loader. Args: queries (:obj:`List[str]`): lower cased text without punctuation batch_size (:obj:`int`): batch size to use during inference max_seq_length (:obj:`int`): length of segments into which queries are split. ``max_seq_length`` includes ``[CLS]`` and ``[SEP]`` so every segment contains at most ``max_seq_length-2`` tokens from input a query. step (:obj:`int`): number of tokens by which a segment is offset to a previous segment. Parameter ``step`` cannot be greater than ``max_seq_length-2``. margin (:obj:`int`): number of tokens near the edge of a segment which label probabilities are not used in final prediction computation. audio_queries (:obj:`List[str]`, `optional`): paths to audio files. target_sr (:obj:`int`, `optional`): target sample rate for audios. Returns: :obj:`torch.utils.data.DataLoader`: inference data loader """ if dataloader_kwargs is None: dataloader_kwargs = {} dataset = BertPunctuationCapitalizationInferDataset( tokenizer=self.tokenizer, queries=queries, max_seq_length=max_seq_length, step=step, margin=margin, audio_queries=audio_queries, target_sr=target_sr, ) return torch.utils.data.DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_size=batch_size, shuffle=False, drop_last=False, **dataloader_kwargs, ) @staticmethod def _remove_margins(tensor: torch.Tensor, margin_size: int, keep_left: bool, keep_right: bool) -> torch.Tensor: tensor = tensor.detach().clone() if not keep_left: tensor = tensor[margin_size + 1 :] # remove left margin and CLS token if not keep_right: tensor = tensor[: tensor.shape[0] - margin_size - 1] # remove right margin and SEP token return tensor def _transform_logit_to_prob_and_remove_margins_and_extract_word_probs( self, punct_logits: torch.Tensor, capit_logits: torch.Tensor, subtokens_mask: torch.Tensor, start_word_ids: Tuple[int], margin: int, is_first: Tuple[bool], is_last: Tuple[bool], ) -> Tuple[List[np.ndarray], List[np.ndarray], List[int]]: """ Applies softmax to get punctuation and capitalization probabilities, applies ``subtokens_mask`` to extract probabilities for words from probabilities for tokens, removes ``margin`` probabilities near edges of a segment. Left margin of the first segment in a query and right margin of the last segment in a query are not removed. Calculates new ``start_word_ids`` taking into the account the margins. If the left margin of a segment is removed corresponding start word index is increased by number of words (number of nonzero values in corresponding ``subtokens_mask``) in the margin. Args: punct_logits: a float tensor of shape ``[batch_size, segment_length, number_of_punctuation_labels]`` capit_logits: a float tensor of shape ``[batch_size, segment_length, number_of_capitalization_labels]`` subtokens_mask: a float tensor of shape ``[batch_size, segment_length]`` start_word_ids: indices of segment first words in a query margin: number of tokens near edges of a segment which probabilities are discarded is_first: is segment the first segment in a query is_last: is segment the last segment in a query Returns: b_punct_probs: list containing ``batch_size`` numpy arrays. The numpy arrays have shapes ``[number_of_word_in_this_segment, number_of_punctuation_labels]``. Word punctuation probabilities for segments in the batch. b_capit_probs: list containing ``batch_size`` numpy arrays. The numpy arrays have shapes ``[number_of_word_in_this_segment, number_of_capitalization_labels]``. Word capitalization probabilities for segments in the batch. new_start_word_ids: indices of segment first words in a query after margin removal """ new_start_word_ids = list(start_word_ids) subtokens_mask = subtokens_mask > 0.5 b_punct_probs, b_capit_probs = [], [] for i, (first, last, pl, cl, stm) in enumerate( zip(is_first, is_last, punct_logits, capit_logits, subtokens_mask) ): if not first: new_start_word_ids[i] += torch.count_nonzero(stm[: margin + 1]).numpy() # + 1 is for [CLS] token stm = self._remove_margins(stm, margin, keep_left=first, keep_right=last) for b_probs, logits in [(b_punct_probs, pl), (b_capit_probs, cl)]: p = torch.nn.functional.softmax( self._remove_margins(logits, margin, keep_left=first, keep_right=last)[stm], dim=-1, ) b_probs.append(p.detach().cpu().numpy()) return b_punct_probs, b_capit_probs, new_start_word_ids @staticmethod def _move_acc_probs_to_token_preds( pred: List[int], acc_prob: np.ndarray, number_of_probs_to_move: int ) -> Tuple[List[int], np.ndarray]: """ ``number_of_probs_to_move`` rows in the beginning are removed from ``acc_prob``. From every remove row the label with the largest probability is selected and appended to ``pred``. Args: pred: list with ready label indices for a query acc_prob: numpy array of shape ``[number_of_words_for_which_probabilities_are_accumulated, number_of_labels]`` number_of_probs_to_move: int Returns: pred: list with ready label indices for a query acc_prob: numpy array of shape ``[number_of_words_for_which_probabilities_are_accumulated - number_of_probs_to_move, number_of_labels]`` """ if number_of_probs_to_move > acc_prob.shape[0]: raise ValueError( f"Not enough accumulated probabilities. Number_of_probs_to_move={number_of_probs_to_move} " f"acc_prob.shape={acc_prob.shape}" ) if number_of_probs_to_move > 0: pred = pred + list(np.argmax(acc_prob[:number_of_probs_to_move], axis=-1)) acc_prob = acc_prob[number_of_probs_to_move:] return pred, acc_prob @staticmethod def _update_accumulated_probabilities(acc_prob: np.ndarray, update: np.ndarray) -> np.ndarray: """ Args: acc_prob: numpy array of shape ``[A, L]`` update: numpy array of shape ``[A + N, L]`` Returns: numpy array of shape ``[A + N, L]`` """ acc_prob = np.concatenate([acc_prob * update[: acc_prob.shape[0]], update[acc_prob.shape[0] :]], axis=0) return acc_prob def _apply_punct_capit_predictions(self, query: str, punct_preds: List[int], capit_preds: List[int]) -> str: """ Restores punctuation and capitalization in ``query``. Args: query: a string without punctuation and capitalization punct_preds: ids of predicted punctuation labels capit_preds: ids of predicted capitalization labels Returns: a query with restored punctuation and capitalization """ query = query.strip().split() assert len(query) == len( punct_preds ), f"len(query)={len(query)} len(punct_preds)={len(punct_preds)}, query[:30]={query[:30]}" assert len(query) == len( capit_preds ), f"len(query)={len(query)} len(capit_preds)={len(capit_preds)}, query[:30]={query[:30]}" punct_ids_to_labels = {v: k for k, v in self.punct_label_ids.items()} capit_ids_to_labels = {v: k for k, v in self.capit_label_ids.items()} query_with_punct_and_capit = '' for j, word in enumerate(query): punct_label = punct_ids_to_labels[punct_preds[j]] capit_label = capit_ids_to_labels[capit_preds[j]] if capit_label != self._cfg.common_dataset_parameters.pad_label: word = word.capitalize() query_with_punct_and_capit += word if punct_label != self._cfg.common_dataset_parameters.pad_label: query_with_punct_and_capit += punct_label query_with_punct_and_capit += ' ' return query_with_punct_and_capit[:-1] def _get_labels(self, punct_preds: List[int], capit_preds: List[int]) -> str: """ Returns punctuation and capitalization labels in NeMo format for encoded punctuation ``punct_preds`` and ``capit_preds`` labels (see https://docs.nvidia.com/deeplearning/nemo/ user-guide/docs/en/main/nlp/punctuation_and_capitalization.html#nemo-data-format). Args: punct_preds: ids of predicted punctuation labels capit_preds: ids of predicted capitalization labels Returns: labels in NeMo format """ assert len(capit_preds) == len( punct_preds ), f"len(capit_preds)={len(capit_preds)} len(punct_preds)={len(punct_preds)}" punct_ids_to_labels = {v: k for k, v in self.punct_label_ids.items()} capit_ids_to_labels = {v: k for k, v in self.capit_label_ids.items()} result = '' for capit_label, punct_label in zip(capit_preds, punct_preds): punct_label = punct_ids_to_labels[punct_label] capit_label = capit_ids_to_labels[capit_label] result += punct_label + capit_label + ' ' return result[:-1] def add_punctuation_capitalization( self, queries: List[str], batch_size: int = None, max_seq_length: int = 64, step: int = 8, margin: int = 16, return_labels: bool = False, dataloader_kwargs: Dict[str, Any] = None, ) -> List[str]: """ Adds punctuation and capitalization to the queries. Use this method for inference. Parameters ``max_seq_length``, ``step``, ``margin`` are for controlling the way queries are split into segments which are processed by the model. Parameter ``max_seq_length`` is a length of a segment after tokenization including special tokens [CLS] in the beginning and [SEP] in the end of a segment. Parameter ``step`` is a shift between consequent segments. Parameter ``margin`` is used to exclude negative effect of subtokens near borders of segments which have only one side context. If segments overlap, probabilities of overlapping predictions are multiplied and then the label with corresponding to the maximum probability is selected. Args: queries (:obj:`List[str]`): lower cased text without punctuation. batch_size (:obj:`List[str]`, `optional`): batch size to use during inference. If ``batch_size`` parameter is not provided, then it will be equal to length of ``queries`` list. max_seq_length (:obj:`int`, `optional`, defaults to :obj:`64`): maximum sequence length of a segment after tokenization including :code:`[CLS]` and :code:`[SEP]` tokens. step (:obj:`int`, `optional`, defaults to :obj:`8`): relative shift of consequent segments into which long queries are split. Long queries are split into segments which can overlap. Parameter ``step`` controls such overlapping. Imagine that queries are tokenized into characters, ``max_seq_length=5``, and ``step=2``. In such case, query ``"hello"`` is tokenized into segments ``[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]``. margin (:obj:`int`, `optional`, defaults to :obj:`16`): number of subtokens in the beginning and the end of segments which are not used for prediction computation. The first segment does not have left margin and the last segment does not have right margin. For example, if an input sequence is tokenized into characters, ``max_seq_length=5``, ``step=1``, and ``margin=1``, then query ``"hello"`` will be tokenized into segments ``[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'e', 'l', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]``. These segments are passed to the model. Before final predictions computation, margins are removed. In the next list, subtokens which logits are not used for final predictions computation are marked with asterisk: ``[['[CLS]'*, 'h', 'e', 'l'*, '[SEP]'*], ['[CLS]'*, 'e'*, 'l', 'l'*, '[SEP]'*], ['[CLS]'*, 'l'*, 'l', 'o', '[SEP]'*]]``. return_labels (:obj:`bool`, `optional`, defaults to :obj:`False`): whether to return labels in NeMo format (see :ref:`nemo-data-format-label`) instead of queries with restored punctuation and capitalization. dataloader_kwargs (:obj:`Dict[str, Any]`, `optional`): an optional dictionary with parameters of PyTorch data loader. May include keys: ``'num_workers'``, ``'pin_memory'``, ``'worker_init_fn'``, ``'prefetch_factor'``, ``'persistent_workers'``. Returns: :obj:`List[str]`: a list of queries with restored capitalization and punctuation if ``return_labels=False``, else a list of punctuation and capitalization labels strings for all queries """ if len(queries) == 0: return [] if batch_size is None: batch_size = len(queries) logging.info(f'Using batch size {batch_size} for inference') result: List[str] = [] mode = self.training try: self.eval() infer_datalayer = self._setup_infer_dataloader( queries, batch_size, max_seq_length, step, margin, dataloader_kwargs ) # Predicted labels for queries. List of labels for every query all_punct_preds: List[List[int]] = [[] for _ in queries] all_capit_preds: List[List[int]] = [[] for _ in queries] # Accumulated probabilities (or product of probabilities acquired from different segments) of punctuation # and capitalization. Probabilities for words in a query are extracted using `subtokens_mask`. Probabilities # for newly processed words are appended to the accumulated probabilities. If probabilities for a word are # already present in `acc_probs`, old probabilities are replaced with a product of old probabilities # and probabilities acquired from new segment. Segments are processed in an order they appear in an # input query. When all segments with a word are processed, a label with the highest probability # (or product of probabilities) is chosen and appended to an appropriate list in `all_preds`. After adding # prediction to `all_preds`, probabilities for a word are removed from `acc_probs`. acc_punct_probs: List[Optional[np.ndarray]] = [None for _ in queries] acc_capit_probs: List[Optional[np.ndarray]] = [None for _ in queries] d = self.device for batch_i, batch in tqdm( enumerate(infer_datalayer), total=ceil(len(infer_datalayer.dataset) / batch_size), unit="batch" ): inp_ids, inp_type_ids, inp_mask, subtokens_mask, start_word_ids, query_ids, is_first, is_last = batch punct_logits, capit_logits = self.forward( input_ids=inp_ids.to(d), token_type_ids=inp_type_ids.to(d), attention_mask=inp_mask.to(d), ) _res = self._transform_logit_to_prob_and_remove_margins_and_extract_word_probs( punct_logits, capit_logits, subtokens_mask, start_word_ids, margin, is_first, is_last ) punct_probs, capit_probs, start_word_ids = _res for i, (q_i, start_word_id, bpp_i, bcp_i) in enumerate( zip(query_ids, start_word_ids, punct_probs, capit_probs) ): for all_preds, acc_probs, b_probs_i in [ (all_punct_preds, acc_punct_probs, bpp_i), (all_capit_preds, acc_capit_probs, bcp_i), ]: if acc_probs[q_i] is None: acc_probs[q_i] = b_probs_i else: all_preds[q_i], acc_probs[q_i] = self._move_acc_probs_to_token_preds( all_preds[q_i], acc_probs[q_i], start_word_id - len(all_preds[q_i]), ) acc_probs[q_i] = self._update_accumulated_probabilities(acc_probs[q_i], b_probs_i) for all_preds, acc_probs in [(all_punct_preds, acc_punct_probs), (all_capit_preds, acc_capit_probs)]: for q_i, (pred, prob) in enumerate(zip(all_preds, acc_probs)): if prob is not None: all_preds[q_i], acc_probs[q_i] = self._move_acc_probs_to_token_preds(pred, prob, len(prob)) for i, query in enumerate(queries): result.append( self._get_labels(all_punct_preds[i], all_capit_preds[i]) if return_labels else self._apply_punct_capit_predictions(query, all_punct_preds[i], all_capit_preds[i]) ) finally: # set mode back to its original value self.train(mode=mode) return result @classmethod def list_available_models(cls) -> List[PretrainedModelInfo]: """ This method returns a list of pre-trained models which can be instantiated directly from NVIDIA's NGC cloud. Returns: :obj:`List[PretrainedModelInfo]`: a list of available pre-trained models. """ result = [ PretrainedModelInfo( pretrained_model_name="punctuation_en_bert", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/punctuation_en_bert/versions/1.0.0rc1/" "files/punctuation_en_bert.nemo", description="The model was trained with NeMo BERT base uncased checkpoint on a subset of data from " "the following sources: Tatoeba sentences, books from Project Gutenberg, Fisher transcripts.", ), PretrainedModelInfo( pretrained_model_name="punctuation_en_distilbert", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/punctuation_en_distilbert/versions/" "1.0.0rc1/files/punctuation_en_distilbert.nemo", description="The model was trained with DistilBERT base uncased checkpoint from HuggingFace on a " "subset of data from the following sources: Tatoeba sentences, books from Project Gutenberg, " "Fisher transcripts.", ), ] return result @property def output_module(self): return self
NeMo-main
nemo/collections/nlp/models/token_classification/punctuation_capitalization_model.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Dict, Optional from omegaconf.omegaconf import MISSING, DictConfig, OmegaConf, open_dict from nemo.collections.common.parts.adapter_modules import LinearAdapterConfig from nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset import ( PunctuationCapitalizationEvalDataConfig, PunctuationCapitalizationTrainDataConfig, legacy_data_config_to_new_data_config, ) from nemo.core.config import TrainerConfig from nemo.core.config.modelPT import NemoConfig from nemo.utils.exp_manager import ExpManagerConfig @dataclass class FreezeConfig: is_enabled: bool = False """Freeze audio encoder weight and add Conformer Layers on top of it""" d_model: Optional[int] = 256 """`d_model` parameter of ``ConformerLayer``""" d_ff: Optional[int] = 1024 """``d_ff`` parameter of ``ConformerLayer``""" num_layers: Optional[int] = 8 """``num_layers`` number of ``ConformerLayer`` modules to add on top of audio encoder""" @dataclass class AdapterConfig: config: Optional[LinearAdapterConfig] = None """Linear adapter config see ``collections.common.parts.LinearAdapterConfig``""" enable: bool = False """Use adapters for audio encoder""" @dataclass class FusionConfig: num_layers: Optional[int] = 4 """"Number of layers to use in fusion""" num_attention_heads: Optional[int] = 4 """Number of attention heads to use in fusion""" inner_size: Optional[int] = 2048 """Fusion inner size""" @dataclass class AudioEncoderConfig: pretrained_model: str = MISSING """A configuration for restoring pretrained audio encoder""" freeze: Optional[FreezeConfig] = None adapter: Optional[AdapterConfig] = None fusion: Optional[FusionConfig] = None @dataclass class TokenizerConfig: """A structure and default values of source text tokenizer.""" vocab_file: Optional[str] = None """A path to vocabulary file which is used in ``'word'``, ``'char'``, and HuggingFace tokenizers""" tokenizer_name: str = MISSING """A name of the tokenizer used for tokenization of source sequences. Possible options are ``'sentencepiece'``, ``'word'``, ``'char'``, HuggingFace tokenizers (e.g. ``'bert-base-uncased'``). For more options see function ``nemo.collections.nlp.modules.common.get_tokenizer``. The tokenizer must have properties ``cls_id``, ``pad_id``, ``sep_id``, ``unk_id``.""" special_tokens: Optional[Dict[str, str]] = None """A dictionary with special tokens passed to constructors of ``'char'``, ``'word'``, ``'sentencepiece'``, and various HuggingFace tokenizers.""" tokenizer_model: Optional[str] = None """A path to a tokenizer model required for ``'sentencepiece'`` tokenizer.""" @dataclass class LanguageModelConfig: """ A structure and default values of language model configuration of punctuation and capitalization model. BERT like HuggingFace models are supported. Provide a valid ``pretrained_model_name`` and, optionally, you may reinitialize model via ``config_file`` or ``config``. Alternatively you can initialize the language model using ``lm_checkpoint``. This config is a part of :class:`PunctuationCapitalizationModelConfig` config. """ pretrained_model_name: str = MISSING """A mandatory parameter containing name of HuggingFace pretrained model. For example, ``'bert-base-uncased'``.""" config_file: Optional[str] = None """A path to a file with HuggingFace model config which is used to reinitialize language model.""" config: Optional[Dict] = None """A HuggingFace config which is used to reinitialize language model.""" lm_checkpoint: Optional[str] = None """A path to a ``torch`` checkpoint of a language model.""" @dataclass class HeadConfig: """ A structure and default values of configuration of capitalization or punctuation model head. This config defines a multilayer perceptron which is applied to output of a language model. Number of units in the hidden layer is equal to the dimension of the language model. This config is a part of :class:`PunctuationCapitalizationModelConfig` config. """ num_fc_layers: int = 1 """A number of hidden layers in a multilayer perceptron.""" fc_dropout: float = 0.1 """A dropout used in an MLP.""" activation: str = 'relu' """An activation used in hidden layers.""" use_transformer_init: bool = True """Whether to initialize the weights of the classifier head with the approach that was used for language model initialization.""" @dataclass class ClassLabelsConfig: """ A structure and default values of a mandatory part of config which contains names of files which are saved in .nemo checkpoint. These files can also be used for passing label vocabulary to the model. For using them as label vocabularies you will need to provide path these files in parameter ``model.common_dataset_parameters.label_vocab_dir``. Each line in labels files contains 1 label. The values are sorted, ``<line number>==<label id>``, starting from ``0``. A label with ``0`` id must contain neutral label which must be equal to ``model.common_dataset_parameters.pad_label``. This config is a part of :class:`~CommonDatasetParametersConfig`. """ punct_labels_file: str = MISSING """A name of punctuation labels file.""" capit_labels_file: str = MISSING """A name of capitalization labels file.""" @dataclass class CommonDatasetParametersConfig: """ A structure and default values of common dataset parameters config which includes label and loss mask information. If you omit parameters ``punct_label_ids``, ``capit_label_ids``, ``label_vocab_dir``, then labels will be inferred from a training dataset or loaded from a checkpoint. Parameters ``ignore_extra_tokens`` and ``ignore_start_end`` are responsible for forming loss mask. A loss mask defines on which tokens loss is computed. This parameter is a part of config :class:`~PunctuationCapitalizationModelConfig`. """ pad_label: str = MISSING """A mandatory parameter which should contain label used for punctuation and capitalization label padding. It also serves as a neutral label for both punctuation and capitalization. If any of ``punct_label_ids``, ``capit_label_ids`` parameters is provided, then ``pad_label`` must have ``0`` id in them. In addition, if ``label_vocab_dir`` is provided, then ``pad_label`` must be on the first lines in files ``class_labels.punct_labels_file`` and ``class_labels.capit_labels_file``.""" ignore_extra_tokens: bool = False """Whether to compute loss on not first tokens in words. If this parameter is ``True``, then loss mask is ``False`` for all tokens in a word except the first.""" ignore_start_end: bool = True """If ``False``, then loss is computed on [CLS] and [SEP] tokens.""" punct_label_ids: Optional[Dict[str, int]] = None """A dictionary with punctuation label ids. ``pad_label`` must have ``0`` id in this dictionary. You can omit this parameter and pass label ids through ``class_labels.punct_labels_file`` or let the model to infer label ids from dataset or load them from checkpoint.""" capit_label_ids: Optional[Dict[str, int]] = None """A dictionary with capitalization label ids. ``pad_label`` must have ``0`` id in this dictionary. You can omit this parameter and pass label ids through ``class_labels.capit_labels_file`` or let model to infer label ids from dataset or load them from checkpoint.""" label_vocab_dir: Optional[str] = None """A path to directory which contains class labels files. See :class:`ClassLabelsConfig`. If this parameter is provided, then labels will be loaded from files which are located in ``label_vocab_dir`` and have names specified in ``model.class_labels`` configuration section. A label specified in ``pad_label`` has to be on the first lines of ``model.class_labels`` files.""" @dataclass class PunctuationCapitalizationModelConfig: """ A configuration of :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_model.PunctuationCapitalizationModel` model. See an example of model config in `nemo/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml <https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml>`_ This config is a part of :class:`~PunctuationCapitalizationConfig`. """ class_labels: ClassLabelsConfig = ClassLabelsConfig() """A mandatory parameter containing a dictionary with names of label id files used in .nemo checkpoints. These file names can also be used for passing label vocabularies to the model. If you wish to use ``class_labels`` for passing vocabularies, please provide path to vocabulary files in ``model.common_dataset_parameters.label_vocab_dir`` parameter.""" common_dataset_parameters: Optional[CommonDatasetParametersConfig] = CommonDatasetParametersConfig() """Label ids and loss mask information information.""" train_ds: Optional[PunctuationCapitalizationTrainDataConfig] = None """A configuration for creating training dataset and data loader.""" validation_ds: Optional[PunctuationCapitalizationEvalDataConfig] = None """A configuration for creating validation datasets and data loaders.""" test_ds: Optional[PunctuationCapitalizationEvalDataConfig] = None """A configuration for creating test datasets and data loaders.""" punct_head: HeadConfig = HeadConfig() """A configuration for creating punctuation MLP head that is applied to a language model outputs.""" capit_head: HeadConfig = HeadConfig() """A configuration for creating capitalization MLP head that is applied to a language model outputs.""" tokenizer: Any = TokenizerConfig() """A configuration for source text tokenizer.""" language_model: LanguageModelConfig = LanguageModelConfig() """A configuration of a BERT-like language model which serves as a model body.""" optim: Optional[Any] = None """A configuration of optimizer and learning rate scheduler. There is much variability in such config. For description see `Optimizers <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/core/core.html#optimizers>`_ section in documentation and `primer <https://github.com/NVIDIA/NeMo/blob/main/tutorials/00_NeMo_Primer.ipynb>_ tutorial.""" @dataclass class PunctuationCapitalizationLexicalAudioModelConfig(PunctuationCapitalizationModelConfig): """ A configuration of :class:`~nemo.collections.nlp.models.token_classification.punctuation_lexical_audio_capitalization_model.PunctuationCapitalizationLexicalAudioModel` model. See an example of model config in `nemo/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml <https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/token_classification/conf/punctuation_capitalization_lexical_audio_config.yaml>`_ Audio encoder can be frozen during training with ``freeze_audio_encoder`` parameter. Adapter can be added to audio encoder with ``use_adapters`` and ``adapter_config`` parameters. More conformer layers can be added on top of pretrained audio encoder with ``frozen_conf_d_model``, ``frozen_conf_d_ff`` and ``frozen_conf_num_layers`` parameters. """ train_ds: Optional[PunctuationCapitalizationTrainDataConfig] = None """A configuration for creating training dataset and data loader.""" validation_ds: Optional[PunctuationCapitalizationEvalDataConfig] = None """A configuration for creating validation datasets and data loaders.""" test_ds: Optional[PunctuationCapitalizationEvalDataConfig] = None """A configuration for creating test datasets and data loaders.""" audio_encoder: Optional[AudioEncoderConfig] = None restore_lexical_encoder_from: Optional[str] = None """"Path to .nemo checkpoint to load weights from""" # add more comments use_weighted_loss: Optional[bool] = False """If set to ``True`` CrossEntropyLoss will be weighted""" @dataclass class PunctuationCapitalizationConfig(NemoConfig): """ A config for punctuation model training and testing. See an example of full config in `nemo/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml <https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml>`_ """ pretrained_model: Optional[str] = None """Can be an NVIDIA's NGC cloud model or a path to a .nemo checkpoint. You can get list of possible cloud options by calling method :func:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_model.PunctuationCapitalizationModel.list_available_models`. """ name: Optional[str] = 'Punctuation_and_Capitalization' """A name of the model. Used for naming output directories and ``.nemo`` checkpoints.""" do_training: bool = True """Whether to perform training of the model.""" do_testing: bool = False """Whether ot perform testing of the model.""" model: PunctuationCapitalizationModelConfig = PunctuationCapitalizationModelConfig() """A configuration for the :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_model.PunctuationCapitalizationModel` model.""" trainer: Optional[TrainerConfig] = TrainerConfig() """Contains ``Trainer`` Lightning class constructor parameters.""" exp_manager: Optional[ExpManagerConfig] = ExpManagerConfig(name=name, files_to_copy=[]) """A configuration with various NeMo training options such as output directories, resuming from checkpoint, tensorboard and W&B logging, and so on. For possible options see :ref:`exp-manager-label`.""" @dataclass class PunctuationCapitalizationLexicalAudioConfig(PunctuationCapitalizationConfig): model: PunctuationCapitalizationLexicalAudioModelConfig = PunctuationCapitalizationLexicalAudioModelConfig() def is_legacy_model_config(model_cfg: DictConfig) -> bool: """ Test if model config is old style config. Old style configs are configs which were used before ``common_dataset_parameters`` item was added. Old style datasets use ``dataset`` instead of ``common_dataset_parameters``, ``batch_size`` instead of ``tokens_in_batch``. Old style configs do not support tarred datasets. Args: model_cfg: model configuration Returns: whether ``model_config`` is legacy """ return 'common_dataset_parameters' not in model_cfg def legacy_model_config_to_new_model_config(model_cfg: DictConfig) -> DictConfig: """ Transform old style config into :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_config.PunctuationCapitalizationModelConfig`. Old style configs are configs which were used before ``common_dataset_parameters`` item was added. Old style datasets use ``dataset`` instead of ``common_dataset_parameters``, ``batch_size`` instead of ``tokens_in_batch``. Old style configs do not support tarred datasets. Args: model_cfg: old style config Returns: model config which follows dataclass :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_config.PunctuationCapitalizationModelConfig` """ train_ds = model_cfg.get('train_ds') validation_ds = model_cfg.get('validation_ds') test_ds = model_cfg.get('test_ds') dataset = model_cfg.dataset punct_head_config = model_cfg.get('punct_head', {}) capit_head_config = model_cfg.get('capit_head', {}) omega_conf = OmegaConf.structured( PunctuationCapitalizationModelConfig( class_labels=model_cfg.class_labels, common_dataset_parameters=CommonDatasetParametersConfig( pad_label=dataset.pad_label, ignore_extra_tokens=dataset.get( 'ignore_extra_tokens', CommonDatasetParametersConfig.ignore_extra_tokens ), ignore_start_end=dataset.get('ignore_start_end', CommonDatasetParametersConfig.ignore_start_end), punct_label_ids=model_cfg.punct_label_ids, capit_label_ids=model_cfg.capit_label_ids, ), train_ds=None if train_ds is None else legacy_data_config_to_new_data_config(train_ds, dataset, train=True), validation_ds=None if validation_ds is None else legacy_data_config_to_new_data_config(validation_ds, dataset, train=False), test_ds=None if test_ds is None else legacy_data_config_to_new_data_config(test_ds, dataset, train=False), punct_head=HeadConfig( num_fc_layers=punct_head_config.get('punct_num_fc_layers', HeadConfig.num_fc_layers), fc_dropout=punct_head_config.get('fc_dropout', HeadConfig.fc_dropout), activation=punct_head_config.get('activation', HeadConfig.activation), use_transformer_init=punct_head_config.get('use_transformer_init', HeadConfig.use_transformer_init), ), capit_head=HeadConfig( num_fc_layers=capit_head_config.get('capit_num_fc_layers', HeadConfig.num_fc_layers), fc_dropout=capit_head_config.get('fc_dropout', HeadConfig.fc_dropout), activation=capit_head_config.get('activation', HeadConfig.activation), use_transformer_init=capit_head_config.get('use_transformer_init', HeadConfig.use_transformer_init), ), tokenizer=model_cfg.tokenizer, language_model=model_cfg.language_model, optim=model_cfg.optim, ) ) with open_dict(omega_conf): retain_during_legacy_conversion = model_cfg.get('retain_during_legacy_conversion', {}) for key in retain_during_legacy_conversion.keys(): omega_conf[key] = retain_during_legacy_conversion[key] return omega_conf
NeMo-main
nemo/collections/nlp/models/token_classification/punctuation_capitalization_config.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import List, Optional, Union import torch from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from torch.utils.data import DataLoader from nemo.collections.common.losses import CrossEntropyLoss from nemo.collections.nlp.data.data_utils.data_preprocessing import get_labels_to_labels_id_mapping from nemo.collections.nlp.data.token_classification.token_classification_dataset import ( BertTokenClassificationDataset, BertTokenClassificationInferDataset, ) from nemo.collections.nlp.data.token_classification.token_classification_utils import get_label_ids from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common import TokenClassifier from nemo.collections.nlp.parts.utils_funcs import get_classification_report, plot_confusion_matrix, tensor2list from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.utils import logging __all__ = ['TokenClassificationModel'] class TokenClassificationModel(NLPModel): """Token Classification Model with BERT, applicable for tasks such as Named Entity Recognition""" def __init__(self, cfg: DictConfig, trainer: Trainer = None): """Initializes Token Classification Model.""" # extract str to int labels mapping if a mapping file provided if isinstance(cfg.label_ids, str): if os.path.exists(cfg.label_ids): logging.info(f'Reusing label_ids file found at {cfg.label_ids}.') label_ids = get_labels_to_labels_id_mapping(cfg.label_ids) # update the config to store name to id mapping cfg.label_ids = OmegaConf.create(label_ids) else: raise ValueError(f'{cfg.label_ids} not found.') self.class_weights = None super().__init__(cfg=cfg, trainer=trainer) self.classifier = TokenClassifier( hidden_size=self.hidden_size, num_classes=len(self._cfg.label_ids), num_layers=self._cfg.head.num_fc_layers, activation=self._cfg.head.activation, log_softmax=False, dropout=self._cfg.head.fc_dropout, use_transformer_init=self._cfg.head.use_transformer_init, ) self.loss = self.setup_loss(class_balancing=self._cfg.dataset.class_balancing) # setup to track metrics self.classification_report = ClassificationReport( len(self._cfg.label_ids), label_ids=self._cfg.label_ids, dist_sync_on_step=True ) def update_data_dir(self, data_dir: str) -> None: """ Update data directory and get data stats with Data Descriptor Weights are later used to setup loss Args: data_dir: path to data directory """ self._cfg.dataset.data_dir = data_dir logging.info(f'Setting model.dataset.data_dir to {data_dir}.') def setup_loss(self, class_balancing: str = None): """Setup loss Setup or update loss. Args: class_balancing: whether to use class weights during training """ if class_balancing not in ['weighted_loss', None]: raise ValueError(f'Class balancing {class_balancing} is not supported. Choose from: [null, weighted_loss]') if class_balancing == 'weighted_loss' and self.class_weights: # you may need to increase the number of epochs for convergence when using weighted_loss loss = CrossEntropyLoss(logits_ndim=3, weight=self.class_weights) logging.debug(f'Using {class_balancing} class balancing.') else: loss = CrossEntropyLoss(logits_ndim=3) logging.debug(f'Using CrossEntropyLoss class balancing.') return loss @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] logits = self.classifier(hidden_states=hidden_states) return logits def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ input_ids, input_type_ids, input_mask, subtokens_mask, loss_mask, labels = batch logits = self(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) loss = self.loss(logits=logits, labels=labels, loss_mask=loss_mask) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', loss) self.log('lr', lr, prog_bar=True) return { 'loss': loss, 'lr': lr, } def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ input_ids, input_type_ids, input_mask, subtokens_mask, loss_mask, labels = batch logits = self(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) val_loss = self.loss(logits=logits, labels=labels, loss_mask=loss_mask) subtokens_mask = subtokens_mask > 0.5 preds = torch.argmax(logits, axis=-1)[subtokens_mask] labels = labels[subtokens_mask] tp, fn, fp, _ = self.classification_report(preds, labels) loss = {'val_loss': val_loss, 'tp': tp, 'fn': fn, 'fp': fp} self.validation_step_outputs.append(loss) return loss def on_validation_epoch_end(self): """ Called at the end of validation to aggregate outputs. outputs: list of individual outputs of each validation step. """ avg_loss = torch.stack([x['val_loss'] for x in self.validation_step_outputs]).mean() # calculate metrics and classification report precision, recall, f1, report = self.classification_report.compute() logging.info(report) self.log('val_loss', avg_loss, prog_bar=True) self.log('precision', precision) self.log('f1', f1) self.log('recall', recall) self.classification_report.reset() self.validation_step_outputs.clear() # free memory def test_step(self, batch, batch_idx): input_ids, input_type_ids, input_mask, subtokens_mask, loss_mask, labels = batch logits = self(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) val_loss = self.loss(logits=logits, labels=labels, loss_mask=loss_mask) subtokens_mask = subtokens_mask > 0.5 preds = torch.argmax(logits, axis=-1)[subtokens_mask] labels = labels[subtokens_mask] tp, fn, fp, _ = self.classification_report(preds, labels) loss = {'test_loss': val_loss, 'tp': tp, 'fn': fn, 'fp': fp} self.test_step_outputs.append(loss) return loss def on_test_epoch_end(self): avg_loss = torch.stack([x['test_loss'] for x in self.test_step_outputs]).mean() # calculate metrics and classification report precision, recall, f1, report = self.classification_report.compute() logging.info(report) self.log('test_loss', avg_loss, prog_bar=True) self.log('precision', precision) self.log('f1', f1) self.log('recall', recall) self.test_step_outputs.clear() # free memory def setup_training_data(self, train_data_config: Optional[DictConfig] = None): if train_data_config is None: train_data_config = self._cfg.train_ds labels_file = os.path.join(self._cfg.dataset.data_dir, train_data_config.labels_file) # for older(pre - 1.0.0.b3) configs compatibility if not hasattr(self._cfg, "class_labels") or self._cfg.class_labels is None: OmegaConf.set_struct(self._cfg, False) self._cfg.class_labels = {} self._cfg.class_labels = OmegaConf.create({'class_labels_file': 'label_ids.csv'}) OmegaConf.set_struct(self._cfg, True) label_ids, label_ids_filename, self.class_weights = get_label_ids( label_file=labels_file, is_training=True, pad_label=self._cfg.dataset.pad_label, label_ids_dict=self._cfg.label_ids, get_weights=True, class_labels_file_artifact=self._cfg.class_labels.class_labels_file, ) # save label maps to the config self._cfg.label_ids = OmegaConf.create(label_ids) self.register_artifact('class_labels.class_labels_file', label_ids_filename) self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig] = None): if val_data_config is None: val_data_config = self._cfg.validation_ds labels_file = os.path.join(self._cfg.dataset.data_dir, val_data_config.labels_file) get_label_ids( label_file=labels_file, is_training=False, pad_label=self._cfg.dataset.pad_label, label_ids_dict=self._cfg.label_ids, get_weights=False, ) self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig] = None): if test_data_config is None: test_data_config = self._cfg.test_ds labels_file = os.path.join(self._cfg.dataset.data_dir, test_data_config.labels_file) get_label_ids( label_file=labels_file, is_training=False, pad_label=self._cfg.dataset.pad_label, label_ids_dict=self._cfg.label_ids, get_weights=False, ) self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config) def _setup_dataloader_from_config(self, cfg: DictConfig) -> DataLoader: """ Setup dataloader from config Args: cfg: config for the dataloader Return: Pytorch Dataloader """ dataset_cfg = self._cfg.dataset data_dir = dataset_cfg.data_dir if not os.path.exists(data_dir): raise FileNotFoundError(f"Data directory is not found at: {data_dir}.") text_file = os.path.join(data_dir, cfg.text_file) labels_file = os.path.join(data_dir, cfg.labels_file) if not (os.path.exists(text_file) and os.path.exists(labels_file)): raise FileNotFoundError( f'{text_file} or {labels_file} not found. The data should be split into 2 files: text.txt and \ labels.txt. Each line of the text.txt file contains text sequences, where words are separated with \ spaces. The labels.txt file contains corresponding labels for each word in text.txt, the labels are \ separated with spaces. Each line of the files should follow the format: \ [WORD] [SPACE] [WORD] [SPACE] [WORD] (for text.txt) and \ [LABEL] [SPACE] [LABEL] [SPACE] [LABEL] (for labels.txt).' ) dataset = BertTokenClassificationDataset( text_file=text_file, label_file=labels_file, max_seq_length=dataset_cfg.max_seq_length, tokenizer=self.tokenizer, num_samples=cfg.num_samples, pad_label=dataset_cfg.pad_label, label_ids=self._cfg.label_ids, ignore_extra_tokens=dataset_cfg.ignore_extra_tokens, ignore_start_end=dataset_cfg.ignore_start_end, use_cache=dataset_cfg.use_cache, ) return DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=dataset_cfg.num_workers, pin_memory=dataset_cfg.pin_memory, drop_last=dataset_cfg.drop_last, ) def _setup_infer_dataloader(self, queries: List[str], batch_size: int) -> 'torch.utils.data.DataLoader': """ Setup function for an infer data loader. Args: queries: text batch_size: batch size to use during inference Returns: A pytorch DataLoader. """ dataset = BertTokenClassificationInferDataset(tokenizer=self.tokenizer, queries=queries, max_seq_length=-1) return torch.utils.data.DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_size=batch_size, shuffle=False, num_workers=self._cfg.dataset.num_workers, pin_memory=self._cfg.dataset.pin_memory, drop_last=False, ) @torch.no_grad() def _infer(self, queries: List[str], batch_size: int = None) -> List[int]: """ Get prediction for the queries Args: queries: text sequences batch_size: batch size to use during inference. Returns: all_preds: model predictions """ # store predictions for all queries in a single list all_preds = [] mode = self.training try: device = 'cuda' if torch.cuda.is_available() else 'cpu' # Switch model to evaluation mode self.eval() self.to(device) infer_datalayer = self._setup_infer_dataloader(queries, batch_size) for batch in infer_datalayer: input_ids, input_type_ids, input_mask, subtokens_mask = batch logits = self.forward( input_ids=input_ids.to(device), token_type_ids=input_type_ids.to(device), attention_mask=input_mask.to(device), ) subtokens_mask = subtokens_mask > 0.5 preds = tensor2list(torch.argmax(logits, axis=-1)[subtokens_mask]) all_preds.extend(preds) finally: # set mode back to its original value self.train(mode=mode) return all_preds def add_predictions( self, queries: Union[List[str], str], batch_size: int = 32, output_file: Optional[str] = None ) -> List[str]: """ Add predicted token labels to the queries. Use this method for debugging and prototyping. Args: queries: text batch_size: batch size to use during inference. output_file: file to save models predictions Returns: result: text with added entities """ if queries is None or len(queries) == 0: return [] if isinstance(queries, str): logging.info(f'Reading from {queries} file') with open(queries, 'r') as f: queries = f.readlines() result = [] all_preds = self._infer(queries, batch_size) queries = [q.strip().split() for q in queries] num_words = [len(q) for q in queries] if sum(num_words) != len(all_preds): raise ValueError('Pred and words must have the same length') ids_to_labels = {v: k for k, v in self._cfg.label_ids.items()} start_idx = 0 end_idx = 0 for query in queries: end_idx += len(query) # extract predictions for the current query from the list of all predictions preds = all_preds[start_idx:end_idx] start_idx = end_idx query_with_entities = '' for j, word in enumerate(query): # strip out the punctuation to attach the entity tag to the word not to a punctuation mark # that follows the word if word[-1].isalpha(): punct = '' else: punct = word[-1] word = word[:-1] query_with_entities += word label = ids_to_labels[preds[j]] if label != self._cfg.dataset.pad_label: query_with_entities += '[' + label + ']' query_with_entities += punct + ' ' result.append(query_with_entities.strip()) if output_file is not None: with open(output_file, 'w') as f: for r in result: f.write(r + '\n') logging.info(f'Predictions saved to {output_file}') return result def evaluate_from_file( self, output_dir: str, text_file: str, labels_file: Optional[str] = None, add_confusion_matrix: Optional[bool] = False, normalize_confusion_matrix: Optional[bool] = True, batch_size: int = 1, ) -> None: """ Run inference on data from a file, plot confusion matrix and calculate classification report. Use this method for final evaluation. Args: output_dir: path to output directory to store model predictions, confusion matrix plot (if set to True) text_file: path to file with text. Each line of the text.txt file contains text sequences, where words are separated with spaces: [WORD] [SPACE] [WORD] [SPACE] [WORD] labels_file (Optional): path to file with labels. Each line of the labels_file should contain labels corresponding to each word in the text_file, the labels are separated with spaces: [LABEL] [SPACE] [LABEL] [SPACE] [LABEL] (for labels.txt).' add_confusion_matrix: whether to generate confusion matrix normalize_confusion_matrix: whether to normalize confusion matrix batch_size: batch size to use during inference. """ output_dir = os.path.abspath(output_dir) with open(text_file, 'r') as f: queries = f.readlines() all_preds = self._infer(queries, batch_size) with_labels = labels_file is not None if with_labels: with open(labels_file, 'r') as f: all_labels_str = f.readlines() all_labels_str = ' '.join([labels.strip() for labels in all_labels_str]) # writing labels and predictions to a file in output_dir is specified in the config os.makedirs(output_dir, exist_ok=True) filename = os.path.join(output_dir, 'infer_' + os.path.basename(text_file)) try: with open(filename, 'w') as f: if with_labels: f.write('labels\t' + all_labels_str + '\n') logging.info(f'Labels save to {filename}') # convert labels from string label to ids ids_to_labels = {v: k for k, v in self._cfg.label_ids.items()} all_preds_str = [ids_to_labels[pred] for pred in all_preds] f.write('preds\t' + ' '.join(all_preds_str) + '\n') logging.info(f'Predictions saved to {filename}') if with_labels and add_confusion_matrix: all_labels = all_labels_str.split() # convert labels from string label to ids label_ids = self._cfg.label_ids all_labels = [label_ids[label] for label in all_labels] plot_confusion_matrix( all_labels, all_preds, output_dir, label_ids=label_ids, normalize=normalize_confusion_matrix ) logging.info(get_classification_report(all_labels, all_preds, label_ids)) except Exception: logging.error( f'When providing a file with labels, check that all labels in {labels_file} were' f'seen during training.' ) raise @classmethod def list_available_models(cls) -> List[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] model = PretrainedModelInfo( pretrained_model_name="ner_en_bert", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/ner_en_bert/versions/1.10/files/ner_en_bert.nemo", description="The model was trained on GMB (Groningen Meaning Bank) corpus for entity recognition and achieves 74.61 F1 Macro score.", ) result.append(model) return result
NeMo-main
nemo/collections/nlp/models/token_classification/token_classification_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict, Optional import torch from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from torch.utils.data import DataLoader from nemo.collections.common.losses import AggregatorLoss, CrossEntropyLoss, SmoothedCrossEntropyLoss from nemo.collections.common.metrics import Perplexity from nemo.collections.nlp.data.language_modeling.lm_bert_dataset import ( BertPretrainingDataset, BertPretrainingPreprocessedDataloader, ) from nemo.collections.nlp.modules.common import BertPretrainingTokenClassifier, SequenceClassifier from nemo.collections.nlp.modules.common.lm_utils import get_lm_model from nemo.collections.nlp.modules.common.tokenizer_utils import get_tokenizer from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.core.classes.modelPT import ModelPT from nemo.core.neural_types import NeuralType from nemo.utils import logging __all__ = ["BERTLMModel"] class BERTLMModel(ModelPT): """ BERT language model pretraining. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return self.bert_model.input_types @property def output_types(self) -> Optional[Dict[str, NeuralType]]: output_types_dict = {"mlm_log_probs": self.mlm_classifier.output_types["log_probs"]} if not self.only_mlm_loss: output_types_dict["nsp_logits"] = self.nsp_classifier.output_types["logits"] return output_types_dict def __init__(self, cfg: DictConfig, trainer: Trainer = None): vocab_file = None config_dict = None config_file = None if cfg.tokenizer is not None: if cfg.tokenizer.get('tokenizer_name') and cfg.tokenizer.get('tokenizer_model'): self._setup_tokenizer(cfg.tokenizer) if cfg.get('tokenizer.vocab_file'): vocab_file = self.register_artifact('tokenizer.vocab_file', cfg.tokenizer.vocab_file) else: self.tokenizer = None super().__init__(cfg=cfg, trainer=trainer) if cfg.get('language_model.config'): config_dict = OmegaConf.to_container(cfg.language_model.config) if cfg.get('language_model.config_file'): config_file = self.register_artifact('language_model.config_file', cfg.language_model.config_file) self.bert_model = get_lm_model( config_file=config_file, config_dict=config_dict, vocab_file=vocab_file, trainer=trainer, cfg=cfg, ) self.hidden_size = self.bert_model.config.hidden_size self.vocab_size = self.bert_model.config.vocab_size self.only_mlm_loss = cfg.only_mlm_loss self.mlm_classifier = BertPretrainingTokenClassifier( hidden_size=self.hidden_size, num_classes=self.vocab_size, num_layers=cfg.num_tok_classification_layers, activation="gelu", log_softmax=True, use_transformer_init=True, ) self.mlm_loss = SmoothedCrossEntropyLoss() if not self.only_mlm_loss: self.nsp_classifier = SequenceClassifier( hidden_size=self.hidden_size, num_classes=2, num_layers=cfg.num_seq_classification_layers, log_softmax=False, activation="tanh", use_transformer_init=True, ) self.nsp_loss = CrossEntropyLoss() self.agg_loss = AggregatorLoss(num_inputs=2) # # tie weights of MLM softmax layer and embedding layer of the encoder if ( self.mlm_classifier.mlp.last_linear_layer.weight.shape != self.bert_model.embeddings.word_embeddings.weight.shape ): raise ValueError("Final classification layer does not match embedding layer.") self.mlm_classifier.mlp.last_linear_layer.weight = self.bert_model.embeddings.word_embeddings.weight # create extra bias # setup to track metrics self.validation_perplexity = Perplexity() self.setup_optimization(cfg.optim) @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): """ No special modification required for Lightning, define it as you normally would in the `nn.Module` in vanilla PyTorch. """ hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, ) if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] mlm_log_probs = self.mlm_classifier(hidden_states=hidden_states) if self.only_mlm_loss: return (mlm_log_probs,) nsp_logits = self.nsp_classifier(hidden_states=hidden_states) return mlm_log_probs, nsp_logits def _compute_losses(self, mlm_log_probs, nsp_logits, output_ids, output_mask, labels): mlm_loss = self.mlm_loss(log_probs=mlm_log_probs, labels=output_ids, output_mask=output_mask) if self.only_mlm_loss: loss, nsp_loss = mlm_loss, None else: nsp_loss = self.nsp_loss(logits=nsp_logits, labels=labels) loss = self.agg_loss(loss_1=mlm_loss, loss_2=nsp_loss) return mlm_loss, nsp_loss, loss def _parse_forward_outputs(self, forward_outputs): if self.only_mlm_loss: return forward_outputs[0], None else: return forward_outputs def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ input_ids, input_type_ids, input_mask, output_ids, output_mask, labels = batch forward_outputs = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) mlm_log_probs, nsp_logits = self._parse_forward_outputs(forward_outputs) _, _, loss = self._compute_losses(mlm_log_probs, nsp_logits, output_ids, output_mask, labels) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', loss) self.log('lr', lr, prog_bar=True) return {"loss": loss, "lr": lr} def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ input_ids, input_type_ids, input_mask, output_ids, output_mask, labels = batch forward_outputs = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) mlm_log_probs, nsp_logits = self._parse_forward_outputs(forward_outputs) _, _, loss = self._compute_losses(mlm_log_probs, nsp_logits, output_ids, output_mask, labels) self.validation_perplexity(logits=mlm_log_probs) loss = {'val_loss': loss} self.validation_step_outputs.append(loss) return loss def on_validation_epoch_end(self): """Called at the end of validation to aggregate outputs. Args: outputs (list): The individual outputs of each validation step. Returns: dict: Validation loss and tensorboard logs. """ if self.validation_step_outputs: avg_loss = torch.stack([x['val_loss'] for x in self.validation_step_outputs]).mean() perplexity = self.validation_perplexity.compute() logging.info(f"evaluation perplexity {perplexity.cpu().item()}") self.log(f'val_loss', avg_loss) self.validation_step_outputs.clear() # free memory def setup_training_data(self, train_data_config: Optional[DictConfig]): self._train_dl = ( self._setup_preprocessed_dataloader(train_data_config) if self.tokenizer is None else self._setup_dataloader(train_data_config) ) def setup_validation_data(self, val_data_config: Optional[DictConfig]): self._validation_dl = ( self._setup_preprocessed_dataloader(val_data_config) if self.tokenizer is None else self._setup_dataloader(val_data_config) ) def setup_test_data(self, test_data_config: Optional[DictConfig]): pass def _setup_preprocessed_dataloader(self, cfg: Optional[DictConfig]): dataset = cfg.data_file max_predictions_per_seq = cfg.max_predictions_per_seq batch_size = cfg.batch_size if os.path.isdir(dataset): files = [os.path.join(dataset, f) for f in os.listdir(dataset) if os.path.isfile(os.path.join(dataset, f))] else: files = [dataset] files.sort() dl = BertPretrainingPreprocessedDataloader( data_files=files, max_predictions_per_seq=max_predictions_per_seq, batch_size=batch_size, ) return dl def _setup_tokenizer(self, cfg: DictConfig): tokenizer = get_tokenizer( tokenizer_name=cfg.tokenizer_name, tokenizer_model=cfg.tokenizer_model, special_tokens=OmegaConf.to_container(cfg.special_tokens) if cfg.special_tokens else None, vocab_file=cfg.vocab_file, ) self.tokenizer = tokenizer def _setup_dataloader(self, cfg: DictConfig): dataset = BertPretrainingDataset( tokenizer=self.tokenizer, data_file=cfg.data_file, max_seq_length=cfg.max_seq_length, mask_prob=cfg.mask_prob, short_seq_prob=cfg.short_seq_prob, ) dl = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, collate_fn=dataset.collate_fn, drop_last=cfg.get("drop_last", False), shuffle=cfg.shuffle, num_workers=cfg.get("num_workers", 0), ) return dl @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] result.append( PretrainedModelInfo( pretrained_model_name="bertbaseuncased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/bertbaseuncased/versions/1.0.0rc1/files/bertbaseuncased.nemo", description="The model was trained EN Wikipedia and BookCorpus on a sequence length of 512.", ) ) result.append( PretrainedModelInfo( pretrained_model_name="bertlargeuncased", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/bertlargeuncased/versions/1.0.0rc1/files/bertlargeuncased.nemo", description="The model was trained EN Wikipedia and BookCorpus on a sequence length of 512.", ) ) return result
NeMo-main
nemo/collections/nlp/models/language_modeling/bert_lm_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os from functools import partial from typing import Any, List, Optional, Union import torch from omegaconf.dictconfig import DictConfig from omegaconf.omegaconf import open_dict from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.common.tokenizers.sentencepiece_tokenizer import SentencePieceTokenizer from nemo.collections.nlp.data.language_modeling.megatron.gpt_prompt_learning_dataset import GPTPromptLearningDataset from nemo.collections.nlp.metrics.prompt_learning_metrics import AccuracyScore, BLEUScore, ROUGEScores from nemo.collections.nlp.models.language_modeling.megatron_base_prompt_learning_model import ( MegatronBasePromptLearningModel, ) from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel from nemo.collections.nlp.modules.common import VirtualPromptPlaceholderToken, VirtualPromptSource, VirtualPromptStyle from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, average_losses_across_data_parallel_group, get_iterator_k_split, ) from nemo.collections.nlp.modules.common.text_generation_utils import ( get_default_length_params, get_default_sampling_params, megatron_gpt_generate, ) from nemo.collections.nlp.modules.common.transformer.text_generation import LengthParam, SamplingParam from nemo.collections.nlp.parts.nlp_overrides import GradScaler, NLPSaveRestoreConnector from nemo.collections.nlp.parts.utils_funcs import get_last_rank from nemo.utils import AppState, logging try: from apex.transformer.pipeline_parallel.utils import get_micro_batch_size, get_num_microbatches HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import InferenceParams, ModelParallelConfig, parallel_state, tensor_parallel from megatron.core.enums import ModelType from megatron.core.pipeline_parallel.schedules import get_forward_backward_func HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False __all__ = ['MegatronGPTPromptLearningModel'] class MegatronGPTPromptLearningModel(MegatronBasePromptLearningModel): """ Model class for prompt-tuning or p-tuning a pretrained Megatron GPT model. Prompt Tuning initalizes virtual prompt embeddings directly from a copy of certain token embeddings from the the pretrained GPT model's vocabulary and directly tunes these embedding weights. The token embeddings used in initalization are specified by the user in the config file. The model can be prompt-tuned for multiple tasks at once. virtual prompts are stored in a prompt table and can be added or deleted without disrupting virtual prompts for other tasks. P-tuning initializes an LSTM encoder model that generates virtual prompt embeddings for every task. Each task shares the same encoder. After ptuning is compelete, the learned virtual prompts can be saved to the prompt table using add_ptuned_prompts_to_prompt_table(). Thus, if a user wants to add a new virtual prompt via p-tuning, they do not need to retrain on all previous tasks. This gives p-tuning the same task flexiblity as prompt-tuning. """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) self.inference_params = None # init_model is called by parent class already. # self.init_model(cfg, trainer) def init_model(self, cfg: DictConfig, trainer: Trainer): self.cfg = cfg self.config: ModelParallelConfig = self.model_parallel_config save_restore_connector = NLPSaveRestoreConnector() if os.path.isdir(cfg.get('language_model_path')): save_restore_connector.model_extracted_dir = cfg.get('language_model_path') frozen_model_cfg = MegatronGPTModel.restore_from( cfg.get('language_model_path'), trainer=trainer, return_config=True, save_restore_connector=save_restore_connector, ) # set hidden size in the model parallel config for pipeline parallel schedules setattr(self.config, 'hidden_size', frozen_model_cfg.hidden_size) # Need to overwrite some params in frozen model's config before restoring with open_dict(frozen_model_cfg): frozen_model_cfg.megatron_amp_O2 = False frozen_model_cfg.optim.name = "fused_adam" frozen_model_cfg.micro_batch_size = self.cfg.micro_batch_size frozen_model_cfg.global_batch_size = self.cfg.global_batch_size frozen_model_cfg.precision = trainer.precision frozen_model_cfg.sequence_parallel = self.cfg.get("sequence_parallel", False) frozen_model_cfg.activations_checkpoint_granularity = self.cfg.get( "activations_checkpoint_granularity", None ) frozen_model_cfg.activations_checkpoint_num_layers = self.cfg.get( "activations_checkpoint_num_layers", None ) frozen_model_cfg.activations_checkpoint_method = self.cfg.get("activations_checkpoint_method", None) if cfg.get('language_model_path', None): self.frozen_model = MegatronGPTModel.restore_from( cfg.get('language_model_path'), trainer=trainer, save_restore_connector=save_restore_connector, override_config_path=frozen_model_cfg, ).to(dtype=self.autocast_dtype) self.megatron_amp_o2 = self.cfg.get('megatron_amp_O2', False) self.pipeline_parallel = self.cfg.get('pipeline_model_parallel_size', 1) > 1 self.tokenizer = self.frozen_model.tokenizer self.hidden_size = self.frozen_model.cfg.hidden_size self.existing_tasks = list(self.cfg.get('existing_tasks', [])) self.new_tasks = list(self.cfg.get('new_tasks', [])) with open_dict(self.cfg): self.cfg.existing_tasks = ( self.existing_tasks + self.new_tasks ) # TODO: for backward compatibility (@adithyare) in general these tasks lists should be deprecated self.virtual_prompt_style = VirtualPromptStyle(cfg.virtual_prompt_style) self.model_type = ModelType.encoder_or_decoder self.enable_autocast = ( True if (not self.megatron_amp_o2) and (self.autocast_dtype in [torch.float16, torch.bfloat16]) else False ) if self.pipeline_parallel: assert ( self.cfg.optim.sched.get("min_lr", 0.0) == 0.0 ), "Minimum lr must be 0.0 when pipeline parallel size is > 1" # Load templates for assigning virtual prompt token positions self.load_task_templates(self.cfg.task_templates) if self.first_stage_of_pipeline() and self.virtual_prompt_style in [ VirtualPromptStyle.P_TUNING, ]: if self.frozen_model.mcore_gpt: self.word_embeddings = self.frozen_model.model.embedding.word_embeddings else: self.word_embeddings = self.frozen_model.model.language_model.embedding.word_embeddings self.padded_vocab_size = self.frozen_model.padded_vocab_size # Prepare pseudo token ids for virtual/virtual prompt tokens self.pseudo_tokens = get_pseudo_tokens(self.max_virtual_tokens) if isinstance(self.tokenizer, SentencePieceTokenizer): if not self.tokenizer.legacy: if self.tokenizer.pad_id != -1: self.tokenizer.pad_token = self.tokenizer.ids_to_tokens([self.tokenizer.pad_id])[0] else: self.tokenizer.pad_token = self.tokenizer.ids_to_tokens([self.tokenizer.eos_id])[0] self.tokenizer.bos_token = self.tokenizer.ids_to_tokens([self.tokenizer.bos_id])[0] self.tokenizer.eos_token = self.tokenizer.ids_to_tokens([self.tokenizer.eos_id])[0] self.tokenizer.legacy = True self.tokenizer.add_special_tokens(self.pseudo_tokens) else: self.tokenizer.add_special_tokens({'additional_special_tokens': self.pseudo_tokens}) self.pseudo_token_ids = self.tokenizer.tokens_to_ids(self.pseudo_tokens) self.pseudo_token_ids_start = self.pseudo_token_ids[0] if self.pseudo_token_ids else None self.pad_token_id = self.tokenizer.pad_id if self.tokenizer.pad_id is not None else self.tokenizer.unk_id # P-Tuning uses an LSTM Encoder to produce virtual token embeddings if self.virtual_prompt_style == VirtualPromptStyle.P_TUNING: self.virtual_prompt_source = VirtualPromptSource.PROMPT_ENCODER elif self.virtual_prompt_style == VirtualPromptStyle.NO_PROMPT: self.virtual_prompt_source = VirtualPromptSource.NO_PROMPT else: raise ValueError(f"\nvirtual prompt style '{cfg.virtual_prompt_style}.'") self._reduced_loss_buffer = [] self._inference_config = None # make sure the default pytorch lightning gradient clipping in the basemodel self.grad_clip_pl_default = True self.lowest_val_loss = None self.prompt_encoder = None # default inference related params -> for evaluation metrics if hasattr(self.cfg, 'inference') and self.cfg.get("report_validation_metric", False): self.length_params: LengthParam = { "max_length": self.cfg.inference.get('tokens_to_generate', 30), "min_length": self.cfg.inference.get('min_tokens_to_generate', 0), } self.sampling_params: SamplingParam = { "use_greedy": self.cfg.inference.get('greedy', False), "temperature": self.cfg.inference.get('temperature', 1.0), "top_k": self.cfg.inference.get('tok_k', 0), "top_p": self.cfg.inference.get('top_p', 0.9), "repetition_penalty": self.cfg.inference.get('repetition_penalty', 1.2), "add_BOS": True, "all_probs": False, "compute_logprob": False, "end_strings": self.cfg.inference.get('end_strings', ["<|endoftext|>"]), } elif self.cfg.get("report_validation_metric", False) and not hasattr(self.cfg, 'inference'): raise ValueError("Must provide inference parameters for reporting validation metric!") # define validation metric if self.cfg.get('report_validation_metric', False): validation_metric = self.cfg.get('validation_metric', 'accuracy') if validation_metric == 'accuracy': self.validation_metric = AccuracyScore() elif validation_metric == 'bleu': self.validation_metric = BLEUScore() elif validation_metric == 'rouge': self.validation_metric = ROUGEScores() def first_stage_of_pipeline(self): return self.frozen_model.model.pre_process def forward( self, input_ids, position_ids, attention_mask, taskname_ids, labels=None, inference=True, set_inference_key_value_memory=False, inference_max_sequence_len=None, inference_params=None, ): """ Special forward method for p-tuning/prompt-tuning pretrained GPT style models. Bypasses the vocab token preprocessing done in the MegatronGPT class. """ # Get embeddings for text tokens and insert virtual token embeddings if self.first_stage_of_pipeline(): input_embeds = self.embed_input(input_ids, taskname_ids, use_cached_reps=inference) if self.frozen_model.mcore_gpt and hasattr(self.frozen_model.model.embedding, "position_embeddings"): position_embeddings = self.frozen_model.model.embedding.position_embeddings(position_ids) encoder_input = input_embeds + position_embeddings elif not self.frozen_model.mcore_gpt and hasattr( self.frozen_model.model.language_model.embedding, "position_embeddings" ): position_embeddings = self.frozen_model.model.language_model.embedding.position_embeddings( position_ids ) encoder_input = input_embeds + position_embeddings else: encoder_input = input_embeds encoder_input = encoder_input.transpose(0, 1).contiguous() if self.cfg.get("sequence_parallel", False): encoder_input = tensor_parallel.mappings.scatter_to_sequence_parallel_region(encoder_input) else: encoder_input = None # Call forward on GPT model with preprocessed embeddings if self.frozen_model.mcore_gpt: output = self.frozen_model.model( input_ids=None, position_ids=None, decoder_input=encoder_input, attention_mask=attention_mask, labels=labels, inference_params=inference_params, ) else: output = self.frozen_model.model( input_ids=None, position_ids=None, encoder_input=encoder_input, attention_mask=attention_mask, labels=labels, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, ) return output def fwd_bwd_step(self, dataloader_iter, batch_idx, forward_only): """ Dataloader produces a global batch which is turned into an iterator of microbatches. The iterator of microbatches is then piped through the pipeline using Core's fwd/bwd functions. """ # Get seq length of batch batch = next(dataloader_iter) _, seq_length = batch[0].shape data_iter = get_iterator_k_split(batch, get_num_microbatches()) fwd_bwd_function = get_forward_backward_func() losses_reduced_per_micro_batch = fwd_bwd_function( forward_step_func=self.get_forward_output_and_loss_func(), data_iterator=data_iter, model=[self], num_microbatches=get_num_microbatches(), forward_only=forward_only, seq_length=seq_length, micro_batch_size=get_micro_batch_size(), ) # only the last stages of the pipeline return losses if losses_reduced_per_micro_batch: # average loss across micro batches loss_tensors_list = [loss_reduced['avg'] for loss_reduced in losses_reduced_per_micro_batch] loss_tensor = torch.concat(loss_tensors_list) loss_mean = loss_tensor.mean() else: # we're not on the last pipeline stage so no losses loss_mean = torch.tensor(0.0).cuda() return loss_mean def training_step(self, dataloader_iter, batch_idx): # we zero grads here because we also call backward in the megatron-core fwd/bwd functions self._optimizer.zero_grad() batch = next(dataloader_iter) loss_mean = self.fwd_bwd_step(itertools.chain([batch]), batch_idx, forward_only=False) self.allreduce_gradients() ## logging # we can only log on one rank if it is rank zero so we broadcast from last rank # we can avoid this broadcast by updating the PTL log function to accept specific ranks torch.distributed.broadcast(loss_mean, get_last_rank()) if self.torch_dtype == torch.float16 and hasattr(self.trainer.precision_plugin.scaler, "_scale"): loss_scale = self.trainer.precision_plugin.scaler._scale if loss_scale is not None: self.log('loss_scale', loss_scale, batch_size=1) self.log('reduced_train_loss', loss_mean, prog_bar=True, rank_zero_only=True, batch_size=1) lr = self._optimizer.param_groups[0]['lr'] self.log('lr', lr, rank_zero_only=True, batch_size=1) self.log('global_step', self.trainer.global_step, prog_bar=True, rank_zero_only=True, batch_size=1) return loss_mean def backward(self, *args, **kwargs): """ LightningModule hook to do backward. We want this to do nothing since we run backward in the fwd/bwd functions from megatron-core. No need to call it here. """ return def optimizer_zero_grad(self, *args, **kwargs): """ LightningModule hook to zero grad. We want this to do nothing as we are zeroing grads during the training_step. """ return def validation_step(self, dataloader_iter, batch_idx): # Check if iterator is exhausted dataloader_iter, done = self._val_iterator_done(dataloader_iter) if done: return mode = 'test' if self.trainer.testing else 'val' batch = next(dataloader_iter) gbs = self.cfg.get('validation_global_batch_size', self.cfg.global_batch_size) self._reconfigure_and_process_inference_batch(batch[0].size(0), gbs) loss_mean = self.fwd_bwd_step(itertools.chain([batch]), batch_idx, forward_only=True) if loss_mean.item == 0.0: loss_mean = [] if self.cfg.get('report_validation_metric', False): preds_text, labels_text = [], [] input_ids, labels, loss_mask, position_ids, attention_mask, taskname_ids = batch input_lenghts = torch.argmax(loss_mask, 1, keepdim=True) res = megatron_gpt_generate( self.cuda(), ( torch.cat( ( input_ids, torch.zeros( input_ids.shape[0], self.length_params['max_length'], dtype=input_ids.dtype ).to(self.device), ), axis=1, ), input_lenghts.squeeze(1), ), self.tokenizer, self.length_params, self.sampling_params, task_ids=taskname_ids, ) for pred, label in zip(res['token_ids'], labels): # ids_to_text ignores special tokens by default pred = self.tokenizer.ids_to_text(pred) label = self.tokenizer.ids_to_text(label) preds_text.append(pred) labels_text.append(label) if mode == 'val': self.validation_step_outputs.append( {'loss': loss_mean, 'preds': preds_text, 'labels': labels_text,} ) else: self.test_step_outputs.append( {'loss': loss_mean, 'preds': preds_text, 'labels': labels_text,} ) return { 'loss': loss_mean, 'preds': preds_text, 'labels': labels_text, } self.validation_step_outputs.append({'loss': loss_mean}) if mode == 'val' else self.test_step_outputs.append( {'loss': loss_mean} ) return {'loss': loss_mean} def on_train_epoch_start(self) -> None: gbs = self.cfg.global_batch_size mbs = self.cfg.micro_batch_size self._reconfigure_batch_sizes(gbs, mbs) return super().on_train_epoch_start() def on_validation_epoch_start(self) -> None: gbs = self.cfg.get('validation_global_batch_size', self.cfg.global_batch_size) mbs = self.cfg.get('validation_micro_batch_size', self.cfg.micro_batch_size) self._reconfigure_batch_sizes(gbs, mbs) return super().on_validation_epoch_start() def on_validation_epoch_end(self): if not self.validation_step_outputs: return if parallel_state.is_pipeline_last_stage(): # only the last pipeline parallel stages return loss averaged_loss = torch.stack([i['loss'] for i in self.validation_step_outputs]).mean() else: averaged_loss = torch.tensor(0.0).cuda() # we can only log on one rank if it is rank zero so we broadcast from last rank torch.distributed.broadcast(averaged_loss, get_last_rank()) self.log('val_loss', averaged_loss, prog_bar=True, rank_zero_only=True, batch_size=1) logging.info(f'val_loss: {averaged_loss}') if self.cfg.get("report_validation_metric", False): gather_results = [None for _ in range(parallel_state.get_data_parallel_world_size())] all_preds = list(itertools.chain(*[item['preds'] for item in self.validation_step_outputs])) all_labels = list(itertools.chain(*[item['labels'] for item in self.validation_step_outputs])) assert len(all_preds) == len(all_labels) # Gather inputs, preds, labels from all workers torch.distributed.all_gather_object( gather_results, [(pred, label) for (pred, label) in zip(all_preds, all_labels)], group=parallel_state.get_data_parallel_group(), ) # Deduplicate sentences that may have been distributed across multiple data parallel ranks. if parallel_state.get_data_parallel_rank() == 0: gather_results_dedup = list(set(itertools.chain(*gather_results))) val_metric_dict = self.validation_metric.get_score( [i[1] for i in gather_results_dedup], [i[0] for i in gather_results_dedup], ) for metric, val in val_metric_dict.items(): logging.info(f'Validation {metric}: {val}') val_metric = list(val_metric_dict.items())[0][1] metric_name = list(val_metric_dict.items())[0][0] else: val_metric = torch.tensor(0.0).cuda() metric_name = '' self.log(f'val_{metric_name}', val_metric, prog_bar=True, rank_zero_only=True, batch_size=1) gbs = self.cfg.global_batch_size mbs = self.cfg.micro_batch_size self._reconfigure_batch_sizes(gbs, mbs) self.validation_step_outputs.clear() # free memory def test_step(self, dataloader_iter, batch_idx): return self.validation_step(dataloader_iter, batch_idx) def on_test_epoch_end(self): averaged_loss = average_losses_across_data_parallel_group(self.test_step_outputs) logging.info(f'test_loss: {averaged_loss[0]}') self.test_step_outputs.clear() # free memory def setup(self, stage=None): super().setup(stage) if self.cfg.get('transformer_engine', False) or self.cfg.get('mcore_gpt', False): self.frozen_model.setup_transformer_engine_tp_groups() def setup_training_data(self, training_data_config=None): if self.cfg.data.get('train_ds', None): max_seq_length = self.frozen_model.cfg.encoder_seq_length if "max_seq_length" in self.cfg.data and self.cfg.data.max_seq_length: max_seq_length = min(self.cfg.data.max_seq_length, max_seq_length) self._train_ds, self._train_dl = self.build_virtual_prompt_dataset( data=self.cfg.data.train_ds, batch_size=self.cfg.global_batch_size, max_seq_length=max_seq_length, min_seq_length=self.cfg.data.get('min_seq_length', 1), add_bos=self.cfg.data.get('add_bos', False), add_eos=self.cfg.data.get('add_eos', True), for_train=True, drop_last=True, shuffle=True, num_workers=self.cfg.data.num_workers, pin_memory=True, cache_data_path=self.cfg.data.get('train_cache_data_path', None), load_cache=self.cfg.data.get('load_cache', False), ) def setup_validation_data(self, validation_data_config=None): if self.cfg.data.get('validation_ds', None): max_seq_length = self.frozen_model.cfg.encoder_seq_length if "max_seq_length" in self.cfg.data and self.cfg.data.max_seq_length: max_seq_length = min(self.cfg.data.max_seq_length, max_seq_length) self._validation_ds, self._validation_dl = self.build_virtual_prompt_dataset( data=self.cfg.data.validation_ds, batch_size=self.cfg.get('validation_global_batch_size', self.cfg.global_batch_size), max_seq_length=max_seq_length, min_seq_length=self.cfg.data.get('min_seq_length', 1), add_bos=self.cfg.data.get('add_bos', False), add_eos=self.cfg.data.get('add_eos', True), for_train=True, drop_last=self.cfg.get('validation_drop_last', True), shuffle=False, num_workers=self.cfg.data.num_workers, pin_memory=True, cache_data_path=self.cfg.data.get('validation_cache_data_path', None), load_cache=self.cfg.data.get('load_cache', False), ) def setup_test_data(self, test_data_config=None): if self.cfg.data.get('test_ds', None): self._test_ds, self._test_dl = self.build_virtual_prompt_dataset( data=self.cfg.data.test_ds, batch_size=self.cfg.get('validation_global_batch_size', self.cfg.global_batch_size), max_seq_length=self.frozen_model.cfg.encoder_seq_length, min_seq_length=self.cfg.data.get('min_seq_length', 1), add_bos=self.cfg.data.get('add_bos', False), add_eos=self.cfg.data.get('add_eos', True), for_train=False, drop_last=False, shuffle=False, num_workers=self.cfg.data.num_workers, pin_memory=True, cache_data_path=self.cfg.data.get('test_cache_data_path', None), load_cache=self.cfg.data.get('load_cache', False), ) def build_virtual_prompt_dataset( self, data, batch_size, max_seq_length=2048, min_seq_length=1, add_bos=False, add_eos=False, for_train=True, drop_last=False, shuffle=False, num_workers=0, pin_memory=False, tokens_to_generate=None, get_dataset_only=False, cache_data_path=None, load_cache=False, ): dataset = GPTPromptLearningDataset( data=data, tokenizer=self.tokenizer, virtual_prompt_source=self.virtual_prompt_source, task_templates=self.task_templates, pseudo_tokens=self.pseudo_tokens, pad_token_id=self.pad_token_id, max_seq_length=max_seq_length, min_seq_length=min_seq_length, add_bos=add_bos, add_eos=add_eos, for_train=for_train, tokens_to_generate=tokens_to_generate, cache_data_path=cache_data_path, load_cache=load_cache, ) if get_dataset_only: return dataset # Make distributed dataloader rank = parallel_state.get_data_parallel_rank() data_parallel_size = parallel_state.get_data_parallel_world_size() sampler = torch.utils.data.distributed.DistributedSampler( dataset, num_replicas=data_parallel_size, rank=rank, shuffle=shuffle, seed=self.cfg.seed ) assert batch_size % data_parallel_size == 0, "Global batch size must be evenly divisible by data parallel size" if for_train: if self.cfg.get("sequence_parallel", False): collate_fn = partial( dataset.collate_fn, tp_workers=parallel_state.get_tensor_model_parallel_world_size() ) else: collate_fn = partial(dataset.collate_fn, tp_workers=0) else: collate_fn = dataset.inference_collate_fn dataloader = torch.utils.data.DataLoader( dataset, collate_fn=collate_fn, sampler=sampler, batch_size=batch_size // data_parallel_size, drop_last=drop_last, num_workers=num_workers, pin_memory=pin_memory, persistent_workers=True if num_workers > 0 else False, # (@adithyare and @eharper) We need this to make spawn=True to work. ) return dataset, dataloader def set_input_tensor(self, input_tensor): """Set input tensor to be used instead of forward()'s input. When doing pipeline parallelism the input from the previous stage comes from communication, not from the input, so the model's forward_step_func won't have it. This function is thus used by internal code to bypass the input provided by the forward_step_func""" self.frozen_model.model.set_input_tensor(input_tensor) def get_forward_output_and_loss_func(self): def fwd_output_and_loss_func(dataloader_iter, model): batch = next(dataloader_iter) batch = [x.cuda(non_blocking=True) for x in batch] input_ids, labels, loss_mask, position_ids, attention_mask, taskname_ids = batch output_tensor = model(input_ids, position_ids, attention_mask, taskname_ids, labels, inference=False) if isinstance(output_tensor, tuple): output_tensor, _ = output_tensor def loss_func(output_tensor): loss = self.frozen_model.loss_func(loss_mask, output_tensor) reduced_loss = average_losses_across_data_parallel_group([loss]) return loss, {'avg': reduced_loss} return output_tensor, loss_func return fwd_output_and_loss_func def get_forward_output_only_func(self): """ Used for generate method only for now. """ def fwd_output_only_func(dataloader_iter, model): batch = next(dataloader_iter) extra_arg = {} ( tokens, attention_mask, position_ids, task_ids, set_inference_key_value_memory, inference_max_sequence_len, ) = batch tokens = tokens.cuda() attention_mask = attention_mask.cuda() position_ids = position_ids.cuda() task_ids = task_ids.cuda() if self.frozen_model.mcore_gpt: # if first step, then clear KV cache, otherwise reuse inference_paarms if set_inference_key_value_memory[0].item(): self.inference_params = InferenceParams( max_batch_size=tokens.size(0), max_sequence_length=inference_max_sequence_len[0].item() ) extra_arg['inference_params'] = self.inference_params else: extra_arg['set_inference_key_value_memory'] = set_inference_key_value_memory[0].item() extra_arg['inference_max_sequence_len'] = inference_max_sequence_len[0].item() output_tensor = model(tokens, position_ids, attention_mask, task_ids, **extra_arg) # Advance inference sequence offset. if self.inference_params: self.inference_params.sequence_len_offset += output_tensor.size(1) def id_func(output_tensor): return output_tensor, {'logits': output_tensor} return output_tensor, id_func return fwd_output_only_func def generate( self, inputs: Union[List[str], torch.Tensor, List[dict]], length_params: LengthParam, sampling_params: SamplingParam = None, batch_size: Optional[int] = 1, ): # check whether the DDP is initialized if parallel_state.is_unitialized(): def dummy(): return if self.trainer.strategy.launcher is not None: self.trainer.strategy.launcher.launch(dummy, trainer=self.trainer) self.trainer.strategy.setup_environment() # set the default sampling params if it is None. # default do greedy sampling if sampling_params is None: sampling_params = get_default_sampling_params() sampling_params["add_BOS"] = self.cfg.data.get("add_bos", False) if length_params is None: length_params = get_default_length_params() max_input_length = self.frozen_model.cfg.encoder_seq_length - length_params["max_length"] # input dicts are either dataset paths or already loaded example dicts if "taskname" not in inputs[0].keys(): data = [path["data_path"] for path in inputs] else: data = inputs dataset = self.build_virtual_prompt_dataset( data=data, batch_size=batch_size, max_seq_length=max_input_length, min_seq_length=self.cfg.data.get('min_seq_length', 1), add_bos=sampling_params["add_BOS"], add_eos=False, for_train=False, tokens_to_generate=length_params["max_length"], get_dataset_only=True, ) full_dataset = [dataset[i] for i in range(len(dataset))] task_ids, processed_inputs = dataset.inference_collate_fn(full_dataset) self.frozen_model.model.parallel_output = False # Call same generate code as in MegatronGPT return megatron_gpt_generate( self.cuda(), processed_inputs, self.tokenizer, length_params, sampling_params, task_ids=task_ids ) def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: Optional[int] = None) -> Any: inference_config = self.get_inference_config() if inference_config is None: return None else: length_params: LengthParam = { "max_length": inference_config["tokens_to_generate"], "min_length": inference_config["min_tokens_to_generate"], } sampling_params: SamplingParam = { "use_greedy": inference_config["greedy"], "temperature": inference_config["temperature"], "top_k": inference_config["top_k"], "top_p": inference_config["top_p"], "repetition_penalty": inference_config["repetition_penalty"], "add_BOS": inference_config["add_BOS"], "all_probs": inference_config["all_probs"], "compute_logprob": inference_config["compute_logprob"], "compute_attention_mask": inference_config.get("compute_attention_mask", True), "end_strings": inference_config.get('end_strings', ["<|endoftext|>"]), } task_ids, processed_inputs = batch self.frozen_model.model.parallel_output = False # Call same generate code as in MegatronGPT return megatron_gpt_generate( self.cuda(), processed_inputs, self.tokenizer, length_params, sampling_params, task_ids=task_ids ) @classmethod def list_available_models(cls): pass def get_pseudo_tokens(num_virtual_tokens): """ Takes in an integer and returns a list of strings where each string is a numbered virtual token placeholder. If num_virtual_tokens = 3, then this function returns: ["<prompt_0>", "<prompt_1>", "<prompt_2>"] Args: num_virtual_tokens: (int) Number of virtual token strings you want to make returns a list of string. """ pseudo_tokens = [ VirtualPromptPlaceholderToken.BASE.value + str(i) + VirtualPromptPlaceholderToken.END.value for i in range(num_virtual_tokens) ] return pseudo_tokens
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_gpt_prompt_learning_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Any, List, Optional, Union import torch from omegaconf import DictConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.data.language_modeling.megatron.data_samplers import ( MegatronPretrainingRandomSampler, MegatronPretrainingSampler, ) from nemo.collections.nlp.data.language_modeling.megatron.retro_dataset import ( build_mock_train_valid_test_datasets, build_train_valid_test_datasets, ) from nemo.collections.nlp.models.language_modeling.megatron_base_model import MegatronBaseModel from nemo.collections.nlp.modules.common.megatron.module import Float16Module from nemo.collections.nlp.modules.common.megatron.mup.init import normal_ from nemo.collections.nlp.modules.common.megatron.mup.shape import set_base_shapes from nemo.collections.nlp.modules.common.megatron.retrieval_token_level_encoder_decoder import ( MegatronRetrievalTokenLevelEncoderDecoderModule, ) from nemo.collections.nlp.modules.common.megatron.utils import ( average_losses_across_data_parallel_group, build_position_ids, get_params_for_weight_decay_optimization, ) from nemo.collections.nlp.modules.common.text_generation_strategy import model_inference_strategy_dispatcher from nemo.collections.nlp.modules.common.text_generation_utils import ( generate, get_computeprob_response, get_default_length_params, get_default_sampling_params, megatron_gpt_generate, ) from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer from nemo.collections.nlp.modules.common.transformer.text_generation import ( LengthParam, OutputType, SamplingParam, TextGeneration, ) from nemo.collections.nlp.parts.nlp_overrides import GradScaler from nemo.utils import AppState, logging try: from megatron.core import parallel_state from megatron.core.enums import ModelType HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = ["MegatronRetrievalModel"] class MegatronRetrievalModel(MegatronBaseModel, TextGeneration): """ Megatron Retrieval enhanced language model """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer=trainer) # TODO does not support PP yet self.model = self.model_provider_func(pre_process=True, post_process=True, add_encoder=True, add_decoder=True) self.megatron_amp_o2 = cfg.get('megatron_amp_O2', False) if self.megatron_amp_o2: if not self.with_distributed_adam: # Pre-allocate the model on GPU to have master parameters allocated on the same device with matching data type self.model.cuda(torch.cuda.current_device()) # Model wrapper to convert both model and inputs to half precision self.model = Float16Module( config=self.model_parallel_config, module=self.model, precision=self.cfg.precision ) # self.setup_optimizer_param_groups() self.model.model_type = ModelType.encoder_and_decoder self.enable_autocast = ( True if (not self.megatron_amp_o2) and (self.autocast_dtype in [torch.float16, torch.bfloat16]) else False ) if hasattr(self.cfg, "shape_file"): set_base_shapes(self, self.register_artifact("shape_file", self.cfg.shape_file), rescale_params=False) # here manually initialize all the named parameters with the muTranfer normal initializer for name, tensor in self.named_parameters(): if name.endswith('.dense_4h_to_h.weight') or name.endswith('.dense.weight'): # initialize all the output dense matrix weight # match the megatron lm model std = self.cfg.init_method_std / math.sqrt(2.0 * 12.0) normal_(tensor, 0, std) elif name.endswith('layernorm.weight'): # initialize all the layer norm weight if tensor.std() != 0 and tensor.mean() != 1: raise ValueError(f'need to check {name} init') normal_(tensor, 1, 0) elif name.endswith('.weight'): # initialize all the other dense matrix weight normal_(tensor, 0, self.cfg.init_method_std) else: if tensor.std() != 0 and tensor.mean() != 0: raise ValueError(f'need to check {name} init') # here manually overwrite the norm factor # note, has to turn off the model.apply_query_key_layer_scaling assert not self.cfg.apply_query_key_layer_scaling for name, layer in self.named_modules(): if ( name.endswith('.self_attention') or name.endswith('.inter_attention') or name.endswith('.cross_attention') or name.endswith('.core_attention') ): if hasattr(layer, 'norm_factor') and hasattr(layer, 'hidden_size_per_attention_head'): layer.norm_factor = ( layer.hidden_size_per_attention_head / 8.0 ) # divide 8 to make it consist with ADLR setting else: if hasattr(layer, 'norm_factor') or hasattr(layer, 'hidden_size_per_attention_head'): logging.error( f'module {name} has norm factor but its name is not ending with attention, need to double check' ) def _build_tokenizer(self): self.tokenizer = get_nmt_tokenizer( library=self._cfg.tokenizer.library, model_name=self._cfg.tokenizer.type, tokenizer_model=self.register_artifact("tokenizer.model", self._cfg.tokenizer.model), vocab_file=self.register_artifact("tokenizer.vocab_file", self._cfg.tokenizer.vocab_file), merges_file=self.register_artifact("tokenizer.merge_file", self._cfg.tokenizer.merge_file), delimiter=self.cfg.tokenizer.get('delimiter', None), legacy=False, ) # add pad special token if not hasattr(self.tokenizer, "pad_id"): self.tokenizer.add_special_tokens({'pad_token': '<pad>'}) elif hasattr(self.tokenizer, "pad_id") and (self.tokenizer.pad_id is None or self.tokenizer.pad_id < 0): self.tokenizer.add_special_tokens({'pad_token': '<pad>'}) def model_provider_func(self, pre_process, post_process, add_encoder, add_decoder): # TODO: create get_encoder_decoder_model()here for different losses (e..g, nll, vae, mim) model = MegatronRetrievalTokenLevelEncoderDecoderModule( config=self.model_parallel_config, vocab_size=self.padded_vocab_size, hidden_size=self.cfg.hidden_size, max_position_embeddings=self.cfg.max_position_embeddings, num_attention_heads=self.cfg.num_attention_heads, ffn_hidden_size=self.cfg.ffn_hidden_size, apply_query_key_layer_scaling=self.cfg.get('apply_query_key_layer_scaling', True), kv_channels=self.cfg.get('kv_channels', None), num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process, init_method_std=self.cfg.get('init_method_std', 0.02), fp16_cross_entropy=self.cfg.get('fp16_lm_cross_entropy', False), hidden_dropout=self.cfg.get('hidden_dropout', 0.1), attention_dropout=self.cfg.get('attention_dropout', 0.1), precision=self.cfg.get('precision', 16), fp32_residual_connection=self.cfg.get('fp32_residual_connection', False), activations_checkpoint_method=self.cfg.get('activations_checkpoint_method', None), activations_checkpoint_num_layers=self.cfg.get('activations_checkpoint_num_layers', 1), layernorm_epsilon=self.cfg.get('layernorm_epsilon', 1e-5), persist_layer_norm=self.cfg.get('persist_layer_norm', False), bias_gelu_fusion=self.cfg.get('bias_gelu_fusion', True), bias_dropout_add_fusion=self.cfg.get('bias_dropout_add_fusion', True), masked_softmax_fusion=self.cfg.get('masked_softmax_fusion', True), onnx_safe=self.cfg.get('onnx_safe', False), activation=self.cfg.get('activation', 'gelu'), bias=self.cfg.get('bias', True), normalization=self.cfg.get('normalization', 'layernorm'), headscale=self.cfg.get('headscale', False), transformer_block_type=self.cfg.get('transformer_block_type', 'pre_ln'), add_encoder=add_encoder, add_decoder=add_decoder, chunk_size=self.cfg.get('chunk_size', 64), # the chunk size used to retrive enc_num_layers=self.cfg.get('enc_num_layers', 4), # total number of encoder layers dec_num_layers=self.cfg.get('dec_num_layers', 6), # total number of decoder layers enc_cross_attention=self.cfg.get('enc_cross_attention', [3]), # layer numbers for cross attention dec_cross_attention=self.cfg.get( 'dec_cross_attention', [3, 5] ), # layer numbers for chunked cross attention add_position_embedding=self.cfg.get( 'add_position_embedding', False ), # whether use the absolute postion encoding tokenizer=self.tokenizer, activations_checkpoint_granularity=self.cfg.get('activations_checkpoint_granularity', None), megatron_lm_compatible=self.cfg.get('megatron_lm_compatible', False), version=self.cfg.get('version', 1), ) return model def forward( self, input_ids, input_attn_mask, retrieved_ids, retrieved_attn_mask, token_type_ids=None, labels=None, input_emb=None, position_ids=None, ): output_tensor = self.model( input_ids=input_ids, input_attn_mask=input_attn_mask, retrieved_ids=retrieved_ids, retrieved_attn_mask=retrieved_attn_mask, token_type_ids=token_type_ids, labels=labels, input_emb=input_emb, position_ids=position_ids, ) return output_tensor def training_step(self, batch, batch_idx): input_tokens_id = batch['tokens'] input_attn_mask = batch['tokens_mask'] loss_mask = batch['loss_mask'] retrieved_ids = batch['retrieved_ids'] retrieved_attn_mask = batch['retrieved_emb_mask'] labels = batch['labels'] if self.cfg.get('add_position_embedding', False): input_position_ids = build_position_ids(input_tokens_id) else: input_position_ids = None loss = self( input_tokens_id, input_attn_mask, retrieved_ids, retrieved_attn_mask, labels=labels, position_ids=input_position_ids, ) loss_mask = loss_mask.float() lm_loss = torch.sum(loss.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum() reduced_loss = average_losses_across_data_parallel_group([lm_loss]) self._reduced_loss_buffer.append(reduced_loss[0]) if self.torch_dtype == torch.float16: loss_scale = self.trainer.precision_plugin.scaler._scale if loss_scale is not None: self.log('loss_scale', loss_scale, batch_size=1) if self.with_distributed_adam: # gradients are reduced internally in distributed optimizer pass elif self.megatron_amp_o2: # while async grad allreduce is enabled, bprop will keep moving forward without waiting for # the finish of async grad AR works. Hence, to guarantee the correctness of grads reduction, # we cannot start weight update until all async grad AR works are done. if self.cfg.get('pipeline_model_parallel_size', 1) == 1: torch.cuda.synchronize() # when using pipeline parallelism grads must be reduced after the pipeline (not asynchronously) if self.cfg.get('pipeline_model_parallel_size', 1) > 1: # main grads are stored in the MainParamsOptimizer wrapper self._optimizer.allreduce_main_grads() else: # async grad allreduce is not currently implemented for O1/autocasting mixed precision training # no pipeline, so use the default pytorch lightning way of doing all_reduce # self.allreduce_gradients() # @sangkug we think this is causing memory to blow up (hurts perf) pass if (batch_idx + 1) % self.trainer.accumulate_grad_batches == 0: # Reduced loss for logging. average_reduced_loss = sum(self._reduced_loss_buffer) / len(self._reduced_loss_buffer) self.log('reduced_train_loss', average_reduced_loss, prog_bar=True, batch_size=1) lr = self._optimizer.param_groups[0]['lr'] self.log('lr', lr, batch_size=1) self.log('global_step', self.trainer.global_step, prog_bar=True, batch_size=1) self.log( 'consumed_samples', self._compute_consumed_samples_after_training_step(), prog_bar=True, batch_size=1, ) self._reduced_loss_buffer = [] return lm_loss def validation_step(self, batch, batch_idx): prefix = "test" if self.trainer.testing else "val" input_tokens_id = batch['tokens'] input_attn_mask = batch['tokens_mask'] loss_mask = batch['loss_mask'] retrieved_ids = batch['retrieved_ids'] retrieved_attn_mask = batch['retrieved_emb_mask'] labels = batch['labels'] if self.cfg.get('add_position_embedding', False): input_position_ids = build_position_ids(input_tokens_id) else: input_position_ids = None loss = self( input_tokens_id, input_attn_mask, retrieved_ids, retrieved_attn_mask, labels=labels, position_ids=input_position_ids, ) loss_mask = loss_mask.float() lm_loss = torch.sum(loss.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum() reduced_loss = average_losses_across_data_parallel_group([lm_loss]) if prefix == 'val': self.validation_step_outputs.append(reduced_loss) else: self.test_step_outputs.apped(reduced_loss) return reduced_loss def on_validation_epoch_end(self): if len(self.validation_step_outputs) == 0: return None averaged_loss = torch.stack(self.validation_step_outputs).mean() self.log('val_loss', averaged_loss, prog_bar=True, batch_size=1) # formula to compute the perplexity # https://towardsdatascience.com/the-relationship-between-perplexity-and-entropy-in-nlp-f81888775ccc self.log('perplexity', torch.exp(averaged_loss), prog_bar=True, batch_size=1) self.validation_step_outputs.clear() # free memory return averaged_loss def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def on_test_epoch_end(self): averaged_loss = torch.stack(self.test_step_outputs).mean() self.log('test_loss', averaged_loss, prog_bar=True, batch_size=1) logging.info(f'test_loss: {averaged_loss} ') self.log('perplexity', torch.exp(averaged_loss), prog_bar=True, batch_size=1) self.test_step_outputs.clear() # free memory return averaged_loss def build_train_valid_test_datasets(self): logging.info('Building RETRO datasets.') global_batch_size = self.trainer.world_size * self.cfg.micro_batch_size // self.cfg.tensor_model_parallel_size # Compute trianing micro-batch steps: total_global_batch_steps x grad_acumms_per_global_batch max_train_steps = self.trainer.max_steps * self.trainer.accumulate_grad_batches eval_iters = (max_train_steps // self.trainer.val_check_interval + 1) * self.trainer.limit_val_batches test_iters = self.trainer.limit_test_batches train_valid_test_num_samples = [ max_train_steps * global_batch_size, eval_iters * global_batch_size, test_iters * global_batch_size, ] if self.cfg.data.get('mock', False): self._train_ds, self._validation_ds, self._test_ds = build_mock_train_valid_test_datasets( cfg=self.cfg, trainer=self.trainer, splits_string=self.cfg.data.splits_string, tokenizer=self.tokenizer, mock_data_size=self.cfg.data.get('mock_data_size', 10000), ) else: self._train_ds, self._validation_ds, self._test_ds = build_train_valid_test_datasets( cfg=self.cfg, trainer=self.trainer, data_prefix=self.cfg.data.data_prefix, data_impl=self.cfg.data.data_impl, splits_string=self.cfg.data.splits_string, train_valid_test_num_samples=train_valid_test_num_samples, seq_length=self.cfg.data.seq_length, seed=self.cfg.seed, skip_warmup=self.cfg.data.get('skip_warmup', True), tokenizer=self.tokenizer, retrieval_prefix=self.cfg.data.retrieval_prefix, knn_map_path=self.cfg.data.knn_index, ) if self._train_ds is not None: logging.info(f'Length of train dataset: {len(self._train_ds)}') if self._validation_ds is not None: logging.info(f'Length of val dataset: {len(self._validation_ds)}') if self._test_ds is not None: logging.info(f'Length of test dataset: {len(self._test_ds)}') logging.info(f'Finished building RETRO datasets.') return self._train_ds, self._validation_ds, self._test_ds def build_pretraining_data_loader(self, dataset, consumed_samples): """Buld dataloader given an input dataset.""" if dataset is None: return None logging.info(f'Building dataloader with consumed samples: {consumed_samples}') # Megatron sampler if hasattr(self.cfg.data, 'dataloader_type') and self.cfg.data.dataloader_type is not None: if self.cfg.data.dataloader_type == 'single': batch_sampler = MegatronPretrainingSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=self.cfg.micro_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), ) elif self.cfg.data.dataloader_type == 'cyclic': batch_sampler = MegatronPretrainingRandomSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=self.cfg.micro_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), ) else: raise ValueError('cfg.data.dataloader_type must be "single" or "cyclic"') else: raise ValueError('cfg.data.dataloader_type not found. Must be "single" or "cyclic"') # Torch dataloader. return torch.utils.data.DataLoader( dataset, batch_sampler=batch_sampler, num_workers=self.cfg.data.num_workers, pin_memory=True, ) def setup(self, stage=None): resume_checkpoint_path = self.trainer.ckpt_path if resume_checkpoint_path: init_consumed_samples = self._extract_consumed_samples_from_ckpt(resume_checkpoint_path) else: init_consumed_samples = 0 self.init_consumed_samples = init_consumed_samples """A PTL method to setup the training, validation and test datasets.""" if stage == 'predict': return if self._train_dl is not None and self._validation_dl is not None: return self.build_train_valid_test_datasets() self.setup_training_data(self._cfg.data) self.setup_validation_data(self._cfg.data) self.setup_test_data(self._cfg.data) def set_inference_config(self, inference_config, retrieval_config): self._inference_config = inference_config self.inference_strategy = model_inference_strategy_dispatcher(self, **retrieval_config) def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: Optional[int] = None) -> Any: inference_config = self._inference_config if inference_config is None: return None else: # need to overwrite some configuration, make it immutable inference_config = inference_config.copy() compute_logprob = inference_config['compute_logprob'] if compute_logprob: inference_config['inputs'] = batch inference_config['tokens_to_generate'] = 1 inference_config['all_probs'] = True inference_config["add_BOS"] = False inference_config['greedy'] = True response = generate(self, **inference_config, strategy=self.inference_strategy) compute_prob_response = get_computeprob_response(self.tokenizer, response, batch) return compute_prob_response else: inference_config['inputs'] = batch return generate(self, **inference_config, strategy=self.inference_strategy) def generate( self, inputs: Union[List[str], torch.Tensor, List[dict]], length_params: LengthParam, sampling_params: SamplingParam = None, **args, ) -> OutputType: # check whether the DDP is initialized if parallel_state.is_unitialized(): def dummy(): return if self.trainer.strategy.launcher is not None: self.trainer.strategy.launcher.launch(dummy, trainer=self.trainer) self.trainer.strategy.setup_environment() # set the default sampling params if it is None. # default do greedy sampling if sampling_params is None: sampling_params = get_default_sampling_params() # set the default length params if it is None. # default do greedy sampling if length_params is None: length_params = get_default_length_params() return megatron_gpt_generate(self.cuda(), inputs, self.tokenizer, length_params, sampling_params, **args) def get_forward_output_only_func(self): """ Used for generate method only. """ def fwd_output_only_func(dataloader_iter, model): batch = next(dataloader_iter) extra_arg = {} ( tokens, attention_mask, retrieved, retrieved_mask, set_inference_key_value_memory, inference_max_sequence_len, neighbors, position_ids, ) = batch if len(retrieved.shape) == 1: retrieved = None retrieved_mask = None else: retrieved = retrieved.cuda() retrieved_mask = retrieved_mask.cuda() extra_arg['set_inference_key_value_memory'] = set_inference_key_value_memory[0].item() extra_arg['inference_max_sequence_len'] = inference_max_sequence_len[0].item() extra_arg['neighbors'] = neighbors[0].item() extra_arg['position_ids'] = position_ids output_tensor = model(tokens, attention_mask, retrieved, retrieved_mask, **extra_arg) def id_func(output_tensor): return output_tensor, {'logits': output_tensor} return output_tensor, id_func return fwd_output_only_func def setup_training_data(self, cfg): if hasattr(self, '_train_ds'): consumed_samples = self.compute_consumed_samples(0) self._train_dl = self.build_pretraining_data_loader(self._train_ds, consumed_samples) def setup_validation_data(self, cfg): if hasattr(self, '_validation_ds'): consumed_samples = 0 self._validation_dl = self.build_pretraining_data_loader(self._validation_ds, consumed_samples) def setup_test_data(self, cfg): if hasattr(self, '_test_ds'): consumed_samples = 0 self._test_dl = self.build_pretraining_data_loader(self._test_ds, consumed_samples) def compute_consumed_samples(self, steps_since_resume=0): app_state = AppState() consumed_samples = ( self.init_consumed_samples + steps_since_resume * app_state.data_parallel_size * self.cfg.micro_batch_size * self.trainer.accumulate_grad_batches ) return int(consumed_samples) def setup_optimizer_param_groups(self): """ModelPT override. Optimizer will get self._optimizer_param_groups""" self._optimizer_param_groups = get_params_for_weight_decay_optimization([self.model]) def list_available_models(self): pass
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_retrieval_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from functools import partial import torch from omegaconf import DictConfig, ListConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.common.data import ConcatMapDataset from nemo.collections.common.metrics import MetricStringToTorchMetric from nemo.collections.common.metrics.classification_accuracy import ExactStringPerCategoryMatchMetric from nemo.collections.nlp.data.common.sequence_to_sequence_dataset import SequenceToSequenceDataset from nemo.collections.nlp.data.language_modeling.megatron.base_dataset_utils import ( get_datasets_weights_and_num_samples, get_train_valid_test_split_, ) from nemo.collections.nlp.data.language_modeling.megatron.blendable_dataset import BlendableDataset from nemo.collections.nlp.data.language_modeling.megatron.megatron_batch_samplers import ( MegatronPretrainingBatchSampler, ) from nemo.collections.nlp.data.language_modeling.megatron.retro_fine_tune_dataset import RetroQAFineTuneDataset from nemo.collections.nlp.models.language_modeling.megatron_retrieval_model import MegatronRetrievalModel from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model, T5Sentinel from nemo.collections.nlp.parts.nlp_overrides import GlobalBatchDataFetcher from nemo.utils import AppState, logging try: from megatron.core import parallel_state HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = ['MegatronRetroFinetuneModel'] def build_all_datasets( cfg, tokenizer, train_valid_test_num_samples, ): """Build train, valid, and test RETRO datasets. There is one to one mapping between data_prefix and knn_map_path. Currently only supports one retrieval dataset. """ train_dataset = RetroQAFineTuneDataset( cfg.train_ds.get('file_name'), tokenizer, cfg.train_ds.get('answer_only_loss'), tokenizer.pad_id, cfg.train_ds.get('seq_length'), cfg.train_ds.get('add_bos'), cfg.train_ds.get('add_eos'), train_valid_test_num_samples[0], cfg.train_ds.get('seed'), cfg.train_ds.get('neighbors'), ) val_dataset = RetroQAFineTuneDataset( cfg.val_ds.get('file_name'), tokenizer, cfg.val_ds.get('answer_only_loss'), tokenizer.pad_id, cfg.val_ds.get('seq_length'), cfg.val_ds.get('add_bos'), cfg.val_ds.get('add_eos'), train_valid_test_num_samples[1], cfg.val_ds.get('seed'), cfg.val_ds.get('neighbors'), ) test_dataset = RetroQAFineTuneDataset( cfg.test_ds.get('file_name'), tokenizer, cfg.test_ds.get('answer_only_loss'), tokenizer.pad_id, cfg.test_ds.get('seq_length'), cfg.test_ds.get('add_bos'), cfg.test_ds.get('add_eos'), train_valid_test_num_samples[2], cfg.test_ds.get('seed'), cfg.test_ds.get('neighbors'), ) return train_dataset, val_dataset, test_dataset class MegatronRetroFinetuneModel(MegatronRetrievalModel): """Finetune RETRO Model """ def build_train_valid_test_datasets(self): logging.info('Building RETRO datasets.') global_batch_size = self.trainer.world_size * self.cfg.micro_batch_size // self.cfg.tensor_model_parallel_size # Compute trianing micro-batch steps: total_global_batch_steps x grad_acumms_per_global_batch max_train_steps = self.trainer.max_steps * self.trainer.accumulate_grad_batches eval_iters = (max_train_steps // self.trainer.val_check_interval + 1) * self.trainer.limit_val_batches test_iters = int(self.trainer.limit_test_batches) train_valid_test_num_samples = [ max_train_steps * global_batch_size, eval_iters * global_batch_size, test_iters * global_batch_size, ] self._train_ds, self._validation_ds, self._test_ds = build_all_datasets( cfg=self.cfg.data, tokenizer=self.tokenizer, train_valid_test_num_samples=train_valid_test_num_samples, ) if self._train_ds is not None: logging.info(f'Length of train dataset: {len(self._train_ds)}') if self._validation_ds is not None: logging.info(f'Length of val dataset: {len(self._validation_ds)}') if self._test_ds is not None: logging.info(f'Length of test dataset: {len(self._test_ds)}') logging.info(f'Finished building RETRO datasets.') return self._train_ds, self._validation_ds, self._test_ds def build_pretraining_data_loader(self, dataset, consumed_samples): if isinstance(dataset, BlendableDataset): collate_fun = dataset.datasets[0].collate_fn else: collate_fun = dataset.collate_fn collate_fn = partial(collate_fun, tp_workers=0) global_batch_size = self.trainer.world_size * self.cfg.micro_batch_size // self.cfg.tensor_model_parallel_size batch_sampler = MegatronPretrainingBatchSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=self.cfg.micro_batch_size, global_batch_size=global_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), drop_last=True, ) return torch.utils.data.DataLoader( dataset, batch_sampler=batch_sampler, collate_fn=collate_fn, num_workers=0, pin_memory=True, )
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_retro_fine_tune_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json from typing import Dict, List import torch from omegaconf import DictConfig, ListConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.common.data import ConcatMapDataset from nemo.collections.common.metrics import MetricStringToTorchMetric from nemo.collections.common.metrics.classification_accuracy import ExactStringPerCategoryMatchMetric from nemo.collections.nlp.data.common.sequence_to_sequence_dataset import SequenceToSequenceDataset from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model, T5Sentinel from nemo.collections.nlp.modules.common.megatron.utils import get_iterator_k_split from nemo.collections.nlp.parts.utils_funcs import get_last_rank from nemo.utils import AppState, logging try: from apex.transformer.pipeline_parallel.utils import ( _reconfigure_microbatch_calculator, get_current_global_batch_size, get_micro_batch_size, get_num_microbatches, ) HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import parallel_state from megatron.core.pipeline_parallel.schedules import get_forward_backward_func HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = ['MegatronT5FinetuneModel'] class MegatronT5FinetuneModel(MegatronT5Model): """Finetune Model that Inherits from MegatronT5Model instead.""" def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer=trainer) self.val_metric, self.val_metric_name = self.setup_metric(self.cfg.data.validation_ds) self.val_metric = torch.nn.ModuleList(self.val_metric) if hasattr(self.cfg.data, "test_ds"): self.test_metric, self.test_metric_name = self.setup_metric(self.cfg.data.test_ds) self.test_metric = torch.nn.ModuleList(self.test_metric) def setup_metric(self, data_cfg): # XNLI is a special case. metric_name = "exact_string_match" if hasattr(self.cfg, "eval_languages"): metric = [ExactStringPerCategoryMatchMetric(self.cfg.eval_languages)] else: if not hasattr(data_cfg, "metric"): metric = MetricStringToTorchMetric["exact_string_match"] else: if not hasattr(data_cfg.metric, "name"): raise ValueError("Metric name is not provided in the metric config.") if data_cfg.metric.name not in MetricStringToTorchMetric: raise KeyError( f"{data_cfg.metric.name} is not supported. List of supported metrics: {MetricStringToTorchMetric.keys()}" ) if data_cfg.metric.name in self._metrics_require_string2category_map: if data_cfg.metric.average is None: raise ValueError( f"{data_cfg.metric.name} requires specifying whether you want to compute a micro or macro average. Found None." ) if ( data_cfg.metric.get('labels_are_strings', False) and data_cfg.metric.name in self._metrics_require_string2category_map ): if data_cfg.metric.num_classes is None: raise ValueError( "Number of classes is not provided in the metric section within the data config. " f"Please provide the number of classes in the data config to use the {data_cfg.metric.name} metric." ) if data_cfg.metric.get('class_labels', None) is None or not isinstance( data_cfg.metric.get('class_labels', None), ListConfig ): raise ValueError( "Class labels are not provided properly in the metric section witnin the data config. " f"Please provide the class labels as a list of strings in the data config to use the {data_cfg.metric.name} metric." ) if len(data_cfg.metric.get('class_labels', None)) != data_cfg.metric.num_classes: raise ValueError( f"Number of class labels {len(data_cfg.metric.get('class_labels', None))} does not match `num_classes` : {data_cfg.metric.num_classes}" ) metric_name = data_cfg.metric.name metric_class = MetricStringToTorchMetric[metric_name] # GLUE will not have a "src_file_name" attribute and will always have only a single metric. if hasattr(data_cfg, "src_file_name") or hasattr(data_cfg, "file_names"): if ( hasattr(data_cfg, "src_file_name") and isinstance(data_cfg.src_file_name, ListConfig) and metric_name != 'rouge' ): metric = [ metric_class(average=data_cfg.metric.average, num_classes=data_cfg.metric.num_classes) for _ in range(len(data_cfg.src_file_name)) ] elif ( hasattr(data_cfg, "file_names") and isinstance(data_cfg.file_names, ListConfig) and metric_name != 'rouge' ): metric = [ metric_class(average=data_cfg.metric.average, num_classes=data_cfg.metric.num_classes) for _ in range(len(data_cfg.file_names)) ] elif hasattr(data_cfg, "src_file_name") and isinstance(data_cfg.src_file_name, ListConfig): metric = [metric_class() for _ in range(len(data_cfg.src_file_name))] elif hasattr(data_cfg, "file_names") and isinstance(data_cfg.file_names, ListConfig): metric = [metric_class() for _ in range(len(data_cfg.file_names))] else: metric = [metric_class(average=data_cfg.metric.average, num_classes=data_cfg.metric.num_classes)] else: metric = [metric_class()] # GLUE does need to specify average or num_classes. return metric, metric_name @property def _metrics_require_string2category_map(self): return set(["f1", "accuracy", "average_precision"]) def setup(self, stage=None): # This is just to keep the parent class happy since we override its setup() method. self.init_consumed_samples = 0 self.init_global_step = 0 if stage == 'predict': return # NOTE: PTL uses the same stage string "test" for both testing and validation. self.build_train_valid_test_datasets(stage=stage) if hasattr(self, '_validation_ds'): self.setup_validation_data() if hasattr(self, '_test_ds'): self.setup_test_data() if hasattr(self, '_train_ds'): self.setup_training_data() def on_validation_epoch_start(self): app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=self.cfg.data.validation_ds.global_batch_size, micro_batch_size=self.cfg.data.validation_ds.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) return super().on_validation_epoch_start() def on_test_epoch_start(self): app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=self.cfg.data.test_ds.global_batch_size, micro_batch_size=self.cfg.data.test_ds.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) return super().on_test_epoch_start() def on_train_epoch_start(self) -> None: # Same logic as validation epoch end, but this may be need if there is no validation sanity check to trigger validation_epoch_end() # Commenting as on_validation_epoch_end was a no-op in PTL 1.9 # self.on_validation_epoch_end() return super().on_train_epoch_start() def cast_for_metric(self, pred, label, metric_name, class_labels=None, labels_are_strings=False): if metric_name == 'exact_string_match' or 'rouge': return pred, label pred = pred.replace(' ', '') label = label.replace(' ', '') # Correlation metrics require casting to float. if metric_name in ['pearson_corr_coef', 'spearman_corr_coef']: # Text-to-text model predictions may not always be valid floating point numbers. try: pred = float(pred) except ValueError: pred = 0.0 try: label = float(label) except ValueError: raise ValueError(f'Could not convert {label} to float.') pred = torch.FloatTensor([pred]).to(self.device) label = torch.FloatTensor([label]).to(self.device) # Other metrics require casting to integers. elif metric_name in self._metrics_require_string2category_map and not labels_are_strings: # Text-to-text model predictions may not always be valid integers. try: pred = int(pred) except ValueError: pred = 0 try: label = int(label) except ValueError: raise ValueError(f'Could not convert {label} to int.') pred = torch.LongTensor([pred]).to(self.device) label = torch.LongTensor([label]).to(self.device) # If labels are strings, we need to convert them to indices for some metrics. elif metric_name in self._metrics_require_string2category_map and labels_are_strings: # Cast string labels to integers before computing the metric. if pred not in class_labels: pred = 0 # If the prediction is not in the class labels, use the first class label. else: pred = class_labels.index(pred) if label not in class_labels: raise ValueError(f"Ground truth label {label} is not in the class labels list : {class_labels}") label = class_labels.index(label) pred = torch.LongTensor([pred]).to(self.device) label = torch.LongTensor([label]).to(self.device) else: raise ValueError(f'Metric {metric_name} not supported.') return pred, label def _reconfigure_and_process_inference_batch(self, batch, ds_config): global_batch_size_per_gpu = batch['text_enc'].size(0) # This should happen only on the last batch of the dataset. if ( global_batch_size_per_gpu != get_current_global_batch_size() // parallel_state.get_data_parallel_world_size() ): # NOTE: This is reconfiguring to make sure there is no grad-acc for validation batches. if ( global_batch_size_per_gpu != ds_config.global_batch_size // parallel_state.get_data_parallel_world_size() ): app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=global_batch_size_per_gpu * parallel_state.get_data_parallel_world_size(), micro_batch_size=global_batch_size_per_gpu, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # NOTE: need to explicitly handle resetting for multi-validation else: app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=ds_config.global_batch_size, micro_batch_size=ds_config.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) def fwd_bwd_step(self, dataloader_iter, batch_idx, forward_only): """ Dataloader produces a global batch which is turned into a list of microbatches. The list of microbatches is then piped through the pipeline using Apex fwd/bwd functions. """ batch = next(dataloader_iter) if isinstance(batch, dict): # convert to list if not already converted. batch = self._process_batch(batch) # Get seq length of batch encoder_seq_length = batch[0].size(1) decoder_seq_length = batch[1].size(1) tensor_shape = [encoder_seq_length, get_micro_batch_size(), self.cfg.encoder.hidden_size] data_iter = get_iterator_k_split(batch, get_num_microbatches()) return self._execute_fwd_bwd_function( data_iterator=data_iter, forward_only=forward_only, tensor_shape=tensor_shape, decoder_seq_length=decoder_seq_length, ) def inference_step(self, dataloader_iter, batch_idx: int, mode: str, dataloader_idx=0): # Check if iterator is exhausted dataloader_iter, done = self._val_iterator_done(dataloader_iter) if done: return # Regular finetuning datasets will return a list of dicts for each microbatch. # But T0 datasets will return a single dict for the global batch. batch = next(dataloader_iter) batch_has_lang_information = isinstance(batch, list) and len(batch[0]) == 7 data_cfg = self.cfg.data.validation_ds if mode == 'validation' else self.cfg.data.test_ds self._reconfigure_and_process_inference_batch(batch, data_cfg) # NOTE: There could be extra keys in the processed_batch dictionary such as "langs" for XNLI, # this will be ignored. loss = self.fwd_bwd_step(itertools.chain([batch]), batch_idx, forward_only=True) predicted_token_ids, _ = self.decode( tokens_enc=batch['text_enc'], enc_mask=batch['enc_mask'], num_tokens_to_generate=30, bos_id=self.tokenizer.pad_id if data_cfg.get('replace_bos_with_pad', False) else self.tokenizer.bos_id, ) # Special ids to text function to handle stripping <eos> and special tokens with sentencepiece tokenizers. preds_text = MegatronT5FinetuneModel.ids_to_text(predicted_token_ids, self.tokenizer) labels_text = MegatronT5FinetuneModel.ids_to_text(batch['labels'], self.tokenizer) input_text = MegatronT5FinetuneModel.ids_to_text(batch['text_enc'], self.tokenizer) if not batch_has_lang_information: categories = [None] * len(preds_text) else: categories = batch['lang'] metric = self.val_metric[dataloader_idx] if mode == 'validation' else self.test_metric[dataloader_idx] assert len(categories) == len(preds_text) == len(labels_text) for _, (pred, label, category) in enumerate(zip(preds_text, labels_text, categories)): # To compute metrics like pearson or spearman correlation, we need to cast the predicted string and labels to floats. pred, label = self.cast_for_metric( pred=pred, label=label, metric_name=self.val_metric_name if mode == 'validation' else self.test_metric_name, class_labels=data_cfg.metric.get('class_labels', None), labels_are_strings=data_cfg.metric.get('labels_are_strings', False), ) if batch_has_lang_information: _ = metric(pred, label, category) else: _ = metric(pred, label) outputs = { 'preds': preds_text, 'labels': labels_text, 'categories': categories, 'inputs': input_text, } if isinstance(loss, dict): outputs.update(loss) else: outputs['loss'] = loss if mode == 'validation': if type(self.trainer.val_dataloaders) == list and len(self.trainer.val_dataloaders) > 1: self.validation_step_outputs[dataloader_idx].append(outputs) else: self.validation_step_outputs.append(outputs) else: if type(self.trainer.test_dataloaders) == list and len(self.trainer.test_dataloaders) > 1: self.test_step_outputs[dataloader_idx].append(outputs) else: self.test_step_outputs.append(outputs) return outputs @classmethod def ids_to_text(cls, batch_ids, tokenizer): batch_ids = batch_ids.cpu().numpy().tolist() texts = [] for ids in batch_ids: if tokenizer.eos_id in ids: idx = ids.index(tokenizer.eos_id) ids = ids[:idx] if ( len(tokenizer.text_to_ids(T5Sentinel.END.value)) == 1 and tokenizer.text_to_ids(T5Sentinel.END.value)[0] in ids ): idx = ids.index(tokenizer.text_to_ids(T5Sentinel.END.value)[0]) ids = ids[:idx] # Legacy sentencepiece detokenization still preserves special tokens which messes up exact string match. if hasattr(tokenizer, 'special_token_to_id'): ids = [id for id in ids if id not in tokenizer.special_token_to_id.values()] text = tokenizer.ids_to_text(ids) texts.append(text) return texts def _determine_log_key(self, data_config, dataloader_idx, metric_name, mode): # Function that determines whether to log based on the user provided name of the dataset or the dataloader index. base_key = f"{mode}_{metric_name}_" if metric_name is not None else f"{mode}_" # If the user provided names for each validation/test dataset, use those. if hasattr(data_config, "names") and data_config.names is not None: # With only a single validation/test dataset, the name is not a list. if not isinstance(data_config.names, ListConfig): name = data_config.names else: name = data_config.names[dataloader_idx] return base_key + name else: return base_key + f"dataloader{dataloader_idx}" def inference_epoch_end(self, outputs, mode, data_cfg): # Parent class will handle logging of the loss. if isinstance(outputs[0], dict): outputs = [outputs] averaged_loss = [] averaged_metric = [] metric_name = self.val_metric_name if mode == 'validation' else self.test_metric_name # Log metrics for each provided validation/test dataset. for dataloader_idx, output in enumerate(outputs): # Expand on_validation_epoch_end from parent class MegatronLMEncoderDecoderModel as it doesnt take arg outputs # loss = super().validation_epoch_end([x['loss'] for x in output]) loss_vals = [x['loss'] for x in output] # NOTE: we need to make sure outputs is not empty (this is a workaround for a bug in pytorch lightning (?)) if len(loss_vals) == 0: logging.warning("validation_epoch_end: outputs is empty") return if parallel_state.is_pipeline_last_stage(): # only the last pipeline parallel stages return loss loss = torch.stack(loss_vals).mean() else: loss = torch.tensor(0.0).cuda() # we can only log on one rank if it is rank zero so we broadcast from last rank torch.distributed.broadcast(loss, get_last_rank()) self.log('val_loss', loss, prog_bar=True, rank_zero_only=True, batch_size=1) self.log('global_step', self.trainer.global_step, prog_bar=True, rank_zero_only=True, batch_size=1) # Determine the key used to log the loss based on the user provided name of the dataset or the dataloader index. loss_log_key = self._determine_log_key(data_cfg, dataloader_idx, "loss", mode) # Determine the key used to log the eval metric based on the user provided name of the dataset or the dataloader index. metric_log_key = self._determine_log_key(data_cfg, dataloader_idx, metric_name, mode) self.log(loss_log_key, loss, batch_size=1) metric_object = ( self.val_metric[dataloader_idx] if mode == 'validation' else self.test_metric[dataloader_idx] ) metric = metric_object.compute() if metric_name == 'rouge': metric = metric['rouge1_fmeasure'] # Handle logging of GLUE/XNLI separately here. XNLI has a separate metric per language. if isinstance(metric, dict): # GLUE case: if len(metric) == 1 and 'acc' in metric: metric = metric['acc'] self.log(metric_log_key, metric, batch_size=1) logging.info(f"{mode} {metric_name}: {metric}") # XNLI case where the metric dictionary contains the language and the computed metric as values. else: for k, v in metric.items(): if k != 'acc' and 'total' not in k: self.log(metric_log_key + f'_{k}', v, batch_size=1) logging.info(f"{mode} {metric_name} lang {k} : {v}") if metric_name != 'rouge': metric = metric['acc'] else: self.log(metric_log_key, metric, batch_size=1) logging.info(f"{metric_log_key}: {metric}") metric_object.reset() averaged_loss.append(loss) averaged_metric.append(metric) # Write predictions, labels, and inputs to a file for each validation/test dataset. if data_cfg.get("write_predictions_to_file", False): # Check if the user provided a prefix path to the file(s) they want to write. if not hasattr(data_cfg, "output_file_path_prefix") or data_cfg.output_file_path_prefix is None: raise ValueError( f"Cannot write predictions to file when output_file_path_prefix is not set or present in the yaml config file." ) # Gather the outputs object from all data parallel ranks since we are using the DistributedSampler which splits data across DDP ranks. gathered_outputs = [None for _ in range(parallel_state.get_data_parallel_world_size())] torch.distributed.all_gather_object( gathered_outputs, [ { 'preds': x['preds'], 'labels': x['labels'], 'categories': x['categories'], 'inputs': x['inputs'], } for x in output ], group=parallel_state.get_data_parallel_group(), ) # Figure out what the suffix of the file should be. filename_log_key = self._determine_log_key(data_cfg, dataloader_idx, None, mode) # Keep a set of ground truths and inputs to write deduplicated predictions. Distributed Sampler may duplicate examples. gt_inp_set = set() deduplicated_outputs = { 'preds': [], 'labels': [], 'categories': [], 'inputs': [], } # PTL models have a self.global_rank attribute and we want to write to disk only on global rank 0. if self.global_rank == 0: for rank in range(0, parallel_state.get_data_parallel_world_size()): for batch in gathered_outputs[rank]: for pred, label, input, category in zip( batch['preds'], batch['labels'], batch['inputs'], batch['categories'] ): gt_inp_set.add(input + label) deduplicated_outputs['preds'].append(pred) deduplicated_outputs['labels'].append(label) deduplicated_outputs['categories'].append(category) deduplicated_outputs['inputs'].append(input) self.write_predictions_to_file( deduplicated_outputs, f"{data_cfg.output_file_path_prefix}_{filename_log_key}" ) torch.distributed.barrier() outputs[dataloader_idx].clear() # free memory # Logging of the averaged metrics: averaged_loss = sum(averaged_loss) / len(averaged_loss) averaged_metric = sum(averaged_metric) / len(averaged_metric) # Handle case where metrics can be nan or inf. This can break checkpoint save/load. if torch.isinf(averaged_metric) or torch.isnan(averaged_metric): app_state = AppState() monitor_mode = app_state.checkpoint_callback_params.mode assert monitor_mode in ['min', 'max'] averaged_metric = 0.0 if monitor_mode == 'max' else 1e5 if mode == 'validation': self.log("validation_loss", averaged_loss, batch_size=1) self.log(f"validation_{self.val_metric_name}", averaged_metric, batch_size=1) elif mode == 'test': self.log("test_loss", averaged_loss, batch_size=1) self.log(f"test_{self.test_metric_name}", averaged_metric, batch_size=1) app_state = AppState() if hasattr(self, "_train_ds"): _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=self.cfg.data.train_ds.global_batch_size, micro_batch_size=self.cfg.data.train_ds.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # When running `trainer.validate()`, the training dataset is not available. else: logging.warning('No training data found, reconfiguring microbatches based on validation batch sizes.') _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=data_cfg.global_batch_size, micro_batch_size=data_cfg.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) return averaged_loss, averaged_metric def write_predictions_to_file(self, outputs, output_file_path_prefix): with open(output_file_path_prefix + "_inputs_preds_labels.jsonl", "w") as f_json: assert len(outputs['inputs']) == len(outputs['preds']) == len(outputs['labels']) for i, p, l in zip(outputs['inputs'], outputs['preds'], outputs['labels']): f_json.write(json.dumps({'input': i, 'pred': p, 'label': l}) + '\n') def validation_step(self, dataloader_iter, batch_idx, dataloader_idx=0): return self.inference_step(dataloader_iter, batch_idx, 'validation', dataloader_idx) def on_validation_epoch_end(self): _ = self.inference_epoch_end(self.validation_step_outputs, 'validation', self.cfg.data.validation_ds) # Commenting as on_validation_epoch_end was a no-op in PTL 1.9 # return super().on_validation_epoch_end() def test_step(self, dataloader_iter, batch_idx, dataloader_idx=0): return self.inference_step(dataloader_iter, batch_idx, 'test', dataloader_idx) def on_test_epoch_end(self): _ = self.inference_epoch_end(self.test_step_outputs, 'test', self.cfg.data.test_ds) # Commenting as on_test_epoch_end was a no-op in PTL 1.9 # return super().on_test_epoch_end() def build_data_loader( self, dataset, global_batch_size, shuffle, num_workers, pin_memory, drop_last, ): """Buld dataloader given an input dataset.""" if dataset is None: return None rank = parallel_state.get_data_parallel_rank() world_size = parallel_state.get_data_parallel_world_size() sampler = torch.utils.data.distributed.DistributedSampler( dataset, num_replicas=world_size, rank=rank, shuffle=shuffle ) if isinstance(dataset, ConcatMapDataset): collate_fn = dataset.datasets[0].collate_fn else: collate_fn = dataset.collate_fn # Data loader. Note that batch size is the per GPU batch size. return torch.utils.data.DataLoader( dataset, collate_fn=collate_fn, sampler=sampler, batch_size=global_batch_size // parallel_state.get_data_parallel_world_size(), num_workers=num_workers, pin_memory=pin_memory, drop_last=drop_last, ) def setup_training_data(self): if not self.cfg.data.train_ds.drop_last: raise AttributeError( "`drop_last` is required for the training dataset to ensure each batch is the same micro-batch size." "To set this, set the variable `data.train_ds.drop_last=True` in the config." ) self._train_dl = self.build_data_loader( self._train_ds, global_batch_size=self.cfg.data.train_ds.global_batch_size, shuffle=self.cfg.data.train_ds.shuffle, num_workers=self.cfg.data.train_ds.num_workers, pin_memory=self.cfg.data.train_ds.pin_memory, drop_last=self.cfg.data.train_ds.drop_last, ) def setup_eval_data(self, datasets, data_cfg): dataloaders = [] for dataset in datasets: eval_dl = self.build_data_loader( dataset, global_batch_size=self.cfg.data.train_ds.global_batch_size, shuffle=data_cfg.shuffle, num_workers=data_cfg.num_workers, pin_memory=data_cfg.pin_memory, drop_last=data_cfg.drop_last, ) dataloaders.append(eval_dl) return dataloaders def setup_validation_data(self): self._validation_dl = self.setup_eval_data(self._validation_ds, self.cfg.data.validation_ds) def setup_test_data(self): self._test_dl = self.setup_eval_data(self._test_ds, self.cfg.data.test_ds) def _build_train_dataset(self, data_cfg): """Build the training dataset.""" if ( data_cfg.drop_last is False and data_cfg.global_batch_size > data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size() ): raise ValueError( f"Cannot use drop_last=False in your training data with gradient accumulation found grad acc of {data_cfg.global_batch_size // (data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size())} with global_batch_size {data_cfg.global_batch_size}, micro_batch_size {data_cfg.micro_batch_size}, data parallel size {parallel_state.get_data_parallel_world_size()}" ) datasets = [] # Determine if we are using a single dataset or a list of datasets. is_src_list_config = isinstance(data_cfg.src_file_name, ListConfig) is_tgt_list_config = isinstance(data_cfg.tgt_file_name, ListConfig) if (is_src_list_config and not is_tgt_list_config) or (is_tgt_list_config and not is_src_list_config): raise ValueError("src_list and tgt_list must both be either a ListConfig or a string. ") if is_src_list_config: if len(data_cfg.src_file_name) != len(data_cfg.tgt_file_name): raise ValueError("src_file_name and tgt_file_name must have the same number of elements. ") else: data_cfg.src_file_name = [data_cfg.src_file_name] data_cfg.tgt_file_name = [data_cfg.tgt_file_name] for src, tgt in zip(data_cfg.src_file_name, data_cfg.tgt_file_name): dataset = SequenceToSequenceDataset( src_file_name=src, tgt_file_name=tgt, src_tokenizer=self.tokenizer, tgt_tokenizer=self.tokenizer, max_src_seq_length=data_cfg.max_src_seq_length, max_tgt_seq_length=data_cfg.max_tgt_seq_length, add_bos_to_input=data_cfg.get('add_bos_to_input', True), add_eos_to_input=data_cfg.get('add_eos_to_input', True), replace_bos_with_pad=data_cfg.get('replace_bos_with_pad', False), ) datasets.append(dataset) if len(datasets) > 1: dataset = ConcatMapDataset( datasets=datasets, sampling_technique=data_cfg.get('concat_sampling_technique', 'temperature'), sampling_temperature=data_cfg.get('concat_sampling_temperature', 5), sampling_probabilities=data_cfg.get( 'concat_sampling_probabilities', [1 / len(datasets)] * len(datasets) ), ) return dataset else: return datasets[0] def _build_eval_dataset(self, data_cfg): """Build the evaluation dataset.""" if data_cfg.global_batch_size > data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size(): raise ValueError( f'You are trying to use "implicit gradient accumulation" of {data_cfg.global_batch_size // (data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size())} in your validation/test datasets. This is not supported. Please set global_batch_size equal to micro_batch_size * data_parallel_world_size.' ) datasets = [] # Determine if we are using a single dataset or a list of datasets. is_src_list_config = isinstance(data_cfg.src_file_name, ListConfig) is_tgt_list_config = isinstance(data_cfg.tgt_file_name, ListConfig) is_names_list_config = False if hasattr(data_cfg, "names"): if isinstance(data_cfg.names, ListConfig): is_names_list_config = True if (is_src_list_config and not is_tgt_list_config) or (is_tgt_list_config and not is_src_list_config): raise ValueError("src_list and tgt_list must both be either a ListConfig or a string. ") if is_src_list_config: if len(data_cfg.src_file_name) != len(data_cfg.tgt_file_name): raise ValueError("src_file_name and tgt_file_name must have the same number of elements. ") if is_names_list_config and len(data_cfg.names) != len(data_cfg.src_file_name): raise ValueError( "If you are providing names for each src/tgt file, they must have the same number of elements." ) else: data_cfg.src_file_name = [data_cfg.src_file_name] data_cfg.tgt_file_name = [data_cfg.tgt_file_name] for src, tgt in zip(data_cfg.src_file_name, data_cfg.tgt_file_name): dataset = SequenceToSequenceDataset( src_file_name=src, tgt_file_name=tgt, src_tokenizer=self.tokenizer, tgt_tokenizer=self.tokenizer, max_src_seq_length=data_cfg.max_src_seq_length, max_tgt_seq_length=data_cfg.max_tgt_seq_length, add_bos_to_input=data_cfg.get('add_bos_to_input', True), add_eos_to_input=data_cfg.get('add_eos_to_input', True), replace_bos_with_pad=data_cfg.get('replace_bos_with_pad', False), ) datasets.append(dataset) return datasets def build_train_valid_test_datasets(self, stage): logging.info('Building datasets ...') if stage != 'test': self._validation_ds = self._build_eval_dataset(self.cfg.data.validation_ds) if stage != 'validate': if hasattr(self.cfg.data, 'test_ds'): self._test_ds = self._build_eval_dataset(self.cfg.data.test_ds) if stage == 'validate' or stage == 'test': return self._train_ds = self._build_train_dataset(self.cfg.data.train_ds) logging.info(f'Finished building datasets ...')
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_finetune_model.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from omegaconf.dictconfig import DictConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model __all__ = ["MegatronBARTModel"] class MegatronBARTModel(MegatronT5Model): """ Megatron BART pretraining """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer=trainer) @property def model_name(self): """Allows child classes to implement models with different data regime""" return "BART" def _validate_cfg(self): """Class-specific cfg validation""" if self._cfg.data.get('dataset_type', None) != 'bart': raise ValueError( f"cfg.data.dataset_type = {self._cfg.data.get('dataset_type', None)} but 'bart' is expected" ) if self.num_sentinel_tokens != 0: raise ValueError( f"cfg.tokenizer.num_sentinel_tokens = {self.num_sentinel_tokens} but 0 is expected for 'bart'" ) @property def _build_train_valid_test_datasets_kwargs(self): """allows child classes to add kwargs to dataset building""" return dict(delete_mask_prob=self._cfg.data.get('delete_mask_prob', 0.0),) def list_available_models(self): pass
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_bart_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools from typing import Any, List import torch from omegaconf import OmegaConf from omegaconf.dictconfig import DictConfig from omegaconf.omegaconf import open_dict from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.data.language_modeling.megatron.t5_prompt_learning_dataset import T5PromptLearningDataset from nemo.collections.nlp.models.language_modeling.megatron_base_prompt_learning_model import ( MegatronBasePromptLearningModel, ) from nemo.collections.nlp.models.language_modeling.megatron_finetune_model import MegatronT5FinetuneModel from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model from nemo.collections.nlp.modules.common.megatron.utils import ( average_losses_across_data_parallel_group, get_iterator_k_split, ) from nemo.collections.nlp.parts.nlp_overrides import NLPSaveRestoreConnector from nemo.collections.nlp.parts.utils_funcs import get_last_rank from nemo.utils import AppState, logging try: from apex.transformer.pipeline_parallel.utils import ( _reconfigure_microbatch_calculator, get_micro_batch_size, get_num_microbatches, ) HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import parallel_state from megatron.core.enums import ModelType from megatron.core.pipeline_parallel.schedules import get_forward_backward_func HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = ['MegatronT5PromptLearningModel'] class MegatronT5PromptLearningModel(MegatronBasePromptLearningModel): """ Model class for prompt-tuning or p-tuning a pretrained Megatron T5 model. Prompt Tuning initalizes virtual prompt embeddings directly from a copy of certain token embeddings from the the pretrained T5 model's vocabulary and directly tunes these embedding weights. The token embeddings used in initalization are specified by the user in the config file. The model can be prompt-tuned for multiple tasks at once. Virtual prompts are stored in a prompt table and can be added or deleted without disrupting virtual prompts for other tasks. P-tuning initializes an LSTM encoder model that generates virtual prompt embeddings for every task. Each task shares the same encoder. After p-tuning is compelete, the learned virtual prompts can be saved to the prompt table using add_ptuned_prompts_to_prompt_table(). Thus, if a user wants to add a new virtual prompt via p-tuning, they do not need to retrain on all previous tasks. This gives p-tuning the same task flexiblity as prompt-tuning. """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) self.model_type = ModelType.encoder_and_decoder def first_stage_of_pipeline(self): if self.frozen_model.enc_dec_model.pre_process and parallel_state.get_pipeline_model_parallel_rank() == 0: return True return False def forward( self, input_ids, dec_input, enc_mask, dec_mask, position_ids, taskname_ids, labels=None, inference=False, ): """ Special forward method for p-tuning/prompt-tuning pretrained T5 style models. """ batch_size, seq_length = input_ids.shape if self.first_stage_of_pipeline(): # Get embeddings for text tokens and insert virtual token embeddings input_embeds = self.embed_input(input_ids, taskname_ids, inference) # TODO: This check needs to be revisited with PP support. if hasattr(self.frozen_model.enc_dec_model.encoder_embedding, 'position_embeddings'): position_embeddings = self.frozen_model.enc_dec_model.encoder_embedding.position_embeddings( position_ids ) encoder_input = input_embeds + position_embeddings else: encoder_input = input_embeds else: encoder_input = None # If the decoder input starts with <pad> instead of <bos>, which is the case for huggingface T5 models, we don't want to mask the first token. # For NeMo-Megatron, the sequence starts with <bos>, which is never masked so we can always set index 0 to be unmasked. dec_mask[:, 0] = 1 # Call forward on T5 model with preprocessed embeddings if self.autocast_dtype == torch.float32: output = self.frozen_model.enc_dec_model( enc_input_ids=None, enc_attn_mask=enc_mask, dec_input_ids=dec_input, dec_attn_mask=dec_mask, token_type_ids=None, labels=labels, output_enc_hidden_only=False, enc_input=encoder_input, ) else: with torch.autocast(device_type="cuda", dtype=self.autocast_dtype): output = self.frozen_model.enc_dec_model( enc_input_ids=None, enc_attn_mask=enc_mask, dec_input_ids=dec_input, dec_attn_mask=dec_mask, token_type_ids=None, labels=labels, output_enc_hidden_only=False, enc_input=encoder_input, ) return output, encoder_input def load_frozen_model(self, cfg, trainer): self.megatron_amp_o2 = cfg.get('megatron_amp_O2', False) # TODO: Fix this once apex patches FusedScaledMaskedSoftmax. # This is a workaround for the fact that `masked_softmax_fusion` has issues with certain input sizes that may be present while finetuning. t5_cfg = MegatronT5Model.restore_from(cfg.get('language_model_path'), trainer=trainer, return_config=True) OmegaConf.set_struct(t5_cfg, True) with open_dict(t5_cfg): if hasattr(t5_cfg, 'encoder') and hasattr(t5_cfg, 'decoder'): t5_cfg.encoder.masked_softmax_fusion = False t5_cfg.decoder.masked_softmax_fusion = False else: t5_cfg.masked_softmax_fusion = False t5_cfg.megatron_amp_O2 = self.megatron_amp_o2 # hack to make the _GLOBAL_NUM_MICROBATCHES_CALCULATOR initialize t5_cfg.micro_batch_size = cfg.get('micro_batch_size', 4) t5_cfg.global_batch_size = cfg.get('global_batch_size', 4) t5_cfg.precision = trainer.precision self.frozen_model = MegatronT5Model.restore_from( cfg.get('language_model_path'), trainer=trainer, override_config_path=t5_cfg, save_restore_connector=NLPSaveRestoreConnector(), ) def fwd_bwd_step(self, dataloader_iter, batch_idx, forward_only): """ Dataloader produces a global batch which is turned into a list of microbatches. The list of microbatches is then piped through the pipeline using megatron-core fwd/bwd functions. """ # Get seq length of batch batch = next(dataloader_iter) _, seq_length = batch[0].shape _, dec_seq_length = batch[1].shape data_iter = get_iterator_k_split(batch, get_num_microbatches()) fwd_bwd_function = get_forward_backward_func() losses_reduced_per_micro_batch = fwd_bwd_function( forward_step_func=self.get_forward_output_and_loss_func(), data_iterator=data_iter, model=[self], num_microbatches=get_num_microbatches(), forward_only=forward_only, seq_length=seq_length, micro_batch_size=get_micro_batch_size(), decoder_seq_length=dec_seq_length, ) # only the last stages of the pipeline return losses if losses_reduced_per_micro_batch: # average loss across micro batches loss_tensors_list = [loss_reduced['loss'] for loss_reduced in losses_reduced_per_micro_batch] loss_tensor = torch.concat(loss_tensors_list) loss_mean = loss_tensor.mean() else: # we're not on the last pipeline stage so no losses loss_mean = torch.tensor(0.0).cuda() return loss_mean def get_forward_output_and_loss_func(self): # FIXME: consolidate this method into MegatronLMEncoderDecoderModel (or have a common base class) def fwd_output_and_loss_func(dataloader_iter, model): batch = next(dataloader_iter) batch = [x.cuda(non_blocking=True) for x in batch] enc_input, dec_input, labels, loss_mask, enc_mask, dec_mask, position_ids, taskname_ids = batch output_tensor, encoder_input = model( enc_input, dec_input, enc_mask, dec_mask, position_ids, taskname_ids, labels, inference=False ) output_tensor = output_tensor.contiguous() def loss_func(output_tensor): loss = self.frozen_model.loss_func(loss_mask, output_tensor) reduced_loss = average_losses_across_data_parallel_group([loss]) return loss, {'loss': reduced_loss} return output_tensor, loss_func return fwd_output_and_loss_func def backward(self, *args, **kwargs): """ LightningModule hook to do backward. We want this to do nothing since we run backward in the fwd/bwd functions from megatron-core. No need to call it here. """ return def optimizer_zero_grad(self, *args, **kwargs): """ LightningModule hook to zero grad. We want this to do nothing as we are zeroing grads during the training_step. """ return def set_input_tensor(self, input_tensor): """Set input tensor to be used instead of forward()'s input. When using pipeline parallelism the input from the previous stage comes from communication, not from the input, so the model's forward_step_func won't have it. This function is thus used by internal code to bypass the input provided by the forward_step_func""" self.frozen_model.enc_dec_model.set_input_tensor(input_tensor) def on_train_epoch_start(self) -> None: gbs = self.cfg.global_batch_size mbs = self.cfg.micro_batch_size self._reconfigure_batch_sizes(gbs, mbs) return super().on_train_epoch_start() def on_validation_epoch_start(self) -> None: gbs = self.cfg.get('validation_global_batch_size', self.cfg.global_batch_size) mbs = self.cfg.get('validation_micro_batch_size', self.cfg.micro_batch_size) self._reconfigure_batch_sizes(gbs, mbs) return super().on_validation_epoch_start() def training_step(self, dataloader_iter, batch_idx): self._optimizer.zero_grad() batch = next(dataloader_iter) loss_mean = self.fwd_bwd_step(itertools.chain([batch]), batch_idx, forward_only=False) self.allreduce_gradients() ## logging # we can only log on one rank if it is rank zero so we broadcast from last rank # we can avoid this broadcast by updating the PTL log function to accept specific ranks torch.distributed.broadcast(loss_mean, get_last_rank()) if self.torch_dtype == torch.float16 and hasattr(self.trainer.precision_plugin.scaler, "_scale"): loss_scale = self.trainer.precision_plugin.scaler._scale if loss_scale is not None: self.log('loss_scale', loss_scale, batch_size=1) self.log('reduced_train_loss', loss_mean, prog_bar=True, rank_zero_only=True, batch_size=1) lr = self._optimizer.param_groups[0]['lr'] self.log('lr', lr, rank_zero_only=True, batch_size=1) self.log('global_step', self.trainer.global_step, prog_bar=True, rank_zero_only=True, batch_size=1) return loss_mean def get_predictions(self, input_ids, enc_mask, encoder_input, labels): predicted_token_ids, log_probs = self.frozen_model.decode( tokens_enc=input_ids, enc_mask=enc_mask, num_tokens_to_generate=self.decoder_seq_length, encoder_input=encoder_input, bos_id=self.tokenizer.pad_id if self.cfg.data.get('decoder_starts_with_pad', False) else self.tokenizer.bos_id, ) # Special ids to text function to handle stripping <eos> and special tokens with sentencepiece tokenizers. preds_text = MegatronT5FinetuneModel.ids_to_text(predicted_token_ids, self.tokenizer) labels_text = MegatronT5FinetuneModel.ids_to_text(labels, self.tokenizer) input_text = MegatronT5FinetuneModel.ids_to_text(input_ids, self.tokenizer) return { 'predicted_token_ids': preds_text, 'labels': labels_text, 'enc_inputs': input_text, } def validation_step(self, batch, batch_idx, inference=False): prefix = "test" if self.trainer.testing else "val" input_ids, dec_input, labels, loss_mask, enc_mask, dec_mask, position_ids, taskname_ids = batch # does not use dataloader_iter due to device placement issues arising from PTL mode = self.training self.eval() gbs = self.cfg.get('validation_global_batch_size', self.cfg.global_batch_size) self._reconfigure_and_process_inference_batch(input_ids.size(0), gbs) loss_mean = self.fwd_bwd_step(itertools.chain([batch]), batch_idx, forward_only=True) if self.first_stage_of_pipeline(): # Get embeddings for text tokens and insert virtual token embeddings input_embeds = self.embed_input(input_ids, taskname_ids, False) if hasattr(self.frozen_model.enc_dec_model.encoder_embedding, 'position_embeddings'): position_embeddings = self.frozen_model.enc_dec_model.encoder_embedding.position_embeddings( position_ids ) encoder_input = input_embeds + position_embeddings else: encoder_input = input_embeds else: encoder_input = None if self.cfg.get("report_validation_metric", False): metrics = self.get_predictions(input_ids, enc_mask, encoder_input, labels) metrics['loss'] = loss_mean else: metrics = {'loss': loss_mean} self.train(mode=mode) self.frozen_model.eval() self.validation_step_outputs.append(metrics) if prefix == 'val' else self.test_step_outputs.append(metrics) return metrics def on_validation_epoch_end(self): prefix = "test" if self.trainer.testing else "val" outputs = self.validation_step_outputs if prefix == 'val' else self.test_step_outputs if self.cfg.get('pipeline_model_parallel_size', 1) > 1: if parallel_state.is_pipeline_last_stage(): # only the last pipeline parallel stages return loss averaged_loss = torch.stack([i['loss'] for i in outputs]).mean() else: averaged_loss = torch.tensor(0.0).cuda() # we can only log on one rank if it is rank zero so we broadcast from last rank torch.distributed.broadcast(averaged_loss, get_last_rank()) self.log('val_loss', averaged_loss, prog_bar=True, rank_zero_only=True, batch_size=1) logging.info(f'Validation loss: {averaged_loss}') else: averaged_loss = torch.stack([item['loss'] for item in outputs]).mean() logging.info(f'Validation loss: {averaged_loss}') self.log('val_loss', averaged_loss, prog_bar=True, rank_zero_only=True, batch_size=1) if self.cfg.get("report_validation_metric", False): gather_results = [None for _ in range(parallel_state.get_data_parallel_world_size())] all_preds = list(itertools.chain(*[item['predicted_token_ids'] for item in outputs])) all_labels = list(itertools.chain(*[item['labels'] for item in outputs])) all_inputs = list(itertools.chain(*[item['enc_inputs'] for item in outputs])) assert len(all_preds) == len(all_labels) assert len(all_preds) == len(all_inputs) # Gather inputs, preds, labels from all workers torch.distributed.all_gather_object( gather_results, [(input, pred, label) for (input, pred, label) in zip(all_inputs, all_preds, all_labels)], group=parallel_state.get_data_parallel_group(), ) # Deduplicate sentences that may have been distributed across multiple data parallel ranks. if parallel_state.get_data_parallel_rank() == 0: gather_results_dedup = list(set(itertools.chain(*gather_results))) val_metric_dict = self.validation_metric.get_score( [i[2] for i in gather_results_dedup], [i[1] for i in gather_results_dedup], ) for metric, val in val_metric_dict.items(): logging.info(f'Validation {metric}: {val}') val_metric = list(val_metric_dict.items())[0][1] metric_name = list(val_metric_dict.items())[0][0] else: val_metric = torch.tensor(0.0).cuda() metric_name = '' self.log(f'val_{metric_name}', val_metric, prog_bar=True, rank_zero_only=True, batch_size=1) gbs = self.cfg.global_batch_size mbs = self.cfg.micro_batch_size self._reconfigure_batch_sizes(gbs, mbs) self.validation_step_outputs.clear() if prefix == 'val' else self.test_step_outputs.clear() # free memory def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def on_test_epoch_end(self): self.on_validation_epoch_end() def build_virtual_prompt_dataset( self, dataset_paths, batch_size, for_train, drop_last, shuffle, num_workers, pin_memory ): dataset = T5PromptLearningDataset( datasets=dataset_paths, tokenizer=self.tokenizer, virtual_prompt_source=self.virtual_prompt_source, task_templates=self.task_templates, pseudo_tokens=self.pseudo_tokens, pad_token_id=self.pad_token_id, max_seq_length=self.cfg.data.get('max_seq_length', self.frozen_model.cfg.max_position_embeddings), min_seq_length=self.cfg.data.get('min_seq_length', 1), add_bos=self.cfg.data.get('add_bos', False), add_eos=self.cfg.data.get('add_eos', True), decoder_starts_with_pad=self.cfg.data.get('decoder_starts_with_pad', False), add_eos_to_decoder_output=self.cfg.data.get('add_eos_to_decoder_output', True), add_sentinel_to_input=self.cfg.data.get('add_sentinel_to_input', True), ul2_prompt_token=self.cfg.data.get('ul2_prompt_token', None), for_train=for_train, ) rank = parallel_state.get_data_parallel_rank() world_size = parallel_state.get_data_parallel_world_size() sampler = torch.utils.data.distributed.DistributedSampler( dataset, num_replicas=world_size, rank=rank, shuffle=shuffle, seed=self.cfg.seed ) dataloader = torch.utils.data.DataLoader( dataset, collate_fn=dataset.collate_fn, sampler=sampler, batch_size=batch_size // world_size, drop_last=drop_last, num_workers=num_workers, pin_memory=pin_memory, persistent_workers=True if num_workers > 0 else False, # (@adithyare and @eharper) We need to set this to True to get around issues with spawn=True ) print('build success', len(dataloader), dataset_paths) return dataset, dataloader def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any: input_ids, dec_input, labels, loss_mask, enc_mask, dec_mask, position_ids, taskname_ids = batch batch_size, seq_length = input_ids.shape if self.first_stage_of_pipeline(): input_embeds = self.embed_input(input_ids, taskname_ids, use_cached_reps=True) # TODO: This check needs to be revisited with PP support. if hasattr(self.frozen_model.enc_dec_model.encoder_embedding, 'position_embeddings'): position_embeddings = self.frozen_model.enc_dec_model.encoder_embedding.position_embeddings( position_ids ) encoder_input = input_embeds + position_embeddings else: encoder_input = input_embeds else: encoder_input = torch.zeros((batch_size, seq_length, self.hidden_size), dtype=self.autocast_dtype).cuda() predicted_token_ids, log_probs = self.frozen_model.decode( tokens_enc=input_ids, enc_mask=enc_mask, num_tokens_to_generate=self.decoder_seq_length, encoder_input=encoder_input, bos_id=self.tokenizer.pad_id if self.cfg.data.get('decoder_starts_with_pad', False) else self.tokenizer.bos_id, ) # Special ids to text function to handle stripping <eos> and special tokens with sentencepiece tokenizers. preds_text = MegatronT5FinetuneModel.ids_to_text(predicted_token_ids, self.tokenizer) input_text = MegatronT5FinetuneModel.ids_to_text(input_ids, self.tokenizer) if labels is not None: labels_text = MegatronT5FinetuneModel.ids_to_text(labels, self.tokenizer) else: labels_text = [None] * len(preds_text) return { 'input_text': input_text, 'preds_text': preds_text, 'labels_text': labels_text, } def on_predict_epoch_end(self) -> None: # PTL 2.0 removes outputs arg from on_predict_epoch_end and is retrived by self.trainer.predict_loop.predictions outputs = self.trainer.predict_loop.predictions gather_results = [None for _ in range(parallel_state.get_data_parallel_world_size())] # In case of single dataloader format of self.trainer.predict_loop.predictions is [{dict1},{dict2}] v/s [[{dict1},{dict2}]] of outputs in 1.9 # Removing indix [0] to avoid TypeError (https://github.com/Lightning-AI/lightning/pull/16655/files) all_preds = list(itertools.chain(*[item['preds_text'] for item in outputs])) all_labels = list(itertools.chain(*[item['labels_text'] for item in outputs])) all_inputs = list(itertools.chain(*[item['input_text'] for item in outputs])) assert len(all_preds) == len(all_labels) assert len(all_preds) == len(all_inputs) # Gather inputs, predictions, and ground truths from all workers torch.distributed.all_gather_object( gather_results, [(input, pred, label) for (input, pred, label) in zip(all_inputs, all_preds, all_labels)], group=parallel_state.get_data_parallel_group(), ) # Deduplicate sentences that may have been distributed across multiple data parallel ranks. if parallel_state.get_data_parallel_rank() == 0: gather_results_dedup = list(set(itertools.chain(*gather_results))) input_prediction_pair = [] correct = 0 for (input, pred, label) in gather_results_dedup: input_prediction_pair.append((input, pred)) if label: if pred == label: correct += 1 acc = correct / len(gather_results_dedup) if all_labels[0] else None logging.info(f'Prediction results: {acc}') logging.info(f'Test finish')
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_t5_prompt_learning_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.models.language_modeling.bert_lm_model import BERTLMModel from nemo.collections.nlp.models.language_modeling.megatron_gpt_prompt_learning_model import ( MegatronGPTPromptLearningModel, ) from nemo.collections.nlp.models.language_modeling.megatron_retrieval_model import MegatronRetrievalModel from nemo.collections.nlp.models.language_modeling.transformer_lm_model import TransformerLMModel
NeMo-main
nemo/collections/nlp/models/language_modeling/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import queue import warnings from dataclasses import fields from functools import partial from typing import Any, Dict, Iterator, List, Optional, Union import torch from omegaconf import OmegaConf from omegaconf.dictconfig import DictConfig from pytorch_lightning.accelerators import CPUAccelerator from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.data.language_modeling.megatron.data_samplers import ( MegatronPretrainingRandomSampler, MegatronPretrainingSampler, ) from nemo.collections.nlp.data.language_modeling.megatron.gpt_dataset import build_train_valid_test_datasets from nemo.collections.nlp.models.language_modeling.megatron.gpt_model import GPTModel from nemo.collections.nlp.models.language_modeling.megatron_base_model import MegatronBaseModel from nemo.collections.nlp.modules.common.megatron.build_model import build_model from nemo.collections.nlp.modules.common.megatron.module import Float16Module from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, average_losses_across_data_parallel_group, get_all_params_for_weight_decay_optimization, get_ltor_masks_and_position_ids, get_params_for_weight_decay_optimization, ) from nemo.collections.nlp.modules.common.text_generation_utils import ( generate, get_computeprob_response, get_default_length_params, get_default_sampling_params, megatron_gpt_generate, ) from nemo.collections.nlp.modules.common.transformer.text_generation import ( LengthParam, OutputType, SamplingParam, TextGeneration, ) from nemo.collections.nlp.parts import utils_funcs from nemo.collections.nlp.parts.utils_funcs import activation_to_func, get_last_rank from nemo.core.classes import Exportable from nemo.core.classes.common import PretrainedModelInfo from nemo.core.neural_types import ChannelType, NeuralType from nemo.utils import logging try: import apex.transformer.pipeline_parallel.utils from apex.transformer.pipeline_parallel.utils import get_num_microbatches HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import InferenceParams, parallel_state from megatron.core.models.gpt import GPTModel as MCoreGPTModel from megatron.core.pipeline_parallel.schedules import get_forward_backward_func from megatron.core.transformer.module import Float16Module as MCoreFloat16Module from megatron.core.transformer.transformer_config import TransformerConfig from megatron.core.utils import init_method_normal, scaled_init_method_normal # TODO @tmoon: Use once available in Megatron-LM # from megatron.core.pipeline_parallel.schedules import DataIteratorList HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): TransformerConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False try: import transformer_engine from transformer_engine.pytorch import module as te_module HAVE_TE = True except (ImportError, ModuleNotFoundError): HAVE_TE = False class MegatronGPTExportableModel(torch.nn.Module, Exportable): """ Megatron GPT Wrapper for ONNX export """ def __init__(self, model): super().__init__() self.model = model self.fp8_enabled = model.cfg.get('fp8', False) self.fp8_recipe = None if self.fp8_enabled and HAVE_TE: self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling( margin=0, interval=1, fp8_format=transformer_engine.common.recipe.Format.E4M3 ) self.dtype = utils_funcs.torch_dtype_from_precision(model.cfg.precision) def forward(self, tokens, position_ids, attention_mask): if self.fp8_enabled and HAVE_TE: with transformer_engine.pytorch.onnx_export(self.fp8_enabled), transformer_engine.pytorch.fp8_autocast( enabled=self.fp8_enabled, fp8_recipe=self.fp8_recipe ), torch.no_grad(), torch.inference_mode(), torch.autocast( 'cuda', dtype=self.dtype ), warnings.catch_warnings(): warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning, module=r'.*') assert tokens.shape == position_ids.shape assert attention_mask.shape[2] == attention_mask.shape[3] == tokens.shape[1] == position_ids.shape[1] output_tensor = self.model.forward( tokens=tokens.cuda(), text_position_ids=position_ids.cuda(), attention_mask=attention_mask.cuda(), labels=None, ) else: with torch.no_grad(), torch.inference_mode(), torch.autocast( 'cuda', dtype=self.dtype ), warnings.catch_warnings(): warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning, module=r'.*') assert tokens.shape == position_ids.shape assert attention_mask.shape[2] == attention_mask.shape[3] == tokens.shape[1] == position_ids.shape[1] output_tensor = self.model.forward( tokens=tokens.cuda(), text_position_ids=position_ids.cuda(), attention_mask=attention_mask.cuda(), labels=None, ) return output_tensor def freeze(self): for param in self.parameters(): param.requires_grad = False def input_example(self, max_batch=1, max_dim=768, seq_len=6): ids = [self.model.tokenizer.text_to_ids(text) for text in ["how is the weather on Sunday"]] id_tensors = [torch.unsqueeze(torch.LongTensor(id_list), dim=0) for id_list in ids] masks_and_position_ids = [ get_ltor_masks_and_position_ids(id_tensor, self.model.tokenizer.eos_id, False, False, False) for id_tensor in id_tensors ] for tokens, attn_mask_and_pos_ids in zip(id_tensors, masks_and_position_ids): attn_mask, _, pos_ids = attn_mask_and_pos_ids return tokens, pos_ids, attn_mask @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "position_ids": NeuralType(('B', 'T'), ChannelType()), "attention_mask": NeuralType(('D', 'D', 'T', 'T'), ChannelType()), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"logits": NeuralType(('B', 'T', 'D'), ChannelType())} @property def input_names(self) -> List[str]: return ['input_ids', 'position_ids', 'attention_mask'] @property def output_names(self) -> List[str]: return ['logits'] class MegatronGPTModel(MegatronBaseModel, TextGeneration): """ Megatron GPT pretraining """ def __init__(self, cfg: DictConfig, trainer: Trainer): if not HAVE_APEX: raise ImportError( "Apex was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) if not HAVE_MEGATRON_CORE: raise ImportError( "megatron-core was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) # this prevents base constructor from initializing tokenizer self.tokenizer = None super().__init__(cfg, trainer=trainer, no_lm_init=True) self._validate_trainer() # build the transformer config # TODO: add type hint once pip package is out self.transformer_config = self.build_transformer_config() self.megatron_amp_o2 = cfg.get('megatron_amp_O2', False) self.mcore_gpt = cfg.get('mcore_gpt', False) self.rampup_batch_size = self.cfg.get('rampup_batch_size', None) if self.rampup_batch_size: self.prev_consumed_samples = 0 self.if_first_step = 0 self.prev_global_batch_size = None if not self.megatron_amp_o2 and self.cfg.get('virtual_pipeline_model_parallel_size', None): raise ValueError('Virtual pipeline model parallel is only supported when using megatron_amp_O2') # build_model returns a list of modules which are used for interleaved pipeline parallelism if isinstance(self.trainer.accelerator, CPUAccelerator): self.model = build_model( model_provider_func=self.model_provider_func, wrap_with_ddp=False, on_cpu=True, virtual_pipeline_model_parallel_size=self.cfg.get('virtual_pipeline_model_parallel_size', None), ) else: self.model = build_model( model_provider_func=self.model_provider_func, wrap_with_ddp=False, virtual_pipeline_model_parallel_size=self.cfg.get('virtual_pipeline_model_parallel_size', None), ) # if we're not using interleaved, then self.model is a module. if self.cfg.get('virtual_pipeline_model_parallel_size', None) is None: self.model = self.model[0] if self.megatron_amp_o2: if not self.with_distributed_adam: # Pre-allocate the model on GPU to have master parameters allocated on the same device with matching data type if isinstance(self.model, list): for module in self.model: module.cuda(torch.cuda.current_device()) else: self.model.cuda(torch.cuda.current_device()) self._wrap_model_for_O2() self.enable_autocast = ( True if (not self.megatron_amp_o2) and (self.autocast_dtype in [torch.float16, torch.bfloat16]) else False ) self.transformer_engine = cfg.get('transformer_engine', False) # configuration used for inference self._inference_config = None # Convert the global-batch-based profile index to micro-batch index if hasattr(self, '_nsys_profile_enabled'): mp_size = cfg.get('tensor_model_parallel_size', 1) * cfg.get('pipeline_model_parallel_size', 1) data_parallel_world_size = trainer.world_size // mp_size grad_accum_steps = cfg.get('global_batch_size') // (cfg.get('micro_batch_size') * data_parallel_world_size) self._nsys_profile_start_step *= grad_accum_steps self._nsys_profile_end_step *= grad_accum_steps self.get_attention_mask_from_fusion = self.cfg.get('get_attention_mask_from_fusion', True) self.initialize_ub = self.cfg.get('ub_tp_comm_overlap', False) self.inference_params = None # default to false since this doesn't work with sequence parallelism currently self.use_loss_mask = self.cfg.get('use_loss_mask', False) if self.use_loss_mask and self.transformer_config.sequence_parallel: raise ValueError('Loss mask is not supported with sequence parallelism.') def get_gpt_module_list(self): if isinstance(self.model, list): return [ model.module if isinstance(model, (Float16Module, MCoreFloat16Module)) else model for model in self.model ] elif isinstance(self.model, (Float16Module, MCoreFloat16Module)): return [self.model.module] else: return [self.model] def set_inference_config(self, inference_config): self._inference_config = inference_config def get_inference_config(self): return self._inference_config def model_provider_func(self, pre_process, post_process): """Model depends on pipeline paralellism.""" if self.mcore_gpt: model = MCoreGPTModel( config=self.transformer_config, vocab_size=self.cfg.get('override_vocab_size', self.padded_vocab_size), max_sequence_length=self.cfg.get('encoder_seq_length', 512), pre_process=pre_process, post_process=post_process, parallel_output=True, share_embeddings_and_output_weights=self.cfg.get('share_embeddings_and_output_weights', True), position_embedding_type=self.cfg.get('position_embedding_type', 'learned_absolute'), rotary_percent=self.cfg.get('rotary_percentage', 1.0), seq_len_interpolation_factor=self.cfg.get('seq_len_interpolation_factor', None), ) else: assert self.cfg.get('num_query_groups', None) is None or self.cfg.get( 'num_query_groups', None ) == self.cfg.get( 'num_attention_heads', None ), "Group Query Attention is only supported in Megatron Core. Set 'mcore_gpt' to use GQA." model = GPTModel( config=self.model_parallel_config, vocab_size=self.cfg.get('override_vocab_size', self.padded_vocab_size), hidden_size=self.cfg.hidden_size, max_position_embeddings=self.cfg.max_position_embeddings, num_layers=self.cfg.num_layers, num_attention_heads=self.cfg.num_attention_heads, apply_query_key_layer_scaling=self.cfg.get('apply_query_key_layer_scaling', True), kv_channels=self.cfg.get('kv_channels', None), ffn_hidden_size=self.cfg.ffn_hidden_size, num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process, init_method_std=self.cfg.get('init_method_std', 0.02), use_scaled_init_method=self.cfg.get('use_scaled_init_method', True), fp16_lm_cross_entropy=self.cfg.get('fp16_lm_cross_entropy', False), megatron_amp_O2=self.cfg.get('megatron_amp_O2', False), hidden_dropout=self.cfg.get('hidden_dropout', 0.1), attention_dropout=self.cfg.get('attention_dropout', 0.1), ffn_dropout=self.cfg.get('ffn_dropout', 0.0), precision=self.cfg.get('precision', 16), fp32_residual_connection=self.cfg.get('fp32_residual_connection', False), activations_checkpoint_granularity=self.cfg.get('activations_checkpoint_granularity', None), activations_checkpoint_method=self.cfg.get('activations_checkpoint_method', None), activations_checkpoint_num_layers=self.cfg.get('activations_checkpoint_num_layers', 1), activations_checkpoint_layers_per_pipeline=self.cfg.get( 'activations_checkpoint_layers_per_pipeline', None ), normalization=self.cfg.get('normalization', 'layernorm'), layernorm_epsilon=self.cfg.get('layernorm_epsilon', 1e-5), onnx_safe=self.cfg.get('onnx_safe', False), bias=self.cfg.get('bias', True), bias_activation_fusion=self.cfg.get('bias_activation_fusion', True), bias_dropout_add_fusion=self.cfg.get('bias_dropout_add_fusion', True), activation=self.cfg.get('activation', 'gelu'), headscale=self.cfg.get('headscale', False), transformer_block_type=self.cfg.get('transformer_block_type', 'pre_ln'), openai_gelu=self.cfg.get('openai_gelu', False), normalize_attention_scores=self.cfg.get('normalize_attention_scores', True), position_embedding_type=self.cfg.get('position_embedding_type', 'learned_absolute'), rotary_percentage=self.cfg.get('rotary_percentage', 1.0), share_embeddings_and_output_weights=self.cfg.get('share_embeddings_and_output_weights', True), attention_type=self.cfg.get('attention_type', 'multihead'), masked_softmax_fusion=self.cfg.get('masked_softmax_fusion', True), persist_layer_norm=self.cfg.get('persist_layer_norm', False), transformer_engine=self.cfg.get('transformer_engine', False), fp8=self.cfg.get('fp8', False), fp8_e4m3=self.cfg.get('fp8_e4m3', False), fp8_hybrid=self.cfg.get('fp8_hybrid', False), fp8_margin=self.cfg.get('fp8_margin', 0), fp8_interval=self.cfg.get('fp8_interval', 1), fp8_amax_history_len=self.cfg.get('fp8_amax_history_len', 1), fp8_amax_compute_algo=self.cfg.get('fp8_amax_compute_algo', 'most_recent'), reduce_amax=self.cfg.get('reduce_amax', True), use_emha=self.cfg.get('use_emha', False), ub_tp_comm_overlap=self.cfg.get('ub_tp_comm_overlap', False), use_flash_attention=self.cfg.get('use_flash_attention', False), megatron_legacy=self.cfg.get('megatron_legacy', False), seq_len_interpolation_factor=self.cfg.get('seq_len_interpolation_factor', None), ) return model def setup_optimizer_param_groups(self): """ModelPT override. Optimizer will get self._optimizer_param_groups""" if self.cfg.get('do_layer_norm_weight_decay', False): if isinstance(self.model, list): self._optimizer_param_groups = get_all_params_for_weight_decay_optimization(self.model) else: self._optimizer_param_groups = get_all_params_for_weight_decay_optimization([self.model]) else: self._optimizer_param_groups = get_params_for_weight_decay_optimization(self.model) def configure_optimizers(self): if self.with_distributed_adam: # Disable overlapped grad sync for embedding grad when # pipeline parallelism is enabled if parallel_state.get_pipeline_model_parallel_world_size() > 1: modules = self.get_gpt_module_list() if parallel_state.is_pipeline_first_stage(ignore_virtual=True): if len(modules) > 1: module = modules[0] # only the first virtual rank has the embeddings else: module = modules[0] if self.cfg.get('share_embeddings_and_output_weights', True): param = ( module.shared_embedding_or_output_weight() if self.mcore_gpt else module.word_embeddings_weight() ) param._disable_greedy_grad_copy = not self.megatron_amp_o2 param._disable_overlap_grad_sync = True if parallel_state.is_pipeline_last_stage(ignore_virtual=True): if len(modules) > 1: module = modules[-1] # only the last virtual rank has the embeddings else: module = modules[0] if self.cfg.get('share_embeddings_and_output_weights', True): param = ( module.shared_embedding_or_output_weight() if self.mcore_gpt else module.word_embeddings_weight() ) param._disable_greedy_grad_copy = not self.megatron_amp_o2 param._disable_overlap_grad_sync = True # Disable overlapped grad sync for layer norm grads when # sequence parallelism is enabled for param in self.parameters(): if getattr(param, 'sequence_parallel', False): param._disable_greedy_grad_copy = not self.megatron_amp_o2 param._disable_overlap_grad_sync = True # Initialize parameter buckets for overlapped grad and param syncs # Note: Params with disabled overlapping are put in the # last param bucket buckets = [] if self.cfg.get('virtual_pipeline_model_parallel_size', None) is not None: # Initialize a bucket for each virtual pipeline stage for module in self.model: if isinstance(module, (Float16Module, MCoreFloat16Module)): module = module.module stage_bucket = [] layers = module.decoder.layers if self.mcore_gpt else module.language_model.encoder.layers for layer in layers: stage_bucket.extend( p for p in layer.parameters() if not getattr(p, '_disable_overlap_grad_sync', False) ) buckets.append(stage_bucket) else: # Initialize a bucket for each Transformer layer modules = self.model if isinstance(self.model, list) else [self.model] for module in modules: if isinstance(module, (Float16Module, MCoreFloat16Module)): module = module.module layers = module.decoder.layers if self.mcore_gpt else module.language_model.encoder.layers for layer in layers: buckets.append( [p for p in layer.parameters() if not getattr(p, '_disable_overlap_grad_sync', False)] ) buckets.reverse() used_params = set() for bucket in buckets: used_params.update(bucket) remaining_params = [p for p in self.parameters() if p not in used_params] if remaining_params: buckets.append(remaining_params) self.distributed_adam_buckets = buckets return super().configure_optimizers() def forward(self, tokens, text_position_ids, attention_mask, labels): output_tensor = self.model(tokens, text_position_ids, attention_mask, labels=labels) return output_tensor def fwd_bwd_step(self, dataloader_iter, batch_idx, forward_only): # handle asynchronous grad reduction no_sync_func = None grad_sync_func = None param_sync_func = None if not forward_only and self.with_distributed_adam: no_sync_func = partial(self._optimizer.no_sync, greedy_grad_copy=self.megatron_amp_o2,) grad_sync_func = self.reduce_overlap_gradients param_sync_func = self.sync_overlap_parameters # pipeline schedules will get these from self.model.config for module in self.get_gpt_module_list(): module.config.no_sync_func = no_sync_func module.config.grad_sync_func = grad_sync_func module.config.param_sync_func = param_sync_func # run forward and backwards passes for an entire global batch # we do this inside training_step to support pipeline parallelism fwd_bwd_function = get_forward_backward_func() # TODO @akhattar: add num_micro_batches_with_partial_activation_checkpoints when ready losses_reduced_per_micro_batch = fwd_bwd_function( forward_step_func=self.get_forward_output_and_loss_func(forward_only), data_iterator=self._make_data_iterator_list(dataloader_iter), model=self.model, num_microbatches=get_num_microbatches(), forward_only=forward_only, seq_length=self.cfg.encoder_seq_length, micro_batch_size=self.cfg.micro_batch_size, ) # only the last stages of the pipeline return losses if losses_reduced_per_micro_batch: if (not forward_only) or self.cfg.data.get('validation_drop_last', True): # average loss across micro batches loss_tensors_list = [loss_reduced['avg'] for loss_reduced in losses_reduced_per_micro_batch] loss_tensor = torch.concat(loss_tensors_list) loss_mean = loss_tensor.mean() else: # Get the total loss since micro batches sizes are not uniform loss_sum_tensors_list = [ loss_sum['loss_sum_and_ub_size'] for loss_sum in losses_reduced_per_micro_batch if loss_sum['loss_sum_and_ub_size'][1] > 0 ] loss_sum = ( torch.vstack(loss_sum_tensors_list).sum(axis=0) if len(loss_sum_tensors_list) > 0 else torch.tensor([0.0, 0.0]).cuda() ) return loss_sum else: # we're not on the last pipeline stage so no losses if forward_only: loss_mean = [] else: loss_mean = torch.tensor(0.0).cuda() return loss_mean def initialize_ub_func(self): ub_cfgs = self.cfg.get('ub_tp_comm_overlap_cfg', None) if ub_cfgs is None: warnings.warn( "Couldn't find TP config. Please check the path correctness. Initializing TP comm overlap with the default config." ) input_shape = [ self.cfg.get('encoder_seq_length') * self.cfg.get('micro_batch_size'), self.cfg.get('hidden_size'), ] te_module.base.initialize_ub( shape=input_shape, tp_size=self.cfg.get('tensor_model_parallel_size'), use_fp8=self.cfg.get('fp8'), ub_cfgs=ub_cfgs, ) self.initialize_ub = False def training_step(self, dataloader_iter, batch_idx): """ We pass the dataloader iterator function to the micro-batch scheduler. The input batch to each micro-batch is fetched using the dataloader function in the micro-batch fwd function. """ # Initialize userbuffer communicators. if self.initialize_ub: self.initialize_ub_func() if self.rampup_batch_size: num_microbatch_calculator = apex.transformer.pipeline_parallel.utils._GLOBAL_NUM_MICROBATCHES_CALCULATOR current_global_batch_size = num_microbatch_calculator.current_global_batch_size # do validation and save the checkpoint when gbs is changed if self.prev_global_batch_size != current_global_batch_size and self.prev_global_batch_size: self.trainer.should_stop = True # we zero grads here because we also call backward in the megatron-core fwd/bwd functions self._optimizer.zero_grad() if self.with_distributed_adam: # hack to enable overlapping param sync and forward compute # note: the distributed optimizer monkey-patches each # parameter's __getattribute__ function so that it can # launch parameter all-gathers the first time the # parameter is accessed after the optimizer step. However, # PyTorch directly passes embedding parameters into a C++, # bypassing this process. A quick-and-dirty hack is to # manually interact with the parameter. modules = self.model if isinstance(self.model, list) else [self.model] for module in modules: if isinstance(module, (Float16Module, MCoreFloat16Module)): module = module.module if not self.mcore_gpt: module = module.language_model if hasattr(module, 'embedding'): for param in module.embedding.parameters(): param.data_ptr() loss_mean = self.fwd_bwd_step(dataloader_iter, batch_idx, False) # when using sequence parallelism, the sequence parallel layernorm grads must be all-reduced if self.cfg.get('tensor_model_parallel_size', 1) > 1 and self.cfg.get('sequence_parallel', False): self.allreduce_sequence_parallel_gradients() if self.with_distributed_adam: # synchronize asynchronous grad reductions # note: not necessary, but reduces performance degradation # from multiple simultaneous NCCL calls self._optimizer._finish_bucket_grad_sync() elif self.megatron_amp_o2: # when using pipeline parallelism grads must be all-reduced after the pipeline (not asynchronously) if self.cfg.get('pipeline_model_parallel_size', 1) > 1 or self.cfg.get('sequence_parallel', False): # main grads are stored in the MainParamsOptimizer wrapper self._optimizer.allreduce_main_grads() else: # async grad allreduce is not currently implemented for O1/autocasting mixed precision training # so we all-reduce gradients after the pipeline self.allreduce_gradients() # @sangkug we think this is causing memory to blow up (hurts perf) if self.cfg.get('pipeline_model_parallel_size', 1) > 1 and self.cfg.get( 'share_embeddings_and_output_weights', True ): # when using pipeline parallelism the first and last stage must keep embeddings in sync self.allreduce_first_last_embeddings() ## logging # we can only log on one rank if it is rank zero so we broadcast from last rank # we can avoid this broadcast by updating the PTL log function to accept specific ranks torch.distributed.broadcast(loss_mean, get_last_rank()) # (@adithyare) we need to check for the _scaler attribute to enable pp>1 for adapter training if self.torch_dtype == torch.float16 and hasattr(self.trainer.precision_plugin.scaler, "_scale"): loss_scale = self.trainer.precision_plugin.scaler._scale if loss_scale is not None: self.log('loss_scale', loss_scale, batch_size=1) self.log('reduced_train_loss', loss_mean, prog_bar=True, rank_zero_only=True, batch_size=1) lr = self._optimizer.param_groups[0]['lr'] self.log('lr', lr, rank_zero_only=True, batch_size=1) self.log( 'global_step', self.trainer.global_step, prog_bar=True, rank_zero_only=True, batch_size=1, ) consumed_samples = self._compute_consumed_samples_after_training_step() # TODO: make sure compute_consumed_samples works for pipeline parallelism self.log( 'consumed_samples', consumed_samples, prog_bar=True, rank_zero_only=True, batch_size=1, ) if self.rampup_batch_size: self.prev_global_batch_size = current_global_batch_size self.prev_consumed_samples = consumed_samples num_microbatch_calculator.update( consumed_samples=consumed_samples, consistency_check=False, ) current_global_batch_size = num_microbatch_calculator.current_global_batch_size self.log('global_batch_size', current_global_batch_size, prog_bar=True, rank_zero_only=True, batch_size=1) self.if_first_step = 1 return loss_mean def backward(self, *args, **kwargs): """ LightningModule hook to do backward. We want this to do nothing since we run backward in the fwd/bwd functions from megatron-core. No need to call it here. """ return def optimizer_zero_grad(self, *args, **kwargs): """ LightningModule hook to zero grad. We want this to do nothing as we are zeroing grads during the training_step. """ return def _append_sequence_parallel_module_grads(self, module, grads): """ Helper method for allreduce_sequence_parallel_gradients""" for param in module.parameters(): sequence_parallel_param = getattr(param, 'sequence_parallel', False) or getattr( param, 'sequence_parallel_enabled', False ) # (@adithyare) adapter training now extends MegatronGPTModel # so we have to add this check here to ensure we do not # perform all_reduce when grad is None. # grad can be None when performing PeFT training. if sequence_parallel_param and param.requires_grad: if self.megatron_amp_o2: grad = param.main_grad else: grad = param.grad grads.append(grad.data) def allreduce_sequence_parallel_gradients(self): """ All-reduce layernorm parameters across model parallel nodes when sequence parallelism is used. Modified from megatron-lm: https://gitlab-master.nvidia.com/ADLR/megatron-lm/-/blob/3f91f09bb2ab32f9904b47f46f19d2fc3f518ed8/megatron/training.py#L425 """ grads = [] if isinstance(self.model, list): for module in self.model: self._append_sequence_parallel_module_grads(module, grads) else: self._append_sequence_parallel_module_grads(self.model, grads) coalesced = torch._utils._flatten_dense_tensors(grads) torch.distributed.all_reduce(coalesced, group=parallel_state.get_tensor_model_parallel_group()) for buf, synced in zip(grads, torch._utils._unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced) def allreduce_first_last_embeddings(self): # Modified from megatron-lm: https://github.com/NVIDIA/Megatron-LM/blob/d41696840ed0a7edb7e0499eb82a48ae112d9bb3/megatron/training.py#L407 # All-reduce word_embeddings' grad across first and last stages to ensure # that word_embeddings parameters stay in sync. # This should only run for models that support pipelined model parallelism # (BERT and GPT-2). if parallel_state.get_pipeline_model_parallel_world_size() > 1 and ( parallel_state.is_pipeline_first_stage(ignore_virtual=True) or parallel_state.is_pipeline_last_stage(ignore_virtual=True) ): module_list = self.get_gpt_module_list() if parallel_state.is_pipeline_first_stage(ignore_virtual=True): module = module_list[0] # only the first virtual rank has the embeddings elif parallel_state.is_pipeline_last_stage(ignore_virtual=True): module = module_list[-1] # only the last virtual rank has the embeddings share_embeddings = ( module.share_embeddings_and_output_weights if self.mcore_gpt else module.share_token_embeddings ) if share_embeddings: word_embeddings_weight = ( module.shared_embedding_or_output_weight() if self.mcore_gpt else module.word_embeddings_weight() ) # (@adithyare) adapter training now extends MegatronGPTModel so we have to add this check here to ensure we do not perform all_reduce when grad is None. # grad can be None when performing PeFT training. if word_embeddings_weight.requires_grad: if self.megatron_amp_o2: # O2 recipe stores a "main" copy of weights and grads grad = word_embeddings_weight.main_grad else: grad = word_embeddings_weight.grad torch.distributed.all_reduce(grad, group=parallel_state.get_embedding_group()) def _make_data_iterator_list(self, data_iterator: Iterator) -> List[Iterator]: """ Convert data iterator into form expected by Megatron With interleaved pipeline parallelism, Megatron expects a list of one data iterator per model chunk. Each model chunk independently gets data from its data iterator, so we need to interact with the data iterator multiple times for each microbatch step. Instead of incorporating this logic into the data loader, we cache the iterator's output to the first model chunk and reuse it in the other model chunks. """ if not isinstance(self.model, list) or len(self.model) == 1: return data_iterator # TODO @tmoon: Remove # TODO @tmoon: Use once available in Megatron-LM # return DataIteratorList([data_iterator]) class CachingIterator: """Iterator wrapper that caches values""" class Proxy: """Returns values from caching iterator wrapper Assumed to never advance past the caching iterator. """ def __init__(self): self.cache = queue.Queue() def __iter__(self): return self def __next__(self): return self.cache.get_nowait() def __init__(self, iterator: Iterator): self.iterator = iterator self.proxies = [] def make_proxy(self): self.proxies.append(CachingIterator.Proxy()) return self.proxies[-1] def __iter__(self): return self def __next__(self): val = next(self.iterator) for proxy in self.proxies: proxy.cache.put(val) return val # Make list of iterator wrappers iters = [CachingIterator(data_iterator)] while len(iters) < len(self.model): iters.append(iters[0].make_proxy()) return iters # TODO @tmoon: Remove # TODO @tmoon: Use once available in Megatron-LM # return DataIteratorList(iters) def get_forward_output_and_loss_func(self, validation_step=False): def fwd_output_and_loss_func(dataloader_iter, model, checkpoint_activations_all_layers=None): # Get data batch batch = next(dataloader_iter) # Transfer needed data to GPU required_keys = set() if parallel_state.get_pipeline_model_parallel_world_size() == 1: required_keys.update(batch.keys()) else: required_keys.add('attention_mask') if parallel_state.is_pipeline_first_stage(): required_keys.update(('tokens', 'position_ids')) if parallel_state.is_pipeline_last_stage(): required_keys.update(('labels', 'loss_mask')) if self.get_attention_mask_from_fusion: required_keys.remove('attention_mask') batch = {key: val.cuda(non_blocking=True) if key in required_keys else None for key, val in batch.items()} # Model forward pass forward_args = { 'input_ids': batch['tokens'], 'position_ids': batch['position_ids'], 'attention_mask': batch['attention_mask'], 'labels': batch['labels'], 'loss_mask': batch['loss_mask'], } if not self.mcore_gpt: forward_args['checkpoint_activations_all_layers'] = checkpoint_activations_all_layers if not self.use_loss_mask: forward_args.pop('loss_mask') else: # TODO: @eharper can we add this to mcore? forward_args.pop('loss_mask') output_tensor = model(**forward_args) def loss_func(output_tensor): # Loss for a micro-batch (ub) loss_for_ub = self.loss_func(batch['loss_mask'], output_tensor) if validation_step and not self.cfg.data.get('validation_drop_last', True): num_valid_tokens_in_ub = batch['loss_mask'].sum() if loss_for_ub.isnan(): assert batch['loss_mask'].count_nonzero() == 0, 'Got NaN loss with non-empty input' loss_sum_for_ub = torch.zeros_like(num_valid_tokens_in_ub) else: loss_sum_for_ub = num_valid_tokens_in_ub * loss_for_ub loss_sum_and_ub_size_all_gpu = torch.cat( [ loss_sum_for_ub.clone().detach().view(1), torch.tensor([num_valid_tokens_in_ub]).cuda().clone().detach(), ] ) # Could potentially reduce num_valid_samples_in_microbatch and use that to aggregate instead of len(self._validation_ds) torch.distributed.all_reduce( loss_sum_and_ub_size_all_gpu, group=parallel_state.get_data_parallel_group() ) return loss_for_ub, {'loss_sum_and_ub_size': loss_sum_and_ub_size_all_gpu} else: reduced_loss = average_losses_across_data_parallel_group([loss_for_ub]) return loss_for_ub, {'avg': reduced_loss} return output_tensor, loss_func return fwd_output_and_loss_func def get_forward_output_only_func(self): def fwd_output_only_func(dataloader_iter, model): batch = next(dataloader_iter) extra_arg = {} if len(batch) == 3: batch = [x.cuda() for x in batch] tokens, attention_mask, position_ids = batch attention_mask = attention_mask[0:1] else: ( tokens, attention_mask, position_ids, set_inference_key_value_memory, inference_max_sequence_len, ) = batch tokens = tokens.cuda() position_ids = position_ids.cuda() if attention_mask is not None: attention_mask = attention_mask.cuda() attention_mask = attention_mask[0:1] if self.mcore_gpt: # if first step, then clear KV cache, otherwise reuse inference_paarms if set_inference_key_value_memory[0].item(): self.inference_params = InferenceParams( max_batch_size=tokens.size(0), max_sequence_length=inference_max_sequence_len[0].item() ) extra_arg['inference_params'] = self.inference_params else: extra_arg['set_inference_key_value_memory'] = set_inference_key_value_memory[0].item() extra_arg['inference_max_sequence_len'] = inference_max_sequence_len[0].item() output_tensor = model(tokens, position_ids, attention_mask, **extra_arg) # Advance inference sequence offset. if self.inference_params: # if last stage, then (final) output is [b, s, h], otherwise it's [s, b, h] if parallel_state.is_pipeline_last_stage(): self.inference_params.sequence_len_offset += output_tensor.size(1) else: self.inference_params.sequence_len_offset += output_tensor.size(0) def id_func(output_tensor): return output_tensor, {'logits': output_tensor} return output_tensor, id_func return fwd_output_only_func def validation_step(self, dataloader_iter, batch_idx): """ Our dataloaders produce a micro-batch and then we fetch a number of microbatches depending on the global batch size and model parallel size from the dataloader to produce a list of microbatches. The list of microbatches is then piped through the pipeline using megatron-core fwd/bwd functions. """ # Check if iterator is exhausted dataloader_iter, done = self._val_iterator_done(dataloader_iter) if done: return mode = 'test' if self.trainer.testing else 'val' # Initialize userbuffer communicators. if self.initialize_ub: self.initialize_ub_func() if isinstance(self.model, list): for model_module in self.model: model_module.eval() loss = self.fwd_bwd_step(dataloader_iter, batch_idx, True) if isinstance(self.model, list): for model_module in self.model: model_module.train() self.validation_step_outputs.append(loss) if mode == 'val' else self.test_step_outputs.append(loss) return loss def on_validation_epoch_end(self): if parallel_state.is_pipeline_last_stage(): # only the last pipeline parallel stages return loss with their batch size if self.cfg.data.get('validation_drop_last', True): averaged_loss = torch.stack(self.validation_step_outputs).mean() else: # Compute the avg loss by total_loss across all samples / total number of samples total_loss_and_total_samples = torch.vstack(self.validation_step_outputs).sum(axis=0) avg_loss = total_loss_and_total_samples[0] / total_loss_and_total_samples[1] averaged_loss = avg_loss.type(torch.float32).cuda() else: averaged_loss = torch.tensor(0.0, dtype=torch.float32).cuda() # we can only log on one rank if it is rank zero so we broadcast from last rank torch.distributed.broadcast(averaged_loss, get_last_rank()) self.log('val_loss', averaged_loss, prog_bar=True, rank_zero_only=True, batch_size=1) self.validation_step_outputs.clear() # free memory return averaged_loss def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def on_test_epoch_end(self): averaged_loss = average_losses_across_data_parallel_group(self.test_step_outputs) logging.info(f'test_loss: {averaged_loss[0]}') self.test_step_outputs.clear() # free memory def loss_func(self, loss_mask, output_tensor): losses = output_tensor.float() loss_mask = loss_mask.view(-1).float() # TODO: add nemo version here loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() # sequence level nll return loss def build_train_valid_test_datasets(self): # Override limit_val_batches to be a multiple of num microbatches to prevent val_step from exiting in between a step self._reconfigure_val_batches() logging.info('Building GPT datasets.') if self.trainer.limit_val_batches > 1.0 and isinstance(self.trainer.limit_val_batches, float): raise ValueError("limit_val_batches must be an integer or float less than or equal to 1.0.") global_batch_size = self.cfg.global_batch_size max_train_steps = self.trainer.max_steps eval_iters = (max_train_steps // self.trainer.val_check_interval + 1) * self.trainer.limit_val_batches test_iters = self.trainer.limit_test_batches train_valid_test_num_samples = [ max_train_steps * global_batch_size, eval_iters * global_batch_size, test_iters * global_batch_size, ] if self.trainer.limit_val_batches <= 1.0 and isinstance(self.trainer.limit_val_batches, float): train_valid_test_num_samples[ 1 ] = 1 # This is to make sure we only have one epoch on every validation iteration self._train_ds, self._validation_ds, self._test_ds = build_train_valid_test_datasets( cfg=self.cfg, trainer=self.trainer, data_prefix=self.cfg.data.data_prefix, data_impl=self.cfg.data.data_impl, splits_string=self.cfg.data.splits_string, train_valid_test_num_samples=train_valid_test_num_samples, seq_length=self.cfg.data.seq_length, seed=self.cfg.seed, skip_warmup=self.cfg.data.get('skip_warmup', True), tokenizer=self.tokenizer, ) if self._train_ds is not None: logging.info(f'Length of train dataset: {len(self._train_ds)}') if self._validation_ds is not None: logging.info(f'Length of val dataset: {len(self._validation_ds)}') if self._test_ds is not None: logging.info(f'Length of test dataset: {len(self._test_ds)}') logging.info(f'Finished building GPT datasets.') return self._train_ds, self._validation_ds, self._test_ds def build_pretraining_data_loader( self, dataset, consumed_samples, dataset_type=None, drop_last=True, pad_samples_to_global_batch_size=False ): """Buld dataloader given an input dataset.""" logging.info(f'Building dataloader with consumed samples: {consumed_samples}') # Megatron sampler if hasattr(self.cfg.data, 'dataloader_type') and self.cfg.data.dataloader_type is not None: if self.cfg.data.dataloader_type == 'single': batch_sampler = MegatronPretrainingSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=self.cfg.micro_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), drop_last=drop_last, global_batch_size=self.cfg.global_batch_size, rampup_batch_size=self.cfg.get('rampup_batch_size', None), pad_samples_to_global_batch_size=pad_samples_to_global_batch_size, ) elif self.cfg.data.dataloader_type == 'cyclic': batch_sampler = MegatronPretrainingRandomSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=self.cfg.micro_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), drop_last=self.cfg.get('drop_last', True), ) else: raise ValueError('cfg.data.dataloader_type must be "single" or "cyclic"') else: raise ValueError('cfg.data.dataloader_type not found. Must be "single" or "cyclic"') return torch.utils.data.DataLoader( dataset, batch_sampler=batch_sampler, num_workers=self.cfg.data.num_workers, pin_memory=True, persistent_workers=True if self.cfg.data.num_workers > 0 else False, ) def setup(self, stage=None): """ PTL hook that is executed after DDP spawns. We setup datasets here as megatron datasets require DDP to instantiate. See https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#setup for more information. Args: stage (str, optional): Can be 'fit', 'validate', 'test' or 'predict'. Defaults to None. """ num_parameters_on_device, total_num_parameters = self._get_total_params_across_model_parallel_groups_gpt_bert( self.model ) logging.info( f'Pipeline model parallel rank: {parallel_state.get_pipeline_model_parallel_rank()}, ' f'Tensor model parallel rank: {parallel_state.get_tensor_model_parallel_rank()}, ' f'Number of model parameters on device: {num_parameters_on_device:.2e}. ' f'Total number of model parameters: {total_num_parameters:.2e}.' ) resume_checkpoint_path = self.trainer.ckpt_path if resume_checkpoint_path: init_consumed_samples = self._extract_consumed_samples_from_ckpt(resume_checkpoint_path) else: init_consumed_samples = 0 self.init_consumed_samples = init_consumed_samples self.init_global_step = self.trainer.global_step if self.rampup_batch_size: optimizer = self.cfg.optim.get('name', None) assert ( optimizer == 'fused_adam' ), f'{optimizer} optimizer is not supported yet with rampup batch size. Please, use fused_adam optimizer instead.' num_microbatch_calculator = apex.transformer.pipeline_parallel.utils._GLOBAL_NUM_MICROBATCHES_CALCULATOR num_microbatch_calculator.update(self.init_consumed_samples, consistency_check=False) self.prev_consumed_samples = self.init_consumed_samples if stage == 'predict': return else: # TODO: consider adding a ModelPT guard to check if model is being restored. # allowing restored models to optionally setup datasets self.build_train_valid_test_datasets() self.setup_training_data(self.cfg.data) self.setup_validation_data(self.cfg.data) self.setup_test_data(self.cfg.data) if stage == 'fit': if parallel_state.get_pipeline_model_parallel_world_size() > 1: if self.cfg.get('share_embeddings_and_output_weights', True): for index, module in enumerate(self.get_gpt_module_list()): if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None: parallel_state.set_virtual_pipeline_model_parallel_rank(index) sync_embeddings = ( module.initialize_last_stage_with_word_embeddings if self.mcore_gpt else module.sync_initial_word_embeddings ) sync_embeddings() if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None: parallel_state.set_virtual_pipeline_model_parallel_rank(0) if self.cfg.get('transformer_engine', False) or self.cfg.get('mcore_gpt', False): self.setup_transformer_engine_tp_groups() def setup_training_data(self, cfg): if hasattr(self, '_train_ds'): consumed_samples = self.compute_consumed_samples(0) logging.info( f'Setting up train dataloader with len(len(self._train_ds)): {len(self._train_ds)} and consumed samples: {consumed_samples}' ) self._train_dl = self.build_pretraining_data_loader(self._train_ds, consumed_samples) def setup_validation_data(self, cfg): if hasattr(self, '_validation_ds'): consumed_samples = 0 logging.info( f'Setting up validation dataloader with len(len(self._validation_ds)): {len(self._validation_ds)} and consumed samples: {consumed_samples}' ) drop_last = True if not self.cfg.data.get('validation_drop_last', True): logging.info(f'Drop last in validation dataset is set to False') drop_last = False pad_samples_to_global_batch_size = False if self.cfg.data.get('pad_samples_to_global_batch_size', False): logging.info('pad_samples_to_global_batch_size set to True') pad_samples_to_global_batch_size = True self._validation_dl = self.build_pretraining_data_loader( self._validation_ds, consumed_samples, "validation", drop_last, pad_samples_to_global_batch_size ) def setup_test_data(self, cfg): if hasattr(self, '_test_ds'): consumed_samples = 0 logging.info( f'Setting up test dataloader with len(len(self._test_ds)): {len(self._test_ds)} and consumed samples: {consumed_samples}' ) self._test_dl = self.build_pretraining_data_loader(self._test_ds, consumed_samples) def generate( self, inputs: Union[List[str], torch.Tensor, List[dict]], length_params: LengthParam, sampling_params: SamplingParam = None, ) -> OutputType: # check whether the DDP is initialized if parallel_state.is_unitialized(): def dummy(): return if self.trainer.strategy.launcher is not None: self.trainer.strategy.launcher.launch(dummy, trainer=self.trainer) self.trainer.strategy.setup_environment() if self.cfg.get('transformer_engine', False): self.setup_transformer_engine_tp_groups() # set the default sampling params if it is None. # default do greedy sampling if sampling_params is None: sampling_params = get_default_sampling_params() # set the default length params if it is None. # default do greedy sampling if length_params is None: length_params = get_default_length_params() return megatron_gpt_generate(self.cuda(), inputs, self.tokenizer, length_params, sampling_params) def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: Optional[int] = None) -> Any: inference_config = self.get_inference_config() if inference_config is None: return None else: # need to overwrite some configuration, make it immutable inference_config = inference_config.copy() compute_logprob = inference_config['compute_logprob'] if compute_logprob: inference_config['inputs'] = batch inference_config['tokens_to_generate'] = 1 inference_config['all_probs'] = True inference_config["add_BOS"] = False inference_config['greedy'] = True response = generate(self, **inference_config) compute_prob_response = get_computeprob_response(self.tokenizer, response, batch) return compute_prob_response else: inference_config['inputs'] = batch return generate(self, **inference_config) def list_available_models(self): return None def transfer_batch_to_device(self, batch: Any, device: torch.device, dataloader_idx: int) -> Any: """ PTL hook: https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#transfer-batch-to-device When using pipeline parallelism, we need the global batch to remain on the CPU, since the memory overhead will be too high when using a large number of microbatches. Microbatches are transferred from CPU to GPU inside the pipeline. """ return batch def _validate_trainer(self): """ Certain trainer configurations can break training. Here we try to catch them and raise an error. """ if self.trainer.accumulate_grad_batches > 1: raise ValueError( f'Gradient accumulation is done within training_step. trainer.accumulate_grad_batches must equal 1' ) @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] result.append( PretrainedModelInfo( pretrained_model_name="megatron_gpt_345m", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/megatron_gpt_345m/versions/1/files/megatron_gpt_345m.nemo", description="345M parameter GPT generative Megatron model.", ) ) return result def setup_transformer_engine_tp_groups(self): """ This should be called after model parallel groups have been initialized and only needs to be called when using Transformer Engine. """ for module in self.get_gpt_module_list(): """Set TP group Copied from: https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/transformer.py#L398 """ # Deep iterate but skip self to avoid infinite recursion. for index, child in enumerate(module.modules()): if index == 0: continue if hasattr(child, "set_tensor_parallel_group"): tp_group = parallel_state.get_tensor_model_parallel_group() child.set_tensor_parallel_group(tp_group) def on_save_checkpoint(self, checkpoint) -> None: """LightningModule hook: https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#on-save-checkpoint """ # mcore uses distributed checkpointing if self.mcore_gpt: checkpoint['sharded_state_dict'] = self.sharded_state_dict() # legacy checkpointing for interleaved else: if isinstance(self.model, list): for i in range(len(self.model)): parallel_state.set_virtual_pipeline_model_parallel_rank(i) checkpoint[f'model{i}'] = self.model[i].module.state_dict_for_save_checkpoint() parallel_state.set_virtual_pipeline_model_parallel_rank(0) def on_load_checkpoint(self, checkpoint) -> None: """LightningModule hook: https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#on-load-checkpoint """ # mcore uses distributed checkpointing if self.mcore_gpt: if 'state_dict' in checkpoint: for index, module in enumerate(self.get_gpt_module_list()): if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None: checkpoint_state_dict = checkpoint['state_dict'][f'model_{index}'] else: checkpoint_state_dict = checkpoint['state_dict'] # checkpoint_state_dict has "model." but module does not so we need to remove it when loading checkpoint_state_dict = { key.replace('model.', ''): checkpoint_state_dict.pop(key) for key in list(checkpoint_state_dict.keys()) } module.load_state_dict(checkpoint_state_dict, strict=True) else: # when restoring a distributed checkpoint from a ptl checkpoint we need to defer loading the state_dict # see NLPModel.on_load_checkpoint checkpoint['state_dict'] = {} # legacy checkpointing for interleaved else: if isinstance(self.model, list): for i in range(len(self.model)): parallel_state.set_virtual_pipeline_model_parallel_rank(i) self.model[i].module.load_state_dict(checkpoint[f'model{i}'], strict=True) parallel_state.set_virtual_pipeline_model_parallel_rank(0) def sharded_state_dict(self, prefix: str = '') -> Dict[str, Any]: """ Creates the sharded state dict which is used by dist_checkpoint to save the sharded tensors to disk. When given the sharded_stated_dict, dist_checkpoint.load will load the tensors corresponding to self.state_dict(). The sharded tensor mapping is defined in the GPTModel class from mcore. """ if self.mcore_gpt: module_prefix = f'{prefix}model.' sharded_state_dict = {} for index, module in enumerate(self.get_gpt_module_list()): if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None: # virtual pipline rank must be set so that GPTModel returns the correct sharded state dict parallel_state.set_virtual_pipeline_model_parallel_rank(index) module_sharded_state_dict = module.sharded_state_dict(prefix=module_prefix) sharded_state_dict[f'model_{index}'] = module_sharded_state_dict else: module_sharded_state_dict = module.sharded_state_dict(prefix=module_prefix) sharded_state_dict.update(module_sharded_state_dict) # reset vp rank if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None: parallel_state.set_virtual_pipeline_model_parallel_rank(0) return sharded_state_dict def parameters(self): if isinstance(self.model, list): return itertools.chain.from_iterable(module.parameters() for module in self.model) else: return self.model.parameters() @property def mgpt_wrapper(self): return MegatronGPTExportableModel(self) def list_export_subnets(self): return ['mgpt_wrapper'] def _reset_activation_checkpointing_args(self): """ Disables activation checkpointing completely and saves the values so that _restore_activation_checkpointing_args can restore them later. This function must always be called before _restore_activation_checkpointing_args. """ # Store values to restore them later. self.last_activations_checkpoint_granularity = self.cfg.activations_checkpoint_granularity self.last_activations_checkpoint_method = self.cfg.activations_checkpoint_method self.last_activations_checkpoint_num_layers = self.cfg.activations_checkpoint_num_layers self.last_activations_checkpoint_layers_per_pipeline = self.cfg.activations_checkpoint_layers_per_pipeline # Reset config values. Needed for calling generate. self.cfg.activations_checkpoint_granularity = None self.cfg.activations_checkpoint_method = None self.cfg.activations_checkpoint_num_layers = None self.cfg.activations_checkpoint_layers_per_pipeline = None # Reset model parameters. for module in self.get_gpt_module_list(): if self.cfg.get('mcore_gpt', False): module.decoder.config.recompute_granularity = None module.decoder.config.recompute_method = None module.decoder.config.recompute_num_layers = None else: module.language_model.encoder.activations_checkpoint_granularity = None module.language_model.encoder.activations_checkpoint_method = None module.language_model.encoder.activations_checkpoint_num_layers = None module.language_model.encoder.activations_checkpoint_layers_per_pipeline = None def _restore_activation_checkpointing_args(self): """ Restores the activation checkpointing parameters using the values saved by _reset_activation_checkpointing_args. This function must never be called before _reset_activation_checkpointing_args. """ # Restore config values. self.cfg.activations_checkpoint_granularity = self.last_activations_checkpoint_granularity self.cfg.activations_checkpoint_method = self.last_activations_checkpoint_method self.cfg.activations_checkpoint_num_layers = self.last_activations_checkpoint_num_layers self.cfg.activations_checkpoint_layers_per_pipeline = self.last_activations_checkpoint_layers_per_pipeline # Restore model parameters. for module in self.get_gpt_module_list(): if self.cfg.get('mcore_gpt', False): module.decoder.config.recompute_granularity = self.last_activations_checkpoint_granularity module.decoder.config.recompute_method = self.last_activations_checkpoint_method module.decoder.config.recompute_num_layers = self.last_activations_checkpoint_num_layers else: module.language_model.encoder.activations_checkpoint_granularity = ( self.last_activations_checkpoint_granularity ) module.language_model.encoder.activations_checkpoint_method = self.last_activations_checkpoint_method module.language_model.encoder.activations_checkpoint_num_layers = ( self.last_activations_checkpoint_num_layers ) module.language_model.encoder.activations_checkpoint_layers_per_pipeline = ( self.last_activations_checkpoint_layers_per_pipeline ) def _reset_sequence_parallelism_args(self): """ Disables sequence parallelism completely and saves the values so that _restore_sequence_parallelism_args can restore them later. This function must always be called before _restore_sequence_parallelism_args. """ # Store values to restore them later. self.last_sequence_parallel = self.cfg.sequence_parallel # Reset config values. Needed for calling generate. self.cfg.sequence_parallel = False self.model_parallel_config.sequence_parallel = False self.transformer_config.sequence_parallel = False # Reset model parameters. for module in self.get_gpt_module_list(): for mod in module.modules(): if hasattr(mod, "sequence_parallel"): mod.sequence_parallel = False def _restore_sequence_parallelism_args(self): """ Restores the sequence parallelism parameters using the values saved by _reset_sequence_parallelism_args. This function must never be called before _reset_sequence_parallelism_args. """ # Restore config values. self.cfg.sequence_parallel = self.last_sequence_parallel self.model_parallel_config.sequence_parallel = self.last_sequence_parallel self.transformer_config.sequence_parallel = self.last_sequence_parallel # Restore model parameters. for module in self.get_gpt_module_list(): for mod in module.modules(): if hasattr(mod, "sequence_parallel"): mod.sequence_parallel = self.last_sequence_parallel def build_transformer_config(self) -> TransformerConfig: """ Builds the megatron core gpt transformer config for the model. For attributes in the nemo model config that are the same as the megatron core TransformerConfig, we will use the value from the nemo model config. For attributes in TransformerConfig that are not in the nemo model config, we add custom logic. """ # create a dictionary copy of the model config cfg = OmegaConf.to_container(self.cfg, resolve=True) # create a dict to store the transformer config arguments transformer_config_dict = {} # get model parallel configs from the base class model_parallel_config = self.build_model_parallel_config() add_bias_linear = self.cfg.get('bias', True) activation = self.cfg.get('activation', 'gelu') # TODO: need to check which activation functions are supported in mcore gated_linear_unit = activation.endswith('glu') activation_func = activation_to_func(activation) normalization = self.cfg.get('normalization', 'layernorm') if normalization == 'layernorm': normalization = 'LayerNorm' elif normalization == 'rmsnorm': normalization = 'RMSNorm' else: logging.warning( f"The normalization type: {normalization} might not be supported in megatron core." f"Supported types are LayerNorm and RMSNorm." ) init_method_std = self.cfg.get('init_method_std', 0.02) # default used in mcore init_method = init_method_normal(init_method_std) output_layer_init_method = init_method num_layers = self.cfg.get('num_layers', 1) use_scaled_init_method = self.cfg.get('use_scaled_init_method', True) if use_scaled_init_method: output_layer_init_method = scaled_init_method_normal(init_method_std, num_layers=num_layers) attention_softmax_in_fp32 = False # not currently used in NeMo unless apply_query_key_layer_scaling is True apply_query_key_layer_scaling = self.cfg.get('apply_query_key_layer_scaling', False) if apply_query_key_layer_scaling: attention_softmax_in_fp32 = True bias_activation_fusion = self.cfg.get('bias_activation_fusion', True) bias_gelu_fusion = True if bias_activation_fusion else False bias_dropout_fusion = self.cfg.get('bias_dropout_add_fusion', True) # TODO: need to check if recompute APIs are matching up properly recompute_granularity = self.cfg.get('activations_checkpoint_granularity', None) recompute_method = self.cfg.get('activations_checkpoint_method', None) recompute_num_layers = self.cfg.get('activations_checkpoint_num_layers', None) if not self.cfg.get('fp8', False): fp8 = None elif self.cfg.get('fp8_e4m3', False): fp8 = 'e4m3' elif self.cfg.get('fp8_hybrid', False): fp8 = 'hybrid' else: raise ValueError(f"fp8 enabled but fp8_format (fp8_e4m3 | fp8_hybrid) is not set.") # any configs that are not in the nemo model config will be added here config_mapping = { 'apply_residual_connection_post_layernorm': False, # we don't use this in NeMo 'layernorm_zero_centered_gamma': False, # not currently used in NeMo 'add_bias_linear': add_bias_linear, 'gated_linear_unit': gated_linear_unit, 'activation_func': activation_func, 'normalization': normalization, 'init_method': init_method, 'output_layer_init_method': output_layer_init_method, 'attention_softmax_in_fp32': attention_softmax_in_fp32, 'bias_gelu_fusion': bias_gelu_fusion, 'bias_dropout_fusion': bias_dropout_fusion, 'recompute_granularity': recompute_granularity, 'recompute_method': recompute_method, 'recompute_num_layers': recompute_num_layers, 'distribute_saved_activations': False, # not currently used in NeMo 'fp8': fp8, } # populate the transformer config dict for field in fields(TransformerConfig): # config mapping has priority if field.name in config_mapping: transformer_config_dict[field.name] = config_mapping[field.name] # then config elif field.name in cfg: transformer_config_dict[field.name] = cfg[field.name] # then model parallel config elif field in fields(model_parallel_config): transformer_config_dict[field.name] = getattr(model_parallel_config, field.name) else: logging.warning( f"The model: {self} does not have field.name: {field.name} in its cfg. " f"Add this key to cfg or config_mapping to make to make it configurable." ) transformer_config = TransformerConfig(**transformer_config_dict) return transformer_config def _wrap_model_for_O2(self): """ Wraps self.model in a float16 wrapper if the model is using megatron amp O2. Args: model: The model to wrap. Can be a list of modules or a single module. Returns: The wrapped model. Returns a list of wrapped modules or a single wrapped module. """ Float16Wrapper = MCoreFloat16Module if self.mcore_gpt else Float16Module nemo_args = { 'config': self.model_parallel_config, 'precision': self.cfg.precision, 'share_token_embeddings': self.cfg.get('share_embeddings_and_output_weights', True), } mcore_args = { 'config': self.transformer_config, } args = mcore_args if self.mcore_gpt else nemo_args # Model wrapper to convert both model and inputs to half precision if isinstance(self.model, list): converted_model = [] for module in self.model: args['module'] = module converted_model.append(Float16Wrapper(**args)) self.model = converted_model else: args['module'] = self.model self.model = Float16Wrapper(**args) args.pop('module')
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_gpt_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from omegaconf import DictConfig, ListConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.data.language_modeling.megatron.base_dataset_utils import ( get_datasets_weights_and_num_samples, ) from nemo.collections.nlp.data.language_modeling.megatron.blendable_dataset import BlendableDataset from nemo.collections.nlp.data.language_modeling.megatron.megatron_batch_samplers import ( MegatronPretrainingBatchSampler, ) from nemo.collections.nlp.data.language_modeling.t0_dataset import T0Dataset from nemo.collections.nlp.models.language_modeling.megatron_finetune_model import MegatronT5FinetuneModel from nemo.utils import AppState, logging try: from apex.transformer.pipeline_parallel.utils import _reconfigure_microbatch_calculator HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import parallel_state HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = ['MegatronT0Model'] class MegatronT0Model(MegatronT5FinetuneModel): """T0 (https://arxiv.org/abs/2110.08207) Model that Inherits from MegatronT5FinetuneModel and overrides the dataset building.""" def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer=trainer) def setup(self, stage=None): # NOTE: super().__init__ will try and setup train/val/test datasets, but we sidestep this using a if self._train_ds is not None condition # We then set things up for real only once setup() of this class is called. resume_checkpoint_path = self.trainer.ckpt_path if resume_checkpoint_path: init_consumed_samples = self._extract_consumed_samples_from_ckpt(resume_checkpoint_path) else: init_consumed_samples = 0 self.init_consumed_samples = init_consumed_samples if stage == 'predict': return # If the user wants to manually override train and validation dataloaders before calling `.fit()` if self._train_dl is not None and self._validation_dl is not None: return self.build_train_valid_test_datasets(stage=stage) if hasattr(self, '_train_ds'): self.setup_training_dataloader() if hasattr(self, '_validation_ds'): self._validation_dl = self.setup_eval_dataloader(self._validation_ds, self.cfg.data.validation_ds) if hasattr(self.cfg.data, 'test_ds'): self._test_dl = self.setup_test_data(self._test_ds, self.cfg.data.test_ds) # when using pipeline model parallel the final stage need to initialize word embeddings if parallel_state.get_pipeline_model_parallel_world_size() > 1: self.enc_dec_model.sync_initial_word_embeddings() # Only synchronize position embeddings if using absolute position embeddings in both the encoder and decoder. if ( self.cfg.encoder.get("position_embedding_type", "learned_absolute") == "learned_absolute" and self.cfg.decoder.get("position_embedding_type", "learned_absolute") == "learned_absolute" ): self.enc_dec_model.sync_initial_position_embeddings() def _build_dataset(self, data_cfg, check_implict_grad_acc=False, is_train=True): if ( check_implict_grad_acc and data_cfg.global_batch_size > data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size() ): raise ValueError( f'You are trying to use "implicit gradient accumulation" of {data_cfg.global_batch_size // (data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size())} in your validation/test datasets. This is not supported. Please set global_batch_size equal to micro_batch_size * data_parallel_world_size.' ) datasets = [] # Determine if we are using a single dataset or a list of datasets. is_list_config = isinstance(data_cfg.file_names, ListConfig) if not is_list_config: raise ValueError(f"T0 train/validation datasets must be provided as a list of individual JSONL files.") if is_train: # Construct the data prefix list for `get_datasets_weights_and_num_samples()` that is of the format [weight1,file_name1,weight2,file_name2,...] if data_cfg.concat_sampling_probabilities is None or not isinstance( data_cfg.concat_sampling_probabilities, ListConfig ): raise ValueError( f"concat_sampling_probabilities must be a ListConfig with the same number of files in file_names. Found: {data_cfg.concat_sampling_probabilities}" ) if len(data_cfg.get('concat_sampling_probabilities', None)) != len(data_cfg.file_names): raise ValueError( f"concat_sampling_probabilities must be of the same size as file_names. Provided size {len(data_cfg.concat_sampling_probabilities)}, number of datasets {len(data_cfg.file_names)}" ) data_prefix = [] for weight, prefix in zip(data_cfg.concat_sampling_probabilities, data_cfg.file_names): data_prefix.append(weight) data_prefix.append(prefix) if self.trainer.max_steps is None or self.trainer.max_steps <= 0: raise ValueError( f'Trainer max_steps must be set to a positive integer. Found {self.trainer.max_steps}' ) num_train_samples = [self.trainer.max_steps * self.cfg.global_batch_size] _, _, num_train_samples_per_dataset = get_datasets_weights_and_num_samples(data_prefix, num_train_samples) num_train_samples_after_blend = sum([x[0] for x in num_train_samples_per_dataset]) else: num_train_samples_per_dataset = [[None]] * len(data_cfg.file_names) for file_path, num_samples in zip(data_cfg.file_names, num_train_samples_per_dataset): dataset = T0Dataset( file_path=file_path, tokenizer=self.tokenizer, max_src_seq_length=data_cfg.max_src_seq_length, max_tgt_seq_length=data_cfg.max_tgt_seq_length, add_bos_to_input=data_cfg.get('add_bos_to_input', False), add_eos_to_input=data_cfg.get('add_eos_to_input', False), replace_bos_with_pad=data_cfg.get('replace_bos_with_pad', False), max_num_samples=num_samples[0], seed=data_cfg.get('seed', 1234), ) datasets.append(dataset) if is_train: dataset = BlendableDataset( datasets=datasets, weights=data_cfg.concat_sampling_probabilities, size=num_train_samples_after_blend ) return dataset else: return datasets def training_step(self, dataloader_iter, batch_idx): return super(MegatronT5FinetuneModel, self).training_step(dataloader_iter, batch_idx) # Override the parent batch reconfiguring logic. def _reconfigure_and_process_inference_batch(self, batch): global_batch_per_gpu = batch['text_enc'].size(0) # This should happen only on the last batch of the validation/test dataset with drop_last=False. if global_batch_per_gpu != self.cfg.data.validation_ds.global_batch_size: app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=global_batch_per_gpu * parallel_state.get_data_parallel_world_size(), micro_batch_size=global_batch_per_gpu, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) return batch def build_train_valid_test_datasets(self, stage): if stage != 'test': logging.info('Building T0 validation datasets.') # Wrap this in a list since the general finetuning parent class supports multi-validation. self._validation_ds = self._build_dataset( self.cfg.data.validation_ds, check_implict_grad_acc=True, is_train=False ) logging.info(f'Length of val dataset: {len(self._validation_ds[0])}') if stage != 'validate': if hasattr(self.cfg.data, 'test_ds'): logging.info('Building T0 test datasets.') # Wrap this in a list since the general finetuning parent class supports multi-validation. self._test_ds = self._build_dataset(self.cfg.data.test_ds, check_implict_grad_acc=True, is_train=False) logging.info(f'Length of test dataset: {len(self._test_ds[0])}') if stage == 'validate' or stage == 'test': return logging.info('Building T0 traing datasets.') self._train_ds = self._build_dataset(self.cfg.data.train_ds, check_implict_grad_acc=False) logging.info(f'Length of train dataset: {len(self._train_ds)}') def build_data_loader( self, dataset, data_cfg, consumed_samples=0, ): """Buld dataloader given an input dataset.""" logging.info(f'Building dataloader with consumed samples: {consumed_samples}') if isinstance(dataset, BlendableDataset): collate_fn = dataset.datasets[0].collate_fn else: collate_fn = dataset.collate_fn batch_sampler = MegatronPretrainingBatchSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=data_cfg.micro_batch_size, global_batch_size=data_cfg.global_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), drop_last=True, ) return torch.utils.data.DataLoader( dataset, batch_sampler=batch_sampler, collate_fn=collate_fn, num_workers=data_cfg.num_workers, pin_memory=data_cfg.pin_memory, ) def setup_training_dataloader(self): if hasattr(self, '_train_ds'): consumed_samples = self.compute_consumed_samples(0) self._train_dl = self.build_data_loader( dataset=self._train_ds, data_cfg=self.cfg.data.train_ds, consumed_samples=consumed_samples, ) def setup_eval_dataloader(self, datasets, data_cfg): dataloaders = [] for dataset in datasets: eval_dl = self.build_data_loader(dataset=dataset, data_cfg=data_cfg, consumed_samples=0,) dataloaders.append(eval_dl) return dataloaders # TODO: Temporary overrides of finetune model. This needs to removed in the finetune model. def on_train_start(self) -> None: super(MegatronT5FinetuneModel, self).on_train_start() def on_validation_start(self) -> None: super(MegatronT5FinetuneModel, self).on_validation_start() def on_test_start(self) -> None: super(MegatronT5FinetuneModel, self).on_test_start()
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_t0_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import math from typing import Dict, Optional import numpy as np import torch import torch.utils.data as pt_data from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from nemo.collections.common.losses import SmoothedCrossEntropyLoss from nemo.collections.common.metrics import GlobalAverageLossMetric from nemo.collections.common.parts import transformer_weights_init from nemo.collections.nlp.data import SentenceDataset, TarredSentenceDataset from nemo.collections.nlp.metrics import SequencePerplexity from nemo.collections.nlp.modules.common import TokenClassifier from nemo.collections.nlp.modules.common.lm_utils import get_transformer from nemo.collections.nlp.modules.common.tokenizer_utils import get_tokenizer from nemo.core.classes.common import typecheck from nemo.core.classes.modelPT import ModelPT from nemo.utils import logging, model_utils __all__ = ["TransformerLMModel"] class TransformerLMModel(ModelPT): """ Left-to-right Transformer language model. """ def __init__(self, cfg: DictConfig, trainer: Trainer = None): # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable self.world_size = 1 if trainer is not None: self.world_size = trainer.num_nodes * trainer.num_devices cfg = model_utils.convert_model_config_to_dict_config(cfg) cfg = model_utils.maybe_update_config_version(cfg) # Instantiates tokenizer and register to be saved with NeMo Model archive # After this call, ther will be self.tokenizer which can convert between tokens and token_ids. self.setup_tokenizer( tokenizer_name=cfg.tokenizer.get("tokenizer_name", "yttm"), tokenizer_model=cfg.tokenizer.get("tokenizer_model", None), vocab_file=cfg.tokenizer.get("vocab_file", None), bpe_dropout=cfg.tokenizer.get("bpe_dropout", 0.0), ) # init superclass super().__init__(cfg=cfg, trainer=trainer) # make vocabulary size divisible by 8 for fast fp16 training vocab_size = 8 * math.ceil(self.tokenizer.vocab_size / 8) # encoder from NeMo, Megatron-LM, or HuggingFace encoder_cfg_dict = OmegaConf.to_container(cfg.get('encoder')) encoder_cfg_dict['vocab_size'] = vocab_size library = encoder_cfg_dict.pop('library', 'nemo') model_name = encoder_cfg_dict.pop('model_name', None) pretrained = encoder_cfg_dict.pop('pretrained', False) self.encoder = get_transformer( library=library, model_name=model_name, pretrained=pretrained, config_dict=encoder_cfg_dict, encoder=True, pre_ln_final_layer_norm=encoder_cfg_dict.get( 'pre_ln_final_layer_norm', encoder_cfg_dict.get('pre_ln', True) ), ) self.log_softmax = TokenClassifier( hidden_size=self.encoder.hidden_size, num_classes=vocab_size, activation=cfg.head.activation, log_softmax=cfg.head.log_softmax, dropout=cfg.head.dropout, use_transformer_init=cfg.head.use_transformer_init, ) # tie weights of embedding and softmax matrices self.log_softmax.mlp.layer0.weight = self.encoder.embedding.token_embedding.weight std_init_range = 1 / self.encoder.hidden_size ** 0.5 # initialize weights if not using pretrained encoder if not self._cfg.encoder.get('pretrained', False): self.encoder.apply(lambda module: transformer_weights_init(module, std_init_range)) self.log_softmax.apply(lambda module: transformer_weights_init(module, std_init_range)) self.loss_fn = SmoothedCrossEntropyLoss(pad_id=self.tokenizer.pad_id, label_smoothing=cfg.label_smoothing) self.eval_loss_fn = SmoothedCrossEntropyLoss(pad_id=self.tokenizer.pad_id) self.eval_loss = GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True) self.eval_ppl = SequencePerplexity() @typecheck() def forward(self, input_ids, attention_mask): """ No special modification required for Lightning, define it as you normally would in the `nn.Module` in vanilla PyTorch. """ hidden_states = self.encoder(input_ids=input_ids, encoder_mask=attention_mask) log_probs = self.log_softmax(hidden_states=hidden_states) return log_probs def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ # forward pass for i in range(len(batch)): if batch[i].ndim == 3: # Dataset returns already batched data and the first dimension of size 1 # added by DataLoader is excess. batch[i] = batch[i].squeeze(dim=0) ids, mask = batch input_ids, labels = ids[:, :-1], ids[:, 1:] input_mask = mask[:, :-1] log_probs = self(input_ids=input_ids, attention_mask=input_mask) train_loss = self.loss_fn(log_probs=log_probs, labels=labels) tensorboard_logs = { "train_loss": train_loss, "lr": self._optimizer.param_groups[0]["lr"], } return {"loss": train_loss, "log": tensorboard_logs} def eval_step(self, batch, batch_idx): mode = 'test' if self.trainer.testing else 'val' for i in range(len(batch)): if batch[i].ndim == 3: # Dataset returns already batched data and the first dimension of size 1 # added by DataLoader is excess. batch[i] = batch[i].squeeze(dim=0) ids, mask = batch input_ids, labels = ids[:, :-1], ids[:, 1:] input_mask, output_mask = mask[:, :-1], mask[:, 1:] log_probs = self(input_ids=input_ids, attention_mask=input_mask) eval_loss = self.eval_loss_fn(log_probs=log_probs, labels=labels) self.eval_loss(loss=eval_loss, num_measurements=log_probs.shape[0] * log_probs.shape[1]) self.eval_ppl(log_probs=log_probs, labels=labels, mask=output_mask) self.validation_step_outputs.append({}) if mode == 'val' else self.test_step_outputs.append({}) return {} def test_step(self, batch, batch_idx): return self.eval_step(batch, batch_idx) def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ return self.eval_step(batch, batch_idx) def eval_epoch_end(self, outputs, mode): eval_loss = self.eval_loss.compute() eval_ppl = self.eval_ppl.compute() self.log(f"{mode}_loss", eval_loss, sync_dist=True) self.log(f"{mode}_PPL", eval_ppl, sync_dist=True) dataset_name = "Validation" if mode == 'val' else "Test" logging.info(f"\n\n\n\n{dataset_name} PPL: {np.round(eval_ppl.item(), 2)}") def on_validation_epoch_end(self): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ self.eval_epoch_end(self.validation_step_outputs, 'val') self.validation_step_outputs.clear() # free memory self.eval_loss.reset() self.eval_ppl.reset() def on_test_epoch_end(self): self.eval_epoch_end(self.test_step_outputs, 'test') self.test_step_outputs.clear() # free memory def setup_tokenizer( self, tokenizer_name=None, tokenizer_model=None, vocab_file=None, bpe_dropout=0.0, ): supported_tokenizers = ['yttm', 'huggingface', 'sentencepiece', 'word'] if tokenizer_name not in supported_tokenizers: raise NotImplementedError(f"Currently we only support tokenizers in {supported_tokenizers}.") self.tokenizer = get_tokenizer( tokenizer_name=tokenizer_name, tokenizer_model=self.register_artifact("cfg.tokenizer.tokenizer_model", tokenizer_model), vocab_file=vocab_file, bpe_dropout=bpe_dropout, special_tokens=None, use_fast=False, ) def setup_training_data(self, train_data_config: Optional[DictConfig]): self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config) # Need to set this because if using an IterableDataset, the length of the dataloader is the total number # of samples rather than the number of batches, and this messes up the tqdm progress bar. # So we set the number of steps manually (to the correct number) to fix this. if 'use_tarred_dataset' in train_data_config and train_data_config['use_tarred_dataset']: # We also need to check if limit_train_batches is already set. # If it's an int, we assume that the user has set it to something sane, i.e. <= # training batches, # and don't change it. Otherwise, adjust batches accordingly if it's a float (including 1.0). if self._trainer is not None and isinstance(self._trainer.limit_train_batches, float): self._trainer.limit_train_batches = int( self._trainer.limit_train_batches * math.ceil(len(self._train_dl.dataset) / self.world_size) ) elif self._trainer is None: logging.warning( "Model Trainer was not set before constructing the dataset, incorrect number of " "training batches will be used. Please set the trainer and rebuild the dataset." ) def setup_validation_data(self, val_data_config: Optional[DictConfig]): self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config) # Need to set this because if using an IterableDataset, the length of the dataloader is the total number # of samples rather than the number of batches, and this messes up the tqdm progress bar. # So we set the number of steps manually (to the correct number) to fix this. if 'use_tarred_dataset' in val_data_config and val_data_config['use_tarred_dataset']: # We also need to check if limit_val_batches is already set. # If it's an int, we assume that the user has set it to something sane, i.e. <= # validation batches, # and don't change it. Otherwise, adjust batches accordingly if it's a float (including 1.0). if self._trainer is not None and isinstance(self._trainer.limit_val_batches, float): self._trainer.limit_val_batches = int( self._trainer.limit_val_batches * math.ceil(len(self._validation_dl.dataset) / self.world_size) ) elif self._trainer is None: logging.warning( "Model Trainer was not set before constructing the dataset, incorrect number of " "validation batches will be used. Please set the trainer and rebuild the dataset." ) def setup_test_data(self, test_data_config: Optional[DictConfig]): self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config) def _setup_dataloader_from_config(self, cfg: DictConfig, predict_last_k=0): if cfg.get("use_tarred_dataset", False): if cfg.get("metadata_file") is None: raise FileNotFoundError("Trying to use tarred data set but could not find metadata path in config.") else: metadata_file = cfg.get('metadata_file') with open(metadata_file) as metadata_reader: metadata = json.load(metadata_reader) if cfg.get('tar_files') is None: tar_files = metadata.get('tar_files') if tar_files is not None: logging.info(f'Loading from tarred dataset {tar_files}') else: raise FileNotFoundError("Could not find tarred dataset in config or metadata.") else: tar_files = cfg.get('tar_files') if metadata.get('tar_files') is not None: raise ValueError( 'Tar files specified in config and in metadata file. Tar files should only be specified once.' ) dataset = TarredSentenceDataset( text_tar_filepaths=tar_files, metadata_path=metadata_file, tokenizer=self.tokenizer, shuffle_n=cfg.get("tar_shuffle_n", 100), shard_strategy=cfg.get("shard_strategy", "scatter"), global_rank=self.global_rank, world_size=self.world_size, ) return torch.utils.data.DataLoader( dataset=dataset, batch_size=1, num_workers=cfg.get("num_workers", 2), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) else: dataset = SentenceDataset( tokenizer=self.tokenizer, dataset=cfg.file_name, tokens_in_batch=cfg.tokens_in_batch, clean=cfg.get("clean", False), max_seq_length=cfg.get("max_seq_length", 512), min_seq_length=cfg.get("min_seq_length", 1), cache_ids=cfg.get("cache_ids", False), ) if cfg.shuffle: sampler = pt_data.RandomSampler(dataset) else: sampler = pt_data.SequentialSampler(dataset) return torch.utils.data.DataLoader( dataset=dataset, batch_size=1, sampler=sampler, num_workers=cfg.get("num_workers", 2), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) @classmethod def list_available_models(cls) -> Optional[Dict[str, str]]: pass
NeMo-main
nemo/collections/nlp/models/language_modeling/transformer_lm_model.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum import math from omegaconf.dictconfig import DictConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.data.language_modeling.megatron.dataset_utils import build_train_valid_test_datasets from nemo.collections.nlp.models.language_modeling.megatron_lm_encoder_decoder_model import ( MegatronLMEncoderDecoderModel, ) from nemo.utils import logging __all__ = ["MegatronT5Model"] class T5Sentinel(enum.Enum): FIRST = '<extra_id_0>' END = '<extra_id_1>' class MegatronT5Model(MegatronLMEncoderDecoderModel): """ Megatron T5 pretraining """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer=trainer) # validate cfg self._validate_cfg() @property def model_name(self): """Allows child classes to implement models with different data regime""" return "T5" def _validate_cfg(self): """Class-specific cfg validation""" # Make sure the user specifies dataset type as either 't5' or 't5_prefix_lm' only. if self._cfg.data.get('dataset_type', None) is not None: if self._cfg.data.get('dataset_type') not in ['t5', 't5_prefix_lm', 'ul2']: raise ValueError( f"dataset_type must be either 't5', 't5_prefix_lm' or 'ul2'. found {self._cfg.data.get('dataset_type')}" ) if hasattr(self._cfg.data, 'seq_length_dec') and self._cfg.data.get('dataset_type') == 't5': if self._cfg.data.seq_length_dec < self._cfg.data.seq_length * self._cfg.data.masked_lm_prob: raise ValueError( f"Cannot have decoder max sequence length ({self._cfg.data.seq_length_dec}) less than encoder sequence length ({self._cfg.data.seq_length}) * masked_lm_prob ({self._cfg.data.masked_lm_prob})" ) if self._cfg.data.get("dataset_type", "t5") == "ul2": if self._cfg.data.seq_length_dec != self._cfg.data.seq_length: raise ValueError( f"Encoder and decoder sequence lengths must be the same while using the UL2 dataset type. Found encoder length {self._cfg.data.seq_length} and decoder length {self._cfg.data.seq_length_dec}" ) if ( self._cfg.tokenizer.num_sentinel_tokens < self._cfg.data.seq_length * self._cfg.data.extreme_masked_lm_prob ): raise ValueError( f"Not enough sentinel tokens specified. Need at least {math.ceil(self._cfg.data.seq_length * self._cfg.data.extreme_masked_lm_prob)} sentinel tokens. Found {self._cfg.tokenizer.num_sentinel_tokens}" ) @property def _build_train_valid_test_datasets_kwargs(self): """allows child classes to add kwargs to dataset building""" return dict(max_seq_length_dec=self._cfg.data.seq_length_dec,) def _build_vocab(self): self.num_sentinel_tokens = self._cfg.tokenizer.num_sentinel_tokens MegatronT5Model.add_special_tokens_to_tokenizer( tokenizer=self.tokenizer, tokenizer_cfg=self._cfg.tokenizer, dataset_type=self._cfg.data.get("dataset_type", "t5"), add_sentinel_tokens_in_reverse_order=self._cfg.tokenizer.get( "add_sentinel_tokens_in_reverse_order", False ), add_sentinel_tokens_first=self._cfg.tokenizer.get("add_sentinel_tokens_first", False), ) super()._build_vocab() @classmethod def _add_sentinel_tokens(cls, tokenizer, num_sentinel_tokens, add_sentinel_tokens_in_reverse_order): # Special check to see if <extra_id_{}> is already present in the tokenizer. If it is, only modify the additional_special_tokens function. for i in range(num_sentinel_tokens): if add_sentinel_tokens_in_reverse_order: i = num_sentinel_tokens - i - 1 if len(tokenizer.text_to_ids(f'<extra_id_{i}>')) == 1: tokenizer.special_token_to_id[f'<extra_id_{i}>'] = tokenizer.text_to_ids(f'<extra_id_{i}>')[0] else: tokenizer.add_special_tokens([f'<extra_id_{i}>']) @classmethod def _add_base_special_tokens(cls, tokenizer, is_huggingface_converted_model): # Need to add cls, sep, mask tokens to the tokenizer if they don't exist. # If cls, sep and mask are not attributes of the tokenizer, add it. if not hasattr(tokenizer, 'cls_token'): tokenizer.add_special_tokens({'cls_token': '<cls>'}) if not hasattr(tokenizer.tokenizer, 'sep_id'): tokenizer.add_special_tokens({'sep_token': '<sep>'}) if not hasattr(tokenizer.tokenizer, 'mask_id'): tokenizer.add_special_tokens({'mask_token': '<mask>'}) # bos, eos, pad and unk may be present in the provided spm .model file, if they are, use it. if not hasattr(tokenizer, 'pad_token'): # TODO: Figure out how to do backward compat with pad_id > 0 and >= 0. if is_huggingface_converted_model: if hasattr(tokenizer.tokenizer, 'pad_id') and tokenizer.tokenizer.pad_id() >= 0: tokenizer.pad_token = tokenizer.tokenizer.id_to_piece(tokenizer.tokenizer.pad_id()) else: tokenizer.add_special_tokens({'pad_token': '<pad>'}) else: if hasattr(tokenizer.tokenizer, 'pad_id') and tokenizer.tokenizer.pad_id() > 0: tokenizer.pad_token = tokenizer.tokenizer.id_to_piece(tokenizer.tokenizer.pad_id()) else: tokenizer.add_special_tokens({'pad_token': '<pad>'}) else: tokenizer.add_special_tokens({'pad_token': '<pad>'}) if not hasattr(tokenizer, 'bos_token'): if hasattr(tokenizer.tokenizer, 'bos_id') and tokenizer.tokenizer.bos_id() > 0: tokenizer.bos_token = tokenizer.tokenizer.id_to_piece(tokenizer.tokenizer.bos_id()) else: tokenizer.add_special_tokens({'bos_token': '<bos>'}) else: tokenizer.add_special_tokens({'bos_token': '<s>'}) if not hasattr(tokenizer, 'eos_token'): if hasattr(tokenizer.tokenizer, 'eos_id') and tokenizer.tokenizer.eos_id() > 0: tokenizer.eos_token = tokenizer.tokenizer.id_to_piece(tokenizer.tokenizer.eos_id()) else: tokenizer.add_special_tokens({'eos_token': '<eos>'}) else: tokenizer.add_special_tokens({'eos_token': '</s>'}) @classmethod def add_special_tokens_to_tokenizer( cls, tokenizer, tokenizer_cfg, dataset_type="t5", add_sentinel_tokens_in_reverse_order=False, add_sentinel_tokens_first=False, ): # T5-related construction if tokenizer_cfg.library == 'huggingface' or tokenizer_cfg.library == 'megatron': additional_tokens = { 'additional_special_tokens': [ f'<extra_id_{i}>' for i in range(tokenizer_cfg.get('num_sentinel_tokens', 0)) ] } if dataset_type == "ul2": mask_types = ['r', 's', 'x'] for mask_type in mask_types: additional_tokens['additional_special_tokens'].extend([f'<extra_id_{mask_type}>']) if additional_tokens['additional_special_tokens']: tokenizer.add_special_tokens(additional_tokens) if tokenizer_cfg.library == 'sentencepiece': # NOTE: This is an ugly way to support both NeMo-Megatron trained checkpoints and huggingface checkpoints. # Huggingface and Google checkpoints will add sentinel tokens first (right after the base vocabulary), but in NeMo-Megatron, we add <cls>, <sep>, <mask>, <pad>, <bos> etc. beofore sentinel tokens <extra_id_xx>. if add_sentinel_tokens_first: if tokenizer_cfg.get('num_sentinel_tokens', 0) > 0: cls._add_sentinel_tokens( tokenizer, tokenizer_cfg.num_sentinel_tokens, add_sentinel_tokens_in_reverse_order ) cls._add_base_special_tokens(tokenizer, is_huggingface_converted_model=True) else: cls._add_base_special_tokens(tokenizer, is_huggingface_converted_model=False) if tokenizer_cfg.get('num_sentinel_tokens', 0) > 0: cls._add_sentinel_tokens( tokenizer, tokenizer_cfg.num_sentinel_tokens, add_sentinel_tokens_in_reverse_order ) if dataset_type == "ul2": for mask_type in ['r', 's', 'x']: if len(tokenizer.text_to_ids(f'▁<extra_id_{mask_type}>')) == 1: tokenizer.special_token_to_id[f'<extra_id_{mask_type}>'] = tokenizer.text_to_ids( f'<extra_id_{mask_type}>' )[0] else: tokenizer.add_special_tokens([f'<extra_id_{mask_type}>']) def build_train_valid_test_datasets(self): # Override limit_val_batches to be a multiple of num microbatches to prevent val_step from exiting in between a step self._reconfigure_val_batches() logging.info(f'Building {self.model_name} datasets.') if self.trainer.limit_val_batches > 1.0 and isinstance(self.trainer.limit_val_batches, float): raise ValueError("limit_val_batches must be an integer or float less than or equal to 1.0.") global_batch_size = self._cfg.global_batch_size eval_iters = (self.trainer.max_steps // self.trainer.val_check_interval + 1) * self.trainer.limit_val_batches test_iters = self.trainer.limit_test_batches train_valid_test_num_samples = [ self.trainer.max_steps * global_batch_size, eval_iters * global_batch_size, test_iters * global_batch_size, ] if self.trainer.limit_val_batches <= 1.0 and isinstance(self.trainer.limit_val_batches, float): train_valid_test_num_samples[ 1 ] = 1 # This is to make sure we only have one epoch on every validation iteration self._train_ds, self._validation_ds, self._test_ds = build_train_valid_test_datasets( cfg=self._cfg, trainer=self.trainer, tokenizer=self.tokenizer, data_prefix=self._cfg.data.data_prefix, data_impl=self._cfg.data.data_impl, splits_string=self._cfg.data.splits_string, train_valid_test_num_samples=train_valid_test_num_samples, max_seq_length=self._cfg.data.seq_length, masked_lm_prob=self._cfg.data.masked_lm_prob, short_seq_prob=self._cfg.data.short_seq_prob, seed=self._cfg.seed, skip_warmup=self._cfg.data.skip_warmup, dataset_type=self._cfg.data.get('dataset_type', self.model_name.lower()), max_ngram_size=self._cfg.data.get('max_ngram_size', 10), mean_ngram_size=self._cfg.data.get('mean_ngram_size', None), geometric_dist=self._cfg.data.get('geometric_dist', True), permutation=self._cfg.data.get('permutation', False), whole_word_masking=self._cfg.data.get('whole_word_masking', True), favor_long_ngrams=self._cfg.data.get('favor_long_ngrams', False), respect_document_boundaries=self._cfg.data.get('respect_document_boundaries', True), data_impl_kwargs=self._cfg.data.get('data_impl_kwargs', {}), # additional arguments from child classes **self._build_train_valid_test_datasets_kwargs, ) logging.info(f'Length of train dataset: {len(self._train_ds)}') logging.info(f'Length of val dataset: {len(self._validation_ds)}') logging.info(f'Length of test dataset: {len(self._test_ds)}') logging.info(f'Finished building {self.model_name} datasets.') return self._train_ds, self._validation_ds, self._test_ds def list_available_models(self): pass
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_t5_model.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This code has been adapted from the following private repo: https://gitlab-master.nvidia.com/ADLR/megatron-lm/-/tree/prompt-learning/prefix_tuning_v2 # Adapted by: @adithyare import itertools from typing import Any import torch from omegaconf.dictconfig import DictConfig from omegaconf.omegaconf import open_dict from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.common.parts.adapter_modules import LinearAdapterConfig from nemo.collections.nlp.models.language_modeling.megatron_finetune_model import MegatronT5FinetuneModel from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model from nemo.collections.nlp.models.language_modeling.megatron_t5_prompt_learning_model import ( MegatronT5PromptLearningModel, ) from nemo.collections.nlp.modules.common import VirtualPromptStyle from nemo.collections.nlp.modules.common.megatron.adapters.parallel_adapters import ( AdapterName, InfusedAdapterConfig, LoraKQVAdapterConfig, LoraKVAdapterConfig, LoraQAdapterConfig, MLPInfusedAdapterConfig, ParallelLinearAdapterConfig, ) from nemo.collections.nlp.parts.utils_funcs import get_last_rank from nemo.core.classes.mixins import adapter_mixins from nemo.utils import logging, model_utils try: from megatron.core import parallel_state HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False class MegatronT5BaseAdapterModel(MegatronT5PromptLearningModel): def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) self.adapter_name_keys = [] def forward( self, input_ids, dec_input, enc_mask, dec_mask, position_ids, taskname_ids, labels=None, inference=False, ): # Call forward on T5 model with preprocessed embeddings if self.autocast_dtype == torch.float32: output = self.frozen_model.enc_dec_model( enc_input_ids=input_ids, enc_attn_mask=enc_mask, dec_input_ids=dec_input, dec_attn_mask=dec_mask, token_type_ids=None, labels=labels, output_enc_hidden_only=False, enc_input=None, ) else: with torch.autocast(device_type="cuda", dtype=self.autocast_dtype): output = self.frozen_model.enc_dec_model( enc_input_ids=input_ids, enc_attn_mask=enc_mask, dec_input_ids=dec_input, dec_attn_mask=dec_mask, token_type_ids=None, labels=labels, output_enc_hidden_only=False, enc_input=None, ) return output, None def setup(self, stage=None): if stage == 'predict': self.frozen_model.freeze() return self.setup_test_data() if stage == 'test': return self.setup_training_data() self.setup_validation_data() logging.info(f'setup completed:\n{self.frozen_model.summarize()}') def on_train_end(self): # Save the best nemo model self.save_to(save_path=self.cfg.nemo_path) def compute_accuracy(self, enc_input, enc_mask, encoder_input, labels): predicted_token_ids, log_probs = self.frozen_model.decode( tokens_enc=enc_input, enc_mask=enc_mask, num_tokens_to_generate=self.decoder_seq_length, encoder_input=encoder_input, ) processed_inputs, processed_preds, processed_labels = [], [], [] preds = predicted_token_ids.cpu().numpy().tolist() labels = labels.cpu().numpy().tolist() enc_inputs = enc_input.cpu().numpy().tolist() for i, (enc_input, pred, label) in enumerate(zip(enc_inputs, preds, labels)): if self.tokenizer.eos_id in pred: idx = pred.index(self.tokenizer.eos_id) pred = pred[:idx] additional_special_tokens_ids = [] if hasattr(self.tokenizer.tokenizer, "additional_special_tokens_ids"): additional_special_tokens_ids = self.tokenizer.tokenizer.additional_special_tokens_ids pred = [id for id in pred if id not in additional_special_tokens_ids] label = [id for id in label if id not in additional_special_tokens_ids] enc_input = [id for id in enc_input if id not in additional_special_tokens_ids] pred = self.tokenizer.ids_to_text(pred) label = self.tokenizer.ids_to_text(label) enc_input = self.tokenizer.ids_to_text(enc_input) processed_preds.append(pred) processed_labels.append(label) processed_inputs.append(enc_input) return { 'predicted_token_ids': processed_preds, 'labels': processed_labels, 'enc_inputs': processed_inputs, } def validation_step(self, dataloader_iter, batch_idx, inference=False): # Check if iterator is exhausted dataloader_iter, done = self._val_iterator_done(dataloader_iter) if done: return batch = next(dataloader_iter) enc_input, dec_input, labels, loss_mask, enc_mask, dec_mask, position_ids, taskname_ids = batch mode = self.training self.eval() gbs = self.cfg.get('validation_global_batch_size', self.cfg.global_batch_size) self._reconfigure_and_process_inference_batch(enc_input.size(0), gbs) loss_mean = self.fwd_bwd_step(itertools.chain([batch]), batch_idx, forward_only=True) if self.cfg.get('report_validation_metric', False): metrics = self.compute_accuracy(enc_input, enc_mask, labels) metrics['loss'] = loss_mean else: metrics = {'loss': loss_mean} self.validation_step_outputs.append(metrics) self.train(mode=mode) return metrics def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any: enc_input, dec_input, labels, loss_mask, enc_mask, dec_mask, position_ids, taskname_ids = batch gbs = self.cfg.get('validation_global_batch_size', self.cfg.global_batch_size) self._reconfigure_and_process_inference_batch(enc_input.size(0), gbs) predicted_token_ids, log_probs = self.frozen_model.decode( tokens_enc=enc_input, enc_mask=enc_mask, num_tokens_to_generate=self.decoder_seq_length, encoder_input=None, ) # Special ids to text function to handle stripping <eos> and special tokens with sentencepiece tokenizers. preds_text = MegatronT5FinetuneModel.ids_to_text(predicted_token_ids, self.tokenizer) input_text = MegatronT5FinetuneModel.ids_to_text(enc_input, self.tokenizer) if labels is not None: labels_text = MegatronT5FinetuneModel.ids_to_text(labels, self.tokenizer) else: labels_text = [None] * len(preds_text) return { 'input_text': input_text, 'preds_text': preds_text, 'labels_text': labels_text, } def setup_optimizer_param_groups(self): """ ModelPT override. Optimizer will get self._optimizer_param_groups. Makes two optimizer param groups, one for the frozen model params and one for the prompt-table/prompt-encoder params. The learning rate for the frozen model's params will always be zero effectively freezing the model's params but still allowing for the needed gradients to be passed around in pipeline parallel models. The prompt-encoder and/or prompt table will use the learning rate set by the user. """ self.frozen_model.freeze() # Freeze the entire model opt_params = [] for _, module in self.frozen_model.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin) and module.is_adapter_available(): module.set_enabled_adapters(enabled=True) module.unfreeze_enabled_adapters() # selectively unfreeze the adapter modules. opt_params += [p for p in module.parameters()] self._optimizer_param_groups = [{'params': opt_params}] logging.info(f'Optimizer groups set:\n{self.frozen_model.summarize()}') def get_forward_output_only_func(self): """ Used for generate method only for now. """ def fwd_output_only_func(dataloader_iter, model): batch = next(dataloader_iter) extra_arg = {} ( tokens, attention_mask, position_ids, task_ids, set_inference_key_value_memory, inference_max_sequence_len, ) = batch tokens = tokens.cuda() attention_mask = attention_mask.cuda() position_ids = position_ids.cuda() task_ids = task_ids.cuda() extra_arg['set_inference_key_value_memory'] = set_inference_key_value_memory[0].item() extra_arg['inference_max_sequence_len'] = inference_max_sequence_len[0].item() output_tensor = model(tokens, position_ids, attention_mask, task_ids, **extra_arg) def id_func(output_tensor): return output_tensor, {'logits': output_tensor} return output_tensor, id_func return fwd_output_only_func def state_dict(self, destination=None, prefix=None, keep_vars=False): """ Creates a state_dict using only the adapter parameters. This ensures that this wrapper class will only checkpoint the adapter weights and not the rest of the base GPT Model. """ state_dict_ = {} for name, module in self.frozen_model.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin) and module.is_adapter_available(): for adapter_key in self.adapter_name_keys: adapter_module = module.get_adapter_module(adapter_key) if adapter_module: state_adapter_key = ':'.join([name, adapter_key]) state_dict_[state_adapter_key] = adapter_module.state_dict() module.set_enabled_adapters(enabled=True) return state_dict_ def load_state_dict(self, state_dict, strict: bool = True): """ Loads a state_dict expecting the state_dict to contain key,values only for the adapter parameters. """ for name, module in self.frozen_model.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin) and module.is_adapter_available(): for adapter_key in self.adapter_name_keys: adapter_module = module.get_adapter_module(adapter_key) if adapter_module: state_adapter_key = ':'.join([name, adapter_key]) adapter_module.load_state_dict(state_dict[state_adapter_key], strict) module.set_enabled_adapters(enabled=True) def on_validation_epoch_end(self): if self.cfg.get('pipeline_model_parallel_size', 1) > 1: if parallel_state.is_pipeline_last_stage(): # only the last pipeline parallel stages return loss averaged_loss = torch.stack([i['loss'] for i in self.validation_step_outputs]).mean() else: averaged_loss = torch.tensor(0.0).cuda() # we can only log on one rank if it is rank zero so we broadcast from last rank torch.distributed.broadcast(averaged_loss, get_last_rank()) self.log('val_loss', averaged_loss, prog_bar=True, rank_zero_only=True, batch_size=1) logging.info(f'Validation loss: {averaged_loss}') else: averaged_loss = torch.stack([item['loss'] for item in self.validation_step_outputs]).mean() logging.info(f'Validation loss: {averaged_loss}') self.log('val_loss', averaged_loss, prog_bar=True, rank_zero_only=True, batch_size=1) if self.cfg.get('report_validation_accuracy', False): gather_results = [None for _ in range(parallel_state.get_data_parallel_world_size())] all_preds = list(itertools.chain(*[item['predicted_token_ids'] for item in self.validation_step_outputs])) all_labels = list(itertools.chain(*[item['labels'] for item in self.validation_step_outputs])) all_inputs = list(itertools.chain(*[item['enc_inputs'] for item in self.validation_step_outputs])) assert len(all_preds) == len(all_labels) assert len(all_preds) == len(all_inputs) # Gather inputs, preds, labels from all workers torch.distributed.all_gather_object( gather_results, [(input, pred, label) for (input, pred, label) in zip(all_inputs, all_preds, all_labels)], group=parallel_state.get_data_parallel_group(), ) # Deduplicate sentences that may have been distributed across multiple data parallel ranks. if parallel_state.get_data_parallel_rank() == 0: gather_results_dedup = list(set(itertools.chain(*gather_results))) correct = 0 for (input, pred, label) in gather_results_dedup: if pred == label: correct += 1 val_acc = correct / len(gather_results_dedup) val_acc = torch.tensor(val_acc).cuda() logging.info(f'Validation accuracy: {val_acc}') else: val_acc = torch.tensor(0.0).cuda() self.log('val_acc', val_acc, prog_bar=True, rank_zero_only=True, batch_size=1) gbs = self.cfg.global_batch_size mbs = self.cfg.micro_batch_size self._reconfigure_batch_sizes(gbs, mbs) self.validation_step_outputs.clear() # free memory class MegatronT5AdapterLearningModel(MegatronT5BaseAdapterModel): """ TODO (@adithyare) """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) assert cfg.adapter_tuning.get('adapter_dim', 0) > 0, "adapter_dim has not been set." assert ( cfg.adapter_tuning.adapter_dim % cfg.tensor_model_parallel_size == 0 ), "The adapter dim should be divisible by tensor_model_parallel_size." assert cfg.adapter_tuning.type in [ 'linear_adapter', 'parallel_adapter', ], "Adapter type should be 'linear_adapter' or 'parallel_adapter'" self.adapter_name_keys = [AdapterName.PRE_ATTN_ADAPTER, AdapterName.POST_ATTN_ADAPTER] frozen_model_cfg = MegatronT5Model.restore_from( cfg.get('language_model_path'), trainer=trainer, return_config=True ) for _, layer in self.frozen_model.named_modules(): if hasattr(layer, 'activations_checkpoint_method'): layer.activations_checkpoint_method = ( None # (@adithyare) adapter learning does not support activations checkpointing atm. ) self.frozen_model.freeze() logging.info(f'Before adding adapters:\n{self.frozen_model.summarize()}') encoder = self.frozen_model.enc_dec_model.enc_dec_model.encoder decoder = self.frozen_model.enc_dec_model.enc_dec_model.decoder if encoder: encoder_cfg = self._get_component_cfg('encoder', frozen_model_cfg, cfg) self._add_adapters_to_component(encoder, encoder_cfg, self.adapter_name_keys) logging.info(f'Adding encoder adapters:\n{self.frozen_model.summarize()}') if decoder: decoder_cfg = self._get_component_cfg('decoder', frozen_model_cfg, cfg) self._add_adapters_to_component(decoder, decoder_cfg, self.adapter_name_keys) logging.info(f'Adding decoder adapters:\n{self.frozen_model.summarize()}') def _add_adapters_to_component(self, component, component_cfg, adapter_name_keys): for _, module in component.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin): for adapter_key in adapter_name_keys: adapter_cfg = self._get_adapter_cfg(component_cfg) if model_utils.import_class_by_path(adapter_cfg._target_) in module.get_accepted_adapter_types(): module.add_adapter(name=adapter_key, cfg=adapter_cfg) def _get_component_cfg(self, component_name, frozen_model_cfg, cfg): if component_name in frozen_model_cfg: component_cfg = frozen_model_cfg.get(component_name) with open_dict(component_cfg): component_cfg.tensor_model_parallel_size = frozen_model_cfg.tensor_model_parallel_size component_cfg.adapter_tuning = cfg.adapter_tuning else: component_cfg = frozen_model_cfg with open_dict(component_cfg): component_cfg.adapter_tuning = cfg.adapter_tuning return component_cfg def _get_adapter_cfg(self, component_cfg): if component_cfg.adapter_tuning.type == "parallel_adapter": adapter_cfg = ParallelLinearAdapterConfig( in_features=component_cfg.hidden_size, out_features=component_cfg.hidden_size, dim=component_cfg.adapter_tuning.adapter_dim, norm_position=component_cfg.adapter_tuning.get('norm_position', 'pre'), norm_type=component_cfg.adapter_tuning.get('norm_type', 'mixedfusedlayernorm'), column_init_method=component_cfg.adapter_tuning.get('column_init_method', 'xavier'), row_init_method=component_cfg.adapter_tuning.get('row_init_method', 'zero'), dropout=component_cfg.adapter_tuning.adapter_dropout, ) else: adapter_cfg = LinearAdapterConfig( in_features=component_cfg.hidden_size, dim=component_cfg.adapter_tuning.adapter_dim, norm_position=component_cfg.adapter_tuning.get('norm_position', 'pre'), dropout=component_cfg.adapter_tuning.adapter_dropout, ) return adapter_cfg @classmethod def list_available_models(cls): pass class MegatronT5LoraModel(MegatronT5BaseAdapterModel): """ TODO (@adithyare) """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) # assert cfg.lora_tuning.get('adapter_dim', 0) > 0, "adapter_dim has not been set." # assert ( # cfg.lora_tuning.adapter_dim % cfg.tensor_model_parallel_size == 0 # ), "The adapter dim should be divisible by tensor_model_parallel_size." encoder_adapter_name_keys = [AdapterName.LORA_KQV_ADAPTER] decoder_adapter_name_keys = [ AdapterName.LORA_KQV_ADAPTER, AdapterName.LORA_KV_ADAPTER, AdapterName.LORA_Q_ADAPTER, ] # add adapter keys to the list -> to update state dict self.adapter_name_keys = encoder_adapter_name_keys + decoder_adapter_name_keys frozen_model_cfg = MegatronT5Model.restore_from( cfg.get('language_model_path'), trainer=trainer, return_config=True ) for _, layer in self.frozen_model.named_modules(): if hasattr(layer, 'activations_checkpoint_method'): layer.activations_checkpoint_method = ( None # (@adithyare) adapter learning does not support activations checkpointing atm. ) self.frozen_model.freeze() logging.info(f'Before adding adapters:\n{self.frozen_model.summarize()}') encoder = self.frozen_model.enc_dec_model.enc_dec_model.encoder decoder = self.frozen_model.enc_dec_model.enc_dec_model.decoder if encoder: encoder_cfg = self._get_component_cfg('encoder', frozen_model_cfg, cfg) self._add_adapters_to_component(encoder, encoder_cfg, encoder_adapter_name_keys) logging.info(f'Adding encoder adapters:\n{self.frozen_model.summarize()}') if decoder: decoder_cfg = self._get_component_cfg('decoder', frozen_model_cfg, cfg) self._add_adapters_to_component(decoder, decoder_cfg, decoder_adapter_name_keys) logging.info(f'Adding decoder adapters:\n{self.frozen_model.summarize()}') def _add_adapters_to_component(self, component, component_cfg, adapter_name_keys): for _, module in component.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin): for adapter_key in adapter_name_keys: adapter_cfg = self._get_adapter_cfg(component_cfg, adapter_key) if model_utils.import_class_by_path(adapter_cfg._target_) in module.get_accepted_adapter_types(): module.add_adapter(name=adapter_key, cfg=adapter_cfg) print(f"in adding {adapter_key}") def _get_component_cfg(self, component_name, frozen_model_cfg, cfg): if component_name in frozen_model_cfg: component_cfg = frozen_model_cfg.get(component_name) with open_dict(component_cfg): component_cfg.tensor_model_parallel_size = frozen_model_cfg.tensor_model_parallel_size component_cfg.lora_tuning = cfg.lora_tuning else: component_cfg = frozen_model_cfg with open_dict(component_cfg): component_cfg.lora_tuning = cfg.lora_tuning return component_cfg def _get_adapter_cfg(self, component_cfg, adapter_key): if component_cfg.kv_channels is None: assert ( component_cfg.hidden_size % component_cfg.num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = component_cfg.hidden_size // component_cfg.num_attention_heads else: kv_channels = component_cfg.kv_channels projection_size = kv_channels * component_cfg.num_attention_heads if adapter_key == AdapterName.LORA_KQV_ADAPTER: adapter_cfg = LoraKQVAdapterConfig( in_features=component_cfg.hidden_size, out_features=3 * projection_size, dim=component_cfg.lora_tuning.kqv_adapter_dim, norm_position="none", norm_type="none", activation="identity", column_init_method=component_cfg.lora_tuning.get("column_init_method", "normal"), row_init_method=component_cfg.lora_tuning.get("row_init_method", "zero"), gather_output=False, dropout=0.0, ) elif adapter_key == AdapterName.LORA_KV_ADAPTER: adapter_cfg = LoraKVAdapterConfig( in_features=component_cfg.hidden_size, out_features=2 * projection_size, dim=component_cfg.lora_tuning.kv_adapter_dim, norm_position="none", norm_type="none", activation="identity", column_init_method=component_cfg.lora_tuning.get("column_init_method", "normal"), row_init_method=component_cfg.lora_tuning.get("row_init_method", "zero"), gather_output=False, dropout=0.0, ) elif adapter_key == AdapterName.LORA_Q_ADAPTER: adapter_cfg = LoraQAdapterConfig( in_features=component_cfg.hidden_size, out_features=1 * projection_size, dim=component_cfg.lora_tuning.q_adapter_dim, norm_position="none", norm_type="none", activation="identity", column_init_method=component_cfg.lora_tuning.get("column_init_method", "normal"), row_init_method=component_cfg.lora_tuning.get("row_init_method", "zero"), gather_output=False, dropout=0.0, ) else: raise RuntimeError("Unexpected adapter key name..") return adapter_cfg @classmethod def list_available_models(cls): pass class MegatronT5InfusedAdapterModel(MegatronT5BaseAdapterModel): """ MegatronGPTInfusedAdapterModel is a model that combines a base model (GPTModel) with a "Infused Adapter that can Inhibiting and Amplify Inner Activations", known as IA3. This class supports the addition of IA3 into a transformer based LM as described in Liu et al. (https://arxiv.org/pdf/2205.05638.pdf) Three adapter's are inserted into each Transformer layer in the base GPT Model. Each adapter is basically a vector that simply scales the key, value or ffn hidden representations. It is assumed that these set of adapters will then be trained for a specific task. Once trained, the adapter weights will be saved and can be re-loaded and infused into the same GPT Model for inference. """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) frozen_model_cfg = MegatronT5Model.restore_from( cfg.get('language_model_path'), trainer=trainer, return_config=True ) for _, layer in self.frozen_model.named_modules(): if hasattr(layer, 'activations_checkpoint_method'): layer.activations_checkpoint_method = ( None # (@adithyare) adapter learning does not support activations checkpointing atm. ) self.adapter_name_keys = [AdapterName.KEY_INFUSED, AdapterName.VALUE_INFUSED, AdapterName.MLP_INFUSED] self.frozen_model.freeze() logging.info(f'Before adding adapters:\n{self.frozen_model.summarize()}') encoder = self.frozen_model.enc_dec_model.enc_dec_model.encoder decoder = self.frozen_model.enc_dec_model.enc_dec_model.decoder if encoder: encoder_cfg = self._get_component_cfg('encoder', frozen_model_cfg) self._add_adapters_to_component(encoder, encoder_cfg, self.adapter_name_keys) logging.info(f'After adding encoder adapters:\n{self.frozen_model.summarize()}') if decoder: decoder_cfg = self._get_component_cfg('decoder', frozen_model_cfg) self._add_adapters_to_component(decoder, decoder_cfg, self.adapter_name_keys) logging.info(f'After adding all adapters:\n{self.frozen_model.summarize()}') def _add_adapters_to_component(self, component, component_cfg, adapter_name_keys): for _, module in component.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin): for adapter_key in adapter_name_keys: adapter_cfg = self._get_adapter_cfg(component_cfg, adapter_key) if model_utils.import_class_by_path(adapter_cfg._target_) in module.get_accepted_adapter_types(): module.add_adapter(name=adapter_key, cfg=adapter_cfg) def _get_component_cfg(self, component_name, frozen_model_cfg): if component_name in frozen_model_cfg: component_cfg = frozen_model_cfg.get(component_name) with open_dict(component_cfg): component_cfg.tensor_model_parallel_size = frozen_model_cfg.tensor_model_parallel_size else: component_cfg = frozen_model_cfg return component_cfg def _get_adapter_cfg(self, component_cfg, adapter_key): if adapter_key == AdapterName.MLP_INFUSED: cfg = MLPInfusedAdapterConfig( in_features=component_cfg.ffn_hidden_size // component_cfg.tensor_model_parallel_size ) elif adapter_key in [AdapterName.KEY_INFUSED, AdapterName.VALUE_INFUSED]: if component_cfg.get('kv_channels', None): cfg = InfusedAdapterConfig( in_features=component_cfg.kv_channels * component_cfg.num_attention_heads // component_cfg.tensor_model_parallel_size ) else: cfg = InfusedAdapterConfig( in_features=component_cfg.hidden_size // component_cfg.tensor_model_parallel_size ) else: raise ValueError(f"Adapter Key {adapter_key} is unknown.") return cfg def _component_state_dict(self, component_name, component, adapter_name_keys): state_dict_ = {} for name, module in component.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin) and module.is_adapter_available(): for adapter_key in adapter_name_keys: adapter_module = module.get_adapter_module(adapter_key) if adapter_module: state_adapter_key = ':'.join([component_name, name, adapter_key]) state_dict_[state_adapter_key] = adapter_module.state_dict() module.set_enabled_adapters(enabled=True) return state_dict_ def _load_component_state_dict( self, component_name, component, adapter_name_keys, state_dict, strict: bool = True ): for name, module in component.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin) and module.is_adapter_available(): for adapter_key in adapter_name_keys: adapter_module = module.get_adapter_module(adapter_key) if adapter_module: state_adapter_key = ':'.join([component_name, name, adapter_key]) adapter_module.load_state_dict(state_dict[state_adapter_key], strict) module.set_enabled_adapters(enabled=True) def state_dict(self, destination=None, prefix=None, keep_vars=False): """ Creates a state_dict using only the adapter parameters. This ensures that this wrapper class will only checkpoint the adapter weights and not the rest of the base GPT Model. """ encoder = self.frozen_model.enc_dec_model.enc_dec_model.encoder decoder = self.frozen_model.enc_dec_model.enc_dec_model.decoder encoder_state_dict = self._component_state_dict('encoder', encoder, self.adapter_name_keys) if encoder else {} decoder_state_dict = self._component_state_dict('decoder', decoder, self.adapter_name_keys) if decoder else {} state_dict_ = { **encoder_state_dict, **decoder_state_dict, } # merge the two state dicts (does not check for collisions in keys) return state_dict_ def load_state_dict(self, state_dict, strict: bool = True): """ Loads a state_dict expecting the state_dict to contain key,values only for the adapter parameters. """ encoder = self.frozen_model.enc_dec_model.enc_dec_model.encoder decoder = self.frozen_model.enc_dec_model.enc_dec_model.decoder if encoder: self._load_component_state_dict('encoder', encoder, self.adapter_name_keys, state_dict, strict) if decoder: self._load_component_state_dict('decoder', decoder, self.adapter_name_keys, state_dict, strict) @classmethod def list_available_models(cls): pass
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_t5_adapter_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json from functools import partial from typing import Any, Optional import torch from omegaconf import DictConfig, ListConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.common.metrics import MetricStringToTorchMetric from nemo.collections.nlp.data.language_modeling.megatron.base_dataset_utils import ( get_datasets_weights_and_num_samples, ) from nemo.collections.nlp.data.language_modeling.megatron.blendable_dataset import BlendableDataset from nemo.collections.nlp.data.language_modeling.megatron.gpt_sft_chat_dataset import GPTSFTChatDataset from nemo.collections.nlp.data.language_modeling.megatron.gpt_sft_dataset import GPTSFTDataset from nemo.collections.nlp.data.language_modeling.megatron.megatron_batch_samplers import ( MegatronPretrainingBatchSampler, ) from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel from nemo.collections.nlp.modules.common.megatron.utils import get_iterator_k_split from nemo.collections.nlp.modules.common.text_generation_utils import ( LengthParam, SamplingParam, generate, get_computeprob_response, megatron_gpt_generate, ) from nemo.collections.nlp.parts.utils_funcs import get_last_rank from nemo.utils import AppState, logging try: from apex.transformer.pipeline_parallel.utils import ( _reconfigure_microbatch_calculator, get_current_global_batch_size, get_micro_batch_size, get_num_microbatches, ) HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import parallel_state from megatron.core.pipeline_parallel.schedules import get_forward_backward_func HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = ['MegatronGPTSFTModel'] class MegatronGPTSFTModel(MegatronGPTModel): """ Megatron GPT Supervised Fine-Tuning """ def __init__(self, cfg: DictConfig, trainer: Trainer): if not HAVE_APEX: raise ImportError( "Apex was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) super().__init__(cfg, trainer=trainer) self.sep_id = cfg.get('sep_id', 49704) if hasattr(self.cfg.data, "validation_ds"): self.val_metric, self.val_metric_name = self.setup_metric(self.cfg.data.validation_ds) self.val_metric = torch.nn.ModuleList(self.val_metric) if self.val_metric is not None else None # Used other keys from metadata to calulate metrics if hasattr(self.cfg.data.validation_ds, "metric"): self.val_metric_label_key = self.cfg.data.validation_ds.metric.get('label_key', 'labels') if hasattr(self.cfg.data, "test_ds"): self.test_metric, self.test_metric_name = self.setup_metric(self.cfg.data.test_ds) self.test_metric = torch.nn.ModuleList(self.test_metric) if self.test_metric is not None else None # Used other keys from metadata to calulate metrics if hasattr(self.cfg.data.test_ds, "metric"): self.test_metric_label_key = self.cfg.data.test_ds.metric.get('label_key', 'labels') if self.cfg.get('megatron_amp_O2', False): base_module = self.model.module else: base_module = self.model self._reset_activation_checkpointing_args() self._reset_sequence_parallelism_args() self.virtual_tokens = 0 def setup_metric(self, data_cfg): metric_name = "exact_string_match" if not hasattr(data_cfg, "metric"): metric = MetricStringToTorchMetric["exact_string_match"] else: if not hasattr(data_cfg.metric, "name"): raise ValueError("Metric name is not provided in the metric config.") if data_cfg.metric.name == "loss": return None, "loss" if data_cfg.metric.name not in MetricStringToTorchMetric: raise KeyError( f"{data_cfg.metric.name} is not supported. List of supported metrics: {MetricStringToTorchMetric.keys()}" ) if data_cfg.metric.name in self._metrics_require_string2category_map: if data_cfg.metric.average is None: raise ValueError( f"{data_cfg.metric.name} requires specifying whether you want to compute a micro or macro average. Found None." ) if ( data_cfg.metric.get('labels_are_strings', False) and data_cfg.metric.name in self._metrics_require_string2category_map ): if data_cfg.metric.num_classes is None: raise ValueError( "Number of classes is not provided in the metric section within the data config. " f"Please provide the number of classes in the data config to use the {data_cfg.metric.name} metric." ) if data_cfg.metric.get('class_labels', None) is None or not isinstance( data_cfg.metric.get('class_labels', None), ListConfig ): raise ValueError( "Class labels are not provided properly in the metric section witnin the data config. " f"Please provide the class labels as a list of strings in the data config to use the {data_cfg.metric.name} metric." ) if len(data_cfg.metric.get('class_labels', None)) != data_cfg.metric.num_classes: raise ValueError( f"Number of class labels {len(data_cfg.metric.get('class_labels', None))} does not match `num_classes` : {data_cfg.metric.num_classes}" ) metric_name = data_cfg.metric.name metric = MetricStringToTorchMetric[metric_name] if isinstance(data_cfg.file_names, ListConfig): if 'rouge' not in data_cfg.metric.name: metric = [ metric(average=data_cfg.metric.average, num_classes=data_cfg.metric.num_classes) for _ in range(len(data_cfg.file_names)) ] else: metric = [metric() for _ in range(len(data_cfg.file_names))] else: if 'rouge' not in data_cfg.metric.name: metric = [metric(average=data_cfg.metric.average, num_classes=data_cfg.metric.num_classes)] else: metric = [metric()] return metric, metric_name @property def _metrics_require_string2category_map(self): return set(["f1", "accuracy", "average_precision"]) def setup(self, stage=None): # NOTE: super().__init__ will try and setup train/val/test datasets, but we sidestep this using a if self._train_ds is not None condition # We then set things up for real only once setup() of this class is called. resume_checkpoint_path = self.trainer.ckpt_path if resume_checkpoint_path: init_consumed_samples = self._extract_consumed_samples_from_ckpt(resume_checkpoint_path) else: init_consumed_samples = 0 self.init_consumed_samples = init_consumed_samples if stage == 'predict': return # If the user wants to manually override train and validation dataloaders before calling `.fit()` if self._train_dl is not None and self._validation_dl is not None: return self.build_train_valid_test_datasets(stage=stage) if hasattr(self, '_train_ds'): self.setup_training_dataloader() if hasattr(self, '_validation_ds'): self._validation_dl = self.setup_eval_dataloader(self._validation_ds, self.cfg.data.validation_ds) if hasattr(self.cfg.data, 'test_ds') and self.cfg.data.test_ds.get('file_names', None) is not None: self._test_dl = self.setup_eval_dataloader(self._test_ds, self.cfg.data.test_ds) # Raise error if using multiple dataloaders if type(self._validation_dl) == list and len(self._validation_dl) > 1: raise NotImplementedError('Lightning 2.0 does not support multiple dataloaders with dataloader_iter') if type(self._test_dl) == list and len(self._test_dl) > 1: raise NotImplementedError('Lightning 2.0 does not support multiple dataloaders with dataloader_iter') # when using pipeline model parallel the final stage need to initialize word embeddings if not self.cfg.get('mcore_gpt', False): if parallel_state.get_pipeline_model_parallel_world_size() > 1: if isinstance(self.model, list): for i, module in enumerate(self.model): parallel_state.set_virtual_pipeline_model_parallel_rank(i) module.sync_initial_word_embeddings() parallel_state.set_virtual_pipeline_model_parallel_rank(0) else: self.model.sync_initial_word_embeddings() if self.cfg.get('transformer_engine', False): self.setup_transformer_engine_tp_groups() def _build_dataset(self, data_cfg, is_train=True): datasets = [] # Determine if we are using a single dataset or a list of datasets. is_list_config = isinstance(data_cfg.file_names, ListConfig) if not is_list_config: raise ValueError(f"SFT train/validation datasets must be provided as a list of individual JSONL files.") if is_train: # Construct the data prefix list for `get_datasets_weights_and_num_samples()` # that is of the format [weight1,file_name1,weight2,file_name2,...] if data_cfg.concat_sampling_probabilities is None or not isinstance( data_cfg.concat_sampling_probabilities, ListConfig ): raise ValueError( ( f"concat_sampling_probabilities must be a ListConfig with the same number of files in file_names." f"Found: {data_cfg.concat_sampling_probabilities}" ) ) if len(data_cfg.get('concat_sampling_probabilities', None)) != len(data_cfg.file_names): raise ValueError( ( f"concat_sampling_probabilities must be of the same size as file_names.", f"Provided size {len(data_cfg.concat_sampling_probabilities)}, number of datasets {len(data_cfg.file_names)}", ) ) data_prefix = [] for weight, prefix in zip(data_cfg.concat_sampling_probabilities, data_cfg.file_names): data_prefix.append(weight) data_prefix.append(prefix) if self.trainer.max_steps is None or self.trainer.max_steps <= 0: raise ValueError( f'Trainer max_steps must be set to a positive integer. Found {self.trainer.max_steps}' ) num_train_samples = [self.trainer.max_steps * data_cfg.global_batch_size] _, _, num_train_samples_per_dataset = get_datasets_weights_and_num_samples(data_prefix, num_train_samples) num_train_samples_after_blend = sum([x[0] for x in num_train_samples_per_dataset]) else: num_train_samples_per_dataset = [[None]] * len(data_cfg.file_names) # Check dataset max_seq_legnth and max_position_embeddings size if ( self.cfg.get('position_embedding_type', None) in [None, 'learned_absolute'] and data_cfg.max_seq_length > self.cfg.max_position_embeddings ): logging.warning( f"Set dataset max_seq_length to max_position_embeddings {self.cfg.max_position_embeddings} if using learned_absolute position embedding" ) data_cfg.max_seq_length = self.cfg.max_position_embeddings for file_path, num_samples in zip(data_cfg.file_names, num_train_samples_per_dataset): if self.cfg.data.get("chat", False): dataset_cls = GPTSFTChatDataset else: dataset_cls = GPTSFTDataset dataset = dataset_cls( file_path=file_path, tokenizer=self.tokenizer, max_seq_length=data_cfg.max_seq_length, min_seq_length=data_cfg.min_seq_length, add_bos=data_cfg.get('add_bos', False), add_eos=data_cfg.get('add_eos', True), add_sep=data_cfg.get('add_sep', False), sep_id=self.sep_id, max_num_samples=num_samples[0], seed=data_cfg.get('seed', 1234), label_key=data_cfg.get('label_key', 'answer'), answer_only_loss=self.cfg.get('answer_only_loss', True), truncation_field=data_cfg.get('truncation_field', 'text'), pad_to_max_length=data_cfg.get('pad_to_max_length', False), index_mapping_dir=data_cfg.get('index_mapping_dir', None), prompt_template=data_cfg.get('prompt_template', None), virtual_tokens=self.virtual_tokens, tokens_to_generate=data_cfg.get( 'tokens_to_generate', 0 ), # used at inference time to allocate tensor positions for tokens that will be generated by inf procedure. memmap_workers=data_cfg.get( 'memmap_workers', None ), # used to set num. of workers to create the memmap index files hf_dataset=data_cfg.get( 'hf_dataset', False ), # Whether to load the json file with the HuggingFace dataset. otherwise, will load the jsonl file with the JSONLMemMapDataset. truncation_method=data_cfg.get( 'truncation_method', 'right' ), # used to choose truncation method. Options: ['random', 'left', 'right'] ) datasets.append(dataset) if is_train: dataset = BlendableDataset( datasets=datasets, weights=data_cfg.concat_sampling_probabilities, size=num_train_samples_after_blend ) return dataset else: return datasets def _determine_log_key(self, data_config, dataloader_idx, metric_name, mode): # Function that determines whether to log based on the user provided name of the dataset or the dataloader index. base_key = f"{mode}_{metric_name}_" if metric_name is not None else f"{mode}_" # If the user provided names for each validation/test dataset, use those. if hasattr(data_config, "names") and data_config.names is not None: # With only a single validation/test dataset, the name is not a list. if not isinstance(data_config.names, ListConfig): name = data_config.names else: name = data_config.names[dataloader_idx] return base_key + name else: return base_key + f"dataloader{dataloader_idx}" def fwd_bwd_step(self, dataloader_iter, batch_idx, forward_only): batch = next(dataloader_iter) # Pass only torch.Tensor to prevent errors when process get_iterator_k_split() batch = {k: v for k, v in batch.items() if isinstance(v, torch.Tensor)} _, seq_length = batch['tokens'].shape data_iter = get_iterator_k_split(batch, get_num_microbatches()) # handle asynchronous grad reduction no_sync_func = None grad_sync_func = None param_sync_func = None if not forward_only and self.with_distributed_adam: no_sync_func = partial(self._optimizer.no_sync, greedy_grad_copy=self.megatron_amp_o2,) grad_sync_func = self.reduce_overlap_gradients param_sync_func = self.sync_overlap_parameters self.model.config.no_sync_func = no_sync_func self.model.config.grad_sync_func = grad_sync_func self.model.config.param_sync_func = param_sync_func fwd_bwd_function = get_forward_backward_func() losses_reduced_per_micro_batch = fwd_bwd_function( forward_step_func=self.get_forward_output_and_loss_func(), data_iterator=data_iter, model=[self.model], num_microbatches=get_num_microbatches(), forward_only=forward_only, seq_length=seq_length, micro_batch_size=get_micro_batch_size(), ) # only the last stages of the pipeline return losses if losses_reduced_per_micro_batch: if (not forward_only) or self.cfg.data.get('validation_drop_last', True): # average loss across micro batches loss_tensors_list = [loss_reduced['avg'] for loss_reduced in losses_reduced_per_micro_batch] loss_tensor = torch.concat(loss_tensors_list) loss_mean = loss_tensor.mean() else: # Get the total loss since micro batches sizes are not uniform loss_sum_tensors_list = [ loss_sum['loss_sum_and_ub_size'] for loss_sum in losses_reduced_per_micro_batch if loss_sum['loss_sum_and_ub_size'][1] > 0 ] loss_sum = ( torch.vstack(loss_sum_tensors_list).sum(axis=0) if len(loss_sum_tensors_list) > 0 else torch.tensor([0.0, 0.0]).cuda() ) return loss_sum else: # we're not on the last pipeline stage so no losses if forward_only: loss_mean = [] else: loss_mean = torch.tensor(0.0).cuda() return loss_mean def validation_step(self, dataloader_iter, batch_idx, dataloader_idx=0): return self.inference_step(dataloader_iter, batch_idx, 'validation', dataloader_idx) def test_step(self, dataloader_iter, batch_idx, dataloader_idx=0): # Add try except since dataloader_iter in PTL 2.0 doesnt catch the end of iterables return self.inference_step(dataloader_iter, batch_idx, 'test', dataloader_idx) def inference_step(self, dataloader_iter, batch_idx, mode, dataloader_idx=0): # Check if iterator is exhausted dataloader_iter, done = self._val_iterator_done(dataloader_iter) if done: return batch = next(dataloader_iter) data_cfg = self.cfg.data.validation_ds if mode == 'validation' else self.cfg.data.test_ds self._reconfigure_and_process_inference_batch(batch, data_cfg) # Meta data from dataset metadata = batch.get('metadata', [{}] * len(batch['tokens'])) loss = super().validation_step(itertools.chain([batch]), batch_idx) if data_cfg.get("write_predictions_to_file", False) or data_cfg.metric.name != 'loss': # We need _inference_config to get generation params # add_BOS and tokens_to_generate are set in dataset if self.get_inference_config() is None: self.set_inference_config(inference_config={}) self._inference_config['add_BOS'] = data_cfg.add_bos self._inference_config['tokens_to_generate'] = data_cfg.get('tokens_to_generate') output = self.predict_step(batch, batch_idx, dataloader_idx) inputs_text = [self.tokenizer.ids_to_text(c.tolist()) for c in batch['contexts']] labels_text = [self.tokenizer.ids_to_text(a.tolist()) for a in batch['answers']] preds_text = [ self.tokenizer.ids_to_text(t[l.item() :][: data_cfg.get('tokens_to_generate')]) for t, l in zip(output['token_ids'], batch['context_lengths']) ] else: inputs_text, labels_text, preds_text = [], [], [] outputs = { 'loss': loss, 'preds': preds_text, # [str] 'labels': labels_text, # [str] 'inputs': inputs_text, # [str] 'metadata': metadata, # [dict] } if mode == 'validation': if type(self.trainer.val_dataloaders) == list and len(self.trainer.val_dataloaders) > 1: # super().validation_step appends just loss to self.validation_step_outputs, replace the last appended loss with the outputs dict self.validation_step_outputs[dataloader_idx][-1] = outputs else: # super().validation_step appends just loss to self.validation_step_outputs, replace the last appended loss with the outputs dict self.validation_step_outputs[-1] = outputs else: if type(self.trainer.test_dataloaders) == list and len(self.trainer.test_dataloaders) > 1: self.test_step_outputs[dataloader_idx][-1] = outputs else: self.test_step_outputs[-1] = outputs return outputs def inference_epoch_end(self, outputs, mode, data_cfg): # Parent class will handle logging of the loss. if not outputs: return if isinstance(outputs[0], dict): outputs = [outputs] averaged_loss = [] averaged_metric = [] # Log metrics for each provided validation/test dataset. for dataloader_idx, output in enumerate(outputs): # Expand on_validation_epoch_end from parent class MegatronGPTModel as on_validation_epoch_end doesnt take outputs arg # loss = super().on_validation_epoch_end([x['loss'] for x in output]) loss_vals = [x['loss'] for x in output] if parallel_state.is_pipeline_last_stage(): # only the last pipeline parallel stages return loss with their batch size if self.cfg.data.get('validation_drop_last', True): loss = torch.stack(loss_vals).mean() else: # Compute the avg loss by total_loss across all samples / total number of samples total_loss_and_total_samples = torch.vstack(loss_vals).sum(axis=0) avg_loss = total_loss_and_total_samples[0] / total_loss_and_total_samples[1] loss = avg_loss.type(torch.float32).cuda() else: loss = torch.tensor(0.0, dtype=torch.float32).cuda() # we can only log on one rank if it is rank zero so we broadcast from last rank torch.distributed.broadcast(loss, get_last_rank()) self.log('val_loss', loss, prog_bar=True, rank_zero_only=True, batch_size=1) # Determine the key used to log the loss based on the user provided name of the dataset or the dataloader index. loss_log_key = self._determine_log_key(data_cfg, dataloader_idx, "loss", mode) self.log(loss_log_key, loss, batch_size=1) averaged_loss.append(loss) # Gather the outputs object from all data parallel ranks since we are using the DistributedSampler which splits data across DDP ranks. gathered_outputs = [None for _ in range(parallel_state.get_data_parallel_world_size())] torch.distributed.all_gather_object( gathered_outputs, [ {'preds': x['preds'], 'labels': x['labels'], 'inputs': x['inputs'], 'metadata': x['metadata']} for x in output ], group=parallel_state.get_data_parallel_group(), ) # Remove duplicate examples due to distributed sampler. inp_label_set = set() deduplicated_outputs = { 'preds': [], 'labels': [], 'inputs': [], 'metadata': [], } total_size = 0 for rank in range(0, parallel_state.get_data_parallel_world_size()): for batch in gathered_outputs[rank]: for pred, label, input, metadata in zip( batch['preds'], batch['labels'], batch['inputs'], batch['metadata'] ): key = input + label total_size += 1 if key not in inp_label_set: inp_label_set.add(key) deduplicated_outputs['preds'].append(pred) deduplicated_outputs['labels'].append(label) deduplicated_outputs['inputs'].append(input) deduplicated_outputs['metadata'].append(metadata) # Compute metric score metric_name = self.val_metric_name if mode == 'validation' else self.test_metric_name metric_label_key = self.val_metric_label_key if mode == 'validation' else self.test_metric_label_key if metric_name != 'loss': metric_log_key = self._determine_log_key(data_cfg, dataloader_idx, metric_name, mode) metric_fn = ( self.val_metric[dataloader_idx] if mode == 'validation' else self.test_metric[dataloader_idx] ) if metric_label_key in deduplicated_outputs['metadata'][0]: labels = [m[metric_label_key] for m in deduplicated_outputs['metadata']] else: labels = deduplicated_outputs['labels'] for pred, label in zip(deduplicated_outputs['preds'], labels): _ = metric_fn(pred, label) metric_result = metric_fn.compute() if metric_name == 'rouge': for k, v in metric_result.items(): if 'fmeasure' in k: self.log(metric_log_key + f'_{k}', v.item(), sync_dist=True) logging.info(f"{mode} {metric_name} {k}: {v.item()}") metric_result = metric_result['rouge1_fmeasure'] else: self.log(metric_log_key, metric_result.item(), sync_dist=True) logging.info(f"{mode} {metric_name}: {metric_result.item()}") metric_fn.reset() averaged_metric.append(metric_result) # Write predictions to file if self.global_rank == 0 and data_cfg.get("write_predictions_to_file", False): logging.info( f"Total deduplicated inference data size: {total_size} to {len(deduplicated_outputs['inputs'])}" ) # Check if the user provided a prefix path to the file(s) they want to write. if not hasattr(data_cfg, "output_file_path_prefix") or data_cfg.output_file_path_prefix is None: raise ValueError( f"Cannot write predictions to file when output_file_path_prefix is not set or present in the yaml config file." ) filename_log_key = self._determine_log_key(data_cfg, dataloader_idx, None, mode) self.write_predictions_to_file( deduplicated_outputs, f"{data_cfg.output_file_path_prefix}_{filename_log_key}" ) torch.distributed.barrier(group=parallel_state.get_data_parallel_group()) outputs[dataloader_idx].clear() # free memory # Logging of the averaged metrics: averaged_loss = sum(averaged_loss) / len(averaged_loss) averaged_metric = sum(averaged_metric) / len(averaged_metric) if len(averaged_metric) > 1 else None # Handle case where metrics can be nan or inf. This can break checkpoint save/load. if averaged_metric is not None and (torch.isinf(averaged_metric) or torch.isnan(averaged_metric)): app_state = AppState() monitor_mode = app_state.checkpoint_callback_params.mode assert monitor_mode in ['min', 'max'] averaged_metric = 0.0 if monitor_mode == 'max' else 1e5 if mode == 'validation': self.log("validation_loss", averaged_loss, batch_size=1) if averaged_metric is not None: self.log(f"validation_{self.val_metric_name}", averaged_metric) elif mode == 'test': self.log("test_loss", averaged_loss, batch_size=1) if averaged_metric is not None: self.log(f"test_{self.test_metric_name}", averaged_metric) # Merge the functionality of previous on_inference_epoch_end() within inference_epoch_end() func here app_state = AppState() self._restore_activation_checkpointing_args() self._restore_sequence_parallelism_args() if hasattr(self, "_train_ds"): _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=self.cfg.data.train_ds.global_batch_size, micro_batch_size=self.cfg.data.train_ds.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # When running `trainer.validate()`, the training dataset is not available. else: logging.warning('No training data found, reconfiguring microbatches based on validation batch sizes.') _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=data_cfg.global_batch_size, micro_batch_size=data_cfg.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) return averaged_loss, averaged_metric def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: Optional[int] = None) -> Any: inference_config = self.get_inference_config() # need to overwrite some configuration, make it immutable inference_config = inference_config.copy() global_batch_size_per_gpu = batch['tokens'].size(0) num_micro_batches_before_decode = get_num_microbatches() compute_logprob = inference_config.get('compute_logprob', False) if compute_logprob: inference_config['inputs'] = batch inference_config['tokens_to_generate'] = 1 inference_config['all_probs'] = True inference_config["add_BOS"] = False inference_config['greedy'] = True response = generate(self, **inference_config) response = get_computeprob_response(self.tokenizer, response, batch) else: # for megatron_gpt_eval.py if isinstance(batch, list): inference_config['inputs'] = batch else: # peft_eval.py inference_config['inputs'] = (batch['contexts'].cuda(), batch['context_lengths'].cuda()) response = generate(self, **inference_config) app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=global_batch_size_per_gpu * parallel_state.get_data_parallel_world_size(), micro_batch_size=global_batch_size_per_gpu // num_micro_batches_before_decode, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) return response def write_predictions_to_file(self, outputs, output_file_path_prefix): output_file_path = output_file_path_prefix + "_inputs_preds_labels.jsonl" with open(output_file_path, "w") as f_json: assert ( len(outputs['inputs']) == len(outputs['preds']) == len(outputs['labels']) == len(outputs['metadata']) ) for i, p, l, m in zip(outputs['inputs'], outputs['preds'], outputs['labels'], outputs['metadata']): json_string = {'input': i, 'pred': p, 'label': l} for k, v in m.items(): if k not in json_string: json_string[k] = v f_json.write(json.dumps(json_string) + '\n') logging.info(f'Predictions saved to {output_file_path}') def cast_for_metric(self, pred, label, metric_name, class_labels=None, labels_are_strings=False): if metric_name == 'exact_string_match' or 'rouge' in metric_name: return pred, label pred = pred.replace(' ', '') label = label.replace(' ', '') # Correlation metrics require casting to float. if metric_name in ['pearson_corr_coef', 'spearman_corr_coef']: # Text-to-text model predictions may not always be valid floating point numbers. try: pred = float(pred) except ValueError: pred = 0.0 try: label = float(label) except ValueError: raise ValueError(f'Could not convert {label} to float.') pred = torch.FloatTensor([pred]).to(self.device) label = torch.FloatTensor([label]).to(self.device) # Other metrics require casting to integers. elif metric_name in self._metrics_require_string2category_map and not labels_are_strings: # Text-to-text model predictions may not always be valid integers. try: pred = int(pred) except ValueError: pred = 0 try: label = int(label) except ValueError: raise ValueError(f'Could not convert {label} to int.') pred = torch.LongTensor([pred]).to(self.device) label = torch.LongTensor([label]).to(self.device) # If labels are strings, we need to convert them to indices for some metrics. elif metric_name in self._metrics_require_string2category_map and labels_are_strings: # Cast string labels to integers before computing the metric. if pred not in class_labels: pred = 0 # If the prediction is not in the class labels, use the first class label. else: pred = class_labels.index(pred) if label not in class_labels: raise ValueError(f"Ground truth labe; {label} is not in the class labels list : {class_labels}") label = class_labels.index(label) pred = torch.LongTensor([pred]).to(self.device) label = torch.LongTensor([label]).to(self.device) else: raise ValueError(f'Metric {metric_name} not supported.') return pred, label # Override the parent batch reconfiguring logic. def _reconfigure_and_process_inference_batch(self, batch, data_cfg): global_batch_size_per_gpu = batch['tokens'].size(0) # This should happen only on the last batch of the dataset. if ( global_batch_size_per_gpu != get_current_global_batch_size() // parallel_state.get_data_parallel_world_size() ): # NOTE: This is reconfiguring to make sure there is no grad-acc for validation batches. if ( global_batch_size_per_gpu != data_cfg.global_batch_size // parallel_state.get_data_parallel_world_size() ): app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=global_batch_size_per_gpu * parallel_state.get_data_parallel_world_size(), micro_batch_size=global_batch_size_per_gpu, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # NOTE: need to explicitly handle resetting for multi-validation else: app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=data_cfg.global_batch_size, micro_batch_size=data_cfg.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) def build_train_valid_test_datasets(self, stage): if stage != 'test': logging.info('Building GPT SFT validation datasets.') # Wrap this in a list since the general finetuning parent class supports multi-validation. self._validation_ds = self._build_dataset(self.cfg.data.validation_ds, is_train=False) logging.info(f'Length of val dataset: {len(self._validation_ds[0])}') if stage != 'validate': if hasattr(self.cfg.data, 'test_ds') and self.cfg.data.test_ds.get('file_names', None) is not None: logging.info('Building GPT SFT test datasets.') # Wrap this in a list since the general finetuning parent class supports multi-validation. self._test_ds = self._build_dataset(self.cfg.data.test_ds, is_train=False) logging.info(f'Length of test dataset: {len(self._test_ds[0])}') if stage == 'validate' or stage == 'test': return logging.info('Building GPT SFT traing datasets.') self._train_ds = self._build_dataset(self.cfg.data.train_ds) logging.info(f'Length of train dataset: {len(self._train_ds)}') def build_data_loader(self, dataset, data_cfg, consumed_samples=0): """Buld dataloader given an input dataset.""" logging.info(f'Building dataloader with consumed samples: {consumed_samples}') if isinstance(dataset, BlendableDataset): collate_fn = dataset.datasets[0].collate_fn else: collate_fn = dataset.collate_fn batch_sampler = MegatronPretrainingBatchSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=data_cfg.micro_batch_size, global_batch_size=data_cfg.global_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), drop_last=data_cfg.drop_last, pad_samples_to_global_batch_size=not data_cfg.drop_last, ) return torch.utils.data.DataLoader( dataset, batch_sampler=batch_sampler, collate_fn=collate_fn, num_workers=data_cfg.num_workers, pin_memory=data_cfg.pin_memory, ) def setup_training_dataloader(self): if hasattr(self, '_train_ds'): consumed_samples = self.compute_consumed_samples(0) self._train_dl = self.build_data_loader( dataset=self._train_ds, data_cfg=self.cfg.data.train_ds, consumed_samples=consumed_samples, ) def setup_eval_dataloader(self, datasets, data_cfg): dataloaders = [] for dataset in datasets: eval_dl = self.build_data_loader(dataset=dataset, data_cfg=data_cfg, consumed_samples=0,) dataloaders.append(eval_dl) return dataloaders def on_validation_epoch_start(self): self._reset_activation_checkpointing_args() self._reset_sequence_parallelism_args() app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=self.cfg.data.validation_ds.global_batch_size, micro_batch_size=self.cfg.data.validation_ds.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) return super().on_validation_epoch_start() def on_test_epoch_start(self): self._reset_activation_checkpointing_args() self._reset_sequence_parallelism_args() app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=self.cfg.data.test_ds.global_batch_size, micro_batch_size=self.cfg.data.test_ds.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) return super().on_test_epoch_start() def on_test_epoch_end(self): _ = self.inference_epoch_end(self.test_step_outputs, 'test', self.cfg.data.test_ds) # Commenting as on_test_epoch_end was a no-op in PTL 1.9 # return super().on_test_epoch_end() def on_validation_epoch_end(self): _ = self.inference_epoch_end(self.validation_step_outputs, 'validation', self.cfg.data.validation_ds) # Commenting as on_validation_epoch_end was a no-op in PTL 1.9 # return super().on_validation_epoch_end() def on_train_epoch_start(self) -> None: # Same logic as validation epoch end, but this may be need if there is no validation sanity check to trigger on_validation_epoch_end() self.on_validation_epoch_end() return super().on_train_epoch_start()
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_gpt_sft_model.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools from typing import Any, Dict, List, Optional, Union import torch import torch.nn.functional as F from omegaconf.dictconfig import DictConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.data.language_modeling.megatron import dataset_utils from nemo.collections.nlp.data.language_modeling.megatron.data_samplers import ( MegatronPretrainingRandomSampler, MegatronPretrainingSampler, ) from nemo.collections.nlp.models.language_modeling.megatron.bert_model import BertModel from nemo.collections.nlp.models.language_modeling.megatron_base_model import MegatronBaseModel from nemo.collections.nlp.modules.common.megatron.build_model import build_model from nemo.collections.nlp.modules.common.megatron.module import Float16Module from nemo.collections.nlp.modules.common.megatron.utils import ( average_losses_across_data_parallel_group, get_params_for_weight_decay_optimization, ) from nemo.collections.nlp.parts.nlp_overrides import GradScaler from nemo.collections.nlp.parts.utils_funcs import get_last_rank from nemo.core.classes.common import PretrainedModelInfo from nemo.core.neural_types import ChannelType, MaskType, NeuralType from nemo.utils import AppState, logging try: from apex.transformer.pipeline_parallel.utils import get_num_microbatches HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: import logging from lddl.torch_mp import get_bert_pretrain_data_loader HAVE_LDDL = True except (ImportError, ModuleNotFoundError): HAVE_LDDL = False try: from megatron.core import parallel_state from megatron.core.pipeline_parallel.schedules import get_forward_backward_func HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False class MegatronBertModel(MegatronBaseModel): """ Megatron Bert pretraining. Model returns [batch, seq, hidden] shape """ def __init__(self, cfg: DictConfig, trainer: Trainer): if not HAVE_MEGATRON_CORE: raise ImportError( "megatron-core was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) self.megatron_amp_o2 = cfg.get('megatron_amp_O2', False) self.cfg = cfg if not self.megatron_amp_o2 and self.cfg.get('virtual_pipeline_model_parallel_size', None): raise ValueError('Virtual pipeline model parallel is only supported when using megatron_amp_O2') super().__init__(cfg, trainer=trainer, no_lm_init=False) self._validate_trainer() self.enable_autocast = ( True if (not self.megatron_amp_o2) and (self.autocast_dtype in [torch.float16, torch.bfloat16]) else False ) # used in NVIDIA NGC PyTorch containers # buffer used during train_step for logging average loss over gradient accumulation steps self._reduced_lm_loss_buffer = [] self._reduced_sop_loss_buffer = [] # build_model returns a list of modules which are used for interleaved pipeline parallelism self.model = build_model( model_provider_func=self.model_provider_func, wrap_with_ddp=False, virtual_pipeline_model_parallel_size=self.cfg.get('virtual_pipeline_model_parallel_size', None), ) # if we're not using interleaved, then self.model is a module. if self.cfg.get('virtual_pipeline_model_parallel_size', None) is None: self.model = self.model[0] if self.megatron_amp_o2: if not self.with_distributed_adam: # Pre-allocate the model on GPU to have master parameters allocated on the same device with matching data type if isinstance(self.model, list): for module in self.model: module.cuda(torch.cuda.current_device()) else: self.model.cuda(torch.cuda.current_device()) # Model wrapper to convert both model and inputs to half precision if isinstance(self.model, list): converted_model = [] for module in self.model: converted_model.append( Float16Module(config=self.model_parallel_config, module=module, precision=self.cfg.precision) ) self.model = converted_model else: self.model = Float16Module( config=self.model_parallel_config, module=self.model, precision=self.cfg.precision ) if hasattr(self, '_nsys_profile_enabled'): mp_size = cfg.get('tensor_model_parallel_size', 1) * cfg.get('pipeline_model_parallel_size', 1) data_parallel_world_size = trainer.world_size // mp_size grad_accum_steps = cfg.get('global_batch_size') // (cfg.get('micro_batch_size') * data_parallel_world_size) self._nsys_profile_start_step *= grad_accum_steps self._nsys_profile_end_step *= grad_accum_steps def model_provider_func(self, pre_process, post_process): cfg = self.cfg num_tokentypes = 2 if cfg.bert_binary_head else 0 model = BertModel( config=self.model_parallel_config, vocab_size=self.padded_vocab_size, hidden_size=cfg.hidden_size, max_position_embeddings=cfg.max_position_embeddings, num_layers=cfg.num_layers, num_attention_heads=cfg.num_attention_heads, apply_query_key_layer_scaling=cfg.get('apply_query_key_layer_scaling', True), kv_channels=cfg.get('kv_channels', None), ffn_hidden_size=cfg.ffn_hidden_size, num_tokentypes=num_tokentypes, parallel_output=True, pre_process=pre_process, post_process=post_process, init_method_std=cfg.get('init_method_std', 0.02), fp16_lm_cross_entropy=cfg.get('fp16_lm_cross_entropy', False), megatron_amp_O2=self.cfg.get('megatron_amp_O2', False), hidden_dropout=cfg.get('hidden_dropout', 0.1), precision=cfg.get('precision', 16), fp32_residual_connection=cfg.get('fp32_residual_connection', False), activations_checkpoint_granularity=self.cfg.get('activations_checkpoint_granularity', None), activations_checkpoint_method=self.cfg.get('activations_checkpoint_method', None), activations_checkpoint_num_layers=self.cfg.get('activations_checkpoint_num_layers', 1), activations_checkpoint_layers_per_pipeline=self.cfg.get( 'activations_checkpoint_layers_per_pipeline', None ), layernorm_epsilon=cfg.get('layernorm_epsilon', 1e-5), masked_softmax_fusion=cfg.get('masked_softmax_fusion', True), bias_gelu_fusion=cfg.get('bias_gelu_fusion', True), bias_dropout_add_fusion=cfg.get("bias_dropout_add_fusion", True), onnx_safe=cfg.get('onnx_safe', False), add_binary_head=cfg.bert_binary_head, megatron_legacy=cfg.get('megatron_legacy', False), position_embedding_type=self.cfg.get("position_embedding_type", "learned_absolute"), ) return model def _validate_trainer(self): """ Certain trainer configurations can break training. Here we try to catch them and raise an error. """ if self.trainer.accumulate_grad_batches > 1: raise ValueError( f'Gradient accumulation is done within training_step. trainer.accumulate_grad_batches must equal 1' ) def get_forward_output_and_loss_func(self): def fwd_output_and_loss_func(dataloader_iter, model, checkpoint_activations_all_layers=None): if parallel_state.get_pipeline_model_parallel_world_size() == 1: batch = next(dataloader_iter) tokens, types, sentence_order, loss_mask, lm_labels, padding_mask = ( batch['text'].cuda(non_blocking=True), batch['types'].cuda(non_blocking=True), batch['is_random'].cuda(non_blocking=True), batch['loss_mask'].cuda(non_blocking=True), batch['labels'].cuda(non_blocking=True), batch['padding_mask'].cuda(non_blocking=True), ) else: batch = next(dataloader_iter) if parallel_state.is_pipeline_first_stage(): tokens = batch['text'].cuda(non_blocking=True) types = batch['types'].cuda(non_blocking=True) sentence_order = batch['is_random'].cuda(non_blocking=True) padding_mask = batch['padding_mask'].cuda(non_blocking=True) loss_mask, lm_labels = None, None elif parallel_state.is_pipeline_last_stage(): loss_mask = batch['loss_mask'].cuda(non_blocking=True) lm_labels = batch['labels'].cuda(non_blocking=True) sentence_order = batch['is_random'].cuda(non_blocking=True) padding_mask = batch['padding_mask'].cuda(non_blocking=True) tokens, types = None, None else: padding_mask = batch['padding_mask'].cuda(non_blocking=True) sentence_order = batch['is_random'].cuda(non_blocking=True) tokens, types, loss_mask, lm_labels = None, None, None, None if not self.cfg.bert_binary_head: types = None output_tensor = self.forward( tokens, padding_mask, types, lm_labels, checkpoint_activations_all_layers=checkpoint_activations_all_layers, model=model, ) def loss_func(output_tensor): loss_dict = self.loss_func(loss_mask, sentence_order, output_tensor) if 'sop loss' in loss_dict: lm_loss = loss_dict['lm loss'] sop_loss = loss_dict['sop loss'] loss = lm_loss + sop_loss reduced_loss = average_losses_across_data_parallel_group([loss, lm_loss, sop_loss]) else: lm_loss = loss_dict['lm loss'] loss = lm_loss reduced_loss = average_losses_across_data_parallel_group([loss, lm_loss]) return loss, {'loss': reduced_loss} return output_tensor, loss_func return fwd_output_and_loss_func def forward( self, input_ids, attention_mask, token_type_ids, lm_labels=None, checkpoint_activations_all_layers=None, model=None, ): if model is None: model = self.model output_tensor = model( input_ids, attention_mask, token_type_ids=token_type_ids, lm_labels=lm_labels, checkpoint_activations_all_layers=checkpoint_activations_all_layers, ) if parallel_state.is_pipeline_last_stage(): # Return the output tensor of encoder and transpose from [seq_len, batch, hidden] to [batch, seq_len, hidden] if torch.is_tensor(output_tensor): output_tensor = output_tensor.transpose(1, 0).contiguous() else: lm_loss_, sop_logits = output_tensor lm_loss_ = lm_loss_.transpose(1, 0).contiguous() if sop_logits is not None: sop_logits = sop_logits.transpose(1, 0).contiguous() output_tensor = (lm_loss_, sop_logits) return output_tensor def training_step(self, dataloader_iter, batch_idx): self._optimizer.zero_grad() if self.with_distributed_adam: # hack to enable overlapping param sync and forward compute # note: the distributed optimizer monkey-patches each # parameter's __getattribute__ function so that it can # launch parameter all-gathers the first time the # parameter is accessed after the optimizer step. However, # PyTorch directly passes embedding parameters into a C++, # bypassing this process. A quick-and-dirty hack is to # manually interact with the parameter. modules = self.model if isinstance(self.model, list) else [self.model] for module in modules: if isinstance(module, Float16Module): module = module.module module = module.language_model if hasattr(module, 'embedding'): for param in module.embedding.parameters(): param.data_ptr() if self.cfg.data.dataloader_type == "LDDL": # this is of type bert dataset seq_length = dataloader_iter.iterator.loaders.get_seqlen() else: seq_length = self.cfg.encoder_seq_length # run forward and backwards passes for an entire global batch # we do this inside training_step to support pipeline parallelism fwd_bwd_function = get_forward_backward_func() losses_reduced_per_micro_batch = fwd_bwd_function( forward_step_func=self.get_forward_output_and_loss_func(), data_iterator=dataloader_iter, model=[self.model], num_microbatches=get_num_microbatches(), forward_only=False, seq_length=seq_length, micro_batch_size=self.cfg.micro_batch_size, ) if losses_reduced_per_micro_batch: loss_tensors_list = [loss_reduced['loss'] for loss_reduced in losses_reduced_per_micro_batch] loss_tensor = torch.vstack(loss_tensors_list) loss_mean = loss_tensor.mean(axis=0) else: if self.cfg.bert_binary_head == True: loss_mean = torch.tensor([0.0, 0.0, 0.0]).cuda() else: loss_mean = torch.tensor([0.0, 0.0]).cuda() # when using sequence parallelism, the sequence parallel layernorm grads must be all-reduced if self.cfg.get('tensor_model_parallel_size', 1) > 1 and self.cfg.get('sequence_parallel', False): self.allreduce_sequence_parallel_gradients() if self.with_distributed_adam: # synchronize asynchronous grad reductions # note: not necessary, but reduces performance degradation # from multiple simultaneous NCCL calls self._optimizer._finish_bucket_grad_sync() elif self.megatron_amp_o2: if self.cfg.get('pipeline_model_parallel_size', 1) > 1 or self.cfg.get('sequence_parallel', False): # when using pipeline parallelism grads must be all-reduced after the pipeline (not asynchronously) self._optimizer.allreduce_main_grads() else: # async grad allreduce is not currently implemented for O1/autocasting mixed precision training # so we all-reduce gradients after the pipeline self.allreduce_gradients() # @sangkug we think this is causing memory to blow up (hurts perf) if self.cfg.get('pipeline_model_parallel_size', 1) > 1: # when using pipeline parallelism the first and last stage must keep embeddings in sync self.allreduce_first_last_embeddings() torch.distributed.broadcast(loss_mean, get_last_rank()) if self.torch_dtype == torch.float16: loss_scale = self.trainer.precision_plugin.scaler._scale if loss_scale is not None: self.log('loss_scale', loss_scale, batch_size=1) if (batch_idx + 1) % self.trainer.accumulate_grad_batches == 0: # Reduced loss for logging. self.log('reduced_train_loss', loss_mean[0], prog_bar=True, batch_size=1) if len(loss_mean) > 2: self.log('reduced_lm_train_loss', loss_mean[1], prog_bar=True, batch_size=1) self.log('reduced_sop_train_loss', loss_mean[2], prog_bar=True, batch_size=1) lr = self._optimizer.param_groups[0]['lr'] self.log('lr', lr, batch_size=1) self.log('global_step', self.trainer.global_step, prog_bar=True, batch_size=1) self.log( 'consumed_samples', self._compute_consumed_samples_after_training_step(), prog_bar=True, batch_size=1, ) return loss_mean[0] def allreduce_first_last_embeddings(self): # Modified from megatron-lm: https://github.com/NVIDIA/Megatron-LM/blob/d41696840ed0a7edb7e0499eb82a48ae112d9bb3/megatron/training.py#L407 # All-reduce word_embeddings' grad across first and last stages to ensure # that word_embeddings parameters stay in sync. # This should only run for models that support pipelined model parallelism # (BERT and GPT-2). if parallel_state.get_pipeline_model_parallel_world_size() > 1 and ( parallel_state.is_pipeline_first_stage(ignore_virtual=True) or parallel_state.is_pipeline_last_stage(ignore_virtual=True) ): if parallel_state.is_pipeline_first_stage(ignore_virtual=True): if isinstance(self.model, list): module = self.model[0] # only the first virtual rank has the embeddings else: module = self.model if parallel_state.is_pipeline_last_stage(ignore_virtual=True): if isinstance(self.model, list): module = self.model[-1] # only the last virtual rank has the embeddings else: module = self.model if module.share_token_embeddings: word_embeddings_weight = module.word_embeddings_weight() if self.megatron_amp_o2: # O2 recipe stores a "main" copy of weights and grads grad = word_embeddings_weight.main_grad else: grad = word_embeddings_weight.grad torch.distributed.all_reduce(grad, group=parallel_state.get_embedding_group()) def validation_step(self, dataloader_iter, batch_idx): # Check if iterator is exhausted dataloader_iter, done = self._val_iterator_done(dataloader_iter) if done: return prefix = "test" if self.trainer.testing else "val" if self.cfg.data.dataloader_type == "LDDL": seq_length = dataloader_iter.iterator.get_seqlen() else: seq_length = self.cfg.encoder_seq_length fwd_bwd_function = get_forward_backward_func() losses_reduced_per_micro_batch = fwd_bwd_function( forward_step_func=self.get_forward_output_and_loss_func(), data_iterator=dataloader_iter, model=[self.model], num_microbatches=get_num_microbatches(), forward_only=True, seq_length=seq_length, micro_batch_size=self.cfg.micro_batch_size, ) if losses_reduced_per_micro_batch: loss_tensors_list = [loss_reduced['loss'] for loss_reduced in losses_reduced_per_micro_batch] loss_tensor = torch.vstack(loss_tensors_list) loss_mean = loss_tensor.mean(axis=0) else: loss_mean = torch.tensor([0.0]).cuda() loss = loss_mean[0] self.validation_step_outputs.append(loss) if prefix == 'val' else self.test_step_outputs.append(loss) return loss def on_validation_epoch_end(self): if parallel_state.is_pipeline_last_stage(): averaged_loss = torch.stack(self.validation_step_outputs).mean() else: averaged_loss = torch.tensor(0.0, dtype=torch.float32).cuda() torch.distributed.broadcast(averaged_loss, get_last_rank()) self.log('val_loss', averaged_loss, prog_bar=True, batch_size=1) self.validation_step_outputs.clear() # free memory def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def on_test_epoch_end(self): averaged_loss = average_losses_across_data_parallel_group(self.test_step_outputs) logging.info(f'test_loss: {averaged_loss[0]}') def loss_func(self, loss_mask, sentence_order, output_tensor): lm_loss_, sop_logits = output_tensor lm_loss_ = lm_loss_.float() loss_mask = loss_mask.float() # Sometimes when the number of tokens is very small, none of the tokens get masked for prediction. In that case loss mask is all zeros # i.e Happens when the entire batch is masked out (Practically when MBS=1 or 2, and the number of tokens in each batch is < 7 ) if loss_mask.sum() == 0: lm_loss = torch.sum(lm_loss_.view(-1)) * 0.0 else: lm_loss = torch.sum(lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum() if sop_logits is not None: sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(), sentence_order.view(-1), ignore_index=-1) sop_loss = sop_loss.float() return {'lm loss': lm_loss, 'sop loss': sop_loss} # loss = lm_loss + sop_loss # averaged_losses = average_losses_across_data_parallel_group( # [lm_loss, sop_loss]) # return loss, {'lm loss': averaged_losses[0], # 'sop loss': averaged_losses[1]} else: return {'lm loss': lm_loss} # loss = lm_loss # averaged_losses = average_losses_across_data_parallel_group( # [lm_loss]) # return loss, {'lm loss': averaged_losses[0]} def build_LDDL_data(self, cfg): if not HAVE_LDDL: raise ImportError( "LDDL was not found. Please see the LDDL README for installation instructions: https://github.com/NVIDIA/LDDL#installation." ) logging.info(f'Starting building LDDL Dataloaders') self._train_ds = None self._validation_ds = None self._test_ds = None data_parallel_size = parallel_state.get_data_parallel_world_size() num_micro_batches = self.cfg.global_batch_size // (self.cfg.micro_batch_size * data_parallel_size) global_batch_size_on_this_data_parallel_rank = num_micro_batches * self.cfg.micro_batch_size samples_consumed_dploader = self.compute_consumed_samples(0) // data_parallel_size # We run under the assumption that the datapath is the prefix if LDDL dataloader train_lddl_data_path = self.cfg.data.data_prefix[0] self._train_dl = get_bert_pretrain_data_loader( train_lddl_data_path, dp_rank=parallel_state.get_data_parallel_rank(), local_rank=self.local_rank, shuffle_buffer_size=16384, shuffle_buffer_warmup_factor=16, vocab_file=self.cfg.tokenizer.vocab_file, data_loader_kwargs={ 'batch_size': global_batch_size_on_this_data_parallel_rank, 'num_workers': self.cfg.data.num_workers, 'prefetch_factor': 2, }, mlm_probability=0.15, base_seed=self.cfg.seed, log_level=logging.CRITICAL, log_dir="/tmp/log", return_raw_samples=False, start_epoch=0, sequence_length_alignment=8, ignore_index=-1, samples_seen=samples_consumed_dploader, micro_batch_size=self.cfg.micro_batch_size, ) logging.info(f'Completed build train LDDL Dataloader') if len(self.cfg.data.data_prefix) > 1: val_lddl_data_path = self.cfg.data.data_prefix[1] self._validation_dl = get_bert_pretrain_data_loader( val_lddl_data_path, dp_rank=parallel_state.get_data_parallel_rank(), local_rank=self.local_rank, shuffle_buffer_size=16384, shuffle_buffer_warmup_factor=16, vocab_file=self.cfg.tokenizer.vocab_file, data_loader_kwargs={ 'batch_size': global_batch_size_on_this_data_parallel_rank, 'num_workers': self.cfg.data.num_workers, 'prefetch_factor': 2, }, mlm_probability=0.15, base_seed=self.cfg.seed, log_level=logging.CRITICAL, log_dir="/tmp/log", return_raw_samples=False, start_epoch=0, sequence_length_alignment=8, ignore_index=-1, micro_batch_size=self.cfg.micro_batch_size, ) if len(self.cfg.data.data_prefix) > 2: test_lddl_data_path = self.cfg.data.data_prefix[2] self._test_dl = get_bert_pretrain_data_loader( test_lddl_data_path, dp_rank=parallel_state.get_data_parallel_rank(), local_rank=self.local_rank, shuffle_buffer_size=16384, shuffle_buffer_warmup_factor=16, vocab_file=self.cfg.tokenizer.vocab_file, data_loader_kwargs={ 'batch_size': global_batch_size_on_this_data_parallel_rank, 'num_workers': self.cfg.data.num_workers, 'prefetch_factor': 2, }, mlm_probability=0.15, base_seed=self.cfg.seed, log_level=logging.CRITICAL, log_dir="/tmp/log", return_raw_samples=False, start_epoch=0, sequence_length_alignment=8, ignore_index=-1, micro_batch_size=self.cfg.micro_batch_size, ) logging.info(f'Finished building LDDL Dataloaders') def build_train_valid_test_datasets(self): # Override limit_val_batches to be a multiple of num microbatches to prevent val_step from exiting in between a step self._reconfigure_val_batches() logging.info('Building Bert datasets.') if self.trainer.limit_val_batches > 1.0 and isinstance(self.trainer.limit_val_batches, float): raise ValueError("limit_val_batches must be an integer or float less than or equal to 1.0.") global_batch_size = self.cfg.global_batch_size # Compute trianing micro-batch steps: total_global_batch_steps x grad_acumms_per_global_batch max_train_steps = self.trainer.max_steps eval_iters = (max_train_steps // self.trainer.val_check_interval + 1) * self.trainer.limit_val_batches test_iters = self.trainer.limit_test_batches train_valid_test_num_samples = [ max_train_steps * global_batch_size, eval_iters * global_batch_size, test_iters * global_batch_size, ] if self.trainer.limit_val_batches <= 1.0 and isinstance(self.trainer.limit_val_batches, float): train_valid_test_num_samples[ 1 ] = 1 # This is to make sure we only have one epoch on every validation iteration self._train_ds, self._validation_ds, self._test_ds = dataset_utils.build_train_valid_test_datasets( cfg=self.cfg, trainer=self.trainer, data_prefix=self.cfg.data.data_prefix, data_impl=self.cfg.data.data_impl, splits_string=self.cfg.data.splits_string, train_valid_test_num_samples=train_valid_test_num_samples, max_seq_length=self.cfg.data.seq_length, masked_lm_prob=self.cfg.data.masked_lm_prob, short_seq_prob=self.cfg.data.short_seq_prob, seed=self.cfg.seed, skip_warmup=self.cfg.data.get('skip_warmup', True), binary_head=self.cfg.bert_binary_head, max_seq_length_dec=None, dataset_type='standard_bert', tokenizer=self.tokenizer.tokenizer, ) if self._train_ds is not None: logging.info(f'Length of train dataset: {len(self._train_ds)}') if self._validation_ds is not None: logging.info(f'Length of val dataset: {len(self._validation_ds)}') if self._test_ds is not None: logging.info(f'Length of test dataset: {len(self._test_ds)}') logging.info(f'Finished building Bert datasets.') return self._train_ds, self._validation_ds, self._test_ds def backward(self, *args, **kwargs): """ LightningModule hook to do backward. We want this to do nothing since we run backward in the fwd/bwd functions from megatron-core. No need to call it here. """ return def optimizer_zero_grad(self, *args, **kwargs): """ LightningModule hook to zero grad. We want this to do nothing as we are zeroing grads during the training_step. """ return def _append_sequence_parallel_module_grads(self, module, grads): """ Helper method for allreduce_sequence_parallel_gradients""" for param in module.parameters(): sequence_parallel_param = getattr(param, 'sequence_parallel', False) if sequence_parallel_param: if self.megatron_amp_o2: grad = param.main_grad else: grad = param.grad grads.append(grad.data) def setup(self, stage=None): """ PTL hook that is executed after DDP spawns. We setup datasets here as megatron datasets require DDP to instantiate. See https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#setup for more information. Args: stage (str, optional): Can be 'fit', 'validate', 'test' or 'predict'. Defaults to None. """ num_parameters_on_device, total_num_parameters = self._get_total_params_across_model_parallel_groups_gpt_bert( self.model ) logging.info( f'Pipeline model parallel rank: {parallel_state.get_pipeline_model_parallel_rank()}, ' f'Tensor model parallel rank: {parallel_state.get_tensor_model_parallel_rank()}, ' f'Number of model parameters on device: {num_parameters_on_device:.2e}. ' f'Total number of model parameters: {total_num_parameters:.2e}.' ) resume_checkpoint_path = self.trainer.ckpt_path if resume_checkpoint_path: init_consumed_samples = self._extract_consumed_samples_from_ckpt(resume_checkpoint_path) else: init_consumed_samples = 0 self.init_consumed_samples = init_consumed_samples self.init_global_step = self.trainer.global_step if stage == 'predict': return else: # TODO: consider adding a ModelPT guard to check if model is being restored. # allowing restored models to optionally setup datasets if self.cfg.data.dataloader_type == "LDDL": self.build_LDDL_data(self.cfg.data) torch.distributed.barrier() else: self.build_train_valid_test_datasets() self.setup_training_data(self.cfg.data) self.setup_validation_data(self.cfg.data) self.setup_test_data(self.cfg.data) # when using pipeline model parallel the final stage need to initialize word embeddings if parallel_state.get_pipeline_model_parallel_world_size() > 1: if isinstance(self.model, list): for i, module in enumerate(self.model): parallel_state.set_virtual_pipeline_model_parallel_rank(i) module.sync_initial_word_embeddings() parallel_state.set_virtual_pipeline_model_parallel_rank(0) else: self.model.sync_initial_word_embeddings() if self.cfg.get('transformer_engine', False): self.setup_transformer_engine_tp_groups() def allreduce_sequence_parallel_gradients(self): """ All-reduce layernorm parameters across model parallel nodes when sequence parallelism is used. Modified from megatron-lm: https://gitlab-master.nvidia.com/ADLR/megatron-lm/-/blob/3f91f09bb2ab32f9904b47f46f19d2fc3f518ed8/megatron/training.py#L425 """ grads = [] if isinstance(self.model, list): for module in self.model: self._append_sequence_parallel_module_grads(module, grads) else: self._append_sequence_parallel_module_grads(self.model, grads) coalesced = torch._utils._flatten_dense_tensors(grads) torch.distributed.all_reduce(coalesced, group=parallel_state.get_tensor_model_parallel_group()) for buf, synced in zip(grads, torch._utils._unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced) def build_pretraining_data_loader(self, dataset, consumed_samples): """Buld dataloader given an input dataset.""" if dataset is None: return None # Megatron sampler if hasattr(self.cfg.data, 'dataloader_type') and self.cfg.data.dataloader_type is not None: if self.cfg.data.dataloader_type == 'single': batch_sampler = MegatronPretrainingSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=self.cfg.micro_batch_size, global_batch_size=self.cfg.global_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), drop_last=self.cfg.get('drop_last', True), ) elif self.cfg.data.dataloader_type == 'cyclic': batch_sampler = MegatronPretrainingRandomSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=self.cfg.micro_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), drop_last=self.cfg.get('drop_last', True), ) else: raise ValueError('cfg.data.dataloader_type must be "single" or "cyclic"') else: raise ValueError('cfg.data.dataloader_type not found. Must be "single" or "cyclic"') # Torch dataloader. return torch.utils.data.DataLoader( dataset, batch_sampler=batch_sampler, num_workers=self.cfg.data.num_workers, pin_memory=True, persistent_workers=True if self.cfg.data.num_workers > 0 else False, ) def setup_training_data(self, cfg): if hasattr(self, '_train_ds'): consumed_samples = self.compute_consumed_samples(0) logging.info( f'Setting up train dataloader with len(len(self._train_ds)): {len(self._train_ds)} and consumed samples: {consumed_samples}' ) self._train_dl = self.build_pretraining_data_loader(self._train_ds, consumed_samples) def setup_validation_data(self, cfg): if hasattr(self, '_validation_ds'): consumed_samples = 0 logging.info( f'Setting up validation dataloader with len(len(self._validation_ds)): {len(self._validation_ds)} and consumed samples: {consumed_samples}' ) self._validation_dl = self.build_pretraining_data_loader(self._validation_ds, consumed_samples) def setup_test_data(self, cfg): if hasattr(self, '_test_ds'): consumed_samples = 0 logging.info( f'Setting up test dataloader with len(len(self._test_ds)): {len(self._test_ds)} and consumed samples: {consumed_samples}' ) self._test_dl = self.build_pretraining_data_loader(self._test_ds, consumed_samples) def transfer_batch_to_device(self, batch: Any, device: torch.device, dataloader_idx: int) -> Any: """ PTL hook: https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#transfer-batch-to-device When using pipeline parallelism, we need the global batch to remain on the CPU, since the memory overhead will be too high when using a large number of microbatches. Microbatches are transferred from CPU to GPU inside the pipeline. """ return batch def parameters(self): if isinstance(self.model, list): return itertools.chain.from_iterable(module.parameters() for module in self.model) else: return self.model.parameters() @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] for vocab in ['cased', 'uncased']: result.append( PretrainedModelInfo( pretrained_model_name=f"megatron_bert_345m_{vocab}", location=f"https://api.ngc.nvidia.com/v2/models/nvidia/nemo/megatron_bert_345m_{vocab}/versions/1/files/megatron_bert_345m_{vocab}.nemo", description=f"345M parameter BERT Megatron model with {vocab} vocab.", ) ) for vocab_size in ['50k', '30k']: for vocab in ['cased', 'uncased']: result.append( PretrainedModelInfo( pretrained_model_name=f"biomegatron345m_biovocab_{vocab_size}_{vocab}", location=f"https://api.ngc.nvidia.com/v2/models/nvidia/nemo/biomegatron345m_biovocab_{vocab_size}_{vocab}/versions/1/files/BioMegatron345m-biovocab-{vocab_size}-{vocab}.nemo", description="Megatron 345m parameters model with biomedical vocabulary ({vocab_size} size) {vocab}, pre-trained on PubMed biomedical text corpus.", ) ) for vocab in ['cased', 'uncased']: result.append( PretrainedModelInfo( pretrained_model_name=f"biomegatron-bert-345m-{vocab}", location=f"https://api.ngc.nvidia.com/v2/models/nvidia/nemo/biomegatron345m{vocab}/versions/1/files/BioMegatron345m{vocab.capitalize()}.nemo", description=f"Megatron pretrained on {vocab} biomedical dataset PubMed with 345 million parameters.", ) ) return result def setup_optimizer_param_groups(self): """ModelPT override. Optimizer will get self._optimizer_param_groups""" self._optimizer_param_groups = get_params_for_weight_decay_optimization(self.model) def configure_optimizers(self): if self.with_distributed_adam: # Disable overlapped grad sync for embedding grad when # pipeline parallelism is enabled if parallel_state.get_pipeline_model_parallel_world_size() > 1: if parallel_state.is_pipeline_first_stage(ignore_virtual=True): if isinstance(self.model, list): module = self.model[0] # only the first virtual rank has the embeddings else: module = self.model if module.share_token_embeddings: param = module.word_embeddings_weight() param._disable_greedy_grad_copy = not self.megatron_amp_o2 param._disable_overlap_grad_sync = True if parallel_state.is_pipeline_last_stage(ignore_virtual=True): if isinstance(self.model, list): module = self.model[-1] # only the last virtual rank has the embeddings else: module = self.model if module.share_token_embeddings: param = module.word_embeddings_weight() param._disable_greedy_grad_copy = not self.megatron_amp_o2 param._disable_overlap_grad_sync = True # Disable overlapped grad sync for layer norm grads when # sequence parallelism is enabled for param in self.parameters(): if getattr(param, 'sequence_parallel', False): param._disable_greedy_grad_copy = not self.megatron_amp_o2 param._disable_overlap_grad_sync = True # sequence parallelism is enabled for param in self.parameters(): if getattr(param, 'sequence_parallel', False): param._disable_greedy_grad_copy = not self.megatron_amp_o2 param._disable_overlap_grad_sync = True # Initialize parameter buckets for overlapped grad and param syncs # Note: Params with disabled overlapping are put in the # last param bucket buckets = [] if self.cfg.get('virtual_pipeline_model_parallel_size', None) is not None: # Initialize a bucket for each virtual pipeline stage for module in self.model: if isinstance(module, Float16Module): module = module.module stage_bucket = [] for layer in module.language_model.encoder.layers: stage_bucket.extend( p for p in layer.parameters() if not getattr(p, '_disable_overlap_grad_sync', False) ) buckets.append(stage_bucket) else: # Initialize a bucket for each Transformer layer modules = self.model if isinstance(self.model, list) else [self.model] for module in modules: if isinstance(module, Float16Module): module = module.module for layer in module.language_model.encoder.layers: buckets.append( [p for p in layer.parameters() if not getattr(p, '_disable_overlap_grad_sync', False)] ) buckets.reverse() used_params = set() for bucket in buckets: used_params.update(bucket) buckets[-1].extend(p for p in self.parameters() if p not in used_params) self.distributed_adam_buckets = buckets return super().configure_optimizers() # Required for ONNX export @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "attention_mask": NeuralType(('B', 'T'), MaskType(), optional=True), "token_type_ids": NeuralType(('B', 'T'), ChannelType(), optional=True), } # Required for ONNX export def input_example(self, max_batch=1, max_dim=256): """ Generates input examples for tracing etc. Returns: A tuple of input examples. """ sample = next(self.parameters()) sz = (max_batch, max_dim) input_ids = torch.randint(low=0, high=2048, size=sz, device=sample.device) token_type_ids = torch.randint(low=0, high=1, size=sz, device=sample.device) attention_mask = torch.randint(low=0, high=1, size=sz, device=sample.device) input_dict = {"input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids} return tuple([input_dict]) def on_save_checkpoint(self, checkpoint) -> None: """LightningModule hook: https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#on-save-checkpoint """ if isinstance(self.model, list): for i in range(len(self.model)): parallel_state.set_virtual_pipeline_model_parallel_rank(i) checkpoint[f'model{i}'] = self.model[i].module.state_dict_for_save_checkpoint() parallel_state.set_virtual_pipeline_model_parallel_rank(0) def on_load_checkpoint(self, checkpoint) -> None: """LightningModule hook: https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#on-load-checkpoint """ if isinstance(self.model, list): for i in range(len(self.model)): parallel_state.set_virtual_pipeline_model_parallel_rank(i) self.model[i].module.load_state_dict(checkpoint[f'model{i}'], strict=True) parallel_state.set_virtual_pipeline_model_parallel_rank(0)
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_bert_model.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This code has been adapted from the following private repo: https://gitlab-master.nvidia.com/ADLR/megatron-lm/-/tree/prompt-learning/prefix_tuning_v2 # Adapted by: @adithyare import itertools import os import torch from omegaconf.dictconfig import DictConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.common.parts.adapter_modules import LinearAdapterConfig from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel from nemo.collections.nlp.models.language_modeling.megatron_gpt_prompt_learning_model import ( MegatronGPTPromptLearningModel, ) from nemo.collections.nlp.modules.common import VirtualPromptStyle from nemo.collections.nlp.modules.common.megatron.adapters.parallel_adapters import ( AdapterName, InfusedAdapterConfig, MLPInfusedAdapterConfig, ParallelLinearAdapterConfig, ) from nemo.collections.nlp.modules.common.megatron.utils import average_losses_across_data_parallel_group from nemo.collections.nlp.parts.nlp_overrides import NLPSaveRestoreConnector from nemo.collections.nlp.parts.utils_funcs import get_last_rank from nemo.core.classes.mixins import adapter_mixins from nemo.utils import logging, model_utils class MegatronGPTBaseAdapterModel(MegatronGPTPromptLearningModel): def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) save_restore_connector = NLPSaveRestoreConnector() if os.path.isdir(cfg.get('language_model_path')): save_restore_connector.model_extracted_dir = cfg.get('language_model_path') self.frozen_model_cfg = MegatronGPTModel.restore_from( cfg.get('language_model_path'), trainer=trainer, return_config=True, save_restore_connector=save_restore_connector, ) self.adapter_name_keys = [] def forward( self, input_ids, position_ids, attention_mask, taskname_ids, labels=None, inference=True, set_inference_key_value_memory=False, inference_max_sequence_len=None, ): if self.autocast_dtype == torch.float32: output = self.frozen_model.model( input_ids=input_ids, position_ids=position_ids, encoder_input=None, attention_mask=attention_mask, labels=labels, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, ) else: with torch.autocast(device_type="cuda", dtype=self.autocast_dtype): output = self.frozen_model.model( input_ids=input_ids, position_ids=position_ids, encoder_input=None, attention_mask=attention_mask, labels=labels, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, ) return output def setup(self, stage=None): if stage == 'predict': self.frozen_model.freeze() return self.setup_test_data() if stage == 'test': return self.setup_training_data() self.setup_validation_data() logging.info(f'setup completed:\n{self.frozen_model.summarize()}') def on_train_end(self): # Save the best nemo model self.save_to(save_path=self.cfg.nemo_path) def get_forward_output_only_func(self): """ Used for generate method only for now. """ def fwd_output_only_func(dataloader_iter, model): batch = next(dataloader_iter) extra_arg = {} ( tokens, attention_mask, position_ids, task_ids, set_inference_key_value_memory, inference_max_sequence_len, ) = batch tokens = tokens.cuda() attention_mask = attention_mask.cuda() position_ids = position_ids.cuda() task_ids = task_ids.cuda() extra_arg['set_inference_key_value_memory'] = set_inference_key_value_memory[0].item() extra_arg['inference_max_sequence_len'] = inference_max_sequence_len[0].item() output_tensor = model(tokens, position_ids, attention_mask, task_ids, **extra_arg) def id_func(output_tensor): return output_tensor, {'logits': output_tensor} return output_tensor, id_func return fwd_output_only_func def state_dict(self, destination=None, prefix=None, keep_vars=False): """ Creates a state_dict using only the adapter parameters. This ensures that this wrapper class will only checkpoint the adapter weights and not the rest of the base GPT Model. """ state_dict_ = {} for name, module in self.frozen_model.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin) and module.is_adapter_available(): for adapter_key in self.adapter_name_keys: adapter_module = module.get_adapter_module(adapter_key) if adapter_module: state_adapter_key = ':'.join([name, adapter_key]) state_dict_[state_adapter_key] = adapter_module.state_dict() module.set_enabled_adapters(enabled=True) return state_dict_ def load_state_dict(self, state_dict, strict: bool = True): """ Loads a state_dict expecting the state_dict to contain key,values only for the adapter parameters. """ for name, module in self.frozen_model.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin) and module.is_adapter_available(): for adapter_key in self.adapter_name_keys: adapter_module = module.get_adapter_module(adapter_key) if adapter_module: state_adapter_key = ':'.join([name, adapter_key]) adapter_module.load_state_dict(state_dict[state_adapter_key], strict) module.set_enabled_adapters(enabled=True) def setup_optimizer_param_groups(self): """ ModelPT override. Optimizer will get self._optimizer_param_groups. Makes two optimizer param groups, one for the frozen model params and one for the prompt-table/prompt-encoder params. The learning rate for the frozen model's params will always be zero effectively freezing the model's params but still allowing for the needed gradients to be passed around in pipeline parallel models. The prompt-encoder and/or prompt table will use the learning rate set by the user. """ self.frozen_model.freeze() # Freeze the entire model opt_params = [] for _, module in self.frozen_model.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin) and module.is_adapter_available(): module.set_enabled_adapters(enabled=True) module.unfreeze_enabled_adapters() # selectively unfreeze the adapter modules. opt_params += [p for p in module.parameters()] self._optimizer_param_groups = [{'params': opt_params}] logging.info(f'Optimizer groups set:\n{self.frozen_model.summarize()}') def get_forward_output_and_loss_func(self): def fwd_output_and_loss_func(dataloader_iter, model): batch = next(dataloader_iter) batch = [x.cuda(non_blocking=True) for x in batch] input_ids, labels, loss_mask, position_ids, attention_mask, taskname_ids = batch output_tensor = model(input_ids, position_ids, attention_mask, taskname_ids, labels, inference=False) def loss_func(output_tensor): loss = self.frozen_model.loss_func(loss_mask, output_tensor) reduced_loss = average_losses_across_data_parallel_group([loss]) return loss, {'avg': reduced_loss} return output_tensor, loss_func return fwd_output_and_loss_func def training_step(self, dataloader_iter, batch_idx): # we zero grads here because we also call backward in the megatron-core fwd/bwd functions self._optimizer.zero_grad() batch = next(dataloader_iter) loss_mean = self.fwd_bwd_step(itertools.chain([batch]), batch_idx, forward_only=False) self.allreduce_gradients() ## logging # we can only log on one rank if it is rank zero so we broadcast from last rank # we can avoid this broadcast by updating the PTL log function to accept specific ranks torch.distributed.broadcast(loss_mean, get_last_rank()) if self.torch_dtype == torch.float16: loss_scale = self.trainer.precision_plugin.scaler._scale if loss_scale is not None: self.log('loss_scale', loss_scale, batch_size=1) self.log('reduced_train_loss', loss_mean, prog_bar=True, rank_zero_only=True, batch_size=1) lr = self._optimizer.param_groups[0]['lr'] self.log('lr', lr, rank_zero_only=True, batch_size=1) self.log('global_step', self.trainer.global_step, prog_bar=True, rank_zero_only=True, batch_size=1) # Need to make sure the frozen model param learning rate stays 0.0 # so forceing lr to be 0.0 for gpt layers before param update return loss_mean class MegatronGPTAdapterLearningModel(MegatronGPTBaseAdapterModel): """ MegatronGPTAdapterLearningModel is a model that combines a base model (GPTModel) with a adapters. This class only supports the canonical Adapter training described in Houlsby et al. (https://arxiv.org/pdf/1902.00751.pdf) Two adapter's are inserted into each Transformer layer in the base GPT Model. It is assumed that these set of adapters will then be trained for a specific task. Once trained, the adapter weights will be saved and can be re-loaded and infused into the same GPT Model for inference. """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) assert cfg.adapter_tuning.get('adapter_dim', 0) > 0, "adapter_dim has not been set." assert ( cfg.adapter_tuning.adapter_dim % cfg.tensor_model_parallel_size == 0 ), "The adapter dim should be divisible by tensor_model_parallel_size." assert cfg.adapter_tuning.type in [ 'linear_adapter', 'parallel_adapter', ], "Adapter type should be 'linear_adapter' or 'parallel_adapter'" self.adapter_name_keys = [AdapterName.PRE_ATTN_ADAPTER, AdapterName.POST_ATTN_ADAPTER] for _, layer in self.frozen_model.named_modules(): if hasattr(layer, 'activations_checkpoint_method'): layer.activations_checkpoint_method = ( None # (@adithyare) adapter learning does not support activations checkpointing atm. ) logging.info(f'Before adding adapters:\n{self.frozen_model.summarize()}') if cfg.adapter_tuning.type == "parallel_adapter": adapter_cfg = ParallelLinearAdapterConfig( in_features=self.frozen_model_cfg.hidden_size, out_features=self.frozen_model_cfg.hidden_size, dim=cfg.adapter_tuning.adapter_dim, norm_position=cfg.adapter_tuning.get('norm_position', 'pre'), norm_type=cfg.adapter_tuning.get('norm_type', 'mixedfusedlayernorm'), column_init_method=cfg.adapter_tuning.get('column_init_method', 'xavier'), row_init_method=cfg.adapter_tuning.get('row_init_method', 'zero'), dropout=cfg.adapter_tuning.adapter_dropout, ) else: adapter_cfg = LinearAdapterConfig( in_features=self.frozen_model_cfg.hidden_size, dim=cfg.adapter_tuning.adapter_dim, norm_position=cfg.adapter_tuning.get('norm_position', 'pre'), dropout=cfg.adapter_tuning.adapter_dropout, ) self.frozen_model.freeze() for _, module in self.frozen_model.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin): for adapter_key in self.adapter_name_keys: if model_utils.import_class_by_path(adapter_cfg._target_) in module.get_accepted_adapter_types(): module.add_adapter( name=adapter_key, cfg=adapter_cfg, ) logging.info(f'After adding adapters:\n{self.frozen_model.summarize()}') @classmethod def list_available_models(cls): pass class MegatronGPTInfusedAdapterModel(MegatronGPTBaseAdapterModel): """ MegatronGPTInfusedAdapterModel is a model that combines a base model (GPTModel) with a "Infused Adapter that can Inhibiting and Amplify Inner Activations", known as IA3. This class supports the addition of IA3 into a transformer based LM as described in Liu et al. (https://arxiv.org/pdf/2205.05638.pdf) Three adapter's are inserted into each Transformer layer in the base GPT Model. Each adapter is basically a vector that simply scales the key, value or ffn hidden representations. It is assumed that these set of adapters will then be trained for a specific task. Once trained, the adapter weights will be saved and can be re-loaded and infused into the same GPT Model for inference. """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) self.adapter_name_keys = [AdapterName.KEY_INFUSED, AdapterName.VALUE_INFUSED, AdapterName.MLP_INFUSED] for _, layer in self.frozen_model.named_modules(): if hasattr(layer, 'activations_checkpoint_method'): layer.activations_checkpoint_method = ( None # (@adithyare) adapter learning does not support activations checkpointing atm. ) logging.info(f'Before adding adapters:\n{self.frozen_model.summarize()}') self.frozen_model.freeze() for _, module in self.frozen_model.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin): for adapter_key in self.adapter_name_keys: if adapter_key == AdapterName.MLP_INFUSED: cfg = MLPInfusedAdapterConfig( in_features=self.frozen_model_cfg.ffn_hidden_size // self.frozen_model_cfg.tensor_model_parallel_size ) elif adapter_key in [AdapterName.KEY_INFUSED, AdapterName.VALUE_INFUSED]: cfg = InfusedAdapterConfig( in_features=self.frozen_model_cfg.hidden_size // self.frozen_model_cfg.tensor_model_parallel_size ) else: raise ValueError(f"Adapter Key {adapter_key} is unknown.") if model_utils.import_class_by_path(cfg._target_) in module.get_accepted_adapter_types(): module.add_adapter(name=adapter_key, cfg=cfg) logging.info(f'After adding adapters:\n{self.frozen_model.summarize()}') @classmethod def list_available_models(cls): pass
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_gpt_adapter_model.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from omegaconf.dictconfig import DictConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.models.language_modeling.megatron_gpt_sft_model import MegatronGPTSFTModel from nemo.collections.nlp.modules.common.megatron.adapters.mcore_mixins import ( MCoreGPTEmbeddingMixin, MCoreSelfAttentionMixin, MCoreTransformerLayerMixin, swap_mcore_mixin, ) from nemo.collections.nlp.modules.common.megatron.adapters.parallel_adapters import ( AdapterName, InfusedAdapterConfig, LoraKQVAdapterConfig, LoraKQVAdapterWeightTyingConfig, MLPInfusedAdapterConfig, ParallelLinearAdapterConfig, ParallelLinearAdapterWeightTyingConfig, PromptEncoderAdapterConfig, ) from nemo.core.classes.mixins import adapter_mixins from nemo.utils import logging, model_utils try: from megatron.core import parallel_state HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False class MegatronGPTPEFTModel(MegatronGPTSFTModel): """ base class for all mixin based adapter models """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) self.setup_complete = False self.base_keys = self.get_all_keys() self.freeze() self.init_peft_modules() self.adapter_keys = self.get_all_keys() - self.base_keys def first_stage_of_pipeline(self): if hasattr(self, "model") and hasattr(self.model, "pre_process"): return self.model.pre_process elif hasattr(self, "model") and hasattr(self.model, "module") and hasattr(self.model.module, "pre_process"): # (guyueh1): this if condition is used to handle amp O2 # when amp_O2 is on, self.model will be wrapped by the Float16Module class return self.model.module.pre_process logging.warning("no attribute named model or no model.pre_process found. Can not detect stage of pipeline...") return False def init_peft_modules(self): """ Randomly initialize the peft params and add them to the appropriate modules. """ assert len(self.peft_name_keys) > 0, "peft_name_keys have not been set no PEFT modules will be added" assert not self.mcore_gpt or hasattr( self, 'name_key_to_mcore_mixins' ), f"{self.__class__.__name__} is not supported in megatron core mode yet." assert len(self.name_key_to_cfg) > 0, "name_key_to_cfg has not been set no PEFT modules will be added" logging.info(f"Before adding PEFT params:\n{self.summarize()}") for name, module in self.named_modules(): if self.mcore_gpt: for peft_key in self.peft_name_keys: for mcore_target, mcore_mixin in self.name_key_to_mcore_mixins[peft_key]: if name in [ f'model.{mcore_target}', f'model.module.{mcore_target}', ]: # simple string match for now swap_mcore_mixin(module, mcore_mixin) peft_cfg = self.name_key_to_cfg[peft_key] if ( model_utils.import_class_by_path(peft_cfg._target_) in module.get_accepted_adapter_types() ): module.add_adapter( name=peft_key, cfg=peft_cfg, base_model_cfg=self.cfg, model_parallel_config=self.model_parallel_config, ) else: if isinstance(module, adapter_mixins.AdapterModuleMixin): for peft_key in self.peft_name_keys: peft_cfg = self.name_key_to_cfg[peft_key] if model_utils.import_class_by_path(peft_cfg._target_) in module.get_accepted_adapter_types(): module.add_adapter( name=peft_key, cfg=peft_cfg, base_model_cfg=self.cfg, model_parallel_config=self.model_parallel_config, ) logging.info(f"After adding PEFT params:\n{self.summarize()}") return True def setup(self, stage=None): super().setup(stage) self.setup_complete = True def get_all_keys(self,): """ Returns all the keys in the model """ k = [n for n, p in self.named_parameters()] b = [n for n, p in self.named_buffers() if n.replace("model.module.", "model.", 1) in self.state_dict().keys()] # we include buffers because ptuning representations are cached in a buffer and saved to state_dict for inference time use. return set(k + b) def get_peft_state_dict(self,): """ Gets the keys associated with the adapters only. """ state_dict = self.model.state_dict(prefix="model.module." if self.cfg.megatron_amp_O2 else "model.") peft_state_dict = {} for k in self.adapter_keys: # state_dict keys needs to be in non-O2 format and will be corrected in PEFTSaveRestoreConnector if O2=True new_k = k.replace("model.module.", "model.", 1) peft_state_dict[new_k] = state_dict[k] return peft_state_dict def state_dict(self, destination=None, prefix=None, keep_vars=False): if self.setup_complete: # Once setup is complete we no longer need to track the frozen part of the model. Only there adapter state dict keeps changing so state_dict only track these. return self.get_peft_state_dict() else: # we want all the params with the same keys as calling self.state_dict() # but we can't call self.state_dict() here as it would be a recursive call. # so we call self.model.state_dict(prefix="model.") which will return all the keys and params same as calling self.state_dict() return self.model.state_dict(prefix="model.") def sharded_state_dict(self, prefix: str = ''): if self.setup_complete: return None else: return self.model.sharded_state_dict(prefix="model.") def load_state_dict(self, state_dict, strict: bool = True): if len(state_dict) == 0: return # checkpoint is loaded in on_load_checkpoint() if self.setup_complete: # at this stage only PEFT params will appear in the state_dict arg # so we only update those while the rest of the model is frozen. # setting strict=False will ignore the missing keys (which are not being updated anyway) # explicitly check if state_dict.keys matches all the expected self.adapter_keys since we don't have the # safety in strict=True anymore. assert set(state_dict.keys()) == self.adapter_keys super().load_state_dict(state_dict, strict=False) else: super().load_state_dict(state_dict, strict=True) def on_load_checkpoint(self, checkpoint) -> None: """LightningModule hook: https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#on-load-checkpoint """ if self.setup_complete: # same as super().on_load_checkpoint() but strict=False and only check unexpected keys # mcore uses distributed checkpointing print('enter peft loading') if self.mcore_gpt: for index, module in enumerate(self.get_gpt_module_list()): if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None: checkpoint_state_dict = checkpoint['state_dict'][f'model_{index}'] else: checkpoint_state_dict = checkpoint['state_dict'] # checkpoint_state_dict has "model." but module does not so we need to remove it when loading checkpoint_state_dict = { key.replace('model.', ''): checkpoint_state_dict.pop(key) for key in list(checkpoint_state_dict.keys()) } missing_keys, unexpected_keys = module.load_state_dict(checkpoint_state_dict, strict=False) assert len(unexpected_keys) == 0, 'Unexpected key(s) in state_dict: {}. '.format( ', '.join('"{}"'.format(k) for k in unexpected_keys) ) # legacy checkpointing for interleaved else: if isinstance(self.model, list): for i in range(len(self.model)): parallel_state.set_virtual_pipeline_model_parallel_rank(i) self.model[i].module.load_state_dict(checkpoint[f'model{i}'], strict=True) parallel_state.set_virtual_pipeline_model_parallel_rank(0) else: super().on_load_checkpoint(checkpoint) def setup_optimizer_param_groups(self): """ ModelPT override. Optimizer will get self._optimizer_param_groups. Makes two optimizer param groups, one for the frozen model params and one for the prompt-table/prompt-encoder params. The learning rate for the frozen model's params will always be zero effectively freezing the model's params but still allowing for the needed gradients to be passed around in pipeline parallel models. The prompt-encoder and/or prompt table will use the learning rate set by the user. """ self.freeze() # Freeze the entire model opt_params = [] for _, module in self.named_modules(): if isinstance(module, adapter_mixins.AdapterModuleMixin) and module.is_adapter_available(): module.set_enabled_adapters(enabled=True) module.unfreeze_enabled_adapters() # selectively unfreeze the adapter modules. opt_params += [p for p in module.parameters() if p.requires_grad] self._optimizer_param_groups = ({"params": opt_params},) logging.info(f"Optimizer groups set:\n{self.summarize()}") class MegatronGPTLayerwisePEFTModel(MegatronGPTPEFTModel): def __init__( self, cfg: DictConfig, trainer: Trainer, ): super().__init__(cfg, trainer) def init_peft_modules(self): """ Randomly initialize the peft params and add them to the appropriate modules. """ assert len(self.peft_name_keys) > 0, "peft_name_keys have not been set no PEFT modules will be added" assert not self.mcore_gpt or hasattr( self, 'name_key_to_mcore_mixins' ), f"{self.__class__.__name__} is not supported in megatron core mode yet." assert len(self.name_key_to_cfg) > 0, "name_key_to_cfg has not been set no PEFT modules will be added" logging.info(f"Before adding PEFT params:\n{self.summarize()}") if self.mcore_gpt: if self.cfg.megatron_amp_O2: layers = self.model.module.decoder.layers else: layers = self.model.decoder.layers else: if self.cfg.megatron_amp_O2: layers = self.model.module.language_model.encoder.layers else: layers = self.model.language_model.encoder.layers for layer in layers: if layer.layer_number in self.layer_selection: for name, module in layer.named_modules(): if self.mcore_gpt: for peft_key in self.peft_name_keys: for mcore_target, mcore_mixin in self.name_key_to_mcore_mixins[peft_key]: if name == mcore_target: swap_mcore_mixin(module, mcore_mixin) peft_cfg = self.name_key_to_cfg[peft_key] if ( model_utils.import_class_by_path(peft_cfg._target_) in module.get_accepted_adapter_types() ): module.add_adapter( name=peft_key, cfg=peft_cfg, model_parallel_config=self.model_parallel_config, ) else: if isinstance(module, adapter_mixins.AdapterModuleMixin): for peft_key in self.peft_name_keys: peft_cfg = self.name_key_to_cfg[peft_key] if ( model_utils.import_class_by_path(peft_cfg._target_) in module.get_accepted_adapter_types() ): module.add_adapter( name=peft_key, cfg=peft_cfg, base_model_cfg=self.cfg, model_parallel_config=self.model_parallel_config, ) logging.info(f"After adding PEFT params:\n{self.summarize()}") return True class MegatronGPTAdapterModel(MegatronGPTLayerwisePEFTModel): """ MegatronGPTAdapterLearningModel is a model that combines a base model (GPTSFTModel) with a adapters. This class only supports the canonical Adapter training described in Houlsby et al. (https://arxiv.org/pdf/1902.00751.pdf) Two adapter's are inserted into each Transformer layer in the base GPT Model. It is assumed that these set of adapters will then be trained for a specific task. Once trained, the adapter weights will be saved and can be re-loaded and infused into the same GPT Model for inference. """ def __init__( self, cfg: DictConfig, trainer: Trainer, ): self.peft_name_keys = [ AdapterName.PRE_ATTN_ADAPTER, AdapterName.POST_ATTN_ADAPTER, ] adapter_tuning_cfg = cfg.peft.adapter_tuning adapter_cfg = ParallelLinearAdapterConfig( in_features=cfg.hidden_size, out_features=cfg.hidden_size, dim=adapter_tuning_cfg.adapter_dim, norm_position=adapter_tuning_cfg.get("norm_position", "pre"), norm_type=adapter_tuning_cfg.get("norm_type", "mixedfusedlayernorm"), column_init_method=adapter_tuning_cfg.get("column_init_method", "xavier"), row_init_method=adapter_tuning_cfg.get("row_init_method", "zero"), dropout=adapter_tuning_cfg.adapter_dropout, ) self.name_key_to_cfg = {} self.name_key_to_mcore_mixins = {} for k in self.peft_name_keys: self.name_key_to_cfg[k] = adapter_cfg self.name_key_to_mcore_mixins[k] = [("", MCoreTransformerLayerMixin)] self.layer_selection = adapter_tuning_cfg.get("layer_selection", None) if self.layer_selection is None: self.layer_selection = list(range(1, cfg.num_layers + 1)) super().__init__(cfg, trainer) class MegatronGPTAdapterModelWeightTying(MegatronGPTLayerwisePEFTModel): """ TODO """ def __init__( self, cfg: DictConfig, trainer: Trainer, ): self.peft_name_keys = [ AdapterName.PRE_ATTN_ADAPTER, AdapterName.POST_ATTN_ADAPTER, ] adapter_tuning_cfg = cfg.peft.adapter_tuning adapter_cfg = ParallelLinearAdapterWeightTyingConfig( in_features=cfg.hidden_size, out_features=cfg.hidden_size, dim=adapter_tuning_cfg.adapter_dim, norm_position=adapter_tuning_cfg.get("norm_position", "pre"), norm_type=adapter_tuning_cfg.get("norm_type", "mixedfusedlayernorm"), column_init_method=adapter_tuning_cfg.get("column_init_method", "xavier"), row_init_method=adapter_tuning_cfg.get("row_init_method", "zero"), dropout=adapter_tuning_cfg.adapter_dropout, num_position_embeddings=cfg.num_layers * 2, dim_position_embeddings=cfg.hidden_size, position_embedding_strategy=adapter_tuning_cfg.get("position_embedding_strategy", None), ) self.name_key_to_cfg = {} self.name_key_to_mcore_mixins = {} for k in self.peft_name_keys: self.name_key_to_cfg[k] = adapter_cfg self.name_key_to_mcore_mixins[k] = [("", MCoreTransformerLayerMixin)] self.layer_selection = adapter_tuning_cfg.get("layer_selection", None) if self.layer_selection is None: self.layer_selection = list(range(1, cfg.num_layers + 1)) super().__init__(cfg, trainer) self.tie_weights() def tie_weights(self,): pos_idx = 0 if self.mcore_gpt: if self.cfg.megatron_amp_O2: layers = self.model.module.decoder.layers else: layers = self.model.decoder.layers else: if self.cfg.megatron_amp_O2: layers = self.model.module.language_model.encoder.layers else: layers = self.model.language_model.encoder.layers layer0 = layers[0] for adapter_name in layer0.adapter_layer: adapter = layer0.get_adapter_module(adapter_name) print(adapter_name, pos_idx) adapter.set_position(pos_idx) pos_idx += 1 for layer in layers[1:]: for adapter_name in layer.adapter_layer: print(adapter_name, pos_idx) adapter_l = layer.get_adapter_module(adapter_name) adapter_0 = layer0.get_adapter_module(adapter_name) if hasattr(adapter_0, "layer_norm"): lnorm = adapter_0.layer_norm else: lnorm = None adapter_l.tie_weights(pos_idx, adapter_0) pos_idx += 1 class MegatronGPTIA3Model(MegatronGPTLayerwisePEFTModel): """ MegatronGPTInfusedAdapterModel is a model that combines a base model (GPTSFTModel) with a "Infused Adapter that can Inhibiting and Amplify Inner Activations", known as IA3. This class supports the addition of IA3 into a transformer based LM as described in Liu et al. (https://arxiv.org/pdf/2205.05638.pdf) Three adapter's are inserted into each Transformer layer in the base GPT Model. Each adapter is basically a vector that simply scales the key, value or ffn hidden representations. It is assumed that these set of adapters will then be trained for a specific task. Once trained, the adapter weights will be saved and can be re-loaded and infused into the same GPT Model for inference. """ def __init__(self, cfg: DictConfig, trainer: Trainer): self.peft_name_keys = [AdapterName.KEY_INFUSED, AdapterName.VALUE_INFUSED, AdapterName.MLP_INFUSED] mlp_infused_adapter_cfg = MLPInfusedAdapterConfig( in_features=cfg.ffn_hidden_size // cfg.tensor_model_parallel_size ) infused_adapter_cfg = InfusedAdapterConfig(in_features=cfg.hidden_size // cfg.tensor_model_parallel_size) self.name_key_to_cfg = {} for k in self.peft_name_keys: if k == AdapterName.MLP_INFUSED: self.name_key_to_cfg[k] = mlp_infused_adapter_cfg elif k in [ AdapterName.KEY_INFUSED, AdapterName.VALUE_INFUSED, ]: self.name_key_to_cfg[k] = infused_adapter_cfg else: raise ValueError(f"PEFT Key {k} is unknown.") self.layer_selection = cfg.peft.ia3_tuning.get("layer_selection", None) if self.layer_selection is None: self.layer_selection = list(range(1, cfg.num_layers + 1)) super().__init__(cfg, trainer) class MegatronGPTPTuningModel(MegatronGPTPEFTModel): """ MegatronGPTPTuningModel is a model that combines a base model (GPTSFTModel) with a p-tuning prefix in the input word embedding representations using a prompt-encoder as descripted in Liu et al. https://arxiv.org/pdf/2103.10385.pdf The mixin framework adds the output of prompt-encoder (i.e. the virtual embeddings) inside nemo/collections/nlp/modules/common/megatron/language_model.py """ def __init__(self, cfg: DictConfig, trainer: Trainer): self.peft_name_keys = [AdapterName.PTUNING_ADAPTER] adapter_cfg = PromptEncoderAdapterConfig( cfg.peft.p_tuning.virtual_tokens, cfg.peft.p_tuning.bottleneck_dim, cfg.peft.p_tuning.embedding_dim, cfg.peft.p_tuning.init_std, cfg.hidden_size, ) self.name_key_to_cfg = {AdapterName.PTUNING_ADAPTER: adapter_cfg} self.name_key_to_mcore_mixins = {AdapterName.PTUNING_ADAPTER: [('embedding', MCoreGPTEmbeddingMixin)]} super().__init__(cfg, trainer) self.virtual_tokens = cfg.peft.p_tuning.virtual_tokens def init_peft_modules(self,): """ Initialize the p-tuning prompt encoder in the mixin. This should only happen in the first stage of the pipeline unlike other PEFT methods like Lora or Adapters because p-tuning only adds params at input to the encoder layer. """ if not self.first_stage_of_pipeline(): # There are no params to add if we are not in the first state of the pipeline return True super().init_peft_modules() return True def state_dict(self, destination=None, prefix=None, keep_vars=False): """ Reimplement state_dict for ptuning because we also need to check the stage of the pipeline. The check is required to make pp>1 to work. """ if self.setup_complete: if self.first_stage_of_pipeline(): return self.get_peft_state_dict() # if we are not in the first state of pipeline after setup is done # there should be no params in the state_dict return {} else: return self.model.state_dict(prefix="model.") def load_state_dict(self, state_dict, strict: bool = True): """ Reimplement load_state_dict for ptuning because we also need to check the stage of the pipeline. The check is required to make pp>1 to work. """ if len(state_dict) == 0: return # checkpoint is loaded in on_load_checkpoint() if self.setup_complete: if self.first_stage_of_pipeline(): # if we are not in the first state of pipeline after setup is done # there should be no params to load... assert set(state_dict.keys()) == self.adapter_keys super().load_state_dict(state_dict, strict=False) else: super().load_state_dict(state_dict, strict=True) def on_load_checkpoint(self, checkpoint) -> None: """LightningModule hook: https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#on-load-checkpoint """ if self.setup_complete: if self.first_stage_of_pipeline(): super().on_load_checkpoint(checkpoint) else: super().on_load_checkpoint(checkpoint) def setup_optimizer_param_groups(self): if self.first_stage_of_pipeline(): super().setup_optimizer_param_groups() else: self.freeze() # Freeze the entire model self._optimizer_param_groups = ({"params": []},) logging.info(f"Optimizer groups set:\n{self.summarize()}") class MegatronGPTAdapterPTuningModel(MegatronGPTPEFTModel): """ Want to combine adapters and p-tuning? Why not? they are orthogonal methods. This class includes both sets of params. """ def __init__(self, cfg: DictConfig, trainer: Trainer): self.peft_name_keys = [ AdapterName.PRE_ATTN_ADAPTER, AdapterName.POST_ATTN_ADAPTER, AdapterName.PTUNING_ADAPTER, ] ptuning_cfg = PromptEncoderAdapterConfig( cfg.peft.p_tuning.virtual_tokens, cfg.peft.p_tuning.bottleneck_dim, cfg.peft.p_tuning.embedding_dim, cfg.peft.p_tuning.init_std, cfg.hidden_size, ) adapter_tuning_cfg = cfg.peft.adapter_tuning adapter_cfg = ParallelLinearAdapterConfig( in_features=cfg.hidden_size, out_features=cfg.hidden_size, dim=adapter_tuning_cfg.adapter_dim, norm_position=adapter_tuning_cfg.get("norm_position", "pre"), norm_type=adapter_tuning_cfg.get("norm_type", "mixedfusedlayernorm"), column_init_method=adapter_tuning_cfg.get("column_init_method", "xavier"), row_init_method=adapter_tuning_cfg.get("row_init_method", "zero"), dropout=adapter_tuning_cfg.adapter_dropout, ) self.name_key_to_cfg = { AdapterName.PRE_ATTN_ADAPTER: adapter_cfg, AdapterName.POST_ATTN_ADAPTER: adapter_cfg, AdapterName.PTUNING_ADAPTER: ptuning_cfg, } logging.warning("AdapterPTuning doesn't support mcore for now. need to use regex to match target.") self.name_key_to_mcore_mixins = { AdapterName.PRE_ATTN_ADAPTER: [('', MCoreTransformerLayerMixin)], AdapterName.POST_ATTN_ADAPTER: [('', MCoreTransformerLayerMixin)], AdapterName.PTUNING_ADAPTER: [('embedding', MCoreGPTEmbeddingMixin)], } super().__init__(cfg, trainer) self.virtual_tokens = cfg.peft.p_tuning.virtual_tokens class MegatronGPTLoRAModel(MegatronGPTLayerwisePEFTModel): """ MegatronGPTLoRAModel is a model that combines a base model (GPTSFTModel) with a low-rank adapters. The lora adapters will be added in `nemo/collections/nlp/modules/common/megatron/attention.py` The implementation is based on Hu et al. nemo/collections/nlp/modules/common/megatron/attention.py A single low-rank feedfowrad layer is used in parallel with the KQV projection layer. TODO: Add support to also include an option to adda low-rank adapter in the output projection layer. """ def __init__( self, cfg: DictConfig, trainer: Trainer, ): self.peft_name_keys = [ AdapterName.LORA_KQV_ADAPTER, ] lora_cfg = cfg.peft.lora_tuning if cfg.get("kv_channels", None) is None: assert ( cfg.hidden_size % cfg.num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = cfg.hidden_size // cfg.num_attention_heads else: kv_channels = cfg.kv_channels projection_size = kv_channels * cfg.num_attention_heads num_query_groups = cfg.get("num_query_groups", None) if num_query_groups is None: num_query_groups = cfg.num_attention_heads qkv_projection_size = projection_size + 2 * kv_channels * num_query_groups adapter_cfg = LoraKQVAdapterConfig( in_features=cfg.hidden_size, out_features=qkv_projection_size, dim=lora_cfg.adapter_dim, norm_position=None, norm_type=None, activation="identity", column_init_method=lora_cfg.get("column_init_method", "normal"), row_init_method=lora_cfg.get("row_init_method", "zero"), gather_output=False, dropout=lora_cfg.adapter_dropout, ) self.name_key_to_cfg = {} self.name_key_to_mcore_mixins = {} # maps peft_key to a list of tuples (mcore_target, mcore_mixin) for k in self.peft_name_keys: self.name_key_to_cfg[k] = adapter_cfg self.name_key_to_mcore_mixins[k] = [("self_attention", MCoreSelfAttentionMixin)] self.layer_selection = lora_cfg.get("layer_selection", None) if self.layer_selection is None: self.layer_selection = list(range(1, cfg.num_layers + 1)) super().__init__(cfg, trainer) class MegatronGPTLoRAModelWeightTying(MegatronGPTLayerwisePEFTModel): """ TODO """ def __init__( self, cfg: DictConfig, trainer: Trainer, ): self.peft_name_keys = [ AdapterName.LORA_KQV_ADAPTER, ] lora_cfg = cfg.peft.lora_tuning if cfg.get("kv_channels", None) is None: assert ( cfg.hidden_size % cfg.num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = cfg.hidden_size // cfg.num_attention_heads else: kv_channels = cfg.kv_channels projection_size = kv_channels * cfg.num_attention_heads num_query_groups = cfg.get("num_query_groups", None) if num_query_groups is None: num_query_groups = cfg.num_attention_heads qkv_projection_size = projection_size + 2 * kv_channels * num_query_groups position_embedding_strategy = lora_cfg.get("position_embedding_strategy", None) if position_embedding_strategy is None: dim_position_embeddings = 0 elif position_embedding_strategy == "add": dim_position_embeddings = cfg.hidden_size elif position_embedding_strategy == "biasadd": dim_position_embeddings = 3 * projection_size elif position_embedding_strategy == "concat": dim_position_embeddings = lora_cfg.adapter_dim elif position_embedding_strategy == "mlpconcat": dim_position_embeddings = lora_cfg.adapter_dim else: raise RuntimeError(f"Unknown position embedding strategy {position_embedding_strategy} for tied weights") adapter_cfg = LoraKQVAdapterWeightTyingConfig( in_features=cfg.hidden_size, out_features=qkv_projection_size, dim=lora_cfg.adapter_dim, norm_position=None, norm_type=None, activation="identity", column_init_method=lora_cfg.get("column_init_method", "normal"), row_init_method=lora_cfg.get("row_init_method", "zero"), gather_output=False, dropout=lora_cfg.adapter_dropout, num_position_embeddings=cfg.num_layers, dim_position_embeddings=dim_position_embeddings, position_embedding_strategy=position_embedding_strategy, ) self.name_key_to_cfg = {} self.name_key_to_mcore_mixins = {} for k in self.peft_name_keys: self.name_key_to_cfg[k] = adapter_cfg self.name_key_to_mcore_mixins[k] = [("self_attention", MCoreSelfAttentionMixin)] self.layer_selection = lora_cfg.get("layer_selection", None) if self.layer_selection is None: self.layer_selection = list(range(1, cfg.num_layers + 1)) super().__init__(cfg, trainer) self.tie_weights() def tie_weights(self,): pos_idx = 0 if self.mcore_gpt: if self.cfg.megatron_amp_O2: layers = self.model.module.decoder.layers else: layers = self.model.decoder.layers else: if self.cfg.megatron_amp_O2: layers = self.model.module.language_model.encoder.layers else: layers = self.model.language_model.encoder.layers layer0 = layers[0] for adapter_name in layer0.self_attention.adapter_layer: adapter = layer0.self_attention.get_adapter_module(adapter_name) print(adapter_name, pos_idx) adapter.set_position(pos_idx) pos_idx += 1 for layer in layers[1:]: for adapter_name in layer.self_attention.adapter_layer: print(adapter_name, pos_idx) adapter_l = layer.self_attention.get_adapter_module(adapter_name) adapter_0 = layer0.self_attention.get_adapter_module(adapter_name) position_embeddings_0 = None if adapter_0.position_embedding_strategy: position_embeddings_0 = adapter_0.position_embeddings adapter_l.tie_weights(pos_idx, adapter_0) pos_idx += 1
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_gpt_peft_models.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import re from collections import OrderedDict from typing import Any, Optional import torch from omegaconf.dictconfig import DictConfig from omegaconf.omegaconf import open_dict from pytorch_lightning.trainer.trainer import Trainer from torch import Tensor from nemo.collections.common.tokenizers.sentencepiece_tokenizer import SentencePieceTokenizer from nemo.collections.nlp.metrics.prompt_learning_metrics import AccuracyScore, BLEUScore, ROUGEScores from nemo.collections.nlp.models.language_modeling.megatron_base_model import MegatronBaseModel from nemo.collections.nlp.modules.common import ( PromptEncoder, PromptEncoderType, VirtualPromptPlaceholderToken, VirtualPromptSource, VirtualPromptStyle, ) from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults from nemo.collections.nlp.modules.common.transformer.text_generation import TextGeneration from nemo.collections.nlp.parts.nlp_overrides import GradScaler from nemo.utils import AppState, logging try: from apex.transformer.pipeline_parallel.utils import _reconfigure_microbatch_calculator HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import ModelParallelConfig, parallel_state HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False __all__ = ['MegatronBasePromptLearningModel'] class MegatronBasePromptLearningModel(MegatronBaseModel, TextGeneration): """ Model class for prompt-tuning or p-tuning a pretrained Megatron model. Prompt Tuning initalizes virtual prompt embeddings directly from a copy of certain token embeddings from the the pretrained model's vocabulary and directly tunes these embedding weights. The token embeddings used in initalization are specified by the user in the config file. The model can be prompt-tuned for multiple tasks at once. virtual prompts are stored in a prompt table and can be added or deleted without disrupting virtual prompts for other tasks. P-tuning initializes an LSTM encoder model that generates virtual prompt embeddings for every task. Each task shares the same encoder. After ptuning is compelete, the learned virtual prompts can be saved to the prompt table using add_ptuned_prompts_to_prompt_table(). Thus, if a user wants to add a new virtual prompt via p-tuning, they do not need to retrain on all previous tasks. This gives p-tuning the same task flexiblity as prompt-tuning. """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) self.config: ModelParallelConfig = self.model_parallel_config self.load_frozen_model(cfg, trainer) self.prompt_encoder = None self.tokenizer = self.frozen_model.tokenizer if hasattr(self.frozen_model.cfg, "encoder") and hasattr(self.frozen_model.cfg, "decoder"): self.hidden_size = ( self.frozen_model.cfg.encoder.hidden_size ) # Encoder and decoder need to have the same hidden size and we check for this in the frozen enc-dec model. self.config.hidden_size = self.hidden_size else: self.hidden_size = self.frozen_model.cfg.hidden_size self.config.hidden_size = self.hidden_size self.existing_tasks = list(self.cfg.get('existing_tasks', [])) self.new_tasks = list(self.cfg.get('new_tasks', [])) self.virtual_prompt_style = VirtualPromptStyle(cfg.virtual_prompt_style) # Load templates for assigning virtual prompt token positions self.load_task_templates(self.cfg.task_templates) if self.first_stage_of_pipeline() and self.virtual_prompt_style in [ VirtualPromptStyle.P_TUNING, ]: # TODO: Handle this when moving GPT prompt learning to the base class. self.word_embeddings = self.frozen_model.enc_dec_model.encoder_embedding.word_embeddings # P-Tuning uses an LSTM Encoder to produce virtual token embeddings if self.virtual_prompt_style == VirtualPromptStyle.P_TUNING: self.virtual_prompt_source = VirtualPromptSource.PROMPT_ENCODER elif self.virtual_prompt_style == VirtualPromptStyle.NO_PROMPT: self.virtual_prompt_source = VirtualPromptSource.NO_PROMPT else: raise ValueError(f"\nvirtual prompt style '{cfg.virtual_prompt_style}'") self._reduced_loss_buffer = [] self._inference_config = None # Prepare pseudo token ids for virtual/virtual prompt tokens self.pseudo_tokens = get_pseudo_tokens(self.max_virtual_tokens) if isinstance(self.tokenizer, SentencePieceTokenizer): self.tokenizer.add_special_tokens(self.pseudo_tokens) else: self.tokenizer.add_special_tokens({'additional_special_tokens': self.pseudo_tokens}) self.pseudo_token_ids = self.tokenizer.tokens_to_ids(self.pseudo_tokens) self.pseudo_token_ids_start = self.pseudo_token_ids[0] if self.pseudo_token_ids else None self.pad_token_id = self.tokenizer.pad_id if self.tokenizer.pad_id is not None else self.tokenizer.unk_id self.decoder_seq_length = cfg.get('decoder_seq_length', 40) # make sure the default pytorch lightning gradient clipping in the basemodel self.grad_clip_pl_default = True self.lowest_val_loss = None self.prompt_encoder = None self.enable_autocast = ( True if (not self.megatron_amp_o2) and (self.autocast_dtype in [torch.float16, torch.bfloat16]) else False ) # define validation metric if self.cfg.get('report_validation_metric', False): validation_metric = self.cfg.get('validation_metric', 'accuracy') if validation_metric == 'accuracy': self.validation_metric = AccuracyScore() elif validation_metric == 'bleu': self.validation_metric = BLEUScore() elif validation_metric == 'rouge': self.validation_metric = ROUGEScores() def load_task_templates(self, task_templates): """ Takes in the task template portion of the config and turns it into a table where each task's prompt template and the number of virtual tokens to insert in a given part of the prompt template are specified. """ self.task_templates = {} self.task_id_num_to_name = {} self.max_virtual_tokens = 0 task_id_num = 0 for task in task_templates: self.task_templates[task.taskname] = { "prompt_template": task.prompt_template, "prompt_template_fields": re.findall("\{(.*?)\}", task.prompt_template), "answer_only_loss": task.get("answer_only_loss", False), "answer_field": task.get("answer_field", None), "truncate_field": task.truncate_field, "total_virtual_tokens": task.total_virtual_tokens, "virtual_token_splits": task.virtual_token_splits, "task_id_num": task_id_num, } self.max_virtual_tokens = max(self.max_virtual_tokens, task.total_virtual_tokens) self.task_id_num_to_name[task_id_num] = task.taskname task_id_num += 1 # Check that all new tasks have the same total num virtual tokens # Num virtual tokens for new tasks don't need to match num used for previously tuned tasks if self.new_tasks: new_task_name = self.new_tasks[0] self.total_new_task_virtual_tokens = self.task_templates[new_task_name]["total_virtual_tokens"] assert all( self.task_templates[taskname]["total_virtual_tokens"] == self.total_new_task_virtual_tokens for taskname in self.new_tasks ), "Total virtual tokens for each task tuned simultaneously must match. If you want to use a different number of virtual tokens for different tasks, tune them separately." def init_prompt_encoder(self): """ Init the prompt encoder needed for p-tuning on a new task """ # Total virtual tokens should be the same across all new tasks, so just need one new_task = self.new_tasks[0] total_virtual_tokens = self.task_templates[new_task]["total_virtual_tokens"] encoder_type = PromptEncoderType(self.cfg.p_tuning.get("encoder_type", "tpmlp").lower()) self.prompt_encoder = PromptEncoder( config=self.model_parallel_config, encoder_type=encoder_type, total_virtual_tokens=total_virtual_tokens, token_dim=self.hidden_size, hidden_size=self.cfg.p_tuning.get("encoder_hidden", self.hidden_size // 2), lstm_dropout=self.cfg.p_tuning.get("dropout", 0.0), num_layers=self.cfg.p_tuning.get("num_layers", 2), init_std=self.cfg.p_tuning.get("init_std", 0.023), taskname=new_task, ) def freeze_existing_word_embeddings(self): """Freeze params of existing virtual prompts that should not be tuned further """ # Make sure word embeddings are frozen for params in self.word_embeddings.parameters(): params.requires_grad = False def state_dict(self): """ Custom state dict that only contains prompt table and prompt encoder parameters. No frozen model parameters are stored in the state dict. Prompt encoder parameters are only in state dict for intermediate checkpoints saved during training. Final nemo checkpoints at the end of training will contain prompt table parameters only. """ state_dict_ = {} if self.first_stage_of_pipeline(): if self.virtual_prompt_source == VirtualPromptSource.PROMPT_ENCODER: state_dict_ = self.prompt_encoder.state_dict() else: raise ValueError("invalid virtual prompt source") return state_dict_ def load_state_dict(self, state_dict, strict: bool = True): """ Custom load state dict method that only loads prompt table and prompt encoder parameters. Matching load method for this class' custom state dict method. """ if self.first_stage_of_pipeline(): if self.virtual_prompt_source == VirtualPromptSource.PROMPT_ENCODER: if self.prompt_encoder is None: self.init_prompt_encoder() self.prompt_encoder.load_state_dict(state_dict, strict) else: raise ValueError("invalid virtual prompt source") def setup_optimizer_param_groups(self): """ ModelPT override. Optimizer will get self._optimizer_param_groups. Only want virtual prompt params to be passed to the optimizer. """ ## Freeze frozen model for param in self.frozen_model.parameters(): param.requires_grad = False virtual_prompt_params = {'params': []} if self.first_stage_of_pipeline(): if self.virtual_prompt_source == VirtualPromptSource.PROMPT_ENCODER: virtual_prompt_params['params'].extend([param for param in self.prompt_encoder.parameters()]) else: raise ValueError("Optimizer only supports Prompt Encoder.") self._optimizer_param_groups = (virtual_prompt_params,) def embed_input(self, input_ids: Tensor, taskname_ids: Tensor, use_cached_reps: bool): """ Replaces the virtual tokens in the input_ids with embeddings calculated from either the 'prompt_table' or 'prompt_encoder'. The virtual token placeholders have token_ids listed in `self.pseudo_token_ids`. params: input_ids: the input token ids taskname_ids: the NLP task tag token ids returns: the token embedding for the LM model. """ # Replace virtual token ids with padding for forward pass through vocab embeddings discrete_token_ids = input_ids.clone() discrete_token_ids[(input_ids >= self.pseudo_token_ids_start)] = self.pad_token_id discrete_token_embeds = self.word_embeddings(discrete_token_ids).clone() # Find the indicies where virtual tokens should be inserted virtual_token_locations = input_ids >= self.pseudo_token_ids_start # If there are no virtual tokens, just return discrete token embeds if not virtual_token_locations.any(): return discrete_token_embeds if self.virtual_prompt_source == VirtualPromptSource.PROMPT_ENCODER: # taskname_embeddings = self.word_embeddings(taskname_ids) batch_size, _ = taskname_ids.size() virtual_token_embeds = self.prompt_encoder(batch_size=batch_size, use_cached_reps=use_cached_reps) else: raise ValueError("invalid VirtualPromptSource.") # Create index template specifying where virtual token embeddings should be placed batch_size, _, embedding_size = discrete_token_embeds.shape virtual_token_index = virtual_token_locations.nonzero().reshape((batch_size, -1, 2))[:, :, 1][:, :, None] virtual_token_index = virtual_token_index.expand( batch_size, self.total_new_task_virtual_tokens, embedding_size ) # Make sure discrete_token_embeds and virtual_token_embeds share the same dtype discrete_token_embeds = discrete_token_embeds.type(virtual_token_embeds.dtype) # Insert virtual token embeddings where they belong amoung the discrete token embeddings discrete_token_embeds.scatter_(1, virtual_token_index, virtual_token_embeds) input_embeds = discrete_token_embeds return input_embeds def on_train_end(self): # Save p-tuned prompts to prompt table for inference or future task training self.save_to(save_path=self.cfg.nemo_path) def setup(self, stage=None): if stage == 'predict' and self.first_stage_of_pipeline(): self.freeze_existing_word_embeddings() return self.setup_test_data() if stage == 'test': return if self.first_stage_of_pipeline(): if self.virtual_prompt_style == VirtualPromptStyle.P_TUNING: if self.prompt_encoder is None: self.init_prompt_encoder() self.freeze_existing_word_embeddings() self.setup_training_data() self.setup_validation_data() def setup_training_data(self, training_data_config=None): if self.cfg.data.get('train_ds', None): self._train_ds, self._train_dl = self.build_virtual_prompt_dataset( dataset_paths=self.cfg.data.train_ds, batch_size=self.cfg.global_batch_size, for_train=True, drop_last=True, shuffle=True, num_workers=self.cfg.data.num_workers, pin_memory=True, ) def setup_validation_data(self, validation_data_config=None): if self.cfg.data.get('validation_ds', None): self._validation_ds, self._validation_dl = self.build_virtual_prompt_dataset( dataset_paths=self.cfg.data.validation_ds, batch_size=self.cfg.get("validation_global_batch_size", self.cfg.global_batch_size), for_train=True, drop_last=self.cfg.get("validation_drop_last", True), shuffle=False, num_workers=self.cfg.data.num_workers, pin_memory=True, ) def setup_test_data(self, test_data_config=None): if self.cfg.data.get('test_ds', None): self._test_ds, self._test_dl = self.build_virtual_prompt_dataset( dataset_paths=self.cfg.data.test_ds, batch_size=self.cfg.get("validation_global_batch_size", self.cfg.global_batch_size), for_train=False, drop_last=False, shuffle=False, num_workers=self.cfg.data.num_workers, pin_memory=True, ) def _reconfigure_and_process_inference_batch(self, global_batch_size_per_gpu, gbs): # This should happen only on the last batch of the dataset. if global_batch_size_per_gpu != gbs // parallel_state.get_data_parallel_world_size(): # NOTE: This is reconfiguring to make sure there is no grad-acc for validation batches. app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=global_batch_size_per_gpu * parallel_state.get_data_parallel_world_size(), micro_batch_size=global_batch_size_per_gpu, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) def _reconfigure_batch_sizes(self, gbs: int, mbs: int): app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=gbs, micro_batch_size=mbs, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) def set_inference_config(self, inference_config): self._inference_config = inference_config def get_inference_config(self): return self._inference_config def set_input_tensor(self, input_tensor): pass def first_stage_of_pipeline(self): pass @classmethod def list_available_models(cls): pass def load_frozen_model(self, cfg, trainer): pass def get_pseudo_tokens(num_virtual_tokens): """ Takes in an integer and returns a list of strings where each string is a numbered virtual token placeholder. If num_virtual_tokens = 3, then this function returns: ["<prompt_0>", "<prompt_1>", "<prompt_2>"] Args: num_virtual_tokens: (int) Number of virtual token strings you want to make returns a list of string. """ pseudo_tokens = [ VirtualPromptPlaceholderToken.BASE.value + str(i) + VirtualPromptPlaceholderToken.END.value for i in range(num_virtual_tokens) ] return pseudo_tokens
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_base_prompt_learning_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import itertools import os import re from dataclasses import fields from typing import Any, Dict, Optional, Union import omegaconf import torch from omegaconf import OmegaConf, open_dict from omegaconf.dictconfig import DictConfig from pytorch_lightning.plugins.precision import MixedPrecisionPlugin from pytorch_lightning.trainer.connectors.logger_connector.fx_validator import _FxValidator from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common.megatron.attention import HAVE_FLASH_ATTENTION from nemo.collections.nlp.modules.common.megatron.clip_grads import ( clip_grad_norm_distributed_optimizer, clip_grad_norm_fp32, ) from nemo.collections.nlp.modules.common.megatron.megatron_init import initialize_model_parallel_for_nemo from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer from nemo.collections.nlp.parts import utils_funcs from nemo.collections.nlp.parts.nlp_overrides import NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE, GradScaler from nemo.core.optim import MainParamsOptimizerWrapper, prepare_lr_scheduler from nemo.utils import AppState, logging from nemo.utils.get_rank import is_global_rank_zero try: from apex.transformer.pipeline_parallel.utils import get_num_microbatches HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import ModelParallelConfig, parallel_state HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False __all__ = ["MegatronBaseModel"] class MegatronBaseModel(NLPModel): """ Megatron base class. All NeMo Megatron models inherit from this class. - Initialize the model parallel world for nemo. - Turn on all of the nvidia optimizations. - If `cfg.tokenizer` is available, it loads the tokenizer and pad the vocab to the correct size for tensor model parallelism. - If using distributed optimizer, configure to be compatible with O2 level optimizations and/or model parallelism. - Perform gradient clipping: `grad_clip_pl_default` triggers the PyTorch Lightning default implementation, `with_distributed_adam` triggers the distributed optimizer's implementation, `megatron_amp_o2` triggers gradient clipping on the main grads, and otherwise gradient clipping is performed on the model grads. """ def __init__(self, cfg: DictConfig, trainer: Trainer, no_lm_init=True): if not HAVE_MEGATRON_CORE: raise ImportError( "megatron-core was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) if trainer is None: raise ValueError(f"Trainer cannot be None for Megatron-based models. Please provide a PTL trainer object.") if cfg.get('use_flash_attention', False) and not HAVE_FLASH_ATTENTION: raise ImportError( "flash_attn was not found. Please see the installation instructions: https://github.com/HazyResearch/flash-attention." "If you use flash_attn with triton. Please install triton==2.0.0.dev20221202." ) # this prevents base constructor from initializing tokenizer self.tokenizer = None with open_dict(cfg): if cfg.get('precision', None) is None and trainer is not None: cfg.precision = trainer.precision super().__init__(cfg, trainer=trainer, no_lm_init=no_lm_init) # TODO: @maanug-nv consolidate into one attribute (requires lots of changes in subclasses) self.torch_dtype = utils_funcs.torch_dtype_from_precision(self.cfg.precision) # Mixed precision datatype self.autocast_dtype = self.torch_dtype # Mixed precision datatype # instantiate weights in mixed precision datatype if using megatron amp O2 self.params_dtype = ( self.torch_dtype if self.torch_dtype in [torch.bfloat16, torch.float16] and self.cfg.get('megatron_amp_O2', False) else torch.float32 ) # set the megatron core model parallel config self.model_parallel_config: ModelParallelConfig = self.build_model_parallel_config() self.with_distributed_adam = cfg.optim.get('name') == 'distributed_fused_adam' # used in NVIDIA NGC PyTorch containers self._enable_nvidia_optimizations() if self._cfg.get('use_cpu_initialization', False) is False: torch.cuda.set_device(trainer.local_rank) # buffer used during train_step for logging average loss over gradient accumulation steps self._reduced_loss_buffer = [] # Overrides used when converting checkpoints if os.environ.get(NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE, "false").lower() == "true": app_state = AppState() init_world_size = app_state.tensor_model_parallel_size * app_state.pipeline_model_parallel_size init_global_rank = app_state.global_rank init_local_rank = app_state.local_rank else: init_world_size = trainer.world_size init_global_rank = trainer.global_rank init_local_rank = trainer.local_rank # Set virtual pipeline size to None if it is 1 and # confirm that the number of model chunks is the same across all pipeline stages. vp_size = self.cfg.get('virtual_pipeline_model_parallel_size', None) if vp_size is not None: if vp_size == 1: vp_size = None else: assert ( self.cfg.num_layers // self.cfg.pipeline_model_parallel_size ) % vp_size == 0, 'Make sure the number of model chunks is the same across all pipeline stages.' initialize_model_parallel_for_nemo( world_size=init_world_size, global_rank=init_global_rank, local_rank=init_local_rank, tensor_model_parallel_size=cfg.get('tensor_model_parallel_size', 1), pipeline_model_parallel_size=cfg.get('pipeline_model_parallel_size', 1), virtual_pipeline_model_parallel_size=vp_size, pipeline_model_parallel_split_rank=cfg.get('pipeline_model_parallel_split_rank', 0), micro_batch_size=cfg.get('micro_batch_size'), global_batch_size=cfg.get('global_batch_size'), rampup_batch_size=cfg.get('rampup_batch_size', None), use_fp8=cfg.get('fp8', False), init_mpi_proc_group=cfg.get('ub_tp_comm_overlap', False), seed=self.cfg.get('seed', 1234), apex_transformer_log_level=self.cfg.get('apex_transformer_log_level', 30), ) # This must be called after initialize model parallel since it needs to know the data parallel size self._validate_and_override_config() # set the megatron core model parallel config self.model_parallel_config: ModelParallelConfig = self.build_model_parallel_config() self.grad_clip_pl_default = False # use pytorch default for gradient clipping. Default False if hasattr(self._cfg, "tokenizer") or ( hasattr(self._cfg, "encoder_tokenizer") and hasattr(self._cfg, "decoder_tokenizer") ): # build tokenizer (defaults to nemo supported tokenizers) self._build_tokenizer() # manipulate vocabulary (e.g., pad vocabulary for better efficiency) self._build_vocab() # TODO: remove this when PTL 1.7.3 is released _FxValidator.functions["configure_gradient_clipping"] = { "allowed_on_step": (False, True), "allowed_on_epoch": (False, True), "default_on_step": True, "default_on_epoch": False, } self.gc_interval = cfg.get('gc_interval', 0) assert self.gc_interval >= 0, "gc_interval should be an integer value larger than or equal to 0." # If gc_interval > 0, memory garbage collection is manually controlled. # The automatic garbage collector sould be disabled before training starts. if self.gc_interval > 0: gc.disable() self.validation_global_step = 1 def _reconfigure_val_batches(self): """ Reconfigure trainer.limit_val_batches for pretraining """ # Override limit_val_batches to be a multiple of num microbatches and so there are limit_val_batches//num_micro_batches num of global batches self.trainer.limit_val_batches *= get_num_microbatches() # Override num sanity steps to be a multiple of num of microbatches self.trainer.num_sanity_val_steps *= get_num_microbatches() def _enable_nvidia_optimizations(self): "These optimizations are present in NVIDIA NGC PyTorch Containers" # NVIDIA container version check nvidia_torch_version = os.getenv('NVIDIA_PYTORCH_VERSION', None) if nvidia_torch_version is not None: try: NVIDIA_TORCH_MAJOR = int(nvidia_torch_version.split('.')[0]) except Exception: NVIDIA_TORCH_MAJOR = 0 try: NVIDIA_TORCH_MINOR = int(nvidia_torch_version.split('.')[1]) except Exception: NVIDIA_TORCH_MINOR = 0 # Apex Persistent layer norm is supported from Nvidia PyTorch container v21.11 # This only depends on Apex version? if NVIDIA_TORCH_MAJOR < 21 or (NVIDIA_TORCH_MAJOR == 21 and NVIDIA_TORCH_MINOR < 11): self.cfg.persist_layer_norm = False # NVFUSER available starting with 21.11 if NVIDIA_TORCH_MAJOR >= 21 or (NVIDIA_TORCH_MAJOR == 21 and NVIDIA_TORCH_MINOR >= 11): # NVFUSER torch._C._jit_set_profiling_executor(True) torch._C._jit_set_profiling_mode(True) torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_nvfuser_enabled(True) torch._C._debug_set_autodiff_subgraph_inlining(False) else: # Not a Nvidia container. NVFUSER Dependency check is on users pass def _build_tokenizer(self): """ Default tokenizer is based on available nemo tokenizers. Override this method to use an external tokenizer. All tokenizers are expected to provide compatible interface. Override default Encoder-decoder tokenizer to use legacy=True for sentencepiece. """ if hasattr(self._cfg.tokenizer, "sentencepiece_legacy"): legacy = self._cfg.tokenizer.sentencepiece_legacy else: legacy = True if self._cfg.tokenizer.library == 'sentencepiece' else False self.tokenizer = get_nmt_tokenizer( library=self._cfg.tokenizer.library, model_name=self._cfg.tokenizer.type, tokenizer_model=self.register_artifact("tokenizer.model", self._cfg.tokenizer.get('model', None)), vocab_file=self.register_artifact("tokenizer.vocab_file", self._cfg.tokenizer.get('vocab_file', None)), merges_file=self.register_artifact("tokenizer.merge_file", self._cfg.tokenizer.get('merge_file', None)), use_fast=self.cfg.tokenizer.get('use_fast', False), delimiter=self.cfg.tokenizer.get('delimiter', None), special_tokens=self.cfg.tokenizer.get('special_tokens', None), legacy=legacy, ) if self._cfg.tokenizer.get('additional_special_tokens', None) is not None: tokens_list = omegaconf.OmegaConf.to_object(self._cfg.tokenizer.additional_special_tokens) self.tokenizer.add_special_tokens({'additional_special_tokens': tokens_list}) def on_train_start(self) -> None: super().on_train_start() self.init_global_step = self.trainer.global_step def on_validation_start(self) -> None: super().on_validation_start() if self.gc_interval > 0: gc.collect() def on_validation_end(self) -> None: super().on_validation_end() if self.gc_interval > 0: gc.collect() def _build_vocab(self): """ Manipulate vocabulary (e.g., pad vocabulary for increased performance)/ """ # TODO: add config to allow to disable it? self.padded_vocab_size = self._vocab_size_with_padding( orig_vocab_size=self.tokenizer.vocab_size, make_vocab_size_divisible_by=self._cfg.get('make_vocab_size_divisible_by', 128), tensor_model_parallel_size=self._cfg.get('tensor_model_parallel_size', 1), ) def _vocab_size_with_padding(self, orig_vocab_size, make_vocab_size_divisible_by, tensor_model_parallel_size): """Pad vocab size so it is divisible by model parallel size and still having GPU friendly size.""" after = orig_vocab_size multiple = make_vocab_size_divisible_by * tensor_model_parallel_size while (after % multiple) != 0: after += 1 logging.info( f'Padded vocab_size: {after}, original vocab_size: {orig_vocab_size}, dummy tokens: {after - orig_vocab_size}.' ) return after def get_parameters_with_grad(self): """ Get all parameters with grad from optimizer param groups """ params = [] for param_group in self._optimizer_param_groups: for param in param_group['params']: if ( param.grad is not None ): # (@adithyare) adapter training with pp>1 can result in params with no grads params.append(param) return params def configure_gradient_clipping(self, *args, **kwargs): """PTL hook to configure gradients. We use gradient clipping implementation from megatron-lm. """ clip_val = self.trainer.gradient_clip_val if clip_val is None: return clip_val = float(clip_val) if clip_val <= 0: return if self.grad_clip_pl_default: # use the default behavior return super().configure_gradient_clipping(*args, **kwargs) if self.with_distributed_adam: grad_norm = clip_grad_norm_distributed_optimizer(self._optimizer, clip_val) else: if self.megatron_amp_o2: # grep fp32 master parameters for gradient clipping parameters = self._optimizer.get_parameters_with_grad() else: parameters = self.get_parameters_with_grad() grad_norm = clip_grad_norm_fp32(parameters=parameters, max_norm=clip_val) self.log('grad_norm', grad_norm, rank_zero_only=True, batch_size=1) def allreduce_gradients(self): """Reduce gradients across data parallel ranks. Modified from megatron-lm: https://github.com/NVIDIA/Megatron-LM/blob/d41696840ed0a7edb7e0499eb82a48ae112d9bb3/megatron/model/distributed.py#L188 """ # Bucketize and all-reduce buckets = {} for param in self.parameters(): if param.requires_grad and param.grad is not None: tp = param.data.type() if tp not in buckets: buckets[tp] = [] buckets[tp].append(param) # param.main_grad = param.grad # For each bucket, all-reduce and copy all-reduced grads. for tp in buckets: bucket = buckets[tp] grads = [param.grad.data for param in bucket] coalesced = torch._utils._flatten_dense_tensors(grads) coalesced /= parallel_state.get_data_parallel_world_size() torch.distributed.all_reduce(coalesced, group=parallel_state.get_data_parallel_group()) for buf, synced in zip(grads, torch._utils._unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced) def reduce_overlap_gradients(self, params=None): """Reduce grads if overlapped grad sync is enabled Used for pipeline parallelism with the distributed Adam optimizer. In the first pipeline stage, the grad sync is overlapped with the final backward pass. In other pipeline stages, the grad sync is deferred until the bubble overhead. """ if self.with_distributed_adam and self._optimizer.overlap_grad_sync: if params is None: params = self._optimizer.parameters() self._optimizer.try_grad_sync(params) def sync_overlap_parameters(self, params=None): if self.with_distributed_adam: self._optimizer._try_start_bucket_param_sync(params) def on_train_batch_end(self, outputs, dataloader_iter: Any, batch_idx: int, unused: Optional[int] = 0) -> None: super().on_train_batch_end(outputs, dataloader_iter, batch_idx) # TODO: Replace with newer override for scheduler.step() instead of # search for plugins for fp16 GradScalar if self.trainer.precision_plugin is not None and isinstance( self.trainer.precision_plugin, MixedPrecisionPlugin ): precision_plugin = self.trainer.precision_plugin if ( hasattr(precision_plugin, 'scaler') and precision_plugin.scaler is not None and isinstance(precision_plugin.scaler, GradScaler) ): grad_scaler = precision_plugin.scaler # If the grad scaler skipped its optimizer step due to infs/nans, # decrement the step of all schedulers. if grad_scaler.optimizer_update_skipped is not None and grad_scaler.optimizer_update_skipped is True: scheduler_cfgs = self.trainer.lr_scheduler_configs if not scheduler_cfgs or not self.trainer.lightning_module.automatic_optimization: return for scheduler_cfg in scheduler_cfgs: # Decrement the counter by 2, then perform a scheduler.step() to perform a no-up # as well as update the optimizer lr in all param groups scheduler_cfg.scheduler.last_epoch -= 2 scheduler_cfg.scheduler.step() # Removing the line below because it messes up train_valid_test_num_samples calculation. # self.trainer.fit_loop.max_steps = self.trainer.fit_loop.max_steps + 1 # Reset the optimizer update skipped to `None` - this is to prevent scheduler no-ops during # accumulated gradient updates. grad_scaler.optimizer_update_skipped = None if self.gc_interval > 0 and (self.trainer.global_step % self.gc_interval == 0): gc.collect() def on_validation_batch_end(self, outputs, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> None: super().on_validation_batch_end(outputs, batch, batch_idx, dataloader_idx) if self.gc_interval > 0: if self.validation_global_step % self.gc_interval == 0: gc.collect() self.validation_global_step += 1 def setup_optimization( self, optim_config: Optional[Union[DictConfig, Dict]] = None, optim_kwargs: Optional[Dict[str, Any]] = None, ): optim_kwargs = {} if optim_kwargs is None else optim_kwargs.copy() if self.with_distributed_adam: # Allocate contiguous buffer to avoid extra copies optim_kwargs['contiguous_grad_buffer'] = True # Make sure optimizer state is in FP32 optim_dtype = torch.float32 optim_kwargs['dtype'] = optim_dtype # Make sure embedding grad reductions are in FP32 for name, param in self.named_parameters(): if 'word_embedding' in name or 'position_embedding' in name or 'output_layer' in name: param._with_fp32_optimizer = True # Match param allgather with model dtype model_dtype = torch.float32 if self.megatron_amp_o2 and hasattr(self, 'autocast_dtype'): model_dtype = self.autocast_dtype optim_kwargs['param_sync_dtype'] = model_dtype # Determine whether to store master params in optimizer if optim_dtype == model_dtype: optim_kwargs['store_params'] = False elif optim_dtype == torch.float32 and model_dtype == torch.bfloat16: optim_kwargs['store_params'] = False optim_kwargs['store_param_remainders'] = True else: optim_kwargs['store_params'] = True return super().setup_optimization(optim_config=optim_config, optim_kwargs=optim_kwargs) def configure_optimizers(self): self.setup_optimization() # Wrap the baseline optimizer with the optimizer class with master parameters if self.megatron_amp_o2 and not self.with_distributed_adam and self._optimizer is not None: if self.torch_dtype == torch.bfloat16: fp32_grad_accum = True contiguous_grad_bucket = True elif self.torch_dtype == torch.float16: fp32_grad_accum = False # TODO: contiguous grad bucket for fp16 is also planned to be supported contiguous_grad_bucket = False raise ValueError( "fp16 training is not yet supported with O2. Please set megatron_amp_O2 to False in the model config." ) # if using tensor parallel only, we automatically use async grad all-reduce # if using pipeline parallel or sequence parallel or gradient accumulation fusion, then we disable it if self.cfg.get('pipeline_model_parallel_size', 1) == 1 and not ( self.cfg.get('sequence_parallel', False) or self.cfg.get('gradient_accumulation_fusion', False) ): async_grad_allreduce = True else: async_grad_allreduce = False if async_grad_allreduce: # we need this to be configurable until make_nccl_premul_sum is in public PyTorch. # currently cannot be imported in PyTorch 1.12.0 grad_div_ar_fusion = self.cfg.get('grad_div_ar_fusion', False) else: grad_div_ar_fusion = False self._optimizer = MainParamsOptimizerWrapper( self._optimizer, fp32_grad_accum=fp32_grad_accum, contiguous_grad_bucket=contiguous_grad_bucket, async_grad_allreduce=async_grad_allreduce, grad_div_ar_fusion=grad_div_ar_fusion, grad_allreduce_chunk_size_mb=self.cfg.get('grad_allreduce_chunk_size_mb', 125), ) assert self._trainer.max_steps is not None, "'max_steps' is missing in trainer config." if hasattr(self._cfg.optim, 'sched'): sched_config = self._cfg.optim.sched sched_config['max_steps'] = self._trainer.max_steps self._scheduler = prepare_lr_scheduler( optimizer=self._optimizer, scheduler_config=sched_config, train_dataloader=self._train_dl ) # Configure distributed optimizer if self.with_distributed_adam: # Initialize param buckets if explicitly provided if hasattr(self, 'distributed_adam_buckets'): for bucket in self.distributed_adam_buckets: self._optimizer.init_params_bucket(bucket) del self.distributed_adam_buckets # Make sure all params are initialized so main grads are # available # Note: Consolidate grads without overlap overlap_params = [] no_overlap_params = [] for p in self.parameters(): if getattr(p, '_disable_overlap_grad_sync', False): no_overlap_params.append(p) else: overlap_params.append(p) self._optimizer.init_params(reversed(overlap_params)) self._optimizer.init_params(reversed(no_overlap_params)) # Initialize contiguous parameter buffer if self._optimizer.contiguous_param_buffer: self._optimizer.init_param_buffer() if self._scheduler is None: return self._optimizer else: return [self._optimizer], [self._scheduler] def compute_consumed_samples(self, steps_since_resume=0): app_state = AppState() if self.cfg.get('rampup_batch_size', None): from apex.transformer.pipeline_parallel.utils import _GLOBAL_NUM_MICROBATCHES_CALCULATOR current_global_batch_size = getattr(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, 'current_global_batch_size', 1) consumed_samples = self.prev_consumed_samples + self.if_first_step * current_global_batch_size else: consumed_samples = ( self.init_consumed_samples + steps_since_resume * app_state.data_parallel_size * self.cfg.micro_batch_size * get_num_microbatches() ) return int(consumed_samples) def _compute_consumed_samples_after_training_step(self): # Add +1 to account for the current batch, which is not counted yet in `trainer.global_step`. return self.compute_consumed_samples(self.trainer.global_step + 1 - self.init_global_step) def _extract_consumed_samples_from_ckpt(self, ckpt_path): try: init_consumed_samples = int(float(re.findall(r"consumed_samples\=([0-9]+.[0-9]+)", ckpt_path)[0])) except (ValueError, TypeError, IndexError): logging.warning("Cannot parse the checkpoint file to get the consumed samples. assume it is zero.") init_consumed_samples = 0 return init_consumed_samples def _validate_and_override_config(self): """ Certain configurations might be incompatible or discouraged. We can check for them here and override if necessary. """ app_state = AppState() if self.cfg.get('sequence_parallel', False) and self.cfg.get('tensor_model_parallel_size', 1) == 1: logging.info( "Sequence parallel should only be used with tensor parallel size > 1. Setting sequence parallel to False" ) with open_dict(self.cfg): self.cfg.sequence_parallel = False # Gradient accumulation fusion does not work with our baseline implementaiton of # async grad allreduce. This should be fixed! # For now we must disable it whenever using the baseline implementaion. # The distributed adam from apex does work with gradient accumulation fusion. distributed_fused_adam = self.cfg.optim.get('name', 'fused_adam') == 'distributed_fused_adam' pipeline_model_parallel_size = self.cfg.get('pipeline_model_parallel_size', 1) data_parallel_size = app_state.data_parallel_size if self.cfg.get('gradient_accumulation_fusion', False): if data_parallel_size > 1 and pipeline_model_parallel_size == 1 and not distributed_fused_adam: logging.info( "When not using pipeline model parallel, gradient accumulation fusion can only be used with distributed_fused_adam." ) with open_dict(self.cfg): self.cfg.gradient_accumulation_fusion = False if self.cfg.get('gradient_accumulation_fusion', False) and not self.cfg.get('megatron_amp_O2', False): logging.info("Gradient accumulation fusion can only be used with megatron amp O2 mixed precision.") with open_dict(self.cfg): self.cfg.gradient_accumulation_fusion = False if self.cfg.get('use_emha', False): raise ValueError('use_emha is not yet supported please set to False') vp_size = self.cfg.get('virtual_pipeline_model_parallel_size', None) if vp_size is not None: if vp_size == 1: self.cfg['virtual_pipeline_model_parallel_size'] = None else: assert ( self.cfg.num_layers // self.cfg.pipeline_model_parallel_size ) % vp_size == 0, 'Make sure the number of model chunks is the same across all pipeline stages.' if self.cfg.get('ub_tp_comm_overlap', False): if not self.cfg.get('transformer_engine', False) or not self.cfg.get('sequence_parallel', False): logging.info( "Userbuffer tensor-parallel communication overlap is available with both Transformer Engine and sequence-parallelism." ) with open_dict(self.cfg): self.cfg.ub_tp_comm_overlap = False def is_data_parallel_rank_zero(self): if is_global_rank_zero(): return True else: try: data_parallel_rank = parallel_state.get_data_parallel_rank() except: data_parallel_rank = None if data_parallel_rank is not None and data_parallel_rank == 0: return True else: return False def _get_total_params_across_model_parallel_groups_gpt_bert(self, model): """Returns the total number of parameters across all model parallel groups.""" # log number of parameters if isinstance(model, list): num_parameters_on_device = sum( [sum([p.nelement() for p in model_module.parameters()]) for model_module in model] ) if ( parallel_state.get_pipeline_model_parallel_world_size() > 1 and parallel_state.is_pipeline_last_stage(ignore_virtual=True) and self.cfg.get('share_embeddings_and_output_weights', True) ): word_embeddings_weight = ( model[-1].module.shared_embedding_or_output_weight() if getattr(self, 'mcore_gpt', False) else model[-1].word_embeddings_weight() ) # substract the embedding weights on the last virtual stage num_word_embedding_parameters = sum([p.nelement() for p in word_embeddings_weight]) num_parameters_on_device -= num_word_embedding_parameters else: num_parameters_on_device = sum([p.nelement() for p in model.parameters()]) if ( parallel_state.get_pipeline_model_parallel_world_size() > 1 and parallel_state.is_pipeline_last_stage(ignore_virtual=True) and self.cfg.get('share_embeddings_and_output_weights', True) ): word_embeddings_weight = ( model.module.shared_embedding_or_output_weight() if getattr(self, 'mcore_gpt', False) else model.word_embeddings_weight() ) # substract the embedding weights on the last stage num_word_embedding_parameters = sum([p.nelement() for p in word_embeddings_weight]) num_parameters_on_device -= num_word_embedding_parameters # to be summed across data parallel group total_num_parameters = torch.tensor(num_parameters_on_device).cuda() torch.distributed.all_reduce(total_num_parameters, group=parallel_state.get_model_parallel_group()) return num_parameters_on_device, total_num_parameters def _get_total_params_across_model_parallel_groups_enc_dec(self, model): """Returns the total number of parameters across all model parallel groups.""" # log number of parameters # TODO: If/when we add interleaved model parallelism, we will need to add another if/else here. num_parameters_on_device = sum([p.nelement() for p in model.parameters()]) if parallel_state.get_pipeline_model_parallel_world_size() > 1 and ( parallel_state.get_pipeline_model_parallel_rank() == self.cfg.get('pipeline_model_parallel_split_rank', 0) or parallel_state.is_pipeline_last_stage() ): # If the current rank is the in the decoder first stage (decoder emb) or last rank (output layer), subtract those weights since it is already accounted for in the encoder first stage. # TODO: If we support embedding untying with PP > 1, we will need to update this. num_word_embedding_parameters = sum([p.nelement() for p in model.word_embeddings_weight()]) num_parameters_on_device -= num_word_embedding_parameters # Subtract decoder position embedding params that are shared with encoder. if ( parallel_state.is_pipeline_stage_at_split() and self.cfg.encoder.get("position_embedding_type", "learned_absolute") == "learned_absolute" ): num_position_embedding_parameters = sum([p.nelement() for p in model.position_embeddings_weight()]) num_parameters_on_device -= num_position_embedding_parameters # Check and remove RPE embeddings from the encoder that are replicated. if ( parallel_state.get_pipeline_model_parallel_world_size() > 1 and parallel_state.is_pipeline_stage_before_split() and not parallel_state.is_pipeline_first_stage() and self.cfg.encoder.get("position_embedding_type", "learned_absolute") == "relative" ): # substract the RPE params on intermediate pipeline stages. num_rpe_params = sum([p.nelement() for p in model.encoder_relative_position_embeddings_weight()]) num_parameters_on_device -= num_rpe_params # Check and remove RPE embeddings from the decoder that are replicated. if ( parallel_state.get_pipeline_model_parallel_world_size() > 1 and parallel_state.is_pipeline_stage_after_split() and not parallel_state.is_pipeline_stage_at_split() and self.cfg.encoder.get("position_embedding_type", "learned_absolute") == "relative" ): # substract the RPE params on intermediate pipeline stages. num_rpe_params = sum([p.nelement() for p in model.decoder_relative_position_embeddings_weight()]) num_parameters_on_device -= num_rpe_params # to be summed across data parallel group total_num_parameters = torch.tensor(num_parameters_on_device).cuda() torch.distributed.all_reduce(total_num_parameters, group=parallel_state.get_model_parallel_group()) return num_parameters_on_device, total_num_parameters def build_model_parallel_config(self) -> ModelParallelConfig: """ For attributes in the nemo model config that are the same as the megatron core ModelParallelConfig we will use the value from the nemo config. For attributes in ModelParallelConfig that are not in the nemo model config, we add custom logic. """ cfg = OmegaConf.to_container(self.cfg, resolve=True) # map precision related configs precision = cfg.get('precision', 32) # PTL trainer precision megatron_amp_O2 = cfg.get('megatron_amp_O2', False) # dtype used in p2p communication pipeline_dtype = self.torch_dtype # maps NeMo model configs to ModelParallelConfig from megatron core config_mapping = { "perform_initialization": True, # initailize weights when constructing the module "fp16": self.torch_dtype == torch.float16 and megatron_amp_O2, # NeMo does not currently support fp16 training with megatron amp O2, eval and inference is supported "bf16": self.torch_dtype == torch.bfloat16 and megatron_amp_O2, "params_dtype": self.params_dtype, "timers": None, # NeMo does not currently support megatron core timers "async_tensor_model_parallel_allreduce": self.cfg.get('tensor_model_parallel_world_size', 1) > 1 and not self.cfg.get('sequence_parallel', False), "pipeline_dtype": pipeline_dtype, "grad_scale_func": self.trainer.precision_plugin.scaler.scale if self.torch_dtype == torch.float16 else None, "enable_autocast": not megatron_amp_O2 and self.torch_dtype in [torch.bfloat16, torch.float16], "autocast_dtype": self.autocast_dtype, "variable_seq_lengths": False, # set dynamically during training "num_microbatches_with_partial_activation_checkpoints": self.cfg.get( 'num_micro_batches_with_partial_activation_checkpoints', None ), "batch_p2p_sync": True, # call torch.cuda.synchronize() after batch isend/rcv "use_ring_exchange_p2p": False, # not supported in NeMo "deallocate_pipeline_outputs": False, # not supported in NeMo "no_sync_func": None, # set dynamically during training "grad_sync_func": None, # set dynamically during training "param_sync_func": None, # set dynamically during training } # instantitate ModelParallelConfig from this dict mp_config_dict = {} for field in fields(ModelParallelConfig): # model config has priority if field.name in cfg: mp_config_dict[field.name] = cfg[field.name] # then config_mapping elif field.name in config_mapping: mp_config_dict[field.name] = config_mapping[field.name] else: logging.warning( f"The model: {self} does not have field.name: {field.name} in its cfg. " f"Add this key to cfg or config_mapping to make to make it configurable." ) model_parallel_config = ModelParallelConfig(**mp_config_dict) try: # hidden size is needed for pipeline schedules but is not currently in ModelParallelConfig setattr(model_parallel_config, 'hidden_size', self.cfg.hidden_size) except AttributeError: logging.warning( f'hidden_size not found in {self.cfg}. Set this in model_parallel_config if using pipeline parallelism.' ) return model_parallel_config def _val_iterator_done(self, iterator): """ Check if the iterator is exhausted, if so raise a StopIteration and exit validation_step """ try: element = next(iterator) except StopIteration: return iterator, True # reinsert the element back to the iterator return itertools.chain([element], iterator), False
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_base_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from omegaconf.dictconfig import DictConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.data.glue_benchmark.glue_benchmark_dataset import ( TextToTextGLUEDataset, TextToTextXNLIDataset, ) from nemo.collections.nlp.models.language_modeling.megatron_finetune_model import MegatronT5FinetuneModel from nemo.utils import logging try: from megatron.core import parallel_state HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = ['MegatronT5GLUEModel'] class MegatronT5GLUEModel(MegatronT5FinetuneModel): """GLUE Model that Inherits from MegatronT5FinetuneModel and overrides the dataset building.""" def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer=trainer) def _build_dataset(self, data_cfg, check_implict_grad_acc=False): if ( check_implict_grad_acc and data_cfg.global_batch_size > data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size() ): raise ValueError( f'You are trying to use "implicit gradient accumulation" of {data_cfg.global_batch_size // (data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size())} in your validation/test datasets. This is not supported. Please set global_batch_size equal to micro_batch_size * data_parallel_world_size.' ) if data_cfg.task_name == 'xnli': dataset = TextToTextXNLIDataset( data_cfg.file_path, task_name=data_cfg.task_name, tokenizer=self.tokenizer, max_seq_length=data_cfg.max_seq_length, lang_list=self.cfg.eval_languages, ) else: dataset = TextToTextGLUEDataset( data_cfg.file_path, task_name=data_cfg.task_name, tokenizer=self.tokenizer, max_seq_length=data_cfg.max_seq_length, ) return dataset def build_train_valid_test_datasets(self, stage): logging.info('Building GLUE/XNLI datasets.') if stage != 'test': # Wrap this in a list since the general finetuning parent class supports multi-validation. self._validation_ds = [self._build_dataset(self.cfg.data.validation_ds, check_implict_grad_acc=True)] logging.info(f'Length of val dataset: {len(self._validation_ds[0])}') if stage != 'validate': if hasattr(self.cfg.data, 'test_ds'): # Wrap this in a list since the general finetuning parent class supports multi-validation. self._test_ds = [self._build_dataset(self.cfg.data.test_ds, check_implict_grad_acc=True)] logging.info(f'Length of test dataset: {len(self._test_ds[0])}') if stage == 'validate' or stage == 'test': return self._train_ds = self._build_dataset(self.cfg.data.train_ds, check_implict_grad_acc=False) logging.info(f'Length of train dataset: {len(self._train_ds)}') logging.info(f'Finished building GLUE/XNLI datasets.')
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_glue_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import functools import inspect from typing import Any, Dict, List, Optional import torch from omegaconf import OmegaConf, open_dict from omegaconf.dictconfig import DictConfig from pytorch_lightning.accelerators import CPUAccelerator from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.data.language_modeling.megatron.data_samplers import ( MegatronPretrainingRandomSampler, MegatronPretrainingSampler, ) from nemo.collections.nlp.models.language_modeling.megatron_base_model import MegatronBaseModel from nemo.collections.nlp.modules.common.megatron.build_model import build_model from nemo.collections.nlp.modules.common.megatron.module import Float16Module from nemo.collections.nlp.modules.common.megatron.token_level_encoder_decoder import ( MegatronTokenLevelEncoderDecoderModule, ) from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, average_losses_across_data_parallel_group, get_params_for_weight_decay_optimization, ) from nemo.collections.nlp.modules.common.text_generation_utils import ( compute_beam_search_len_penalty, get_sampling_token_fn, ) from nemo.collections.nlp.parts.utils_funcs import get_last_rank from nemo.utils import AppState, logging try: from apex.transformer.pipeline_parallel.utils import ( _reconfigure_microbatch_calculator, get_micro_batch_size, get_num_microbatches, ) HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import parallel_state, tensor_parallel from megatron.core.enums import ModelType from megatron.core.pipeline_parallel.schedules import get_forward_backward_func HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = ["MegatronLMEncoderDecoderModel"] class MegatronLMEncoderDecoderModel(MegatronBaseModel): """ Megatron encoder-decoder base class """ def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer=trainer) if cfg.get('pipeline_model_parallel_size', 1) > 1: if cfg.get('pipeline_model_parallel_split_rank', 0) <= 0: raise ValueError( f"pipeline_model_parallel_split_rank must be > 0 when using pipeline_model_parallel_size > 1" ) if cfg.get('pipeline_model_parallel_size', 1) > 1: if not cfg.get('share_token_embeddings', True) or not cfg.get( 'share_decoder_tokens_head_embeddings', True ): raise ValueError( "when pipeline_model_parallel_size > 1 we require share_token_embeddings=True and share_decoder_tokens_head_embeddings=True" ) # Make sure trainer.accumulate_grad_batches is 1. self._validate_trainer() # TODO: Currently does not support interleaved pipeline parallelism. # This means we can only use pipeline parallelism without the interleaved schedule. if isinstance(self.trainer.accelerator, CPUAccelerator): logging.warning("Using CPUAccelerator, model will be built on CPU.") self.enc_dec_model = build_model( model_provider_func=self.model_provider_func, wrap_with_ddp=False, on_cpu=True, model_type=ModelType.encoder_and_decoder, )[0] else: self.enc_dec_model = build_model( model_provider_func=self.model_provider_func, wrap_with_ddp=False, model_type=ModelType.encoder_and_decoder, )[0] # We don't need to call it explicitly? Since it is a pytorch lightning hook function # self.setup_optimizer_param_groups() self.megatron_amp_o2 = cfg.get('megatron_amp_O2', False) if self.megatron_amp_o2: if not self.with_distributed_adam: # Pre-allocate the model on GPU to have master parameters allocated on the same device with matching data type self.enc_dec_model.cuda(torch.cuda.current_device()) # Model wrapper to convert both model and inputs to half precision self.enc_dec_model = Float16Module( config=self.model_parallel_config, module=self.enc_dec_model, precision=self.cfg.precision ) self.enable_autocast = ( True if (not self.megatron_amp_o2) and (self.autocast_dtype in [torch.float16, torch.bfloat16]) else False ) self.enc_dec_model.model_type = ModelType.encoder_and_decoder def setup_optimizer_param_groups(self): """ModelPT override. Optimizer will get self._optimizer_param_groups""" self._optimizer_param_groups = get_params_for_weight_decay_optimization([self.enc_dec_model]) def configure_optimizers(self): if self.with_distributed_adam: # Identify params that require grad reductions between # pipeline stages # See: allreduce_word_and_position_embeddings model_parallel_params = [] if parallel_state.get_pipeline_model_parallel_world_size() > 1 and ( parallel_state.is_rank_in_embedding_group() ): if self.cfg.get('share_token_embeddings', True) and self.cfg.get( 'share_decoder_tokens_head_embeddings', True ): model_parallel_params.append(self.enc_dec_model.word_embeddings_weight()) if ( parallel_state.is_rank_in_position_embedding_group() and parallel_state.get_pipeline_model_parallel_world_size() > 1 and parallel_state.get_pipeline_model_parallel_split_rank() is not None and self.cfg.encoder.get('position_embedding_type') == 'learned_absolute' and self.cfg.decoder.get('position_embedding_type') == 'learned_absolute' ): if self.cfg.get('share_token_embeddings', True): model_parallel_params.append(self.enc_dec_model.position_embeddings_weight()) if ( parallel_state.get_pipeline_model_parallel_world_size() > 2 and parallel_state.get_pipeline_model_parallel_split_rank() is not None ): if ( self.cfg.encoder.get('position_embedding_type') == 'relative' and parallel_state.is_rank_in_encoder_relative_position_embedding_group() and parallel_state.get_pipeline_model_parallel_split_rank() > 1 ): model_parallel_params.append(self.enc_dec_model.encoder_relative_position_embeddings_weight()) if ( self.cfg.decoder.get('position_embedding_type') == 'relative' and parallel_state.is_rank_in_decoder_relative_position_embedding_group() ): model_parallel_params.append(self.enc_dec_model.decoder_relative_position_embeddings_weight()) if not self.cfg.decoder.get('relative_position_bias_self_attention_only', True): model_parallel_params.append( self.enc_dec_model.decoder_cross_attention_relative_position_embeddings_weight() ) # Disable async grad reductions for params that are # synchronized for pipeline parallelism for param in model_parallel_params: param._disable_greedy_grad_copy = not self.megatron_amp_o2 param._disable_overlap_grad_sync = True return super().configure_optimizers() def _handle_bias_activation_fusion_args(self, cfg): # For oldest models, we don't have the option to turn on/off bias activation fusion. It is always on. if not hasattr(cfg, 'bias_gelu_fusion') and not hasattr(cfg, 'bias_activation_fusion'): # Handle the case where the model can have bias=False if cfg.get('bias', True): cfg.bias_activation_fusion = True else: cfg.bias_activation_fusion = False # For in-between models, Re-map bias_gelu_fusion to bias_activation_fusion elif hasattr(cfg, 'bias_gelu_fusion'): logging.warning('bias_gelu_fusion is deprecated. Please use bias_activation_fusion instead.') cfg.bias_activation_fusion = cfg.bias_gelu_fusion def _populate_encoder_decoder_configs_for_backward_compatibility(self, cfg): """ Populate encoder and decoder configs for backward compatibility with a checkpoint that has a common enc/dec config. """ # TODO: This will not remove redundant args that are already present in the new yaml file's config.model encoder_cfg = copy.deepcopy(cfg) decoder_cfg = copy.deepcopy(cfg) OmegaConf.set_struct(encoder_cfg, True) OmegaConf.set_struct(decoder_cfg, True) OmegaConf.set_struct(cfg, True) with open_dict(encoder_cfg), open_dict(decoder_cfg), open_dict(cfg): encoder_cfg.arch = cfg.get('encoder_arch', 'transformer') decoder_cfg.arch = cfg.get('decoder_arch', 'transformer') self._handle_bias_activation_fusion_args(encoder_cfg) self._handle_bias_activation_fusion_args(decoder_cfg) cfg.encoder = encoder_cfg cfg.decoder = decoder_cfg # NOTE: For old models there are two scenarios: # 1. If we share decoder embeddings with the output layer, we would always set tokens_head_bias=True # 2. If we do not share decoder embeddings with the output layer, we would always set tokens_head_bias=False cfg.tokens_head_bias = ( True if cfg.get('share_decoder_tokens_head_embeddings', True) else False ) # For models before separate encoder/decoder configs, tokens_head_bias was always True. def model_provider_func(self, pre_process, post_process, add_encoder, add_decoder): if not hasattr(self.cfg, 'encoder') or not hasattr(self.cfg, 'decoder'): logging.warning( 'Could not find encoder or decoder in config. This is probably because of restoring an old checkpoint. Copying shared model configs to encoder and decoder configs.' ) # After the call below, self.cfg.encoder and self.cfg.decoder will be populated with the cfg.model configs from old checkpoints. self._populate_encoder_decoder_configs_for_backward_compatibility(self.cfg) if parallel_state.get_pipeline_model_parallel_world_size() > 1 and self.cfg.encoder.arch == 'perceiver': raise ValueError(f"Perceivers with pipeline parallel > 1 is not supported yet.") if not hasattr(self.cfg, 'embedding_init_method_std'): embedding_init_method_std = self.cfg.encoder.init_method_std else: embedding_init_method_std = self.cfg.embedding_init_method_std if not hasattr(self.cfg, 'embedding_dropout'): embedding_dropout = self.cfg.encoder.hidden_dropout else: embedding_dropout = self.cfg.embedding_dropout model = MegatronTokenLevelEncoderDecoderModule( config=self.model_parallel_config, encoder_cfg=self.cfg.encoder, decoder_cfg=self.cfg.decoder, vocab_size=self.padded_vocab_size, max_position_embeddings=self.cfg.max_position_embeddings, num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process, fp16_cross_entropy=self.cfg.get('fp16_lm_cross_entropy', False), megatron_amp_O2=self.cfg.get('megatron_amp_O2', False), precision=self.cfg.get('precision', 16), embedding_init_method_std=embedding_init_method_std, embedding_dropout=embedding_dropout, label_smoothing=self.cfg.get('label_smoothing', 0.0), add_encoder=add_encoder, add_decoder=add_decoder, share_token_embeddings=self.cfg.get('share_token_embeddings', True), share_decoder_tokens_head_embeddings=self.cfg.get('share_decoder_tokens_head_embeddings', True), tokens_head_bias=self.cfg.get('tokens_head_bias', True), hiddens_cfg=self.cfg.get('hiddens', None), ) return model def forward( self, encoder_input_ids, decoder_input_ids, encoder_attn_mask, decoder_attn_mask, token_type_ids=None, lm_labels=None, enc_output=None, enc_output_attn_mask=None, output_enc_hidden_only=False, enc_input=None, ): output_tensor = self.enc_dec_model( enc_input_ids=encoder_input_ids, dec_input_ids=decoder_input_ids, enc_attn_mask=encoder_attn_mask, dec_attn_mask=decoder_attn_mask, token_type_ids=token_type_ids, labels=lm_labels, enc_output=enc_output, enc_output_attn_mask=enc_output_attn_mask, output_enc_hidden_only=output_enc_hidden_only, enc_input=enc_input, ) return output_tensor def _execute_fwd_bwd_function(self, data_iterator, forward_only, tensor_shape, decoder_seq_length): """ An auxiliary function that executes the fwd_bwd_step function and parse the returned values. """ fwd_bwd_function = get_forward_backward_func() seq_length = tensor_shape[0] losses_reduced_per_micro_batch = fwd_bwd_function( forward_step_func=self.get_forward_output_and_loss_func(), data_iterator=data_iterator, model=[self.enc_dec_model], num_microbatches=get_num_microbatches(), forward_only=forward_only, seq_length=seq_length, micro_batch_size=get_micro_batch_size(), decoder_seq_length=decoder_seq_length, ) # only the last stages of the pipeline return losses if losses_reduced_per_micro_batch: mean_loss_dict = {} for k in losses_reduced_per_micro_batch[0].keys(): # average loss across micro batches mean_loss_dict[k] = torch.stack( [loss_reduced[k] for loss_reduced in losses_reduced_per_micro_batch] ).mean() else: loss_mean = torch.tensor(0.0).cuda() mean_loss_dict = {"loss": loss_mean} return mean_loss_dict def fwd_bwd_step(self, dataloader_iter, batch_idx, forward_only): """ Dataloader produces a global batch which is turned into a list of microbatches. The list of microbatches is then piped through the pipeline using megatron-core fwd/bwd functions. """ # Get seq length of batch tensor_shape = [self.max_encoder_seq_length, self.cfg.micro_batch_size, self.cfg.encoder.hidden_size] return self._execute_fwd_bwd_function( data_iterator=dataloader_iter, forward_only=forward_only, tensor_shape=tensor_shape, decoder_seq_length=self.max_decoder_seq_length, ) def training_step(self, dataloader_iter, batch_idx): """ Our dataloaders produce a micro-batch and then we fetch a number of microbatches depending on the global batch size and model parallel size from the dataloader to produce a list of microbatches. Batch should be a list of microbatches and those microbatches should on CPU. Microbatches are then moved to GPU during the pipeline. The list of microbatches is then piped through the pipeline using megatron-core fwd/bwd functions. """ # we zero grads here because we also call backward in the megatron fwd/bwd functions self._optimizer.zero_grad() loss_dict = self.fwd_bwd_step(dataloader_iter, batch_idx, False) if self.with_distributed_adam: # synchronize asynchronous grad reductions # note: not necessary, but reduces performance degradation # from multiple simultaneous NCCL calls self._optimizer._finish_bucket_grad_sync() elif self.megatron_amp_o2: # when using pipeline parallelism grads must be reduced after the pipeline (not asynchronously) if self.cfg.get('pipeline_model_parallel_size', 1) > 1: # main grads are stored in the MainParamsOptimizer wrapper self._optimizer.allreduce_main_grads() else: # async grad allreduce is not currently implemented for O1/autocasting mixed precision training # so we allreduce gradients after the pipeline self.allreduce_gradients() # @sangkug we think this is causing memory to blow up (hurts perf) if self.cfg.get('pipeline_model_parallel_size', 1) > 1: # when using pipeline parallelism, we need keep the word and position embeddings in sync self.allreduce_word_and_position_embeddings() ## logging # we can only log on one rank if it is rank zero so we broadcast from last rank # we can avoid this broadcast by updating the PTL log function to accept specific ranks for k, v in loss_dict.items(): torch.distributed.broadcast(v, get_last_rank()) n = f'reduced_train_{k}' self.log(n, v, prog_bar=n.endswith("_loss"), rank_zero_only=True, batch_size=1) if self.torch_dtype == torch.float16: loss_scale = self.trainer.precision_plugin.scaler._scale if loss_scale is not None: self.log('loss_scale', loss_scale, batch_size=1) lr = self._optimizer.param_groups[0]['lr'] self.log('lr', lr, rank_zero_only=True, batch_size=1) self.log( 'global_step', self.trainer.global_step, prog_bar=True, rank_zero_only=True, batch_size=1, ) # TODO: make sure compute_consumed_samples works for pipeline parallelism self.log( 'consumed_samples', self._compute_consumed_samples_after_training_step(), prog_bar=True, rank_zero_only=True, batch_size=1, ) return loss_dict @property def max_decoder_seq_length(self) -> int: seq_len = self._cfg.data.get('seq_length_dec', None) if seq_len is None: seq_len = self.cfg.seq_length return seq_len @property def max_encoder_seq_length(self) -> int: return self.cfg.seq_length def backward(self, *args, **kwargs): """ LightningModule hook to do backward. We want this to do nothing since we run backward in the fwd/bwd functions from megatron-core. No need to call it here. """ return def optimizer_zero_grad(self, *args, **kwargs): """ LightningModule hook to zero grad. We want this to do nothing as we are zeroing grads during the training_step. """ return def allreduce_gradients(self): """Reduce gradients across data parallel ranks. Modified from megatron-lm: https://github.com/NVIDIA/Megatron-LM/blob/d41696840ed0a7edb7e0499eb82a48ae112d9bb3/megatron/model/distributed.py#L188 """ # Bucketize and all-reduce buckets = {} # Pack the buckets. for param in self.parameters(): if param.requires_grad and param.grad is not None: tp = param.data.type() if tp not in buckets: buckets[tp] = [] buckets[tp].append(param) # param.main_grad = param.grad # For each bucket, all-reduce and copy all-reduced grads. for tp in buckets: bucket = buckets[tp] grads = [param.grad.data for param in bucket] coalesced = torch._utils._flatten_dense_tensors(grads) coalesced /= parallel_state.get_data_parallel_world_size() torch.distributed.all_reduce(coalesced, group=parallel_state.get_data_parallel_group()) for buf, synced in zip(grads, torch._utils._unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced) def allreduce_word_and_position_embeddings(self): # Modified from megatron-lm: https://github.com/NVIDIA/Megatron-LM/blob/d41696840ed0a7edb7e0499eb82a48ae112d9bb3/megatron/training.py#L407 # All-reduce word_embeddings' grad across first, last stages to ensure that word_embeddings parameters stay in sync. if parallel_state.get_pipeline_model_parallel_world_size() > 1 and ( parallel_state.is_rank_in_embedding_group() ): if self.cfg.get('share_token_embeddings', True) and self.cfg.get( 'share_decoder_tokens_head_embeddings', True ): word_embeddings_weight = self.enc_dec_model.word_embeddings_weight() if self.megatron_amp_o2: # O2 recipe stores a "main" copy of weights and grads grad = word_embeddings_weight.main_grad else: grad = word_embeddings_weight.grad torch.distributed.all_reduce(grad, group=parallel_state.get_embedding_group()) else: raise ValueError( f"Attempting to allreduce word_embeddings for pipeline parallel size > 1, but found untied word embeddings or token head embeddings. This is not supported yet." ) # All-reduce position embeddings for T5. if ( parallel_state.is_rank_in_position_embedding_group() and parallel_state.get_pipeline_model_parallel_world_size() > 1 and parallel_state.get_pipeline_model_parallel_split_rank() is not None and self.cfg.encoder.get('position_embedding_type') == 'learned_absolute' and self.cfg.decoder.get('position_embedding_type') == 'learned_absolute' ): if self.cfg.get('share_token_embeddings', True): position_embeddings_weight = self.enc_dec_model.position_embeddings_weight() if self.megatron_amp_o2: grad = position_embeddings_weight.main_grad else: grad = position_embeddings_weight.grad torch.distributed.all_reduce(grad, group=parallel_state.get_position_embedding_group()) # All-reduce relative position embeddings for T5. if ( parallel_state.get_pipeline_model_parallel_world_size() > 2 # This > 2 and not > 1 since with PP=2 encoder RPE can live only on one rank. and parallel_state.get_pipeline_model_parallel_split_rank() is not None ): # For split rank = 1, we have only one encoder rank and so we don't need to allreduce. if ( self.cfg.encoder.get('position_embedding_type') == 'relative' and parallel_state.is_rank_in_encoder_relative_position_embedding_group() and parallel_state.get_pipeline_model_parallel_split_rank() > 1 ): position_embeddings_weight = self.enc_dec_model.encoder_relative_position_embeddings_weight() if self.megatron_amp_o2: grad = position_embeddings_weight.main_grad else: grad = position_embeddings_weight.grad torch.distributed.all_reduce( grad, group=parallel_state.get_encoder_relative_position_embedding_group() ) # For split rank == pipeline_world_size - 1, we have only one decoder rank and so we don't need to allreduce. if ( self.cfg.decoder.get('position_embedding_type') == 'relative' and parallel_state.is_rank_in_decoder_relative_position_embedding_group() ): position_embeddings_weight = self.enc_dec_model.decoder_relative_position_embeddings_weight() if self.megatron_amp_o2: grad = position_embeddings_weight.main_grad else: grad = position_embeddings_weight.grad torch.distributed.all_reduce( grad, group=parallel_state.get_decoder_relative_position_embedding_group() ) # If the model also has separate RPE weights for decoder cross-attention, allreduce those as well. if not self.cfg.decoder.get('relative_position_bias_self_attention_only', True): position_embeddings_weight = ( self.enc_dec_model.decoder_cross_attention_relative_position_embeddings_weight() ) if self.megatron_amp_o2: grad = position_embeddings_weight.main_grad else: grad = position_embeddings_weight.grad torch.distributed.all_reduce( grad, group=parallel_state.get_decoder_relative_position_embedding_group() ) def _process_batch(self, global_batch: Dict[str, torch.Tensor]) -> List[torch.Tensor]: # If the decoder input starts with <pad> instead of <bos>, which is the case for huggingface T5 models, we don't want to mask the first token. # For NeMo-Megatron, the sequence starts with <bos>, which is never masked so we can always set index 0 to be unmasked. global_batch['dec_mask'][:, 0] = 1 return [ global_batch["text_enc"], global_batch["text_dec"], global_batch["loss_mask"], global_batch["labels"], global_batch["enc_mask"], global_batch["dec_mask"], global_batch.get('data', None), ] def get_forward_output_and_loss_func(self): def fwd_output_and_loss_func(dataloader_iter, model): batch = next(dataloader_iter) # convert to list if not already converted. if isinstance(batch, dict): # convert to list if not already converted. batch = self._process_batch(batch) batch = [x.cuda(non_blocking=True) if torch.is_tensor(x) else x for x in batch] ( encoder_input_ids, decoder_input_ids, loss_mask, lm_labels, encoder_attn_mask, decoder_attn_mask, batch_data, ) = batch output = model( encoder_input_ids, # enc_input_ids encoder_attn_mask, # enc_attn_mask decoder_input_ids, # dec_input_ids decoder_attn_mask, # dec_attn_mask None, # token_type_ids lm_labels, # labels batch_data, # batch_data ) def loss_func(output_tensor): if isinstance(output_tensor, dict): # handle loss of hidden transformations loss_dict = output_tensor output_tensor = loss_dict.pop("output") # compute reconstruction (tokens) only loss from per-token reconstruction loss tokens_loss = self.loss_func(loss_mask, output_tensor) loss_dict["tokens_loss"] = tokens_loss tokens_loss_weight = loss_dict.get("tokens_loss_weight", 1.0) # compute total loss loss = loss_dict["loss"] = loss_dict["hiddens_loss"] + tokens_loss_weight * tokens_loss # average losses across data parallel group loss_dict = { k: average_losses_across_data_parallel_group([v.mean()]) for k, v in loss_dict.items() } else: # compute reconstruction (tokens) only loss from per-token reconstruction loss loss = self.loss_func(loss_mask, output_tensor) # average losses across data parallel group reduced_loss = average_losses_across_data_parallel_group([loss]) loss_dict = {'loss': reduced_loss} return loss, loss_dict return output, loss_func return fwd_output_and_loss_func @functools.lru_cache(maxsize=None) def _kwargs_to_arg_idx(self): """ Returns a dict {kwarg name: arg index} to be used when mapping kwargs into a list of args. Computed on first call, and then cached. """ # build mapping of kwargs to arg index at first run module = self.enc_dec_model.forward if not self.megatron_amp_o2 else self.enc_dec_model.module.forward args_name = inspect.getfullargspec(module)[0][1:] kwargs_to_arg_idx = {k: v for k, v in zip(args_name, range(len(args_name)))} return kwargs_to_arg_idx def _build_forward_args_from_kwargs(self, args_name, args, **kwargs): """ A helper method that converts arguments into positional arguments (by name) args - a list of arguments to pass to self.enc_dec_model (tensors from batch) args_name - a list of argument name (to be matched against allowed kwargs) kwargs - a dict {arg name: arg value} (used for non-tensor values) """ # sanity checks if len(args) != len(args_name): raise ValueError(f"Mismatch between length in args_name ({len(args_name)}) and args ({len(args)})") if any([n in kwargs for n in args_name]): raise ValueError(f"args_name = {args_name} cannot overlap kwargs = {list(kwargs.keys())}") # get mapping of kwarg names to arg index kwargs_to_arg_idx = self._kwargs_to_arg_idx() # collect all arguments all_args_name = args_name[:] all_args = args[:] for k, v in kwargs.items(): all_args_name.append(k) all_args.append(v) args_idx = [kwargs_to_arg_idx[n] for n in all_args_name] # print(f"all_args_name = {all_args_name} args_idx = {args_idx}") # construct args ordered by name (with None as place-holder) forward_args = [None] * (max(args_idx) + 1) for i, v in zip(args_idx, all_args): forward_args[i] = v return forward_args def _get_forward_output_only_func(self, arg_names, output_name, **kwargs): """ args_idx - maps batch into index of args (with None filling gaps) arg_names - corresponding names for a friendly error message output_name - name of output (hiddens for encode, logits for decode) kwargs - shared arguments (non tensors) """ def fwd_output_only_func(dataloader_iter, model): batch = next(dataloader_iter) batch = [x.cuda(non_blocking=True) if torch.is_tensor(x) else x for x in batch] # map batch and shared args into forward args args = self._build_forward_args_from_kwargs(args_name=arg_names, args=batch, **kwargs) output = model(*args).contiguous() def id_func(output_tensor): if isinstance(output_tensor, dict): # handle loss of hidden transformations ("output" is the default output) output_tensor = output_tensor["output"] return output_tensor, {output_name: output_tensor} return output, id_func return fwd_output_only_func ########## def _test_validation_step(self, step_outputs, dataloader_iter, batch_idx, dataloader_idx=0): """ Shared code for validation and test step """ # Check if iterator is exhausted dataloader_iter, done = self._val_iterator_done(dataloader_iter) if done: return loss_dict = self.fwd_bwd_step(dataloader_iter, batch_idx, True) step_outputs.append(loss_dict) return loss_dict def validation_step(self, dataloader_iter, batch_idx, dataloader_idx=0): """ return_values - if given, returns a dictionary with given keys and corresponding values """ if type(self.trainer.val_dataloaders) == list and len(self.trainer.val_dataloaders) > 1: step_outputs = self.validation_step_outputs[dataloader_idx] else: step_outputs = self.validation_step_outputs return self._test_validation_step( step_outputs=step_outputs, dataloader_iter=dataloader_iter, batch_idx=batch_idx, dataloader_idx=dataloader_idx, ) def test_step(self, dataloader_iter, batch_idx, dataloader_idx=0): if type(self.trainer.val_dataloaders) == list and len(self.trainer.val_dataloaders) > 1: step_outputs = self.test_step_outputs[dataloader_idx] else: step_outputs = self.test_step_outputs return self._test_validation_step( step_outputs=step_outputs, dataloader_iter=dataloader_iter, batch_idx=batch_idx, dataloader_idx=dataloader_idx, ) def _test_validation_epoch_end(self, step_outputs, prefix): """ Shared logging for validation and test """ # NOTE: we need to make sure outputs is not empty (this is a workaround for a bug in pytorch lightning (?)) if not step_outputs: logging.warning(f"{prefix} epoch end: outputs is empty") return None # only the last pipeline parallel stages return loss if parallel_state.is_pipeline_last_stage() and len(step_outputs): averaged_loss = {k: torch.stack([x[k] for x in step_outputs]).mean() for k in step_outputs[0].keys()} else: # if we are here we assume that only loss is available and hidden transforms are disabled (since not supported in pipleline parallel) averaged_loss = {'loss': torch.tensor(0.0).cuda()} # we can only log on one rank if it is rank zero so we broadcast from last rank for k, v in averaged_loss.items(): torch.distributed.broadcast(v, get_last_rank()) averaged_loss[k] = v n = f'{prefix}_{k}' # log only '*_loss' values in progress bar self.log(n, v, prog_bar=(n.endswith("_loss")), rank_zero_only=True, batch_size=1) # free memory step_outputs.clear() return averaged_loss def on_validation_epoch_end(self): # FIXME: do we need this? 'global_step' is logged in training_step self.log('global_step', self.trainer.global_step, prog_bar=True, rank_zero_only=True, batch_size=1) return self._test_validation_epoch_end(step_outputs=self.validation_step_outputs, prefix="val",) def on_test_epoch_end(self): return self._test_validation_epoch_end(step_outputs=self.test_step_outputs, prefix="test",) def loss_func(self, loss_mask, tokens_loss): """ This function takes as input per-token loss and masks non-required values. """ losses = tokens_loss.view(-1).float() loss_mask = loss_mask.view(-1).float() # TODO: add nemo version here loss = torch.sum(losses * loss_mask) / loss_mask.sum() # sequence level nll return loss def process_micro_batch(self, micro_batch): """ Micro batch returned by MegatronT5 dataloader""" data_b = micro_batch # Unpack. tokens_enc = data_b['text_enc'].long() tokens_dec = data_b['text_dec'].long() labels = data_b['labels'].long() loss_mask = data_b['loss_mask'].float() enc_mask = data_b['enc_mask'] dec_mask = data_b['dec_mask'] return tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask def _process_global_batch_without_megatron_batch_sampler(self, global_batch, tokenizer=None): """ Prepares the global batch for megatron-core fwd/bwd functions. Global batch is a list of micro batches. """ tokenizer = self.tokenizer if tokenizer is None else tokenizer text_enc_list = [] text_dec_list = [] labels_list = [] loss_mask_list = [] enc_mask_list = [] dec_mask_list = [] # Determine the maximum encoder and decoder sequence lengths amongst microbatches and pad each microbatch to the max seq length. # NOTE: This should only happen for model finetuning where we pad dynamically. Training uses fixed training shapes. max_enc_seq_lenth = max([micro_batch['text_enc'].shape[1] for micro_batch in global_batch]) max_dec_seq_lenth = max([micro_batch['text_dec'].shape[1] for micro_batch in global_batch]) for micro_batch in global_batch: text_enc, text_dec, loss_mask, labels, enc_mask, dec_mask = self.process_micro_batch(micro_batch) # Check if encoder sequence length < max encoder sequence length of the global batch and pad. if text_enc.shape[1] < max_enc_seq_lenth: text_enc = torch.nn.functional.pad( text_enc, (0, max_enc_seq_lenth - text_enc.shape[1], 0, 0), 'constant', tokenizer.pad_id ) enc_mask = torch.nn.functional.pad( enc_mask, (0, max_enc_seq_lenth - enc_mask.shape[1], 0, 0), 'constant', 0 ) if text_dec.shape[1] < max_dec_seq_lenth: text_dec = torch.nn.functional.pad( text_dec, (0, max_dec_seq_lenth - text_dec.shape[1], 0, 0), 'constant', tokenizer.pad_id ) dec_mask = torch.nn.functional.pad( dec_mask, (0, max_dec_seq_lenth - dec_mask.shape[1], 0, 0), 'constant', 0 ) labels = torch.nn.functional.pad( labels, (0, max_dec_seq_lenth - labels.shape[1], 0, 0), 'constant', tokenizer.pad_id ) loss_mask = torch.nn.functional.pad( loss_mask, (0, max_dec_seq_lenth - loss_mask.shape[1], 0, 0), 'constant', 0 ) text_enc_list.append(text_enc) text_dec_list.append(text_dec) labels_list.append(labels) loss_mask_list.append(loss_mask) enc_mask_list.append(enc_mask) dec_mask_list.append(dec_mask) # Concatenate to (num_microbatches x micro_batch_size x seq_len) tokens_enc_tensor = torch.concat(text_enc_list, dim=0) tokens_dec_tensor = torch.concat(text_dec_list, dim=0) labels_tensor = torch.concat(labels_list, dim=0) loss_mask_tensor = torch.concat(loss_mask_list, dim=0) enc_mask_tensor = torch.concat(enc_mask_list, dim=0) dec_mask_tensor = torch.concat(dec_mask_list, dim=0) return { 'text_enc': tokens_enc_tensor, 'text_dec': tokens_dec_tensor, 'loss_mask': loss_mask_tensor, 'labels': labels_tensor, 'enc_mask': enc_mask_tensor, 'dec_mask': dec_mask_tensor, } def build_train_valid_test_datasets(self): raise NotImplementedError("Please implement this method in child-class") def build_pretraining_data_loader(self, dataset, consumed_samples, num_workers): """Buld dataloader given an input dataset.""" if dataset is None: return None logging.info(f'Building dataloader with consumed samples: {consumed_samples}') # Megatron sampler if hasattr(self._cfg.data, 'dataloader_type') and self._cfg.data.dataloader_type is not None: if self._cfg.data.dataloader_type == 'single': batch_sampler = MegatronPretrainingSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=self._cfg.micro_batch_size, global_batch_size=self._cfg.global_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), drop_last=self._cfg.get('drop_last', True), ) elif self._cfg.data.dataloader_type == 'cyclic': batch_sampler = MegatronPretrainingRandomSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=self._cfg.micro_batch_size, global_batch_size=self._cfg.global_batch_size, data_parallel_rank=parallel_state.get_data_parallel_rank(), data_parallel_size=parallel_state.get_data_parallel_world_size(), drop_last=self._cfg.get('drop_last', True), ) else: raise Exception(f'{self._cfg.dataloader_type} dataloader type is not supported.') else: raise ValueError('cfg.data.dataloader_type not found. Must be "single" or "cyclic"') # Torch dataloader. return torch.utils.data.DataLoader( dataset, batch_sampler=batch_sampler, num_workers=num_workers, pin_memory=True, persistent_workers=True if num_workers > 0 else False, ) def setup(self, stage=None): """ PTL hook that is executed after DDP spawns. We setup datasets here as megatron datasets require DDP to instantiate. See https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#setup for more information. Args: stage (str, optional): Can be 'fit', 'validate', 'test' or 'predict'. Defaults to None. """ num_parameters_on_device, total_num_parameters = self._get_total_params_across_model_parallel_groups_enc_dec( self.enc_dec_model ) logging.info( f'Pipeline model parallel rank: {parallel_state.get_pipeline_model_parallel_rank()}\n' f'Tensor model parallel rank: {parallel_state.get_tensor_model_parallel_rank()}\n' f'Number of model parameters on device: {num_parameters_on_device:.2e}\n' f'Total number of model parameters: {total_num_parameters:.2e}\n' ) resume_checkpoint_path = self.trainer.ckpt_path if resume_checkpoint_path: init_consumed_samples = self._extract_consumed_samples_from_ckpt(resume_checkpoint_path) else: init_consumed_samples = 0 self.init_consumed_samples = init_consumed_samples """A PTL method to setup the training, validation and test datasets.""" if stage == 'predict': return if self._train_dl is not None and self._validation_dl is not None: return self.build_train_valid_test_datasets() self.setup_training_data(self._cfg.data) self.setup_validation_data(self._cfg.data) self.setup_test_data(self._cfg.data) # when using pipeline model parallel the final stage need to initialize word embeddings if parallel_state.get_pipeline_model_parallel_world_size() > 1: assert ( self.cfg.share_token_embeddings ), "share_word_embedding must be True when using pipeline model parallel > 1" assert ( self.cfg.share_decoder_tokens_head_embeddings ), "share_decoder_tokens_head_embeddings must be True when using pipeline model parallel > 1" self.enc_dec_model.sync_initial_word_embeddings() if ( self.cfg.encoder.get('position_embedding_type') == 'learned_absolute' and self.cfg.decoder.get('position_embedding_type') == 'learned_absolute' ): self.enc_dec_model.sync_initial_position_embeddings() # Synchronize RPE embeddings across pipeline parallel ranks. else: if self.cfg.encoder.get('position_embedding_type', 'learned_absolute') == 'relative': self.enc_dec_model.sync_initial_encoder_relative_position_embeddings() if self.cfg.decoder.get('position_embedding_type', 'learned_absolute') == 'relative': self.enc_dec_model.sync_initial_decoder_relative_position_embeddings() if self.cfg.decoder.get( 'position_embedding_type', 'learned_absolute' ) == 'relative' and not self.cfg.decoder.get('relative_position_bias_self_attention_only', True): self.enc_dec_model.sync_initial_decoder_cross_attention_relative_position_embeddings() def setup_training_data(self, cfg): if hasattr(self, '_train_ds'): consumed_samples = self.compute_consumed_samples(0) self._train_dl = self.build_pretraining_data_loader( self._train_ds, consumed_samples, num_workers=self._cfg.data.num_workers ) def setup_validation_data(self, cfg): if hasattr(self, '_validation_ds'): consumed_samples = 0 self._validation_dl = self.build_pretraining_data_loader( self._validation_ds, consumed_samples, num_workers=self._cfg.data.num_workers ) def setup_test_data(self, cfg): if hasattr(self, '_test_ds'): consumed_samples = 0 self._test_dl = self.build_pretraining_data_loader(self._test_ds, consumed_samples, num_workers=0) def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: Optional[int] = None) -> Any: request = batch response = self.complete(request) logging.info(f"response: {response}") return response def encode(self, tokens_enc, enc_mask, encoder_input=None, batch_data=None, reconfigure_microbatch=True): """ tokens_enc - encoder input tokens enc_mask - corresponding mask encoder_input - encoder input (bypass tokens), if given tokens_enc can be None. batch_data - passed directly to all hidden transformations and losses. Can be used to pass additional data like class label. Format is not defined and should match the expected format of the used hiddens modules. """ # Check whether the DDP is initialized. This is needed when running inference outside of training loop. if parallel_state.is_unitialized(): def dummy(): return if self.trainer.strategy.launcher is not None: self.trainer.strategy.launcher.launch(dummy, trainer=self.trainer) self.trainer.strategy.setup_environment() # Reconfigure microbatch sizes here because on model restore, this will contain the micro/global batch configuration used while training. if reconfigure_microbatch: _reconfigure_microbatch_calculator( rank=0, # This doesn't matter since it is only used for logging rampup_batch_size=None, global_batch_size=1, micro_batch_size=1, # Make sure that there is no "grad acc" while decoding. data_parallel_size=1, # We check above to make sure that dataparallel size is always 1 at inference. ) # If classes that inherit from this class are using a different tokenizer, app_state = AppState() if tokens_enc is not None: global_batch_per_gpu = tokens_enc.size(0) encoder_seq_length = tokens_enc.size(1) else: global_batch_per_gpu = encoder_input.size(1) encoder_seq_length = encoder_input.size(0) num_micro_batches_before_decode = get_num_microbatches() # Reconfigure microbatch calculator here to set num microbatches to 1 while decoding since its not clear how to decode with "grad acc". # reconfigure back to how things were before encode if reconfigure_microbatch: _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=global_batch_per_gpu * parallel_state.get_data_parallel_world_size(), micro_batch_size=global_batch_per_gpu, # Make sure that there is no "grad acc" while decoding. data_parallel_size=parallel_state.get_data_parallel_world_size(), ) tensor_shape = [encoder_seq_length, global_batch_per_gpu, self.cfg.encoder.hidden_size] # build input arguments description if tokens_enc is not None: batch_for_pipeline = [tokens_enc, enc_mask, batch_data] arg_names = ['enc_input_ids', 'enc_attn_mask', 'batch_data'] else: if encoder_input is None: raise ValueError("At least one of tokens_enc and encoder_input must be provided with not None value") batch_for_pipeline = [enc_mask] arg_names = ['enc_attn_mask'] if encoder_input is not None: batch_for_pipeline.append(encoder_input) arg_names.append('enc_input') forward_step_func = self._get_forward_output_only_func( arg_names=arg_names, output_name="hiddens", output_enc_hidden_only=True ) fwd_bwd_func = get_forward_backward_func() # Counter intuitively, we need to set decoder_sequence_length=encoder_seq_length # because while running `.encode()`, the last hidden states from encoder are passed through # as identity through the pipeline. # Setting it to anything else will cause hanging due to tensor shape mismatches. output_tensor = fwd_bwd_func( forward_step_func=forward_step_func, data_iterator=iter([batch_for_pipeline,]), model=[self.enc_dec_model], forward_only=True, num_microbatches=1, seq_length=encoder_seq_length, decoder_seq_length=encoder_seq_length, micro_batch_size=get_micro_batch_size(), ) if output_tensor: output_tensor = output_tensor[0]['hiddens'] else: output_tensor = torch.zeros(tensor_shape, dtype=self.autocast_dtype).cuda() if self.cfg.get('pipeline_model_parallel_size', 1) > 1: # Broadcast from the last pipeline stage to all other model-parallel ranks. torch.distributed.broadcast( output_tensor, parallel_state.get_pipeline_model_parallel_last_rank(), group=parallel_state.get_pipeline_model_parallel_group(), ) # Reset microbatch calculator to what it was before decoding. if reconfigure_microbatch: _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=global_batch_per_gpu * parallel_state.get_data_parallel_world_size(), micro_batch_size=global_batch_per_gpu // num_micro_batches_before_decode, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # Return the output tensor of encoder and transpose from [seq_len, batch, hidden] to [batch, seq_len, hidden] return output_tensor.transpose(1, 0) def decode( self, tokens_enc, enc_mask, num_tokens_to_generate, encoder_input=None, tokenizer=None, enc_output=None, enc_output_attn_mask=None, ignore_ids=[], bos_id=None, # If bos=None, will use tokenizer.bos_id unless explicitly set to something else. predicted_tokens_dec=None, batch_data=None, sampling_method: str = "greedy-search", sampling_kwargs: dict = {}, ): """ tokens_enc - a tensor of shape [batch_size, seq_len] that contains the input tokens. enc_mask - a tensor of shape [batch_size, seq_len] that contains the input tokens mask (1 for active, 0 for inactive). num_tokens_to_generate - the max number of tokens to generate. encoder_input - a tensor of shape [batch_size, seq_len, hidden_size] that contains the encoder hidden states (replaces tokens_enc if given). tokenizer - a tokenizer object. enc_output - a tensor of shape [batch_size, seq_len, hidden_size] that contains the encoder hidden states (replaces tokens_enc and encoder_input if given). enc_output_attn_mask - a tensor of shape [batch_size, seq_len] that contains the encoder attention mask (replaces enc_mask if given). ignore_ids - a list of token ids to ignore when sampling. bos_id - the id of the beginning of sentence token. If None, will use tokenizer.bos_id unless explicitly set to something else. predicted_tokens_dec - a tensor of shape [batch_size, seq_len] that contains the tokens that have already been decoded. sampling_method - a sampling method to use in the decoding iterations. Currently supported methods are "beam-search"/"greedy-search"/"topkp-sampling". The argument specifies the sampling function that takes in a tensor of logits [batch_size, vocab_size] and returns a tuple (tensor of log_probs [batch_size], tensor of sampled tokens_ids from logits [batch_size]). If the beam search is enabled, the sampling function returns tensors [batch_size, beam_size] sampling_kwargs - dict with arguments to be passed to the sampling function. Please refer to the method get_sampling_token_fn to see which arguments are required for a chosen sampling_method. return: tuple of tensors [batch_size, seq_len +1], [batch_size, seq_len] for predicted tokens and their log probs. If sampling_method == 'beam-size' and keep_only_best_tokens is False the shape of the tensors are [batch_size, beam_size, seq_len + 1], [batch_size, beam_size, seq_len] """ # Setting up the sampling strategy sample_token_fn, sampling_kwargs = get_sampling_token_fn(sampling_method, sampling_kwargs) beam_search = sampling_method == 'beam-search' if beam_search: beam_size = sampling_kwargs['beam_size'] beam_alpha = sampling_kwargs['beam_alpha'] keep_only_best_tokens = sampling_kwargs['keep_only_best_tokens'] return_scores = sampling_kwargs['return_scores'] logging.info(f'Decoding using the beam search method with beam size={beam_size}...') assert beam_size >= 1 and beam_alpha >= 0, 'Beam-search related parameters are misspecified' else: logging.info(f'Decoding using the {sampling_method} method...') # Check whether the DDP is initialized. This is needed when running inference outside of training loop. if not parallel_state.model_parallel_is_initialized(): def dummy(): return if self.trainer.strategy.launcher is not None: self.trainer.strategy.launcher.launch(dummy, trainer=self.trainer) self.trainer.strategy.setup_environment() # Reconfigure microbatch sizes here because on model restore, this will contain the micro/global batch configuration used while training. _reconfigure_microbatch_calculator( rank=0, # This doesn't matter since it is only used for logging rampup_batch_size=None, global_batch_size=1, micro_batch_size=1, # Make sure that there is no "grad acc" while decoding. data_parallel_size=1, # We check above to make sure that dataparallel size is always 1 at inference. ) # If classes that inherit from this class are using a different tokenizer, tokenizer = self.tokenizer if tokenizer is None else tokenizer app_state = AppState() if tokens_enc is not None: global_batch_per_gpu = tokens_enc.size(0) device = tokens_enc.device encoder_seq_length = tokens_enc.size(1) else: global_batch_per_gpu = enc_output.size(0) device = enc_output.device encoder_seq_length = enc_output.size(1) num_micro_batches_before_decode = get_num_microbatches() # Reconfigure microbatch calculator here to set num microbatches to 1 while decoding since its not clear how to decode with "grad acc". # reconfigure back to how things were before decode # TODO: Check if the user is trying to do gradient acc and maybe throw error _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=global_batch_per_gpu * parallel_state.get_data_parallel_world_size(), micro_batch_size=global_batch_per_gpu, # Make sure that there is no "grad acc" while decoding. data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # TODO: Figure out how to handle bos being either <bos> for NeMo-Megatron and <pad> for Huggingface/Google. bos_id = tokenizer.bos_id if bos_id is None else bos_id # initial prompt can be given if predicted_tokens_dec is None: predicted_tokens_dec = torch.LongTensor([bos_id] * global_batch_per_gpu).unsqueeze(1).to(device) # collect log probs that were used in the sampling predicted_log_probs = torch.zeros((global_batch_per_gpu, 0), dtype=self.autocast_dtype).to(device) tensor_shape = [encoder_seq_length, global_batch_per_gpu, self.cfg.encoder.hidden_size] assert predicted_tokens_dec.size(0) == global_batch_per_gpu # get encoder hiddens (output) if enc_output is None: # Encode returns a tensr of shape [batch, seq_len, hidden] # All ranks will call `.encode()`, but only the last rank will have a non-empty output tensor. enc_output = self.encode( tokens_enc=tokens_enc, enc_mask=enc_mask, encoder_input=encoder_input, reconfigure_microbatch=False ) if enc_output_attn_mask is None: enc_output_attn_mask = enc_mask for i in range(num_tokens_to_generate): # No microbatches in decoding. Just the global batch. decoder_seq_length = predicted_tokens_dec.size(1) dec_mask = predicted_tokens_dec != tokenizer.pad_id dec_mask[:, 0] = 1 # Make sure you never mask the first token even if it is <pad>. batch_for_pipeline = [enc_output, enc_output_attn_mask, predicted_tokens_dec, dec_mask, batch_data] arg_names = ['enc_output', 'enc_output_attn_mask', 'dec_input_ids', 'dec_attn_mask', 'batch_data'] forward_step_func = self._get_forward_output_only_func(arg_names=arg_names, output_name="logits") fwd_bwd_func = get_forward_backward_func() output_tensor = fwd_bwd_func( forward_step_func=forward_step_func, data_iterator=iter([batch_for_pipeline,]), model=[self.enc_dec_model], forward_only=True, num_microbatches=1, seq_length=encoder_seq_length, decoder_seq_length=encoder_seq_length, micro_batch_size=get_micro_batch_size(), ) # get output tensor if parallel_state.is_pipeline_last_stage(): output_tensor = output_tensor[0]['logits'] output_tensor = tensor_parallel.gather_from_tensor_model_parallel_region(output_tensor) # make sure it won't sample outside the vocab_size range output_tensor[:, :, tokenizer.vocab_size :] = -float('Inf') # ignore selected indices if ignore_ids: output_tensor = output_tensor.index_fill( dim=-1, index=torch.tensor(ignore_ids, device=output_tensor.device), value=-float('Inf') ) log_probs, token_ids = sample_token_fn(logits=output_tensor[:, -1, :]) # enforce valid range of token ids token_ids = torch.clamp(token_ids, max=tokenizer.vocab_size - 1) if beam_search: # beam search: beam creation in the first iteration if i == 0: # resizing decoder inputs to match tensors augmented with beams log_probs, token_ids = log_probs.view(-1), token_ids.view(-1) scores = log_probs.unsqueeze(1).clone() batch_size, src_length, hidden_size = enc_output.size() enc_output_attn_mask = enc_output_attn_mask.repeat(1, beam_size).view(-1, src_length) enc_output = enc_output.repeat(1, beam_size, 1).view(-1, src_length, hidden_size) # resize tensors that collect predicted tokens and logits per iteration to # match shape of tensors augmented with the beam size predicted_tokens_dec = predicted_tokens_dec.repeat(beam_size, 1) predicted_log_probs = predicted_log_probs.repeat(beam_size, 0) pad_profile = torch.zeros_like(scores).long() decoder_seq_lengths = torch.zeros_like(scores).fill_(predicted_tokens_dec.size(1) + 1) # reconfigure batch size for apex since the tensor have been augmented with beam size global_batch_per_gpu = token_ids.shape[0] tensor_shape[1] = global_batch_per_gpu _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=global_batch_per_gpu * parallel_state.get_data_parallel_world_size(), micro_batch_size=global_batch_per_gpu, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # collect all predicted tokens and log_probs predicted_tokens_dec = torch.cat( [predicted_tokens_dec.to(token_ids.device), token_ids.unsqueeze(1)], dim=1 ) predicted_log_probs = torch.cat( [predicted_log_probs.to(log_probs.device), log_probs.unsqueeze(1)], dim=1 ) # beam search: beam selection in the second iteration and on else: # mask all finished hypotheses to exclude them from beam pad_mask = pad_profile.repeat(1, beam_size) # for all prefixes ending with <eos> or <pad> replace generated # continuations with <pad> token_ids = tokenizer.pad_id * pad_mask + token_ids * (1 - pad_mask) # force all hypotheses but one generated from already finished # hypotheses to have extremely low score, so they will not be # considered during beam re-ranking pad_mask[:, 1:] = pad_mask[:, 1:] * -10000.0 scores = scores + log_probs * (1 - pad_mask).to(scores.dtype) # choose top-k hypotheses with length penalty applied len_penalties = compute_beam_search_len_penalty(decoder_seq_lengths, beam_alpha) scores = scores / len_penalties scores, indices = sample_token_fn(scores.view(-1, beam_size ** 2), dim=1, log_softmax=False) scores = scores.view(-1, 1) * len_penalties # select predicted sequences which correspond to the chosen hypotheses predicted_tokens_dec = predicted_tokens_dec.unsqueeze(1).repeat(1, beam_size, 1) predicted_tokens_dec = torch.cat((predicted_tokens_dec, token_ids.unsqueeze(2)), dim=2) predicted_tokens_dec = predicted_tokens_dec.view(batch_size, beam_size ** 2, -1) p_len = predicted_tokens_dec.size(2) predicted_tokens_dec_ids = indices.unsqueeze(2).repeat(1, 1, p_len) predicted_tokens_dec = predicted_tokens_dec.gather(1, predicted_tokens_dec_ids).view(-1, p_len) # select logits which correspond to the chosen hypotheses predicted_log_probs = predicted_log_probs.unsqueeze(1).repeat(1, beam_size, 1) predicted_log_probs = torch.cat((predicted_log_probs, log_probs.unsqueeze(2)), dim=2) predicted_log_probs = predicted_log_probs.view(batch_size, beam_size ** 2, -1) predicted_log_probs = predicted_log_probs.gather(1, predicted_tokens_dec_ids[:, :, 1:]).view( -1, p_len - 1 ) # update decoder_seq_length and pad_profile not_eos_pad = predicted_tokens_dec.ne(tokenizer.eos_id) & predicted_tokens_dec.ne( tokenizer.pad_id ) decoder_seq_lengths = 1 + not_eos_pad.sum(dim=1, keepdim=True).to(scores.dtype) pad_profile = (~not_eos_pad[:, -1:]).long() else: # collect all predicted tokens and log_probs predicted_tokens_dec = torch.cat( [predicted_tokens_dec.to(token_ids.device), token_ids.unsqueeze(1)], dim=1 ) predicted_log_probs = torch.cat( [predicted_log_probs.to(log_probs.device), log_probs.unsqueeze(1)], dim=1 ) else: predicted_tokens_dec = torch.zeros( (predicted_tokens_dec.shape[0], predicted_tokens_dec.shape[1] + 1), dtype=predicted_tokens_dec.dtype, ).cuda() predicted_log_probs = torch.zeros( (predicted_log_probs.shape[0], predicted_log_probs.shape[1] + 1), dtype=self.autocast_dtype ).cuda() if self.cfg.get('pipeline_model_parallel_size', 1) > 1: # Broadcast from the last pipeline stage to all other model-parallel ranks. torch.distributed.broadcast( predicted_tokens_dec, parallel_state.get_pipeline_model_parallel_last_rank(), group=parallel_state.get_pipeline_model_parallel_group(), ) torch.distributed.broadcast( predicted_log_probs, parallel_state.get_pipeline_model_parallel_last_rank(), group=parallel_state.get_pipeline_model_parallel_group(), ) # Reset microbatch calculator to what it was before decoding. _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=global_batch_per_gpu * parallel_state.get_data_parallel_world_size(), micro_batch_size=global_batch_per_gpu // num_micro_batches_before_decode, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) if beam_search and beam_size > 1: if keep_only_best_tokens: len_penalties = compute_beam_search_len_penalty(decoder_seq_lengths, 0) scores = scores / len_penalties scores = scores.view(-1, beam_size) best_ids = torch.argmax(scores, dim=1, keepdim=True) scores = scores * len_penalties.view(-1, beam_size) scores = scores.gather(1, best_ids) best_tokens = best_ids.repeat(1, predicted_tokens_dec.size(1)).unsqueeze(1) predicted_tokens_dec = ( predicted_tokens_dec.view(batch_size, beam_size, -1).gather(1, best_tokens).squeeze(1) ) predicted_log_probs = ( predicted_log_probs.view(batch_size, beam_size, -1).gather(1, best_tokens[:, :, 1:]).squeeze(1) ) else: predicted_tokens_dec = predicted_tokens_dec.view(batch_size, beam_size, -1) predicted_log_probs = predicted_log_probs.view(batch_size, beam_size, -1) scores = scores.view(-1, beam_size) if beam_search: if return_scores: return predicted_tokens_dec, predicted_log_probs, scores return predicted_tokens_dec, predicted_log_probs def complete(self, request: Dict): """ Autoregressively invokes language model in the inference mode Args: request: Dictionary with the following fields * prompt: a string which text the model should complete. * tokens_to_generate: how many tokens to generate while doing prompt completion. Returns: response: A python dictionary with the following fields * prompt: original text of the prompt * tokenized_prompt: list of (str) tokens from prompt * completion: a python dictionary with the following subfields: * tokens: a list of triples (token, token_id, log_prob) comprising completion * text: completion text (as a single string) """ app_state = AppState() # The complete method only works with global batch = micro batch size = data parallel size = 1. _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=1, micro_batch_size=1, data_parallel_size=1, ) app_state = AppState() response = {} self.freeze() # naive greedy slow loop # TODO: add option for BeamSearchDecoder response['prompt'] = request['prompt'][0] response['completion'] = {} bos_id = request['bos_id'] tokens_enc = request['masked_sample'] response['masked_input'] = ' '.join(self.tokenizer.ids_to_tokens(tokens_enc[0].cpu().numpy().tolist())) enc_mask = tokens_enc != self.tokenizer.pad_id predicted_tokens_ids, log_probs = self.decode( tokens_enc, enc_mask, int(request['tokens_to_generate']), bos_id=bos_id ) predicted_tokens_ids = predicted_tokens_ids.cpu().numpy()[0].tolist() log_probs = log_probs.cpu().numpy()[0].tolist() if self.tokenizer.eos_id in predicted_tokens_ids: idx = predicted_tokens_ids.index(self.tokenizer.eos_id) predicted_tokens_ids = predicted_tokens_ids[:idx] else: predicted_tokens_ids = [id for id in predicted_tokens_ids if id != self.tokenizer.pad_id] if self.tokenizer.eos_id in predicted_tokens_ids: idx = predicted_tokens_ids.index(self.tokenizer.eos_id) predicted_tokens_ids = predicted_tokens_ids[:idx] # Legacy sentencepiece detokenization still preserves special tokens which messes up exact string match. if hasattr(self.tokenizer, 'special_token_to_id'): predicted_tokens_ids = [ id for id in predicted_tokens_ids if id not in self.tokenizer.special_token_to_id.values() ] predicted_tokens_dec = self.tokenizer.ids_to_tokens(predicted_tokens_ids) response['completion']['text'] = self.tokenizer.tokens_to_text(predicted_tokens_dec) response['completion']['tokens'] = list(zip(predicted_tokens_ids, predicted_tokens_dec, log_probs)) self.unfreeze() return response def transfer_batch_to_device(self, batch: Any, device: torch.device, dataloader_idx: int) -> Any: """ PTL hook: https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#transfer-batch-to-device When using pipeline parallelism, we need the global batch to remain on the CPU, since the memory overhead will be too high when using a large number of microbatches. Microbatches are transferred from CPU to GPU inside the pipeline. """ return batch def _validate_trainer(self): """ Certain trainer configurations can break training. Here we try to catch them and raise an error. """ if self.trainer.accumulate_grad_batches > 1: raise ValueError( f'Gradient accumulation is done within training_step. trainer.accumulate_grad_batches must equal 1' ) def list_available_models(self): pass def build_model_parallel_config(self): """ Hidden size needs to be set from the cfg.encoder for the pipeline schedule. """ model_parallel_config = super().build_model_parallel_config() try: # hidden size is needed for pipeline schedules but is not currently in ModelParallelConfig setattr(model_parallel_config, 'hidden_size', self.cfg.encoder.hidden_size) except AttributeError: logging.warning( f'encoder.hidden_size not found in {self.cfg}. Set this in model_parallel_config if using pipeline parallelism.' ) return model_parallel_config
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron_lm_encoder_decoder_model.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT model.""" import torch from nemo.collections.nlp.modules.common.megatron.language_model import get_language_model from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.transformer import get_layer_norm from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, build_position_ids, erf_gelu, get_linear_layer, init_method_normal, openai_gelu, parallel_lm_logits, scaled_init_method_normal, ) try: from apex.transformer.enums import AttnMaskType from apex.transformer.tensor_parallel.layers import set_tensor_model_parallel_attributes HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig, parallel_state, tensor_parallel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False def bert_extended_attention_mask(attention_mask): # We create a 3D attention mask from a 2D tensor mask. # [b, 1, s] attention_mask_b1s = attention_mask.unsqueeze(1) # [b, s, 1] attention_mask_bs1 = attention_mask.unsqueeze(2) # [b, s, s] attention_mask_bss = attention_mask_b1s * attention_mask_bs1 # [b, 1, s, s] extended_attention_mask = attention_mask_bss.unsqueeze(1) # Convert attention mask to binary: extended_attention_mask = extended_attention_mask < 0.5 return extended_attention_mask class BertLMHead(MegatronModule): """Masked LM head for Bert Arguments: mpu_vocab_size: model parallel size of vocabulary. hidden_size: hidden size init_method: init method for weight initialization layernorm_epsilon: tolerance for layer norm divisions parallel_output: whether output logits being distributed or not. """ def __init__( self, config: ModelParallelConfig, mpu_vocab_size, hidden_size, init_method, layernorm_epsilon, parallel_output, use_openai_gelu, onnx_safe, ): super(BertLMHead, self).__init__(config=config) self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size)) set_tensor_model_parallel_attributes(self.bias, True, 0, 1) self.parallel_output = parallel_output self.sequence_parallel = config.sequence_parallel self.dense = get_linear_layer(hidden_size, hidden_size, init_method) self.layernorm = get_layer_norm(hidden_size, eps=layernorm_epsilon) self.gelu = torch.nn.functional.gelu if use_openai_gelu: self.gelu = openai_gelu elif onnx_safe: self.gelu = erf_gelu def forward(self, hidden_states, word_embeddings_weight): hidden_states = self.dense(hidden_states) hidden_states = self.gelu(hidden_states) hidden_states = self.layernorm(hidden_states) async_tensor_model_parallel_allreduce = self.config.async_tensor_model_parallel_allreduce output = parallel_lm_logits( hidden_states, word_embeddings_weight, self.parallel_output, sequence_parallel=self.sequence_parallel, bias=self.bias, async_tensor_model_parallel_allreduce=async_tensor_model_parallel_allreduce, ) return output def post_language_model_processing( lm_output, pooled_output, lm_head, binary_head, lm_labels, logit_weights, fp16_lm_cross_entropy, ): # lm_logits: [s, b, vocab_size] lm_logits = lm_head(lm_output, logit_weights) binary_logits = None if binary_head is not None: # binary_logits: [s, b, 2] or [s, b, vocab_size] if binary_head is Identity binary_logits = binary_head(pooled_output) if lm_labels is None: return lm_logits, binary_logits else: # match shape of labels to lm_logits # lm_labels: [b, s] -> [s, b] lm_labels = lm_labels.transpose(0, 1).contiguous() if fp16_lm_cross_entropy: assert lm_logits.dtype == torch.half lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits, lm_labels) else: lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits.float(), lm_labels) # lm_loss: [s, b] return lm_loss, binary_logits class BertModel(MegatronModule): """ Bert Language model. Model returns [seq, batch, hidden] shape """ def __init__( self, config: ModelParallelConfig, vocab_size, hidden_size, max_position_embeddings, num_layers, num_attention_heads, ffn_hidden_size, apply_query_key_layer_scaling=True, kv_channels=None, num_tokentypes=0, parallel_output=True, pre_process=True, post_process=True, init_method_std=0.02, fp16_lm_cross_entropy=False, megatron_amp_O2=False, hidden_dropout=0.1, precision=16, fp32_residual_connection=False, activations_checkpoint_granularity=None, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, activations_checkpoint_layers_per_pipeline=None, layernorm_epsilon=1e-5, masked_softmax_fusion=False, bias_gelu_fusion=True, bias_dropout_add_fusion=True, openai_gelu=False, onnx_safe=False, add_binary_head=True, megatron_legacy=False, sequence_parallel=False, position_embedding_type='learned_absolute', ): super(BertModel, self).__init__(config=config) self.fp16_lm_cross_entropy = fp16_lm_cross_entropy self.add_binary_head = add_binary_head self.parallel_output = parallel_output self.pre_process = pre_process self.post_process = post_process self.sequence_parallel = sequence_parallel init_method = init_method_normal(init_method_std) scaled_init_method = scaled_init_method_normal(init_method_std, num_layers) self.language_model, self._language_model_key = get_language_model( config=config, vocab_size=vocab_size, hidden_size=hidden_size, hidden_dropout=hidden_dropout, num_tokentypes=num_tokentypes, max_position_embeddings=max_position_embeddings, num_layers=num_layers, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, ffn_hidden_size=ffn_hidden_size, add_pooler=self.add_binary_head, encoder_attn_mask_type=AttnMaskType.padding, init_method=init_method, scaled_init_method=scaled_init_method, pre_process=self.pre_process, post_process=self.post_process, init_method_std=init_method_std, megatron_amp_O2=megatron_amp_O2, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_granularity=activations_checkpoint_granularity, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_layers_per_pipeline=activations_checkpoint_layers_per_pipeline, layernorm_epsilon=layernorm_epsilon, masked_softmax_fusion=masked_softmax_fusion, bias_activation_fusion=bias_gelu_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, openai_gelu=openai_gelu, onnx_safe=onnx_safe, megatron_legacy=megatron_legacy, position_embedding_type=position_embedding_type, ) self.initialize_word_embeddings( init_method=init_method_normal(init_method_std), vocab_size=vocab_size, hidden_size=hidden_size ) if self.post_process: self.lm_head = BertLMHead( config, self.word_embeddings_weight().size(0), hidden_size, init_method, layernorm_epsilon, parallel_output, openai_gelu, onnx_safe, ) self._lm_head_key = 'lm_head' self.binary_head = None if self.add_binary_head: self.binary_head = get_linear_layer(hidden_size, 2, init_method) self._binary_head_key = 'binary_head' def set_input_tensor(self, input_tensor): """See megatron.model.transformer.set_input_tensor()""" self.language_model.set_input_tensor(input_tensor) def forward( self, bert_model_input, attention_mask, token_type_ids=None, lm_labels=None, checkpoint_activations_all_layers=None, ): extended_attention_mask = bert_extended_attention_mask(attention_mask) if parallel_state.is_pipeline_first_stage(): input_ids = bert_model_input position_ids = build_position_ids(input_ids) else: position_ids = None input_ids = None lm_output = self.language_model( input_ids, position_ids, extended_attention_mask, token_type_ids=token_type_ids, checkpoint_activations_all_layers=checkpoint_activations_all_layers, ) if self.post_process and self.add_binary_head: lm_output, pooled_output = lm_output else: pooled_output = None if self.post_process: return post_language_model_processing( lm_output, pooled_output, self.lm_head, self.binary_head, lm_labels, self.word_embeddings_weight(), self.fp16_lm_cross_entropy, ) else: return lm_output def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load when model is combined with other heads, add an extra key.""" state_dict_ = {} state_dict_[self._language_model_key] = self.language_model.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) if self.post_process: state_dict_[self._lm_head_key] = self.lm_head.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) if self.post_process and self.add_binary_head: state_dict_[self._binary_head_key] = self.binary_head.state_dict(destination, prefix, keep_vars) # Save word_embeddings. if self.post_process and not self.pre_process: state_dict_[self._word_embeddings_for_head_key] = self.word_embeddings.state_dict( destination, prefix, keep_vars ) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" self.language_model.load_state_dict(state_dict[self._language_model_key], strict=strict) if self.post_process: self.lm_head.load_state_dict(state_dict[self._lm_head_key], strict=strict) if self.post_process and self.add_binary_head: self.binary_head.load_state_dict(state_dict[self._binary_head_key], strict=strict) # Load word_embeddings. if self.post_process and not self.pre_process: self.word_embeddings.load_state_dict(state_dict[self._word_embeddings_for_head_key], strict=strict)
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron/bert_model.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nemo.collections.nlp.models.language_modeling.megatron.bert_model import BertModel try: from nemo.collections.nlp.models.language_modeling.megatron.gpt_model import GPTModel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False # from nemo.collections.nlp.models.language_modeling.megatron.t5_model import T5Model
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GPT-2 model.""" import torch from nemo.collections.nlp.modules.common.megatron.language_model import get_language_model from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, init_method_normal, parallel_lm_logits, scaled_init_method_normal, ) from nemo.collections.nlp.parts import utils_funcs try: from apex.transformer.enums import AttnMaskType HAVE_APEX = True except (ImportError, ModuleNotFoundError): # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() HAVE_APEX = False try: from megatron.core import ModelParallelConfig, parallel_state, tensor_parallel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False def post_language_model_processing( lm_output, labels, logit_weights, get_key_value, parallel_output, forward_method_parallel_output, fp16_lm_cross_entropy, return_logits=False, sequence_parallel=False, gradient_accumulation_fusion=False, ): if get_key_value: lm_output, presents = lm_output # Output. Format is [s b h] if forward_method_parallel_output is not None: parallel_output = forward_method_parallel_output async_tensor_model_parallel_allreduce = ( parallel_state.get_tensor_model_parallel_world_size() > 1 and not sequence_parallel ) output = parallel_lm_logits( lm_output, logit_weights, parallel_output, sequence_parallel=sequence_parallel, gradient_accumulation_fusion=gradient_accumulation_fusion, async_tensor_model_parallel_allreduce=async_tensor_model_parallel_allreduce, ) if get_key_value: output = [output, presents] if labels is None: # [s b h] -> [b s h] return output.transpose(0, 1).contiguous() else: # [b s] -> [s b] labels = labels.transpose(0, 1).contiguous() if fp16_lm_cross_entropy: assert output.dtype == torch.half loss = tensor_parallel.vocab_parallel_cross_entropy(output, labels) else: loss = tensor_parallel.vocab_parallel_cross_entropy(output.float(), labels) # [s b] -> [b, s] loss = loss.transpose(0, 1).contiguous() if return_logits: return loss, output else: return loss class GPTModel(MegatronModule): """GPT-2 Language model.""" def __init__( self, config: ModelParallelConfig, vocab_size, hidden_size, max_position_embeddings, num_layers, num_attention_heads, ffn_hidden_size, apply_query_key_layer_scaling=False, kv_channels=None, num_tokentypes=0, parallel_output=True, pre_process=True, post_process=True, init_method_std=0.02, use_scaled_init_method=True, fp16_lm_cross_entropy=False, megatron_amp_O2=False, hidden_dropout=0.1, attention_dropout=0.1, ffn_dropout=0.0, precision=16, fp32_residual_connection=False, activations_checkpoint_granularity=None, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, activations_checkpoint_layers_per_pipeline=None, normalization='layernorm', layernorm_epsilon=1e-5, bias=True, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, activation='gelu', headscale=False, transformer_block_type='pre_ln', normalize_attention_scores=True, position_embedding_type='learned_absolute', rotary_percentage=1.0, attention_type='multihead', share_embeddings_and_output_weights=True, persist_layer_norm=False, openai_gelu=False, megatron_legacy=False, onnx_safe=False, transformer_engine=False, fp8=False, fp8_e4m3=False, fp8_hybrid=False, fp8_margin=0, fp8_interval=1, fp8_amax_history_len=1, fp8_amax_compute_algo='most_recent', reduce_amax=True, use_emha=False, ub_tp_comm_overlap=False, use_flash_attention=False, seq_len_interpolation_factor=None, ): super(GPTModel, self).__init__(config=config, share_token_embeddings=share_embeddings_and_output_weights) self.parallel_output = parallel_output self.pre_process = pre_process self.post_process = post_process self.fp16_lm_cross_entropy = fp16_lm_cross_entropy self.sequence_parallel = self.config.sequence_parallel self.share_embeddings_and_output_weights = share_embeddings_and_output_weights self.dtype = utils_funcs.torch_dtype_from_precision(precision, megatron_amp_O2) if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads scaled_init_method = ( scaled_init_method_normal(init_method_std, num_layers) if use_scaled_init_method else init_method_normal(init_method_std) ) self.language_model, self._language_model_key = get_language_model( config=config, vocab_size=vocab_size, hidden_size=hidden_size, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, num_tokentypes=num_tokentypes, max_position_embeddings=max_position_embeddings, num_layers=num_layers, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, ffn_hidden_size=ffn_hidden_size, add_pooler=False, encoder_attn_mask_type=AttnMaskType.causal, init_method=init_method_normal(init_method_std), scaled_init_method=scaled_init_method, pre_process=self.pre_process, post_process=self.post_process, init_method_std=init_method_std, megatron_amp_O2=megatron_amp_O2, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_granularity=activations_checkpoint_granularity, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_layers_per_pipeline=activations_checkpoint_layers_per_pipeline, normalization=normalization, layernorm_epsilon=layernorm_epsilon, rotary_percentage=rotary_percentage, share_embeddings_and_output_weights=share_embeddings_and_output_weights, bias=bias, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, activation=activation, headscale=headscale, transformer_block_type=transformer_block_type, normalize_attention_scores=normalize_attention_scores, position_embedding_type=position_embedding_type, attention_type=attention_type, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, megatron_legacy=megatron_legacy, transformer_engine=transformer_engine, fp8=fp8, fp8_e4m3=fp8_e4m3, fp8_hybrid=fp8_hybrid, fp8_margin=fp8_margin, fp8_interval=fp8_interval, fp8_amax_history_len=fp8_amax_history_len, fp8_amax_compute_algo=fp8_amax_compute_algo, reduce_amax=reduce_amax, use_emha=use_emha, ub_tp_comm_overlap=ub_tp_comm_overlap, use_flash_attention=use_flash_attention, seq_len_interpolation_factor=seq_len_interpolation_factor, ) if self.share_embeddings_and_output_weights: self.initialize_word_embeddings( init_method=init_method_normal(init_method_std), vocab_size=vocab_size, hidden_size=hidden_size, param_dtype=self.dtype, ) def set_input_tensor(self, input_tensor): """See megatron.model.transformer.set_input_tensor()""" self.language_model.set_input_tensor(input_tensor) def forward( self, input_ids, position_ids, attention_mask, loss_mask=None, labels=None, token_type_ids=None, layer_past=None, get_key_value=False, forward_method_parallel_output=None, encoder_input=None, set_inference_key_value_memory=False, inference_max_sequence_len=None, checkpoint_activations_all_layers=None, ): # input_ids: [b, s] # position_ids: [b, s] # attention_mask: [1, 1, s, s] lm_output = self.language_model( input_ids, position_ids, attention_mask, layer_past=layer_past, get_key_value=get_key_value, encoder_input=encoder_input, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, checkpoint_activations_all_layers=checkpoint_activations_all_layers, ) if self.post_process: if loss_mask is not None: loss_lm_output = lm_output.transpose(0, 1)[loss_mask == 1].unsqueeze(1) loss_labels = labels[loss_mask == 1].unsqueeze(0) else: loss_lm_output = lm_output loss_labels = labels post_process_result = post_language_model_processing( loss_lm_output, loss_labels, self.language_model.output_layer.weight if not self.share_embeddings_and_output_weights else self.word_embeddings_weight(), get_key_value, self.parallel_output, forward_method_parallel_output, self.fp16_lm_cross_entropy, return_logits=encoder_input is not None, sequence_parallel=self.sequence_parallel, gradient_accumulation_fusion=self.config.gradient_accumulation_fusion, ) if loss_mask is not None: if isinstance(post_process_result, tuple): loss, logits = post_process_result else: loss, logits = post_process_result, None res = torch.zeros_like(labels).type_as(loss) res[loss_mask == 1] = loss return res if logits is None else (res, logits) else: return post_process_result else: return lm_output def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): state_dict_ = {} state_dict_[self._language_model_key] = self.language_model.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) # Save word_embeddings. if self.post_process and not self.pre_process: state_dict_[self._word_embeddings_for_head_key] = self.word_embeddings.state_dict( destination, prefix, keep_vars ) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" # Load word_embeddings. if self.post_process and not self.pre_process: self.word_embeddings.load_state_dict(state_dict[self._word_embeddings_for_head_key], strict=strict) if self._language_model_key in state_dict: state_dict = state_dict[self._language_model_key] self.language_model.load_state_dict(state_dict, strict=strict)
NeMo-main
nemo/collections/nlp/models/language_modeling/megatron/gpt_model.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['list2str', 'tensor2list', 'plot_confusion_matrix', 'get_classification_report'] import os import time from typing import Callable, Dict, List, Optional, Union import numpy as np import torch import torch.nn.functional as F from matplotlib import pyplot as plt from sklearn.metrics import classification_report, confusion_matrix from torch import Tensor from nemo.collections.nlp.modules.common.megatron.utils import erf_gelu from nemo.collections.nlp.modules.common.megatron.utils import openai_gelu as openai_gelu_func from nemo.collections.nlp.modules.common.megatron.utils import squared_relu from nemo.utils import logging def torch_dtype_from_precision(precision: Union[int, str], megatron_amp_O2: Optional[bool] = None) -> torch.dtype: """ Mapping from PTL precision types to corresponding PyTorch parameter datatype.""" if megatron_amp_O2 is not None and megatron_amp_O2 is False: return torch.float32 if precision in ['bf16', 'bf16-mixed']: return torch.bfloat16 elif precision in [16, '16', '16-mixed']: return torch.float16 elif precision in [32, '32', '32-true']: return torch.float32 else: raise ValueError(f"Could not parse the precision of `{precision}` to a valid torch.dtype") def list2str(l: List[int]) -> str: """ Converts list to a string""" return ' '.join([str(x) for x in l]) def tensor2list(tensor: Tensor) -> List[Union[int, float]]: """ Converts tensor to a list """ return tensor.detach().cpu().tolist() def plot_confusion_matrix( labels: List[int], preds: List[int], graph_fold: str, label_ids: Dict[str, int] = None, normalize: bool = False, prefix: str = '', ): ''' Plot confusion matrix. Args: labels: ground truth labels preds: model predictions graph_fold: path to a folder to store confusion matrix plot label_ids: str label to id map, for example: {'O': 0, 'LOC': 1} normalize: whether to normalize confusion matrix prefix: prefix for the plot name ''' if label_ids is None: _plot_confusion_matrix(labels, preds, graph_fold) else: # remove labels from label_ids that don't appear in the dev set used_labels = set(labels) | set(preds) label_ids = {k: label_ids[k] for k, v in label_ids.items() if v in used_labels} ids_to_labels = {label_ids[k]: k for k in label_ids} classes = [ids_to_labels[id] for id in sorted(label_ids.values())] title = 'Confusion_matrix' cm = confusion_matrix(labels, preds) if normalize: sums = cm.sum(axis=1)[:, np.newaxis] sums = np.where(sums == 0, 1, sums) cm = cm.astype('float') / sums title = 'Normalized_' + title fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(cm) ax.set_xticks(np.arange(-1, len(classes))) ax.set_yticks(np.arange(-1, len(classes))) ax.set_xticklabels([''] + classes, rotation=90) ax.set_yticklabels([''] + classes) ax.set_ylabel('True') ax.set_xlabel('Predicted') os.makedirs(graph_fold, exist_ok=True) fig.colorbar(cax) title = (prefix + title).strip() fig_name = os.path.join(graph_fold, title + '_' + time.strftime('%Y%m%d-%H%M%S')) plt.savefig(fig_name) logging.info(f'Confusion matrix saved to {fig_name}') def _plot_confusion_matrix(labels: List[int], preds: List[int], graph_fold: str): """ Plot confusion matrix Args: labels: ground truth labels preds: model predictions graph_fold: path to a folder to store confusion matrix plot """ cm = confusion_matrix(labels, preds) logging.info(f'Confusion matrix:\n{cm}') fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(cm) plt.title('Confusion matrix of the classifier') fig.colorbar(cax) plt.xlabel('Predicted') plt.ylabel('True') os.makedirs(graph_fold, exist_ok=True) plt.savefig(os.path.join(graph_fold, time.strftime('%Y%m%d-%H%M%S'))) def get_classification_report(labels, preds, label_ids, output_dict=False): """ Returns classification report """ # remove labels from label_ids that don't appear in predictions or ground truths used_labels = set(labels) | set(preds) labels_names = [ k + ' (label id: ' + str(v) + ')' for k, v in sorted(label_ids.items(), key=lambda item: item[1]) if v in used_labels ] return classification_report(labels, preds, target_names=labels_names, digits=4, output_dict=output_dict) def is_last_rank(): return torch.distributed.get_rank() == (torch.distributed.get_world_size() - 1) def get_last_rank(): return torch.distributed.get_world_size() - 1 def activation_to_func(activation: str, openai_gelu: bool = False, onnx_safe: bool = False) -> Callable: """ Converts an activation function represented as a string to a function. Args: activation (str): string representation of an activation function, typically gotten from the model config. openai_gelu (bool): whether to use the OpenAI GELU implementation. Used with HF compatibility. onnx_safe (bool): whether to use the ONNX-compatible implementation of GELU. Returns: Callable: the activation function. """ supported_activations = [ 'gelu', 'geglu', 'reglu', 'swiglu', 'squared-relu', 'fast-geglu', 'fast-swiglu', 'fast-reglu', ] if activation not in supported_activations: raise ValueError(f"Unsupported activation {activation}. Supported activations: {supported_activations} ") # Give openai_gelu precedence over other activations if set, for HF compatibility. # Normally this is off and shouldn't affect regular model training. if openai_gelu: activation_func = openai_gelu_func elif activation in ["gelu", "geglu", "fast-geglu"]: activation_func = F.gelu elif onnx_safe: activation_func = erf_gelu elif activation in ["reglu", "fast-reglu"]: activation_func = F.relu elif activation in ["swiglu", "fast-swiglu"]: # SiLU or sigmoid linear unit is the same as swish with beta = 1 (which is what https://arxiv.org/pdf/2002.05202.pdf uses.) activation_func = F.silu elif activation == 'squared-relu': activation_func = squared_relu return activation_func
NeMo-main
nemo/collections/nlp/parts/utils_funcs.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from omegaconf import DictConfig from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelSummary from pytorch_lightning.plugins.environments import TorchElasticEnvironment from nemo.collections.nlp.parts.nlp_overrides import ( CustomProgressBar, GradScaler, MegatronHalfPrecisionPlugin, NLPDDPStrategy, PipelineMixedPrecisionPlugin, ) class MegatronTrainerBuilder: """ Builder type to hide complex configuration of PTL Trainers for Megatron LLM models. Can be extended to change behavior for a specific model. """ def __init__(self, cfg: DictConfig) -> None: self.cfg = cfg def _training_strategy(self) -> NLPDDPStrategy: """ Returns a ddp strategy passed to Trainer.strategy. """ return NLPDDPStrategy( no_ddp_communication_hook=True, gradient_as_bucket_view=self.cfg.model.gradient_as_bucket_view, find_unused_parameters=False, ) def _grad_scaler(self) -> GradScaler: """ Returns a scaler for precision plugins. """ return GradScaler( init_scale=self.cfg.model.get('native_amp_init_scale', 2 ** 32), growth_interval=self.cfg.model.get('native_amp_growth_interval', 1000), hysteresis=self.cfg.model.get('hysteresis', 2), ) def _plugins(self) -> list: """ Returns: plugins: list of plugins passed to Trainer.plugins including precision plugins. """ megatron_amp_o2 = self.cfg.model.get('megatron_amp_O2', False) with_distributed_adam = self.cfg.model.optim.get('name') == 'distributed_fused_adam' plugins = [] if self.cfg.trainer.precision in [16, '16', 'bf16', '16-mixed', 'bf16-mixed']: scaler = None if self.cfg.trainer.precision in [16, '16', '16-mixed']: scaler = self._grad_scaler() plugin_precision = '16-mixed' else: plugin_precision = 'bf16-mixed' if megatron_amp_o2 and not with_distributed_adam: plugins.append(MegatronHalfPrecisionPlugin(precision=plugin_precision, device='cuda', scaler=scaler)) else: plugins.append(PipelineMixedPrecisionPlugin(precision=plugin_precision, device='cuda', scaler=scaler)) if self.cfg.get('cluster_type', None) == 'BCP': plugins.append(TorchElasticEnvironment()) return plugins def create_trainer(self) -> Trainer: strategy = self._training_strategy() plugins = self._plugins() return Trainer(plugins=plugins, strategy=strategy, **self.cfg.trainer, callbacks=[CustomProgressBar()]) class MegatronBertTrainerBuilder(MegatronTrainerBuilder): """Builder for BERT model Trainer with overrides.""" def _grad_scaler(self) -> GradScaler: return GradScaler( init_scale=self.cfg.model.get('native_amp_init_scale', 2 ** 32), growth_interval=self.cfg.model.get('native_amp_growth_interval', 1000), ) class MegatronT5TrainerBuilder(MegatronTrainerBuilder): """Builder for T5 model Trainer with overrides.""" def create_trainer(self) -> Trainer: strategy = self._training_strategy() plugins = self._plugins() return Trainer( plugins=plugins, strategy=strategy, **self.cfg.trainer, callbacks=[ModelSummary(max_depth=3), CustomProgressBar()] )
NeMo-main
nemo/collections/nlp/parts/megatron_trainer_builder.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os import shutil import tempfile from collections import OrderedDict, defaultdict from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterator, List, Literal, Mapping, Optional, Sized, Union import pytorch_lightning as pl import torch from lightning_fabric.utilities.cloud_io import get_filesystem from omegaconf import OmegaConf from pytorch_lightning.callbacks.progress import TQDMProgressBar from pytorch_lightning.callbacks.progress.tqdm_progress import _update_n from pytorch_lightning.loops.fetchers import _DataFetcher from pytorch_lightning.overrides.base import _LightningModuleWrapperBase from pytorch_lightning.plugins import ClusterEnvironment from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO from pytorch_lightning.plugins.precision import MixedPrecisionPlugin from pytorch_lightning.strategies.ddp import DDPStrategy from pytorch_lightning.trainer.states import TrainerFn from pytorch_lightning.trainer.trainer import Trainer from torch.distributed.algorithms.ddp_comm_hooks.debugging_hooks import noop_hook from torch.nn.parallel import DistributedDataParallel from nemo.collections.nlp.modules.common.megatron.module import Float16Module from nemo.core.connectors.save_restore_connector import SaveRestoreConnector from nemo.core.optim import MainParamsOptimizerWrapper from nemo.utils import AppState, logging from nemo.utils.get_rank import is_global_rank_zero from nemo.utils.model_utils import ckpt_to_dir, inject_model_parallel_rank, uninject_model_parallel_rank try: from apex.transformer.pipeline_parallel.utils import get_num_microbatches HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import dist_checkpointing, parallel_state from megatron.core.dist_checkpointing.dict_utils import dict_list_map_outplace from megatron.core.dist_checkpointing.optimizer import ( get_param_id_to_sharded_param_map, make_sharded_optimizer_tensor, optim_state_to_sharding_state, ) from megatron.core.transformer.module import Float16Module as MCoreFloat16Module HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE = "NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE" class NLPDDPStrategy(DDPStrategy): """ DDP plugin for Pytorch Lightning. Needed to customize DDP for model parallel models. Args: no_ddp_communication_hook: Disable DDP communication hook when using AMP-O2 with FP32 gradient accumulation. """ def __init__( self, parallel_devices: Optional[List[torch.device]] = None, cluster_environment: ClusterEnvironment = None, checkpoint_io: Optional[CheckpointIO] = None, no_ddp_communication_hook: bool = False, **kwargs: Union[Any, Dict[str, Any]], ) -> None: if not HAVE_APEX: raise ImportError( "Apex was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) if not HAVE_MEGATRON_CORE: raise ImportError( "megatron-core was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) super().__init__(parallel_devices, cluster_environment, checkpoint_io, **kwargs) self.no_ddp_communication_hook = no_ddp_communication_hook def setup(self, trainer: "pl.Trainer") -> None: """ Override setup() of DDPStrategy to avoid _sync_module_states(self.model) during eval as it can cause PP > 1 to hang due to assumption in DDPStrategy class that the same model is replicated across GPUs """ trainer_fn = trainer.state.fn if trainer_fn == TrainerFn.FITTING: super().setup(trainer) else: assert self.accelerator is not None self.accelerator.setup(trainer) # move the model to the correct device self.model_to_device() self.setup_precision_plugin() assert self.model is not None def setup_distributed(self, global_rank: int = None, world_size: int = None) -> None: # call PTL init ddp super().setup_distributed() # init model parallel if needed if not parallel_state.model_parallel_is_initialized(): app_state = AppState() if app_state.model_parallel_size is not None: self.init_model_parallel(app_state.global_rank, app_state.world_size) def configure_ddp(self): """ Override LightningModule ddp if using model parallel. Sets find_unused_parameters to False to use activation-checkpoint-recomputation. """ if (hasattr(self.model, 'megatron_amp_o2') and self.model.megatron_amp_o2) or ( hasattr(self.model, 'with_distributed_adam') and self.model.with_distributed_adam ): # do not use DDP if using megatron amp O2 or distributed optimizer self._model = _LightningModuleWrapperBase(self.model) else: app_state = AppState() if app_state.model_parallel_size is not None: logging.info(f"Configuring DDP for model parallelism.") # With model parallelism, multiple GPUs form a large "logical GPU" # this means that data parallel groups span multiple GPUs # and are non-trivial # TODO: for megatron-lm self.model is a list # Removing self.pre_configure_ddp() as DDP's 'find_unused_parameters' now defaults # to False in PTL 2.0 and hence pre_configure_ddp() is removed in ddp.py # self.pre_configure_ddp() # device_ids = self.determine_ddp_device_ids() self._model = DistributedDataParallel( _LightningModuleWrapperBase(self.model), process_group=parallel_state.get_data_parallel_group(), **self._ddp_kwargs, ) if self.no_ddp_communication_hook: # When using custom gradient accumulation and allreduce, disable # DDP communication hook that works on the gradient bucket. # Instead, use the custom gradient function and communication hook, # which is defined in the master optimizer wrapper. self._model.require_backward_grad_sync = False self._model.register_comm_hook(None, noop_hook) else: super().configure_ddp() def init_model_parallel(self, global_rank: int, world_size: int) -> None: """ Initializes Megatron-LM model parallel if using model parallelism. Args: global_rank (int): the global process index. world_size (int): the total number of GPUs, num_nodes * num_devices is_slurm_managing_tasks (bool, optional): is the cluster managed by SLURM. """ app_state = AppState() # we initialize megatron-lm model parallel and data parallel groups # after initializing DDP with PTL. if app_state.model_parallel_size is not None: # destroy groups in case they have already been created # this happens with multiple calls to trainer.test for example parallel_state.destroy_model_parallel() if torch.distributed.is_initialized(): parallel_state.initialize_model_parallel( tensor_model_parallel_size=app_state.tensor_model_parallel_size, pipeline_model_parallel_size=app_state.pipeline_model_parallel_size, virtual_pipeline_model_parallel_size=app_state.virtual_pipeline_model_parallel_size, pipeline_model_parallel_split_rank=app_state.pipeline_model_parallel_split_rank, use_fp8=app_state.use_fp8, ) # assert that fake tp and pp rank match after model parallel init assert app_state.tensor_model_parallel_rank == parallel_state.get_tensor_model_parallel_rank() assert app_state.pipeline_model_parallel_rank == parallel_state.get_pipeline_model_parallel_rank() app_state.tensor_model_parallel_group = parallel_state.get_tensor_model_parallel_group() app_state.data_parallel_group = parallel_state.get_data_parallel_group() app_state.data_parallel_rank = parallel_state.get_data_parallel_rank() app_state.data_parallel_size = parallel_state.get_data_parallel_world_size() app_state.pipeline_model_parallel_group = parallel_state.get_pipeline_model_parallel_group() # create MPI process group for UCX-based communication APIs if app_state.init_mpi_proc_group: torch.distributed.new_group(backend='mpi') def optimizer_sharded_state_dict(self): """ Sharded state dictionary for an MainParamsOptimizerWrapper. Used to save and load the optimizer state when training with distributed_checkpoint. Returns: dict: The sharded state dictionary for the optimizer Raises: ValueError: If a parameter ID does not match any model sharded parameter. """ optimizer = self.lightning_module.optimizers(use_pl_optimizer=False) # MainParamsOptimizerWrapper model_sharded_state_dict = self.lightning_module.sharded_state_dict() # remove _extra_state model_sharded_state_dict = { key: value for key, value in model_sharded_state_dict.items() if not key.endswith('_extra_state') } if not isinstance(optimizer, MainParamsOptimizerWrapper): return optimizer.sharded_state_dict(model_sharded_state_dict) optimizer_state_dict = optimizer.state_dict() id_to_sharded_param_map = get_param_id_to_sharded_param_map( model_sharded_state_dict=model_sharded_state_dict, optim_params_iter=itertools.chain.from_iterable(g for g in optimizer.float16_groups), ) # Convert fp32_from_fp16_params assert len(optimizer_state_dict['fp32_from_fp16_params']) == len( optimizer_state_dict['optimizer']['param_groups'] ) def get_safe(param_id): try: return id_to_sharded_param_map[param_id] except KeyError as e: raise ValueError(f'Param id {param_id} does not match any model sharded param') from e optimizer_state_dict['fp32_from_fp16_params'] = [ [ make_sharded_optimizer_tensor(get_safe(param_id), fp32_param, prefix=f'optimizer.state.fp32_param') for param_id, fp32_param in zip(state_group['params'], fp32_group) ] for fp32_group, state_group in zip( optimizer_state_dict['fp32_from_fp16_params'], optimizer_state_dict['optimizer']['param_groups'] ) ] # Convert state optim_state_to_sharding_state(optimizer_state_dict['optimizer'], id_to_sharded_param_map) return optimizer_state_dict def save_checkpoint( self, checkpoint: Dict[str, Any], filepath: Union[str, Path], storage_options: Optional[Any] = None ) -> None: app_state = AppState() """ PTL method which we override to accomodate distributed checkpoints and the legacy model parallel checkpoints. When using megatron core, the distributed checkpointing library expects save functions to be called on every rank and internally does the rank checking. """ # check if using distributed checkpointing if ( hasattr(self.lightning_module, 'sharded_state_dict') and self.lightning_module.sharded_state_dict() is not None ): # converts the optimizer states to their sharded equivalents checkpoint['optimizer_states'] = [self.optimizer_sharded_state_dict()] # dist_checkpointing expects a directory so we will name the directory # using the path with the file extension removed checkpoint_dir = ckpt_to_dir(filepath) fs = get_filesystem(checkpoint_dir) if is_global_rank_zero(): fs.makedirs(checkpoint_dir, exist_ok=True) # remove device state_dict checkpoint['state_dict'] = OrderedDict([]) dist_checkpointing.save(sharded_state_dict=checkpoint, checkpoint_dir=checkpoint_dir) else: # PTL override to accomodate model parallel checkpoints filepath = inject_model_parallel_rank(filepath) if self.is_global_zero or app_state.data_parallel_rank == 0: self.checkpoint_io.save_checkpoint(checkpoint, filepath, storage_options=storage_options) def load_model_state_dict(self, checkpoint: Mapping[str, Any]) -> None: # if using distributed checkpointing, the state dict logic is at the model level if ( hasattr(self.lightning_module, 'sharded_state_dict') and self.lightning_module.sharded_state_dict() is not None ): return # legacy state dict logic, does not use megatron core else: # Release strict state dict matching when using Megatron AMP-O2 to skip matching # half-precision module wrapper module. # TODO: Refactor this to be more generic. model_key = None model_attr = None if hasattr(self.lightning_module, 'model'): model_key = 'model' model_attr = self.lightning_module.model elif hasattr(self.lightning_module, 'enc_dec_model'): model_key = 'enc_dec_model' model_attr = self.lightning_module.enc_dec_model if model_key is not None: if isinstance(model_attr, Float16Module) or isinstance(model_attr, MCoreFloat16Module): new_state_dict = {} for key in checkpoint['state_dict'].keys(): new_key = key.replace(f'{model_key}.', f'{model_key}.module.', 1) new_state_dict[new_key] = checkpoint['state_dict'][key] checkpoint['state_dict'] = new_state_dict self.lightning_module.load_state_dict(checkpoint["state_dict"]) def _fix_tensors_device(self, ckpt: Dict) -> Dict: """ Ensure checkpoint tensors are on the correct device.""" assert torch.cuda.is_initialized(), (torch.cuda.is_available(), torch.cuda.is_initialized()) cur_dev = torch.device("cuda", index=torch.cuda.current_device()) def _fix_device(t): if isinstance(t, torch.Tensor) and t.is_cuda and t.device != cur_dev: t = t.to(cur_dev) return t return dict_list_map_outplace(_fix_device, ckpt) def load_checkpoint(self, checkpoint_path: Union[str, Path]) -> Dict[str, Any]: """ PTL method which we override to integrate distributed checkpoints for model parallel models. In order to load distributed checkpoints we need to provide the sharded_state_dict to the distributed load function. We get the sharded_state_dict from self.lightning_module which makes it convenient to have the loading logic happen at the strategy level. """ fs = get_filesystem(checkpoint_path) # Check if using distributed checkpointing if ( hasattr(self.lightning_module, 'sharded_state_dict') and self.lightning_module.sharded_state_dict() is not None ): # Distributed checkpoints must be directories. if not fs.isdir(checkpoint_path): raise ValueError(f'Distributed checkpoints should be a directory. Found: {checkpoint_path}.') sharded_state_dict = self.lightning_module.sharded_state_dict() checkpoint = {} # after dist_checkpointing.load, sharded tensors will be replaced with tensors checkpoint['state_dict'] = sharded_state_dict checkpoint['optimizer_states'] = [self.optimizer_sharded_state_dict()] checkpoint = dist_checkpointing.load(sharded_state_dict=checkpoint, checkpoint_dir=checkpoint_path) checkpoint = self._fix_tensors_device(checkpoint) return checkpoint # Legacy model parallel checkpointing logic, does not use megatron core else: # Try to read the checkpoint at `path`. If not exist, do not restore checkpoint. checkpoint_path = inject_model_parallel_rank(checkpoint_path) if not fs.exists(checkpoint_path): raise FileNotFoundError(f"Checkpoint at {checkpoint_path} not found. Aborting training.") torch.cuda.empty_cache() return self.checkpoint_io.load_checkpoint(checkpoint_path) def remove_checkpoint(self, filepath: Union[str, Path]) -> None: # check if filepath is a distributed checkpoint if ( hasattr(self.lightning_module, 'sharded_state_dict') and self.lightning_module.sharded_state_dict() is not None ): if self.is_global_zero: shutil.rmtree(ckpt_to_dir(filepath)) # legacy checkpoint logic, does not use megatron core else: app_state = AppState() # PTL override to accomodate model parallel checkpoints filepath = inject_model_parallel_rank(filepath) if self.is_global_zero or app_state.data_parallel_rank == 0: logging.info(f'Removing checkpoint: {filepath}') self.checkpoint_io.remove_checkpoint(filepath) @property def distributed_sampler_kwargs(self): app_state = AppState() if app_state.model_parallel_size is not None: # When using model parallel, data parallel groups are non-trivial and they # correspond to the logical GPUs. This means that the GPUs that form a # single logical GPU all need to get the same batch of data. distributed_sampler_kwargs = dict( num_replicas=app_state.data_parallel_size, rank=app_state.data_parallel_rank ) return distributed_sampler_kwargs else: return super(NLPDDPStrategy, self).distributed_sampler_kwargs @property def restore_checkpoint_after_setup(self) -> bool: """ This needs to be True for distributed checkpointing because we require the model to have configured the optimizer before deserializing the checkpoint. """ return True class NLPSaveRestoreConnector(SaveRestoreConnector): def __init__(self) -> None: if not HAVE_APEX: logging.warning( "Apex was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/apex\n" "Megatron-based models require Apex to function correctly." ) # raise ImportError( # "Apex was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." # ) if not HAVE_MEGATRON_CORE: logging.warning( "megatron-core was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) super().__init__() def save_to(self, model, save_path: str): app_state = AppState() # Check if using distributed checkpointing dist_ckpt = hasattr(model, 'sharded_state_dict') and model.sharded_state_dict() is not None dist_ckpt_dir = None if (app_state.model_parallel_size is not None and app_state.model_parallel_size > 1) or dist_ckpt: dir_name = os.path.dirname(save_path) # dist ckpt calls save on every rank if dist_ckpt: # model weights is a directory dist_ckpt_dir = ckpt_to_dir(os.path.join(dir_name, self.model_weights_ckpt)) fs = get_filesystem(dist_ckpt_dir) if is_global_rank_zero(): fs.makedirs(dist_ckpt_dir, exist_ok=True) sharded_state_dict = model.sharded_state_dict() # dist checkpoint needs torch.distributed to save the checkpoint if parallel_state.is_unitialized(): def dummy(): return if model.trainer.strategy.launcher is not None: model.trainer.strategy.launcher.launch(dummy, trainer=model.trainer) model.trainer.strategy.setup_environment() dist_checkpointing.save(sharded_state_dict=sharded_state_dict, checkpoint_dir=dist_ckpt_dir) else: # first we save the weights for each model parallel rank if app_state.data_parallel_rank == 0: if app_state.pipeline_model_parallel_size == 1: mp_model_weights = os.path.join( dir_name, f'mp_rank_{app_state.tensor_model_parallel_rank:02d}_' + self.model_weights_ckpt ) else: mp_model_weights = os.path.join( dir_name, f'tp_rank_{app_state.tensor_model_parallel_rank:02d}_pp_rank_{app_state.pipeline_model_parallel_rank:03d}_' + self.model_weights_ckpt, ) self._save_state_dict_to_disk(model.state_dict(), mp_model_weights) if torch.distributed.is_initialized(): torch.distributed.barrier() # create nemo file from folder with all mp_ranks checkpoints if ( app_state.pipeline_model_parallel_rank == 0 and app_state.tensor_model_parallel_rank == 0 and app_state.data_parallel_rank == 0 ): with tempfile.TemporaryDirectory() as tmpdir: if dist_ckpt: shutil.move(str(dist_ckpt_dir), tmpdir) elif app_state.pipeline_model_parallel_size == 1: # move weights to the tmpdir for tp_rank in range(app_state.tensor_model_parallel_size): os.makedirs(os.path.join(tmpdir, f'mp_rank_{tp_rank:02d}')) mp_model_weights = os.path.join( dir_name, f'mp_rank_{tp_rank:02d}_' + self.model_weights_ckpt ) shutil.move( mp_model_weights, os.path.join(tmpdir, f'mp_rank_{tp_rank:02d}', self.model_weights_ckpt), ) else: # move weights to the tmpdir for tp_rank, pp_rank in itertools.product( range(app_state.tensor_model_parallel_size), range(app_state.pipeline_model_parallel_size), ): os.makedirs(os.path.join(tmpdir, f'tp_rank_{tp_rank:02d}_pp_rank_{pp_rank:03d}')) mp_model_weights = os.path.join( dir_name, f'tp_rank_{tp_rank:02d}_pp_rank_{pp_rank:03d}_' + self.model_weights_ckpt ) shutil.move( mp_model_weights, os.path.join( tmpdir, f'tp_rank_{tp_rank:02d}_pp_rank_{pp_rank:03d}', self.model_weights_ckpt ), ) # create config and artifacts in tmpdir config_yaml = os.path.join(tmpdir, self.model_config_yaml) model.to_config_file(path2yaml_file=config_yaml) if hasattr(model, 'artifacts') and model.artifacts is not None: self._handle_artifacts(model, nemo_file_folder=tmpdir) self._update_artifact_paths(model, path2yaml_file=config_yaml) # create tar file self._make_nemo_file_from_folder(save_path, tmpdir) else: return super().save_to(model, save_path) def modify_state_dict(self, conf, state_dict): if conf.get('megatron_legacy', False): new_state_dict = {} for key in state_dict.keys(): new_key = key.replace('bert_model.language_model', 'bert_model.model.language_model') new_key = new_key.replace('transformer', 'encoder') new_key = new_key.replace('.attention.', '.self_attention.') new_state_dict[new_key] = state_dict[key] state_dict = new_state_dict if conf.get('megatron_amp_O2', False): new_state_dict = {} for key in state_dict.keys(): new_key = key.replace('model.', 'model.module.', 1) new_state_dict[new_key] = state_dict[key] state_dict = new_state_dict return state_dict def _load_state_dict_from_disk(self, model_weights, map_location=None): # if model_weights with the extension removed is a directory, we assume it is a distributed checkpoint # we need to defer loading the state dict so we return None uninject_model_weights = uninject_model_parallel_rank(model_weights) # legacy model_weights will have mp rank injected if os.path.isfile(model_weights): return super()._load_state_dict_from_disk(model_weights, map_location) # dist checkpoint will be a dir elif os.path.isdir(os.path.splitext(uninject_model_weights)[0]): return None else: raise ValueError(f'Expected {model_weights} to be a file or directory.') def restore_from( self, calling_cls, restore_path: str, override_config_path: Optional[Union[OmegaConf, str]] = None, map_location: Optional[torch.device] = None, strict: bool = True, return_config: bool = False, trainer: Trainer = None, ): """ Restores model instance (weights and configuration) into .nemo file Args: restore_path: path to .nemo file from which model should be instantiated override_config_path: path to a yaml config that will override the internal config file or an OmegaConf / DictConfig object representing the model config. map_location: Optional torch.device() to map the instantiated model to a device. By default (None), it will select a GPU if available, falling back to CPU otherwise. strict: Passed to load_state_dict. By default True return_config: If set to true, will return just the underlying config of the restored model as an OmegaConf DictConfig object without instantiating the model. Example: ``` model = nemo.collections.nlp.models.TextClassification.restore_from('asr.nemo') assert isinstance(model, nemo.collections.nlp.models.TextClassification) ``` Returns: An instance of type cls or its underlying config (if return_config is set). """ # Get path where the command is executed - the artifacts will be "retrieved" there # (original .nemo behavior) loaded_params = super().load_config_and_state_dict( calling_cls, restore_path, override_config_path, map_location, strict, return_config, trainer, ) if not isinstance(loaded_params, tuple) or return_config is True: return loaded_params conf, instance, state_dict = loaded_params # if we're using dist checkpointing then state_dict will be None if state_dict is None: # dist checkpointing needs torch.distributed to load the checkpoint if parallel_state.is_unitialized(): def dummy(): return if trainer.strategy.launcher is not None: trainer.strategy.launcher.launch(dummy, trainer=trainer) trainer.strategy.setup_environment() with tempfile.TemporaryDirectory() as tmpdir: # Check if self.model_extracted_dir is set, and is a valid path if self.model_extracted_dir is not None and os.path.isdir(self.model_extracted_dir): # Log that NeMo will use the provided `model_extracted_dir` logging.info( f"Restoration will occur within pre-extracted directory : " f"`{self.model_extracted_dir}`." ) # Override `tmpdir` above with the pre-extracted `model_extracted_dir` tmpdir = self.model_extracted_dir else: # Extract the nemo file into the temporary directory self._unpack_nemo_file( path2file=restore_path, out_folder=tmpdir, extract_config_only=return_config is True ) checkpoint = {} sharded_state_dict = instance.sharded_state_dict() checkpoint['state_dict'] = sharded_state_dict # remove model weights extension tmp_model_weights_ckpt = os.path.join(tmpdir, self.model_weights_ckpt) tmp_model_weights_dir = os.path.splitext(tmp_model_weights_ckpt)[0] assert os.path.isdir(tmp_model_weights_dir), f'Expected {tmp_model_weights_dir} to be a directory.' checkpoint = dist_checkpointing.load( sharded_state_dict=checkpoint, checkpoint_dir=tmp_model_weights_dir ) instance.on_load_checkpoint(checkpoint) if hasattr(instance, 'setup_transformer_engine_tp_groups'): instance.setup_transformer_engine_tp_groups() else: state_dict = self.modify_state_dict(conf, state_dict) super().load_instance_with_state_dict(instance, state_dict, strict) logging.info(f'Model {instance.__class__.__name__} was successfully restored from {restore_path}.') return instance class PEFTSaveRestoreConnector(NLPSaveRestoreConnector): """ PEFT models require the ability to load/save a small subset of the full model (once PEFT params have been infused into the base model.) The PEFTSaveRestoreConnector is used to allow loading and saving only the PEFT params while not saving the entire model. Args: peft_model_nemo_path: Used to provide the .nemo file corresponding to a PEFT model (which will only contain a small set of params) peft_model_ckpt_path: Used to provide the path to .ckpt files of a PEFT model. This is required when no .nemo is available (yet) such as during resumed training. peft_model_ckpt_name: The filename of the ckpt file inside the peft_model_ckpt_path folder If both are provided the peft_model_ckpt_path takes precedence. If neither are provided, PEFT params are initialized at random (not loaded from any external source). """ def __init__( self, peft_model_nemo_path: Optional[str] = None, peft_model_ckpt_path: Optional[str] = None, peft_model_ckpt_name: Optional[str] = "model_weights.ckpt", ) -> None: super().__init__() self.peft_model_ckpt_name = peft_model_ckpt_name if peft_model_ckpt_path: # First we will try to load a adapter ckpt path # this is given priority over loading from nemo path to make resumption of training possible ckpt_name = os.path.basename(peft_model_ckpt_path) if not ckpt_name.strip() == '': # update the weights file name inside the ckpt path rank folders self.peft_model_ckpt_name = ckpt_name self.peft_model_ckpt_dir = os.path.dirname(peft_model_ckpt_path) assert os.path.isdir(self.peft_model_ckpt_dir) self.peft_model_nemo_path = None elif peft_model_nemo_path: # If resumption is not possible we will try to load a adapter nemo path self.peft_model_nemo_path = peft_model_nemo_path assert os.path.exists(self.peft_model_nemo_path) self.peft_model_ckpt_dir = None else: # We are not resuming training from a nemo file or a ckpt # We are training the adapter from randomly initialization self.peft_model_nemo_path = None self.peft_model_ckpt_dir = None def _load_state_dict_from_disk(self, model_weights, map_location=None): """ Infuse the state_dict of the base model with PEFT params from either a peft_model_nemo_path or peft_model_ckpt_path """ # first load based model weights base_model_state_dict = super()._load_state_dict_from_disk(model_weights, map_location) # Next, We want to load PEFT model's weights if self.peft_model_nemo_path: # if the PEFT weights are provided in a .nemo file # we need to untar the .nemo if its still tarred with tempfile.TemporaryDirectory() as tmpdir: self._unpack_nemo_file(self.peft_model_nemo_path, tmpdir) model_weights_path = self._inject_model_parallel_rank_for_ckpt(tmpdir, self.peft_model_ckpt_name) peft_state_dict = torch.load(model_weights_path, map_location) elif self.peft_model_ckpt_dir: # if the PEFT weights are provided in a ckpt path file # we don't need to untar model_weights_path = self._inject_model_parallel_rank_for_ckpt( self.peft_model_ckpt_dir, self.peft_model_ckpt_name ) peft_state_dict = torch.load(model_weights_path, map_location)['state_dict'] else: peft_state_dict = {} base_model_state_dict.update(peft_state_dict) # add the PEFT state_dict into the base model's state_dict return base_model_state_dict def restore_from( self, calling_cls, restore_path: str, override_config_path: Optional[Union[OmegaConf, str]] = None, map_location: Optional[torch.device] = None, strict: bool = True, return_config: bool = False, trainer: Trainer = None, ): """ Extends the restore_from method of the `NLPSaveRestoreConnector` so that PEFT params are inserted into the state_dict which is required when training a PEFT model from scratch. """ # Get path where the command is executed - the artifacts will be "retrieved" there # (original .nemo behavior) loaded_params = super().load_config_and_state_dict( calling_cls, restore_path, override_config_path, map_location, strict, return_config, trainer, ) if not isinstance(loaded_params, tuple) or return_config is True: return loaded_params conf, instance, state_dict = loaded_params if ( self.peft_model_nemo_path is None and self.peft_model_ckpt_dir is None ): # we have this check only for training PEFT from scratch peft_state_dict = instance.get_peft_state_dict() state_dict.update(peft_state_dict) state_dict = self.modify_state_dict(conf, state_dict) self.load_instance_with_state_dict(instance, state_dict, strict) logging.info(f'Model {instance.__class__.__name__} was successfully restored from {restore_path}.') return instance class PipelineMixedPrecisionPlugin(MixedPrecisionPlugin): """ Overrides PTL autocasting to not wrap training/val/test_step. We do this because we have the megatron-core fwd/bwd functions in training_step. This means .backward is being called in training_step so we do not want the whole step wrapped in autocast. We instead wrap the fwd_output_and_loss_func that is passed to the megatron-core fwd/bwd functions. """ def __init__( self, precision: Literal["16-mixed", "bf16-mixed"], device: str, scaler: Optional[torch.cuda.amp.GradScaler] = None, ) -> None: super().__init__(precision, device, scaler=scaler) dtype = None # MixedPrecisionPlugin class in PTL >= 2.0 takes only "16-mixed" or "bf16-mixed" for precision arg if precision == '16-mixed': dtype = torch.float16 elif precision == 'bf16-mixed': dtype = torch.bfloat16 torch.set_autocast_gpu_dtype(dtype) @contextmanager def forward_context(self) -> Generator[None, None, None]: """Have the PTL context manager do nothing.""" yield class GradScaler(torch.cuda.amp.GradScaler): """ Gradient sclaer for model-parallel inf check. The inf in gradients are checked across tensor-parallel ranks in (1) executing optimizer step and (2) gradient scaler update. """ def __init__( self, init_scale=2.0 ** 16, growth_factor=2.0, backoff_factor=0.5, growth_interval=2000, enabled=True, hysteresis=1, ): super().__init__( init_scale=init_scale, growth_factor=growth_factor, backoff_factor=backoff_factor, growth_interval=growth_interval, enabled=enabled, ) self.optimizer_update_skipped: Optional[bool] = None self.hysteresis = hysteresis self._hysteresis_tracker = self.hysteresis def _unscale_grads_(self, optimizer, *args): if getattr(optimizer, "_custom_amp_unscale_grads", False): return optimizer.unscale_grads(*args) else: return super()._unscale_grads_(optimizer, *args) def _maybe_opt_step(self, optimizer, optimizer_state, *args, **kwargs): retval = None found_inf = torch.cuda.FloatTensor([sum(v.item() for v in optimizer_state["found_inf_per_device"].values())]) # Update across all model parallel instances. torch.distributed.all_reduce( found_inf, op=torch.distributed.ReduceOp.MAX, group=parallel_state.get_model_parallel_group() ) if found_inf.item() == 0: retval = optimizer.step(*args, **kwargs) self.optimizer_update_skipped = False else: self.optimizer_update_skipped = True return retval def update(self, new_scale=None): """ Updates to native grad scaler update function. 1. Check inf across model-parallel ranks. 2. Update hysteresis tracker. 3. Apply hysteresis to grad scale update. """ if not self._enabled: return _scale, _growth_tracker = self._check_scale_growth_tracker("update") if new_scale is not None: # Accept a new user-defined scale. if isinstance(new_scale, float): self._scale.fill_(new_scale) # type: ignore[union-attr] else: reason = "new_scale should be a float or a 1-element torch.cuda.FloatTensor with requires_grad=False." assert isinstance(new_scale, torch.cuda.FloatTensor), reason # type: ignore[attr-defined] assert new_scale.numel() == 1, reason assert new_scale.requires_grad is False, reason self._scale.copy_(new_scale) # type: ignore[union-attr] else: # Consume shared inf/nan data collected from optimizers to update the scale. # If all found_inf tensors are on the same device as self._scale, this operation is asynchronous. found_infs = [ found_inf.to(device=_scale.device, non_blocking=True) for state in self._per_optimizer_states.values() for found_inf in state["found_inf_per_device"].values() ] assert len(found_infs) > 0, "No inf checks were recorded prior to update." found_inf_combined = found_infs[0] # Update across all model parallel instances. torch.distributed.all_reduce( found_inf_combined, op=torch.distributed.ReduceOp.MAX, group=parallel_state.get_model_parallel_group() ) if len(found_infs) > 1: for i in range(1, len(found_infs)): found_inf = found_infs[i] # Update across all model parallel instances. torch.distributed.all_reduce( found_inf, op=torch.distributed.ReduceOp.MAX, group=parallel_state.get_model_parallel_group() ) found_inf_combined += found_inf if found_inf_combined > 0: self._hysteresis_tracker -= 1 if self._hysteresis_tracker <= 0: # When hysteresis becomes zero, follow the native grad scale update rule. # Increase scale and reset growth tracker torch._amp_update_scale_( _scale, _growth_tracker, found_inf_combined, self._growth_factor, self._backoff_factor, self._growth_interval, ) else: # Only reset the growth tracker when hysteresis is larger than zero _growth_tracker.fill_(0.0) else: # When no inf found, follow the native grad scale update rule. # Increment growth_tracker, update scale when growth tracker reaches the interval, and # reset the hysteresis tracker. torch._amp_update_scale_( _scale, _growth_tracker, found_inf_combined, self._growth_factor, self._backoff_factor, self._growth_interval, ) self._hysteresis_tracker = self.hysteresis # To prepare for next iteration, clear the data collected from optimizers this iteration. self._per_optimizer_states = defaultdict(torch.cuda.amp.grad_scaler._refresh_per_optimizer_state) def state_dict(self): """ Add hysteresis_tracker to the native functions' state_dict """ return ( { "scale": self.get_scale(), "growth_factor": self._growth_factor, "backoff_factor": self._backoff_factor, "growth_interval": self._growth_interval, "_growth_tracker": self._get_growth_tracker(), "_hysteresis_tracker": self._hysteresis_tracker, } if self._enabled else {} ) def load_state_dict(self, state_dict): """ Load hysteresis_tracker in addition to the state dict of the native function """ if not self._enabled: return if len(state_dict) == 0: raise RuntimeError( "The source state dict is empty, possibly because it was saved " "from a disabled instance of GradScaler." ) self._init_scale = state_dict["scale"] if self._scale is not None: self._scale.fill_(state_dict["scale"]) self._growth_factor = state_dict["growth_factor"] self._backoff_factor = state_dict["backoff_factor"] self._growth_interval = state_dict["growth_interval"] self._init_growth_tracker = state_dict["_growth_tracker"] if self._growth_tracker is not None: self._growth_tracker.fill_(state_dict["_growth_tracker"]) if "_hysterisis_tracker" in state_dict: self._hysteresis_tracker = state_dict["_hysterisis_tracker"] else: self._hysteresis_tracker = 1 class MegatronHalfPrecisionPlugin(MixedPrecisionPlugin): """ Plugin for Half (FP16 and BF16) precision training. This plugin assumes the use of the optimizer with master parameters (fp32). This plugin uses half-precision at all operators in the model so need of input precision at each layer operator. Args: precision: Whether to use ``torch.float16`` (``16``) or ``torch.bfloat16`` (``'bf16'``). device: The device for ``torch.autocast``. scaler: An optional :class:`torch.cuda.amp.GradScaler` to use. """ def __init__( self, precision: Union[str, int], device: str, scaler: Optional[torch.cuda.amp.GradScaler] = None ) -> None: super().__init__(precision, device, scaler) dtype = None # MixedPrecisionPlugin class in PTL >= 2.0 takes only "16-mixed" or "bf16-mixed" for precision arg if precision == "16-mixed": dtype = torch.float16 elif precision == "bf16-mixed": dtype = torch.bfloat16 torch.set_autocast_gpu_dtype(dtype) def optimizer_step( self, optimizer: torch.optim.Optimizer, model: Union["pl.LightningModule", torch.nn.Module], closure: Callable[[], Any], **kwargs: Any, ) -> None: assert isinstance( optimizer, MainParamsOptimizerWrapper ), "MegatronHalfPrecisionPlugin supports only the optimizer with master parameters" if self.scaler is None: assert optimizer.fp32_grad_accumulation, "BF16 uses FP32 grad accumulation" _ = closure() self._after_closure(model, optimizer) return optimizer.step(**kwargs) assert not optimizer.fp32_grad_accumulation, "FP16 uses FP16 grad accumulation" closure_result = closure() # TODO: Add an option for merged all-reduce # cast fp16 grads to fp32 and copy to main grads, which are used for unscale and param update optimizer.copy_model_grads_to_main_grads() # `unscale` after the closure is executed but before the `on_before_optimizer_step` hook. # unscale main (fp32) gradients self.scaler.unscale_(optimizer) self._after_closure(model, optimizer) skipped_backward = closure_result is None # in manual optimization, the closure does not return a value if not isinstance(model, pl.LightningModule) or not model.automatic_optimization or not skipped_backward: # note: the scaler will skip the `optimizer.step` if nonfinite gradients are found self.scaler.step(optimizer, **kwargs) self.scaler.update() @contextmanager def forward_context(self) -> Generator[None, None, None]: """ No explicit precision casting. Inputs are supposed to be manually casted """ try: yield finally: pass class GlobalBatchDataFetcher(_DataFetcher): """ Overrides PTL DataFetcher. Used to fetch global batches.""" def __init__(self, prefetch_batches: int = 0, store_on_device: bool = False) -> None: if not HAVE_APEX: logging.warning("Apex was not found. Using model parallel or megatron models will error out.") if not HAVE_MEGATRON_CORE: logging.warning("Megatron-core was not found. Using model parallel or megatron models will error out..") super().__init__(prefetch_batches=prefetch_batches, store_on_device=store_on_device) def _fetch_next_batch(self, iterator: Iterator) -> None: start_output = self.on_fetch_start() batch = [next(iterator) for _ in range(get_num_microbatches())] self.fetched += 1 if not self.prefetch_batches and self._has_len: # when we don't prefetch but the dataloader is sized, we use the length for `done` dataloader = self.dataloader assert isinstance(dataloader, Sized) # `_has_len` is True self.done = self.fetched >= len(dataloader) self.on_fetch_end(batch, start_output) class CustomProgressBar(TQDMProgressBar): """ Add CustomProgressBar to remove 's/it' and display progress per step instead of per microbatch for megatron models """ def init_train_tqdm(self): """ Override bar_format to not have 's/it' """ self.bar = super().init_train_tqdm() self.bar.bar_format = "{desc}: {percentage:3.0f}%|{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}{postfix}]" return self.bar def on_train_batch_end(self, trainer, pl_module, *_, **__): """ Override parent class on_train_batch_end to update progress bar per global_step instead of per microbatch """ n = trainer.global_step if self._should_update(n, self.train_progress_bar.total): _update_n(self.train_progress_bar, n) self.train_progress_bar.set_postfix(self.get_metrics(trainer, pl_module))
NeMo-main
nemo/collections/nlp/parts/nlp_overrides.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.parts.megatron_lr_schedulers import CosineAnnealingExp from nemo.collections.nlp.parts.utils_funcs import list2str, tensor2list
NeMo-main
nemo/collections/nlp/parts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.core.optim.lr_scheduler import AVAILABLE_SCHEDULERS, CosineAnnealing class CosineAnnealingExp(CosineAnnealing): """ Setting max_steps_for_lr_sched for this scheduler in the config is experimental and " not recommended. The scheduler can use max_steps automatically from " trainer.max_steps. """ def __init__(self, optimizer, *, max_steps, min_lr=0, last_epoch=-1, max_steps_for_lr_sched=None, **kwargs): super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs) if max_steps_for_lr_sched: self.max_steps = max_steps_for_lr_sched self.decay_steps = self.max_steps - (self.constant_steps + self.warmup_steps) AVAILABLE_SCHEDULERS['CosineAnnealingExp'] = CosineAnnealingExp
NeMo-main
nemo/collections/nlp/parts/megatron_lr_schedulers.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.modules.common import ( AlbertEncoder, BertEncoder, BertModule, CamembertEncoder, DistilBertEncoder, PromptEncoder, RobertaEncoder, SequenceClassifier, SequenceRegression, SequenceTokenClassifier, get_lm_model, get_pretrained_lm_models_list, get_tokenizer, get_tokenizer_list, ) from nemo.collections.nlp.modules.dialogue_state_tracking.sgd_decoder import SGDDecoder from nemo.collections.nlp.modules.dialogue_state_tracking.sgd_encoder import SGDEncoder
NeMo-main
nemo/collections/nlp/modules/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for generating text.""" import pickle from collections.abc import Iterable from functools import partial from typing import Callable, Tuple import numpy as np import torch import torch.nn.functional as F from nemo.collections.common.tokenizers.tabular_tokenizer import TabularTokenizer from nemo.collections.nlp.modules.common.megatron.utils import get_ltor_masks_and_position_ids from nemo.collections.nlp.modules.common.text_generation_strategy import model_inference_strategy_dispatcher from nemo.collections.nlp.modules.common.transformer.text_generation import LengthParam, OutputType, SamplingParam from nemo.utils import AppState try: from apex.transformer.pipeline_parallel.utils import _reconfigure_microbatch_calculator HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import parallel_state, tensor_parallel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = [ "get_default_sampling_params", "get_default_length_params", "megatron_gpt_generate", "get_computeprob_response", "generate", "sample_token_greedy", "sample_token_topk", ] def get_default_sampling_params(): # default do greedy sampling sampling_params: SamplingParam = { "use_greedy": True, "temperature": 1.0, "top_k": 0, "top_p": 1.0, "repetition_penalty": 1.0, "add_BOS": True, "all_probs": False, "compute_logprob": False, "end_strings": ["<|endoftext|>", "<extra_id_1>"], } return sampling_params def get_default_length_params(): # default do greedy sampling length_params: LengthParam = {"min_length": 0, "max_length": 30} return length_params def megatron_gpt_generate(model, inputs, tokenizer, length_params, sampling_params, **strategy_args): # reproduce the old compute_prob method # a very special case if sampling_params['compute_logprob']: # need to overwrite some configuration, make it immutable sampling_params = sampling_params.copy() length_params = length_params.copy() length_params['max_length'] = 1 sampling_params['all_probs'] = True sampling_params["add_BOS"] = False sampling_params['greedy'] = True response = generate( model, inputs=inputs, tokens_to_generate=length_params['max_length'], all_probs=sampling_params['all_probs'], compute_logprob=sampling_params['compute_logprob'], temperature=sampling_params['temperature'], add_BOS=sampling_params['add_BOS'], top_k=sampling_params['top_k'], top_p=sampling_params['top_p'], greedy=sampling_params['use_greedy'], repetition_penalty=sampling_params['repetition_penalty'], end_strings=sampling_params['end_strings'], min_tokens_to_generate=length_params['min_length'], compute_attention_mask=sampling_params.get("compute_attention_mask", True), **strategy_args, ) compute_prob_response = get_computeprob_response(tokenizer, response, inputs) return compute_prob_response if isinstance(inputs, (list, tuple)): if isinstance(inputs[0], (str, torch.Tensor)): output = generate( model, inputs=inputs, tokens_to_generate=length_params['max_length'], all_probs=sampling_params['all_probs'], compute_logprob=sampling_params['compute_logprob'], temperature=sampling_params['temperature'], add_BOS=sampling_params['add_BOS'], top_k=sampling_params['top_k'], top_p=sampling_params['top_p'], greedy=sampling_params['use_greedy'], repetition_penalty=sampling_params['repetition_penalty'], end_strings=sampling_params['end_strings'], min_tokens_to_generate=length_params['min_length'], **strategy_args, ) return output elif isinstance(inputs[0], dict): raise NotImplementedError("json object not implemented") else: raise NotImplementedError("unknown type is not implemented") else: raise NotImplementedError("unknown type is not implemented") def get_computeprob_response(tokenizer, response, inputs): if parallel_state.is_pipeline_first_stage() or parallel_state.is_pipeline_last_stage(): # we only have a response on the first and last pipeline stages compute_prob_response = {} new_token_ids = [] new_tokens = [] new_texts = [] log_probs = [] full_logprobs = [] offsets = [] for batch_id in range(len(response['tokens'])): if isinstance(inputs, (list, tuple)): if isinstance(inputs[0], str): new_token_id = tokenizer.text_to_ids(inputs[batch_id]) new_text = inputs[batch_id] token_len = len(new_token_id) elif isinstance(inputs[0], torch.Tensor): token_len = int(inputs[1][batch_id].item()) new_token_id = inputs[0][batch_id][:token_len].tolist() new_text = tokenizer.ids_to_text(new_token_id) else: raise TypeError( f"Unsupported type of `inputs[0]`: {type(inputs[0])}. Supported types: `str`, `torch.Tensor`." ) else: raise TypeError( f"Unsupported type of parameter `inputs`: {type(inputs)}. Supported types: `list` and `tuple`" ) new_token_ids.append(new_token_id) new_tokens.append(response['tokens'][batch_id][:token_len]) new_texts.append(new_text) log_probs.append(response['logprob'][batch_id][:token_len]) full_logprobs.append(response['full_logprob'][batch_id][:token_len]) offsets.append(response['offsets'][batch_id][:-1]) compute_prob_response['sentences'] = new_texts compute_prob_response['tokens'] = new_tokens compute_prob_response['token_ids'] = new_token_ids compute_prob_response['logprob'] = log_probs compute_prob_response['full_logprob'] = full_logprobs compute_prob_response['offsets'] = offsets return compute_prob_response else: # intermediate stages return None def get_batch(model, tokenizer, context_tokens): """Generate batch from context tokens.""" # Move to GPU. tokens = context_tokens.contiguous().cuda() # Get the attention mask and postition ids. attention_mask, _, position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.eos_id, model.cfg.get('reset_position_ids', False), model.cfg.get('reset_attention_mask', False), model.cfg.get('eod_mask_loss', False), ) return tokens, attention_mask, position_ids def tab_logits(logits, min_id, max_id, filter_value=-float('Inf')): logits[:, :min_id] = filter_value logits[:, max_id:] = filter_value return logits def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf'), started=None): """ This function has been mostly taken from huggingface conversational ai code at https://medium.com/huggingface/how-to-build-a-state-of-the-art- conversational-ai-with-transfer-learning-2d818ac26313 @param logits: logits tensor @param top_k: keep only top k tokens with highest probability @param top_p: keep the top tokens with cumulative probability @filter_value: value to set filtered tokens to @started: a tensor of bools indicating whether the text generation starts for the batch returns the filtered logits """ if top_k > 0: # Remove all tokens with a probability less than the # last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] if started is not None: for i in np.arange(indices_to_remove.size(0))[started.cpu().numpy()]: logits[i, indices_to_remove[i]] = filter_value else: logits[indices_to_remove] = filter_value if top_p > 0.0: # Cconvert to 1D sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token # above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 if started is not None: for i in np.arange(sorted_indices.size(0))[started.cpu().numpy()]: indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]] logits[i, indices_to_remove] = filter_value else: for i in range(sorted_indices.size(0)): indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]] logits[i, indices_to_remove] = filter_value return logits def repetition_penalty(logits, repetition_penalty, used_tokens): """ Implement the repetition penalty, check paper https://arxiv.org/pdf/1909.05858.pdf """ if used_tokens is not None and repetition_penalty != 1.0: logits_update = torch.gather(logits, 1, used_tokens) logits = torch.scatter(logits, 1, used_tokens, logits_update / repetition_penalty) return logits def get_model_parallel_src_rank(): """Calculate the global rank corresponding to the first local rank in the model parallel group.""" world_size = torch.distributed.get_world_size() all_ranks = np.arange(world_size) tp_size = parallel_state.get_tensor_model_parallel_world_size() pp_size = parallel_state.get_pipeline_model_parallel_world_size() # [pipeline dim, data parallel, tensor dim] all_ranks = all_ranks.reshape(pp_size, -1, tp_size) dp_rank = parallel_state.get_data_parallel_rank() return all_ranks[:, dp_rank, :].min() def send_generate_info( context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, compute_logprob, temperature, top_k, top_p, greedy, repetition_penalty, min_tokens_to_generate, end_strings, ): """ Needs to be synced up with receive_generate_info """ model_parallel_group = parallel_state.get_model_parallel_group() src = get_model_parallel_src_rank() # Send the sizes of the tensors input_info = [ context_tokens_tensor.size(0), # batch_size context_tokens_tensor.size(1), # seq_len tokens_to_generate, all_probs, compute_logprob, # whether to compute log probabilities matrix temperature, top_k, top_p, greedy, repetition_penalty, min_tokens_to_generate, ] input_info_tensor = torch.cuda.FloatTensor(input_info) torch.distributed.broadcast(input_info_tensor, src, model_parallel_group) # Send variables to all ranks torch.distributed.broadcast(context_length_tensor, src, model_parallel_group) torch.distributed.broadcast(context_tokens_tensor, src, model_parallel_group) # send end strings string_tensor = torch.as_tensor( np.frombuffer(pickle.dumps(end_strings), dtype=np.int8), device=torch.cuda.current_device() ) size = torch.as_tensor([string_tensor.size(0)], device=torch.cuda.current_device(), dtype=torch.int64) torch.distributed.broadcast(size, src, model_parallel_group) torch.distributed.broadcast(string_tensor, src, model_parallel_group) def receive_generate_info(): """ Needs to be synced up with send_generate_info """ model_parallel_group = parallel_state.get_model_parallel_group() src = get_model_parallel_src_rank() input_info_tensor = torch.empty(11, dtype=torch.float32, device=torch.cuda.current_device()) torch.distributed.broadcast(input_info_tensor, src, model_parallel_group) batch_size = int(input_info_tensor[0].item()) seq_len = int(input_info_tensor[1].item()) tokens_to_generate = int(input_info_tensor[2].item()) all_probs = bool(input_info_tensor[3].item()) compute_logprob = bool(input_info_tensor[4].item()) # whether to compute log probabilities matrix temperature = float(input_info_tensor[5].item()) top_k = int(input_info_tensor[6].item()) top_p = float(input_info_tensor[7].item()) greedy = bool(input_info_tensor[8].item()) repetition_penalty = float(input_info_tensor[9].item()) min_tokens_to_generate = int(input_info_tensor[10].item()) context_length_tensor = torch.empty(batch_size, dtype=torch.int64, device=torch.cuda.current_device()) context_tokens_tensor = torch.empty(batch_size, seq_len, dtype=torch.int64, device=torch.cuda.current_device()) # Send variables to all ranks torch.distributed.broadcast(context_length_tensor, src, model_parallel_group) torch.distributed.broadcast(context_tokens_tensor, src, model_parallel_group) array_size = torch.empty(1, dtype=torch.int64, device=torch.cuda.current_device()) torch.distributed.broadcast(array_size, src, model_parallel_group) string_tensor = torch.empty(array_size[0], dtype=torch.int8, device=torch.cuda.current_device()) torch.distributed.broadcast(string_tensor, src, model_parallel_group) bytes = string_tensor.cpu().numpy().tobytes() end_strings = pickle.loads(bytes) return ( context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs, compute_logprob, temperature, top_k, top_p, greedy, repetition_penalty, min_tokens_to_generate, end_strings, ) def synced_generate( model, inference_strategy, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, temperature, top_k=0, top_p=0.0, greedy=False, compute_attention_mask=True, compute_logprob=False, repetition_penalty=1.2, end_strings=[], min_tokens_to_generate=0, ): context_length = context_length_tensor.min().item() tokenizer = model.tokenizer if isinstance(tokenizer, TabularTokenizer): batch_token_iterator = tab_sample_sequence_batch( model, inference_strategy, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, compute_attention_mask=compute_attention_mask, temperature=temperature, ) else: batch_token_iterator = sample_sequence_batch( model, inference_strategy, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, compute_attention_mask=compute_attention_mask, compute_logprob=compute_logprob, temperature=temperature, end_strings=end_strings, extra={ "top_p": top_p, "top_k": top_k, "greedy": greedy, "repetition_penalty": repetition_penalty, "min_tokens_to_generate": min_tokens_to_generate, }, ) for tokens, lengths, output_logits, full_logits in batch_token_iterator: context_length += 1 if parallel_state.is_pipeline_last_stage(): src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_embedding_group() if compute_logprob: torch.distributed.broadcast(output_logits, src, group) if all_probs: src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_embedding_group() torch.distributed.broadcast(full_logits, src, group) else: if parallel_state.is_pipeline_first_stage(): src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_embedding_group() if compute_logprob: precision = model._trainer.precision if precision in [16, "16"]: dtype = torch.float16 elif precision == "bf16": dtype = torch.bfloat16 else: dtype = torch.float32 output_logits = torch.empty( tokens.size(0), context_length - 1, dtype=dtype, device=torch.device("cuda") ) torch.distributed.broadcast(output_logits, src, group) if all_probs: src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_embedding_group() full_logits = torch.empty( tokens.size(0), context_length - 1, model.padded_vocab_size, dtype=dtype, device=torch.device("cuda"), ) torch.distributed.broadcast(full_logits, src, group) if tokens is not None: return tokens[:, :context_length], output_logits, full_logits def generate( model, inputs=None, tokens_to_generate=0, all_probs=False, temperature=1.0, add_BOS=False, top_k=0, top_p=0.0, greedy=False, compute_attention_mask=True, compute_logprob=False, repetition_penalty=1.0, end_strings=['<|endoftext|>'], min_tokens_to_generate=0, **strategy_args, ) -> OutputType: """ Args: model (NLPModel): text generative model inputs (Union[tuple, List[str]]): if it is a tuple, it is assumed to be (context_tokens_tensor, context_length_tensor). Otherwise it it a list of prompt text strings tokens_to_generate (int): The maximum length of the tokens to be generated. all_probs (bool): Return the log prob for all the tokens temperature (float): sampling temperature add_BOS (bool): add the bos token at the begining of the prompt top_k (int): The number of highest probability vocabulary tokens to keep for top-k-filtering. top_p (float): If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation. greedy (bool): Whether or not to use sampling ; use greedy decoding otherwise repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty min_tokens_to_generate (int): The minimum length of the tokens to be generated strategy_args, the extra arguments are treated as inference strategy arguments end_strings, a list of strings to stop generation when they are encountered in the output. Returns: OutputType: It generates the output in a dictionary type. It has the following keys: sentences: List[str], output sentences tokens: List[List[str]], output sentences borken into tokens logprob: List[Tensor], log prob of generated tokens full_logprob: List[Tensor], log prob of all the tokens in the vocab token_ids: List[Tensor], output sentence token ids offsets: List[List[int]] # list of tokens start positions in text """ if 'strategy' in strategy_args: inference_strategy = strategy_args['strategy'] else: inference_strategy = model_inference_strategy_dispatcher(model, **strategy_args) tokenizer = model.tokenizer if torch.distributed.get_rank() == get_model_parallel_src_rank(): if isinstance(inputs, tuple): context_tokens_tensor, context_length_tensor = inputs else: context_tokens_tensor, context_length_tensor = inference_strategy.tokenize_batch( inputs, tokens_to_generate, add_BOS ) send_generate_info( context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, compute_logprob, temperature, top_k, top_p, greedy, repetition_penalty, min_tokens_to_generate, end_strings, ) else: ( context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs, compute_logprob, temperature, top_k, top_p, greedy, repetition_penalty, min_tokens_to_generate, end_strings, ) = receive_generate_info() output = synced_generate( model, inference_strategy, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, temperature, compute_attention_mask=compute_attention_mask, compute_logprob=compute_logprob, top_k=top_k, top_p=top_p, greedy=greedy, repetition_penalty=repetition_penalty, end_strings=end_strings, min_tokens_to_generate=min_tokens_to_generate, ) special_tokens = set() if hasattr(tokenizer, 'pad_token') and tokenizer.pad_token is not None: special_tokens.add(tokenizer.pad_token) if hasattr(tokenizer, 'eos_token') and tokenizer.eos_token is not None: special_tokens.add(tokenizer.eos_token) if hasattr(tokenizer, 'bos_token') and tokenizer.bos_token is not None: special_tokens.add(tokenizer.bos_token) if hasattr(tokenizer, 'cls_token') and tokenizer.cls_token is not None: special_tokens.add(tokenizer.cls_token) if hasattr(tokenizer, 'unk_token') and tokenizer.unk_token is not None: special_tokens.add(tokenizer.unk_token) if hasattr(tokenizer, 'sep_token') and tokenizer.sep_token is not None: special_tokens.add(tokenizer.sep_token) if hasattr(tokenizer, 'mask_token') and tokenizer.mask_token is not None: special_tokens.add(tokenizer.mask_token) if output is not None: decode_tokens, output_logits, full_logits = output resp_sentences = [] resp_sentences_seg = [] decode_tokens = decode_tokens.cpu().numpy().tolist() for decode_token in decode_tokens: sentence = tokenizer.ids_to_text(decode_token) resp_sentences.append(sentence) if not isinstance(tokenizer, TabularTokenizer): words = [] for token in decode_token: if not isinstance(token, Iterable): token = [token] word = tokenizer.ids_to_tokens(token) if isinstance(word, Iterable): word = word[0] if hasattr(tokenizer.tokenizer, 'byte_decoder'): word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode( 'utf-8', errors='replace' ) words.append(word) resp_sentences_seg.append(words) else: words = tokenizer.text_to_tokens(sentence) resp_sentences_seg.append(words) # offsets calculation all_offsets = [] for item in resp_sentences_seg: offsets = [0] for index, token in enumerate(item): if index != len(item) - 1: if token in special_tokens: offsets.append(offsets[-1]) else: offsets.append(len(token) + offsets[-1]) all_offsets.append(offsets) output = {} output['sentences'] = resp_sentences output['tokens'] = resp_sentences_seg output['logprob'] = output_logits output['full_logprob'] = full_logits output['token_ids'] = decode_tokens output['offsets'] = all_offsets output = inference_strategy.post_generation_process(output) return output def switch(val1, val2, boolean): boolean = boolean.type_as(val1) return (1 - boolean) * val1 + boolean * val2 def sample_sequence_batch( model, inference_strategy, context_tokens, context_lengths, tokens_to_generate, all_probs=False, compute_attention_mask=True, compute_logprob=False, type_ids=None, temperature=None, end_strings=['<|endoftext|>'], extra={}, ): # Importing here to avoid circular import errors app_state = AppState() micro_batch_size = context_tokens.shape[0] _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=micro_batch_size, micro_batch_size=micro_batch_size, data_parallel_size=1, ) assert ( model.cfg.get('sequence_parallel', False) == False ), 'sequence_parallel should be False during inference. Disable it in the model config if restoring from nemo or in hparams.yaml if restoring from PTL checkpoint' assert ( model.cfg.get('activations_checkpoint_granularity', None) is None ), 'activations_checkpoint_granularity should be None during inference. Disable it in the model config if restoring from nemo or in hparams.yaml if restoring from PTL checkpoint' assert ( model.cfg.get('activations_checkpoint_method', None) is None ), 'activations_checkpoint_method should be None during inference. Disable it in the model config if restoring from nemo or in hparams.yaml if restoring from PTL checkpoint' tokenizer = model.tokenizer # initialize the batch with torch.no_grad(): context_length = context_lengths.min().item() inference_strategy.init_batch(context_tokens, context_length, compute_attention_mask) # added eos_id to support the function generate_samples_eval that passes # eos_id as an argument and needs termination when that id id found. eod_id = tokenizer.eos_id counter = 0 batch_size = context_tokens.size(0) is_done = torch.zeros([batch_size]).byte().cuda() tokens = context_tokens output_logits = None all_generated_indices = None # used to track all generated indices # Generate enough tokens for the longest sequence maxlen = tokens_to_generate + context_lengths.max().item() maxlen = inference_strategy.clip_max_len(maxlen) lengths = torch.ones([batch_size]).long().cuda() * maxlen while context_length < maxlen: batch, tensor_shape = inference_strategy.prepare_batch_at_step( tokens, maxlen, micro_batch_size, counter, context_length, compute_attention_mask ) output = inference_strategy.forward_step(batch, tensor_shape) if parallel_state.is_pipeline_last_stage(): if compute_logprob: output = output[0]['logits'] output = tensor_parallel.gather_from_tensor_model_parallel_region(output) assert output is not None logits = output[:, -1].view(batch_size, -1).contiguous() else: logits = output[0]['logits'][:, -1].contiguous() logits = tensor_parallel.gather_from_tensor_model_parallel_region(logits) assert logits is not None logits = logits.view(batch_size, -1) # make sure it will generate at least min_length min_length = extra.get('min_tokens_to_generate', 0) if min_length > 0: within_min_length = (context_length - context_lengths) < min_length logits[within_min_length, eod_id] = -float('Inf') # make sure it won't sample outside the vocab_size range logits[:, tokenizer.vocab_size :] = -float('Inf') # started indicates whether the current token step passes the context_length, so we make sure not to overwrite the context tokens started = context_lengths <= context_length if extra.get('greedy', False): prev = torch.argmax(logits, dim=-1).view(-1) else: logits = logits.float() logits /= temperature # handle repetition penality logits = repetition_penalty(logits, extra.get('repetition_penalty', 1.2), all_generated_indices) logits = top_k_logits( logits, top_k=extra.get('top_k', 0), top_p=extra.get('top_p', 0.9), started=started ) probs = F.softmax(logits, dim=-1) prev = torch.multinomial(probs, num_samples=1).view(-1) # Clamp the predicted out of vocabulary tokens prev = torch.clamp(prev, max=tokenizer.vocab_size - 1) new_tokens = switch(tokens[:, context_length].view(-1), prev, started) # Replace sampled tokens w/ done token if EOD has already been sampled new_tokens = switch(new_tokens, eod_id, is_done) # post process the inference tokens based on the strategy inference_strategy.post_process(tokens, new_tokens, context_length) # Insert either new predicted or next prompt token tokens[:, context_length] = new_tokens if compute_logprob: if output_logits is None: output = F.log_softmax(output[:, :context_length, :], 2) indices = torch.unsqueeze(tokens[:, 1 : context_length + 1], 2) output_logits = torch.gather(output, 2, indices).squeeze(2) all_generated_indices = indices[:, :, 0] if all_probs: full_logits = output else: output = F.log_softmax(output, 2) indices = torch.unsqueeze(new_tokens, 1).unsqueeze(2) new_output_logits = torch.gather(output, 2, indices).squeeze(2) # TODO(rprenger) we're copying output_logits every time. Should pre-allocate output_logits = torch.cat([output_logits, new_output_logits], 1) all_generated_indices = torch.cat([all_generated_indices, indices[:, :, 0]], 1) if all_probs: full_logits = torch.cat([full_logits, output], 1) src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_embedding_group() torch.distributed.broadcast(new_tokens, src, group) # done_token = (prev == eod_id).byte() & started.byte() done_token = inference_strategy.end_of_generation_condition( tokens[:, : context_length + 1], prev, eod_id, end_strings ) done_token = done_token.byte() & started.byte() just_finished = (done_token & ~is_done).bool() lengths[just_finished.view(-1)] = context_length is_done = is_done | done_token done = torch.all(is_done) src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_pipeline_model_parallel_group() torch.distributed.broadcast(done, src, group) if compute_logprob: if all_probs: yield tokens, lengths, output_logits, full_logits else: yield tokens, lengths, output_logits, None else: yield tokens, lengths, None, None else: if parallel_state.is_pipeline_first_stage(): src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_embedding_group() new_tokens = torch.empty_like(tokens[:, context_length]) torch.distributed.broadcast(new_tokens, src, group) tokens[:, context_length] = new_tokens yield tokens, None, None, None else: yield None, None, None, None done = torch.cuda.ByteTensor([0]) src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_pipeline_model_parallel_group() torch.distributed.broadcast(done, src, group) context_length += 1 counter += 1 if done: break def tab_sample_sequence_batch( model, inference_strategy, context_tokens, context_lengths, tokens_to_generate, all_probs=True, compute_attention_mask=True, type_ids=None, temperature=None, ): app_state = AppState() micro_batch_size = context_tokens.shape[0] _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=micro_batch_size, micro_batch_size=micro_batch_size, data_parallel_size=1, ) tokenizer = model.tokenizer sizes = tokenizer.code_column.sizes tokens_per_row = sum(sizes) + 1 columns = tokenizer.code_column.columns num_columns = len(columns) tokenid_range = [] for i in range(num_columns): tokenid_range.extend(tokenizer.code_column.get_range(i)) # initialize the batch with torch.no_grad(): context_length = context_lengths.min().item() inference_strategy.init_batch(context_tokens, context_length, compute_attention_mask) context = context_tokens[:, :context_length] # the context may start in the middle of the row, # calculate the offset according to the position of '\n' or '<|endoftext|>' positions = torch.where(context == tokenizer.eor)[1] if len(positions) == 0: positions = torch.where(context == tokenizer.eod)[1] if len(positions) != 0: max_position = positions.max().item() # TODO, need to make sure context of different batch have the same offset lengths") # otherwise, need to calculate offset per batch_id offset = (context_length - max_position - 1) % tokens_per_row else: offset = 0 eod_id = tokenizer.eos_id counter = 0 batch_size = context_tokens.size(0) is_done = torch.zeros([batch_size]).byte().cuda() tokens = context_tokens output_logits = None # Generate enough tokens for the longest sequence maxlen = tokens_to_generate + context_lengths.max().item() if maxlen > model.cfg.encoder_seq_length: maxlen = model.cfg.encoder_seq_length lengths = torch.ones([batch_size]).long().cuda() * maxlen while context_length < maxlen: batch, tensor_shape = inference_strategy.prepare_batch_at_step( tokens, maxlen, micro_batch_size, counter, context_length, compute_attention_mask ) output = inference_strategy.forward_step(batch, tensor_shape) if parallel_state.is_pipeline_last_stage(): output = output[0]['logits'].float() output = tensor_parallel.gather_from_tensor_model_parallel_region(output) assert output is not None output = output.float() logits = output[:, -1].view(batch_size, -1).contiguous() token_in_row = (counter + offset) % tokens_per_row logits = logits.float() logits /= temperature if token_in_row == tokens_per_row - 1: # line break eor_id = tokenizer.eor eod_id = tokenizer.eos_id min_id = min(eor_id, eod_id) max_id = max(eor_id, eod_id) + 1 logits = tab_logits(logits, min_id, max_id) else: # limit the range min_id, max_id = tokenid_range[token_in_row] logits = tab_logits(logits, min_id, max_id) probs = F.softmax(logits, dim=-1) prev = torch.multinomial(probs, num_samples=1).view(-1) started = context_lengths <= context_length # Clamp the out of vocabulary tokens. prev = torch.clamp(prev, max=tokenizer.vocab_size - 1) new_tokens = switch(tokens[:, context_length].view(-1), prev, started) # post process the inference tokens based on the strategy inference_strategy.post_process(tokens, new_tokens, context_length) tokens[:, context_length] = new_tokens if output_logits is None: output_context = F.log_softmax(output[:, :context_length, :], 2) indices = torch.unsqueeze(tokens[:, 1 : context_length + 1], 2) output_logits = torch.gather(output_context, 2, indices).squeeze(2) if all_probs: full_logits = output_context else: output_context = F.log_softmax(output, 2) indices = torch.unsqueeze(new_tokens, 1).unsqueeze(2) new_output_logits = torch.gather(output_context, 2, indices).squeeze(2) # TODO(rprenger) we're copying output_logits every time. Should pre-allocate output_logits = torch.cat([output_logits, new_output_logits], 1) if all_probs: full_logits = torch.cat([full_logits, output_context], 1) src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_embedding_group() torch.distributed.broadcast(new_tokens, src, group) done_token = (prev == eod_id).byte() & started.byte() just_finished = (done_token & ~is_done).bool() lengths[just_finished.view(-1)] = context_length is_done = is_done | done_token done = torch.all(is_done) src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_pipeline_model_parallel_group() torch.distributed.broadcast(done, src, group) if all_probs: yield tokens, lengths, output_logits, full_logits else: yield tokens, lengths, output_logits, None else: if parallel_state.is_pipeline_first_stage(): src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_embedding_group() new_tokens = torch.empty_like(tokens[:, context_length]) torch.distributed.broadcast(new_tokens, src, group) tokens[:, context_length] = new_tokens yield tokens, None, None, None else: yield None, None, None, None done = torch.cuda.ByteTensor([0]) src = parallel_state.get_pipeline_model_parallel_last_rank() group = parallel_state.get_pipeline_model_parallel_group() torch.distributed.broadcast(done, src, group) context_length += 1 counter += 1 if done: break def sample_token_greedy(logits): """ Greedy sampling. Returns the token with the highest probability, and corresponding log_prob. Args: logits: [batch_size, vocab_size] - unnormalized log probabilities of the next token Returns: log_probs: [batch_size] - log probabilities of the sampled tokens token_ids: [batch_size] - sampled token ids """ log_probs, token_ids = torch.max(torch.nn.functional.log_softmax(logits, dim=-1), dim=-1) return log_probs, token_ids def sample_token_topk(logits, top_k=0, top_p=0.0, temperature=1.0, filter_value=-float('Inf')): """ Greedy sampling. Returns the token with the highest probability, and corresponding log_prob. Args: logits: [batch_size, vocab_size] - unnormalized log probabilities of the next token top_k: int - if > 0: only sample from top k tokens with highest probability top_p: float - if > 0.0: only sample from a subset of candidates, where the cumulative probability temperature: float - temperature for sampling filter_value: float - value to set filtered tokens to Returns: log_probs: [batch_size] - log probabilities of the sampled tokens token_ids: [batch_size] - sampled token ids """ logits = logits.float() logits /= temperature logits = top_k_logits(logits, top_k=top_k, top_p=top_p, filter_value=filter_value) log_probs = torch.nn.functional.log_softmax(logits, dim=-1) token_ids = torch.multinomial(log_probs.exp(), num_samples=1).view(-1) log_probs = log_probs.gather(1, token_ids.unsqueeze(1)).squeeze(1) return log_probs, token_ids def sample_token_topk_beam_search(logits: torch.Tensor, beam_size: int = 1, dim: int = -1, log_softmax: bool = True): """ Beam search selection of top K predictions per target (dim). Returns the beam_size tokens ids with the highest probability and the corresponding log_prob per target Args: logits: [batch_size, vocab_size] or [batch_size, vocab_size] - unnormalized log probabilities of the next token, beam_size: int > 1 - number of tokens to return with the highest probability per target dim: int - dim of log_softmax and topk selection log_softmax: bool - if to calculate log softmax for log probabilities Returns: log_probs: [batch_size, beam_size] - log probabilities of the sampled tokens token_ids: [batch_size, beam_size] - sampled token ids """ if log_softmax: log_probs = torch.nn.functional.log_softmax(logits, dim=dim) else: log_probs = logits # get top candidates for each item in batch log_probs, token_ids = torch.topk(log_probs, beam_size, dim=dim) return log_probs, token_ids def compute_beam_search_len_penalty(lengths: torch.Tensor, alpha: int) -> torch.Tensor: """ Length penalty used in the beam search Args: lengths: lengths of decoded sequences alpha: params of the penalty Returns: tensor with the penalty value """ return ((5 + lengths) / 6).pow(alpha) def get_sampling_token_fn(sampling_method: str, sampling_kwargs: dict) -> Tuple[Callable, dict]: """ Specifies the sampling function that takes in a tensor of logits [batch_size, vocab_size] and returns a tuple (tensor of log_probs [batch_size], tensor of sampled from logits [batch_size]). If the beam search is enabled, the sampling function returns tensors [batch_size, beam_size] Args: sampling_method: the sampling method to use in the decode steps. Currently supported methods are "beam-search"/"greedy"/"topkp" sampling_kwargs: dict with arguments to be passed to the sampling function. For sampling method 'beam-search', the following kwargs are supported: beam_size - int, number of the best sequences at each decode iteration to be left per target beam_alpha - int, the parameter of length penalty applied to predicted sequences keep_only_best_tokens - used in the beam search, boolean flag if to output only best sequence of predicted tokens (True) or beam_size predictions per target return_scores - used in the beam search, boolean flag if to return scores at the top of predictions and logits Returns: sample_token_fn: the sampling function default_sampling_kwargs: sampling_kwargs augmented with default sampling kwargs """ all_default_sampling_kwargs = { 'greedy-search': {}, 'topkp-sampling': {'top_k': 0, 'top_p': 0.0, 'temperature': 1.0}, 'beam-search': {'beam_size': 1, 'beam_alpha': 0.0, 'keep_only_best_tokens': False, 'return_scores': False}, } # update default sampling kwargs with user provided kwargs default_sampling_kwargs = all_default_sampling_kwargs[sampling_method].copy() default_sampling_kwargs.update(sampling_kwargs) # sampling_kwargs = default_sampling_kwargs if sampling_method == 'greedy-search': sampling_token_fn = sample_token_greedy elif sampling_method == "topkp-sampling": top_k = default_sampling_kwargs['top_k'] top_p = default_sampling_kwargs['top_p'] temperature = default_sampling_kwargs['temperature'] sampling_token_fn = partial(sample_token_topk, top_k=top_k, top_p=top_p, temperature=temperature) elif sampling_method == "beam-search": beam_size = default_sampling_kwargs['beam_size'] sampling_token_fn = partial(sample_token_topk_beam_search, beam_size=beam_size) else: raise ValueError( f'Invalid sampling method {sampling_method}. ' f'Supported sampling methods are {all_default_sampling_kwargs.keys()}' ) return sampling_token_fn, default_sampling_kwargs
NeMo-main
nemo/collections/nlp/modules/common/text_generation_utils.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional from nemo.collections.common.parts import MultiLayerPerceptron from nemo.collections.nlp.modules.common.classifier import Classifier from nemo.core.classes import typecheck from nemo.core.neural_types import LogitsType, LogprobsType, NeuralType __all__ = ['SequenceClassifier'] class SequenceClassifier(Classifier): @property def output_types(self) -> Optional[Dict[str, NeuralType]]: if not self.log_softmax: return {"logits": NeuralType(('B', 'D'), LogitsType())} else: return {"log_probs": NeuralType(('B', 'D'), LogprobsType())} def __init__( self, hidden_size: int, num_classes: int, num_layers: int = 2, activation: str = 'relu', log_softmax: bool = True, dropout: float = 0.0, use_transformer_init: bool = True, idx_conditioned_on: int = 0, ): """ Initializes the SequenceClassifier module. Args: hidden_size: the hidden size of the mlp head on the top of the encoder num_classes: number of the classes to predict num_layers: number of the linear layers of the mlp head on the top of the encoder activation: type of activations between layers of the mlp head log_softmax: applies the log softmax on the output dropout: the dropout used for the mlp head use_transformer_init: initializes the weights with the same approach used in Transformer idx_conditioned_on: index of the token to use as the sequence representation for the classification task, default is the first token """ super().__init__(hidden_size=hidden_size, dropout=dropout) self.log_softmax = log_softmax self._idx_conditioned_on = idx_conditioned_on self.mlp = MultiLayerPerceptron( hidden_size=hidden_size, num_classes=num_classes, num_layers=num_layers, activation=activation, log_softmax=log_softmax, ) self.post_init(use_transformer_init=use_transformer_init) @typecheck() def forward(self, hidden_states): hidden_states = self.dropout(hidden_states) logits = self.mlp(hidden_states[:, self._idx_conditioned_on]) return logits
NeMo-main
nemo/collections/nlp/modules/common/sequence_classifier.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional from torch import Tensor from nemo.collections.common.parts import MultiLayerPerceptron from nemo.collections.nlp.modules.common.classifier import Classifier from nemo.core.classes import typecheck from nemo.core.neural_types import NeuralType, RegressionValuesType __all__ = ['SequenceRegression'] class SequenceRegression(Classifier): """ Args: hidden_size: the hidden size of the mlp head on the top of the encoder num_layers: number of the linear layers of the mlp head on the top of the encoder activation: type of activations between layers of the mlp head dropout: the dropout used for the mlp head use_transformer_init: initializes the weights with the same approach used in Transformer idx_conditioned_on: index of the token to use as the sequence representation for the classification task, default is the first token """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"preds": NeuralType(tuple('B'), RegressionValuesType())} def __init__( self, hidden_size: int, num_layers: int = 2, activation: str = 'relu', dropout: float = 0.0, use_transformer_init: bool = True, idx_conditioned_on: int = 0, ): """ Initializes the SequenceRegression module. """ super().__init__(hidden_size=hidden_size, dropout=dropout) self._idx_conditioned_on = idx_conditioned_on self.mlp = MultiLayerPerceptron( hidden_size, num_classes=1, num_layers=num_layers, activation=activation, log_softmax=False, ) self.post_init(use_transformer_init=use_transformer_init) @typecheck() def forward(self, hidden_states: Tensor) -> Tensor: """ Forward pass through the module. Args: hidden_states: hidden states for each token in a sequence, for example, BERT module output """ hidden_states = self.dropout(hidden_states) preds = self.mlp(hidden_states[:, self._idx_conditioned_on]) return preds.view(-1)
NeMo-main
nemo/collections/nlp/modules/common/sequence_regression.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional import torch from torch import nn as nn from nemo.collections.common.parts import transformer_weights_init from nemo.core.classes import Exportable, NeuralModule from nemo.core.neural_types import ChannelType, NeuralType __all__ = ['Classifier'] class Classifier(NeuralModule, Exportable): """ A baseclass for modules to perform various classification tasks. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: """ Returns definitions of module input ports. We implement it here since all NLP classifiers have the same inputs """ return {"hidden_states": NeuralType(('B', 'T', 'D'), ChannelType())} def __init__(self, hidden_size: int, dropout: float = 0.0,) -> None: """ Initializes the Classifier base module. Args: hidden_size: the size of the hidden dimension dropout: dropout to apply to the input hidden states """ super().__init__() self._hidden_size = hidden_size self.dropout = nn.Dropout(dropout) def post_init(self, use_transformer_init: bool): """ Common post-processing to be called at the end of concrete Classifiers init methods Args: use_transformer_init : whether or not to apply transformer_weights_init """ if use_transformer_init: self.apply(lambda module: transformer_weights_init(module, xavier=False)) def input_example(self, max_batch=1, max_dim=256): """ Generates input examples for tracing etc. Returns: A tuple of input examples. """ sample = next(self.parameters()) example = torch.randn(max_batch, max_dim, self._hidden_size).to(sample.device).to(sample.dtype) return tuple([example]) def save_to(self, save_path: str): """ Saves the module to the specified path. Args: save_path: Path to where to save the module. """ pass @classmethod def restore_from(cls, restore_path: str): """ Restores the module from the specified path. Args: restore_path: Path to restore the module from. """ pass
NeMo-main
nemo/collections/nlp/modules/common/classifier.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import warnings from typing import List, Set, Tuple import torch from nemo.collections.nlp.modules.common.lm_utils import pad_batch from nemo.collections.nlp.modules.common.megatron.utils import get_ltor_masks_and_position_ids try: from apex.transformer.pipeline_parallel.utils import get_num_microbatches HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core.pipeline_parallel.schedules import get_forward_backward_func HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False # the text representation of eos_id, it applies for all tokenizers END_OF_SEQ = '<|endoftext|>' class TextGenerationStrategy: """ Base class for TextGeneration Strategy """ def __init__(self, model): self.model = model if self.model.training: # TODO in the future this should raise an exception warnings.warn( "Generation started while the model is in training mode, switching to eval mode " "(this situation may raise an exception in future versions, please call `eval()` before generation)" ) self.model.eval() self._end_of_generation_cache = None def forward_step(self, batch, tensor_shape): fwd_bwd_function = get_forward_backward_func() output_tensor = fwd_bwd_function( forward_step_func=self.model.get_forward_output_only_func(), data_iterator=iter([batch,]), model=[self.forward_model], num_microbatches=get_num_microbatches(), forward_only=True, seq_length=tensor_shape[0], micro_batch_size=tensor_shape[1], ) return output_tensor def tokenize_batch(self, sentences, max_len, add_BOS): """ convert the sentences into lists of tokens, pad them to the same length, add bos tokens if it is needed Args: sentences (List[str]): list of input sentences in str format. max_len (int): max number of tokens to generate. add_BOS (bool): whether to add the BOS token at the beginning Returns: Tuple[torch.Tensor], the tokenized and padded torch tensor and the token context length tensor. """ tokenizer = self.model.tokenizer if add_BOS: context_tokens = [[tokenizer.bos_id] + tokenizer.text_to_ids(s) for s in sentences] else: context_tokens = [tokenizer.text_to_ids(s) for s in sentences] context_tokens, context_lengths = pad_batch(context_tokens, tokenizer.eos_id, max_len) context_tokens_tensor = torch.cuda.LongTensor(context_tokens) context_length_tensor = torch.cuda.LongTensor(context_lengths) return context_tokens_tensor, context_length_tensor @abc.abstractclassmethod def clip_max_len(self, maxlen: int) -> int: """ clip the max len based on the LM model max sequence length Args: maxlen (int): the max len computed from the context and number of tokens to generate returns (int): the clip the max length based of the LM model max sequence length """ pass @abc.abstractclassmethod def init_batch(self, context_tokens: torch.Tensor, context_length: int, compute_attention_mask: bool): """initialize the batch data before the inference steps. It will save the intermediate results as object attributes context_length (int): the context token length compute_attention_mask: bool: set to True to compute attention mask (not needed for FA) Args: context_tokens (torch.Tensor): The padded context tokens including the space for tokens to be generated """ pass @abc.abstractclassmethod def prepare_batch_at_step( self, tokens: torch.Tensor, maxlen: int, micro_batch_size: int, step: int, context_length: int ) -> Tuple[List[torch.Tensor], List[int]]: """ generate the batch used in inference for each of the steps Args: tokens (torch.Tensor): the context tokens maxlen (int): the maximum length in the context tokens micro_batch_size (int): text generation batch size step (int): the inference step count context_length (int): the new token position in the tokens returns: a tuple of list of tensor arguments for the model and a list of tensor shape required by forward method """ pass @abc.abstractclassmethod def post_process(self, tokens: torch.Tensor, new_tokens: torch.Tensor, context_length: int): """ At the end of the single step inference, post process the inference results Args: tokens (torch.Tensor): the context tokens new_token (torch.Tensor): sampled new token id context_length (int): the new token position in the tokens """ pass def end_of_generation_condition( self, tokens: torch.Tensor, prev: torch.Tensor, eod_id: int, end_strings: List[str] ) -> torch.Tensor: """ return whether the generation should stop based on the previous token Args: tokens (torch.Tensor): the generated tokens so far prev (torch.Tensor): the previous token eod_id (int): the end of document token id end_strings (List[str]): the list of end of generation strings returns: a boolean tensor indicating whether the generation should stop """ if (len(end_strings) == 1 and end_strings[0] == END_OF_SEQ) or not end_strings: # Simple scenario: only finish on end of document token. return prev == eod_id end_tokens, end_strings_to_check = self._get_end_of_generation_tokens_and_strings(eod_id, end_strings) assert end_tokens is_end = torch.isin(prev, torch.tensor(list(end_tokens), dtype=prev.dtype, device=prev.device)) if end_strings_to_check: # The loop below is inefficient (see warning in `_get_end_of_generation_tokens_and_strings()`) # TODO In addition, we will not stop if the model generates an end string followed by extra characters, # e.g., if `end_string` is "Done" and there exists a "Done!" token it could generate tokens # [..., ".", "Done!"] # which would fail the `endswith("Done")` check. However, stopping when "Done!" is generated would not # work either, since we would need to post-process the generated string to truncate the extra "!". # ==> this is left for future work if there is a compelling use case requiring this feature. for idx, token_seq in enumerate(tokens): text = self.model.tokenizer.ids_to_text(token_seq.tolist()) is_end[idx] |= any(text.endswith(end_string) for end_string in end_strings_to_check) return is_end def post_generation_process(self, output): """ At the end of the text generation, post process the results Args: output (dict): the text generation output dictionary """ return output def _get_end_of_generation_tokens_and_strings( self, eod_id: int, end_strings: List[str] ) -> Tuple[Set[int], List[str]]: """ return the tokens and strings indicating the end of generation Args: eod_id (int): the end of document token id end_strings (List[str]): the list of end of generation strings Returns: a pair `(tokens, strings)` where `tokens` is a set of tokens (int) and `strings` is a list of strings, which must all be used to identify the end of generation (`tokens` always contains `eod_id`, while `strings` may be empty if all end strings are associated to unique tokens) """ tokenizer = self.model.tokenizer # A cache is used to remember which end strings are associated to unique tokens vs. which ones # require an actual string comparison. if self._end_of_generation_cache is None or self._end_of_generation_cache["tokenizer"] is not tokenizer: # Invalidate the cache. self._end_of_generation_cache = { "tokenizer": tokenizer, "end_string_to_token": {END_OF_SEQ: eod_id}, "end_strings_to_check": set(), } end_string_to_token = self._end_of_generation_cache["end_string_to_token"] end_tokens = {eod_id} # always include `eod_id`, even if `END_OF_SEQ` is not within `end_strings` end_strings_to_check = [] # will contain end strings that have no associated special token for end_string in end_strings: try: end_tokens.add(end_string_to_token[end_string]) continue except KeyError: if end_string in self._end_of_generation_cache["end_strings_to_check"]: end_strings_to_check.append(end_string) continue # `end_string` does not exist in the cache yet: check if `end_string` is a special token for # the tokenizer. Ideally, we would simply use `tokenizer.text_to_ids(end_string)`, but some # tokenizers (e.g., SentencePiece) may prefix the special token with another token associated # to an empty string. The code below is thus meant to extract the special token associated to # `end_string` (if it exists). Note that we use "<extra_id_1>" as prefix string to have a low # risk of the tokenizer merging it with `end_string`, but this is somewhat arbitrary. ids_ref = tokenizer.text_to_ids("<extra_id_1>") ids_with_end_string = tokenizer.text_to_ids(f"<extra_id_1>{end_string}") if len(ids_with_end_string) == len(ids_ref) + 1 and ids_with_end_string[:-1] == ids_ref: # We can assume that the extra token is the one corresponding to `end_string`. end_string_to_token[end_string] = ids_with_end_string[-1] end_tokens.add(ids_with_end_string[-1]) else: # No special token. warnings.warn( f"The end string '{end_string}' has no associated special token: this may slow down " "generation (consider using a different tokenizer or modifying `end_strings`)" ) self._end_of_generation_cache["end_strings_to_check"].add(end_string) end_strings_to_check.append(end_string) return end_tokens, end_strings_to_check class GPTModelTextGenerationStrategy(TextGenerationStrategy): def __init__(self, model): super().__init__(model) self.forward_model = self.model.model def clip_max_len(self, maxlen: int) -> int: """ clip the max len based on the LM model max sequence length""" # for positional embedding types that allow length extrapolation, don't clip the max length if self.model.cfg.get("position_embedding_type", "learned_absolute") == "learned_absolute": if maxlen > self.model.cfg.encoder_seq_length + 1: maxlen = self.model.cfg.encoder_seq_length + 1 return maxlen def init_batch(self, context_tokens: torch.Tensor, context_length: int, compute_attention_mask: bool): """initialize the batch data before the inference steps.""" # Move to GPU. tokenizer = self.model.tokenizer tokens = context_tokens.contiguous().cuda() # Get the attention mask and postition ids. self.attention_mask, _, self.position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.eos_id, self.model.cfg.get('reset_position_ids', False), self.model.cfg.get('reset_attention_mask', False), self.model.cfg.get('eod_mask_loss', False), compute_attention_mask=compute_attention_mask, ) def prepare_batch_at_step( self, tokens: torch.Tensor, maxlen: int, micro_batch_size: int, step: int, context_length: int, compute_attention_mask: bool = True, ) -> Tuple[List[torch.Tensor], List[int]]: """ generate the batch used in inference for each of the steps """ # types2use = None if step == 0: # Allocate memory for the entire context. set_inference_key_value_memory = True tokens2use = tokens[:, :context_length] positions2use = self.position_ids[:, :context_length] # not using type2use. uncomment it if it is used # if type_ids is not None: # types2use = type_ids[:, :context_length] else: # Set this to false so the memory is not reallocated. set_inference_key_value_memory = False tokens2use = tokens[:, context_length - 1].view(micro_batch_size, -1) positions2use = self.position_ids[:, context_length - 1].view(micro_batch_size, -1) # not using type2use. uncomment it if it is used # if type_ids is not None: # types2use = type_ids[:, context_length - 1].view(batch_size, -1) """Prepare batch for each of the inference steps""" attention_mask_repeat = None if compute_attention_mask: attention_mask_repeat = torch.concat([self.attention_mask for _ in range(micro_batch_size)]) setkey_value_array = torch.tensor( [set_inference_key_value_memory] * micro_batch_size, device=torch.cuda.current_device() ) len_array = torch.tensor([maxlen] * micro_batch_size, device=torch.cuda.current_device()) batch = [tokens2use, attention_mask_repeat, positions2use, setkey_value_array, len_array] tensor_shape = [tokens2use.shape[1], micro_batch_size, self.model.cfg.hidden_size] return batch, tensor_shape class PromptLearningModelTextGenerationStrategy(TextGenerationStrategy): def __init__(self, model, task_ids): super().__init__(model) self.task_ids = task_ids self.forward_model = self.model def init_batch(self, context_tokens: torch.Tensor, context_length: int, compute_attention_mask: bool): """initialize the batch data before the inference steps.""" # Move to GPU. tokenizer = self.model.tokenizer tokens = context_tokens.contiguous().cuda() # Get the attention mask and postition ids. self.attention_mask, _, self.position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.eos_id, self.model.cfg.get('reset_position_ids', False), self.model.cfg.get('reset_attention_mask', False), self.model.cfg.get('eod_mask_loss', False), compute_attention_mask=compute_attention_mask, ) def clip_max_len(self, maxlen: int) -> int: """ clip the max len based on the LM model max sequence length""" if maxlen > self.model.frozen_model.cfg.encoder_seq_length + 1: maxlen = self.model.frozen_model.cfg.encoder_seq_length + 1 return maxlen def prepare_batch_at_step( self, tokens: torch.Tensor, maxlen: int, micro_batch_size: int, step: int, context_length: int, compute_attention_mask: bool, ) -> Tuple[List[torch.Tensor], List[int]]: # types2use = None if step == 0: # Allocate memory for the entire context. set_inference_key_value_memory = True tokens2use = tokens[:, :context_length] positions2use = self.position_ids[:, :context_length] # not using type2use. uncomment it if it is used # if type_ids is not None: # types2use = type_ids[:, :context_length] else: # Set this to false so the memory is not reallocated. set_inference_key_value_memory = False tokens2use = tokens[:, context_length - 1].view(micro_batch_size, -1) positions2use = self.position_ids[:, context_length - 1].view(micro_batch_size, -1) # not using type2use. uncomment it if it is used # if type_ids is not None: # types2use = type_ids[:, context_length - 1].view(batch_size, -1) """Prepare batch for each of the inference steps""" attention_mask_repeat = None if compute_attention_mask: attention_mask_repeat = torch.concat([self.attention_mask for _ in range(micro_batch_size)]) setkey_value_array = torch.tensor( [set_inference_key_value_memory] * micro_batch_size, device=torch.cuda.current_device() ) len_array = torch.tensor([maxlen] * micro_batch_size, device=torch.cuda.current_device()) batch = [tokens2use, attention_mask_repeat, positions2use, self.task_ids, setkey_value_array, len_array] tensor_shape = [tokens2use.shape[1], micro_batch_size, self.model.frozen_model.cfg.hidden_size] return batch, tensor_shape def post_process(self, tokens: torch.Tensor, new_tokens: torch.Tensor, context_length: int): """ At the end of the inference, post process the inference results """ # Replace special soft prompt token ids with unk token ids if ( self.model.pseudo_token_ids_start is not None ): # TODO: (@adithyare) prompt learning logic can be greatly simplified by removing data preparation logic from model logic. tokenizer = self.model.tokenizer pseudo_token_ids_start = self.model.pseudo_token_ids_start new_tokens[(new_tokens >= pseudo_token_ids_start)] = tokenizer.unk_id tokens[:, :context_length][(tokens[:, :context_length] >= pseudo_token_ids_start)] = tokenizer.unk_id def model_inference_strategy_dispatcher(model, **args): from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel from nemo.collections.nlp.models.language_modeling.megatron_gpt_prompt_learning_model import ( MegatronGPTPromptLearningModel, ) from nemo.collections.nlp.models.language_modeling.megatron_retrieval_model import MegatronRetrievalModel from nemo.collections.nlp.modules.common.retro_inference_strategies import ( RetroFileQAModelTextGenerationStrategy, RetroModelTextGenerationStrategy, RetroQAModelTextGenerationStrategy, ) if isinstance(model, MegatronGPTPromptLearningModel): return PromptLearningModelTextGenerationStrategy(model, **args) elif isinstance(model, MegatronGPTModel): return GPTModelTextGenerationStrategy(model) elif isinstance(model, MegatronRetrievalModel): strategy_name = args['strategy'] del args['strategy'] megatron_lm_compatible = model.model.megatron_lm_compatible args['megatron_lm_compatible'] = megatron_lm_compatible if strategy_name == 'RetroModelTextGenerationStrategy': return RetroModelTextGenerationStrategy(model, **args) elif strategy_name == 'RetroQAModelTextGenerationStrategy': return RetroQAModelTextGenerationStrategy(model, **args) elif strategy_name == 'RetroFileQAModelTextGenerationStrategy': return RetroFileQAModelTextGenerationStrategy(model, **args) else: raise ValueError(f'{strategy_name} is not supported for inference') else: raise ValueError(f'{model} is not supported for inference') # Should call GPTModel or Megatron Retrieval Model's forward method
NeMo-main
nemo/collections/nlp/modules/common/text_generation_strategy.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Adopted from https://github.com/gradio-app/gradio/blob/main/gradio/components.py Fix a markdown render problem. """ from __future__ import annotations import warnings from markdown2 import Markdown try: from typing import Any, Callable, Dict, List, Literal, Tuple from gradio.components import ( Changeable, Component, Enum, EventListenerMethod, IOComponent, JSONSerializable, Selectable, document, processing_utils, ) GRADIO_AVAILABLE = True except (ImportError, ModuleNotFoundError): GRADIO_AVAILABLE = False class _Keywords(Enum): NO_VALUE = "NO_VALUE" # Used as a sentinel to determine if nothing is provided as a argument for `value` in `Component.update()` FINISHED_ITERATING = ( "FINISHED_ITERATING" # Used to skip processing of a component's value (needed for generators + state) ) @document("style") class Chatbot(Changeable, Selectable, IOComponent, JSONSerializable): """ Displays a chatbot output showing both user submitted messages and responses. Supports a subset of Markdown including bold, italics, code, and images. Preprocessing: this component does *not* accept input. Postprocessing: expects function to return a {List[Tuple[str | None | Tuple, str | None | Tuple]]}, a list of tuples with user message and response messages. Messages should be strings, tuples, or Nones. If the message is a string, it can include Markdown. If it is a tuple, it should consist of (string filepath to image/video/audio, [optional string alt text]). Messages that are `None` are not displayed. Demos: chatbot_simple, chatbot_multimodal """ def __init__( self, value: List[Tuple[str | None, str | None]] | Callable | None = None, color_map: Dict[str, str] | None = None, # Parameter moved to Chatbot.style() *, label: str | None = None, every: float | None = None, show_label: bool = True, visible: bool = True, elem_id: str | None = None, elem_classes: List[str] | str | None = None, **kwargs, ): """ Parameters: value: Default value to show in chatbot. If callable, the function will be called whenever the app loads to set the initial value of the component. label: component name in interface. every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. show_label: if True, will display label. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles. """ if color_map is not None: warnings.warn("The 'color_map' parameter has been deprecated.",) # self.md = utils.get_markdown_parser() self.md = Markdown(extras=["fenced-code-blocks", "tables", "break-on-newline"]) self.select: EventListenerMethod """ Event listener for when the user selects message from Chatbot. Uses event data gradio.SelectData to carry `value` referring to text of selected message, and `index` tuple to refer to [message, participant] index. See EventData documentation on how to use this event data. """ IOComponent.__init__( self, label=label, every=every, show_label=show_label, visible=visible, elem_id=elem_id, elem_classes=elem_classes, value=value, **kwargs, ) def get_config(self): return { "value": self.value, "selectable": self.selectable, **IOComponent.get_config(self), } @staticmethod def update( value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE, label: str | None = None, show_label: bool | None = None, visible: bool | None = None, ): updated_config = { "label": label, "show_label": show_label, "visible": visible, "value": value, "__type__": "update", } return updated_config def _process_chat_messages(self, chat_message: str | Tuple | List | Dict | None) -> str | Dict | None: if chat_message is None: return None elif isinstance(chat_message, (tuple, list)): mime_type = processing_utils.get_mimetype(chat_message[0]) return { "name": chat_message[0], "mime_type": mime_type, "alt_text": chat_message[1] if len(chat_message) > 1 else None, "data": None, # These last two fields are filled in by the frontend "is_file": True, } elif isinstance(chat_message, dict): # This happens for previously processed messages return chat_message elif isinstance(chat_message, str): # return self.md.render(chat_message) return str(self.md.convert(chat_message)) else: raise ValueError(f"Invalid message for Chatbot component: {chat_message}") def postprocess( self, y: List[Tuple[str | Tuple | List | Dict | None, str | Tuple | List | Dict | None]], ) -> List[Tuple[str | Dict | None, str | Dict | None]]: """ Parameters: y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. It can also be a tuple whose first element is a string filepath or URL to an image/video/audio, and second (optional) element is the alt text, in which case the media file is displayed. It can also be None, in which case that message is not displayed. Returns: List of tuples representing the message and response. Each message and response will be a string of HTML, or a dictionary with media information. """ if y is None: return [] processed_messages = [] for message_pair in y: assert isinstance( message_pair, (tuple, list) ), f"Expected a list of lists or list of tuples. Received: {message_pair}" assert ( len(message_pair) == 2 ), f"Expected a list of lists of length 2 or list of tuples of length 2. Received: {message_pair}" processed_messages.append( ( # '<pre style="font-family: var(--font)">' + # message_pair[0] + "</pre>", message_pair[0], self._process_chat_messages(message_pair[1]), ) ) return processed_messages def style(self, height: int | None = None, **kwargs): """ This method can be used to change the appearance of the Chatbot component. """ if height is not None: self._style["height"] = height if kwargs.get("color_map") is not None: warnings.warn("The 'color_map' parameter has been deprecated.") Component.style( self, **kwargs, ) return self
NeMo-main
nemo/collections/nlp/modules/common/chatbot_component.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re from typing import Dict, Optional import torch from nemo.core.classes import NeuralModule from nemo.core.classes.exportable import Exportable from nemo.core.neural_types import ChannelType, MaskType, NeuralType from nemo.utils import logging __all__ = ['BertModule'] class BertModule(NeuralModule, Exportable): @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "attention_mask": NeuralType(('B', 'T'), MaskType(), optional=True), "token_type_ids": NeuralType(('B', 'T'), ChannelType(), optional=True), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"last_hidden_states": NeuralType(('B', 'T', 'D'), ChannelType())} def restore_weights(self, restore_path: str): """Restores module/model's weights""" logging.info(f"Restoring weights from {restore_path}") if not os.path.exists(restore_path): logging.warning(f'Path {restore_path} not found') return pretrained_dict = torch.load(restore_path) # backward compatibility with NeMo0.11 if "state_dict" in pretrained_dict.keys(): pretrained_dict = pretrained_dict["state_dict"] # remove prefix from pretrained dict m = re.match("^bert.*?\.", list(pretrained_dict.keys())[0]) if m: prefix = m.group(0) pretrained_dict = {k[len(prefix) :]: v for k, v in pretrained_dict.items()} model_dict = self.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} # starting with transformers 3.1.0, embeddings.position_ids is added to the model's state dict and could be # missing in checkpoints trained with older transformers version if 'embeddings.position_ids' in model_dict and 'embeddings.position_ids' not in pretrained_dict: pretrained_dict['embeddings.position_ids'] = model_dict['embeddings.position_ids'] assert len(pretrained_dict) == len(model_dict) model_dict.update(pretrained_dict) self.load_state_dict(model_dict) logging.info(f"Weights for {type(self).__name__} restored from {restore_path}") def input_example(self, max_batch=1, max_dim=256): """ Generates input examples for tracing etc. Returns: A tuple of input examples. """ sample = next(self.parameters()) sz = (max_batch, max_dim) input_ids = torch.randint(low=0, high=max_dim - 1, size=sz, device=sample.device) token_type_ids = torch.randint(low=0, high=1, size=sz, device=sample.device) attention_mask = torch.randint(low=0, high=1, size=sz, device=sample.device) input_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } return tuple([input_dict])
NeMo-main
nemo/collections/nlp/modules/common/bert_module.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path from dataclasses import MISSING, dataclass from typing import Dict, List, Optional import nemo from nemo.collections.common.tokenizers.bytelevel_tokenizers import ByteLevelTokenizer from nemo.collections.common.tokenizers.char_tokenizer import CharTokenizer from nemo.collections.common.tokenizers.huggingface.auto_tokenizer import AutoTokenizer from nemo.collections.common.tokenizers.regex_tokenizer import RegExTokenizer from nemo.collections.common.tokenizers.tabular_tokenizer import TabularTokenizer from nemo.collections.common.tokenizers.word_tokenizer import WordTokenizer from nemo.collections.common.tokenizers.youtokentome_tokenizer import YouTokenToMeTokenizer from nemo.collections.nlp.modules.common.huggingface.huggingface_utils import get_huggingface_pretrained_lm_models_list from nemo.collections.nlp.modules.common.lm_utils import get_pretrained_lm_models_list from nemo.collections.nlp.parts.nlp_overrides import HAVE_MEGATRON_CORE from nemo.utils import logging try: from nemo.collections.nlp.modules.common.megatron.megatron_utils import get_megatron_tokenizer HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = ['get_tokenizer', 'get_tokenizer_list'] megatron_tokenizer_model_map = { 'BertWordPieceLowerCase': 'megatron-bert-345m-uncased', 'BertWordPieceCase': 'megatron-bert-345m-cased', 'GPT2BPETokenizer': 'megatron-gpt-345m', } def get_tokenizer_list() -> List[str]: """ Returns all all supported tokenizer names """ s = set(get_pretrained_lm_models_list()) s.update(set(get_huggingface_pretrained_lm_models_list(include_external=True))) return ["sentencepiece", "char", "word"] + list(s) @dataclass class TokenizerConfig: library: str = MISSING tokenizer_model: Optional[str] = None vocab_size: Optional[int] = None vocab_file: Optional[str] = None special_tokens: Optional[Dict[str, str]] = None bpe_dropout: Optional[float] = 0.0 coverage: Optional[float] = 0.999 training_sample_size: Optional[int] = None r2l: Optional[bool] = False sentencepiece_legacy: Optional[bool] = False def get_tokenizer( tokenizer_name: str, tokenizer_model: Optional[str] = None, vocab_file: Optional[str] = None, merges_file: Optional[str] = None, special_tokens: Optional[Dict[str, str]] = None, use_fast: Optional[bool] = False, bpe_dropout: Optional[float] = 0.0, ): """ Args: tokenizer_name: sentencepiece or pretrained model from the hugging face list, for example: bert-base-cased To see the list of all HuggingFace pretrained models, use: nemo_nlp.modules.common.get_huggingface_pretrained_lm_models_list() tokenizer_model: tokenizer model file of sentencepiece or youtokentome special_tokens: dict of special tokens vocab_file: path to vocab file use_fast: (only for HuggingFace AutoTokenizer) set to True to use fast HuggingFace tokenizer bpe_dropout: (only supported by YTTM tokenizer) BPE dropout tries to corrupt the standard segmentation procedure of BPE to help model better learn word compositionality and become robust to segmentation errors. It has emperically been shown to improve inference time BLEU scores. """ if special_tokens is None: special_tokens_dict = {} else: special_tokens_dict = special_tokens if 'megatron' in tokenizer_name: if not HAVE_MEGATRON_CORE: raise ImportError( "Megatron-core was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) if vocab_file is None: vocab_file = nemo.collections.nlp.modules.common.megatron.megatron_utils.get_megatron_vocab_file( tokenizer_name ) merges_file = nemo.collections.nlp.modules.common.megatron.megatron_utils.get_megatron_merges_file( tokenizer_name ) tokenizer_name = get_megatron_tokenizer(tokenizer_name) if tokenizer_name == 'sentencepiece': return nemo.collections.common.tokenizers.sentencepiece_tokenizer.SentencePieceTokenizer( model_path=tokenizer_model, special_tokens=special_tokens, legacy=True ) elif tokenizer_name == 'yttm': return YouTokenToMeTokenizer(model_path=tokenizer_model, bpe_dropout=bpe_dropout) elif tokenizer_name == 'word': return WordTokenizer(vocab_file=vocab_file, **special_tokens_dict) elif tokenizer_name == 'char': return CharTokenizer(vocab_file=vocab_file, **special_tokens_dict) elif tokenizer_name == 'regex': return RegExTokenizer().load_tokenizer(regex_file=tokenizer_model, vocab_file=vocab_file) logging.info( f"Getting HuggingFace AutoTokenizer with pretrained_model_name: {tokenizer_name}, vocab_file: {vocab_file}, merges_files: {merges_file}, " f"special_tokens_dict: {special_tokens_dict}, and use_fast: {use_fast}" ) return AutoTokenizer( pretrained_model_name=tokenizer_name, vocab_file=vocab_file, merges_file=merges_file, **special_tokens_dict, use_fast=use_fast, ) def get_nmt_tokenizer( library: str = 'yttm', model_name: Optional[str] = None, tokenizer_model: Optional[str] = None, vocab_file: Optional[str] = None, merges_file: Optional[str] = None, special_tokens: Optional[Dict[str, str]] = None, use_fast: Optional[bool] = False, bpe_dropout: Optional[float] = 0.0, r2l: Optional[bool] = False, legacy: Optional[bool] = False, delimiter: Optional[str] = None, ): """ Args: model_name: if using a pretrained model from NeMo, HuggingFace, or Megatron tokenizer_model: tokenizer model file of sentencepiece or youtokentome special_tokens: dict of special tokens vocab_file: path to vocab file use_fast: (only for HuggingFace AutoTokenizer) set to True to use fast HuggingFace tokenizer bpe_dropout: (only supported by YTTM tokenizer) BPE dropout tries to corrupt the standard segmentation procedure of BPE to help model better learn word compositionality and become robust to segmentation errors. It has empirically been shown to improve inference time BLEU scores. r2l: Whether to return subword IDs from right to left """ if special_tokens is None: special_tokens_dict = {} else: special_tokens_dict = special_tokens if (library != 'byte-level') and ( model_name is None and (tokenizer_model is None or not os.path.isfile(tokenizer_model)) ): raise ValueError("No Tokenizer path provided or file does not exist!") if library == 'yttm': logging.info(f'Getting YouTokenToMeTokenizer with model: {tokenizer_model} with r2l: {r2l}.') return YouTokenToMeTokenizer(model_path=tokenizer_model, bpe_dropout=bpe_dropout, r2l=r2l) elif library == 'huggingface': logging.info(f'Getting HuggingFace AutoTokenizer with pretrained_model_name: {model_name}') return AutoTokenizer( pretrained_model_name=model_name, vocab_file=vocab_file, merges_file=merges_file, **special_tokens_dict, use_fast=use_fast, ) elif library == 'sentencepiece': logging.info(f'Getting SentencePiece with model: {tokenizer_model}') return nemo.collections.common.tokenizers.sentencepiece_tokenizer.SentencePieceTokenizer( model_path=tokenizer_model, legacy=legacy ) elif library == 'byte-level': logging.info(f'Using byte-level tokenization') return ByteLevelTokenizer(special_tokens_dict) elif library == 'regex': logging.info(f'Using regex tokenization') return RegExTokenizer().load_tokenizer(regex_file=tokenizer_model, vocab_file=vocab_file) elif library == 'megatron': if model_name in megatron_tokenizer_model_map: model_name = megatron_tokenizer_model_map[model_name] logging.info( f'Getting Megatron tokenizer for pretrained model name: {model_name}, custom vocab file: {vocab_file}, and merges file: {merges_file}' ) return get_tokenizer(tokenizer_name=model_name, vocab_file=vocab_file, merges_file=merges_file) elif library == 'tabular': return TabularTokenizer(vocab_file, delimiter=delimiter) else: raise NotImplementedError( 'Currently we only support "yttm", "huggingface", "sentencepiece", "megatron", and "byte-level" tokenizer' 'libraries.' )
NeMo-main
nemo/collections/nlp/modules/common/tokenizer_utils.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from typing import Any, Dict, Optional from nemo.core.classes import NeuralModule from nemo.core.neural_types import ChannelType, EncodedRepresentation, MaskType, NeuralType __all__ = ['DecoderModule'] class DecoderModule(NeuralModule, ABC): """ Base class for decoder neural module to be used in NLP models. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "decoder_mask": NeuralType(('B', 'T'), MaskType(), optional=True), "encoder_embeddings": NeuralType(('B', 'T', 'D'), ChannelType(), optional=True), "encoder_mask": NeuralType(('B', 'T'), MaskType(), optional=True), "decoder_mems": NeuralType(('B', 'D', 'T', 'D'), EncodedRepresentation(), optional=True), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"last_hidden_states": NeuralType(('B', 'T', 'D'), ChannelType())} @property def hidden_size(self) -> Optional[int]: raise NotImplementedError @property def vocab_size(self) -> Optional[int]: raise NotImplementedError @property def embedding(self) -> Optional[Any]: raise NotImplementedError @property def decoder(self) -> Optional[Any]: raise NotImplementedError @property def max_sequence_length(self) -> Optional[int]: raise NotImplementedError
NeMo-main
nemo/collections/nlp/modules/common/decoder_module.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.modules.common.bert_module import BertModule from nemo.collections.nlp.modules.common.huggingface import ( AlbertEncoder, BertEncoder, CamembertEncoder, DistilBertEncoder, RobertaEncoder, ) from nemo.collections.nlp.modules.common.lm_utils import get_lm_model, get_pretrained_lm_models_list from nemo.collections.nlp.modules.common.prompt_encoder import PromptEncoder, PromptEncoderType from nemo.collections.nlp.modules.common.prompt_table import ( VirtualPromptPlaceholderToken, VirtualPromptSource, VirtualPromptStyle, ) from nemo.collections.nlp.modules.common.sequence_classifier import SequenceClassifier from nemo.collections.nlp.modules.common.sequence_regression import SequenceRegression from nemo.collections.nlp.modules.common.sequence_token_classifier import SequenceTokenClassifier from nemo.collections.nlp.modules.common.token_classifier import BertPretrainingTokenClassifier, TokenClassifier from nemo.collections.nlp.modules.common.tokenizer_utils import get_tokenizer, get_tokenizer_list
NeMo-main
nemo/collections/nlp/modules/common/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for generating text.""" import json import threading import torch from flask import Flask, jsonify, request from flask_restful import Api, Resource from nemo.collections.nlp.modules.common.retro_inference_strategies import ( RetroModelTextGenerationStrategy, RetroQAModelTextGenerationStrategy, ) from nemo.collections.nlp.modules.common.text_generation_utils import generate from nemo.utils import logging GENERATE_NUM = 0 lock = threading.Lock() API_ALLOWED_KEYS = set( [ 'all_probs', 'sentences', "task_ids", "tokens_to_generate", "temperature", "add_BOS", "greedy", "top_k", "top_p", "neighbors", "repetition_penalty", "min_tokens_to_generate", "end_strings", ] ) class MegatronGenerate(Resource): def __init__(self, model, inference_strategy=None): self.model = model self.inference_strategy = inference_strategy @staticmethod def send_do_generate(): choice = torch.cuda.LongTensor([GENERATE_NUM]) torch.distributed.broadcast(choice, 0) def put(self): logging.info("request IP: " + str(request.remote_addr)) logging.info(json.dumps(request.get_json())) # check keys for key in request.get_json().keys(): if key not in API_ALLOWED_KEYS: logging.error(f"The request key {key} is not allowed") sentences = request.get_json()["sentences"] if isinstance(sentences, tuple): # Input can be text or tensor if len(sentences[0]) != len(sentences[1]) or sentences[0] > 128: return "Maximum number of sentences is 128", 400 elif len(sentences) > 128: return "Maximum number of sentences is 128", 400 task_ids = None # Used for ptuned/prompt tuned models only if "task_ids" in request.get_json(): task_ids = request.get_json()["task_ids"] if not isinstance(sentences, tuple): return "Input at 'sentences' must by a tuple of two tensors like:\ (context_tokens_tensor, context_length_tensor) if task ids are given" if len(task_ids) != len(sentences[0]): return "Each sentence must have a corresponding task id for p-tuned/prompt-tuned models" tokens_to_generate = 64 # Choosing hopefully sane default. Full sequence is slow if "tokens_to_generate" in request.get_json(): tokens_to_generate = request.get_json()["tokens_to_generate"] if not isinstance(tokens_to_generate, int): return "tokens_to_generate must be an integer greater than 0" if tokens_to_generate < 1: return "tokens_to_generate must be an integer greater than 0" all_probs = False if "all_probs" in request.get_json(): all_probs = request.get_json()["all_probs"] if not isinstance(all_probs, bool): return "all_probs must be a boolean value" temperature = 1.0 if "temperature" in request.get_json(): temperature = request.get_json()["temperature"] if not (type(temperature) == int or type(temperature) == float): return "temperature must be a positive number less than or equal to 100.0" if not (0.0 < temperature <= 100.0): return "temperature must be a positive number less than or equal to 100.0" add_BOS = False if "add_BOS" in request.get_json(): add_BOS = request.get_json()["add_BOS"] if not isinstance(add_BOS, bool): return "add_BOS must be a boolean value" greedy = False if "greedy" in request.get_json(): greedy = request.get_json()["greedy"] if not isinstance(greedy, bool): return "greedy must be a boolean value" top_k = 0 if "top_k" in request.get_json(): top_k = request.get_json()["top_k"] if not (type(top_k) == int or type(top_k) == float): return "top_k must be a positive integer number" if not (0 <= top_k): return "top_k must be a positive integer number" top_p = 0.9 if "top_p" in request.get_json(): top_p = request.get_json()["top_p"] if not (type(top_p) == int or type(top_p) == float): return "top_p must be a positive number less than or equal to 1.0" if not (0.0 <= top_p <= 1.0): return "top_p must be a positive number less than or equal to 1.0" repetition_penalty = 1.2 if "repetition_penalty" in request.get_json(): repetition_penalty = request.get_json()["repetition_penalty"] if not (type(repetition_penalty) == int or type(repetition_penalty) == float): return "repetition_penalty must be a positive number no less than 1.0" if not (1.0 <= repetition_penalty): return "repetition_penalty must be a positive number no less than 1.0" end_strings = ['<|endoftext|>'] if 'end_strings' in request.get_json(): end_strings = request.get_json()['end_strings'] if not isinstance(end_strings, list): return "expect end_strings to be a list of strings" if not all([isinstance(s, str) for s in end_strings]): return "expect end_strings to be a list of strings" min_tokens_to_generate = 0 if "min_tokens_to_generate" in request.get_json(): min_tokens_to_generate = request.get_json()["min_tokens_to_generate"] if not isinstance(min_tokens_to_generate, int): return "min_tokens_to_generate must be an integer no less than 0" if min_tokens_to_generate < 0: return "min_tokens_to_generate must be an integer no less than 0" neighbors = None if "neighbors" in request.get_json(): neighbors = request.get_json()["neighbors"] if not isinstance(neighbors, int): return "num of neighbors must be an integer no less than 0" if neighbors < 0: return "num of neighbors must be an integer no less than 0" with lock: # Need to get lock to keep multiple threads from hitting code MegatronGenerate.send_do_generate() # Tell other ranks we're doing generate extra = {} if task_ids is not None: extra['task_ids'] = task_ids if self.inference_strategy is not None: extra['strategy'] = self.inference_strategy # RETRO specific arguments if isinstance( self.inference_strategy, (RetroModelTextGenerationStrategy, RetroQAModelTextGenerationStrategy) ): if neighbors is not None: self.inference_strategy.update_neighbors(neighbors) output = generate( self.model, sentences, tokens_to_generate, all_probs, temperature, add_BOS, top_k, top_p, greedy, repetition_penalty, end_strings=end_strings, min_tokens_to_generate=min_tokens_to_generate, **extra, ) for k in output: if isinstance(output[k], torch.Tensor): output[k] = output[k].tolist() if not all_probs: del output['full_logprob'] if self.inference_strategy is not None: if isinstance( self.inference_strategy, (RetroModelTextGenerationStrategy, RetroQAModelTextGenerationStrategy) ): retrieved_doc = self.inference_strategy.retrieved_text output['retrieved'] = retrieved_doc return jsonify(output) class MegatronServer(object): def __init__(self, model, inference_strategy=None): self.app = Flask(__name__, static_url_path='') api = Api(self.app) api.add_resource(MegatronGenerate, '/generate', resource_class_args=[model, inference_strategy]) def run(self, url, port=5000): self.app.run(url, threaded=True, port=port, debug=False)
NeMo-main
nemo/collections/nlp/modules/common/text_generation_server.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from typing import Dict, Optional from nemo.core.classes import NeuralModule from nemo.core.neural_types import ChannelType, MaskType, NeuralType __all__ = ['EncoderModule'] class EncoderModule(NeuralModule, ABC): """ Base class for encoder neural module to be used in NLP models. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "encoder_mask": NeuralType(('B', 'T'), MaskType()), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"last_hidden_states": NeuralType(('B', 'T', 'D'), ChannelType())} @property def hidden_size(self) -> Optional[int]: raise NotImplementedError
NeMo-main
nemo/collections/nlp/modules/common/encoder_module.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pickle from typing import List, Tuple import numpy as np import torch import torch.distributed as dist from nemo.collections.nlp.modules.common.lm_utils import pad_batch from nemo.collections.nlp.modules.common.megatron.retrieval_services.retrieval_service import ComboRetrievalService from nemo.collections.nlp.modules.common.text_generation_strategy import TextGenerationStrategy class RetroModelTextGenerationStrategy(TextGenerationStrategy): def __init__(self, model, **args): super().__init__(model) self.forward_model = self.model.model self.frequent_query = args['frequent_query'] self.pad_token_for_retrieval = args['pad_tokens'] self.store_retrieved = args['store_retrieved'] self.store = dist.FileStore('/tmp/filestore_eval', -1) self.store.set('neighbors', str(args['neighbors'])) self.megatron_lm_compatible = args['megatron_lm_compatible'] combo_cfg = args['combo_service'] self.service = ComboRetrievalService( tokenizer=self.model.tokenizer, service_ip=combo_cfg['service_ip'], service_port=combo_cfg['service_port'] ) self.retrieved = [] self.retrieved_text = [] self.chunk_size = self.model.cfg.chunk_size def update_neighbors(self, neighbors): # dynamically change the number of neighbors during the query self.store.set('neighbors', str(neighbors)) @property def neighbors(self): return int(self.store.get('neighbors')) def tokenize_batch(self, sentences, max_len, add_BOS): """ convert the sentences into lists of tokens, pad them to the same length, add bos tokens if it is needed Args: sentences (List[str]): list of input sentences in str format. max_len (int): max number of tokens to generate. add_BOS (bool): whether to add the BOS token at the beginning Returns: Tuple[torch.Tensor], the tokenized and padded torch tensor and the token context length tensor. """ tokenizer = self.model.tokenizer if add_BOS: context_tokens = [[tokenizer.bos_id] + tokenizer.text_to_ids(s) for s in sentences] else: context_tokens = [tokenizer.text_to_ids(s) for s in sentences] if self.pad_token_for_retrieval: padded = [] for line in context_tokens: if len(line) < self.chunk_size: pad_len = self.chunk_size - len(line) if self.megatron_lm_compatible: # megatron lm use eos to pad padded.append([tokenizer.eos_id] * pad_len + line) else: padded.append([tokenizer.pad_id] * pad_len + line) else: padded.append(line) context_tokens = padded context_tokens, context_lengths = pad_batch(context_tokens, tokenizer.eos_id, max_len) context_tokens_tensor = torch.cuda.LongTensor(context_tokens) context_length_tensor = torch.cuda.LongTensor(context_lengths) return context_tokens_tensor, context_length_tensor def tokenize_batch_with_context_and_completion(self, sentences, max_len, add_BOS): """ convert the sentences into lists of tokens, pad them to the same length, add bos tokens if it is needed Args: sentences (List[str]): list of input sentences in str format. max_len (int): max number of tokens to generate. add_BOS (bool): whether to add the BOS token at the beginning Returns: Tuple[torch.Tensor], the tokenized and padded torch tensor and the token context length tensor. """ tokenizer = self.model.tokenizer if add_BOS: context_tokens = [ [[tokenizer.bos_id] + tokenizer.text_to_ids(s[0]), tokenizer.text_to_ids(s[1])] for s in sentences ] else: context_tokens = [[tokenizer.text_to_ids(s[0]), tokenizer.text_to_ids(s[1])] for s in sentences] if self.pad_token_for_retrieval: padded = [] for line in context_tokens: if len(line[0]) < self.chunk_size: pad_len = self.chunk_size - len(line[0]) if self.megatron_lm_compatible: # megatron lm use eos to pad padded.append([tokenizer.eos_id] * pad_len + line[0] + line[1]) else: padded.append([tokenizer.pad_id] * pad_len + line[0] + line[1]) else: padded.append(line[0] + line[1]) context_tokens = padded context_tokens, context_lengths = pad_batch(context_tokens, tokenizer.eos_id, max_len) context_tokens_tensor = torch.cuda.LongTensor(context_tokens) context_length_tensor = torch.cuda.LongTensor(context_lengths) return context_tokens_tensor, context_length_tensor def clip_max_len(self, maxlen: int) -> int: """ clip the max len based on the LM model max sequence length""" if maxlen > self.model.cfg.encoder_seq_length + 1: maxlen = self.model.cfg.encoder_seq_length + 1 return maxlen def _store_retrieved(self, tokens, neighbors): tokenizer = self.model.tokenizer for batch_id in range(len(tokens)): item = {} query_text = tokenizer.ids_to_text(tokens[batch_id]) item['query'] = query_text item['neighbors'] = [] for context_id in range(len(neighbors[batch_id])): neighbor_text = tokenizer.ids_to_text(neighbors[batch_id][context_id]) item['neighbors'].append(neighbor_text) self.retrieved_text.append(item) def init_batch(self, context_tokens: torch.Tensor, context_length: int): self.retrieved = [] self.retrieved_text = [] """initialize the batch data before the inference steps.""" # Move to GPU. tokenizer = self.model.tokenizer tokens = context_tokens.contiguous().cuda() micro_batch_size, seq_length = tokens.size() position_ids = torch.arange(seq_length, dtype=torch.long, device=tokens.device) self.position_ids = position_ids.unsqueeze(0).repeat(micro_batch_size, 1) if self.megatron_lm_compatible: # all TRUE for megatron lm, there is no attention mask self.attention_mask = torch.ones_like(tokens, dtype=torch.bool) else: self.attention_mask = tokens != tokenizer.pad_id for i in range(0, context_length, 64): if i > 0: tokens = context_tokens[:, i - 64 : i] chunks = self.service.get_knn(tokens, self.neighbors) if self.store_retrieved: self._store_retrieved(tokens, chunks) self.retrieved.append(chunks) def prepare_batch_at_step( self, tokens: torch.Tensor, maxlen: int, micro_batch_size: int, step: int, context_length: int ) -> Tuple[List[torch.Tensor], List[int]]: tokenizer = self.model.tokenizer if context_length % 64 == 0: # added a new retrieval context token_context = tokens[:, context_length - 64 : context_length] chunks = self.service.get_knn(token_context, self.neighbors) if self.store_retrieved: self._store_retrieved(token_context, chunks) self.retrieved.append(chunks) elif self.frequent_query and len(self.retrieved) > 0: token_context = tokens[:, context_length - 64 : context_length] chunks = self.service.get_knn(token_context, self.neighbors) if self.store_retrieved: self._store_retrieved(token_context, chunks) self.retrieved[-1] = chunks # types2use = None if step == 0: # Allocate memory for the entire context. set_inference_key_value_memory = True tokens2use = tokens[:, :context_length] positions2use = self.position_ids[:, :context_length] # not using type2use. uncomment it if it is used # if type_ids is not None: # types2use = type_ids[:, :context_length] else: # Set this to false so the memory is not reallocated. set_inference_key_value_memory = False tokens2use = tokens[:, context_length - 1].view(micro_batch_size, -1) positions2use = self.position_ids[:, context_length - 1].view(micro_batch_size, -1) # not using type2use. uncomment it if it is used # if type_ids is not None: # types2use = type_ids[:, context_length - 1].view(batch_size, -1) retrieved = torch.tensor(np.array(self.retrieved), device=torch.cuda.current_device()) if retrieved.numel() != 0: retrieved = retrieved.transpose(0, 1).contiguous() if self.megatron_lm_compatible: # all TRUE for megatron lm, there is no attention mask retrieved_mask = torch.ones_like(retrieved, dtype=torch.bool) else: retrieved_mask = retrieved != tokenizer.pad_id if retrieved.numel() == 0: # add empty retrieved retrieved = ( torch.tensor(self.service.get_knn(['a'], 0), device=torch.cuda.current_device()) .unsqueeze(0) .repeat(1, len(self.retrieved), 1, 1) ) retrieved_mask = retrieved != tokenizer.pad_id # retrieved = torch.tensor([-1] * micro_batch_size) # retrieved_mask = torch.tensor([-1] * micro_batch_size) """Prepare batch for each of the inference steps""" # attention_mask_repeat = torch.concat([self.attention_mask for _ in range(micro_batch_size)]) setkey_value_array = torch.tensor( [set_inference_key_value_memory] * micro_batch_size, device=torch.cuda.current_device() ) len_array = torch.tensor([maxlen] * micro_batch_size, device=torch.cuda.current_device()) if self.neighbors == 0: # no retrieval, use 1 padding neighbors_array = torch.tensor([1] * micro_batch_size, device=torch.cuda.current_device()) else: neighbors_array = torch.tensor([self.neighbors] * micro_batch_size, device=torch.cuda.current_device()) batch = [ tokens2use, self.attention_mask[:, :context_length], retrieved, retrieved_mask, setkey_value_array, len_array, neighbors_array, positions2use, ] tensor_shape = [tokens2use.shape[1], micro_batch_size, self.model.cfg.hidden_size] return batch, tensor_shape class RetroQAModelTextGenerationStrategy(RetroModelTextGenerationStrategy): def tokenize_batch(self, questions, max_len, add_BOS): """ convert the sentences into lists of tokens, pad them to the same length, add bos tokens if it is needed Args: questions (List[str]): list of input questions in str format. max_len (int): max number of tokens to generate. add_BOS (bool): whether to add the BOS token at the beginning Returns: Tuple[torch.Tensor], the tokenized and padded torch tensor and the token context length tensor. """ tokenizer = self.model.tokenizer all_lookups = self.service.get_knn(questions, 1 + self.neighbors) # hack to add "source: " tag prepend_ids = np.array(tokenizer.text_to_ids('source: ')) all_lookups = np.pad(all_lookups, ((0, 0), (0, 0), (len(prepend_ids), 0))) all_lookups[:, :, : len(prepend_ids)] = prepend_ids all_lookups = all_lookups[:, :, : -len(prepend_ids)] reuse_neighbors = all_lookups[:, 1:] self.store.set('reuse_neighbors', pickle.dumps(reuse_neighbors)) neighbor_tokens = [neighbors[0].tolist() for neighbors in all_lookups] # combine question and context context_tokens = [ n + tokenizer.text_to_ids('\nquestion: ' + q + ' \nanswer:') for n, q in zip(neighbor_tokens, questions) ] if add_BOS: context_tokens = [[tokenizer.bos_id] + s for s in context_tokens] if self.pad_token_for_retrieval: padded = [] for line in context_tokens: pad_len = (self.chunk_size - len(line) % self.chunk_size) % self.chunk_size if self.megatron_lm_compatible: padded.append([tokenizer.eos_id] * pad_len + line) else: padded.append([tokenizer.pad_id] * pad_len + line) context_tokens = padded context_tokens, context_lengths = pad_batch(context_tokens, tokenizer.eos_id, max_len) context_tokens_tensor = torch.cuda.LongTensor(context_tokens) context_length_tensor = torch.cuda.LongTensor(context_lengths) return context_tokens_tensor, context_length_tensor def init_batch(self, context_tokens: torch.Tensor, context_length: int): self.retrieved = [] self.retrieved_text = [] self.reuse_neighbors = pickle.loads(self.store.get('reuse_neighbors')) """initialize the batch data before the inference steps.""" # Move to GPU. tokenizer = self.model.tokenizer tokens = context_tokens.contiguous().cuda() micro_batch_size, seq_length = tokens.size() position_ids = torch.arange(seq_length, dtype=torch.long, device=tokens.device) self.position_ids = position_ids.unsqueeze(0).repeat(micro_batch_size, 1) if self.megatron_lm_compatible: # all TRUE for megatron lm, there is no attention mask self.attention_mask = torch.ones_like(tokens, dtype=torch.bool) else: self.attention_mask = tokens != tokenizer.pad_id for i in range(0, context_length, 64): if i > 0: tokens = context_tokens[:, i - 64 : i] chunks = self.reuse_neighbors if self.store_retrieved: self._store_retrieved(tokens, chunks) self.retrieved.append(chunks) def prepare_batch_at_step( self, tokens: torch.Tensor, maxlen: int, micro_batch_size: int, step: int, context_length: int ) -> Tuple[List[torch.Tensor], List[int]]: tokenizer = self.model.tokenizer if context_length % 64 == 0: # added a new retrieval context token_context = tokens[:, context_length - 64 : context_length] chunks = self.reuse_neighbors if self.store_retrieved: self._store_retrieved(token_context, chunks) self.retrieved.append(chunks) elif self.frequent_query and len(self.retrieved) > 0: token_context = tokens[:, context_length - 64 : context_length] chunks = self.reuse_neighbors if self.store_retrieved: self._store_retrieved(token_context, chunks) self.retrieved[-1] = chunks # types2use = None if step == 0: # Allocate memory for the entire context. set_inference_key_value_memory = True tokens2use = tokens[:, :context_length] positions2use = self.position_ids[:, :context_length] # not using type2use. uncomment it if it is used # if type_ids is not None: # types2use = type_ids[:, :context_length] else: # Set this to false so the memory is not reallocated. set_inference_key_value_memory = False tokens2use = tokens[:, context_length - 1].view(micro_batch_size, -1) positions2use = self.position_ids[:, context_length - 1].view(micro_batch_size, -1) # not using type2use. uncomment it if it is used # if type_ids is not None: # types2use = type_ids[:, context_length - 1].view(batch_size, -1) retrieved = torch.tensor(np.array(self.retrieved), device=torch.cuda.current_device()) if retrieved.numel() != 0: retrieved = retrieved.transpose(0, 1).contiguous() if self.megatron_lm_compatible: # all TRUE for megatron lm, there is no attention mask retrieved_mask = torch.ones_like(retrieved, dtype=torch.bool) else: retrieved_mask = retrieved != tokenizer.pad_id if retrieved.numel() == 0: # add empty retrieved retrieved = ( torch.tensor(self.service.get_knn(['a'], 0), device=torch.cuda.current_device()) .unsqueeze(0) .repeat(1, len(self.retrieved), 1, 1) ) retrieved_mask = retrieved != tokenizer.pad_id """Prepare batch for each of the inference steps""" # attention_mask_repeat = torch.concat([self.attention_mask for _ in range(micro_batch_size)]) setkey_value_array = torch.tensor( [set_inference_key_value_memory] * micro_batch_size, device=torch.cuda.current_device() ) len_array = torch.tensor([maxlen] * micro_batch_size, device=torch.cuda.current_device()) if self.neighbors == 0: # no retrieval, use 1 padding neighbors_array = torch.tensor([1] * micro_batch_size, device=torch.cuda.current_device()) else: neighbors_array = torch.tensor([self.neighbors] * micro_batch_size, device=torch.cuda.current_device()) batch = [ tokens2use, self.attention_mask[:, :context_length], retrieved, retrieved_mask, setkey_value_array, len_array, neighbors_array, positions2use, ] tensor_shape = [tokens2use.shape[1], micro_batch_size, self.model.cfg.hidden_size] return batch, tensor_shape def post_generation_process(self, output): sentences = output['sentences'] modified = [] for sentence in sentences: sentence = 'answer:' + sentence.split(' \nanswer:')[1] modified.append(sentence) output['sentences'] = modified return output class RetroFileQAModelTextGenerationStrategy(RetroQAModelTextGenerationStrategy): def __init__(self, model, **args): super().__init__(model, **args) # load the DPR to memory self.context_db = {} with open('/dataset/FiD/test.jsonl_title', 'r') as f: for line in f: obj = json.loads(line) self.context_db[obj['question']] = obj def tokenize_batch(self, questions, max_len, add_BOS): """ convert the sentences into lists of tokens, pad them to the same length, add bos tokens if it is needed Args: questions (List[str]): list of input questions in str format. max_len (int): max number of tokens to generate. add_BOS (bool): whether to add the BOS token at the beginning Returns: Tuple[torch.Tensor], the tokenized and padded torch tensor and the token context length tensor. """ tokenizer = self.model.tokenizer # get context from memory chunks = [] first_context = [] for question in questions: hash_code = question if hash_code not in self.context_db: raise ValueError(f"wrong question is fed: {question}") contexts = self.context_db[hash_code]['ctxs'] for i, neighbor in enumerate(contexts[: self.neighbors + 1]): text = "title: " + neighbor["title"] + ", source: " + neighbor["text"] if i == 0: first_context.append(text) tokens = tokenizer.text_to_ids(text) tokens = tokens[:128] if len(tokens) < 128: tokens = tokens + [tokenizer.eos_id] * (128 - len(tokens)) chunks.append(tokens) all_lookups = np.array(chunks).reshape(1, self.neighbors + 1, -1).astype(np.int64) reuse_neighbors = all_lookups[:, 1:] self.store.set('reuse_neighbors', pickle.dumps(reuse_neighbors)) # combine question and context context_tokens = [ tokenizer.text_to_ids(n + '\nquestion: ' + q + ' \nanswer:') for n, q in zip(first_context, questions) ] if add_BOS: context_tokens = [[tokenizer.bos_id] + s for s in context_tokens] if self.pad_token_for_retrieval: padded = [] for line in context_tokens: pad_len = (self.chunk_size - len(line) % self.chunk_size) % self.chunk_size padded.append([tokenizer.eos_id] * pad_len + line) context_tokens = padded context_tokens, context_lengths = pad_batch(context_tokens, tokenizer.eos_id, max_len) context_tokens_tensor = torch.cuda.LongTensor(context_tokens) context_length_tensor = torch.cuda.LongTensor(context_lengths) return context_tokens_tensor, context_length_tensor
NeMo-main
nemo/collections/nlp/modules/common/retro_inference_strategies.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional from nemo.collections.common.parts import MultiLayerPerceptron from nemo.collections.nlp.modules.common.classifier import Classifier from nemo.core.classes import typecheck from nemo.core.neural_types import LogitsType, NeuralType __all__ = ['SequenceTokenClassifier'] class SequenceTokenClassifier(Classifier): @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return { "intent_logits": NeuralType(('B', 'D'), LogitsType()), "slot_logits": NeuralType(('B', 'T', 'D'), LogitsType()), } def __init__( self, hidden_size: int, num_intents: int, num_slots: int, num_layers: int = 2, activation: str = 'relu', log_softmax: bool = False, dropout: float = 0.0, use_transformer_init: bool = True, ): """ Initializes the SequenceTokenClassifier module, could be used for tasks that train sequence and token classifiers jointly, for example, for intent detection and slot tagging task. Args: hidden_size: hidden size of the mlp head on the top of the encoder num_intents: number of the intents to predict num_slots: number of the slots to predict num_layers: number of the linear layers of the mlp head on the top of the encoder activation: type of activations between layers of the mlp head log_softmax: applies the log softmax on the output dropout: the dropout used for the mlp head use_transformer_init: initializes the weights with the same approach used in Transformer """ super().__init__(hidden_size=hidden_size, dropout=dropout) self.intent_mlp = MultiLayerPerceptron( hidden_size=hidden_size, num_classes=num_intents, num_layers=num_layers, activation=activation, log_softmax=log_softmax, ) self.slot_mlp = MultiLayerPerceptron( hidden_size=hidden_size, num_classes=num_slots, num_layers=num_layers, activation=activation, log_softmax=log_softmax, ) self.post_init(use_transformer_init=use_transformer_init) @typecheck() def forward(self, hidden_states): hidden_states = self.dropout(hidden_states) # intent is classified by first hidden position intent_logits = self.intent_mlp(hidden_states[:, 0]) slot_logits = self.slot_mlp(hidden_states) return intent_logits, slot_logits
NeMo-main
nemo/collections/nlp/modules/common/sequence_token_classifier.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. CSS = """ #chatbot .hll { background-color: #ffffcc } #chatbot .c { color: #408080; font-style: italic } #chatbot .err { border: 1px solid #FF0000 } #chatbot .k { color: #008000; font-weight: bold } #chatbot .o { color: #666666 } #chatbot .ch { color: #408080; font-style: italic } #chatbot .cm { color: #408080; font-style: italic } #chatbot .cp { color: #BC7A00 } #chatbot .cpf { color: #408080; font-style: italic } #chatbot .c1 { color: #408080; font-style: italic } #chatbot .cs { color: #408080; font-style: italic } #chatbot .gd { color: #A00000 } #chatbot .ge { font-style: italic } #chatbot .gr { color: #FF0000 } #chatbot .gh { color: #000080; font-weight: bold } #chatbot .gi { color: #00A000 } #chatbot .go { color: #888888 } #chatbot .gp { color: #000080; font-weight: bold } #chatbot .gs { font-weight: bold } #chatbot .gu { color: #800080; font-weight: bold } #chatbot .gt { color: #0044DD } #chatbot .kc { color: #008000; font-weight: bold } #chatbot .kd { color: #008000; font-weight: bold } #chatbot .kn { color: #008000; font-weight: bold } #chatbot .kp { color: #008000 } #chatbot .kr { color: #008000; font-weight: bold } #chatbot .kt { color: #B00040 } #chatbot .m { color: #666666 } #chatbot .s { color: #BA2121 } #chatbot .na { color: #7D9029 } #chatbot .nb { color: #008000 } #chatbot .nc { color: #0000FF; font-weight: bold } #chatbot .no { color: #880000 } #chatbot .nd { color: #AA22FF } #chatbot .ni { color: #999999; font-weight: bold } #chatbot .ne { color: #D2413A; font-weight: bold } #chatbot .nf { color: #0000FF } #chatbot .nl { color: #A0A000 } #chatbot .nn { color: #0000FF; font-weight: bold } #chatbot .nt { color: #008000; font-weight: bold } #chatbot .nv { color: #19177C } #chatbot .ow { color: #AA22FF; font-weight: bold } #chatbot .w { color: #bbbbbb } #chatbot .mb { color: #666666 } #chatbot .mf { color: #666666 } #chatbot .mh { color: #666666 } #chatbot .mi { color: #666666 } #chatbot .mo { color: #666666 } #chatbot .sa { color: #BA2121 } #chatbot .sb { color: #BA2121 } #chatbot .sc { color: #BA2121 } #chatbot .dl { color: #BA2121 } #chatbot .sd { color: #BA2121; font-style: italic } #chatbot .s2 { color: #BA2121 } #chatbot .se { color: #BB6622; font-weight: bold } #chatbot .sh { color: #BA2121 } #chatbot .si { color: #BB6688; font-weight: bold } #chatbot .sx { color: #008000 } #chatbot .sr { color: #BB6688 } #chatbot .s1 { color: #BA2121 } #chatbot .ss { color: #19177C } #chatbot .bp { color: #008000 } #chatbot .fm { color: #0000FF } #chatbot .vc { color: #19177C } #chatbot .vg { color: #19177C } #chatbot .vi { color: #19177C } #chatbot .vm { color: #19177C } #chatbot .il { color: #666666 } """
NeMo-main
nemo/collections/nlp/modules/common/chat_css.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import enum from typing import Dict, Optional import torch import torch.nn.init as init from torch import nn from nemo.collections.nlp.modules.common.megatron.fused_bias_gelu import fused_bias_gelu from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults, init_method_normal from nemo.core.classes import Exportable, NeuralModule from nemo.core.classes.common import typecheck try: from megatron.core import ModelParallelConfig, tensor_parallel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False __all__ = ["PromptEncoder", "PromptEncoderType"] class PromptEncoderType(enum.Enum): TPMLP = "tpmlp" # mlp model that support tensor parallel, better work together with a large language model MLP = "mlp" LSTM = "lstm" EMBEDDING = "embedding" class PromptEmbedding(NeuralModule, Exportable): """Prompt embeddings Arugments: init_from_prompt_text: Whether to intialize prompt embeddings from from certain lm embeddings corresponding to a prompt string hidden_size: hidden size should match lm embedding size total_virtual_tokens: length of prompt initalized from torch init method """ def __init__( self, hidden_size, total_virtual_tokens, ): super().__init__() self.hidden_size = hidden_size self.total_virtual_tokens = total_virtual_tokens # Randomly init token and position embeddings self.prompt_embeddings = torch.nn.Embedding(self.total_virtual_tokens, self.hidden_size) self.prompt_embeddings.weight.data.fill_(0.0) self.prompt_embeddings.weight.requires_grad = False # Set fixed indicies for forward pass self.register_buffer("indices", torch.LongTensor(list(range(self.total_virtual_tokens))), persistent=False) def clear_prompt_embedding_weights(self,): """ Method sets the prompt embedding weights to 0.0 """ self.prompt_embeddings.weight.fill_(0.0) def set_prompt_embedding_weights(self, weight: torch.Tensor): """ Method sets the prompt embedding weights with a new weight w """ self.prompt_embeddings.weight.data = weight.type_as(self.prompt_embeddings.weight.data) def forward(self,): """ Does forward pass """ return self.prompt_embeddings(self.indices) class InferenceTable(NeuralModule, Exportable): """ A wrapper class that holds the output representations of the PromptEncoder Model. At inference time we do not need to forward pass through the full PromptEncoder and can just use this class. """ def __init__(self, taskname, hidden_size, total_virtual_tokens, is_inference_ready=False): super().__init__() self.taskname = taskname self.hidden_size = hidden_size self.total_virtual_tokens = total_virtual_tokens self.prompt_table = torch.nn.ModuleDict() self.prompt_table[self.taskname] = PromptEmbedding(self.hidden_size, self.total_virtual_tokens) self.prompt_table[self.taskname].clear_prompt_embedding_weights() self.is_inference_ready = is_inference_ready for p in self.prompt_table.parameters(): p.requires_grad = False def set_prompt_table(self, prompt_representation: torch.Tensor): """ Method sets the prompt embedding inside self.prompt_table[taskname] with new weights """ self.prompt_table[self.taskname].set_prompt_embedding_weights(prompt_representation) self.is_inference_ready = True def get_prompt_table(self,): """ Returns the prompt representation cached in the prompt table """ return self.prompt_table[self.taskname].forward() def clear_prompt_table(self,): """ Method "clears" the prompt embedding inside self.prompt_table[taskname] by setting it to zero. """ self.prompt_table[self.taskname].clear_prompt_embedding_weights() self.is_inference_ready = False class TPMLP(NeuralModule, Exportable): """ The Tensor Parallel MLP prompt encoder network that is used to generate the virtual token embeddings for p-tuning. It only have two layers. """ def __init__( self, config: ModelParallelConfig, total_virtual_tokens: int, hidden_size: int, output_size: int, init_std: float, ): """ Initializes the Tensor Model parallel MLP PromptEncoderMLP module. Args: config: the model parallel config used my megatron core total_virtual_tokens: the total number of vitural tokens hidden_size: hidden dimension output_size: the output dimension init_std: the MLP init std value """ super().__init__() self.hidden_size = hidden_size self.output_size = output_size self.total_virtual_tokens = total_virtual_tokens self.activation = "gelu" config = copy.deepcopy(config) config.sequence_parallel = False config.gradient_accumulation_fusion = False self.first = tensor_parallel.ColumnParallelLinear( self.output_size, self.hidden_size, config=config, gather_output=False, init_method=init_method_normal(init_std), skip_bias_add=True, bias=True, ) self.second = tensor_parallel.RowParallelLinear( self.hidden_size, self.output_size, config=config, input_is_parallel=True, init_method=init_method_normal(init_std), skip_bias_add=True, bias=True, ) def forward(self, input_embeds) -> torch.Tensor: intermediate_parallel, bias_parallel = self.first(input_embeds) intermediate_parallel = fused_bias_gelu(intermediate_parallel, bias_parallel) output_embeds, bias_parallel = self.second(intermediate_parallel) output_embeds = output_embeds + bias_parallel return output_embeds class PromptEncoder(NeuralModule, Exportable): """ The prompt encoder network that is used to generate the virtual token embeddings for p-tuning. """ def __init__( self, config: ModelParallelConfig, encoder_type: enum, total_virtual_tokens: int, token_dim: int, hidden_size, lstm_dropout: float, num_layers: int, init_std: float, taskname: str = "taskname", ): """ Initializes the PromptEncoder module. Args: config: the model parallel config used my megatron core total_virtual_tokens: the total number of vitural tokens hidden_size: hidden dimension lstm_dropout: the dropout used for the LSTM num_layers: number of layers used in the LSTM init_std: used for TPMLP encoder type to initialize the mlp weights """ super().__init__() self.token_dim = token_dim self.input_size = token_dim self.output_size = token_dim self.hidden_size = hidden_size self.total_virtual_tokens = total_virtual_tokens self.encoder_type = encoder_type self.activation = "gelu" self.init_std = init_std self.taskname = taskname # Set fixed indicies for forward pass self.register_buffer("indices", torch.LongTensor(list(range(self.total_virtual_tokens)))) # embedding self.embedding = torch.nn.Embedding(self.total_virtual_tokens, self.token_dim) self.inference_table = InferenceTable(taskname, self.token_dim, self.total_virtual_tokens) if self.encoder_type == PromptEncoderType.EMBEDDING: init.xavier_normal_(self.embedding.weight) elif self.encoder_type == PromptEncoderType.LSTM: # LSTM self.lstm_head = torch.nn.LSTM( input_size=self.input_size, hidden_size=self.hidden_size, num_layers=num_layers, dropout=lstm_dropout, bidirectional=True, batch_first=True, ) self.mlp_head = nn.Sequential( nn.Linear(self.hidden_size * 2, self.hidden_size * 2), nn.ReLU(), nn.Linear(self.hidden_size * 2, self.output_size), ) elif self.encoder_type == PromptEncoderType.MLP: if num_layers <= 1: raise ValueError( "The MLP prompt encoder must have at least 2 layers, and exactly 2 layers is recommended." ) layers = [nn.Linear(self.input_size, self.hidden_size), nn.ReLU()] for _ in range(num_layers - 2): layers.extend([nn.Linear(self.hidden_size, self.hidden_size), nn.ReLU()]) layers.append(nn.Linear(self.hidden_size, self.output_size)) self.mlp_head = nn.Sequential(*layers) elif self.encoder_type == PromptEncoderType.TPMLP: self.tpmlp = TPMLP(config, self.total_virtual_tokens, self.hidden_size, self.output_size, self.init_std,) else: raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.") def set_inference_table(self, prompt_representation: torch.Tensor): """ This method caches the output representation from the Encoder and saves it inside `self.inference_table`. """ prompt_representation = prompt_representation.detach().clone() self.inference_table.set_prompt_table(prompt_representation) def clear_inference_table(self,): self.inference_table.clear_prompt_table() def get_inference_table(self,): return self.inference_table.get_prompt_table() def state_dict(self, desination=None, prefix=None, keep_vars=False): _state_dict = {} _state_dict[ 'prompt_table' ] = ( self.inference_table.state_dict() ) # (@adithyare) this key is for backward compatibility with downstream users of the "inference ready" model. _state_dict['embeddings'] = self.embedding.state_dict() if self.encoder_type == PromptEncoderType.EMBEDDING: pass elif self.encoder_type == PromptEncoderType.LSTM: _state_dict['mlp_head'] = self.mlp_head.state_dict() _state_dict['lstm_head'] = self.lstm_head.state_dict() elif self.encoder_type == PromptEncoderType.MLP: _state_dict['mlp_head'] = self.mlp_head.state_dict() elif self.encoder_type == PromptEncoderType.TPMLP: _state_dict['tpmlp'] = self.tpmlp.state_dict() else: raise ValueError("Prompt encoder type not recognized. Pl.") return _state_dict def load_state_dict(self, state_dict, strict=True): self.inference_table.load_state_dict(state_dict['prompt_table']) self.embedding.load_state_dict(state_dict['embeddings']) if self.encoder_type == PromptEncoderType.EMBEDDING: pass elif self.encoder_type == PromptEncoderType.LSTM: self.mlp_head.load_state_dict(state_dict['mlp_head']) self.lstm_head.state_dict(state_dict['lstm_head']) elif self.encoder_type == PromptEncoderType.MLP: self.mlp_head.load_state_dict(state_dict['mlp_head']) elif self.encoder_type == PromptEncoderType.TPMLP: self.tpmlp.load_state_dict(state_dict['tpmlp']) else: raise ValueError("Prompt encoder type not recognized. Pl.") return def _forward(self,): input_embeds = self.embedding(self.indices).unsqueeze(0) if self.encoder_type == PromptEncoderType.EMBEDDING: output_embeds = input_embeds elif self.encoder_type == PromptEncoderType.LSTM: output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0]) elif self.encoder_type == PromptEncoderType.MLP: output_embeds = self.mlp_head(input_embeds) elif self.encoder_type == PromptEncoderType.TPMLP: output_embeds = self.tpmlp(input_embeds) else: raise ValueError("Prompt encoder type not recognized. Pl.") return output_embeds @typecheck() def forward(self, batch_size: int, use_cached_reps: bool) -> torch.Tensor: """ Forward pass through the encoder with caching of prompt representations """ if use_cached_reps: output_embeds = self.get_inference_table().unsqueeze(0) else: if self.training: if self.inference_table.is_inference_ready: self.clear_inference_table() output_embeds = self._forward() else: if not self.inference_table.is_inference_ready: output_embeds = self._forward() self.set_inference_table(output_embeds.squeeze(0)) output_embeds = self.get_inference_table().unsqueeze(0) output_embeds = output_embeds.expand(batch_size, self.total_virtual_tokens, self.token_dim) return output_embeds
NeMo-main
nemo/collections/nlp/modules/common/prompt_encoder.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import List, Optional, Union from attr import asdict from omegaconf import DictConfig from pytorch_lightning import Trainer from nemo.collections.nlp.modules.common.bert_module import BertModule from nemo.collections.nlp.modules.common.decoder_module import DecoderModule from nemo.collections.nlp.modules.common.encoder_module import EncoderModule from nemo.collections.nlp.modules.common.huggingface.huggingface_utils import ( get_huggingface_lm_model, get_huggingface_pretrained_lm_models_list, ) from nemo.collections.nlp.modules.common.megatron.megatron_utils import get_megatron_pretrained_bert_models from nemo.collections.nlp.modules.common.transformer.transformer import NeMoTransformerConfig from nemo.collections.nlp.modules.common.transformer.transformer_utils import ( get_huggingface_transformer, get_nemo_transformer, ) from nemo.utils import AppState, logging __all__ = ['get_pretrained_lm_models_list', 'get_lm_model', 'pad_batch'] def pad_batch(batch, pad_id, max_len): context_lengths = [] max_context_length = max([len(tokens) for tokens in batch]) for tokens in batch: context_length = len(tokens) if context_length < max_context_length + max_len: tokens.extend([pad_id] * (max_context_length + max_len - context_length)) context_lengths.append(context_length) return batch, context_lengths def get_pretrained_lm_models_list(include_external: bool = False) -> List[str]: """ Returns the list of supported pretrained model names Args: include_external if true includes all HuggingFace model names, not only those supported language models in NeMo. """ return get_huggingface_pretrained_lm_models_list(include_external=include_external) def get_lm_model( config_dict: Optional[dict] = None, config_file: Optional[str] = None, vocab_file: Optional[str] = None, trainer: Optional[Trainer] = None, cfg: DictConfig = None, ) -> BertModule: """ Helper function to instantiate a language model encoder, either from scratch or a pretrained model. If only pretrained_model_name are passed, a pretrained model is returned. If a configuration is passed, whether as a file or dictionary, the model is initialized with random weights. Args: config_dict: path to the model configuration dictionary config_file: path to the model configuration file vocab_file: path to vocab_file to be used with Megatron-LM trainer: an instance of a PyTorch Lightning trainer cfg: a model configuration Returns: Pretrained BertModule """ # check valid model type if cfg.language_model.get('pretrained_model_name'): if ( not cfg.language_model.pretrained_model_name or cfg.language_model.pretrained_model_name not in get_pretrained_lm_models_list(include_external=False) ): logging.warning( f'{cfg.language_model.pretrained_model_name} is not in get_pretrained_lm_models_list(include_external=False), ' f'will be using AutoModel from HuggingFace.' ) # warning when user passes both configuration dict and file if config_dict and config_file: logging.warning( f"Both config_dict and config_file were found, defaulting to use config_file: {config_file} will be used." ) pretrain_model_name = '' if cfg.get('language_model') and cfg.language_model.get('pretrained_model_name', ''): pretrain_model_name = cfg.language_model.get('pretrained_model_name', '') all_pretrained_megatron_bert_models = get_megatron_pretrained_bert_models() if ( cfg.tokenizer is not None and cfg.tokenizer.get("tokenizer_name", "") is not None and "megatron" in cfg.tokenizer.get("tokenizer_name", "") ) or pretrain_model_name in all_pretrained_megatron_bert_models: import torch from nemo.collections.nlp.models.language_modeling.megatron_bert_model import MegatronBertModel class Identity(torch.nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x, *args): return x if cfg.language_model.get("lm_checkpoint"): model = MegatronBertModel.restore_from(restore_path=cfg.language_model.lm_checkpoint, trainer=trainer) else: model = MegatronBertModel.from_pretrained(cfg.language_model.get('pretrained_model_name'), trainer=trainer) # remove the headers that are only revelant for pretraining model.model.lm_head = Identity() model.model.binary_head = Identity() model.model.language_model.pooler = Identity() else: model = get_huggingface_lm_model( config_dict=config_dict, config_file=config_file, pretrained_model_name=cfg.language_model.pretrained_model_name, ) if cfg.language_model.get("lm_checkpoint"): app_state = AppState() if not app_state.is_model_being_restored and not os.path.exists(cfg.language_model.lm_checkpoint): raise ValueError(f'{cfg.language_model.lm_checkpoint} not found') model.restore_weights(restore_path=cfg.language_model.lm_checkpoint) return model # @dataclass # class TransformerConfig: # library: str = 'nemo' # model_name: Optional[str] = None # pretrained: bool = False # config_dict: Optional[dict] = None # checkpoint_file: Optional[str] = None # encoder: bool = True def get_transformer( library: str = 'nemo', model_name: Optional[str] = None, pretrained: bool = False, config_dict: Optional[dict] = None, checkpoint_file: Optional[str] = None, encoder: bool = True, pre_ln_final_layer_norm: bool = True, padding_idx: int = 0, ) -> Union[EncoderModule, DecoderModule]: """Gets Transformer based model to be used as an Encoder or Decoder in NeMo NLP. First choose the library to get the transformer from. This can be huggingface, megatron, or nemo. Use the model_name arg to get a named model architecture and use the pretrained arg to get the named model architecture with pretrained weights. If model_name is None, then we can pass in a custom configuration via the config_dict. For example, to instantiate a HuggingFace BERT model with custom configuration we would do: encoder = get_transformer(library='huggingface', config_dict={ '_target_': 'transformers.BertConfig', 'hidden_size': 1536 }) Args: library (str, optional): Can be 'nemo', 'huggingface', or 'megatron'. Defaults to 'nemo'. model_name (Optional[str], optional): Named model architecture from the chosen library. Defaults to None. pretrained (bool, optional): Use True to get pretrained weights. False will use the same architecture but with randomly initialized weights. Defaults to False. config_dict (Optional[dict], optional): Use for custom configuration of transformer. Defaults to None. checkpoint_file (Optional[str], optional): Provide weights for the transformer from a local checkpoint. Defaults to None. encoder (bool, optional): True returns an EncoderModule, False returns a DecoderModule. Defaults to True. Returns: Union[EncoderModule, DecoderModule]: Ensures that Encoder/Decoder will work in EncDecNLPModel """ model = None if library == 'nemo': if isinstance(config_dict, NeMoTransformerConfig): config_dict = asdict(config_dict) model = get_nemo_transformer( model_name=model_name, pretrained=pretrained, config_dict=config_dict, encoder=encoder, pre_ln_final_layer_norm=pre_ln_final_layer_norm, padding_idx=padding_idx, ) if checkpoint_file is not None: if os.path.isfile(checkpoint_file): raise ValueError(f'Loading transformer weights from checkpoint file has not been implemented yet.') elif library == 'huggingface': model = get_huggingface_transformer( model_name=model_name, pretrained=pretrained, config_dict=config_dict, encoder=encoder ) elif library == 'megatron': raise ValueError( f'megatron-lm bert support has been deprecated in NeMo 1.5+. Please use NeMo 1.4 for support.' ) # TODO: enable megatron bert in nemo # model = get_megatron_transformer( # model_name=model_name, # pretrained=pretrained, # config_dict=config_dict, # encoder=encoder, # checkpoint_file=checkpoint_file, # ) else: raise ValueError("Libary must be 'nemo', 'huggingface' or 'megatron'") return model
NeMo-main
nemo/collections/nlp/modules/common/lm_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum __all__ = ['VirtualPromptSource', 'VirtualPromptStyle', 'VirtualPromptPlaceholderToken'] class VirtualPromptStyle(enum.Enum): P_TUNING = 'p-tuning' NO_PROMPT = 'no-prompts' class VirtualPromptSource(enum.Enum): PROMPT_ENCODER = 'prompt_encoder' NO_PROMPT = 'no-prompts' class VirtualPromptPlaceholderToken(enum.Enum): BASE = '<prompt_' END = '>'
NeMo-main
nemo/collections/nlp/modules/common/prompt_table.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio try: import gradio as gr GRADIO_AVAILABLE = True except (ImportError, ModuleNotFoundError): GRADIO_AVAILABLE = False from nemo.collections.nlp.modules.common.chat_css import CSS from nemo.collections.nlp.modules.common.megatron.retrieval_services.util import ( convert_retrieved_to_md, request_data, text_generation, ) __all__ = ['RetroDemoWebApp', 'get_demo'] TURN_TOKEN = '<extra_id_1>' PROMPT_PRESETS = { "DIALOGUE": { "SYSTEM_TURN_TOKEN": '', "USER_TURN_TOKEN": '<extra_id_1>', "BOT_TURN_TOKEN": '<extra_id_2>', "END_OF_NAME": '', "END_OF_TURN": '\n', }, "DIALOGUE2": { "SYSTEM_TURN_TOKEN": '<extra_id_0>System\n', "USER_TURN_TOKEN": '<extra_id_1>', "BOT_TURN_TOKEN": '<extra_id_1>', "END_OF_NAME": '\n', "END_OF_TURN": '\n', }, } PRESETS = { "K1-Greedy": {"temperature": 1.0, "top_p": 0.9, "top_k": 1, "repetition_penalty": 1.0,}, "K50": {"temperature": 0.75, "top_p": 0.95, "top_k": 50, "repetition_penalty": 1.0,}, "K50-Creative": {"temperature": 0.85, "top_p": 0.95, "top_k": 50, "repetition_penalty": 1.0,}, "K50-Precise": {"temperature": 0.1, "top_p": 0.95, "top_k": 50, "repetition_penalty": 1.0,}, "K50-Original": {"temperature": 0.9, "top_p": 0.95, "top_k": 50, "repetition_penalty": 1.0,}, "Nucleus9": {"temperature": 0.8, "top_p": 0.9, "top_k": 10000, "repetition_penalty": 1.0,}, "Custom": {"temperature": 0.75, "top_p": 0.95, "top_k": 50, "repetition_penalty": 1.0,}, } def check_gradio_import(): if not GRADIO_AVAILABLE: msg = ( f"could not find the gradio library.\n" f"****************************************************************\n" f"To install it, please follow the steps below:\n" f"pip install gradio==3.34.0\n" ) raise ImportError(msg) def create_gen_function(port=5555, chat=False): def get_generation(prompt, greedy, add_BOS, token_to_gen, min_tokens, temp, top_p, top_k, repetition, end_strings): data = { "sentences": [prompt], "tokens_to_generate": int(token_to_gen), "temperature": temp, "add_BOS": add_BOS, "top_k": top_k, "top_p": top_p, "greedy": greedy, "all_probs": False, "repetition_penalty": repetition, "min_tokens_to_generate": int(min_tokens), "end_strings": [i.strip() for i in end_strings.split(',') if len(i) != 0], } response = text_generation(data, port=port) sentences = response['sentences'] bot_message = sentences[0] if bot_message.find('<extra_id_0') < 0: # hack due to the problem that huggingface's tokenizer strips out the <extra_id_x> token prompt = prompt.replace('<extra_id_0>', '').replace('<extra_id_1>', '').replace('<extra_id_2>', '') bot_message = bot_message[len(prompt) :] return bot_message return get_generation def get_demo(share, username, password, server_port=5555, web_port=9889, loop=None): check_gradio_import() asyncio.set_event_loop(loop) with gr.Blocks(css=CSS) as demo: with gr.Row(): with gr.Column(scale=2, width=200): # store the mutliple turn conversation token_to_gen = gr.Number(label='Number of Tokens to generate', value=300, type=int) min_token_to_gen = gr.Number(label='Min number of Tokens to generate', value=1, type=int) seed = gr.Number(label='Random seed', value=0, type=int) end_strings = gr.Textbox(label="End strings (comma separated)", value="<extra_id_1>,", lines=1,) add_BOS = gr.Checkbox(label="Add BOS token", value=False) sampling_method = gr.Dropdown( list(PRESETS.keys()), label='Sampling Presets', default='K50', value='K50' ) temperature = gr.Slider(minimum=0.0, maximum=5.0, value=0.75, label='Temperature', step=0.1) top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.02, value=0.95, label='Top P') top_k = gr.Slider(minimum=0, maximum=1024, step=2, value=50, label='Top K') repetition_penality = gr.Slider( minimum=1.0, maximum=5.0, step=0.02, value=1.0, label='Repetition penalty' ) def set_sampling(x): return list(PRESETS[x].values()) sampling_method.change( set_sampling, inputs=[sampling_method], outputs=[temperature, top_p, top_k, repetition_penality] ) with gr.Column(scale=1, min_width=900): text = gr.Textbox(label="Playground", value="", lines=60, placeholder="Type something here...",) submit_btn = gr.Button("Generate") clear = gr.Button("Clear") def on_submit( prompt_text, token_to_gen, temperature, top_p, top_k, repetition_penality, seed, end_strings, add_BOS, min_token_to_gen, ): output = create_gen_function(server_port)( prompt_text, False, add_BOS, token_to_gen, min_token_to_gen, temperature, top_p, top_k, repetition_penality, end_strings, ) print(output) print('-------------------') return prompt_text + output def clear_fun(): return '' submit_btn.click( on_submit, [ text, token_to_gen, temperature, top_p, top_k, repetition_penality, seed, end_strings, add_BOS, min_token_to_gen, ], [text], queue=False, ) clear.click(clear_fun, None, text, queue=False) demo.queue(concurrency_count=16).launch( share=share, server_port=web_port, server_name='0.0.0.0', auth=(username, password) ) def get_chatbot_demo( share, username, password, server_port=5555, web_port=9889, loop=None, value=False, defaults=None, attributes=None, ): check_gradio_import() from nemo.collections.nlp.modules.common.chatbot_component import Chatbot asyncio.set_event_loop(loop) with gr.Blocks(css=CSS) as demo: with gr.Row(): with gr.Column(scale=2, width=200): # store the mutliple turn conversation session_state = gr.State(value=[]) token_to_gen = gr.Number(label='Number of Tokens to generate', value=300, type=int) seed = gr.Number(label='Random seed', value=0, type=int) prompt_presets = gr.Dropdown( list(PROMPT_PRESETS.keys()), label='Template Presets', default='DIALOGUE2', value='DIALOGUE2' ) sampling_method = gr.Dropdown( list(PRESETS.keys()), label='Sampling Presets', default='K50', value='K50' ) with gr.Accordion("Sampling Parameters", open=False): temperature = gr.Slider( minimum=0.0, maximum=5.0, value=0.75, label='Temperature', step=0.1, interactive=False ) top_p = gr.Slider( minimum=0.0, maximum=1.0, step=0.02, value=0.95, label='Top P', interactive=False ) top_k = gr.Slider(minimum=0, maximum=1024, step=2, value=50, label='Top K', interactive=False) repetition_penality = gr.Slider( minimum=1.0, maximum=5.0, step=0.02, value=1.0, label='Repetition penalty', interactive=False ) with gr.Accordion("Value Parameters", open=True, visible=value): keys = [k.key for k in attributes] # keys = ['quality', 'toxicity', 'humor', 'creativity', 'violence', 'helpfulness', 'not_appropriate'] widgets = [] for item in attributes: if item.type == 'int': slider = gr.Slider( minimum=item.min, maximum=item.max, step=1, value=item.default, label=item.name ) widgets.append(slider) elif item.type == 'list': dropdown = gr.Dropdown( item.choices, label=item.name, default=item.default, value=item.default ) widgets.append(dropdown) used_value = gr.CheckboxGroup(keys, value=keys) def change_visibility(x): values = [] for key in keys: if key in x: values.append(gr.update(visible=True)) else: values.append(gr.update(visible=False)) return values used_value.change( change_visibility, inputs=[used_value], outputs=widgets, ) def set_sampling(x): if x == 'Custom': values = [gr.update(value=v, interactive=True) for v in PRESETS[x].values()] return values else: values = [gr.update(value=v, interactive=False) for v in PRESETS[x].values()] return values sampling_method.change( set_sampling, inputs=[sampling_method], outputs=[temperature, top_p, top_k, repetition_penality] ) gr.HTML("<hr>") human_name = gr.Textbox(label="Human Name", value=defaults['user'], line=1,) assistant_name = gr.Textbox(label="Assistant Name", value=defaults['assistant'], line=1,) preamble = gr.Textbox(label="System", value=defaults['system'], lines=2,) def set_prompt(x): if x == "DIALOGUE": return '', '' return defaults['user'], defaults['assistant'] prompt_presets.change(set_prompt, inputs=[prompt_presets], outputs=[human_name, assistant_name]) with gr.Column(scale=1, min_width=900): chatbot = Chatbot(elem_id="chatbot").style(height=800) msg = gr.Textbox(label="User", value="", lines=1,) clear = gr.Button("Clear") def user(user_message, history, session_state): session_state.append(user_message) user_message = user_message.replace('\n', '<br>') return "", history + [[user_message, None]] def get_value_str(values_array, used_value): if len(used_value) == 0: return '' assert len(values_array) == len(keys) value_str = '<extra_id_2>' elements = [] for i, key in enumerate(keys): if key in used_value: elements.append(f'{key}:{values_array[i]}') value_str += ','.join(elements) + '\n' return value_str def bot( history, preamble, token_to_gen, temperature, top_p, top_k, repetition_penality, seed, human_name, assistant_name, session_state, prompts_presets, used_value, *values, ): values_array = values if value: value_str = get_value_str(values_array, used_value) else: value_str = '' prompt_preset = PROMPT_PRESETS[prompts_presets] prompt_text = '' names = [human_name, assistant_name] turn_tokens = [prompt_preset['USER_TURN_TOKEN'], prompt_preset['BOT_TURN_TOKEN']] for i, meg in enumerate(session_state): name = names[i % 2] turn = turn_tokens[i % 2] prompt_text += turn + name + prompt_preset['END_OF_NAME'] + meg + prompt_preset['END_OF_TURN'] prompt_text += ( prompt_preset['BOT_TURN_TOKEN'] + assistant_name + prompt_preset['END_OF_NAME'] + value_str ) prompt_text = prompt_preset['SYSTEM_TURN_TOKEN'] + preamble + prompt_text bot_message = create_gen_function(server_port)( prompt_text, False, False, token_to_gen, 1, temperature, top_p, top_k, repetition_penality, '<extra_id_1>', ) if bot_message.endswith(TURN_TOKEN): bot_message = bot_message[: -len(TURN_TOKEN)] history[-1][1] = bot_message print(prompt_text) print(bot_message) print('-------------------') session_state.append(value_str + bot_message.strip()) return history msg.submit(user, [msg, chatbot, session_state], [msg, chatbot], queue=False).then( bot, [ chatbot, preamble, token_to_gen, temperature, top_p, top_k, repetition_penality, seed, human_name, assistant_name, session_state, prompt_presets, used_value, *widgets, ], [chatbot], ) def clear_fun(session_state): session_state.clear() return None clear.click(clear_fun, [session_state], chatbot, queue=False) demo.launch(share=share, server_port=web_port, server_name='0.0.0.0', auth=(username, password)) class RetroDemoWebApp: def __init__(self, text_service_ip, text_service_port, combo_service_ip, combo_service_port): self.text_service_ip = text_service_ip self.text_service_port = text_service_port self.combo_service_ip = combo_service_ip self.combo_service_port = combo_service_port def get_retro_generation( self, prompt, greedy, add_BOS, token_to_gen, min_tokens, temp, top_p, top_k, repetition, neighbors, weight, end_strings, ): data = { "sentences": [prompt], "tokens_to_generate": int(token_to_gen), "temperature": temp, "add_BOS": add_BOS, "top_k": top_k, "top_p": top_p, "greedy": greedy, "all_probs": False, "repetition_penalty": repetition, "min_tokens_to_generate": int(min_tokens), "neighbors": int(neighbors), "end_strings": [i.strip() for i in end_strings.split(',') if len(i) != 0], } self.update_weight(weight) output_json = text_generation(data, self.text_service_ip, self.text_service_port) sentences = output_json['sentences'] retrieved = output_json['retrieved'] return sentences[0], convert_retrieved_to_md(retrieved) def update_weight(self, weight): data = {"update_weight": [weight, 1.0 - weight]} return request_data(data, self.combo_service_ip, self.combo_service_port) def add_doc(self, doc, add_eos): data = { "sentences": [doc], "add_eos": add_eos, } return request_data(data, self.combo_service_ip, self.combo_service_port) def reset_index(self): data = {"reset": None} return request_data(data, self.combo_service_ip, self.combo_service_port) def run_demo(self, share, username, password, port): check_gradio_import() with gr.Blocks(css="table, th, td { border: 1px solid blue; table-layout: fixed; width: 100%; }") as demo: with gr.Row(): with gr.Column(scale=2, width=200): greedy_flag = gr.Checkbox(label="Greedy", value=True) add_BOS = gr.Checkbox(label="Add BOS token", value=False) token_to_gen = gr.Number(label='Number of Tokens to generate', value=30, type=int) min_token_to_gen = gr.Number(label='Min number of Tokens to generate', value=1, type=int) temperature = gr.Slider(minimum=0.0, maximum=10.0, value=1.0, label='Temperature', step=0.1) top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.02, value=0.9, label='Top P') top_k = gr.Slider(minimum=0, maximum=10000, step=2, value=0, label='Top K') repetition_penality = gr.Slider( minimum=1.0, maximum=5.0, step=0.02, value=1.2, label='Repetition penalty' ) end_strings = gr.Textbox(label="End strings (comma separated)", value="<|endoftext|>,", lines=1,) k_neighbors = gr.Slider(minimum=0, maximum=50, step=1, value=2, label='Retrieved Documents') weight = gr.Slider( minimum=0.0, maximum=1.0, value=1.0, label='Weight for the Static Retrieval DB', step=0.02 ) add_retrival_doc = gr.Textbox(label="Add New Retrieval Doc", value="", lines=5,) add_EOS = gr.Checkbox(label="Add EOS token to Retrieval Doc", value=False) with gr.Row(): add_btn = gr.Button(value="Add") reset_btn = gr.Button(value="Reset Index") output_status = gr.Label(value='') add_btn.click(self.add_doc, inputs=[add_retrival_doc, add_EOS], outputs=[output_status]) reset_btn.click(self.reset_index, inputs=[], outputs=[output_status]) with gr.Column(scale=1, min_width=800): input_prompt = gr.Textbox( label="Input", value="Ariel was playing basketball. 1 of her shots went in the hoop. 2 of her shots did not go in the hoop. How many shots were there in total?", lines=5, ) output_box = gr.Textbox(value="", label="Output") btn = gr.Button(value="Submit") output_retrieval = gr.HTML() btn.click( self.get_retro_generation, inputs=[ input_prompt, greedy_flag, add_BOS, token_to_gen, min_token_to_gen, temperature, top_p, top_k, repetition_penality, k_neighbors, weight, end_strings, ], outputs=[output_box, output_retrieval], ) demo.launch(share=share, server_port=port, server_name='0.0.0.0', auth=(username, password))
NeMo-main
nemo/collections/nlp/modules/common/megatron_web_server.py