python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re from typing import Dict, Optional import torch from nemo.core.classes import NeuralModule from nemo.core.classes.exportable import Exportable from nemo.core.neural_types import ChannelType, FloatType, IntType, MaskType, NeuralType, StringType, VoidType from nemo.utils import logging __all__ = ['GPTModule'] class GPTModule(NeuralModule, Exportable): @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "token_type_ids": NeuralType(('B', 'T'), ChannelType(), optional=True), "attention_mask": NeuralType(('B', 'T'), MaskType(), optional=True), "labels": NeuralType(('B', 'T'), ChannelType(), optional=True), 'past_key_values': [[NeuralType(None, StringType(), optional=True)]], 'use_cache': NeuralType(None, VoidType(), optional=True), 'position_ids': NeuralType(('B', 'T'), ChannelType(), optional=True), "return_dict": NeuralType(None, StringType(), optional=True), "output_attentions": NeuralType(None, StringType(), optional=True), "output_hidden_states": NeuralType(None, StringType(), optional=True), "max_length": NeuralType(None, IntType(), optional=True), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return { 'loss': NeuralType(None, FloatType(), optional=True), 'hidden_states': NeuralType(('B', 'T', 'D'), ChannelType()), } def restore_weights(self, restore_path: str): """Restores module/model's weights""" logging.info(f"Restoring weights from {restore_path}") if not os.path.exists(restore_path): logging.warning(f'Path {restore_path} not found') return pretrained_dict = torch.load(restore_path) # backward compatibility with NeMo0.11 if "state_dict" in pretrained_dict.keys(): pretrained_dict = pretrained_dict["state_dict"] # remove prefix from pretrained dict m = re.match("^gpt.*?\.", list(pretrained_dict.keys())[0]) if m: prefix = m.group(0) pretrained_dict = {k[len(prefix) :]: v for k, v in pretrained_dict.items()} model_dict = self.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} # starting with transformers 3.1.0, embeddings.position_ids is added to the model's state dict and could be # missing in checkpoints trained with older transformers version if 'embeddings.position_ids' in model_dict and 'embeddings.position_ids' not in pretrained_dict: pretrained_dict['embeddings.position_ids'] = model_dict['embeddings.position_ids'] model_dict.update(pretrained_dict) self.load_state_dict(model_dict) logging.info(f"Weights for {type(self).__name__} restored from {restore_path}") def input_example(self): """ Generates input examples for tracing etc. Returns: A tuple of input examples. """ sample = next(self.parameters()) input_ids = torch.randint(low=0, high=2048, size=(2, 16), device=sample.device) token_type_ids = torch.randint(low=0, high=1, size=(2, 16), device=sample.device) attention_mask = torch.randint(low=0, high=1, size=(2, 16), device=sample.device) return tuple([input_ids, token_type_ids, attention_mask])
NeMo-main
nemo/collections/nlp/modules/common/gpt_module.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Dict, Optional from torch import nn as nn from nemo.collections.common.parts import MultiLayerPerceptron from nemo.collections.nlp.modules.common.classifier import Classifier from nemo.core.classes import typecheck from nemo.core.neural_types import LogitsType, LogprobsType, NeuralType __all__ = ['BertPretrainingTokenClassifier', 'TokenClassifier'] ACT2FN = {"gelu": nn.functional.gelu, "relu": nn.functional.relu} @dataclass class TokenClassifierConfig: num_layers: int = 1 activation: str = 'relu' log_softmax: bool = True dropout: float = 0.0 use_transformer_init: bool = True class TokenClassifier(Classifier): """ A module to perform token level classification tasks such as Named entity recognition. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """ Returns definitions of module output ports. """ if not self.log_softmax: return {"logits": NeuralType(('B', 'T', 'C'), LogitsType())} else: return {"log_probs": NeuralType(('B', 'T', 'C'), LogprobsType())} def __init__( self, hidden_size: int, num_classes: int, num_layers: int = 1, activation: str = 'relu', log_softmax: bool = True, dropout: float = 0.0, use_transformer_init: bool = True, ) -> None: """ Initializes the Token Classifier module. Args: hidden_size: the size of the hidden dimension num_classes: number of classes num_layers: number of fully connected layers in the multilayer perceptron (MLP) activation: activation to usee between fully connected layers in the MLP log_softmax: whether to apply softmax to the output of the MLP dropout: dropout to apply to the input hidden states use_transformer_init: whether to initialize the weights of the classifier head with the same approach used in Transformer """ super().__init__(hidden_size=hidden_size, dropout=dropout) self.log_softmax = log_softmax self.mlp = MultiLayerPerceptron( hidden_size, num_classes, num_layers=num_layers, activation=activation, log_softmax=log_softmax ) self.post_init(use_transformer_init=use_transformer_init) @typecheck() def forward(self, hidden_states): """ Performs the forward step of the module. Args: hidden_states: batch of hidden states (for example, from the BERT encoder module) [BATCH_SIZE x SEQ_LENGTH x HIDDEN_SIZE] Returns: logits value for each class [BATCH_SIZE x SEQ_LENGTH x NUM_CLASSES] """ hidden_states = self.dropout(hidden_states) logits = self.mlp(hidden_states) return logits class BertPretrainingTokenClassifier(Classifier): """ A module to perform token level classification tasks for Bert pretraining. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """ Returns definitions of module output ports. """ if not self.log_softmax: return {"logits": NeuralType(('B', 'T', 'C'), LogitsType())} else: return {"log_probs": NeuralType(('B', 'T', 'C'), LogprobsType())} def __init__( self, hidden_size: int, num_classes: int, num_layers: int = 1, activation: str = 'relu', log_softmax: bool = True, dropout: float = 0.0, use_transformer_init: bool = True, ) -> None: """ Initializes the Token Classifier module. Args: hidden_size: the size of the hidden dimension num_classes: number of classes num_layers: number of fully connected layers in the multilayer perceptron (MLP) activation: activation to usee between fully connected layers in the MLP log_softmax: whether to apply softmax to the output of the MLP dropout: dropout to apply to the input hidden states use_transformer_init: whether to initialize the weights of the classifier head with the same approach used in Transformer """ super().__init__(hidden_size=hidden_size, dropout=dropout) self.log_softmax = log_softmax if activation not in ACT2FN: raise ValueError(f'activation "{activation}" not found') self.dense = nn.Linear(hidden_size, hidden_size) self.act = ACT2FN[activation] self.norm = nn.LayerNorm(hidden_size, eps=1e-12) self.mlp = MultiLayerPerceptron( hidden_size, num_classes, num_layers=num_layers, activation=activation, log_softmax=log_softmax ) self.post_init(use_transformer_init=use_transformer_init) @typecheck() def forward(self, hidden_states): """ Performs the forward step of the module. Args: hidden_states: batch of hidden states (for example, from the BERT encoder module) [BATCH_SIZE x SEQ_LENGTH x HIDDEN_SIZE] Returns: logits value for each class [BATCH_SIZE x SEQ_LENGTH x NUM_CLASSES] """ hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = self.act(hidden_states) transform = self.norm(hidden_states) logits = self.mlp(transform) return logits
NeMo-main
nemo/collections/nlp/modules/common/token_classifier.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import torch import torch.nn as nn from nemo.collections.common.parts import form_attention_mask from nemo.collections.nlp.modules.common.transformer.transformer_modules import MultiHeadAttention, PositionWiseFF __all__ = ["TransformerEncoder"] class TransformerEncoderBlock(nn.Module): """ Building block of Transformer encoder. Args: hidden_size: size of the embeddings in the model, also known as d_model inner_size: number of neurons in the intermediate part of feed-forward net, usually is (4-8 x hidden_size) in the papers num_attention_heads: number of heads in multi-head attention attn_score_dropout: probability of dropout applied to attention scores attn_layer_dropout: probability of dropout applied to the output of the attention layers, but before layer normalization ffn_dropout: probability of dropout applied to FFN output hidden_act: activation function used between two linear layers in FFN """ def __init__( self, hidden_size: int, inner_size: int, num_attention_heads: int = 1, attn_score_dropout: float = 0.0, attn_layer_dropout: float = 0.0, ffn_dropout: float = 0.0, hidden_act: str = "relu", pre_ln: bool = False, ): super().__init__() self.pre_ln = pre_ln self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=1e-5) self.first_sub_layer = MultiHeadAttention( hidden_size, num_attention_heads, attn_score_dropout, attn_layer_dropout ) self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=1e-5) self.second_sub_layer = PositionWiseFF(hidden_size, inner_size, ffn_dropout, hidden_act) def forward_preln(self, encoder_query, encoder_mask, encoder_keys): """ Pre-LayerNorm block Order of operations: LN -> Self-Attn -> Residual -> LN -> Cross-Attn -> Residual -> LN -> FFN """ residual = encoder_query encoder_query = self.layer_norm_1(encoder_query) encoder_keys = self.layer_norm_1(encoder_keys) self_attn_output = self.first_sub_layer(encoder_query, encoder_keys, encoder_keys, encoder_mask) self_attn_output += residual residual = self_attn_output self_attn_output = self.layer_norm_2(self_attn_output) output_states = self.second_sub_layer(self_attn_output) output_states += residual return output_states def forward_postln(self, encoder_query, encoder_mask, encoder_keys): """ Post-LayerNorm block Order of operations: Self-Attn -> Residual -> LN -> Cross-Attn -> Residual -> LN -> FFN -> Residual -> LN """ self_attn_output = self.first_sub_layer(encoder_query, encoder_keys, encoder_keys, encoder_mask) self_attn_output += encoder_query self_attn_output = self.layer_norm_1(self_attn_output) output_states = self.second_sub_layer(self_attn_output) output_states += self_attn_output output_states = self.layer_norm_2(output_states) return output_states def forward(self, encoder_query, encoder_mask, encoder_keys): if self.pre_ln: return self.forward_preln(encoder_query, encoder_mask, encoder_keys) else: return self.forward_postln(encoder_query, encoder_mask, encoder_keys) class TransformerEncoder(nn.Module): def __init__( self, num_layers: int, hidden_size: int, inner_size: int, mask_future: bool = False, num_attention_heads: int = 1, attn_score_dropout: float = 0.0, attn_layer_dropout: float = 0.0, ffn_dropout: float = 0.0, hidden_act: str = "relu", pre_ln: bool = False, pre_ln_final_layer_norm: bool = True, ): super().__init__() if pre_ln and pre_ln_final_layer_norm: self.final_layer_norm = nn.LayerNorm(hidden_size, eps=1e-5) else: self.final_layer_norm = None layer = TransformerEncoderBlock( hidden_size, inner_size, num_attention_heads, attn_score_dropout, attn_layer_dropout, ffn_dropout, hidden_act, pre_ln, ) self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)]) self.diag = 0 if mask_future else None def _get_memory_states(self, encoder_states, encoder_mems_list=None, i=0): if encoder_mems_list is not None: memory_states = torch.cat((encoder_mems_list[i], encoder_states), dim=1) else: memory_states = encoder_states return memory_states def forward(self, encoder_states, encoder_mask, encoder_mems_list=None, return_mems=False): """ Args: encoder_states: output of the embedding_layer (B x L_enc x H) encoder_mask: encoder inputs mask (B x L_enc) encoder_mems_list: list of the cached encoder hidden states for fast autoregressive generation which will be used instead of encoder_states as keys and values if not None return_mems: bool, whether to return outputs of all encoder layers or the last layer only """ encoder_attn_mask = form_attention_mask(encoder_mask, self.diag) memory_states = self._get_memory_states(encoder_states, encoder_mems_list, 0) cached_mems_list = [memory_states] for i, layer in enumerate(self.layers): encoder_states = layer(encoder_states, encoder_attn_mask, memory_states) memory_states = self._get_memory_states(encoder_states, encoder_mems_list, i + 1) cached_mems_list.append(memory_states) if self.final_layer_norm is not None: encoder_states = self.final_layer_norm(encoder_states) memory_states = self._get_memory_states(encoder_states, encoder_mems_list, i + 1) cached_mems_list.append(memory_states) if return_mems: return cached_mems_list else: return cached_mems_list[-1]
NeMo-main
nemo/collections/nlp/modules/common/transformer/transformer_encoders.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager import torch from nemo.collections.common.parts import NEG_INF, mask_padded_tokens __all__ = [ "GreedySequenceGenerator", "TopKSequenceGenerator", "BeamSearchSequenceGenerator", "BeamSearchSequenceGeneratorWithLanguageModel", "EnsembleBeamSearchSequenceGenerator", ] class GreedySequenceGenerator: """ Greedy sequence generator based on the decoder followed by log_softmax. Args: embedding: nn.Module, transforms input_ids into vector embeddings decoder: nn.Module, takes embeddings and produces hidden_states log_softmax: nn.Module, takes hidden_states and produces log_probs which correspond to probability distribution of tokens (ids) pad: index of padding token in the vocabulary bos: index of beginning of sequence token in the vocabulary eos: index of end of sequence token in the vocabulary max_sequence_length: maximum allowed length for generated sequences max_delta_length: in case of encoder-decoder generation (e.g. NMT), forbids generated sequences to be longer than the length of source sequences plus max_delta_length batch_size: size of the batch of generated sequences if neither source nor target starting sequences are provided """ def __init__( self, embedding, decoder, log_softmax, pad=0, bos=1, eos=2, max_sequence_length=512, max_delta_length=20, batch_size=1, ): super().__init__() self.embedding = embedding self.decoder = decoder self.log_softmax = log_softmax self.pad, self.bos, self.eos = pad, bos, eos self.max_seq_length = max_sequence_length self.max_delta_len = max_delta_length self.batch_size = batch_size def _one_step_forward( self, decoder_input_ids=None, encoder_hidden_states=None, encoder_input_mask=None, decoder_mems_list=None, pos=0, ): """ One step of autoregressive output generation. Args: decoder_input_ids: starting sequence of tokens to generate from; if None, generation will start from a batch of <bos> tokens encoder_hidden_states: output of the encoder for conditional sequence generation; if None, generator will use unconditional mode (e.g., language modeling) encoder_input_mask: input mask used in the encoder decoder_mems_list: list of size num_layers with cached activations of sequence (x[1], ..., x[k-1]) for fast generation of x[k] pos: starting position in positional encoding """ decoder_hidden_states = self.embedding.forward(decoder_input_ids, start_pos=pos) decoder_input_mask = mask_padded_tokens(decoder_input_ids, self.pad).float() if encoder_hidden_states is not None: decoder_mems_list = self.decoder.forward( decoder_hidden_states, decoder_input_mask, encoder_hidden_states, encoder_input_mask, decoder_mems_list, return_mems=True, ) else: decoder_mems_list = self.decoder.forward( decoder_hidden_states, decoder_input_mask, decoder_mems_list, return_mems=True ) log_probs = self.log_softmax.forward(hidden_states=decoder_mems_list[-1][:, -1:]) return log_probs, decoder_mems_list def _prepare_for_search(self, decoder_input_ids=None, encoder_hidden_states=None): """ Helper function which defines starting sequence to begin generating with and maximum allowed number of tokens to be generated. """ decoder_parameter = next(self.decoder.parameters()) batch_size = self.batch_size # for encoder-decoder generation, maximum length of generated sequence # is min(max_sequence_length, src_len + max_delta_length) if encoder_hidden_states is not None: batch_size, src_len, _ = encoder_hidden_states.size() if self.max_delta_len >= 0: max_seq_length = min(self.max_seq_length, src_len + self.max_delta_len) else: max_seq_length = self.max_seq_length else: max_seq_length = self.max_seq_length # if no input is provided, start with the batch of <bos> tokens if decoder_input_ids is not None: tgt = decoder_input_ids batch_size, tgt_len = decoder_input_ids.size() else: tgt = torch.zeros(batch_size, 1).long().fill_(self.bos).to(decoder_parameter.device) tgt_len = 1 max_generation_length = max_seq_length - tgt_len return tgt, batch_size, max_generation_length def _forward( self, decoder_input_ids=None, encoder_hidden_states=None, encoder_input_mask=None, return_beam_scores=False ): assert not return_beam_scores tgt, batch_size, max_generation_length = self._prepare_for_search(decoder_input_ids, encoder_hidden_states) # pad profile tracks sequences ending with <eos> token to replace # everything after <eos> with <pad> token decoder_parameter = next(self.decoder.parameters()) pad_profile = torch.zeros(batch_size, 1).long().to(decoder_parameter.device) decoder_mems_list = None for i in range(max_generation_length): log_probs, decoder_mems_list = self._one_step_forward( tgt[:, -1:], encoder_hidden_states, encoder_input_mask, decoder_mems_list, i ) next_tokens = torch.argmax(log_probs[:, -1], dim=-1, keepdim=True) next_tokens = self.pad * pad_profile + next_tokens * (1 - pad_profile) pad_profile = torch.max(pad_profile, (next_tokens == self.eos).long()) tgt = torch.cat((tgt, next_tokens), dim=-1) # abort generation if all sequences end with <eos> if pad_profile.sum() == batch_size: break return tgt def __call__( self, decoder_input_ids=None, encoder_hidden_states=None, encoder_input_mask=None, return_beam_scores=False ): with self.as_frozen(): return self._forward( decoder_input_ids, encoder_hidden_states, encoder_input_mask, return_beam_scores=return_beam_scores ) def freeze(self) -> None: """Freeze weights of embedding, decoder, and classification layers to prevent memory leak. """ for param in self.embedding.parameters(): param.requires_grad = False self.embedding.eval() for param in self.decoder.parameters(): param.requires_grad = False self.decoder.eval() for param in self.log_softmax.parameters(): param.requires_grad = False self.log_softmax.eval() def unfreeze(self) -> None: """Unfreeze weights of embedding, decoder, and classification layers. """ for param in self.embedding.parameters(): param.requires_grad = True self.embedding.train() for param in self.decoder.parameters(): param.requires_grad = True self.decoder.train() for param in self.log_softmax.parameters(): param.requires_grad = True self.log_softmax.train() @contextmanager def as_frozen(self): """ Context manager which temporarily freezes embedding, decoder, and log_softmax modules, yields control and finally unfreezes the modules. """ self.freeze() try: yield finally: self.unfreeze() class TopKSequenceGenerator(GreedySequenceGenerator): """ Top-k sequence generator based on the decoder followed by log_softmax. Args: *all args of GreedySequenceGenerator class beam_size: size of the beam (parameter k in top-k) temperature: temperature of top-k sampling, all logits are divided by temperature before rescaling. High temperature leads to uniform distribution, low leads to delta-like distribution. Kwargs: all remaining parameters of GreedySequenceGenerator class """ def __init__(self, embedding, decoder, log_softmax, beam_size=1, temperature=1.0, **kwargs): super().__init__(embedding, decoder, log_softmax, **kwargs) self.beam_size = beam_size self.temp = temperature # @torch.no_grad() def _one_step_forward( self, decoder_input_ids=None, encoder_hidden_states=None, encoder_input_mask=None, decoder_mems_list=None, pos=0, ): log_probs, decoder_mems_list = super()._one_step_forward( decoder_input_ids, encoder_hidden_states, encoder_input_mask, decoder_mems_list, pos ) batch_size, seq_len, vocab_size = log_probs.size() scores, indices = torch.topk(log_probs, self.beam_size, dim=-1) rescaled_logexp = torch.zeros_like(log_probs).scatter(-1, indices, scores.div(self.temp).exp()) probs = rescaled_logexp / rescaled_logexp.norm(1, -1, keepdim=True) # We randomly sample next tokens from rescaled probability distribution # over top-k candidates and return a binary tensor which indicates # candidates that have been selected. We call this object # `pseudo_log_probs` as genuine log_probs should have -infs instead of # 0s and 0s instead of 1s. ids = torch.multinomial(probs.view(-1, vocab_size), 1).view(-1, seq_len, 1) pseudo_log_probs = torch.zeros_like(log_probs).scatter(-1, ids, 1.0) return pseudo_log_probs, decoder_mems_list class BeamSearchSequenceGenerator(GreedySequenceGenerator): def __init__(self, embedding, decoder, log_softmax, beam_size=1, len_pen=0, **kwargs): """ Beam Search sequence generator based on the decoder followed by log_softmax. Args: *all args of GreedySequenceGenerator class beam_size: size of the beam len_pen: length penalty parameter Kwargs: all remaining parameters of GreedySequenceGenerator class """ super().__init__(embedding, decoder, log_softmax, **kwargs) self.beam_size = beam_size self.len_pen = len_pen @staticmethod def compute_len_penalty(lengths, alpha): """Returns length penalty according to https://arxiv.org/pdf/1609.08144.pdf""" return ((5 + lengths) / 6).pow(alpha) def _forward( self, decoder_input_ids=None, encoder_hidden_states=None, encoder_input_mask=None, return_beam_scores=False ): tgt, batch_size, max_generation_length = self._prepare_for_search(decoder_input_ids, encoder_hidden_states) # generate initial buffer of beam_size prefixes-hypotheses log_probs, decoder_mems_list = self._one_step_forward(tgt, encoder_hidden_states, encoder_input_mask, None, 0) scores, prefixes = torch.topk(log_probs.permute(0, 2, 1), self.beam_size, dim=1) scores, prefixes = scores.view(-1, 1), prefixes.view(-1, 1) # repeat init target prefixes and cached memory states beam_size times prefixes = torch.cat((tgt.repeat(1, self.beam_size).view(-1, 1), prefixes), dim=1) for j in range(len(decoder_mems_list)): decoder_mems_list[j] = decoder_mems_list[j].repeat(self.beam_size, 1, 1) # repeat source sequence beam_size times for beam search if encoder_hidden_states is not None: _, src_length, hidden_size = encoder_hidden_states.size() encoder_input_mask = encoder_input_mask.repeat(1, self.beam_size).view(-1, src_length) encoder_hidden_states = encoder_hidden_states.repeat(1, self.beam_size, 1).view( -1, src_length, hidden_size ) else: hidden_size = decoder_mems_list[0].size(2) # pad_profile tracks finished hypotheses to generate only <pad> tokens # if <eos> or <pad> has been generated pad_profile = torch.zeros_like(scores).long() # prefixes_len tracks lengths of generated hypotheses to perform # length penalty correction prefixes_len = torch.zeros_like(scores).fill_(prefixes.size(1) + 1) for i in range(max_generation_length): # mask all finished hypotheses to exclude them from beam pad_mask = pad_profile.repeat(1, self.beam_size) # generate and score candidates for prefixes continuation log_probs, decoder_mems_list = self._one_step_forward( prefixes[:, -1:], encoder_hidden_states, encoder_input_mask, decoder_mems_list, i + 1 ) scores_i, prefixes_i = torch.topk(log_probs[:, -1, :], self.beam_size, dim=-1) # for all prefixes ending with <eos> or <pad> replace generated # continuations with <pad> prefixes_i = self.pad * pad_mask + prefixes_i * (1 - pad_mask) # force all hypotheses but one generated from already finished # hypotheses to have extremely low score, so they will not be # considered during beam re-ranking pad_mask[:, 1:] = pad_mask[:, 1:] * NEG_INF scores = scores + scores_i * (1 - pad_mask).to(scores.dtype) # choose top-k hypotheses with length penalty applied len_penalties = self.compute_len_penalty(prefixes_len, self.len_pen) scores = scores / len_penalties scores, indices_i = torch.topk(scores.view(-1, self.beam_size ** 2), self.beam_size, dim=1) scores = scores.view(-1, 1) * len_penalties # select prefixes which correspond to the chosen hypotheses prefixes = prefixes.unsqueeze(1).repeat(1, self.beam_size, 1) prefixes = torch.cat((prefixes, prefixes_i.unsqueeze(2)), dim=2) prefixes = prefixes.view(batch_size, self.beam_size ** 2, -1) p_len = prefixes.size(2) prefixes_ids = indices_i.unsqueeze(2).repeat(1, 1, p_len) prefixes = prefixes.gather(1, prefixes_ids).view(-1, p_len) # reshuffle cached decoder memory states to restore the order # of hypotheses broken after top-k selection mems_ids = indices_i.unsqueeze(2).unsqueeze(3).repeat(1, 1, p_len - 1, hidden_size) // self.beam_size for j in range(len(decoder_mems_list)): decoder_mems_list[j] = ( decoder_mems_list[j] .view(-1, self.beam_size, p_len - 1, hidden_size) .gather(1, mems_ids) .view(-1, p_len - 1, hidden_size) ) # update prefixes_len and pad_profile not_eos_pad = prefixes.ne(self.eos) & prefixes.ne(self.pad) prefixes_len = 1 + not_eos_pad.sum(dim=1, keepdim=True).to(scores.dtype) pad_profile = (~not_eos_pad[:, -1:]).long() # if all hypotheses end with <eos> or <pad>, interrupt search if pad_profile.sum() == batch_size * self.beam_size: break # select best performing hypotheses in each element of the batch len_penalties = self.compute_len_penalty(prefixes_len, self.len_pen) scores = scores / len_penalties best_guesses = ( torch.argmax(scores.view(-1, self.beam_size), dim=1, keepdim=True).repeat(1, prefixes.size(1)).unsqueeze(1) ) tgt = prefixes.view(batch_size, self.beam_size, -1).gather(1, best_guesses).squeeze(1) if return_beam_scores: return prefixes, scores * len_penalties, tgt else: return tgt class EnsembleBeamSearchSequenceGenerator: def __init__( self, encoders, embeddings, decoders, log_softmaxes, beam_size=1, len_pen=0, pad=0, bos=1, eos=2, max_sequence_length=512, max_delta_length=20, batch_size=1, language_model=None, fusion_coef=None, ): """ Ensemble Beam Search sequence generator based on the decoder followed by log_softmax. Averages the probabilities of different models. NOTE: All models must have been trained with the same BPE tokenizers. Args: encoders: A list of encoders embeddings: A list of decoder embedding layers decoders: A list of decoders log_softmaxes: A list of decoder output layers beam_size: Beam size len_pen: Length penalty to adjust logprob scores to favor longer sequences pad: pad id bos: beginning of sequence id eos: end of sequence id max_sequence_length: maximum sequence length max_delta_length: maximum length difference between input and output batch_size: batch size if not inferrable from input sequence """ self.encoders = encoders self.embeddings = embeddings self.decoders = decoders self.log_softmaxes = log_softmaxes self.beam_size = beam_size self.len_pen = len_pen self.pad, self.bos, self.eos = pad, bos, eos self.max_seq_length = max_sequence_length self.max_delta_len = max_delta_length self.batch_size = batch_size assert len(embeddings) == len(decoders) == len(log_softmaxes) == len(encoders) self.num_models = len(encoders) self.language_model = language_model self.fusion_coef = fusion_coef @staticmethod def compute_len_penalty(lengths, alpha): """Returns length penalty according to https://arxiv.org/pdf/1609.08144.pdf""" return ((5 + lengths) / 6).pow(alpha) def _one_step_forward_lm(self, decoder_input_ids=None, lm_mems_list=None, pos=0): input_mask = mask_padded_tokens(decoder_input_ids, self.pad).float() lm_hidden_states = self.language_model.encoder.embedding.forward(decoder_input_ids, start_pos=pos) lm_mems_list = self.language_model.encoder.encoder.forward( lm_hidden_states, input_mask, lm_mems_list, return_mems=True, ) lm_log_probs = self.language_model.log_softmax.forward(hidden_states=lm_mems_list[-1][:, -1:]) return lm_log_probs, lm_mems_list def _one_step_forward( self, ensemble_index, decoder_input_ids=None, encoder_hidden_states=None, encoder_input_mask=None, decoder_mems_list=None, pos=0, ): """ One step of autoregressive output generation for one particular model. Args: decoder_input_ids: starting sequence of tokens to generate from; if None, generation will start from a batch of <bos> tokens encoder_hidden_states: output of the encoder for conditional sequence generation; if None, generator will use unconditional mode (e.g., language modeling) encoder_input_mask: input mask used in the encoder decoder_mems_list: list of size num_layers with cached activations of sequence (x[1], ..., x[k-1]) for fast generation of x[k] pos: starting position in positional encoding """ decoder_hidden_states = self.embeddings[ensemble_index].forward(decoder_input_ids, start_pos=pos) decoder_input_mask = mask_padded_tokens(decoder_input_ids, self.pad).float() if encoder_hidden_states is not None: decoder_mems_list = self.decoders[ensemble_index].forward( decoder_hidden_states, decoder_input_mask, encoder_hidden_states, encoder_input_mask, decoder_mems_list, return_mems=True, ) else: decoder_mems_list = self.decoders[ensemble_index].forward( decoder_hidden_states, decoder_input_mask, decoder_mems_list, return_mems=True ) log_probs = self.log_softmaxes[ensemble_index].forward(hidden_states=decoder_mems_list[-1][:, -1:]) return log_probs, decoder_mems_list def _prepare_for_search(self, decoder_input_ids=None, encoder_hidden_states=None): """ Helper function which defines starting sequence to begin generating with and maximum allowed number of tokens to be generated. """ decoder_parameter = next(self.decoders[0].parameters()) batch_size = self.batch_size # for encoder-decoder generation, maximum length of generated sequence # is min(max_sequence_length, src_len + max_delta_length) if encoder_hidden_states is not None: batch_size, src_len, _ = encoder_hidden_states.size() if self.max_delta_len >= 0: max_seq_length = min(self.max_seq_length, src_len + self.max_delta_len) else: max_seq_length = self.max_seq_length else: max_seq_length = self.max_seq_length # if no input is provided, start with the batch of <bos> tokens if decoder_input_ids is not None: tgt = decoder_input_ids batch_size, tgt_len = decoder_input_ids.size() else: tgt = torch.zeros(batch_size, 1).long().fill_(self.bos).to(decoder_parameter.device) tgt_len = 1 max_generation_length = max_seq_length - tgt_len return tgt, batch_size, max_generation_length def _get_encoder_hidden_states(self, src_ids, encoder_input_mask, ensemble_index): return self.encoders[ensemble_index](input_ids=src_ids, encoder_mask=encoder_input_mask) def _average_probs(self, probs_list): probs_list = torch.stack(probs_list) return torch.log(torch.exp(probs_list).mean(0)) # probs = torch.stack(probs_list) # Ens x B x T x V # return torch.log(probs.sum(0) / probs.sum(-1).sum(0).unsqueeze(-1)) def _forward(self, src_ids, encoder_input_mask, decoder_input_ids=None, return_beam_scores=False): encoder_hidden_states = [ self._get_encoder_hidden_states(src_ids, encoder_input_mask, i) for i in range(self.num_models) ] tgt, batch_size, max_generation_length = self._prepare_for_search(decoder_input_ids, encoder_hidden_states[0]) # generate initial buffer of beam_size prefixes-hypotheses outputs = [ self._one_step_forward(i, tgt, encoder_hidden_states[i], encoder_input_mask, None, 0) for i in range(self.num_models) ] nmt_log_probs = self._average_probs([x[0] for x in outputs]) decoder_mems_lists = [x[1] for x in outputs] if self.language_model is not None: lm_log_probs, lm_mems_list = self._one_step_forward_lm(tgt, None, 0) log_probs = nmt_log_probs + self.fusion_coef * lm_log_probs else: log_probs = nmt_log_probs scores, prefixes = torch.topk(log_probs.permute(0, 2, 1), self.beam_size, dim=1) scores, prefixes = scores.view(-1, 1), prefixes.view(-1, 1) # repeat init target prefixes and cached memory states beam_size times prefixes = torch.cat((tgt.repeat(1, self.beam_size).view(-1, 1), prefixes), dim=1) for i in range(self.num_models): for j in range(len(decoder_mems_lists[i])): decoder_mems_lists[i][j] = decoder_mems_lists[i][j].repeat(self.beam_size, 1, 1) if self.language_model is not None: for j in range(len(lm_mems_list)): lm_mems_list[j] = lm_mems_list[j].repeat(self.beam_size, 1, 1) lm_hidden_size = lm_mems_list[0].size(2) encoder_input_mask = encoder_input_mask.repeat(1, self.beam_size).view(-1, encoder_input_mask.size(1)) for i in range(self.num_models): _, src_length, hidden_size = encoder_hidden_states[i].size() encoder_hidden_states[i] = ( encoder_hidden_states[i].repeat(1, self.beam_size, 1).view(-1, src_length, hidden_size) ) # pad_profile tracks finished hypotheses to generate only <pad> tokens # if <eos> or <pad> has been generated pad_profile = torch.zeros_like(scores).long() # prefixes_len tracks lengths of generated hypotheses to perform # length penalty correction prefixes_len = torch.zeros_like(scores).fill_(prefixes.size(1) + 1) for i in range(max_generation_length): # mask all finished hypotheses to exclude them from beam pad_mask = pad_profile.repeat(1, self.beam_size) # generate and score candidates for prefixes continuation outputs = [ self._one_step_forward( model_num, prefixes[:, -1:], encoder_hidden_states[model_num], encoder_input_mask, decoder_mems_lists[model_num], i + 1, ) for model_num in range(self.num_models) ] nmt_log_probs = self._average_probs([x[0] for x in outputs]) decoder_mems_lists = [x[1] for x in outputs] if self.language_model is not None: lm_log_probs, lm_mems_list = self._one_step_forward_lm(prefixes[:, -1:], lm_mems_list, i + 1) log_probs = nmt_log_probs + self.fusion_coef * lm_log_probs else: log_probs = nmt_log_probs scores_i, prefixes_i = torch.topk(log_probs[:, -1, :], self.beam_size, dim=-1) # for all prefixes ending with <eos> or <pad> replace generated # continuations with <pad> prefixes_i = self.pad * pad_mask + prefixes_i * (1 - pad_mask) # force all hypotheses but one generated from already finished # hypotheses to have extremely low score, so they will not be # considered during beam re-ranking pad_mask[:, 1:] = pad_mask[:, 1:] * NEG_INF scores = scores + scores_i * (1 - pad_mask).to(scores.dtype) # choose top-k hypotheses with length penalty applied len_penalties = self.compute_len_penalty(prefixes_len, self.len_pen) scores = scores / len_penalties scores, indices_i = torch.topk(scores.view(-1, self.beam_size ** 2), self.beam_size, dim=1) scores = scores.view(-1, 1) * len_penalties # select prefixes which correspond to the chosen hypotheses prefixes = prefixes.unsqueeze(1).repeat(1, self.beam_size, 1) prefixes = torch.cat((prefixes, prefixes_i.unsqueeze(2)), dim=2) prefixes = prefixes.view(batch_size, self.beam_size ** 2, -1) p_len = prefixes.size(2) prefixes_ids = indices_i.unsqueeze(2).repeat(1, 1, p_len) prefixes = prefixes.gather(1, prefixes_ids).view(-1, p_len) # reshuffle cached decoder memory states to restore the order # of hypotheses broken after top-k selection for model_num in range(self.num_models): hidden_size = decoder_mems_lists[model_num][0].size(2) mems_ids = indices_i.unsqueeze(2).unsqueeze(3).repeat(1, 1, p_len - 1, hidden_size) // self.beam_size for j in range(len(decoder_mems_lists[model_num])): decoder_mems_lists[model_num][j] = ( decoder_mems_lists[model_num][j] .view(-1, self.beam_size, p_len - 1, hidden_size) .gather(1, mems_ids) .view(-1, p_len - 1, hidden_size) ) if self.language_model is not None: lm_mems_ids = ( indices_i.unsqueeze(2).unsqueeze(3).repeat(1, 1, p_len - 1, lm_hidden_size) // self.beam_size ) for j in range(len(lm_mems_list)): lm_mems_list[j] = ( lm_mems_list[j] .view(-1, self.beam_size, p_len - 1, lm_hidden_size) .gather(1, lm_mems_ids) .view(-1, p_len - 1, lm_hidden_size) ) # update prefixes_len and pad_profile not_eos_pad = prefixes.ne(self.eos) & prefixes.ne(self.pad) prefixes_len = 1 + not_eos_pad.sum(dim=1, keepdim=True).to(scores.dtype) pad_profile = (~not_eos_pad[:, -1:]).long() # if all hypotheses end with <eos> or <pad>, interrupt search if pad_profile.sum() == batch_size * self.beam_size: break # select best performing hypotheses in each element of the batch len_penalties = self.compute_len_penalty(prefixes_len, self.len_pen) scores = scores / len_penalties best_guesses = ( torch.argmax(scores.view(-1, self.beam_size), dim=1, keepdim=True).repeat(1, prefixes.size(1)).unsqueeze(1) ) tgt = prefixes.view(batch_size, self.beam_size, -1).gather(1, best_guesses).squeeze(1) if return_beam_scores: return prefixes, scores * len_penalties, tgt else: return tgt def __call__(self, src_ids, encoder_input_mask, decoder_input_ids=None, return_beam_scores=False): with self.as_frozen(): return self._forward(src_ids, encoder_input_mask, decoder_input_ids, return_beam_scores) def freeze(self) -> None: """Freeze weights of embedding, decoder, and classification layers to prevent memory leak. """ for model_num in range(self.num_models): for param in self.embeddings[model_num].parameters(): param.requires_grad = False self.embeddings[model_num].eval() for param in self.decoders[model_num].parameters(): param.requires_grad = False self.decoders[model_num].eval() for param in self.log_softmaxes[model_num].parameters(): param.requires_grad = False self.log_softmaxes[model_num].eval() for param in self.encoders[model_num].parameters(): param.requires_grad = False self.encoders[model_num].eval() def unfreeze(self) -> None: """Unfreeze weights of embedding, decoder, and classification layers. """ for model_num in range(self.num_models): for param in self.embeddings[model_num].parameters(): param.requires_grad = True self.embeddings[model_num].train() for param in self.decoders[model_num].parameters(): param.requires_grad = True self.decoders[model_num].train() for param in self.log_softmaxes[model_num].parameters(): param.requires_grad = True self.log_softmaxes[model_num].train() for param in self.encoders[model_num].parameters(): param.requires_grad = True self.encoders[model_num].train() @contextmanager def as_frozen(self): """ Context manager which temporarily freezes embedding, decoder, and log_softmax modules, yields control and finally unfreezes the modules. """ self.freeze() try: yield finally: self.unfreeze() class BeamSearchSequenceGeneratorWithLanguageModel(GreedySequenceGenerator): def __init__( self, embedding, decoder, log_softmax, language_model, beam_size=1, len_pen=0, fusion_coef=0.0, **kwargs ): """ Beam Search sequence generator based on the decoder followed by log_softmax with external language model fusion. Args: *all args of BeamSearchSequenceGenerator class language_model: nemo TransformerLMModel fusion_coef: coefficient before language model score, the resulting score is score = log P_NMT(y|x) + fusion_coef * log P_LM(y) Kwargs: all remaining parameters of GreedySequenceGenerator class """ super().__init__(embedding, decoder, log_softmax, **kwargs) self.language_model = language_model self.beam_size = beam_size self.len_pen = len_pen self.fusion_coef = fusion_coef def _one_step_forward( self, decoder_input_ids=None, encoder_hidden_states=None, encoder_input_mask=None, decoder_mems_list=None, lm_mems_list=None, pos=0, ): nmt_log_probs, decoder_mems_list = super()._one_step_forward( decoder_input_ids, encoder_hidden_states, encoder_input_mask, decoder_mems_list, pos, ) input_mask = mask_padded_tokens(decoder_input_ids, self.pad).float() lm_hidden_states = self.language_model.encoder.embedding.forward(decoder_input_ids, start_pos=pos) lm_mems_list = self.language_model.encoder.encoder.forward( lm_hidden_states, input_mask, lm_mems_list, return_mems=True, ) lm_log_probs = self.language_model.log_softmax.forward(hidden_states=lm_mems_list[-1][:, -1:]) log_probs = nmt_log_probs + self.fusion_coef * lm_log_probs return log_probs, decoder_mems_list, lm_mems_list @staticmethod def compute_len_penalty(lengths, alpha): """Returns length penalty according to https://arxiv.org/pdf/1609.08144.pdf""" return ((5 + lengths) / 6).pow(alpha) def _forward( self, decoder_input_ids=None, encoder_hidden_states=None, encoder_input_mask=None, return_beam_scores=False ): tgt, batch_size, max_generation_length = self._prepare_for_search(decoder_input_ids, encoder_hidden_states) # generate initial buffer of beam_size prefixes-hypotheses log_probs, decoder_mems_list, lm_mems_list = self._one_step_forward( tgt, encoder_hidden_states, encoder_input_mask, None, None, 0 ) scores, prefixes = torch.topk(log_probs.permute(0, 2, 1), self.beam_size, dim=1) scores, prefixes = scores.view(-1, 1), prefixes.view(-1, 1) # repeat init target prefixes and cached memory states beam_size times prefixes = torch.cat((tgt.repeat(1, self.beam_size).view(-1, 1), prefixes), dim=1) for j in range(len(decoder_mems_list)): decoder_mems_list[j] = decoder_mems_list[j].repeat(self.beam_size, 1, 1) for j in range(len(lm_mems_list)): lm_mems_list[j] = lm_mems_list[j].repeat(self.beam_size, 1, 1) # repeat source sequence beam_size times for beam search if encoder_hidden_states is not None: _, src_length, hidden_size = encoder_hidden_states.size() encoder_input_mask = encoder_input_mask.repeat(1, self.beam_size).view(-1, src_length) encoder_hidden_states = encoder_hidden_states.repeat(1, self.beam_size, 1).view( -1, src_length, hidden_size ) else: hidden_size = decoder_mems_list[0].size(2) lm_hidden_size = lm_mems_list[0].size(2) # pad_profile tracks finished hypotheses to generate only <pad> tokens # if <eos> or <pad> has been generated pad_profile = torch.zeros_like(scores).long() # prefixes_len tracks lengths of generated hypotheses to perform # length penalty correction prefixes_len = torch.zeros_like(scores).fill_(prefixes.size(1) + 1) for i in range(max_generation_length): # mask all finished hypotheses to exclude them from beam pad_mask = pad_profile.repeat(1, self.beam_size) # generate and score candidates for prefixes continuation log_probs, decoder_mems_list, lm_mems_list = self._one_step_forward( prefixes[:, -1:], encoder_hidden_states, encoder_input_mask, decoder_mems_list, lm_mems_list, i + 1 ) scores_i, prefixes_i = torch.topk(log_probs[:, -1, :], self.beam_size, dim=-1) # for all prefixes ending with <eos> or <pad> replace generated # continuations with <pad> prefixes_i = self.pad * pad_mask + prefixes_i * (1 - pad_mask) # force all hypotheses but one generated from already finished # hypotheses to have extremely low score, so they will not be # considered during beam re-ranking pad_mask[:, 1:] = pad_mask[:, 1:] * NEG_INF scores = scores + scores_i * (1 - pad_mask).to(scores.dtype) # choose top-k hypotheses with length penalty applied len_penalties = self.compute_len_penalty(prefixes_len, self.len_pen) scores = scores / len_penalties scores, indices_i = torch.topk(scores.view(-1, self.beam_size ** 2), self.beam_size, dim=1) scores = scores.view(-1, 1) * len_penalties # select prefixes which correspond to the chosen hypotheses prefixes = prefixes.unsqueeze(1).repeat(1, self.beam_size, 1) prefixes = torch.cat((prefixes, prefixes_i.unsqueeze(2)), dim=2) prefixes = prefixes.view(batch_size, self.beam_size ** 2, -1) p_len = prefixes.size(2) prefixes_ids = indices_i.unsqueeze(2).repeat(1, 1, p_len) prefixes = prefixes.gather(1, prefixes_ids).view(-1, p_len) # reshuffle cached decoder memory states to restore the order # of hypotheses broken after top-k selection mems_ids = indices_i.unsqueeze(2).unsqueeze(3).repeat(1, 1, p_len - 1, hidden_size) // self.beam_size for j in range(len(decoder_mems_list)): decoder_mems_list[j] = ( decoder_mems_list[j] .view(-1, self.beam_size, p_len - 1, hidden_size) .gather(1, mems_ids) .view(-1, p_len - 1, hidden_size) ) lm_mems_ids = indices_i.unsqueeze(2).unsqueeze(3).repeat(1, 1, p_len - 1, lm_hidden_size) // self.beam_size for j in range(len(lm_mems_list)): lm_mems_list[j] = ( lm_mems_list[j] .view(-1, self.beam_size, p_len - 1, lm_hidden_size) .gather(1, lm_mems_ids) .view(-1, p_len - 1, lm_hidden_size) ) # update prefixes_len and pad_profile not_eos_pad = prefixes.ne(self.eos) & prefixes.ne(self.pad) prefixes_len = 1 + not_eos_pad.sum(dim=1, keepdim=True).to(scores.dtype) pad_profile = (~not_eos_pad[:, -1:]).long() # if all hypotheses end with <eos> or <pad>, interrupt search if pad_profile.sum() == batch_size * self.beam_size: break # select best performing hypotheses in each element of the batch len_penalties = self.compute_len_penalty(prefixes_len, self.len_pen) scores = scores / len_penalties best_guesses = ( torch.argmax(scores.view(-1, self.beam_size), dim=1, keepdim=True).repeat(1, prefixes.size(1)).unsqueeze(1) ) tgt = prefixes.view(batch_size, self.beam_size, -1).gather(1, best_guesses).squeeze(1) if return_beam_scores: return prefixes, scores * len_penalties, tgt else: return tgt
NeMo-main
nemo/collections/nlp/modules/common/transformer/transformer_generators.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Dict, Optional from nemo.collections.nlp.modules.common.transformer.bridge_encoders import BridgeEncoder from nemo.collections.nlp.modules.common.transformer.perceiver_encoders import PerceiverEncoder from nemo.collections.nlp.modules.common.transformer.reduction_encoders import PoolingEncoder from nemo.collections.nlp.modules.common.transformer.transformer import ( NeMoTransformerConfig, TransformerDecoderNM, TransformerEncoderNM, ) from nemo.core.classes.common import typecheck from nemo.core.neural_types import MaskType, NeuralType from nemo.core.neural_types.elements import BoolType __all__ = [ "NeMoTransformerBottleneckConfig", "NeMoTransformerBottleneckEncoderConfig", "NeMoTransformerBottleneckDecoderConfig", "TransformerBottleneckEncoderNM", ] @dataclass class NeMoTransformerBottleneckConfig(NeMoTransformerConfig): # architecture details (default is no bottleneck) arch: str = '' hidden_steps: int = -1 hidden_blocks: int = 1 hidden_init_method: str = "params" @dataclass class NeMoTransformerBottleneckEncoderConfig(NeMoTransformerBottleneckConfig): mask_future: bool = False # change return_mask to False to return hidden states only (default for non-bottleneck encoder) return_mask: bool = True @dataclass class NeMoTransformerBottleneckDecoderConfig(NeMoTransformerBottleneckConfig): r2l: bool = False class TransformerBottleneckEncoderNM(TransformerEncoderNM): _SUPPORTED_ARCH = ["seq2seq", "bridge", "perceiver", "max_pool", "avg_pool"] def __init__( self, vocab_size: int, hidden_size: int, num_layers: int, inner_size: int, num_attention_heads: int, max_sequence_length: int = 512, num_token_types: int = 2, embedding_dropout: float = 0.0, learn_positional_encodings: bool = False, ffn_dropout: float = 0.0, attn_score_dropout: float = 0.0, attn_layer_dropout: float = 0.0, hidden_act: str = 'relu', mask_future: bool = False, pre_ln: bool = False, pre_ln_final_layer_norm: bool = True, arch: str = '', hidden_steps: int = -1, hidden_blocks: int = 1, hidden_init_method: str = "default", padding_idx: int = 0, # default whether forward() method returns hidden or (hidden, mask) return_mask=True, ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, num_layers=num_layers, inner_size=inner_size, num_attention_heads=num_attention_heads, max_sequence_length=max_sequence_length, num_token_types=num_token_types, embedding_dropout=embedding_dropout, learn_positional_encodings=learn_positional_encodings, ffn_dropout=ffn_dropout, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, hidden_act=hidden_act, mask_future=mask_future, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, padding_idx=padding_idx, ) self._arch = arch self._return_mask = return_mask # replace encoder self._encoder = self._build_encoder( arch=arch, hidden_steps=hidden_steps, hidden_blocks=hidden_blocks, hidden_init_method=hidden_init_method, hidden_size=hidden_size, num_layers=num_layers, inner_size=inner_size, num_attention_heads=num_attention_heads, ffn_dropout=ffn_dropout, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, hidden_act=hidden_act, mask_future=mask_future, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, ) def _build_encoder(self, arch, **kwargs): """ Returns a decoder based on architecture arch and kwargs """ # default non-bottleneck transformer encoder if (not arch) or (arch == "seq2seq"): encoder = self.encoder elif arch == "bridge": encoder = BridgeEncoder( num_layers=kwargs["num_layers"], hidden_size=kwargs["hidden_size"], inner_size=kwargs["inner_size"], num_attention_heads=kwargs["num_attention_heads"], attn_score_dropout=kwargs["attn_score_dropout"], attn_layer_dropout=kwargs["attn_layer_dropout"], ffn_dropout=kwargs["ffn_dropout"], hidden_act=kwargs["hidden_act"], mask_future=kwargs["mask_future"], pre_ln=kwargs["pre_ln"], pre_ln_final_layer_norm=kwargs["pre_ln_final_layer_norm"], hidden_steps=kwargs["hidden_steps"], hidden_blocks=kwargs["hidden_blocks"], hidden_init_method=kwargs["hidden_init_method"], ) elif arch == "perceiver": encoder = PerceiverEncoder( num_layers=kwargs["num_layers"], hidden_size=kwargs["hidden_size"], inner_size=kwargs["inner_size"], num_attention_heads=kwargs["num_attention_heads"], attn_score_dropout=kwargs["attn_score_dropout"], attn_layer_dropout=kwargs["attn_layer_dropout"], ffn_dropout=kwargs["ffn_dropout"], hidden_act=kwargs["hidden_act"], mask_future=kwargs["mask_future"], pre_ln=kwargs["pre_ln"], pre_ln_final_layer_norm=kwargs["pre_ln_final_layer_norm"], hidden_steps=kwargs["hidden_steps"], hidden_blocks=kwargs["hidden_blocks"], hidden_init_method=kwargs["hidden_init_method"], ) elif arch == "max_pool": encoder = PoolingEncoder( num_layers=kwargs["num_layers"], hidden_size=kwargs["hidden_size"], inner_size=kwargs["inner_size"], num_attention_heads=kwargs["num_attention_heads"], attn_score_dropout=kwargs["attn_score_dropout"], attn_layer_dropout=kwargs["attn_layer_dropout"], ffn_dropout=kwargs["ffn_dropout"], hidden_act=kwargs["hidden_act"], mask_future=kwargs["mask_future"], pre_ln=kwargs["pre_ln"], pre_ln_final_layer_norm=kwargs["pre_ln_final_layer_norm"], hidden_steps=kwargs["hidden_steps"], hidden_blocks=kwargs["hidden_blocks"], hidden_init_method=kwargs["hidden_init_method"], pooling_type="max", ) elif arch == "avg_pool": encoder = PoolingEncoder( num_layers=kwargs["num_layers"], hidden_size=kwargs["hidden_size"], inner_size=kwargs["inner_size"], num_attention_heads=kwargs["num_attention_heads"], attn_score_dropout=kwargs["attn_score_dropout"], attn_layer_dropout=kwargs["attn_layer_dropout"], ffn_dropout=kwargs["ffn_dropout"], hidden_act=kwargs["hidden_act"], mask_future=kwargs["mask_future"], pre_ln=kwargs["pre_ln"], pre_ln_final_layer_norm=kwargs["pre_ln_final_layer_norm"], hidden_steps=kwargs["hidden_steps"], hidden_blocks=kwargs["hidden_blocks"], hidden_init_method=kwargs["hidden_init_method"], pooling_type="avg", ) else: raise ValueError(f"Unknown arch = {self.arch}, supported arch = {self.supported_arch}") return encoder @property def input_types(self) -> Optional[Dict[str, NeuralType]]: input_types = super().input_types input_types.update( {"return_mask": NeuralType((), BoolType(), True),} ) return input_types @property def output_types(self) -> Optional[Dict[str, NeuralType]]: output_types = super().output_types output_types.update( {"hidden_mask": NeuralType(('B', 'T'), MaskType(), True),} ) return output_types @property def supported_arch(self): return self._SUPPORTED_ARCH @property def arch(self): return self._arch @typecheck() def forward(self, input_ids, encoder_mask, return_mask=None): if return_mask is None: return_mask = self._return_mask embeddings = self._embedding(input_ids=input_ids) if (not self.arch) or (self.arch == "seq2seq"): encoder_hidden_states = self._encoder(encoder_states=embeddings, encoder_mask=encoder_mask) encoder_hidden_mask = encoder_mask else: encoder_hidden_states, encoder_hidden_mask = self._encoder( encoder_states=embeddings, encoder_mask=encoder_mask, ) if return_mask: return encoder_hidden_states, encoder_hidden_mask else: return encoder_hidden_states class TransformerBottleneckDecoderNM(TransformerDecoderNM): _SUPPORTED_ARCH = ["seq2seq"] def __init__( self, vocab_size: int, hidden_size: int, num_layers: int, inner_size: int, num_attention_heads: int, max_sequence_length: int = 512, num_token_types: int = 2, embedding_dropout: float = 0.0, learn_positional_encodings: bool = False, ffn_dropout: float = 0.0, attn_score_dropout: float = 0.0, attn_layer_dropout: float = 0.0, hidden_act: str = 'relu', pre_ln: bool = False, pre_ln_final_layer_norm: bool = True, arch='', ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, num_layers=num_layers, inner_size=inner_size, num_attention_heads=num_attention_heads, max_sequence_length=max_sequence_length, num_token_types=num_token_types, embedding_dropout=embedding_dropout, learn_positional_encodings=learn_positional_encodings, ffn_dropout=ffn_dropout, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, hidden_act=hidden_act, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, ) self._arch = arch # replace decoder self._decoder = self._build_decoder( arch=arch, hidden_size=hidden_size, num_layers=num_layers, inner_size=inner_size, num_attention_heads=num_attention_heads, max_sequence_length=max_sequence_length, num_token_types=num_token_types, embedding_dropout=embedding_dropout, learn_positional_encodings=learn_positional_encodings, ffn_dropout=ffn_dropout, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, hidden_act=hidden_act, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, ) def _build_decoder(self, arch, **kwargs): """ Returns a decoder based on architecture arch and kwargs """ # usual non-bottleneck transformer decoder if (not arch) or (arch == "seq2seq"): decoder = self.decoder else: raise ValueError(f"Unknown arch = {self.arch}, supported arch = {self.supported_arch}") return decoder @property def supported_arch(self): return self._SUPPORTED_ARCH @property def arch(self): return self._arch
NeMo-main
nemo/collections/nlp/modules/common/transformer/transformer_bottleneck.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import torch import torch.nn as nn from nemo.collections.common.parts import form_attention_mask from nemo.collections.nlp.modules.common.transformer.transformer_modules import MultiHeadAttention, PositionWiseFF __all__ = ["TransformerDecoder"] class TransformerDecoderBlock(nn.Module): """ Building block of Transformer decoder. Args: hidden_size: size of the embeddings in the model, also known as d_model inner_size: number of neurons in the intermediate part of feed-forward net, usually is (4-8 x hidden_size) in the papers num_attention_heads: number of heads in multi-head attention attn_score_dropout: probability of dropout applied to attention scores attn_layer_dropout: probability of dropout applied to the output of the attention layers, but before layer normalization ffn_dropout: probability of dropout applied to FFN output hidden_act: activation function used between two linear layers in FFN """ def __init__( self, hidden_size: int, inner_size: int, num_attention_heads: int = 1, attn_score_dropout: float = 0.0, attn_layer_dropout: float = 0.0, ffn_dropout: float = 0.0, hidden_act: str = "relu", pre_ln: bool = False, ): super().__init__() self.pre_ln = pre_ln self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=1e-5) self.first_sub_layer = MultiHeadAttention( hidden_size, num_attention_heads, attn_score_dropout, attn_layer_dropout ) self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=1e-5) self.second_sub_layer = MultiHeadAttention( hidden_size, num_attention_heads, attn_score_dropout, attn_layer_dropout ) self.layer_norm_3 = nn.LayerNorm(hidden_size, eps=1e-5) self.third_sub_layer = PositionWiseFF(hidden_size, inner_size, ffn_dropout, hidden_act) def forward_preln(self, decoder_query, decoder_mask, decoder_keys, encoder_states, encoder_mask): """ Pre-LayerNorm block Order of operations: LN -> Self-Attn -> Residual -> LN -> Cross-Attn -> Residual -> LN -> FFN """ residual = decoder_query decoder_query = self.layer_norm_1(decoder_query) decoder_keys = self.layer_norm_1(decoder_keys) self_attn_output = self.first_sub_layer(decoder_query, decoder_keys, decoder_keys, decoder_mask) self_attn_output += residual residual = self_attn_output self_attn_output = self.layer_norm_2(self_attn_output) enc_dec_attn_output = self.second_sub_layer(self_attn_output, encoder_states, encoder_states, encoder_mask) enc_dec_attn_output += residual residual = enc_dec_attn_output enc_dec_attn_output = self.layer_norm_3(enc_dec_attn_output) output_states = self.third_sub_layer(enc_dec_attn_output) output_states += residual return output_states def forward_postln(self, decoder_query, decoder_mask, decoder_keys, encoder_states, encoder_mask): """ Post-LayerNorm block Order of operations: Self-Attn -> Residual -> LN -> Cross-Attn -> Residual -> LN -> FFN -> Residual -> LN """ self_attn_output = self.first_sub_layer(decoder_query, decoder_keys, decoder_keys, decoder_mask) self_attn_output += decoder_query self_attn_output = self.layer_norm_1(self_attn_output) enc_dec_attn_output = self.second_sub_layer(self_attn_output, encoder_states, encoder_states, encoder_mask) enc_dec_attn_output += self_attn_output enc_dec_attn_output = self.layer_norm_2(enc_dec_attn_output) output_states = self.third_sub_layer(enc_dec_attn_output) output_states += enc_dec_attn_output return self.layer_norm_3(output_states) def forward(self, decoder_query, decoder_mask, decoder_keys, encoder_states, encoder_mask): if self.pre_ln: return self.forward_preln(decoder_query, decoder_mask, decoder_keys, encoder_states, encoder_mask) else: return self.forward_postln(decoder_query, decoder_mask, decoder_keys, encoder_states, encoder_mask) class TransformerDecoder(nn.Module): def __init__( self, num_layers: int, hidden_size: int, inner_size: int, num_attention_heads: int = 1, attn_score_dropout: float = 0.0, attn_layer_dropout: float = 0.0, ffn_dropout: float = 0.0, hidden_act: str = "relu", pre_ln: bool = False, pre_ln_final_layer_norm: bool = True, ): super().__init__() if pre_ln and pre_ln_final_layer_norm: self.final_layer_norm = nn.LayerNorm(hidden_size, eps=1e-5) else: self.final_layer_norm = None layer = TransformerDecoderBlock( hidden_size, inner_size, num_attention_heads, attn_score_dropout, attn_layer_dropout, ffn_dropout, hidden_act, pre_ln, ) self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)]) self.diagonal = 0 def _get_memory_states(self, decoder_states, decoder_mems_list=None, i=0): if decoder_mems_list is not None: inp1 = torch.transpose(decoder_mems_list[i], 1, 2) # Putting seq_len to last dim to handle export cases inp2 = torch.transpose(decoder_states, 1, 2) memory_states = torch.cat((inp1, inp2), dim=2) memory_states = torch.transpose(memory_states, 1, 2) # Transposing back else: memory_states = decoder_states return memory_states def forward( self, decoder_states, decoder_mask, encoder_states, encoder_mask, decoder_mems_list=None, return_mems=False, return_mems_as_list=True, ): """ Args: decoder_states: output of the embedding layer (B x L_dec x H) decoder_mask: decoder inputs mask (B x L_dec) encoder_states: output of the encoder (B x L_enc x H) encoder_mask: encoder inputs mask (B x L_enc) decoder_mems_list: list of the cached decoder hidden states for fast autoregressive generation which will be used instead of decoder_states as keys and values if not None return_mems: bool, whether to return outputs of all decoder layers or the last layer only return_mems_as_list: bool, when True, mems returned are as a list; otherwise mems are Tensor """ decoder_attn_mask = form_attention_mask(decoder_mask, diagonal=self.diagonal) encoder_attn_mask = form_attention_mask(encoder_mask) memory_states = self._get_memory_states(decoder_states, decoder_mems_list, 0) if return_mems_as_list: cached_mems_list = [memory_states] else: cached_mems_list = memory_states.unsqueeze(0) for i, layer in enumerate(self.layers): decoder_states = layer(decoder_states, decoder_attn_mask, memory_states, encoder_states, encoder_attn_mask) memory_states = self._get_memory_states(decoder_states, decoder_mems_list, i + 1) if return_mems_as_list: cached_mems_list.append(memory_states) else: cached_mems_list = torch.cat((cached_mems_list, memory_states.unsqueeze(0)), dim=0) if self.final_layer_norm is not None: decoder_states = self.final_layer_norm(decoder_states) memory_states = self._get_memory_states(decoder_states, decoder_mems_list, i + 2) if return_mems_as_list: cached_mems_list.append(memory_states) else: cached_mems_list = torch.cat((cached_mems_list, memory_states.unsqueeze(0)), dim=0) if return_mems: return cached_mems_list else: return cached_mems_list[-1] def input_example(self, max_batch=1, max_dim=256): """ Generates input examples for tracing etc. Returns: A tuple of input examples. """ sample = next(self.parameters()) input_ids = torch.randint(low=0, high=2048, size=(max_batch, max_dim, 1024), device=sample.device) encoder_mask = torch.randint(low=0, high=1, size=(max_batch, max_dim), device=sample.device) return tuple([input_ids, encoder_mask, input_ids, encoder_mask])
NeMo-main
nemo/collections/nlp/modules/common/transformer/transformer_decoders.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union from omegaconf.dictconfig import DictConfig from nemo.collections.nlp.modules.common.huggingface.huggingface_decoder import HuggingFaceDecoderModule from nemo.collections.nlp.modules.common.huggingface.huggingface_encoder import HuggingFaceEncoderModule from nemo.collections.nlp.modules.common.transformer.transformer import TransformerDecoderNM, TransformerEncoderNM from nemo.collections.nlp.modules.common.transformer.transformer_bottleneck import TransformerBottleneckEncoderNM def get_nemo_transformer( model_name: Optional[str] = None, pretrained: bool = False, config_dict: Optional[Union[dict, DictConfig]] = None, encoder: bool = True, pre_ln_final_layer_norm: bool = True, padding_idx: int = 0, ) -> Union[TransformerEncoderNM, TransformerDecoderNM]: """Returns NeMo transformer. The following configurations are mandatory: vocab_size: int hidden_size: int num_layers: int inner_size: int and must be specified if using config_dict. Args: model_name (Optional[str]): model name to download from NGC pretrained: (bool): False will instantiate the named model architecture with random weights. config_dict (Optional[dict], optional): model configuration parameters. Defaults to None. config_file (Optional[str], optional): path to json file containing model configuration. Defaults to None. checkpoint_file (Optional[str], optional): load weights from path to local checkpoint. Defaults to None. encoder (bool, optional): True will use EncoderTransformerNM, False will use DecoderTransformerNM. Defaults to True. """ if model_name is not None: raise ValueError(f'NeMo transformers cannot be loaded from NGC yet. model_name should be None') if pretrained: raise ValueError(f'NeMo transformers cannot be loaded from NGC yet. pretrained should be False') cfg = None if not pretrained: assert ( config_dict.get('vocab_size') is not None and config_dict.get('hidden_size') is not None and config_dict.get('num_layers') is not None and config_dict.get('inner_size') is not None ), f'Using config_dict: {config_dict}. vocab_size, hidden_size, num_layers, and inner_size must are mandatory arguments' cfg = config_dict if encoder: # if arch exists in cfg we return TransformerBottleneckEncoderNM arch = cfg.get('arch', '') if not arch: model = TransformerEncoderNM( vocab_size=cfg.get('vocab_size'), hidden_size=cfg.get('hidden_size'), num_layers=cfg.get('num_layers'), inner_size=cfg.get('inner_size'), max_sequence_length=cfg.get('max_sequence_length', 512), embedding_dropout=cfg.get('embedding_dropout', 0.0), learn_positional_encodings=cfg.get('learn_positional_encodings', False), num_attention_heads=cfg.get('num_attention_heads'), ffn_dropout=cfg.get('ffn_dropout', 0.0), attn_score_dropout=cfg.get('attn_score_dropout', 0.0), attn_layer_dropout=cfg.get('attn_layer_dropout', 0.0), hidden_act=cfg.get('hidden_act', 'relu'), mask_future=cfg.get('mask_future', True), pre_ln=cfg.get('pre_ln', False), pre_ln_final_layer_norm=pre_ln_final_layer_norm, num_token_types=cfg.get('num_token_types', 2), padding_idx=padding_idx, ) elif arch in TransformerBottleneckEncoderNM._SUPPORTED_ARCH: model = TransformerBottleneckEncoderNM( vocab_size=cfg.get('vocab_size'), hidden_size=cfg.get('hidden_size'), num_layers=cfg.get('num_layers'), inner_size=cfg.get('inner_size'), max_sequence_length=cfg.get('max_sequence_length', 512), embedding_dropout=cfg.get('embedding_dropout', 0.0), learn_positional_encodings=cfg.get('learn_positional_encodings', False), num_attention_heads=cfg.get('num_attention_heads'), ffn_dropout=cfg.get('ffn_dropout', 0.0), attn_score_dropout=cfg.get('attn_score_dropout', 0.0), attn_layer_dropout=cfg.get('attn_layer_dropout', 0.0), hidden_act=cfg.get('hidden_act', 'relu'), mask_future=cfg.get('mask_future', False), pre_ln=cfg.get('pre_ln', False), pre_ln_final_layer_norm=pre_ln_final_layer_norm, num_token_types=cfg.get('num_token_types', 2), arch=cfg.get('arch', 'full'), hidden_steps=cfg.get('hidden_steps', -1), hidden_blocks=cfg.get('hidden_blocks', 1), hidden_init_method=cfg.get('hidden_init_method', 'default'), return_mask=cfg.get('return_mask', True), padding_idx=padding_idx, ) else: raise ValueError(f"Unknown arch = {arch}") else: model = TransformerDecoderNM( vocab_size=cfg.get('vocab_size'), hidden_size=cfg.get('hidden_size'), num_layers=cfg.get('num_layers'), inner_size=cfg.get('inner_size'), max_sequence_length=cfg.get('max_sequence_length', 512), embedding_dropout=cfg.get('embedding_dropout', 0.0), learn_positional_encodings=cfg.get('learn_positional_encodings', False), num_attention_heads=cfg.get('num_attention_heads'), ffn_dropout=cfg.get('ffn_dropout', 0.0), attn_score_dropout=cfg.get('attn_score_dropout', 0.0), attn_layer_dropout=cfg.get('attn_layer_dropout', 0.0), hidden_act=cfg.get('hidden_act', 'relu'), pre_ln=cfg.get('pre_ln', False), pre_ln_final_layer_norm=pre_ln_final_layer_norm, num_token_types=cfg.get('num_token_types', 2), padding_idx=padding_idx, ) return model def get_huggingface_transformer( model_name: Optional[str] = None, pretrained: bool = False, config_dict: Optional[Union[dict, DictConfig]] = None, encoder: bool = True, ) -> Union[HuggingFaceEncoderModule, HuggingFaceDecoderModule]: if encoder: model = HuggingFaceEncoderModule(model_name, pretrained, config_dict) else: model = HuggingFaceDecoderModule(model_name, pretrained, config_dict) return model def get_megatron_transformer( model_name: Optional[str] = None, pretrained: bool = True, config_dict: Optional[Union[dict, DictConfig]] = None, encoder: bool = True, checkpoint_file: str = None, ) -> None: raise ValueError( "megatron-lm bert encoders are deprecated in NeMo 1.5.0. Please use NeMo 1.4.0 until megatron bert support is added again." ) # vocab_file = config_dict.pop('vocab_file', None) # if encoder: # model = MegatronEncoderModule( # model_name=model_name, # pretrained=pretrained, # config_dict=config_dict, # checkpoint_file=checkpoint_file, # vocab_file=vocab_file, # ) # else: # raise ValueError('Megatron decoders are not currently supported.') # return model
NeMo-main
nemo/collections/nlp/modules/common/transformer/transformer_utils.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.modules.common.transformer.bridge_encoders import * from nemo.collections.nlp.modules.common.transformer.perceiver_encoders import * from nemo.collections.nlp.modules.common.transformer.transformer_bottleneck import * from nemo.collections.nlp.modules.common.transformer.transformer_decoders import * from nemo.collections.nlp.modules.common.transformer.transformer_encoders import * from nemo.collections.nlp.modules.common.transformer.transformer_generators import * from nemo.collections.nlp.modules.common.transformer.transformer_modules import *
NeMo-main
nemo/collections/nlp/modules/common/transformer/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import torch from nemo.collections.nlp.modules.common.transformer.transformer_decoders import TransformerDecoder from nemo.collections.nlp.modules.common.transformer.transformer_encoders import TransformerEncoder from nemo.collections.nlp.modules.common.transformer.transformer_modules import AttentionBridge __all__ = ["PerceiverEncoder"] class PerceiverEncoder(torch.nn.Module): def __init__( self, num_layers: int, hidden_size: int, inner_size: int, mask_future: bool = False, num_attention_heads: int = 1, attn_score_dropout: float = 0.0, attn_layer_dropout: float = 0.0, ffn_dropout: float = 0.0, hidden_act: str = "relu", pre_ln: bool = False, pre_ln_final_layer_norm: bool = True, hidden_steps: int = 32, hidden_init_method: str = "default", hidden_blocks: int = 2, ): super().__init__() self._hidden_steps = hidden_steps self._hidden_init_method = hidden_init_method self._hidden_blocks = hidden_blocks if self._hidden_init_method == "default": self._hidden_init_method = "params" if self.hidden_init_method not in self.supported_init_methods: raise ValueError( "Unknown hidden_init_method = {hidden_init_method}, supported methods are {supported_init_methods}".format( hidden_init_method=self.hidden_init_method, supported_init_methods=self.supported_init_methods, ) ) diagonal = 0 if mask_future else None if self.hidden_init_method == "params": # learnable initial hidden values self.init_hidden = torch.nn.Parameter(torch.nn.init.xavier_normal_(torch.empty(hidden_steps, hidden_size))) self.init_cross_att = TransformerDecoder( num_layers=1, hidden_size=hidden_size, inner_size=inner_size, num_attention_heads=num_attention_heads, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, ffn_dropout=ffn_dropout, hidden_act=hidden_act, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, ) self.init_cross_att.diagonal = diagonal elif self.hidden_init_method == "bridge": # initialize latent with attention bridge self.att_bridge = AttentionBridge(hidden_size=hidden_size, k=hidden_steps, bridge_size=inner_size,) # cross-attention encoder layer = TransformerDecoder( num_layers=1, hidden_size=hidden_size, inner_size=inner_size, num_attention_heads=num_attention_heads, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, ffn_dropout=ffn_dropout, hidden_act=hidden_act, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, ) layer.diagonal = diagonal self.cross_att_layers = torch.nn.ModuleList([copy.deepcopy(layer) for _ in range(hidden_blocks)]) # self-attention encoder layer = TransformerEncoder( num_layers=num_layers, hidden_size=hidden_size, inner_size=inner_size, mask_future=mask_future, num_attention_heads=num_attention_heads, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, ffn_dropout=ffn_dropout, hidden_act=hidden_act, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, ) self.self_att_layers = torch.nn.ModuleList([copy.deepcopy(layer) for _ in range(hidden_blocks)]) @property def supported_init_methods(self): return ["params", "bridge"] @property def hidden_steps(self): return self._hidden_steps @property def hidden_blocks(self): return self._hidden_blocks @property def hidden_init_method(self): return self._hidden_init_method def forward(self, encoder_states, encoder_mask): """ Args: encoder_states: output of the encoder (B x L_enc x H) encoder_mask: encoder inputs mask (B x L_enc) """ # all hidden values are active hidden_mask = torch.ones( encoder_states.shape[0], self._hidden_steps, dtype=encoder_mask.dtype, device=encoder_mask.device ) # initialize hidden state if self._hidden_init_method == "params": # initialize latent with learned parameters hidden_states = self.init_hidden.unsqueeze(0).expand(encoder_states.shape[0], -1, -1) hidden_states = self.init_cross_att( decoder_states=hidden_states, decoder_mask=hidden_mask, encoder_states=encoder_states, encoder_mask=encoder_mask, ) elif self._hidden_init_method == "bridge": # initialize latent with attention bridge hidden_states = self.att_bridge(hidden=encoder_states, hidden_mask=encoder_mask,) # apply block (cross-attention, self-attention) multiple times # for block in range(self._hidden_blocks): for self_att, cross_att in zip(self.self_att_layers, self.cross_att_layers): residual = hidden_states # cross attention of hidden over encoder states hidden_states = cross_att( decoder_states=hidden_states, decoder_mask=hidden_mask, encoder_states=encoder_states, encoder_mask=encoder_mask, ) # self-attention over hidden hidden_states = self_att(encoder_states=hidden_states, encoder_mask=hidden_mask,) # residual connection hidden_states += residual return hidden_states, hidden_mask
NeMo-main
nemo/collections/nlp/modules/common/transformer/perceiver_encoders.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from nemo.collections.nlp.modules.common.transformer.transformer_encoders import TransformerEncoder from nemo.collections.nlp.modules.common.transformer.transformer_modules import AttentionBridge __all__ = ["BridgeEncoder"] class BridgeEncoder(torch.nn.Module): def __init__( self, num_layers: int, hidden_size: int, inner_size: int, mask_future: bool = False, num_attention_heads: int = 1, attn_score_dropout: float = 0.0, attn_layer_dropout: float = 0.0, ffn_dropout: float = 0.0, hidden_act: str = "relu", pre_ln: bool = False, pre_ln_final_layer_norm: bool = True, hidden_steps: int = 32, hidden_init_method: str = "default", hidden_blocks: int = 0, ): super().__init__() self._hidden_steps = hidden_steps self._hidden_init_method = hidden_init_method self._hidden_blocks = hidden_blocks if self._hidden_init_method == "default": self._hidden_init_method = "enc_shared" if self.hidden_init_method not in self.supported_init_methods: raise ValueError( "Unknown hidden_init_method = {hidden_init_method}, supported methods are {supported_init_methods}".format( hidden_init_method=self.hidden_init_method, supported_init_methods=self.supported_init_methods, ) ) # attention bridge self.att_bridge = AttentionBridge(hidden_size=hidden_size, k=hidden_steps, bridge_size=inner_size,) if self.hidden_init_method == "enc": self.init_hidden_enc = TransformerEncoder( num_layers=num_layers, hidden_size=hidden_size, inner_size=inner_size, mask_future=mask_future, num_attention_heads=num_attention_heads, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, ffn_dropout=ffn_dropout, hidden_act=hidden_act, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, ) # self attention self.hidden_enc = TransformerEncoder( num_layers=num_layers, hidden_size=hidden_size, inner_size=inner_size, mask_future=mask_future, num_attention_heads=num_attention_heads, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, ffn_dropout=ffn_dropout, hidden_act=hidden_act, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, ) @property def supported_init_methods(self): return ["enc_shared", "identity", "enc"] @property def hidden_steps(self): return self._hidden_steps @property def hidden_blocks(self): return self._hidden_blocks @property def hidden_init_method(self): return self._hidden_init_method def forward(self, encoder_states, encoder_mask): """ Args: encoder_states: output of the encoder (B x L_enc x H) encoder_mask: encoder inputs mask (B x L_enc) """ # self-attention over input if self.hidden_init_method == "enc_shared": residual = encoder_states hidden_states = self.hidden_enc(encoder_states=encoder_states, encoder_mask=encoder_mask) # residual connection hidden_states += residual elif self.hidden_init_method == "identity": hidden_states = encoder_states elif self.hidden_init_method == "enc": residual = encoder_states hidden_states = self.init_hidden_enc(encoder_states=encoder_states, encoder_mask=encoder_mask) # residual connection hidden_states += residual # project encoder states to a fixed steps hidden using k attention heads hidden_states = self.att_bridge(hidden=hidden_states, hidden_mask=encoder_mask) # all hidden values are active hidden_mask = torch.ones( encoder_states.shape[0], self._hidden_steps, dtype=encoder_mask.dtype, device=encoder_mask.device ) # apply self-attention over fixed-size hidden_states for block in range(self._hidden_blocks): residual = hidden_states hidden_states = self.hidden_enc(encoder_states=hidden_states, encoder_mask=hidden_mask) # residual connection hidden_states += residual return hidden_states, hidden_mask
NeMo-main
nemo/collections/nlp/modules/common/transformer/bridge_encoders.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Dict, Optional import torch from omegaconf.omegaconf import MISSING from nemo.collections.nlp.modules.common.decoder_module import DecoderModule from nemo.collections.nlp.modules.common.encoder_module import EncoderModule from nemo.collections.nlp.modules.common.transformer.transformer_decoders import TransformerDecoder from nemo.collections.nlp.modules.common.transformer.transformer_encoders import TransformerEncoder from nemo.collections.nlp.modules.common.transformer.transformer_modules import TransformerEmbedding from nemo.core.classes.common import typecheck from nemo.core.classes.exportable import Exportable from nemo.core.neural_types import ChannelType, NeuralType # @dataclass # class TransformerConfig: # # named model arguments # library: str = 'nemo' # model_name: Optional[str] = None # pretrained: bool = False @dataclass class NeMoTransformerConfig: # must be configured by the user hidden_size: int = MISSING num_layers: int = MISSING inner_size: int = MISSING num_attention_heads: int = MISSING # embedding max_sequence_length: int = 512 num_token_types: int = 2 embedding_dropout: float = 0.0 learn_positional_encodings: bool = False # transformer ffn_dropout: float = 0.0 attn_score_dropout: float = 0.0 attn_layer_dropout: float = 0.0 hidden_act: str = 'relu' pre_ln: bool = False pre_ln_final_layer_norm: bool = True # named model arguments library: str = 'nemo' model_name: Optional[str] = None pretrained: bool = False @dataclass class NeMoTransformerEncoderConfig(NeMoTransformerConfig): mask_future: bool = False @dataclass class NeMoTransformerDecoderConfig(NeMoTransformerConfig): r2l: bool = False class TransformerEncoderNM(EncoderModule, Exportable): def __init__( self, vocab_size: int, hidden_size: int, num_layers: int, inner_size: int, num_attention_heads: int, max_sequence_length: int = 512, num_token_types: int = 2, embedding_dropout: float = 0.0, learn_positional_encodings: bool = False, ffn_dropout: float = 0.0, attn_score_dropout: float = 0.0, attn_layer_dropout: float = 0.0, hidden_act: str = 'relu', mask_future: bool = False, pre_ln: bool = False, pre_ln_final_layer_norm: bool = True, padding_idx: int = 0, ): super().__init__() self._vocab_size = vocab_size self._hidden_size = hidden_size self._max_sequence_length = max_sequence_length self._embedding = TransformerEmbedding( vocab_size=self._vocab_size, hidden_size=self._hidden_size, max_sequence_length=max_sequence_length, num_token_types=num_token_types, embedding_dropout=embedding_dropout, learn_positional_encodings=learn_positional_encodings, padding_idx=padding_idx, ) self._encoder = TransformerEncoder( hidden_size=self._hidden_size, num_layers=num_layers, inner_size=inner_size, num_attention_heads=num_attention_heads, ffn_dropout=ffn_dropout, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, hidden_act=hidden_act, mask_future=mask_future, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, ) @typecheck() def forward(self, input_ids, encoder_mask): embeddings = self._embedding(input_ids=input_ids) encoder_hidden_states = self._encoder(encoder_states=embeddings, encoder_mask=encoder_mask) return encoder_hidden_states @property def hidden_size(self): return self._hidden_size @property def vocab_size(self): return self._vocab_size @property def max_sequence_length(self): return self._max_sequence_length @property def embedding(self): return self._embedding @property def encoder(self): return self._encoder def input_example(self, max_batch=1, max_dim=256): """ Generates input examples for tracing etc. Returns: A tuple of input examples. """ sample = next(self.parameters()) sz = (max_batch, max_dim) input_ids = torch.randint(low=0, high=2048, size=sz, device=sample.device) encoder_mask = torch.randint(low=0, high=1, size=sz, device=sample.device) return tuple([input_ids, encoder_mask]) class TransformerDecoderNM(DecoderModule, Exportable): def __init__( self, vocab_size: int, hidden_size: int, num_layers: int, inner_size: int, num_attention_heads: int, max_sequence_length: int = 512, num_token_types: int = 2, embedding_dropout: float = 0.0, learn_positional_encodings: bool = False, ffn_dropout: float = 0.0, attn_score_dropout: float = 0.0, attn_layer_dropout: float = 0.0, hidden_act: str = 'relu', pre_ln: bool = False, pre_ln_final_layer_norm: bool = True, padding_idx: int = 0, ): super().__init__() self._vocab_size = vocab_size self._hidden_size = hidden_size self._max_sequence_length = max_sequence_length self.num_states = num_layers + 1 self.return_mems = False if pre_ln_final_layer_norm: self.num_states += 1 self._embedding = TransformerEmbedding( vocab_size=self.vocab_size, hidden_size=self.hidden_size, max_sequence_length=max_sequence_length, num_token_types=num_token_types, embedding_dropout=embedding_dropout, learn_positional_encodings=learn_positional_encodings, padding_idx=padding_idx, ) self._decoder = TransformerDecoder( hidden_size=self.hidden_size, num_layers=num_layers, inner_size=inner_size, num_attention_heads=num_attention_heads, ffn_dropout=ffn_dropout, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, hidden_act=hidden_act, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, ) @typecheck() def forward( self, input_ids, decoder_mask, encoder_embeddings, encoder_mask, decoder_mems=None, ): start_pos = 0 if decoder_mems is not None: start_pos = input_ids.shape[1] - 1 input_ids = input_ids[:, -1:] decoder_mask = decoder_mask[:, -1:] decoder_mems = torch.transpose(decoder_mems, 0, 1) decoder_embeddings = self._embedding(input_ids=input_ids, start_pos=start_pos) decoder_hidden_states = self._decoder( decoder_states=decoder_embeddings, decoder_mask=decoder_mask, encoder_states=encoder_embeddings, encoder_mask=encoder_mask, decoder_mems_list=decoder_mems, return_mems=self.return_mems, return_mems_as_list=False, ) if self.return_mems: decoder_hidden_states = torch.transpose(decoder_hidden_states, 0, 1) return decoder_hidden_states @property def hidden_size(self): return self._hidden_size @property def vocab_size(self): return self._vocab_size @property def max_sequence_length(self): return self._max_sequence_length @property def embedding(self): return self._embedding @property def decoder(self): return self._decoder def input_example(self, max_batch=1, max_dim=256): """ Generates input examples for tracing etc. Returns: A tuple of input examples. """ sample = next(self.parameters()) sz = (max_batch, max_dim) input_ids = torch.randint(low=0, high=2048, size=sz, device=sample.device) encoder_mask = torch.randint(low=0, high=1, size=sz, device=sample.device) mem_size = [max_batch, self.num_states, max_dim - 1, self._hidden_size] decoder_mems = torch.rand(mem_size, device=sample.device) return tuple([input_ids, encoder_mask, self._embedding(input_ids), encoder_mask, decoder_mems]) def _prepare_for_export(self, **kwargs): self._decoder.diagonal = None self.return_mems = True super()._prepare_for_export(**kwargs) @property def output_types(self) -> Optional[Dict[str, NeuralType]]: if self.return_mems: return {"last_hidden_states": NeuralType(('B', 'D', 'T', 'D'), ChannelType())} else: return {"last_hidden_states": NeuralType(('B', 'T', 'D'), ChannelType())}
NeMo-main
nemo/collections/nlp/modules/common/transformer/transformer.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import torch from torch import nn from torch.nn.functional import gelu from nemo.collections.common.parts import form_attention_mask from nemo.utils import logging __all__ = ["TransformerEmbedding", "AttentionBridge"] class FixedPositionalEncoding(nn.Module): """ Fixed positional encoding (embedding layer) from sine and cosine functions of different frequencies according to https://arxiv.org/abs/1706.03762 Args: hidden_size: size of the embeddings in the model, also known as d_model max_sequence_length: maximum allowed length of the input sequence """ def __init__(self, hidden_size, max_sequence_length=512): super().__init__() self._hidden_size = hidden_size self._max_sequence_length = max_sequence_length self._build_pos_enc(hidden_size=self._hidden_size, max_sequence_length=self._max_sequence_length) def _build_pos_enc(self, hidden_size, max_sequence_length, device=None): """ Builds/replaces pre-computed positional encoding. """ pos_enc = torch.zeros(max_sequence_length, hidden_size, device=device) position = torch.arange(0.0, max_sequence_length).unsqueeze(1) coef = -math.log(10000.0) / hidden_size div_term = torch.exp(coef * torch.arange(0.0, hidden_size, 2)) pos_enc[:, 0::2] = torch.sin(position * div_term) pos_enc[:, 1::2] = torch.cos(position * div_term) pos_enc.div_(math.sqrt(hidden_size)) self.register_buffer('pos_enc', pos_enc) def forward(self, position_ids): max_pos_id = position_ids.max() # update positional encoding if needed if max_pos_id >= self._max_sequence_length: logging.warning( f'Max position id {max_pos_id} is greater than max sequence length {self._max_sequence_length}. Expanding position embeddings just for this batch. This is not expected to work very well. Consider chunking your input into smaller sequences.' ) self._build_pos_enc( hidden_size=self._hidden_size, max_sequence_length=max_pos_id + 1, device=position_ids.device, ) embeddings = torch.embedding(self.pos_enc, position_ids) # Revert expansion of position embeddings since this wall checkpoint size mismatches. if max_pos_id >= self._max_sequence_length: self._build_pos_enc( hidden_size=self._hidden_size, max_sequence_length=self._max_sequence_length, device=position_ids.device, ) return embeddings class TransformerEmbedding(nn.Module): """ Embedding from token and position embeddings. Optionally add token_type embedding (e.g. type of the sentence in BERT). Args: vocab_size: size of the vocabulary hidden_size: size of the embeddings in the model, also known as d_model max_sequence_length: maximum allowed length of the input sequence num_token_types: number of different token types (e.g. tokens of sentence A and tokens of sentence B in BERT) embedding_dropout: probability of dropout applied to embeddings learn_positional_encodings: whether to learn positional encodings or use fixed (sine-cosine) ones """ def __init__( self, vocab_size: int, hidden_size: int, max_sequence_length: int = 512, num_token_types: int = 2, embedding_dropout: float = 0.0, learn_positional_encodings: bool = False, padding_idx: int = 0, ): super().__init__() self.max_sequence_length = max_sequence_length self.learn_positional_encodings = learn_positional_encodings self.token_embedding = nn.Embedding(vocab_size, hidden_size, padding_idx=padding_idx) if learn_positional_encodings: self.position_embedding = nn.Embedding(max_sequence_length, hidden_size) else: self.position_embedding = FixedPositionalEncoding(hidden_size, max_sequence_length) if num_token_types > 0: self.token_type_embedding = nn.Embedding(num_token_types, hidden_size) self.layer_norm = nn.LayerNorm(hidden_size, eps=1e-5) self.dropout = nn.Dropout(embedding_dropout) def forward(self, input_ids, token_type_ids=None, start_pos=0): seq_length = input_ids.size(1) # we fail here only with parametric positional embedding. FixedPositionalEncoding automatically extends. if self.learn_positional_encodings and (seq_length > self.max_sequence_length): raise ValueError( f"Input sequence is longer than maximum allowed sequence length for positional encoding. " f"Got {seq_length} and {self.max_sequence_length}" ) position_ids = torch.arange( start=start_pos, end=start_pos + seq_length, dtype=torch.long, device=input_ids.device ) position_ids = position_ids.unsqueeze(0).repeat(input_ids.size(0), 1) token_embeddings = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = token_embeddings + position_embeddings if token_type_ids is not None: token_type_embeddings = self.token_type_embedding(token_type_ids) embeddings = embeddings + token_type_embeddings embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MultiHeadAttention(nn.Module): """ Multi-head scaled dot-product attention layer. Args: hidden_size: size of the embeddings in the model, also known as d_model num_attention_heads: number of heads in multi-head attention attn_score_dropout: probability of dropout applied to attention scores attn_layer_dropout: probability of dropout applied to the output of the whole layer, but before layer normalization """ def __init__(self, hidden_size, num_attention_heads, attn_score_dropout=0.0, attn_layer_dropout=0.0): super().__init__() if hidden_size % num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number " "of attention heads (%d)" % (hidden_size, num_attention_heads) ) self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.attn_head_size = int(hidden_size / num_attention_heads) self.attn_scale = math.sqrt(math.sqrt(self.attn_head_size)) self.query_net = nn.Linear(hidden_size, hidden_size) self.key_net = nn.Linear(hidden_size, hidden_size) self.value_net = nn.Linear(hidden_size, hidden_size) self.out_projection = nn.Linear(hidden_size, hidden_size) self.attn_dropout = nn.Dropout(attn_score_dropout) self.layer_dropout = nn.Dropout(attn_layer_dropout) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attn_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, queries, keys, values, attention_mask): # attention_mask is needed to hide the tokens which correspond to [PAD] # in the case of BERT, or to hide the future tokens in the case of # vanilla language modeling and translation query = self.query_net(queries) key = self.key_net(keys) value = self.value_net(values) query = self.transpose_for_scores(query) / self.attn_scale key = self.transpose_for_scores(key) / self.attn_scale value = self.transpose_for_scores(value) # for numerical stability we pre-divide query and key by sqrt(sqrt(d)) attention_scores = torch.matmul(query, key.transpose(-1, -2)) if attention_mask is not None: attention_scores = attention_scores + attention_mask.to(attention_scores.dtype) attention_probs = torch.softmax(attention_scores, dim=-1) attention_probs = self.attn_dropout(attention_probs) context = torch.matmul(attention_probs, value) context = context.permute(0, 2, 1, 3).contiguous() new_context_shape = context.size()[:-2] + (self.hidden_size,) context = context.view(*new_context_shape) # output projection output_states = self.out_projection(context) output_states = self.layer_dropout(output_states) return output_states class PositionWiseFF(nn.Module): """ Position-wise feed-forward network of Transformer block. Args: hidden_size: size of the embeddings in the model, also known as d_model inner_size: number of neurons in the intermediate part of feed-forward net, usually is (4-8 x hidden_size) in the papers ffn_dropout: probability of dropout applied to net output hidden_act: activation function used between two linear layers """ def __init__(self, hidden_size, inner_size, ffn_dropout=0.0, hidden_act="relu"): super().__init__() self.dense_in = nn.Linear(hidden_size, inner_size) self.dense_out = nn.Linear(inner_size, hidden_size) self.layer_dropout = nn.Dropout(ffn_dropout) ACT2FN = {"gelu": gelu, "relu": torch.relu} self.act_fn = ACT2FN[hidden_act] def forward(self, hidden_states): output_states = self.dense_in(hidden_states) output_states = self.act_fn(output_states) output_states = self.dense_out(output_states) output_states = self.layer_dropout(output_states) return output_states class AttentionBridge(torch.nn.Module): """ A multi-head attention bridge to project a variable-size hidden states to k hidden states (per attention head). Code is based on the paper https://arxiv.org/pdf/1703.03130.pdf """ def __init__(self, hidden_size, k, bridge_size): """ hidden_size - size of input hidden state k - number of attention heads bridge_size - size of internal feed forward weights (i.e., attention head size) """ super().__init__() self.hidden_size = hidden_size self.k = k self.bridge_size = bridge_size self.attn_scale = np.sqrt(np.sqrt(self.bridge_size)) # build model self.W1 = torch.nn.Linear(hidden_size, bridge_size, bias=False) self.W2 = torch.nn.Linear(bridge_size, k, bias=False) self.act = torch.nn.ReLU() def forward(self, hidden, hidden_mask=None, return_ortho_loss=False): """ Project hidden [B x N x H] to fixed-size [B x k x H] return_ortho_loss - if True returns loss term to encourage orthogonal attention vectors """ attention_scores = self.W2(self.act(self.W1(hidden) / self.attn_scale) / self.attn_scale).transpose(-1, -2) attention_mask = form_attention_mask(hidden_mask) if attention_mask is not None: attention_mask.squeeze_(1) attention_scores = attention_scores + attention_mask.to(attention_scores.dtype) A = torch.softmax(attention_scores, dim=-1) M = A @ hidden if return_ortho_loss: ortho_loss = ((A @ A.transpose(-1, -2)) - torch.eye(self.k).type_as(A)).pow(2).sum() return M, ortho_loss else: return M
NeMo-main
nemo/collections/nlp/modules/common/transformer/transformer_modules.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from typing import List, Tuple, Union from torch import Tensor if sys.version_info >= (3, 8): from typing import TypedDict else: from typing_extensions import TypedDict class LengthParam(TypedDict): max_length: int # The maximum length of the sequence to be generated. min_length: int # The minimum length of the sequence to be generated. class SamplingParam(TypedDict): use_greedy: bool # Whether or not to use sampling ; use greedy decoding otherwise temperature: float # sampling temperature top_k: int # The number of highest probability vocabulary tokens to keep for top-k-filtering. top_p: float # If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation. repetition_penalty: float # The parameter for repetition penalty. 1.0 means no penalty. add_BOS: bool # add the bos token at the begining of the prompt all_probs: bool # whether return the log prob for all the tokens in vocab compute_logprob: bool # a flag used to compute logprob of all the input text, a very special case of running inference, default False end_strings: List[str] # generation will stop when one of these tokens is generated class OutputType(TypedDict): sentences: List[str] # output sentences tokens: List[List[str]] # output sentences borken into tokens logprob: List[List[float]] # log prob of generated tokens full_logprob: List[List[float]] # log prob of all the tokens in the vocab token_ids: List[List[int]] # output sentence token ids offsets: List[List[int]] # list of tokens start positions in text class TextGeneration: """ Interface for all text generation models. """ def generate( self, inputs: Union[List[str], Tuple[Tensor, Tensor], List[dict]], length_params: LengthParam, sampling_params: SamplingParam = None, ) -> OutputType: """ Public method to generate text. Args: inputs (Union[List[str], Tensor, List[dict]]): Can be one of the 3 types: 1. List of strings. Each element of the list provides input prompt. The model will apply tokenizer on it. E.g [‘sentence’, ‘sentence2’ … ] 2. Tuple of Pytorch Tensors (context_tokens, context_lengths). The `context_tokens` has shape (batch_size, seq_length), it's the batched sequences of tokens used as a prompst for the generation or as model inputs to the encoder. The generative model will skip the tokenization and padding step. The `context_lengths` has shape (batch_size,), it indicates the length of the context tokens for each of the input sequences. E.g. ( torch.tensor([[23,5234,23,35,…], [223,323,23,23232,232,...] …]), torch.tensor([20, 30, …])) 3. List of python dict objects. Used for prompt/p-tuning inputs where a set of key-value pairs are converted into input token embeddings for the model. E.g. [{"prompt-tag": "sentiment", "sentence": "this is a good movie"}, {"prompt-tag": "qa", "context": "some context text", "question": "a simple question"} ... ] where 'prompt-tag' is used to identify the type of NLP task to solve. length_params (LengthParam): a dictionary type which controls the sampling length. max_length: int, The maximum length of the sequence to be generated. min_length: int, The minimum length of the sequence to be generated. If None, max_length is set to 30, and min_length is set to None sampling_params (SamplingParam): a dictionary type which contains the parameters for text sampling. It has the following keys use_greedy: bool, Whether or not to use sampling ; use greedy decoding otherwise top_k: int, The number of highest probability vocabulary tokens to keep for top-k-filtering. top_p: float, If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation. repetition_penalty: float, The parameter for repetition penalty. 1.0 means no penalty. add_BOS: bool, Whether add the bos token at the begining of the prompt all_probs: bool # whether return the log prob for all the tokens in vocab compute_logprob: bool # a flag used to compute logprob of all the input text, a very special case of running inference, default False end_strings: List[str] # generation will stop when one of these tokens is generated Default None, If it is None, use_greedy will be "True". Returns: OutputType: It generates the output in a dictionary type. It has the following keys: sentences: List[str], output sentences tokens: List[List[str]], output sentences borken into tokens logprob: List[List[float]], log prob of generated tokens full_logprob: List[List[float]], log prob of all the tokens in the vocab token_ids: List[List[int]], output sentence token ids offsets: List[List[int]] # list of tokens start positions in text """ raise NotImplementedError("please implement this method")
NeMo-main
nemo/collections/nlp/modules/common/transformer/text_generation.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import torch from nemo.collections.nlp.modules.common.transformer.transformer_encoders import TransformerEncoder __all__ = ["PoolingEncoder"] class PoolingEncoder(torch.nn.Module): _SUPPORTED_ARCH = ["max", "avg"] def __init__( self, num_layers: int, hidden_size: int, inner_size: int, mask_future: bool = False, num_attention_heads: int = 1, attn_score_dropout: float = 0.0, attn_layer_dropout: float = 0.0, ffn_dropout: float = 0.0, hidden_act: str = "relu", pre_ln: bool = False, pre_ln_final_layer_norm: bool = True, hidden_steps: int = 4, hidden_init_method: str = "default", hidden_blocks: int = 2, pooling_type: str = "max", ): super().__init__() # minimal steps to allow reduction self._hidden_steps = hidden_steps self._hidden_init_method = hidden_init_method self._hidden_blocks = hidden_blocks self._pooling_type = pooling_type if self._hidden_steps < 2: raise ValueError("Expected hidden_steps >= 2 but received hidden_steps = {self._hidden_steps}") if self.hidden_init_method not in self.supported_init_methods: raise ValueError( "Unknown hidden_init_method = {hidden_init_method}, supported methods are {supported_init_methods}".format( hidden_init_method=self.hidden_init_method, supported_init_methods=self.supported_init_methods, ) ) if self._pooling_type not in self.supported_arch: raise ValueError(f"Unknown pooling_type = {pooling_type}. Available values = {self.supported_arch}") # self-attention encoder layer = TransformerEncoder( num_layers=num_layers, hidden_size=hidden_size, inner_size=inner_size, mask_future=mask_future, num_attention_heads=num_attention_heads, attn_score_dropout=attn_score_dropout, attn_layer_dropout=attn_layer_dropout, ffn_dropout=ffn_dropout, hidden_act=hidden_act, pre_ln=pre_ln, pre_ln_final_layer_norm=pre_ln_final_layer_norm, ) self.self_att_layers = torch.nn.ModuleList([copy.deepcopy(layer) for _ in range(hidden_blocks)]) self.pooling = self._build_pooling_module() def _build_pooling_module(self): """ Returns pooling module. Allows to override for child classes. """ if self._pooling_type == "max": pooling = torch.nn.MaxPool1d(kernel_size=2, stride=2) elif self._pooling_type == "avg": pooling = torch.nn.AvgPool1d(kernel_size=2, stride=2) return pooling @property def supported_arch(self): return self._SUPPORTED_ARCH @property def supported_init_methods(self): return ["default"] @property def hidden_steps(self): return self._hidden_steps @property def hidden_blocks(self): return self._hidden_blocks @property def hidden_init_method(self): return self._hidden_init_method def forward(self, encoder_states, encoder_mask): """ Args: encoder_states: output of the encoder (B x L_enc x H) encoder_mask: encoder inputs mask (B x L_enc) """ # initialize hidden state hidden_mask = encoder_mask hidden_states = encoder_states # apply block (self-attention, max-pool) multiple times for self_att in self.self_att_layers: residual = hidden_states # self-attention over hidden hidden_states = self_att(encoder_states=hidden_states, encoder_mask=hidden_mask) hidden_states += residual # max pool reduction if possible if hidden_states.shape[1] >= self.hidden_steps: # max pool hidden states hidden_states = hidden_states.permute(0, 2, 1) hidden_states = self.pooling(hidden_states) hidden_states = hidden_states.permute(0, 2, 1) # max pool mask hidden_mask = ( self.pooling(hidden_mask.unsqueeze(0).type_as(hidden_states)).squeeze(0).type_as(hidden_mask) ) return hidden_states, hidden_mask
NeMo-main
nemo/collections/nlp/modules/common/transformer/reduction_encoders.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional from hydra.utils import instantiate from transformers import AutoConfig, AutoModel from nemo.collections.nlp.modules.common.encoder_module import EncoderModule from nemo.collections.nlp.modules.common.huggingface.huggingface_utils import get_huggingface_pretrained_lm_models_list from nemo.core.classes.common import typecheck from nemo.utils import logging class HuggingFaceEncoderModule(EncoderModule): """ Class for using HuggingFace encoders in NeMo NLP.""" def __init__( self, model_name: Optional[str] = None, pretrained: bool = False, config_dict: Optional[dict] = None, checkpoint_file: Optional[str] = None, ): """Gets HuggingFace based model to be used as an Encoder in NeMo NLP. Use the model_name arg to get a named model architecture. Available model names can be found with get_huggingface_pretrained_lm_models_list() or by going to https://huggingface.co/models. Use the pretrained arg to get the named model architecture with or without pretrained weights. If model_name is None, then we can pass in a custom configuration via the config_dict. For example, to instantiate a HuggingFace BERT model with custom configuration we would do: config_dict={ '_target_': 'transformers.BertConfig', 'hidden_size': 1536 } Args: model_name (Optional[str]): Named model architecture from HuggingFace. Defaults to None. pretrained (bool): Use True to get pretrained weights. False will use the same architecture but with randomly initialized weights. Defaults to False. config_dict (Optional[dict], optional): Use for custom configuration of the HuggingFace model. Defaults to None. checkpoint_file (Optional[str], optional): Provide weights for the transformer from a local checkpoint. Defaults to None. """ super().__init__() if checkpoint_file: raise NotImplementedError('Restoring from checkpoint file not implemented yet.') model = None if model_name is not None: if model_name in get_huggingface_pretrained_lm_models_list(include_external=False): if pretrained: config_dict.pop('vocab_size') if config_dict: raise ValueError( f'When using pretrained model, config_dict should be None or empty. Got: {config_dict}' ) model = AutoModel.from_pretrained(model_name) else: cfg = AutoConfig.from_pretrained(model_name) model = AutoModel.from_config(cfg) else: logging.error(f'{model_name} not found in list of HuggingFace pretrained models') else: if pretrained: raise ValueError(f'If not using model_name, then pretrained should be False. Got: {pretrained}.') cfg = instantiate(config_dict) model = AutoModel.from_config(cfg) self._hidden_size = model.config.hidden_size self._vocab_size = model.config.vocab_size self._encoder = model @typecheck() def forward(self, input_ids, encoder_mask): encoder_hidden_states = self._encoder.forward(input_ids=input_ids, attention_mask=encoder_mask)[0] return encoder_hidden_states @property def hidden_size(self) -> Optional[int]: return self._hidden_size @property def vocab_size(self) -> Optional[int]: return self._vocab_size
NeMo-main
nemo/collections/nlp/modules/common/huggingface/huggingface_encoder.py
# Copyright 2020 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import CamembertModel from nemo.collections.nlp.modules.common.bert_module import BertModule from nemo.core.classes import typecheck __all__ = ['CamembertEncoder'] class CamembertEncoder(CamembertModel, BertModule): """ Wraps around the Huggingface transformers implementation repository for easy use within NeMo. """ @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): res = super().forward(input_ids=input_ids, attention_mask=attention_mask)[0] return res
NeMo-main
nemo/collections/nlp/modules/common/huggingface/camembert.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import RobertaModel from nemo.collections.nlp.modules.common.bert_module import BertModule from nemo.core.classes import typecheck __all__ = ['RobertaEncoder'] class RobertaEncoder(RobertaModel, BertModule): """ Wraps around the Huggingface transformers implementation repository for easy use within NeMo. """ @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): res = super().forward(input_ids=input_ids, attention_mask=attention_mask)[0] return res
NeMo-main
nemo/collections/nlp/modules/common/huggingface/roberta.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import GPT2LMHeadModel from nemo.collections.nlp.modules.common.gpt_module import GPTModule from nemo.core.classes import typecheck __all__ = ['GPT2Encoder'] class GPT2Encoder(GPT2LMHeadModel, GPTModule): """ Wraps around the Huggingface transformers implementation repository for easy use within NeMo. """ @typecheck() def forward( self, input_ids, attention_mask=None, token_type_ids=None, labels=None, return_dict=False, output_attentions=False, output_hidden_states=False, past_key_values=None, use_cache=False, position_ids=None, max_length=128, ): res = super().forward( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, return_dict=return_dict, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, past_key_values=past_key_values, position_ids=position_ids, use_cache=use_cache, ) return res if not return_dict else res
NeMo-main
nemo/collections/nlp/modules/common/huggingface/gpt2.py
# Copyright 2020 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import DistilBertModel from nemo.collections.nlp.modules.common.bert_module import BertModule from nemo.core.classes import typecheck __all__ = ['DistilBertEncoder'] class DistilBertEncoder(DistilBertModel, BertModule): """ Wraps around the Huggingface transformers implementation repository for easy use within NeMo. """ @typecheck() def forward(self, input_ids, attention_mask, token_type_ids=None): # distilBert does not use token_type_ids as the most of the other Bert models res = super().forward(input_ids=input_ids, attention_mask=attention_mask)[0] return res
NeMo-main
nemo/collections/nlp/modules/common/huggingface/distilbert.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import AlbertModel from nemo.collections.nlp.modules.common.bert_module import BertModule from nemo.core.classes import typecheck __all__ = ['AlbertEncoder'] class AlbertEncoder(AlbertModel, BertModule): """ Wraps around the Huggingface transformers implementation repository for easy use within NeMo. """ @typecheck() def forward(self, input_ids, attention_mask, token_type_ids): res = super().forward(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)[0] return res
NeMo-main
nemo/collections/nlp/modules/common/huggingface/albert.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.modules.common.huggingface.albert import AlbertEncoder from nemo.collections.nlp.modules.common.huggingface.bert import BertEncoder from nemo.collections.nlp.modules.common.huggingface.camembert import CamembertEncoder from nemo.collections.nlp.modules.common.huggingface.distilbert import DistilBertEncoder from nemo.collections.nlp.modules.common.huggingface.huggingface_utils import ( get_huggingface_lm_model, get_huggingface_pretrained_lm_models_list, ) from nemo.collections.nlp.modules.common.huggingface.roberta import RobertaEncoder
NeMo-main
nemo/collections/nlp/modules/common/huggingface/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional from hydra.utils import instantiate from transformers import AutoConfig, AutoModel from nemo.collections.nlp.modules.common.decoder_module import DecoderModule from nemo.collections.nlp.modules.common.huggingface.huggingface_utils import get_huggingface_pretrained_lm_models_list from nemo.utils import logging class HuggingFaceDecoderModule(DecoderModule): """Gets HuggingFace based model to be used as an Decoder in NeMo NLP. Use the model_name arg to get a named model architecture. Available model names can be found with get_huggingface_pretrained_lm_models_list() or by going to https://huggingface.co/models. Use the pretrained arg to get the named model architecture with or without pretrained weights. If model_name is None, then we can pass in a custom configuration via the config_dict. For example, to instantiate a HuggingFace BERT model with custom configuration we would do: config_dict={ '_target_': 'transformers.BertConfig', 'hidden_size': 1536 } Args: model_name (Optional[str]): Named model architecture from HuggingFace. Defaults to None. pretrained (bool): Use True to get pretrained weights. False will use the same architecture but with randomly initialized weights. Defaults to False. config_dict (Optional[dict], optional): Use for custom configuration of the HuggingFace model. Defaults to None. checkpoint_file (Optional[str], optional): Provide weights for the transformer from a local checkpoint. Defaults to None. """ def __init__( self, model_name: Optional[str] = None, pretrained: bool = False, config_dict: Optional[dict] = None, checkpoint_file: Optional[str] = None, ): super().__init__() model = None if model_name is not None: if model_name in get_huggingface_pretrained_lm_models_list(): if pretrained: model = AutoModel.from_pretrained(model_name) else: cfg = AutoConfig.from_pretrained(model_name) model = AutoModel.from_config(cfg) else: logging.error(f'{model_name} not found in list of HuggingFace pretrained models') else: cfg = instantiate(config_dict) model = AutoModel.from_config(cfg) self._hidden_size = model.config.hidden_size self._vocab_size = model.config.vocab_size @property def hidden_size(self) -> Optional[int]: return self._hidden_size @property def vocab_size(self) -> Optional[int]: return self._vocab_size
NeMo-main
nemo/collections/nlp/modules/common/huggingface/huggingface_decoder.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import List, Optional from transformers import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_MODEL_ARCHIVE_LIST, CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertConfig, AutoModel, BertConfig, CamembertConfig, DistilBertConfig, GPT2Config, RobertaConfig, ) from nemo.collections.nlp.modules.common.huggingface.albert import AlbertEncoder from nemo.collections.nlp.modules.common.huggingface.bert import BertEncoder from nemo.collections.nlp.modules.common.huggingface.camembert import CamembertEncoder from nemo.collections.nlp.modules.common.huggingface.distilbert import DistilBertEncoder from nemo.collections.nlp.modules.common.huggingface.gpt2 import GPT2Encoder from nemo.collections.nlp.modules.common.huggingface.roberta import RobertaEncoder from nemo.utils import logging __all__ = ["get_huggingface_lm_model", "get_huggingface_pretrained_lm_models_list", "VOCAB_FILE_NAME"] HUGGINGFACE_MODELS = { "BertModel": { "default": "bert-base-uncased", "class": BertEncoder, "config": BertConfig, "pretrained_model_list": BERT_PRETRAINED_MODEL_ARCHIVE_LIST, }, "DistilBertModel": { "default": "distilbert-base-uncased", "class": DistilBertEncoder, "config": DistilBertConfig, "pretrained_model_list": DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, }, "CamembertModel": { "default": "camembert-base-uncased", "class": CamembertEncoder, "config": CamembertConfig, "pretrained_model_list": CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, }, "RobertaModel": { "default": "roberta-base", "class": RobertaEncoder, "config": RobertaConfig, "pretrained_model_list": ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, }, "AlbertModel": { "default": "albert-base-v2", "class": AlbertEncoder, "config": AlbertConfig, "pretrained_model_list": ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, }, "GPT2Model": { "default": "gpt2", "class": GPT2Encoder, "config": GPT2Config, "pretrained_model_list": GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, }, } VOCAB_FILE_NAME = { 'AlbertTokenizer': "spiece.model", 'RobertaTokenizer': "vocab.json", 'BertTokenizer': "vocab.txt", 'DistilBertTokenizer': "vocab.txt", 'CamembertTokenizer': "sentencepiece.bpe.model", 'GPT2Tokenizer': "vocab.json", 'T5Tokenizer': "spiece.model", "BartTokenizer": "vocab.json", } def get_huggingface_lm_model( pretrained_model_name: str, config_dict: Optional[dict] = None, config_file: Optional[str] = None, ): """ Returns lm model instantiated with Huggingface Args: pretrained_mode_name: specify this to instantiate pretrained model from Huggingface, e.g. bert-base-cased. For entire list, see get_huggingface_pretrained_lm_models_list(). config_dict: model configuration dictionary used to instantiate Huggingface model from scratch config_file: path to model configuration file used to instantiate Huggingface model from scratch Returns: BertModule """ try: automodel = AutoModel.from_pretrained(pretrained_model_name) except Exception as e: raise ValueError(f"{pretrained_model_name} is not supported by HuggingFace. {e}") model_type = type(automodel).__name__ if model_type in HUGGINGFACE_MODELS: model_class = HUGGINGFACE_MODELS[model_type]["class"] if config_file: if not os.path.exists(config_file): logging.warning( f"Config file was not found at {config_file}. Will attempt to use config_dict or pretrained_model_name." ) else: config_class = HUGGINGFACE_MODELS[model_type]["config"] return model_class(config_class.from_json_file(config_file)) if config_dict: config_class = HUGGINGFACE_MODELS[model_type]["config"] return model_class(config=config_class(**config_dict)) else: return model_class.from_pretrained(pretrained_model_name) else: raise ValueError(f"Use HuggingFace API directly in NeMo for {pretrained_model_name}") def get_huggingface_pretrained_lm_models_list(include_external: bool = False,) -> List[str]: """ Returns the list of pretrained HuggingFace language models Args: include_external if true includes all HuggingFace model names, not only those supported language models in NeMo. Returns the list of HuggingFace models """ huggingface_models = [] for model in HUGGINGFACE_MODELS: model_names = HUGGINGFACE_MODELS[model]["pretrained_model_list"] huggingface_models.extend(model_names) return huggingface_models
NeMo-main
nemo/collections/nlp/modules/common/huggingface/huggingface_utils.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import BertModel from nemo.collections.nlp.modules.common.bert_module import BertModule from nemo.core.classes import typecheck __all__ = ['BertEncoder'] class BertEncoder(BertModel, BertModule): """ Wraps around the Huggingface transformers implementation repository for easy use within NeMo. """ @typecheck() def forward(self, input_ids, attention_mask=None, token_type_ids=None): res = super().forward(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)[0] return res
NeMo-main
nemo/collections/nlp/modules/common/huggingface/bert.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch try: from megatron.core.parallel_state import ( get_tensor_model_parallel_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from megatron.core.tensor_parallel.utils import VocabUtility HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = ["vocab_parallel_cross_entropy"] class _VocabParallelCrossEntropy(torch.autograd.Function): @staticmethod def forward(ctx, vocab_parallel_logits, target, label_smoothing=0.0): # Maximum value along vocab dimension across all GPUs. logits_max = torch.max(vocab_parallel_logits, dim=-1)[0] torch.distributed.all_reduce( logits_max, op=torch.distributed.ReduceOp.MAX, group=get_tensor_model_parallel_group() ) # Subtract the maximum value. vocab_parallel_logits = vocab_parallel_logits - logits_max.unsqueeze(dim=-1) # Get the partition's vocab indecies get_vocab_range = VocabUtility.vocab_range_from_per_partition_vocab_size partition_vocab_size = vocab_parallel_logits.size()[-1] rank = get_tensor_model_parallel_rank() world_size = get_tensor_model_parallel_world_size() vocab_start_index, vocab_end_index = get_vocab_range(partition_vocab_size, rank, world_size) # Create a mask of valid vocab ids (1 means it needs to be masked). target_mask = (target < vocab_start_index) | (target >= vocab_end_index) masked_target = target.clone() - vocab_start_index masked_target[target_mask] = 0 # Get predicted-logits = logits[target]. # For Simplicity, we convert logits to a 2-D tensor with size # [*, partition-vocab-size] and target to a 1-D tensor of size [*]. logits_2d = vocab_parallel_logits.view(-1, partition_vocab_size) masked_target_1d = masked_target.view(-1) arange_1d = torch.arange(start=0, end=logits_2d.size()[0], device=logits_2d.device) predicted_logits_1d = logits_2d[arange_1d, masked_target_1d] predicted_logits_1d = predicted_logits_1d.clone().contiguous() predicted_logits = predicted_logits_1d.view_as(target) predicted_logits[target_mask] = 0.0 # All reduce is needed to get the chunks from other GPUs. torch.distributed.all_reduce( predicted_logits, op=torch.distributed.ReduceOp.SUM, group=get_tensor_model_parallel_group() ) # Sum of exponential of logits along vocab dimension across all GPUs. exp_logits = vocab_parallel_logits torch.exp(vocab_parallel_logits, out=exp_logits) sum_exp_logits = exp_logits.sum(dim=-1) torch.distributed.all_reduce( sum_exp_logits, op=torch.distributed.ReduceOp.SUM, group=get_tensor_model_parallel_group() ) # Loss = log(sum(exp(logits))) - predicted-logit. loss = torch.log(sum_exp_logits) - predicted_logits # Store softmax, target-mask and masked-target for backward pass. exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1)) vocab_size = exp_logits.size(-1) if label_smoothing > 0: """ We'd like to assign 1 / (K - 1) probability mass to every index that is not the ground truth. = (1 - alpha) * y_gt + alpha * mean(y_{i for i != gt}) = (1 - alpha) * y_gt + (alpha / (K - 1)) * \sum_{i != gt} y_i = ((K - 1) * (1 - alpha) / (K - 1)) * y_gt + (alpha / (K - 1)) * \sum_{i != gt} y_i = (K * (1 - alpha) - 1) / (K - 1)) * y_gt + (alpha / (K - 1)) * \sum_{i} y_i = (1 - (alpha * K) / (K - 1)) * y_gt + ( (alpha * K) / (K - 1) ) * \sum_{i} y_i / K From: https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/common/losses/smoothed_cross_entropy.py """ assert 1.0 > label_smoothing > 0.0 smoothing = label_smoothing * vocab_size / (vocab_size - 1) # Exp logits at this point are normalized probabilities. So we can just take the log to get log-probs. log_probs = torch.log(exp_logits) mean_log_probs = log_probs.mean(dim=-1) loss = (1.0 - smoothing) * loss - smoothing * mean_log_probs ctx.save_for_backward( exp_logits, target_mask, masked_target_1d, torch.Tensor([label_smoothing]), torch.LongTensor([vocab_size]) ) return loss @staticmethod def backward(ctx, grad_output): # Retreive tensors from the forward path. softmax, target_mask, masked_target_1d, label_smoothing, vocab_size = ctx.saved_tensors label_smoothing = label_smoothing.item() vocab_size = vocab_size.item() # All the inputs have softmax as thier gradient. grad_input = softmax # For simplicity, work with the 2D gradient. partition_vocab_size = softmax.size()[-1] grad_2d = grad_input.view(-1, partition_vocab_size) # Add the gradient from matching classes. arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=grad_2d.device) softmax_update = 1.0 - target_mask.view(-1).float() if label_smoothing > 0: smoothing = label_smoothing * vocab_size / (vocab_size - 1) grad_2d[arange_1d, masked_target_1d] -= (1.0 - smoothing) * softmax_update average_grad = 1 / vocab_size grad_2d[arange_1d, :] -= smoothing * average_grad else: grad_2d[arange_1d, masked_target_1d] -= softmax_update # Finally elementwise multiplication with the output gradients. grad_input.mul_(grad_output.unsqueeze(dim=-1)) return grad_input, None, None def vocab_parallel_cross_entropy(vocab_parallel_logits, target, label_smoothing): """Helper function for the cross entropy.""" return _VocabParallelCrossEntropy.apply(vocab_parallel_logits, target, label_smoothing)
NeMo-main
nemo/collections/nlp/modules/common/megatron/vocab_parallel_cross_entropy.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: from apex.transformer.layers.layer_norm import FastLayerNorm, MixedFusedLayerNorm HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False def get_layer_norm(hidden_size, eps=1e-5, persist_layer_norm=False, sequence_parallel=False): # List of hiddens sizes supported in the persistent layer norm kernel # If the hidden size is not supported, fall back to the non-persistent # kernel. persist_ln_hidden_sizes = [ 1024, 1536, 2048, 2304, 3072, 3840, 4096, 5120, 6144, 8192, 10240, 12288, 12800, 15360, 16384, 18432, 20480, 24576, 25600, 30720, 32768, 40960, 49152, 65536, ] if hidden_size not in persist_ln_hidden_sizes: persist_layer_norm = False if persist_layer_norm: return FastLayerNorm(hidden_size, eps, sequence_parallel_enabled=sequence_parallel) else: return MixedFusedLayerNorm(hidden_size, eps, sequence_parallel_enabled=sequence_parallel)
NeMo-main
nemo/collections/nlp/modules/common/megatron/fused_layer_norm.py
# Copyright 2020 The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil from typing import Dict, List import torch import wget from torch.hub import _get_torch_home from nemo.utils import logging __all__ = [ "get_megatron_lm_model", "get_megatron_lm_models_list", "get_megatron_checkpoint", "is_lower_cased_megatron", "get_megatron_tokenizer", "get_megatron_pretrained_bert_models", ] torch_home = _get_torch_home() if not isinstance(torch_home, str): logging.info("Torch home not found, caching megatron in cwd") torch_home = os.getcwd() MEGATRON_CACHE = os.path.join(torch_home, "megatron") CONFIGS = {"345m": {"hidden_size": 1024, "num_attention_heads": 16, "num_layers": 24, "max_position_embeddings": 512}} MEGATRON_CONFIG_MAP = { "megatron-gpt-345m": { "config": CONFIGS["345m"], "checkpoint": "models/nvidia/megatron_lm_345m/versions/v0.0/files/release/mp_rank_00/model_optim_rng.pt", "vocab": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json", "merges_file": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt", "do_lower_case": False, "tokenizer_name": "gpt2", }, "megatron-bert-345m-uncased": { "config": CONFIGS["345m"], "checkpoint": "https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.0/files/release/mp_rank_00/model_optim_rng.pt", "vocab": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt", "do_lower_case": True, "tokenizer_name": "bert-large-uncased", }, "megatron-bert-345m-cased": { "config": CONFIGS["345m"], "checkpoint": "https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/files/release/mp_rank_00/model_optim_rng.pt", "vocab": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt", "do_lower_case": False, "tokenizer_name": "bert-large-cased", }, "megatron-bert-uncased": { "config": None, "checkpoint": None, "vocab": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt", "do_lower_case": True, "tokenizer_name": "bert-large-uncased", }, "megatron-bert-cased": { "config": None, "checkpoint": None, "vocab": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt", "do_lower_case": False, "tokenizer_name": "bert-large-cased", }, "biomegatron-bert-345m-uncased": { "config": CONFIGS["345m"], "checkpoint": "https://api.ngc.nvidia.com/v2/models/nvidia/biomegatron345muncased/versions/0/files/MegatronBERT.pt", "vocab": "https://api.ngc.nvidia.com/v2/models/nvidia/biomegatron345muncased/versions/0/files/vocab.txt", "do_lower_case": True, "tokenizer_name": "bert-large-uncased", }, "biomegatron-bert-345m-cased": { "config": CONFIGS["345m"], "checkpoint": "https://api.ngc.nvidia.com/v2/models/nvidia/biomegatron345mcased/versions/0/files/MegatronBERT.pt", "vocab": "https://api.ngc.nvidia.com/v2/models/nvidia/biomegatron345mcased/versions/0/files/vocab.txt", "do_lower_case": False, "tokenizer_name": "bert-large-cased", }, } def compute_model_parallel_rank(local_rank, model_parallel_size): return local_rank % model_parallel_size def get_megatron_pretrained_bert_models() -> List[str]: from nemo.collections.nlp.models.language_modeling.megatron_bert_model import MegatronBertModel all_pretrained_megatron_bert_models = [ model.pretrained_model_name for model in MegatronBertModel.list_available_models() ] return all_pretrained_megatron_bert_models def get_megatron_lm_models_list() -> List[str]: """ Returns the list of supported Megatron-LM models """ return list(MEGATRON_CONFIG_MAP.keys()) def get_megatron_config(pretrained_model_name: str) -> Dict[str, int]: """ Returns Megatron-LM model config file Args: pretrained_model_name (str): pretrained model name Returns: config (dict): contains model configuration: number of hidden layers, number of attention heads, etc """ _check_megatron_name(pretrained_model_name) return MEGATRON_CONFIG_MAP[pretrained_model_name]["config"] def _check_megatron_name(pretrained_model_name: str) -> None: megatron_model_list = get_megatron_lm_models_list() if pretrained_model_name not in megatron_model_list: raise ValueError(f'For Megatron-LM models, choose from the following list: {megatron_model_list}') def get_megatron_vocab_file(pretrained_model_name: str) -> str: """ Gets vocabulary file from cache or downloads it Args: pretrained_model_name: pretrained model name Returns: path: path to the vocab file """ _check_megatron_name(pretrained_model_name) url = MEGATRON_CONFIG_MAP[pretrained_model_name]["vocab"] path = os.path.join(MEGATRON_CACHE, pretrained_model_name + "_vocab") path = _download(path, url) return path def get_megatron_merges_file(pretrained_model_name: str) -> str: """ Gets merge file from cache or downloads it Args: pretrained_model_name: pretrained model name Returns: path: path to the vocab file """ if 'gpt' not in pretrained_model_name.lower(): return None _check_megatron_name(pretrained_model_name) url = MEGATRON_CONFIG_MAP[pretrained_model_name]["merges_file"] path = os.path.join(MEGATRON_CACHE, pretrained_model_name + "_merges") path = _download(path, url) return path def get_megatron_checkpoint(pretrained_model_name: str) -> str: """ Gets checkpoint file from cache or downloads it Args: pretrained_model_name: pretrained model name Returns: path: path to model checkpoint """ _check_megatron_name(pretrained_model_name) url = MEGATRON_CONFIG_MAP[pretrained_model_name]["checkpoint"] path = os.path.join(MEGATRON_CACHE, pretrained_model_name) return _download(path, url) def _download(path: str, url: str): """ Gets a file from cache or downloads it Args: path: path to the file in cache url: url to the file Returns: path: path to the file in cache """ if url is None: return None if (not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0) and not os.path.exists(path): os.makedirs(MEGATRON_CACHE, exist_ok=True) logging.info(f"Downloading from {url} to {path}") downloaded_path = wget.download(url) shutil.move(downloaded_path, path) # wait until the master process downloads the file and writes it to the cache dir if torch.distributed.is_initialized(): torch.distributed.barrier() return path def is_lower_cased_megatron(pretrained_model_name): """ Returns if the megatron is cased or uncased Args: pretrained_model_name (str): pretrained model name Returns: do_lower_cased (bool): whether the model uses lower cased data """ _check_megatron_name(pretrained_model_name) return MEGATRON_CONFIG_MAP[pretrained_model_name]["do_lower_case"] def get_megatron_tokenizer(pretrained_model_name: str): """ Takes a pretrained_model_name for megatron such as "megatron-bert-cased" and returns the according tokenizer name for tokenizer instantiating. Args: pretrained_model_name: pretrained_model_name for megatron such as "megatron-bert-cased" Returns: tokenizer name for tokenizer instantiating """ _check_megatron_name(pretrained_model_name) return MEGATRON_CONFIG_MAP[pretrained_model_name]["tokenizer_name"]
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer based language model.""" from ast import Mod from nemo.collections.nlp.modules.common.megatron.megatron_transformer_decoder import MegatronTransformerDecoderModule from nemo.collections.nlp.modules.common.megatron.retrieval_transformer import ( MegatronRetrievalTransformerDecoderModule, ) from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, init_method_normal, scaled_init_method_normal, ) try: from apex.transformer.enums import AttnMaskType, ModelType HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() ModelType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False __all__ = [] AVAILABLE_DECODERS = ["transformer"] def get_decoder_model( config: ModelParallelConfig, arch, hidden_size, ffn_hidden_size, num_layers, num_attention_heads, apply_query_key_layer_scaling=False, kv_channels=None, init_method=None, scaled_init_method=None, decoder_attn_mask_type=AttnMaskType.causal, pre_process=True, post_process=True, init_method_std=0.02, megatron_amp_O2=False, hidden_dropout=0.1, attention_dropout=0.1, ffn_dropout=0.0, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, activations_checkpoint_granularity=None, layernorm_epsilon=1e-5, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, persist_layer_norm=False, openai_gelu=False, activation="gelu", onnx_safe=False, bias=True, normalization="layernorm", headscale=False, transformer_block_type="pre_ln", hidden_steps=-1, parent_model_type=ModelType.encoder_or_decoder, layer_type=None, chunk_size=64, layer_number_offset=0, # this is use only for attention norm_factor scaling megatron_legacy=False, normalize_attention_scores=True, sequence_parallel=False, num_moe_experts=1, moe_frequency=1, moe_dropout=0.0, turn_off_rop=False, # turn off the RoP positional embedding version=1, position_embedding_type='learned_absolute', use_flash_attention=False, ): """Build language model and return along with the key to save.""" if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads if init_method is None: init_method = init_method_normal(init_method_std) if scaled_init_method is None: scaled_init_method = scaled_init_method_normal(init_method_std, num_layers) if arch == "transformer": # Language model. decoder = MegatronTransformerDecoderModule( config=config, init_method=init_method, output_layer_init_method=scaled_init_method, hidden_size=hidden_size, num_layers=num_layers, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, ffn_hidden_size=ffn_hidden_size, decoder_attn_mask_type=decoder_attn_mask_type, pre_process=pre_process, post_process=post_process, megatron_amp_O2=megatron_amp_O2, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, normalization=normalization, transformer_block_type=transformer_block_type, headscale=headscale, parent_model_type=parent_model_type, megatron_legacy=megatron_legacy, normalize_attention_scores=normalize_attention_scores, num_moe_experts=num_moe_experts, moe_frequency=moe_frequency, moe_dropout=moe_dropout, position_embedding_type=position_embedding_type, use_flash_attention=use_flash_attention, ) elif arch == "retro": decoder = MegatronRetrievalTransformerDecoderModule( config=config, init_method=init_method, output_layer_init_method=scaled_init_method, hidden_size=hidden_size, num_layers=num_layers, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, layer_type=layer_type, ffn_hidden_size=ffn_hidden_size, pre_process=pre_process, post_process=post_process, megatron_amp_O2=megatron_amp_O2, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, normalization=normalization, transformer_block_type=transformer_block_type, parent_model_type=parent_model_type, chunk_size=chunk_size, layer_number_offset=layer_number_offset, megatron_legacy=megatron_legacy, normalize_attention_scores=normalize_attention_scores, turn_off_rop=turn_off_rop, version=version, ) else: raise ValueError(f"Unknown decoder arch = {arch}. Available decoder arch = {AVAILABLE_DECODERS}") return decoder
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_decoders.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer based language model.""" from ast import Mod import torch from nemo.collections.nlp.modules.common.megatron.adapters.parallel_adapters import ( AdapterName, PromptEncoderAdapterConfig, ) from nemo.collections.nlp.modules.common.megatron.layer_type import LayerType from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.position_embedding import ( ALiBiRelativePositionEmbedding, KERPLERelativePositionEmbedding, RotaryEmbedding, SandwichRelativePositionEmbedding, ) from nemo.collections.nlp.modules.common.megatron.transformer import ParallelTransformer from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, get_linear_layer, init_method_normal, scaled_init_method_normal, ) from nemo.collections.nlp.parts import utils_funcs from nemo.core import adapter_mixins try: from apex.transformer.enums import AttnMaskType HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() LayerType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig, parallel_state, tensor_parallel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False def get_language_model( config: ModelParallelConfig, hidden_size, ffn_hidden_size, num_layers, max_position_embeddings, num_tokentypes, add_pooler, vocab_size, num_attention_heads, encoder_attn_mask_type, apply_query_key_layer_scaling=False, kv_channels=None, init_method=None, scaled_init_method=None, add_decoder=False, decoder_attn_mask_type=AttnMaskType.causal, pre_process=True, post_process=True, init_method_std=0.02, megatron_amp_O2=False, hidden_dropout=0.1, attention_dropout=0.1, ffn_dropout=0.0, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, normalization='layernorm', layernorm_epsilon=1e-5, bias_activation_fusion=True, masked_softmax_fusion=True, activation='gelu', headscale=False, transformer_block_type='pre_ln', normalize_attention_scores=True, position_embedding_type='learned_absolute', attention_type='multihead', share_embeddings_and_output_weights=True, rotary_percentage=1.0, multi_query_attention=False, bias_dropout_add_fusion=True, bias=True, persist_layer_norm=False, openai_gelu=False, onnx_safe=False, megatron_legacy=False, activations_checkpoint_granularity=None, activations_checkpoint_layers_per_pipeline=None, transformer_engine=False, fp8=False, fp8_e4m3=False, fp8_hybrid=False, fp8_margin=0, fp8_interval=1, fp8_amax_history_len=1, fp8_amax_compute_algo='most_recent', reduce_amax=True, use_emha=False, ub_tp_comm_overlap=False, use_flash_attention=False, seq_len_interpolation_factor=None, ): """Build language model and return along with the key to save.""" if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads if init_method is None: init_method = init_method_normal(init_method_std) if scaled_init_method is None: scaled_init_method = scaled_init_method_normal(init_method_std, num_layers) # Language model. language_model = TransformerLanguageModel( config=config, init_method=init_method, output_layer_init_method=scaled_init_method, encoder_attn_mask_type=encoder_attn_mask_type, num_tokentypes=num_tokentypes, vocab_size=vocab_size, max_position_embeddings=max_position_embeddings, hidden_size=hidden_size, num_layers=num_layers, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, ffn_hidden_size=ffn_hidden_size, add_decoder=add_decoder, decoder_attn_mask_type=decoder_attn_mask_type, add_pooler=add_pooler, pre_process=pre_process, post_process=post_process, megatron_amp_O2=megatron_amp_O2, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, normalization=normalization, layernorm_epsilon=layernorm_epsilon, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, bias=bias, rotary_percentage=rotary_percentage, share_embeddings_and_output_weights=share_embeddings_and_output_weights, masked_softmax_fusion=masked_softmax_fusion, activation=activation, headscale=headscale, transformer_block_type=transformer_block_type, normalize_attention_scores=normalize_attention_scores, position_embedding_type=position_embedding_type, multi_query_attention=multi_query_attention, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, megatron_legacy=megatron_legacy, activations_checkpoint_granularity=activations_checkpoint_granularity, activations_checkpoint_layers_per_pipeline=activations_checkpoint_layers_per_pipeline, transformer_engine=transformer_engine, fp8=fp8, fp8_e4m3=fp8_e4m3, fp8_hybrid=fp8_hybrid, fp8_margin=fp8_margin, fp8_interval=fp8_interval, fp8_amax_history_len=fp8_amax_history_len, fp8_amax_compute_algo=fp8_amax_compute_algo, reduce_amax=reduce_amax, use_emha=use_emha, ub_tp_comm_overlap=ub_tp_comm_overlap, use_flash_attention=use_flash_attention, seq_len_interpolation_factor=seq_len_interpolation_factor, ) # key used for checkpoints. language_model_key = 'language_model' return language_model, language_model_key class Pooler(MegatronModule): """Pooler layer. Pool hidden states of a specific token (for example start of the sequence) and add a linear transformation followed by a tanh. Arguments: hidden_size: hidden size init_method: weight initialization method for the linear layer. bias is set to zero. """ def __init__(self, hidden_size, init_method, sequence_parallel=False): super(Pooler, self).__init__() self.dense = get_linear_layer(hidden_size, hidden_size, init_method) self.sequence_parallel = sequence_parallel def forward(self, hidden_states, sequence_index=0): # hidden_states: [s, b, h] prompt_embeddings # sequence_index: index of the token to pool. # gather data along sequence dimensions # same pooler is run on all tensor parallel nodes if self.sequence_parallel: hidden_states = tensor_parallel.mappings.gather_from_sequence_parallel_region(hidden_states) pooled = hidden_states[sequence_index, :, :] pooled = self.dense(pooled) pooled = torch.tanh(pooled) return pooled class Embedding(MegatronModule): """Language model embeddings. Arguments: hidden_size: hidden size vocab_size: vocabulary size max_sequence_length: maximum size of sequence. This is used for positional embedding embedding_dropout_prob: dropout probability for embeddings init_method: weight initialization method num_tokentypes: size of the token-type embeddings. 0 value will ignore this embedding position_embedding_type: position embedding type determines whether we instantiate a learnable position embedding table. """ def __init__( self, config: ModelParallelConfig, hidden_size, vocab_size, max_sequence_length, embedding_dropout_prob, init_method, num_tokentypes=0, dtype=torch.float32, fp32_residual_connection=False, position_embedding_type='learned_absolute', transpose_batch_sequence=True, ): super(Embedding, self).__init__(config=config) self.hidden_size = hidden_size self.init_method = init_method self.num_tokentypes = num_tokentypes self.position_embedding_type = position_embedding_type self.transpose_batch_sequence = transpose_batch_sequence # Word embeddings (parallel). self.word_embeddings = tensor_parallel.VocabParallelEmbedding( vocab_size, self.hidden_size, init_method=self.init_method, config=config, ) self._word_embeddings_key = 'word_embeddings' if self.position_embedding_type == 'learned_absolute': # Position embedding (serial). self.position_embeddings = torch.nn.Embedding(max_sequence_length, self.hidden_size, dtype=dtype) self._position_embeddings_key = 'position_embeddings' # Initialize the position embeddings. self.init_method(self.position_embeddings.weight) # Token type embedding. # Add this as an optional field that can be added through # method call so we can load a pretrain model without # token types and add them as needed. self._tokentype_embeddings_key = 'tokentype_embeddings' if self.num_tokentypes > 0: self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes, self.hidden_size, dtype=dtype) # Initialize the token-type embeddings. self.init_method(self.tokentype_embeddings.weight) else: self.tokentype_embeddings = None self.fp32_residual_connection = fp32_residual_connection self.sequence_parallel = config.sequence_parallel # Embeddings dropout self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob) def zero_parameters(self): """Zero out all parameters in embedding.""" self.word_embeddings.weight.data.fill_(0) self.word_embeddings.weight.shared = True if self.position_embedding_type == 'learned_absolute': self.position_embeddings.weight.data.fill_(0) self.position_embeddings.weight.shared = True if self.num_tokentypes > 0: self.tokentype_embeddings.weight.data.fill_(0) self.tokentype_embeddings.weight.shared = True def add_tokentype_embeddings(self, num_tokentypes): """Add token-type embedding. This function is provided so we can add token-type embeddings in case the pretrained model does not have it. This allows us to load the model normally and then add this embedding. """ if self.tokentype_embeddings is not None: raise Exception('tokentype embeddings is already initialized') if torch.distributed.get_rank() == 0: print('adding embedding for {} tokentypes'.format(num_tokentypes), flush=True) self.num_tokentypes = num_tokentypes self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes, self.hidden_size) # Initialize the token-type embeddings. self.init_method(self.tokentype_embeddings.weight) def forward(self, input_ids, position_ids=None, token_type_ids=None): # Embeddings. words_embeddings = self.word_embeddings(input_ids) if self.position_embedding_type == 'learned_absolute': assert position_ids is not None position_embeddings = self.position_embeddings(position_ids) embeddings = words_embeddings + position_embeddings else: embeddings = words_embeddings if token_type_ids is not None: assert self.tokentype_embeddings is not None embeddings = embeddings + self.tokentype_embeddings(token_type_ids) else: assert self.tokentype_embeddings is None # Data format change to avoid explicit tranposes : [b s h] --> [s b h]. if self.transpose_batch_sequence: embeddings = embeddings.transpose(0, 1).contiguous() # If the input flag for fp32 residual connection is set, convert for float. if self.fp32_residual_connection: embeddings = embeddings.float() # Dropout. if self.sequence_parallel: embeddings = tensor_parallel.mappings.scatter_to_sequence_parallel_region(embeddings) with tensor_parallel.random.get_cuda_rng_tracker().fork(): embeddings = self.embedding_dropout(embeddings) else: embeddings = self.embedding_dropout(embeddings) return embeddings def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load.""" state_dict_ = {} state_dict_[self._word_embeddings_key] = self.word_embeddings.state_dict(destination, prefix, keep_vars) if self.position_embedding_type == 'learned_absolute': state_dict_[self._position_embeddings_key] = self.position_embeddings.state_dict( destination, prefix, keep_vars ) if self.num_tokentypes > 0: state_dict_[self._tokentype_embeddings_key] = self.tokentype_embeddings.state_dict( destination, prefix, keep_vars ) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" # Word embedding. if self._word_embeddings_key in state_dict: state_dict_ = state_dict[self._word_embeddings_key] else: # for backward compatibility. state_dict_ = {} for key in state_dict.keys(): if 'word_embeddings' in key: state_dict_[key.split('word_embeddings.')[1]] = state_dict[key] self.word_embeddings.load_state_dict(state_dict_, strict=strict) if self.position_embedding_type == 'learned_absolute': # Position embedding. if self._position_embeddings_key in state_dict: state_dict_ = state_dict[self._position_embeddings_key] else: # for backward compatibility. state_dict_ = {} for key in state_dict.keys(): if 'position_embeddings' in key: state_dict_[key.split('position_embeddings.')[1]] = state_dict[key] self.position_embeddings.load_state_dict(state_dict_, strict=strict) # Tokentype embedding. if self.num_tokentypes > 0: state_dict_ = {} if self._tokentype_embeddings_key in state_dict: state_dict_ = state_dict[self._tokentype_embeddings_key] else: # for backward compatibility. for key in state_dict.keys(): if 'tokentype_embeddings' in key: state_dict_[key.split('tokentype_embeddings.')[1]] = state_dict[key] if len(state_dict_.keys()) > 0: self.tokentype_embeddings.load_state_dict(state_dict_, strict=strict) else: print( '***WARNING*** expected tokentype embeddings in the ' 'checkpoint but could not find it', flush=True, ) class TransformerLanguageModel(MegatronModule, adapter_mixins.AdapterModuleMixin): """Transformer language model. Arguments: transformer_hparams: transformer hyperparameters vocab_size: vocabulary size max_sequence_length: maximum size of sequence. This is used for positional embedding embedding_dropout_prob: dropout probability for embeddings num_tokentypes: size of the token-type embeddings. 0 value will ignore this embedding """ def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, encoder_attn_mask_type, vocab_size, max_position_embeddings, hidden_size, ffn_hidden_size, num_layers, num_tokentypes, num_attention_heads, apply_query_key_layer_scaling=True, kv_channels=None, add_decoder=False, decoder_attn_mask_type=AttnMaskType.causal, add_pooler=False, pre_process=True, post_process=True, megatron_amp_O2=False, hidden_dropout=0.1, attention_dropout=0.1, ffn_dropout=0.0, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, normalization='layernorm', layernorm_epsilon=1e-5, bias_activation_fusion=True, bias_dropout_add_fusion=True, bias=True, masked_softmax_fusion=True, activation='gelu', headscale=False, transformer_block_type='pre_ln', normalize_attention_scores=True, position_embedding_type='learned_absolute', rotary_percentage=1.0, multi_query_attention=False, share_embeddings_and_output_weights=True, persist_layer_norm=False, openai_gelu=False, onnx_safe=False, megatron_legacy=False, activations_checkpoint_granularity=None, activations_checkpoint_layers_per_pipeline=None, transformer_engine=False, fp8=False, fp8_e4m3=False, fp8_hybrid=False, fp8_margin=0, fp8_interval=1, fp8_amax_history_len=1, fp8_amax_compute_algo='most_recent', reduce_amax=True, use_emha=False, ub_tp_comm_overlap=False, use_flash_attention=False, seq_len_interpolation_factor=None, ): super(TransformerLanguageModel, self).__init__( config=config, share_token_embeddings=share_embeddings_and_output_weights ) self.pre_process = pre_process self.post_process = post_process self.hidden_size = hidden_size self.num_layers = num_layers self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.num_tokentypes = num_tokentypes self.init_method = init_method self.encoder_attn_mask_type = encoder_attn_mask_type self.add_decoder = add_decoder self.decoder_attn_mask_type = decoder_attn_mask_type self.add_pooler = add_pooler self.hidden_dropout = hidden_dropout self.output_layer_init_method = output_layer_init_method self.position_embedding_type = position_embedding_type self.share_embeddings_and_output_weights = share_embeddings_and_output_weights self.sequence_parallel = config.sequence_parallel self.dtype = utils_funcs.torch_dtype_from_precision(precision, megatron_amp_O2) if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads # Embeddings. if self.pre_process: self.embedding = Embedding( config=config, hidden_size=self.hidden_size, vocab_size=self.vocab_size, max_sequence_length=self.max_position_embeddings, init_method=self.init_method, num_tokentypes=self.num_tokentypes, embedding_dropout_prob=self.hidden_dropout, position_embedding_type=position_embedding_type, fp32_residual_connection=fp32_residual_connection, dtype=self.dtype, ) self._embedding_key = 'embedding' if position_embedding_type == 'rope': rotary_dim = self.hidden_size // num_attention_heads if kv_channels is None else kv_channels assert 0 < rotary_percentage <= 1 if rotary_percentage < 1: rotary_dim = int(rotary_dim * rotary_percentage) self.rotary_pos_emb = RotaryEmbedding( rotary_dim, seq_len_interpolation_factor=seq_len_interpolation_factor ) elif position_embedding_type == 'alibi': # TODO: If this is used for encoder-decodemax_position_embeddingsr model, implement proper logic and following # addition for decoder. Currently it is only used for decoder model only. # Encoder-decoder model, such as T5 is implemented in token_level_encoder_decoder.py self.encoder_relative_position_embedding = ALiBiRelativePositionEmbedding( bidirectional=encoder_attn_mask_type != AttnMaskType.causal, num_attention_heads=num_attention_heads, layer_type=LayerType.encoder, num_attention_heads_alibi=None, max_seq_len=max_position_embeddings, ) elif position_embedding_type == 'kerple': # TODO: If this is used for encoder-decodemax_position_embeddingsr model, implement proper logic and following # addition for decoder. Currently it is only used for decoder model only. # Encoder-decoder model, such as T5 is implemented in token_level_encoder_decoder.py self.encoder_relative_position_embedding = KERPLERelativePositionEmbedding( bidirectional=encoder_attn_mask_type != AttnMaskType.causal, num_attention_heads=num_attention_heads, layer_type=LayerType.encoder, num_attention_heads_kerple=None, max_seq_len=max_position_embeddings, ) assert use_flash_attention == False # flash-attention not supported with kerple at this point elif position_embedding_type == 'sandwich': self.encoder_relative_position_embedding = SandwichRelativePositionEmbedding( bidirectional=encoder_attn_mask_type != AttnMaskType.causal, num_attention_heads=num_attention_heads, layer_type=LayerType.encoder, hidden_size=self.hidden_size // num_attention_heads if kv_channels is None else kv_channels, max_seq_len=max_position_embeddings, ) # Transformer. self.encoder = ParallelTransformer( config=config, init_method=self.init_method, output_layer_init_method=self.output_layer_init_method, num_layers=self.num_layers, hidden_size=self.hidden_size, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, ffn_hidden_size=ffn_hidden_size, self_attn_mask_type=self.encoder_attn_mask_type, pre_process=self.pre_process, post_process=self.post_process, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, normalization=normalization, layernorm_epsilon=layernorm_epsilon, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, megatron_amp_O2=megatron_amp_O2, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, bias=bias, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, activation=activation, headscale=headscale, transformer_block_type=transformer_block_type, normalize_attention_scores=normalize_attention_scores, multi_query_attention=multi_query_attention, megatron_legacy=megatron_legacy, activations_checkpoint_granularity=activations_checkpoint_granularity, activations_checkpoint_layers_per_pipeline=activations_checkpoint_layers_per_pipeline, transformer_engine=transformer_engine, fp8=fp8, fp8_e4m3=fp8_e4m3, fp8_hybrid=fp8_hybrid, fp8_margin=fp8_margin, fp8_interval=fp8_interval, fp8_amax_history_len=fp8_amax_history_len, fp8_amax_compute_algo=fp8_amax_compute_algo, reduce_amax=reduce_amax, use_emha=use_emha, ub_tp_comm_overlap=ub_tp_comm_overlap, position_embedding_type=position_embedding_type, use_flash_attention=use_flash_attention, ) self._encoder_key = 'encoder' # Decoder if self.add_decoder: self.decoder = ParallelTransformer( config=config, layer_type=LayerType.decoder, self_attn_mask_type=self.decoder_attn_mask_type, init_method=self.init_method, output_layer_init_method=self.output_layer_init_method, num_layers=self.num_layers, hidden_size=self.hidden_size, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, ffn_hidden_size=ffn_hidden_size, pre_process=self.pre_process, post_process=self.post_process, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, normalization=normalization, layernorm_epsilon=layernorm_epsilon, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, megatron_amp_O2=megatron_amp_O2, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, megatron_legacy=megatron_legacy, activations_checkpoint_granularity=activations_checkpoint_granularity, activations_checkpoint_layers_per_pipeline=activations_checkpoint_layers_per_pipeline, transformer_engine=transformer_engine, position_embedding_type=position_embedding_type, use_flash_attention=use_flash_attention, ) self._decoder_key = 'decoder' if self.post_process: # Pooler. if self.add_pooler: self.pooler = Pooler(self.hidden_size, self.init_method, sequence_parallel=self.sequence_parallel) self._pooler_key = 'pooler' if not self.share_embeddings_and_output_weights: self.output_layer = tensor_parallel.ColumnParallelLinear( self.hidden_size, self.vocab_size, config=config, bias=False, # Setting bias to False always to keep it consistent with embedding tying that also does not have a bias. init_method=self.init_method, ) self._output_layer_key = 'output_layer' self.set_accepted_adapter_types([PromptEncoderAdapterConfig._target_]) def set_input_tensor(self, input_tensor): """ See megatron.model.transformer.set_input_tensor()""" # This is usually handled in schedules.py but some inference code still # gives us non-lists or None if not isinstance(input_tensor, list): input_tensor = [input_tensor] self.encoder.set_input_tensor(input_tensor[0]) def forward( self, enc_input_ids, enc_position_ids, enc_attn_mask, dec_input_ids=None, dec_position_ids=None, dec_attn_mask=None, enc_dec_attn_mask=None, token_type_ids=None, layer_past=None, get_key_value=False, pooling_sequence_index=0, enc_hidden_states=None, output_enc_hidden_only=False, encoder_input=None, set_inference_key_value_memory=False, inference_max_sequence_len=None, checkpoint_activations_all_layers=None, ): # Embeddings. if self.pre_process and encoder_input is None: encoder_input = self.embedding(enc_input_ids, enc_position_ids, token_type_ids=token_type_ids) if self.is_adapter_available(): _sq, _bs, _hs = encoder_input.size() ptuning_adapter = self.get_adapter_module(AdapterName.PTUNING_ADAPTER) v = ptuning_adapter.virtual_tokens if ptuning_adapter and _sq >= v: # The sequence should be longer the v to insert virtual embeddings. virtual_embeddings = ptuning_adapter(_bs) encoder_input = encoder_input[ v:, :, : ] # the first v tokens are pads so that they can be swapped out with virtual embeddings. encoder_input = torch.concat([virtual_embeddings, encoder_input], dim=0) else: pass # enc_attn_mask: [1, 1, s, s] if inference_max_sequence_len is not None: enc_seq_length = inference_max_sequence_len elif self.encoder.input_tensor is not None: if self.sequence_parallel: enc_seq_length = ( self.encoder.input_tensor.size(0) * parallel_state.get_tensor_model_parallel_world_size() ) else: enc_seq_length = self.encoder.input_tensor.size(0) else: if self.sequence_parallel: enc_seq_length = encoder_input.size(0) * parallel_state.get_tensor_model_parallel_world_size() else: enc_seq_length = encoder_input.size(0) rotary_pos_emb = None encoder_self_attention_relative_position_bias = None if self.position_embedding_type == 'rope': rotary_pos_emb = self.rotary_pos_emb(enc_seq_length) elif ( self.position_embedding_type == 'alibi' or self.position_embedding_type == 'sandwich' or self.position_embedding_type == 'kerple' ): encoder_self_attention_relative_position_bias = self.encoder_relative_position_embedding( query_seq_length=enc_seq_length, key_seq_length=enc_seq_length, ) # causal attention bias: [1, head, 1, k] # non-causal attention bias: [1, head, q, k] # encoder. if enc_hidden_states is None: encoder_output = self.encoder( encoder_input, enc_attn_mask, layer_past=layer_past, get_key_value=get_key_value, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, checkpoint_activations_all_layers=checkpoint_activations_all_layers, rotary_pos_emb=(rotary_pos_emb, None, None) if rotary_pos_emb is not None else None, # This assumes that this being used as a GPT/BERT model only (no cross-attention) self_attention_relative_position_bias=encoder_self_attention_relative_position_bias, ) else: encoder_output = enc_hidden_states.to(encoder_input.dtype) if self.post_process: if self.add_pooler: pooled_output = self.pooler(encoder_output, pooling_sequence_index) # output_enc_hidden_only refers to when we just need the encoder's # output. For example, it is helpful to compute # similarity between two sequences by average pooling if not self.add_decoder or output_enc_hidden_only: if self.add_pooler and self.post_process: return encoder_output, pooled_output else: return encoder_output # Decoder Embedding dec_embedding_output = self.embedding(dec_input_ids, dec_position_ids) # decoder decoder_output = self.decoder( dec_embedding_output, dec_attn_mask, layer_past=layer_past, get_key_value=get_key_value, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, checkpoint_activations_all_layers=checkpoint_activations_all_layers, ) if self.add_pooler and self.post_process: return decoder_output, encoder_output, pooled_output else: return decoder_output, encoder_output def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load.""" state_dict_ = {} if self.pre_process: state_dict_[self._embedding_key] = self.embedding.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) state_dict_[self._encoder_key] = self.encoder.state_dict_for_save_checkpoint(destination, prefix, keep_vars) if self.post_process: if self.add_pooler: state_dict_[self._pooler_key] = self.pooler.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) if self.add_decoder: state_dict_[self._decoder_key] = self.decoder.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" # Embedding. if self.pre_process: if self._embedding_key in state_dict: state_dict_ = state_dict[self._embedding_key] else: # for backward compatibility. state_dict_ = {} for key in state_dict.keys(): if '_embeddings' in key: state_dict_[key] = state_dict[key] self.embedding.load_state_dict(state_dict_, strict=strict) # Encoder. if self._encoder_key in state_dict: state_dict_ = state_dict[self._encoder_key] # for backward compatibility. elif 'transformer' in state_dict: state_dict_ = state_dict['transformer'] else: # for backward compatibility. state_dict_ = {} for key in state_dict.keys(): if 'transformer.' in key: state_dict_[key.split('transformer.')[1]] = state_dict[key] # for backward compatibility. state_dict_self_attention = {} for key in state_dict_.keys(): if '.attention.' in key: state_dict_self_attention[key.replace(".attention.", ".self_attention.")] = state_dict_[key] else: state_dict_self_attention[key] = state_dict_[key] state_dict_ = state_dict_self_attention self.encoder.load_state_dict(state_dict_, strict=strict) if self.post_process: # pooler if self.add_pooler: assert 'pooler' in state_dict, 'could not find data for pooler in the checkpoint' self.pooler.load_state_dict(state_dict[self._pooler_key], strict=strict) # decoder if self.add_decoder: assert 'decoder' in state_dict, 'could not find data for pooler in the checkpoint' self.decoder.load_state_dict(state_dict[self._decoder_key], strict=strict)
NeMo-main
nemo/collections/nlp/modules/common/megatron/language_model.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch import torch.nn.functional as F from einops import rearrange, repeat from nemo.collections.nlp.modules.common.megatron.adapters.parallel_adapters import ( AdapterName, InfusedAdapterConfig, LoraKQVAdapterConfig, LoraKQVAdapterWeightTyingConfig, LoraKVAdapterConfig, LoraQAdapterConfig, ) from nemo.collections.nlp.modules.common.megatron.fused_softmax import MatchedScaleMaskSoftmax from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.position_embedding import XPOSPositionEmbedding from nemo.collections.nlp.modules.common.megatron.position_embedding.rotary_position_embedding import ( apply_rotary_pos_emb, ) from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, _cast_if_autocast_enabled, attention_mask_func, ) from nemo.collections.nlp.parts import utils_funcs from nemo.core import adapter_mixins try: from apex.transformer.enums import AttnMaskType, AttnType from apex.transformer.utils import divide as safe_divide HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes ModelType = AttnMaskType = AttnType = LayerType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig, parallel_state, tensor_parallel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False try: # Flash Attention 1.X from flash_attn.bert_padding import pad_input, unpad_input from flash_attn.flash_attn_interface import flash_attn_unpadded_func from flash_attn.flash_attn_triton import flash_attn_func as flash_attn_func_triton HAVE_FLASH_ATTENTION = True flash_attn_func = None except (ImportError, ModuleNotFoundError): try: # Flash Attention 2.X from flash_attn import flash_attn_func from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func HAVE_FLASH_ATTENTION = True except (ImportError, ModuleNotFoundError): HAVE_FLASH_ATTENTION = False flash_attn_unpadded_func, flash_attn_func_triton, flash_attn_func = None, None, None unpad_input, pad_input = None, None """ We use the following notation throughout this file: h: hidden size n: number of attention heads p: number of model parallel partitions np: n/p hp: h/p hn: h/n b: batch size s: sequence length l: number of layers Transformer takes input of size [s, b, h] and returns a tensor of the same size. We use the following arguments: hyperparameters: transformer hyperparameters """ class ParallelAttention(MegatronModule, adapter_mixins.AdapterModuleMixin): """Parallel self-attention layer abstract class. Self-attention layer takes input with size [s, b, h] and returns output of the same size. """ def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, layer_number, num_attention_heads, hidden_size, attention_type=AttnType.self_attn, attn_mask_type=AttnMaskType.padding, precision=16, apply_query_key_layer_scaling=False, kv_channels=None, megatron_amp_O2=False, masked_softmax_fusion=True, attention_dropout=0.1, layer_type=None, megatron_legacy=False, bias=True, headscale=False, position_embedding_type='learned_absolute', multi_query_attention=False, normalize_attention_scores=True, use_flash_attention=False, ): super(ParallelAttention, self).__init__(config=config) self.layer_number = max(1, layer_number) self.attention_type = attention_type self.attn_mask_type = attn_mask_type self.normalize_attention_scores = normalize_attention_scores self.position_embedding_type = position_embedding_type self.multi_query_attention = multi_query_attention self.megatron_legacy = megatron_legacy self.dtype = utils_funcs.torch_dtype_from_precision(precision, megatron_amp_O2) self.set_accepted_adapter_types( [ InfusedAdapterConfig._target_, LoraKQVAdapterConfig._target_, LoraQAdapterConfig._target_, LoraKVAdapterConfig._target_, LoraKQVAdapterWeightTyingConfig._target_, ] ) if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads projection_size = kv_channels * num_attention_heads # Per attention head and per partition values. world_size = parallel_state.get_tensor_model_parallel_world_size() self.hidden_size_per_attention_head = safe_divide(projection_size, num_attention_heads) self.num_attention_heads_per_partition = safe_divide(num_attention_heads, world_size) self.num_attention_heads_partition_offset = ( self.num_attention_heads_per_partition * parallel_state.get_tensor_model_parallel_rank() ) # Strided linear layer. if attention_type == AttnType.self_attn: self.query_key_value = tensor_parallel.ColumnParallelLinear( hidden_size, 3 * projection_size, config=config, gather_output=False, init_method=init_method, bias=bias, ) else: assert attention_type == AttnType.cross_attn self.query = tensor_parallel.ColumnParallelLinear( hidden_size, projection_size, config=config, gather_output=False, init_method=init_method, bias=bias, ) self.key_value = tensor_parallel.ColumnParallelLinear( hidden_size, 2 * projection_size, config=config, gather_output=False, init_method=init_method, bias=bias, ) self.core_attention = CoreAttention( config=config, layer_number=self.layer_number, num_attention_heads=num_attention_heads, hidden_size=hidden_size, attention_type=self.attention_type, attn_mask_type=self.attn_mask_type, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, multi_query_attention=multi_query_attention, normalize_attention_scores=normalize_attention_scores, position_embedding_type=position_embedding_type, use_flash_attention=use_flash_attention, ) # Output. self.dense = tensor_parallel.RowParallelLinear( projection_size, hidden_size, config=config, input_is_parallel=True, init_method=output_layer_init_method, skip_bias_add=True, bias=bias, ) self.headscale = headscale if headscale: self.head_scale_tensor = torch.nn.Parameter( torch.ones(1, self.num_attention_heads_per_partition, 1, 1), requires_grad=True ) # Inference key-value memory self.inference_key_memory = None self.inference_value_memory = None self.inference_current_sequence_len = 0 # relative position embedding self.layer_type = layer_type def _checkpointed_attention_forward( self, query_layer, key_layer, value_layer, attention_mask, rotary_pos_emb=None, relative_position_bias=None, headscale_tensor=None, inference_mode=None, ): """Forward method with activation checkpointing.""" def custom_forward(*inputs): if len(inputs) == 7: query_layer = inputs[0] key_layer = inputs[1] value_layer = inputs[2] attention_mask = inputs[3] rotary_pos_emb = inputs[4] relative_position_bias = inputs[5] headscale_tensor = inputs[6] elif len(inputs) == 8: query_layer = inputs[0] key_layer = inputs[1] value_layer = inputs[2] attention_mask = inputs[3] rotary_pos_emb = (inputs[4], inputs[5]) relative_position_bias = inputs[6] headscale_tensor = inputs[7] else: raise ValueError('unexpected number of inputs') output_ = self.core_attention( query_layer, key_layer, value_layer, attention_mask, rotary_pos_emb=rotary_pos_emb, relative_position_bias=relative_position_bias, headscale_tensor=headscale_tensor, inference_mode=inference_mode, ) return output_ if rotary_pos_emb is None: rot_tuple = (rotary_pos_emb,) else: rot_tuple = (rotary_pos_emb[0], rotary_pos_emb[1]) hidden_states = tensor_parallel.checkpoint( custom_forward, False, query_layer, key_layer, value_layer, attention_mask, *rot_tuple, relative_position_bias, headscale_tensor, ) return hidden_states def _allocate_memory(self, inference_max_sequence_len, batch_size, dtype, device): return torch.empty( inference_max_sequence_len, batch_size, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head, dtype=dtype, device=device, ) def _transpose_last_dim(self, mixed_layer, num_splits, num_splits_first): input_shape = mixed_layer.size() if num_splits_first: """[s, b, num_splits * np * hn] -->(view) [s, b, num_splits, np, hn] -->(tranpose) [s, b, np, num_splits, hn] -->(view) [s, b, np * num_splits * hn] """ intermediate_shape = input_shape[:-1] + ( num_splits, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head, ) mixed_layer = mixed_layer.view(*intermediate_shape) mixed_layer = mixed_layer.transpose(-2, -3).contiguous() else: """[s, b, np * hn * num_splits] -->(view) [s, b, np, hn, num_splits] -->(tranpose) [s, b, np, num_splits, hn] -->(view) [s, b, np * num_splits * hn] """ intermediate_shape = input_shape[:-1] + ( self.num_attention_heads_per_partition, self.hidden_size_per_attention_head, num_splits, ) mixed_layer = mixed_layer.view(*intermediate_shape) mixed_layer = mixed_layer.transpose(-1, -2).contiguous() mixed_layer = mixed_layer.view(*input_shape) return mixed_layer def forward( self, hidden_states, attention_mask, layer_past=None, get_key_value=False, encoder_output=None, set_inference_key_value_memory=False, inference_max_sequence_len=None, rotary_pos_emb=None, # rotary positional embedding relative_position_bias=None, checkpoint_core_attention=False, ): # hidden_states: [sq, b, h] # ================================================= # Pre-allocate memory for key-values for inference. # ================================================= if set_inference_key_value_memory: assert inference_max_sequence_len and inference_max_sequence_len > 0 self.inference_key_memory = self._allocate_memory( inference_max_sequence_len, hidden_states.size(1), hidden_states.dtype, hidden_states.device ) self.inference_value_memory = self._allocate_memory( inference_max_sequence_len, hidden_states.size(1), hidden_states.dtype, hidden_states.device ) self.inference_current_sequence_len = 0 # Some consistency check. if inference_max_sequence_len: assert self.inference_current_sequence_len < self.inference_key_memory.size(0) assert inference_max_sequence_len == self.inference_key_memory.size(0) # This is added for safety. In case inference_max_sequence_len # is not provided, make sure there is no potential memory left # from previous inference. if not inference_max_sequence_len: self.inference_key_memory = None self.inference_value_memory = None # ===================== # Query, Key, and Value # ===================== if self.attention_type == AttnType.self_attn: # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)] mixed_x_layer, _ = self.query_key_value(hidden_states) if self.is_adapter_available(): lora_kqv_adapter = self.get_adapter_module(AdapterName.LORA_KQV_ADAPTER) if lora_kqv_adapter: lora_mixed_x_layer = lora_kqv_adapter(hidden_states) mixed_x_layer = mixed_x_layer + lora_mixed_x_layer # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn] new_tensor_shape = mixed_x_layer.size()[:-1] + ( self.num_attention_heads_per_partition, 3 * self.hidden_size_per_attention_head, ) if self.megatron_legacy: mixed_x_layer = self._transpose_last_dim(mixed_x_layer, 3, True) mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn] (query_layer, key_layer, value_layer) = tensor_parallel.split_tensor_along_last_dim( mixed_x_layer, 3, contiguous_split_chunks=True ) else: # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)] mixed_kv_layer, _ = self.key_value(encoder_output) if self.is_adapter_available(): lora_kv_adapter = self.get_adapter_module(AdapterName.LORA_KV_ADAPTER) if lora_kv_adapter: lora_mixed_kv_layer = lora_kv_adapter(encoder_output) mixed_kv_layer = mixed_kv_layer + lora_mixed_kv_layer # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn] new_tensor_shape = mixed_kv_layer.size()[:-1] + ( self.num_attention_heads_per_partition, 2 * self.hidden_size_per_attention_head, ) if self.megatron_legacy: mixed_kv_layer = self._transpose_last_dim(mixed_kv_layer, 2, True) mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape) # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn] (key_layer, value_layer) = tensor_parallel.split_tensor_along_last_dim( mixed_kv_layer, 2, contiguous_split_chunks=True ) # Attention head [sq, b, h] --> [sq, b, hp] query_layer, _ = self.query(hidden_states) if self.is_adapter_available(): lora_q_adapter = self.get_adapter_module(AdapterName.LORA_Q_ADAPTER) if lora_q_adapter: lora_q_layer = lora_q_adapter(hidden_states) query_layer = query_layer + lora_q_layer # [sq, b, hp] --> [sq, b, np, hn] new_tensor_shape = query_layer.size()[:-1] + ( self.num_attention_heads_per_partition, self.hidden_size_per_attention_head, ) query_layer = query_layer.view(*new_tensor_shape) if self.is_adapter_available(): key_infused_adapter = self.get_adapter_module(AdapterName.KEY_INFUSED) value_infused_adapter = self.get_adapter_module(AdapterName.VALUE_INFUSED) if key_infused_adapter: assert value_infused_adapter is not None, "Expected value_infused_adapter not found!" kls = key_layer.shape key_layer = key_infused_adapter(key_layer.reshape(kls[0], kls[1], -1)).reshape(kls) if value_infused_adapter: assert key_infused_adapter is not None, "Expected key_infused_adapter not found!" vls = value_layer.shape value_layer = value_infused_adapter(value_layer.reshape(vls[0], vls[1], -1)).reshape(vls) # =================================================== # Adjust key, value, and attention mask for inference # =================================================== # duplicate the pos_emb for self attention if rotary_pos_emb is not None: rotary_pos_emb = rotary_pos_emb if isinstance(rotary_pos_emb, tuple) else ((rotary_pos_emb,) * 2) if inference_max_sequence_len: # Adjust the range variables. start = self.inference_current_sequence_len self.inference_current_sequence_len += key_layer.size(0) end = self.inference_current_sequence_len # Copy key and values. self.inference_key_memory[start:end, ...] = key_layer self.inference_value_memory[start:end, ...] = value_layer key_layer = self.inference_key_memory[:end, ...] value_layer = self.inference_value_memory[:end, ...] # Adjust attention mask if attention_mask is not None: attention_mask = attention_mask[..., start:end, :end] # adjust the key rotary positional embedding if rotary_pos_emb is not None: q_pos_emb, k_pos_emb = rotary_pos_emb if not set_inference_key_value_memory: # In inference, we compute one token at a time. # Select the correct positional embedding. q_pos_emb = q_pos_emb[end - 1 : end] else: q_pos_emb = q_pos_emb[:end, :, :, :] k_pos_emb = k_pos_emb[:end, :, :, :] rotary_pos_emb = (q_pos_emb, k_pos_emb) if layer_past is not None: past_key, past_value = layer_past key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=0) value_layer = torch.cat((past_value.type_as(value_layer), value_layer), dim=0) if get_key_value: present = (key_layer, value_layer) if checkpoint_core_attention: context_layer = self._checkpointed_attention_forward( query_layer, key_layer, value_layer, attention_mask, rotary_pos_emb=rotary_pos_emb, relative_position_bias=relative_position_bias, headscale_tensor=self.head_scale_tensor if self.headscale else None, inference_mode=inference_max_sequence_len is not None and query_layer.shape[0] == 1, ) else: context_layer = self.core_attention( query_layer, key_layer, value_layer, attention_mask, layer_past=layer_past, get_key_value=get_key_value, rotary_pos_emb=rotary_pos_emb, relative_position_bias=relative_position_bias, headscale_tensor=self.head_scale_tensor if self.headscale else None, inference_mode=inference_max_sequence_len is not None and query_layer.shape[0] == 1, ) # ================= # Output. [sq, b, h] # ================= output, bias = self.dense(context_layer) if get_key_value: output = [output, present] return output, bias class ParallelChunkedCrossAttention(MegatronModule): """Parallel chunked cross-attention layer class. Self-attention layer takes input with size [b, s, h] and returns output of the same size. """ def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, layer_number, num_attention_heads, hidden_size, precision=16, apply_query_key_layer_scaling=False, kv_channels=None, megatron_amp_O2=False, masked_softmax_fusion=True, attention_dropout=0.1, megatron_legacy=False, chunk_size=64, # each chunk, how many tokens bias=True, headscale=False, normalize_attention_scores=True, ): super(ParallelChunkedCrossAttention, self).__init__(config=config) self.cross_attention = ParallelAttention( config=config, init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number, num_attention_heads=num_attention_heads, hidden_size=hidden_size, attention_type=AttnType.cross_attn, attn_mask_type=AttnMaskType.padding, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, megatron_amp_O2=megatron_amp_O2, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, megatron_legacy=megatron_legacy, bias=bias, headscale=headscale, normalize_attention_scores=normalize_attention_scores, ) self.chunk_size = chunk_size def forward( self, hidden_states, attention_mask, encoder_output=None, set_inference_key_value_memory=False, inference_max_sequence_len=None, rotary_pos_emb=None, checkpoint_core_attention=False, ): if checkpoint_core_attention: raise ValueError( 'checkpoint_core_attention during forward not implemented yet for ParallelChunkedCrossAttention' ) # hidden_states is assumed to have dimension [token length, batch, dimension] # derive variables # encoder_output here is the retrieved context context = encoder_output # context is assumed to have dimension [num_chunks, num_neighbors, context_token_len, batch, dimension] chunk_size = self.chunk_size b, n, dim = ( hidden_states.shape[1], hidden_states.shape[0], hidden_states.shape[2], ) default_bias = self.cross_attention.dense.bias if set_inference_key_value_memory: seq_index = (n // chunk_size) * chunk_size self.current_len = n elif inference_max_sequence_len is not None: # only handles single token increment assert n == 1 self.current_len += n chunk_id = self.current_len // chunk_size if chunk_id <= 0: # if sequence length less than chunk size, do an early return return torch.zeros_like(hidden_states), default_bias causal_padding = chunk_size - 1 # pad it as a full chunk, put it at the end of the chunk position hidden_states = F.pad(hidden_states, (0, 0, 0, 0, causal_padding, 0), value=0.0) # only use the relevant context context = context[chunk_id - 1 : chunk_id, :, :, :, :] attention_mask = rearrange(attention_mask, '(b k) 1 q v -> b k 1 q v', b=b) # select the relevant chunk attn mask attention_mask = attention_mask[:, chunk_id - 1] seq_index = chunk_size else: # this is normal forward without inference seq_index = (n // chunk_size) * chunk_size # if sequence length less than chunk size, do an early return if n < self.chunk_size and set_inference_key_value_memory and inference_max_sequence_len is not None: return torch.zeros_like(hidden_states), default_bias num_chunks, num_retrieved = ( context.shape[-5], context.shape[-4], ) # causal padding causal_padding = chunk_size - 1 x = F.pad(hidden_states, (0, 0, 0, 0, -causal_padding, causal_padding), value=0.0) # remove sequence which is ahead of the neighbors retrieved (during inference) # seq_index = (n // chunk_size) * chunk_size x, x_remainder = x[:seq_index], x[seq_index:] seq_remain_len = x_remainder.shape[0] # take care of rotary positional embedding # make sure queries positions are properly shifted to the future if rotary_pos_emb is not None: q_pos_emb, k_pos_emb = rotary_pos_emb # currently implementation is broken # q need to extend to causal_padding, and just do # q_pos_emb = F.pad(q_pos_emb, (0, 0, -causal_padding, 0), value = 0.) if inference_max_sequence_len is not None and not set_inference_key_value_memory: token_pos = (self.current_len - 1) % chunk_size q_pos_emb = F.pad( q_pos_emb, (0, 0, 0, 0, 0, 0, -causal_padding - token_pos, -causal_padding + token_pos), value=0.0 ) else: q_pos_emb = F.pad(q_pos_emb, (0, 0, 0, 0, 0, 0, -causal_padding, 0), value=0.0) k_pos_emb = repeat(k_pos_emb, 'n b h d -> (r n) b h d', r=num_retrieved) rotary_pos_emb = (q_pos_emb, k_pos_emb) # make sure number context chunks is enough assert x.shape[0] // chunk_size == num_chunks # reshape so we have chunk to chunk attention, without breaking causality x = rearrange(x, '(k n) b d -> n (b k) d', k=num_chunks) context = rearrange(context, 'k r n b d -> (r n) (b k) d') # cross attention out, bias = self.cross_attention(x, attention_mask, encoder_output=context, rotary_pos_emb=rotary_pos_emb) # reshape back to original sequence out = rearrange(out, 'n (b k) d -> (k n) b d', b=b) # pad back to original, with 0s at the beginning (which will be added to the residual and be fine) out = F.pad(out, (0, 0, 0, 0, causal_padding, -causal_padding + seq_remain_len), value=0.0) if not set_inference_key_value_memory and inference_max_sequence_len is not None: out = out[-1:] return out, bias class CoreAttention(MegatronModule): """ Region where selective activation recomputation is applied. See Figure 3. in Reducing Activation Recomputation in Large Transformer Models https://arxiv.org/pdf/2205.05198.pdf for more details. """ def __init__( self, config: ModelParallelConfig, layer_number, num_attention_heads, hidden_size, attention_type=AttnType.self_attn, attn_mask_type=AttnMaskType.padding, precision=16, apply_query_key_layer_scaling=False, kv_channels=None, masked_softmax_fusion=True, attention_dropout=0.1, normalize_attention_scores=True, multi_query_attention=False, position_embedding_type='learned_absolute', use_flash_attention=False, ): super(CoreAttention, self).__init__(config=config) self.precision = precision self.fp16 = False self.bf16 = False if precision in ['bf16', 'bf16-mixed']: self.bf16 = True elif precision in [16, '16', '16-mixed']: self.fp16 = True self.multi_query_attention = multi_query_attention self.position_embedding_type = position_embedding_type self.apply_query_key_layer_scaling = apply_query_key_layer_scaling self.attention_softmax_in_fp32 = False if self.apply_query_key_layer_scaling: self.attention_softmax_in_fp32 = True self.layer_number = max(1, layer_number) self.attention_type = attention_type self.attn_mask_type = attn_mask_type self.sequence_parallel = config.sequence_parallel # If True, will scale attention scores by 1 / sqrt(hidden_size_per_attention_head). # This arg is been provided mostly to support weight conversion of Huggingface models. (ex: T5v1.1) self.normalize_attention_scores = normalize_attention_scores if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads projection_size = kv_channels * num_attention_heads # Per attention head and per partition values. world_size = parallel_state.get_tensor_model_parallel_world_size() self.hidden_size_per_partition = safe_divide(projection_size, world_size) self.hidden_size_per_attention_head = safe_divide(projection_size, num_attention_heads) self.num_attention_heads_per_partition = safe_divide(num_attention_heads, world_size) self.num_attention_heads_partition_offset = ( self.num_attention_heads_per_partition * parallel_state.get_tensor_model_parallel_rank() ) coeff = None self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) if self.apply_query_key_layer_scaling: coeff = self.layer_number self.norm_factor *= coeff self.scale_mask_softmax = MatchedScaleMaskSoftmax( self.fp16, self.bf16, self.attn_mask_type, masked_softmax_fusion, attention_mask_func, self.attention_softmax_in_fp32, coeff, ) # Dropout. Note that for a single iteration, this layer will generate # different outputs on different number of parallel partitions but # on average it should not be partition dependent. self.attention_dropout_p = attention_dropout self.attention_dropout = torch.nn.Dropout(attention_dropout) if use_flash_attention: self.attn_fn = self.flash_attention else: self.attn_fn = self.torch_attention if position_embedding_type.lower() == 'xpos': self.xpos = XPOSPositionEmbedding(kv_channels) def forward( self, query_layer, key_layer, value_layer, attention_mask, layer_past=None, get_key_value=False, rotary_pos_emb=None, relative_position_bias=None, headscale_tensor=None, inference_mode=None, ): b, np, sq, sk, hn = ( query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0), query_layer.size(3), ) # ================================================== # Update attention mask for inference. [b, np, sq, sk] # ================================================== if get_key_value: with torch.no_grad(): if layer_past is not None: attention_mask = attention_mask[..., sq - 1, :sk].unsqueeze(2) else: attention_mask = attention_mask[..., :sq, :sk] # ================================================== # Update attention bias. [b, np, sq, sk] # ================================================== if relative_position_bias is not None: relative_position_bias = relative_position_bias[ :, self.num_attention_heads_partition_offset : self.num_attention_heads_partition_offset + self.num_attention_heads_per_partition, -sq:, -sk:, ] # ================================================== # Update query_layer, key_layer, value_layer # ================================================== # TODO: figure out how to do this # apply relative positional encoding (rotary embedding) if rotary_pos_emb is not None: q_pos_emb, k_pos_emb = rotary_pos_emb query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb) key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb) # TODO, can apply positional embedding to value_layer so it has # absolute positional embedding. # otherwise, only relative positional embedding takes effect # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb) if self.position_embedding_type.lower() == 'xpos': query_layer = self.xpos(query_layer, offset=key_layer.shape[-2] - query_layer.shape[-2], downscale=False) key_layer = self.xpos(key_layer, offset=0, downscale=True) # ================================================== # query_layer [sq, b, np, hn] # key_layer [sk, b, np, hn] # value_layer [sk, b, np, hn] # attention_mask [b, 1, sq, sk] or [b, s] # relative_position_bias [b, np, sq, sk] # context_layer [b, np, sq, hn] # ================================================== context_layer = self.attn_fn( query_layer, key_layer, value_layer, attention_mask, relative_position_bias, inference_mode ) if headscale_tensor is not None: context_layer = context_layer * headscale_tensor # [b, np, sq, hn] --> [sq, b, np, hn] context_layer = context_layer.permute(2, 0, 1, 3).contiguous() # [sq, b, np, hn] --> [sq, b, hp] new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer def torch_attention(self, query_layer, key_layer, value_layer, attention_mask, attention_bias, inference_mode): sq, b, np, hn = query_layer.shape sk = key_layer.shape[0] if self.multi_query_attention: query_layer = rearrange(query_layer, 'sq b np hn -> b (np sq) hn') key_layer = rearrange(key_layer, 'sk b 1 hn -> b hn sk') value_layer = rearrange(value_layer, 'sv b np hn -> (b np) sv hn') else: query_layer = rearrange(query_layer, 'sq b np hn -> (b np) sq hn') key_layer = rearrange(key_layer, 'sk b np hn -> (b np) hn sk') value_layer = rearrange(value_layer, 'sv b np hn -> (b np) sv hn') matmul_input_buffer = torch.empty( query_layer.shape[0], query_layer.shape[1], key_layer.shape[2], dtype=query_layer.dtype, device=query_layer.device, ) matmul_result = torch.baddbmm( matmul_input_buffer, query_layer, key_layer, beta=0.0, alpha=(1.0 / self.norm_factor) if self.normalize_attention_scores else 1.0, ) # change view to [b, np, sq, sk] attention_scores = matmul_result.view(b, np, sq, sk) if attention_bias is not None: attention_scores += attention_bias attention_probs = self.scale_mask_softmax(attention_scores, attention_mask) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. if not self.sequence_parallel: with tensor_parallel.random.get_cuda_rng_tracker().fork(): attention_probs = self.attention_dropout(attention_probs) else: attention_probs = self.attention_dropout(attention_probs) # change view [b * np, sq, sk] attention_probs = rearrange(attention_probs, 'b np sq sk -> (b np) sq sk') # matmul: [b * np, sq, hn] context_layer = torch.bmm(attention_probs, value_layer) # change view [b, np, sq, hn] context_layer = rearrange(context_layer, '(b np) sq hn -> b np sq hn', np=np) return context_layer def flash_attention(self, query_layer, key_layer, value_layer, attention_mask, attention_bias, inference_mode): query_layer = rearrange(query_layer, 'sq b np hn -> b sq np hn') key_layer = rearrange(key_layer, 'sk b np hn -> b sk np hn') value_layer = rearrange(value_layer, 'sv b np hn -> b sv np hn') # Use to ensure dtype cast to fp16 or bf16 query_layer = _cast_if_autocast_enabled(query_layer) key_layer = _cast_if_autocast_enabled(key_layer) value_layer = _cast_if_autocast_enabled(value_layer) attention_bias = _cast_if_autocast_enabled(attention_bias) is_causal = self.attn_mask_type == AttnMaskType.causal and not inference_mode if attention_bias is not None: return self.flash_attention_triton( query_layer, key_layer, value_layer, attention_mask, attention_bias, is_causal, ) else: return self.flash_attention_cuda(query_layer, key_layer, value_layer, attention_mask, is_causal,) def flash_attention_cuda(self, query_layer, key_layer, value_layer, attention_mask, is_causal): batch_size, seqlen, nheads, _ = query_layer.shape # True: attend / False: not attend if attention_mask is None: attention_mask_q = torch.ones(batch_size, query_layer.shape[1], device=query_layer.device).bool() attention_mask_kv = torch.ones(batch_size, key_layer.shape[1], device=query_layer.device).bool() elif len(attention_mask.shape) == 4: # [b, 1, sq, sk] -> [b, sq] / [b, sk] attention_mask_q = torch.any(torch.eq(attention_mask, False), dim=3).squeeze(1) attention_mask_kv = torch.any(torch.eq(attention_mask, False), dim=2).squeeze(1) else: assert len(attention_mask.shape) == 2 attention_mask_q = ~attention_mask attention_mask_kv = ~attention_mask seqlens_q_in_batch = len(attention_mask_q.sum(dim=-1, dtype=torch.int32).unique()) seqlens_kv_in_batch = len(attention_mask_kv.sum(dim=-1, dtype=torch.int32).unique()) if seqlens_q_in_batch == 1 and seqlens_kv_in_batch == 1 and flash_attn_func is not None: # [b, sq, np, hn] context_layer = flash_attn_func( query_layer, key_layer, value_layer, dropout_p=self.attention_dropout_p if self.training else 0.0, causal=is_causal, ) else: q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(query_layer, attention_mask_q) k, _, cu_seqlens_k, max_seqlen_k = unpad_input(key_layer, attention_mask_kv) v, _, _, _ = unpad_input(value_layer, attention_mask_kv) context_layer = flash_attn_unpadded_func( q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p=self.attention_dropout_p if self.training else 0.0, causal=is_causal, ) # [b, sq, np, hn] context_layer = pad_input(context_layer, indices_q, batch_size, seqlen) # [b, sq, np, hn] -> [b, np, sq, hn] context_layer = context_layer.permute(0, 2, 1, 3) return context_layer def flash_attention_triton(self, query_layer, key_layer, value_layer, attention_mask, attention_bias, is_causal): if self.attention_dropout_p > 0.0: raise NotImplementedError(f'attention_dropout not implemented for flash_attention with attention bias') if attention_mask is not None: if len(attention_mask.shape) == 4: # [b, 1, sq, sk] -> [b, 1, sq, 1] / [b, 1, 1, sk] attention_mask_q = torch.any(torch.eq(attention_mask, False), dim=3).unsqueeze(3) attention_mask_kv = torch.any(torch.eq(attention_mask, False), dim=2).unsqueeze(2) else: # [b, s] -> [b, 1, s, 1] / [b, 1, 1, s] assert len(attention_mask.shape) == 2 attention_mask_q = (~attention_mask).unsqueeze(1).unsqueeze(3) attention_mask_kv = (~attention_mask).unsqueeze(1).unsqueeze(2) if attention_bias.shape[2] == attention_mask_q.shape[2]: attention_bias = attention_bias.masked_fill(~attention_mask_q, torch.finfo(query_layer.dtype).min) if attention_bias.shape[3] == attention_mask_kv.shape[3]: attention_bias = attention_bias.masked_fill(~attention_mask_kv, torch.finfo(query_layer.dtype).min) context_layer = flash_attn_func_triton(query_layer, key_layer, value_layer, attention_bias, is_causal,) # [b, sq, np, hn] -> [b, np, sq, hn] context_layer = context_layer.permute(0, 2, 1, 3) if attention_mask is not None: context_layer = context_layer * attention_mask_q return context_layer
NeMo-main
nemo/collections/nlp/modules/common/megatron/attention.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer based language model.""" from nemo.collections.nlp.modules.common.megatron.layer_type import LayerType from nemo.collections.nlp.modules.common.megatron.megatron_decoder_module import MegatronDecoderModule from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.transformer import ParallelTransformer from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, attn_mask_postprocess, build_attention_mask_3d, ) from nemo.core.classes.exportable import Exportable try: from apex.transformer.enums import AttnMaskType, ModelType HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() LayerType = ApexGuardDefaults() ModelType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False __all__ = ["MegatronTransformerDecoderModule"] class MegatronTransformerDecoderModule(MegatronModule, Exportable, MegatronDecoderModule): """Transformer decoder model. """ def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, hidden_size, ffn_hidden_size, num_layers, num_attention_heads, apply_query_key_layer_scaling=True, kv_channels=None, pre_process=True, post_process=True, megatron_amp_O2=False, decoder_attn_mask_type=AttnMaskType.causal, hidden_dropout=0.1, attention_dropout=0.1, ffn_dropout=0.0, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, activations_checkpoint_granularity=None, layernorm_epsilon=1e-5, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, persist_layer_norm=False, openai_gelu=False, onnx_safe=False, activation='gelu', bias=True, normalization='layernorm', transformer_block_type='pre_ln', headscale=False, parent_model_type=ModelType.encoder_or_decoder, megatron_legacy=False, normalize_attention_scores=True, num_moe_experts=1, moe_frequency=1, moe_dropout=0.0, position_embedding_type='learned_absolute', use_flash_attention=False, ): super(MegatronTransformerDecoderModule, self).__init__(config=config) self.pre_process = pre_process self.post_process = post_process self.hidden_size = hidden_size self.num_layers = num_layers self.init_method = init_method self.model_attn_mask_type = decoder_attn_mask_type self.hidden_dropout = hidden_dropout self.output_layer_init_method = output_layer_init_method self.parent_model_type = parent_model_type self.normalization = normalization if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads # Transformer. self.model = ParallelTransformer( config=config, layer_type=LayerType.decoder, init_method=self.init_method, output_layer_init_method=self.output_layer_init_method, num_layers=self.num_layers, hidden_size=self.hidden_size, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, ffn_hidden_size=ffn_hidden_size, self_attn_mask_type=self.model_attn_mask_type, pre_process=self.pre_process, post_process=self.post_process, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, megatron_amp_O2=megatron_amp_O2, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, normalization=normalization, model_type=parent_model_type, transformer_block_type=transformer_block_type, headscale=headscale, megatron_legacy=megatron_legacy, normalize_attention_scores=normalize_attention_scores, num_moe_experts=num_moe_experts, moe_frequency=moe_frequency, moe_dropout=moe_dropout, position_embedding_type=position_embedding_type, use_flash_attention=use_flash_attention, ) self._model_key = 'model' def set_input_tensor(self, input_tensor): """ See megatron.model.transformer.set_input_tensor()""" self.model.set_input_tensor(input_tensor) def forward( self, dec_input, dec_attn_mask, enc_output, enc_attn_mask, layer_past=None, get_key_value=False, dec_self_attention_relative_position_bias=None, dec_cross_attention_relative_position_bias=None, ): # convert to Megatron mask dec_attn_mask_3d = build_attention_mask_3d( source_mask=dec_attn_mask, target_mask=dec_attn_mask, attn_mask_type=self.model_attn_mask_type, ) enc_dec_attn_mask_3d = build_attention_mask_3d( source_mask=dec_attn_mask, target_mask=enc_attn_mask, attn_mask_type=AttnMaskType.padding, ) # transformer decoder dec_output = self.model( dec_input, attn_mask_postprocess(dec_attn_mask_3d), layer_past=layer_past, get_key_value=get_key_value, encoder_output=enc_output, enc_dec_attn_mask=attn_mask_postprocess(enc_dec_attn_mask_3d), self_attention_relative_position_bias=dec_self_attention_relative_position_bias, cross_attention_relative_position_bias=dec_cross_attention_relative_position_bias, ) return dec_output def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load.""" state_dict_ = {} state_dict_[self._model_key] = self.model.state_dict_for_save_checkpoint(destination, prefix, keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" # Encoder. if self._model_key in state_dict: state_dict_ = state_dict[self._model_key] # for backward compatibility. elif 'transformer' in state_dict: state_dict_ = state_dict['transformer'] else: # for backward compatibility. state_dict_ = {} for key in state_dict.keys(): if 'transformer.' in key: state_dict_[key.split('transformer.')[1]] = state_dict[key] # for backward compatibility. state_dict_self_attention = {} for key in state_dict_.keys(): if '.attention.' in key: state_dict_self_attention[key.replace(".attention.", ".self_attention.")] = state_dict_[key] else: state_dict_self_attention[key] = state_dict_[key] state_dict_ = state_dict_self_attention self.model.load_state_dict(state_dict_, strict=strict)
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_transformer_decoder.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults from nemo.utils import logging try: from apex.transformer.functional.fused_softmax import FusedScaleMaskSoftmax HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False if HAVE_APEX: class MatchedScaleMaskSoftmax(FusedScaleMaskSoftmax): """ fused operation: scaling + mask + softmax match the behavior of fused softmax and torch softmax. This is a workaround for https://github.com/NVIDIA/apex/issues/1493. Arguments: input_in_fp16: flag to indicate if input in fp16 data format. input_in_bf16: flag to indicate if input in bf16 data format. attn_mask_type: attention mask type (pad or causal) scaled_masked_softmax_fusion: flag to indicate user want to use softmax fusion mask_func: mask function to be applied. softmax_in_fp32: if true, softmax in performed at fp32 precision. scale: scaling factor used in input tensor scaling. """ def forward_torch_softmax(self, input, mask): if self.input_in_float16 and self.softmax_in_fp32: input = input.float() if self.scale is not None: input = input * self.scale mask_output = self.mask_func(input, mask) if mask is not None else input probs = torch.nn.Softmax(dim=-1)(mask_output) if mask is not None: all_k_masked = mask.all(axis=-1) zero_attention_mask = (1.0 - all_k_masked.type(probs.type()))[:, :, :, None] probs = probs * zero_attention_mask if self.input_in_float16 and self.softmax_in_fp32: if self.input_in_fp16: probs = probs.half() else: probs = probs.bfloat16() return probs else: class MatchedScaleMaskSoftmax(ApexGuardDefaults): def __init__(self): super().__init__() logging.warning( "Apex was not found. ColumnLinear will not work. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." )
NeMo-main
nemo/collections/nlp/modules/common/megatron/fused_softmax.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch try: from apex._autocast_utils import _cast_if_autocast_enabled HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False def dropout_add(x, bias, residual, prob, training): # type: (Tensor, None, Tensor, float, bool) -> Tensor if bias is not None: raise ValueError(f"bias is expected to be None when using the bias_dropout function.") out = torch.nn.functional.dropout(x, p=prob, training=training) out = residual + out return out def bias_dropout_add(x, bias, residual, prob, training): # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor out = torch.nn.functional.dropout(x + bias, p=prob, training=training) out = residual + out return out @torch.jit.script def bias_dropout_add_fused_train_( x: torch.Tensor, bias: torch.Tensor, residual: torch.Tensor, prob: float ) -> torch.Tensor: # type: (Tensor, Tensor, Tensor, float) -> Tensor return bias_dropout_add(x, bias, residual, prob, True) def bias_dropout_add_fused_train(x, bias, residual, prob): # re-enable torch grad to enable fused optimization. with torch.enable_grad(): args = _cast_if_autocast_enabled(x, bias, residual, prob) with torch.cuda.amp.autocast(enabled=False): return bias_dropout_add_fused_train_(*args) @torch.jit.script def bias_dropout_add_fused_inference_( x: torch.Tensor, bias: torch.Tensor, residual: torch.Tensor, prob: float ) -> torch.Tensor: # type: (Tensor, Tensor, Tensor, float) -> Tensor return bias_dropout_add(x, bias, residual, prob, False) def bias_dropout_add_fused_inference(x, bias, residual, prob): args = _cast_if_autocast_enabled(x, bias, residual, prob) with torch.cuda.amp.autocast(enabled=False): return bias_dropout_add_fused_inference_(*args)
NeMo-main
nemo/collections/nlp/modules/common/megatron/fused_bias_dropout_add.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from nemo.collections.nlp.modules.common.megatron.language_model import Embedding from nemo.collections.nlp.modules.common.megatron.layer_type import LayerType from nemo.collections.nlp.modules.common.megatron.megatron_decoders import get_decoder_model from nemo.collections.nlp.modules.common.megatron.megatron_encoders import get_encoder_model from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.mup.layer import MuReadout from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, init_method_normal, scaled_init_method_normal, ) from nemo.collections.nlp.parts import utils_funcs try: from apex.transformer.enums import ModelType HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() ModelType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig, tensor_parallel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = True __all__ = ["MegatronRetrievalTokenLevelEncoderDecoderModule"] class MegatronRetrievalTokenLevelEncoderDecoderModule(MegatronModule): """Token-based (input/output is tokens) retrieval encoder-decoder model""" def __init__( self, config: ModelParallelConfig, vocab_size, hidden_size, max_position_embeddings, num_attention_heads, ffn_hidden_size, apply_query_key_layer_scaling=True, kv_channels=None, num_tokentypes=0, parallel_output=True, pre_process=True, post_process=True, init_method_std=0.02, fp16_cross_entropy=False, megatron_amp_O2=False, hidden_dropout=0.1, attention_dropout=0.1, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, layernorm_epsilon=1e-5, persist_layer_norm=False, bias_gelu_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, openai_gelu=False, activation='gelu', onnx_safe=False, bias=True, normalization='layernorm', headscale=False, transformer_block_type='pre_ln', hidden_steps=-1, add_encoder=True, add_decoder=True, chunk_size=64, enc_num_layers=4, # total number of encoder layers dec_num_layers=6, # total number of decoder layers enc_cross_attention=[3], # layer numbers for cross attention dec_cross_attention=[3, 5], # layer numbers for chunked cross attention add_position_embedding=False, tokenizer=None, # tokenizer normalize_attention_scores=True, activations_checkpoint_granularity=None, megatron_lm_compatible=False, version=1, ): super(MegatronRetrievalTokenLevelEncoderDecoderModule, self).__init__() if megatron_lm_compatible: assert ( apply_query_key_layer_scaling ), "megatron lm compatible model has to set apply_query_key_layer_scaling" assert add_position_embedding, "megatron lm compatible model has to set add_position_embedding" self.parallel_output = parallel_output self.pre_process = pre_process self.post_process = post_process self.fp16_cross_entropy = fp16_cross_entropy self.precision = precision self.add_encoder = add_encoder self.add_decoder = add_decoder self.add_abs_position_embedding = add_position_embedding # whether use absolute position embedding self.tokenizer = tokenizer self.eod_id = tokenizer.eos_id self.transformer_block_type = transformer_block_type self.num_chunked_cross_attention = len(dec_cross_attention) self.megatron_lm_compatible = megatron_lm_compatible self.dtype = utils_funcs.torch_dtype_from_precision(precision, megatron_amp_O2) if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads if pre_process: self.encoder_embedding = Embedding( config=config, hidden_size=hidden_size, vocab_size=vocab_size, max_sequence_length=max_position_embeddings, init_method=init_method_normal(init_method_std), num_tokentypes=num_tokentypes, embedding_dropout_prob=hidden_dropout, position_embedding_type='learned_absolute' if add_position_embedding else '', transpose_batch_sequence=False, dtype=self.dtype, ) self._embedding_key = "embedding" encoder_init = init_method_normal(init_method_std) encoder_scaled_init = scaled_init_method_normal(init_method_std, dec_num_layers) pre_decoder_init = init_method_normal(init_method_std) pre_decoder_scaled_init = scaled_init_method_normal(init_method_std, dec_num_layers) post_decoder_init = init_method_normal(init_method_std) post_decoder_scaled_init = scaled_init_method_normal(init_method_std, dec_num_layers) if add_encoder: enc_layer_types = [] for i in range(enc_num_layers): if i in enc_cross_attention: enc_layer_types.append(LayerType.retrieval_encoder) else: enc_layer_types.append(LayerType.encoder) self.encoder = get_encoder_model( config=config, arch="retro", hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, num_layers=enc_num_layers, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, init_method=encoder_init, scaled_init_method=encoder_scaled_init, pre_process=pre_process, post_process=False if megatron_lm_compatible else post_process, # megatron lm model has no final layer_norm init_method_std=init_method_std, megatron_amp_O2=megatron_amp_O2, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, bias_activation_fusion=bias_gelu_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, hidden_steps=hidden_steps, activation=activation, bias=bias, normalization=normalization, transformer_block_type=transformer_block_type, headscale=headscale, parent_model_type=ModelType.encoder_and_decoder, layer_type=enc_layer_types, chunk_size=chunk_size, layer_number_offset=0, normalize_attention_scores=normalize_attention_scores, turn_off_rop=megatron_lm_compatible, version=version, ) self._encoder_key = "encoder" if add_decoder: pre_decoder_num_layers = min(dec_cross_attention) pre_decoder_layer_types = [] for i in range(pre_decoder_num_layers): pre_decoder_layer_types.append(LayerType.encoder) pre_decoder_layer_types.append(LayerType.decoder_pre_mlp) post_decoder_num_layers = dec_num_layers - pre_decoder_num_layers post_decoder_layer_types = [] # the first layer in post decoder has to be chunked cross attention without self attention assert pre_decoder_num_layers in dec_cross_attention for i in range(post_decoder_num_layers): if i == 0: post_decoder_layer_types.append(LayerType.retrieval_decoder_after_self_attn) elif i + pre_decoder_num_layers in dec_cross_attention: post_decoder_layer_types.append(LayerType.retrieval_decoder) else: post_decoder_layer_types.append(LayerType.encoder) # it is used to process the inputs for encoder to use as context (H in the paper) self.pre_decoder = get_decoder_model( config=config, arch="retro", hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, num_layers=pre_decoder_num_layers + 1, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, init_method=pre_decoder_init, scaled_init_method=pre_decoder_scaled_init, pre_process=pre_process, post_process=False, # no need for post process init_method_std=init_method_std, megatron_amp_O2=megatron_amp_O2, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, bias_activation_fusion=bias_gelu_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, hidden_steps=hidden_steps, activation=activation, bias=bias, normalization=normalization, transformer_block_type=transformer_block_type, headscale=headscale, parent_model_type=ModelType.encoder_and_decoder, layer_type=pre_decoder_layer_types, chunk_size=chunk_size, layer_number_offset=0, normalize_attention_scores=normalize_attention_scores, turn_off_rop=megatron_lm_compatible, version=version, ) # it is where the chunked cross attention happens self.post_decoder = get_decoder_model( config=config, arch="retro", hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, num_layers=post_decoder_num_layers, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, init_method=post_decoder_init, scaled_init_method=post_decoder_scaled_init, pre_process=False, # directly take the pre_decoder output, skip preprocess post_process=post_process, init_method_std=init_method_std, megatron_amp_O2=megatron_amp_O2, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, bias_activation_fusion=bias_gelu_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, hidden_steps=hidden_steps, activation=activation, bias=bias, normalization=normalization, headscale=headscale, transformer_block_type=transformer_block_type, parent_model_type=ModelType.encoder_and_decoder, layer_type=post_decoder_layer_types, chunk_size=chunk_size, layer_number_offset=pre_decoder_num_layers + 1, normalize_attention_scores=normalize_attention_scores, turn_off_rop=megatron_lm_compatible, version=version, ) self._pre_decoder_key = "pre_decoder" self._post_decoder_key = "post_decoder" self.initialize_word_embeddings( init_method=init_method_normal(init_method_std), vocab_size=vocab_size, hidden_size=hidden_size ) if add_decoder and post_process: self.tokens_head = MuReadout(self.word_embeddings_weight().size(0), parallel_output) self._tokens_head_key = 'tokens_head' def set_input_tensor(self, input_tensor): """Set input tensor to be used instead of forward()'s input. When doing pipeline parallelism the input from the previous stage comes from communication, not from the input, so the model's forward_step_func won't have it. This function is thus used by internal code to bypass the input provided by the forward_step_func""" self.input_tensor = input_tensor def forward( self, input_ids, input_attn_mask, retrieved_ids, retrieved_attn_mask, token_type_ids=None, labels=None, input_emb=None, set_inference_key_value_memory=False, inference_max_sequence_len=None, neighbors=None, position_ids=None, ): """ Return value is per token / per dimension (i.e., non collapsed loss value) """ eod_positions = None retrieved_emb = None if input_ids is not None and self.eod_id is not None and not self.megatron_lm_compatible: # do not reset attention for megatron lm compatible model eod_positions = torch.where(input_ids == self.eod_id) if input_emb is None: if self.pre_process and self.add_encoder: # encoder embeddings if self.add_abs_position_embedding: input_position_ids = position_ids else: input_position_ids = None input_emb = self.encoder_embedding(input_ids, input_position_ids, token_type_ids=token_type_ids) else: input_emb = None if retrieved_ids is not None: if self.add_abs_position_embedding: seq_length = retrieved_ids.size(-1) retrieved_position_ids = torch.arange(seq_length, dtype=torch.long, device=retrieved_ids.device) retrieved_position_ids = retrieved_position_ids.unsqueeze(0).expand_as(retrieved_ids).clone() else: retrieved_position_ids = None retrieved_emb = self.encoder_embedding(retrieved_ids, retrieved_position_ids) if self.add_decoder: hidden = self.pre_decoder( input_emb, input_attn_mask, eod_positions=eod_positions, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, ) # hidden is a tuple, (layernorm_input, layernorm_output) self.post_decoder.set_input_tensor(hidden) encoder_output = hidden[1].transpose(0, 1).contiguous() if self.add_encoder: if retrieved_emb is not None and neighbors is None: neighbors = retrieved_emb.shape[2] retrieved_emb = self.encoder( retrieved_emb, retrieved_attn_mask, context_attn_mask=input_attn_mask, encoder_output=encoder_output, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, neighbors=neighbors, ) if self.add_decoder: dec_output = self.post_decoder( hidden, input_attn_mask, retrieved_attn_mask=retrieved_attn_mask, retrieved_emb=retrieved_emb, eod_positions=eod_positions, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, ) # only transpose it for post_ln token_logits = self.tokens_head(dec_output, self.word_embeddings_weight()) if labels is not None: # [b, s] -> [s, b] labels = labels.transpose(0, 1).contiguous() # tensor_parallel.vocab_parallel_cross_entropy performs log_softmax and return log p(x_i|z) per token i if self.fp16_cross_entropy: assert token_logits.dtype == torch.half tokens_loss = tensor_parallel.vocab_parallel_cross_entropy(token_logits, labels) else: tokens_loss = tensor_parallel.vocab_parallel_cross_entropy(token_logits.float(), labels) # [s, b] -> [b, s] tokens_loss = tokens_loss.transpose(0, 1).contiguous() return tokens_loss else: # [s, b, h] -> [b, s, h] token_logits = token_logits.transpose(0, 1).contiguous() return token_logits def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load when model is combined with other heads, add an extra key.""" state_dict_ = {} state_dict_[self._encoder_embedding_key] = self.encoder_embedding.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) state_dict_[self._encoder_key] = self.encoder.state_dict_for_save_checkpoint(destination, prefix, keep_vars) state_dict_[self._pre_decoder_key] = self.pre_decoder.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) state_dict_[self._post_decoder_key] = self.post_decoder.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) state_dict_[self._tokens_head_key] = self.tokens_head.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" self.encoder_embedding.encoder_embeddingload_state_dict(state_dict[self._encoder_embedding_key], strict=strict) self.encoder.load_state_dict(state_dict[self._encoder_key], strict=strict) self.pre_decoder.load_state_dict(state_dict[self._pre_decoder_key], strict=strict) self.post_decoder.load_state_dict(state_dict[self._post_decoder_key], strict=strict) self.tokens_head.load_state_dict(state_dict[self._tokens_head_key], strict=strict)
NeMo-main
nemo/collections/nlp/modules/common/megatron/retrieval_token_level_encoder_decoder.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Retrieval Transformer.""" import torch import torch.nn.functional as F from einops import rearrange, repeat from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.position_embedding import RotaryEmbedding from nemo.collections.nlp.modules.common.megatron.transformer import ParallelTransformer from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults, build_attention_mask_3d try: from apex.transformer.enums import AttnMaskType, ModelType HAVE_APEX = True except (ImportError, ModuleNotFoundError): # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() ModelType = ApexGuardDefaults() HAVE_APEX = False try: from megatron.core import ModelParallelConfig HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False MIN_DIM_HEAD = 32 class MegatronRetrievalTransformerEncoderModule(MegatronModule): """Transformer encoder model. """ def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, hidden_size, ffn_hidden_size, num_layers, num_attention_heads, apply_query_key_layer_scaling=True, kv_channels=None, layer_type=[], pre_process=True, post_process=True, megatron_amp_O2=False, hidden_dropout=0.1, attention_dropout=0.1, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, activations_checkpoint_granularity=None, layernorm_epsilon=1e-5, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, persist_layer_norm=False, openai_gelu=False, onnx_safe=False, activation='gelu', bias=True, normalization='layernorm', transformer_block_type='pre_ln', parent_model_type=ModelType.encoder_or_decoder, chunk_size=64, layer_number_offset=0, # this is use only for attention norm_factor scaling normalize_attention_scores=True, megatron_legacy=False, turn_off_rop=False, version=1, # model version ): super(MegatronRetrievalTransformerEncoderModule, self).__init__(config=config) self.transformer_block_type = transformer_block_type self.pre_process = pre_process self.post_process = post_process self.hidden_size = hidden_size self.num_layers = num_layers self.init_method = init_method self.hidden_dropout = hidden_dropout self.output_layer_init_method = output_layer_init_method self.parent_model_type = parent_model_type self.turn_off_rop = turn_off_rop self.version = version if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads # Transformer. self.model = ParallelTransformer( config=config, init_method=self.init_method, output_layer_init_method=self.output_layer_init_method, num_layers=self.num_layers, hidden_size=self.hidden_size, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, layer_type=layer_type, ffn_hidden_size=ffn_hidden_size, self_attn_mask_type=AttnMaskType.padding, pre_process=self.pre_process, post_process=self.post_process, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, megatron_amp_O2=megatron_amp_O2, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, normalization=normalization, transformer_block_type=transformer_block_type, model_type=parent_model_type, chunk_size=chunk_size, layer_number_offset=layer_number_offset, normalize_attention_scores=normalize_attention_scores, megatron_legacy=megatron_legacy, ) rot_dim = hidden_size // num_attention_heads if kv_channels is None else kv_channels # partial rotary embeddings, which is better than full rotary # Wang and Komatsuzaki et al https://github.com/kingoflolz/mesh-transformer-jax/ if not turn_off_rop: self.rotary_pos_emb = RotaryEmbedding(min(rot_dim, MIN_DIM_HEAD)) self.chunk_size = chunk_size self._model_key = 'model' def set_input_tensor(self, input_tensor): """ See megatron.model.transformer.set_input_tensor()""" self.model.set_input_tensor(input_tensor) def _allocate_memory(self, *shape, dtype): return torch.empty(*shape, dtype=dtype, device=torch.cuda.current_device()) def forward( self, enc_input, enc_attn_mask, context_attn_mask=None, encoder_output=None, layer_past=None, get_key_value=False, set_inference_key_value_memory=False, # when doing inference, set this to true to allocate all the cached matrix. later set false to do incremental inference inference_max_sequence_len=None, neighbors=2, ): # expected enc_input shape [batch, num_chunks, num_neighbors, retrieval_seq_len, dim] # expected enc_attn_mask shape [batch, num_chunks, num_neighbors, retrieval_seq_len] # expected encoder_output shape [batch, seq_len, dim] # batch, seq_len, dim b, n, dim = encoder_output.shape if set_inference_key_value_memory: # run once to setup the cache chunk_start = 0 num_seq_chunks = n // self.chunk_size num_chunks = inference_max_sequence_len // self.chunk_size self.cache_output = self._allocate_memory( b, num_chunks, neighbors, self.chunk_size * 2, dim, dtype=encoder_output.dtype ) self.seq_pos_in_chunk = n self.current_chunk = n // self.chunk_size self.encoder_output = self._allocate_memory(b, self.chunk_size, dim, dtype=encoder_output.dtype) self.context_attn_mask = self._allocate_memory(b, self.chunk_size, dtype=context_attn_mask.dtype) self.context_attn_mask chunk_beg = self.chunk_size * num_seq_chunks chunk_end = self.chunk_size * num_seq_chunks + self.seq_pos_in_chunk % self.chunk_size # store the remainders self.encoder_output[:, : self.seq_pos_in_chunk % self.chunk_size, :] = encoder_output[ :, chunk_beg:chunk_end, : ] self.context_attn_mask[:, : self.seq_pos_in_chunk % self.chunk_size] = context_attn_mask[ :, chunk_beg:chunk_end ] elif inference_max_sequence_len is not None: # second time of running # only support one token at a time assert n == 1 self.seq_pos_in_chunk += n self.current_chunk = self.seq_pos_in_chunk // self.chunk_size # if exceed the chunk size pos_beg = (self.seq_pos_in_chunk - 1) % self.chunk_size # if self.seq_pos_in_chunk - 1 >= self.chunk_size: # self.current_chunk += 1 # self.seq_pos_in_chunk -= self.chunk_size chunk_start = self.current_chunk - 1 self.encoder_output[:, pos_beg : pos_beg + 1, :] = encoder_output self.context_attn_mask[:, pos_beg : pos_beg + 1] = context_attn_mask[ :, self.seq_pos_in_chunk - 1 : self.seq_pos_in_chunk ] encoder_output = self.encoder_output[:, : pos_beg + 1, :] context_attn_mask = self.context_attn_mask[:, : pos_beg + 1] num_seq_chunks = 1 if not self.seq_pos_in_chunk % self.chunk_size == 0: # still accumulate the encoder_output # return the cached results if self.current_chunk == 0: return None return self.cache_output[:, : self.current_chunk] if enc_input is not None: # only need one chunk for the later calculation enc_input = enc_input[:, self.current_chunk - 1 : self.current_chunk] enc_attn_mask = enc_attn_mask[:, self.current_chunk - 1 : self.current_chunk] if enc_input is None: return None _, k, r, rn, _ = enc_input.shape assert r == neighbors if inference_max_sequence_len is None: num_seq_chunks = n // self.chunk_size assert k == num_seq_chunks, f'sequence requires {num_seq_chunks} retrieved chunks, but only {k} passed in' else: pass seq_index = num_seq_chunks * self.chunk_size retrieved = rearrange(enc_input, 'b k r n d -> n (b k r) d') enc_attn_mask = rearrange(enc_attn_mask, 'b k r n -> (b k r) n') # embed_as_context = repeat(encoder_output[:, :seq_index], 'b (k n) d -> (b k r) n d', n=self.chunk_size, r=r) # context_attn_mask = repeat(context_attn_mask[:, :seq_index], 'b (k n) -> (b k r) n', n=self.chunk_size, r=r) if inference_max_sequence_len is not None and not set_inference_key_value_memory: embed_as_context = repeat(encoder_output[:, :seq_index], 'b (k n) d -> n (b k r) d', n=pos_beg + 1, r=r) context_attn_mask = repeat(context_attn_mask[:, :seq_index], 'b (k n) -> (b k r) n', n=pos_beg + 1, r=r) else: embed_as_context = repeat( encoder_output[:, :seq_index], 'b (k n) d -> n (b k r) d', n=self.chunk_size, r=r ) context_attn_mask = repeat( context_attn_mask[:, :seq_index], 'b (k n) -> (b k r) n', n=self.chunk_size, r=r ) if not self.turn_off_rop: if inference_max_sequence_len is not None and not set_inference_key_value_memory: cross_attn_k_pos_emb = self.rotary_pos_emb(n % self.chunk_size, offset=pos_beg) else: cross_attn_k_pos_emb = self.rotary_pos_emb(self.chunk_size, offset=0) cross_attn_q_pos_emb = self.rotary_pos_emb(rn, offset=0) attn_pos_emb = (cross_attn_q_pos_emb, cross_attn_q_pos_emb, cross_attn_k_pos_emb) else: attn_pos_emb = None # # convert to Megatron mask enc_attn_mask_3d = build_attention_mask_3d( source_mask=enc_attn_mask, target_mask=enc_attn_mask, attn_mask_type=AttnMaskType.padding, ) enc_attn_mask_3d = enc_attn_mask_3d[:, None, :, :] enc_dec_attn_mask_3d = build_attention_mask_3d( source_mask=enc_attn_mask, target_mask=context_attn_mask, attn_mask_type=AttnMaskType.padding, ) enc_dec_attn_mask_3d = enc_dec_attn_mask_3d[:, None, :, :] # transformer encoder enc_output = self.model( retrieved, enc_attn_mask_3d, layer_past=layer_past, get_key_value=get_key_value, encoder_output=embed_as_context, enc_dec_attn_mask=enc_dec_attn_mask_3d, rotary_pos_emb=attn_pos_emb, ) # revert back to original retrieved shape enc_output = rearrange(enc_output, 'n (b k r) d -> b k r n d', b=b, k=k) if inference_max_sequence_len is not None: # update encoded for current chunk self.cache_output[:, chunk_start : self.current_chunk, :, :, :] = enc_output # read all encodings enc_output = self.cache_output[:, : self.current_chunk] return enc_output def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load.""" state_dict_ = {} state_dict_[self._model_key] = self.model.state_dict_for_save_checkpoint(destination, prefix, keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" # Encoder. if self._model_key in state_dict: state_dict_ = state_dict[self._model_key] self.model.load_state_dict(state_dict_, strict=strict) class MegatronRetrievalTransformerDecoderModule(MegatronModule): """Transformer decoder model. """ def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, hidden_size, ffn_hidden_size, num_layers, num_attention_heads, apply_query_key_layer_scaling=True, kv_channels=None, layer_type=[], pre_process=True, post_process=True, megatron_amp_O2=False, hidden_dropout=0.1, attention_dropout=0.1, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, activations_checkpoint_granularity=None, layernorm_epsilon=1e-5, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, persist_layer_norm=False, openai_gelu=False, onnx_safe=False, activation='gelu', bias=True, normalization='layernorm', transformer_block_type='pre_ln', parent_model_type=ModelType.encoder_or_decoder, chunk_size=64, layer_number_offset=0, # this is use only for attention norm_factor scaling normalize_attention_scores=True, megatron_legacy=False, turn_off_rop=False, version=1, # model version ): super(MegatronRetrievalTransformerDecoderModule, self).__init__(config=config) self.pre_process = pre_process self.post_process = post_process self.hidden_size = hidden_size self.num_layers = num_layers self.init_method = init_method self.hidden_dropout = hidden_dropout self.output_layer_init_method = output_layer_init_method self.parent_model_type = parent_model_type self.turn_off_rop = turn_off_rop self.version = version if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads # Transformer. self.model = ParallelTransformer( config=config, init_method=self.init_method, output_layer_init_method=self.output_layer_init_method, num_layers=self.num_layers, hidden_size=self.hidden_size, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, layer_type=layer_type, ffn_hidden_size=ffn_hidden_size, self_attn_mask_type=AttnMaskType.padding, # we use attention mask reset, enforce to use padding AttnMaskType, otherwise it has numeric issues pre_process=self.pre_process, post_process=self.post_process, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, megatron_amp_O2=megatron_amp_O2, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, normalization=normalization, transformer_block_type=transformer_block_type, model_type=parent_model_type, chunk_size=chunk_size, layer_number_offset=layer_number_offset, normalize_attention_scores=normalize_attention_scores, megatron_legacy=megatron_legacy, ) rot_dim = hidden_size // num_attention_heads if kv_channels is None else kv_channels # partial rotary embeddings, which is better than full rotary # Wang and Komatsuzaki et al https://github.com/kingoflolz/mesh-transformer-jax/ if not turn_off_rop: self.rotary_pos_emb = RotaryEmbedding(min(rot_dim, MIN_DIM_HEAD)) self.chunk_size = chunk_size self._model_key = 'model' def set_input_tensor(self, input_tensor): """ See megatron.model.transformer.set_input_tensor()""" self.model.set_input_tensor(input_tensor) def _calculate_dec_att_mask(self, dec_attn_mask, eod_positions): # # convert to Megatron mask # customized attention mask, starts with causal attention mask dec_attn_mask_3d = build_attention_mask_3d( source_mask=dec_attn_mask, target_mask=dec_attn_mask, attn_mask_type=AttnMaskType.causal, ) # add the attention mask reset if eod_positions is not None: # to mask out the token ids [id, id, eod, id, pad, eod, id, id] # so attention is not across eod, mask should be: # [false, true, true, true, true, true, true, true] # [false, false, true, true, true, true, true, true] # [false, false, false,true, true, true, true, true] # [true, true, true, false, true, true, true, true] # [true, true, true, true, true, true, true, true] # [true, true, true, false, true, false, true, true] # [true, true, true, true, true, true, false, true] # [true, true, true, true, true, true, false, false] for batch, eod_pos in zip(*eod_positions): eod_plus_one = eod_pos.item() + 1 dec_attn_mask_3d[batch][eod_plus_one:, :eod_plus_one] = True dec_attn_mask_3d = dec_attn_mask_3d[:, None, :, :] return dec_attn_mask_3d def forward( self, dec_input, dec_attn_mask, retrieved_attn_mask=None, retrieved_emb=None, layer_past=None, get_key_value=False, eod_positions=None, # this is a tuple of eod positions returned from tensor.where(tensor == eod_id) set_inference_key_value_memory=False, inference_max_sequence_len=None, ): # expected dec_input shape [batch, seq_len, dim] # expected dec_attn_mask shape [batch, seq_len] # expected retrieved_input shape [batch, num_chunks, num_neighbors, retrival_seq_len, dim] # expected retrieved_attn_mask shape [batch, num_chunks, num_neighbors, retrival_seq_len] # batch, seq_len, dim if isinstance(dec_input, tuple): n, _, _ = dec_input[1].shape else: _, n, _ = dec_input.shape if set_inference_key_value_memory: # seq_index = (n // chunk_size) * chunk_size self.current_len = n num_seq_chunks = self.current_len // self.chunk_size elif inference_max_sequence_len is not None: # only handles single token increment assert n == 1 self.current_len += n num_seq_chunks = self.current_len // self.chunk_size else: # this is normal forward without inference num_seq_chunks = n // self.chunk_size if retrieved_emb is not None: b, k, r, rn, dim = retrieved_emb.shape assert ( k == num_seq_chunks ), f'sequence requires {num_seq_chunks} retrieved chunks, but only {k} passed in' # need to add extra chunk size, since it will be shifted if not self.turn_off_rop: if set_inference_key_value_memory: self_attn_emb = self.rotary_pos_emb(self.current_len) elif inference_max_sequence_len is not None: self_attn_emb = self.rotary_pos_emb(self.current_len) else: self_attn_emb = self.rotary_pos_emb(n) if retrieved_emb is not None: # -63, -62, ... 63 will be cut into -> [0, ... 63] in the chunk cross attention layer cross_attn_q_pos_emb = self.rotary_pos_emb(self.chunk_size * 2 - 1, offset=-self.chunk_size + 1) if self.version == 1: cross_attn_k_pos_emb = self.rotary_pos_emb(rn, offset=0) elif self.version > 1: # the first 64 tokens in retrieved is from the last chunk, align the continuation part with the query tokens # use the following in the future. [-63, -62, ..., 63, 64] cross_attn_k_pos_emb = self.rotary_pos_emb(rn, offset=-self.chunk_size + 1) else: raise ValueError(f'incorrect version number {self.version}') attn_pos_emb = (self_attn_emb, cross_attn_q_pos_emb, cross_attn_k_pos_emb) else: attn_pos_emb = (self_attn_emb, None, None) else: attn_pos_emb = None dec_attn_mask_3d = self._calculate_dec_att_mask(dec_attn_mask, eod_positions) if retrieved_emb is not None: # need to shift the dec_attn_mask as first causal_padding elements are ignored # also pad it to be the multiple of self.chunk_size causal_padding = self.chunk_size - 1 reminder = (self.chunk_size - (dec_attn_mask.shape[1] + 1)) % self.chunk_size dec_attn_mask = F.pad(dec_attn_mask, (-causal_padding, reminder), value=False) dec_attn_mask = rearrange(dec_attn_mask, 'b (k n) -> (b k) n', k=k) retrieved_attn_mask = rearrange(retrieved_attn_mask, 'b k r n -> (b k) (r n)') enc_dec_attn_mask_3d = build_attention_mask_3d( source_mask=dec_attn_mask, target_mask=retrieved_attn_mask, attn_mask_type=AttnMaskType.padding, ) enc_dec_attn_mask_3d = enc_dec_attn_mask_3d[:, None, :, :] else: enc_dec_attn_mask_3d = None # transformer encoder if not isinstance(dec_input, tuple): dec_input = rearrange(dec_input, 'b s d -> s b d').contiguous() enc_output = self.model( dec_input, dec_attn_mask_3d, layer_past=layer_past, get_key_value=get_key_value, encoder_output=None, retrieved_emb=retrieved_emb, enc_dec_attn_mask=enc_dec_attn_mask_3d, rotary_pos_emb=attn_pos_emb, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, ) # enc_output = rearrange(dec_input, 's b d -> b s d') return enc_output def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load.""" state_dict_ = {} state_dict_[self._model_key] = self.model.state_dict_for_save_checkpoint(destination, prefix, keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" # Encoder. if self._model_key in state_dict: state_dict_ = state_dict[self._model_key] self.model.load_state_dict(state_dict_, strict=strict)
NeMo-main
nemo/collections/nlp/modules/common/megatron/retrieval_transformer.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Gradient clipping.""" import itertools import torch from torch import inf from nemo.collections.nlp.modules.common.megatron.module import param_is_not_shared from nemo.utils import logging try: import amp_C from apex.multi_tensor_apply import multi_tensor_applier HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False HAVE_APEX_DISTRIBUTED_ADAM = False if HAVE_APEX: try: from apex.contrib.optimizers.distributed_fused_adam import DistributedFusedAdam HAVE_APEX_DISTRIBUTED_ADAM = True except (ImportError, ModuleNotFoundError): pass try: from megatron.core import parallel_state from megatron.core.tensor_parallel.layers import param_is_not_tensor_parallel_duplicate HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False def clip_grad_norm_fp32(parameters, max_norm, norm_type=2): """Clips gradient norm of an iterable of parameters whose gradients are in fp32. This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and added functionality to handle model parallel parameters. Note that the gradients are modified in place. Arguments: parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized max_norm (float or int): max norm of the gradients norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm. Returns: Total norm of the parameters (viewed as a single vector). """ if isinstance(parameters, torch.Tensor): parameters = [parameters] # Filter parameters based on: # - grad should not be none # - parameter should not be shared # - should not be a replica due to tensor model parallelism grads = [] grads_for_norm = [] for param in parameters: grad_not_none = param.grad is not None is_not_shared = param_is_not_shared(param) is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param) if grad_not_none: grad = param.grad.detach() # Make sure the grads are in fp32 assert isinstance(param.grad, torch.cuda.FloatTensor) grads.append(grad) if grad_not_none and is_not_shared and is_not_tp_duplicate: grads_for_norm.append(grad) if not grads_for_norm: logging.warning("No grads found, consider disabling gradient clipping") # Norm parameters. max_norm = float(max_norm) norm_type = float(norm_type) total_norm = 0.0 # Calculate norm. if norm_type == inf: if grads_for_norm: # (@adithyare) grads_for_norm can be empty for adapter training with pp>1 total_norm = max(grad.abs().max() for grad in grads_for_norm) total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)]) # Take max across all model-parallel GPUs. torch.distributed.all_reduce( total_norm_cuda, op=torch.distributed.ReduceOp.MAX, group=parallel_state.get_model_parallel_group() ) total_norm = total_norm_cuda[0].item() else: if norm_type == 2.0: dummy_overflow_buf = torch.cuda.IntTensor([0]) # Use apex's multi-tensor applier for efficiency reasons. # Multi-tensor applier takes a function and a list of list # and performs the operation on that list all in one kernel. if grads_for_norm: # (@adithyare) grads_for_norm can be empty for adapter training with pp>1 grad_norm, _ = multi_tensor_applier( amp_C.multi_tensor_l2norm, dummy_overflow_buf, [grads_for_norm], False # no per-parameter norm ) else: grad_norm = 0.0 # Since we will be summing across data parallel groups, # we need the pow(norm-type). total_norm = grad_norm ** norm_type else: for grad in grads_for_norm: grad_norm = torch.norm(grad, norm_type) total_norm += grad_norm ** norm_type # Sum across all model-parallel GPUs. total_norm_cuda = torch.cuda.FloatTensor( [float(total_norm)] ) # (@adithyare) total_norm can be a float at this point so we convert it to cuda.FloatTensor torch.distributed.all_reduce( total_norm_cuda, op=torch.distributed.ReduceOp.SUM, group=parallel_state.get_model_parallel_group() ) total_norm = total_norm_cuda[0].item() total_norm = total_norm ** (1.0 / norm_type) # Scale. clip_coeff = max_norm / (total_norm + 1.0e-6) if clip_coeff < 1.0 and grads: # (@adithyare) grads can be empty for adapter training. dummy_overflow_buf = torch.cuda.IntTensor([0]) multi_tensor_applier(amp_C.multi_tensor_scale, dummy_overflow_buf, [grads, grads], clip_coeff) return total_norm def count_zeros_fp32(parameters): if isinstance(parameters, torch.Tensor): parameters = [parameters] # Filter parameters based on: # - grad should not be none # - parameter should not be shared # - should not be a replica due to tensor model parallelism total_num_zeros = 0.0 for param in parameters: grad_not_none = param.grad is not None is_not_shared = param_is_not_shared(param) is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param) if grad_not_none and is_not_shared and is_not_tp_duplicate: grad = param.grad.detach() num_zeros = grad.numel() - torch.count_nonzero(grad) total_num_zeros = num_zeros + total_num_zeros # Sum across all model-parallel GPUs. torch.distributed.all_reduce( total_num_zeros, op=torch.distributed.ReduceOp.SUM, group=parallel_state.get_model_parallel_group() ) total_num_zeros = total_num_zeros.item() return total_num_zeros def clip_grad_norm_distributed_optimizer(optimizer, max_norm, norm_type=2): """Clips gradient norm of parameters in distributed optimizer This is a wrapper around DistributedFusedAdam.clip_grad_norm with added functionality to handle model parallel parameters. Arguments: parameters (DistributedFusedAdam): distributed optimizer max_norm (float or int): max norm of the gradients norm_type (float or int): type of the used p-norm. Currently only 2-norm is supported. Returns: Total norm of the parameters (viewed as a single vector). """ assert isinstance(optimizer, DistributedFusedAdam) # Filter parameters based on: # - parameter should not be shared # - should not be a replica due to tensor model parallelism params_for_norm = [] for param in optimizer.parameters(): is_not_shared = param_is_not_shared(param) is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param) if is_not_shared and is_not_tp_duplicate: params_for_norm.append(param) # Compute grad norm # Note: DistributedFusedAdam caches grad norm to avoid redundant # communication. optimizer.grad_norm(parameters=params_for_norm, norm_type=norm_type) return optimizer.clip_grad_norm(max_norm, norm_type=norm_type)
NeMo-main
nemo/collections/nlp/modules/common/megatron/clip_grads.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from re import L from typing import Dict, List, Optional from nemo.core.classes import NeuralModule from nemo.core.neural_types import ChannelType, MaskType, NeuralType __all__ = ['MegatronEncoderModule'] class MegatronEncoderModule(NeuralModule, ABC): """ Base class for encoder neural module to be used in NLP models. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "encoder_mask": NeuralType(('B', 'T'), MaskType()), } @property def input_names(self) -> List[str]: return ['input_ids', 'encoder_mask'] @property def output_names(self) -> List[str]: return ['encoder_output'] @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"encoder_output": NeuralType(('B', 'T', 'D'), ChannelType())}
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_encoder_module.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer based language model.""" from MeCab import Model from nemo.collections.nlp.modules.common.megatron.megatron_perceiver_encoders import MegatronPerceiverEncoderModule from nemo.collections.nlp.modules.common.megatron.megatron_transformer_encoder import MegatronTransformerEncoderModule from nemo.collections.nlp.modules.common.megatron.retrieval_transformer import ( MegatronRetrievalTransformerEncoderModule, ) from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, init_method_normal, scaled_init_method_normal, ) try: from apex.transformer.enums import AttnMaskType, ModelType HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() ModelType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False __all__ = [] AVAILABLE_ENCODERS = ["transformer", "perceiver", "retro"] def get_encoder_model( config: ModelParallelConfig, arch, hidden_size, ffn_hidden_size, num_layers, num_attention_heads, apply_query_key_layer_scaling=False, kv_channels=None, init_method=None, scaled_init_method=None, encoder_attn_mask_type=AttnMaskType.padding, pre_process=True, post_process=True, init_method_std=0.02, megatron_amp_O2=False, hidden_dropout=0.1, attention_dropout=0.1, ffn_dropout=0.0, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, activations_checkpoint_granularity=None, layernorm_epsilon=1e-5, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, persist_layer_norm=False, openai_gelu=False, activation="gelu", onnx_safe=False, bias=True, normalization="layernorm", headscale=False, transformer_block_type="pre_ln", hidden_steps=32, parent_model_type=ModelType.encoder_or_decoder, layer_type=None, chunk_size=64, num_self_attention_per_cross_attention=1, layer_number_offset=0, # this is use only for attention norm_factor scaling megatron_legacy=False, normalize_attention_scores=True, sequence_parallel=False, num_moe_experts=1, moe_frequency=1, moe_dropout=0.0, turn_off_rop=False, # turn off the RoP positional embedding version=1, # model version position_embedding_type='learned_absolute', use_flash_attention=False, ): """Build language model and return along with the key to save.""" if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads if init_method is None: init_method = init_method_normal(init_method_std) if scaled_init_method is None: scaled_init_method = scaled_init_method_normal(init_method_std, num_layers) if arch == "transformer": # Language encoder. encoder = MegatronTransformerEncoderModule( config=config, init_method=init_method, output_layer_init_method=scaled_init_method, hidden_size=hidden_size, num_layers=num_layers, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, ffn_hidden_size=ffn_hidden_size, encoder_attn_mask_type=encoder_attn_mask_type, pre_process=pre_process, post_process=post_process, megatron_amp_O2=megatron_amp_O2, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, normalization=normalization, transformer_block_type=transformer_block_type, headscale=headscale, parent_model_type=parent_model_type, megatron_legacy=megatron_legacy, normalize_attention_scores=normalize_attention_scores, num_moe_experts=num_moe_experts, moe_frequency=moe_frequency, moe_dropout=moe_dropout, position_embedding_type=position_embedding_type, use_flash_attention=use_flash_attention, ) elif arch == "retro": encoder = MegatronRetrievalTransformerEncoderModule( config=config, init_method=init_method, output_layer_init_method=scaled_init_method, hidden_size=hidden_size, num_layers=num_layers, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, layer_type=layer_type, ffn_hidden_size=ffn_hidden_size, pre_process=pre_process, post_process=post_process, megatron_amp_O2=megatron_amp_O2, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, normalization=normalization, transformer_block_type=transformer_block_type, parent_model_type=parent_model_type, chunk_size=chunk_size, layer_number_offset=layer_number_offset, megatron_legacy=megatron_legacy, normalize_attention_scores=normalize_attention_scores, turn_off_rop=turn_off_rop, version=version, ) elif arch == "perceiver": encoder = MegatronPerceiverEncoderModule( config=config, init_method=init_method, output_layer_init_method=scaled_init_method, hidden_size=hidden_size, num_layers=num_layers, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, ffn_hidden_size=ffn_hidden_size, encoder_attn_mask_type=encoder_attn_mask_type, pre_process=pre_process, post_process=post_process, megatron_amp_O2=megatron_amp_O2, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, normalization=normalization, transformer_block_type=transformer_block_type, headscale=headscale, parent_model_type=parent_model_type, hidden_steps=hidden_steps, num_self_attention_per_cross_attention=num_self_attention_per_cross_attention, megatron_legacy=megatron_legacy, normalize_attention_scores=normalize_attention_scores, ) else: raise ValueError(f"Unknown encoder arch = {arch}. Available encoder arch = {AVAILABLE_ENCODERS}") return encoder
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_encoders.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from typing import Dict, List, Optional import torch import torch.nn.functional as F from nemo.collections.nlp.modules.common.megatron.utils import build_position_ids from nemo.core.classes.exportable import Exportable from nemo.core.neural_types import ChannelType, EncodedRepresentation, MaskType, NeuralType __all__ = ["TokensHeadEmb", "DecEmb", "EncEmb"] class TokensHeadEmb(torch.nn.Module, Exportable): """ Combines decoder_embedding with the tokens_head layer to simulate the classifier in NemoNMT """ def __init__(self, decoder_embedding, tokens_head, device): super(TokensHeadEmb, self).__init__() self.decoder_embedding = decoder_embedding self.tokens_head_bias = tokens_head.bias self.device = device # properties needed for export self.training = False def train(self, dummy_input): return None def modules(self): return [] def forward(self, dec_output): if isinstance(dec_output, list): dec_output = dec_output[0] if self.tokens_head_bias is not None: return F.linear(dec_output, self.decoder_embedding.word_embeddings.weight, self.tokens_head_bias).float() return F.linear(dec_output, self.decoder_embedding.word_embeddings.weight).float() def input_example(self, max_batch=1, max_dim=768, seq_len=6): return [ torch.randint(low=-3, high=3, size=(max_batch, seq_len, max_dim), device=self.device, dtype=torch.float32) ] def freeze(self): for param in self.parameters(): param.requires_grad = False @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "hidden_states": NeuralType(('B', 'T', 'D'), ChannelType()), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"log_probs": NeuralType(('B', 'T', 'D'), ChannelType())} @property def input_names(self) -> List[str]: return ['hidden_states'] @property def output_names(self) -> List[str]: return ['log_probs'] class DecEmb(torch.nn.Module, Exportable): """ Combines decoder_embedding with the decoder component """ def __init__(self, decoder_embedding, decoder, rpe, device): super(DecEmb, self).__init__() self.decoder_embedding = decoder_embedding self.decoder = decoder self.device = device self.rpe = rpe # properties needed for export self.training = False def train(self, dummy_input): return None def modules(self): return (self.decoder_embedding, self.decoder) def forward(self, input_ids, decoder_mask, encoder_mask, encoder_embeddings, decoder_mems): position_ids = build_position_ids(input_ids) dec_input = self.decoder_embedding(input_ids, position_ids, token_type_ids=None) rpe = None if self.rpe is not None: rpe = self.rpe(query_seq_length=input_ids.size(1), key_seq_length=input_ids.size(1),) dec_out = ( self.decoder( dec_input, decoder_mask, encoder_embeddings.permute(1, 0, 2), encoder_mask, dec_self_attention_relative_position_bias=rpe, ) .permute(1, 0, 2) .float() ) zeros = torch.zeros( (decoder_mems.shape[0], self.decoder.num_layers, dec_out.shape[1], decoder_mems.shape[-1]) ).to(self.device) return torch.cat((zeros, dec_out.unsqueeze(1)), dim=1) def freeze(self): for param in self.parameters(): param.requires_grad = False def input_example(self, max_batch=1, max_dim=768, seq_len=6): enc_output = torch.randint( low=-3, high=3, size=(max_batch, seq_len, max_dim), device=self.device, dtype=torch.float32 ) enc_attn_mask = torch.tensor([[1 for _ in range(seq_len)]]).to(self.device) dec_len = random.randint(10, 128) dec_input = torch.randint(low=0, high=1000, size=(max_batch, dec_len), device=self.device) dec_attn_mask = torch.tensor([[1 for _ in range(dec_len)]]).to(self.device) # constant decoder_mems as placeholder for now decoder_mems = torch.zeros([max_batch, self.decoder.num_layers + 1, seq_len, max_dim], dtype=torch.float32).to( self.device ) # input_ids, decoder_mask, encoder_mask, encoder_embeddings return tuple([dec_input, dec_attn_mask, enc_attn_mask, enc_output, decoder_mems]) @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T', 'D'), ChannelType()), "decoder_mask": NeuralType(('B', 'T'), MaskType()), "encoder_mask": NeuralType(('B', 'T', 'D'), ChannelType()), "encoder_embeddings": NeuralType(('B', 'T'), MaskType()), "decoder_mems": NeuralType(('B', 'S', 'T', 'D'), ChannelType()), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return { "last_hidden_states": NeuralType(('B', 'S', 'T', 'D'), EncodedRepresentation()), } @property def input_names(self) -> List[str]: return ['input_ids', 'decoder_mask', 'encoder_mask', 'encoder_embeddings', 'decoder_mems'] @property def output_names(self) -> List[str]: return ['last_hidden_states'] class EncEmb(torch.nn.Module, Exportable): """ Combines encoder_embedding with the encoder component """ def __init__(self, encoder_embedding, encoder, rpe, device): super(EncEmb, self).__init__() self.encoder_embedding = encoder_embedding self.encoder = encoder self.device = device self.rpe = rpe # properties needed for export self.training = False def train(self, dummy_input): return None def modules(self): return (self.encoder_embedding, self.encoder) def forward(self, input_ids, encoder_mask): if self.rpe is None: position_ids = build_position_ids(input_ids) else: position_ids = None enc_input = self.encoder_embedding(input_ids, position_ids, token_type_ids=None) # pass input through the encoder enc_seq_length = input_ids.size(1) rpe = None if self.rpe is not None: rpe = self.rpe(query_seq_length=enc_seq_length, key_seq_length=enc_seq_length,) return ( self.encoder( enc_input=enc_input, enc_attn_mask=encoder_mask, enc_self_attention_relative_position_bias=rpe ) .permute(1, 0, 2) .float() ) def input_example(self, max_batch=1, max_dim=30000, seq_len=6): seq_len = random.randint(0, 128) return ( torch.randint(0, max_dim, (max_batch, seq_len)).to(self.device), torch.ones((max_batch, seq_len), dtype=int).to(self.device), ) def freeze(self): for param in self.parameters(): param.requires_grad = False @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "encoder_mask": NeuralType(('B', 'T'), MaskType()), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"last_hidden_states": NeuralType(('B', 'T', 'D'), ChannelType())} @property def input_names(self) -> List[str]: return ['input_ids', 'encoder_mask'] @property def output_names(self) -> List[str]: return ['last_hidden_states']
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_export.py
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from nemo.collections.nlp.modules.common.megatron.utils import _cast_if_autocast_enabled try: from apex.contrib.layer_norm.layer_norm import FastLayerNorm as OrigFastLayerNorm from apex.contrib.layer_norm.layer_norm import _fast_layer_norm from apex.transformer.layers.layer_norm import FastLayerNorm HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False if HAVE_APEX: # TODO: use Apex implementation class LayerNorm1P(FastLayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) assert isinstance( self, OrigFastLayerNorm ), 'LayerNorm1P implemented only as an apex.contrib.layer_norm.FastLayerNorm extension' def reset_parameters(self): torch.nn.init.zeros_(self.weight) torch.nn.init.zeros_(self.bias) def forward(self, x): return _fast_layer_norm(x, self.weight + 1, self.bias, self.epsilon) else: class LayerNorm1P(torch.nn.Module): def __init__(self, *args, **kwargs): raise NotImplementedError('LayerNorm1P available only with apex installed') class LPLayerNorm(torch.nn.LayerNorm): def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None): super().__init__( normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype, ) def forward(self, x): module_device = x.device downcast_x = _cast_if_autocast_enabled(x) downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias with torch.autocast(enabled=False, device_type=module_device.type): return torch.nn.functional.layer_norm( downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps )
NeMo-main
nemo/collections/nlp/modules/common/megatron/layer_norm_1p.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer based language model.""" from nemo.collections.nlp.modules.common.megatron.layer_type import LayerType from nemo.collections.nlp.modules.common.megatron.megatron_encoder_module import MegatronEncoderModule from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.transformer import ParallelTransformer from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, attn_mask_postprocess, build_attention_mask_3d, ) from nemo.core.classes.exportable import Exportable try: from apex.transformer.enums import AttnMaskType, ModelType HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() ModelType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False __all__ = ["MegatronTransformerEncoderModule"] class MegatronTransformerEncoderModule(MegatronModule, Exportable, MegatronEncoderModule): """Transformer encoder model.""" def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, hidden_size, ffn_hidden_size, num_layers, num_attention_heads, apply_query_key_layer_scaling=True, kv_channels=None, pre_process=True, post_process=True, megatron_amp_O2=False, encoder_attn_mask_type=AttnMaskType.padding, hidden_dropout=0.1, attention_dropout=0.1, ffn_dropout=0.0, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, activations_checkpoint_granularity=None, layernorm_epsilon=1e-5, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, persist_layer_norm=False, openai_gelu=False, onnx_safe=False, activation='gelu', bias=True, normalization='layernorm', transformer_block_type='pre_ln', headscale=False, parent_model_type=ModelType.encoder_or_decoder, megatron_legacy=False, normalize_attention_scores=True, num_moe_experts=1, moe_frequency=1, moe_dropout=0.0, position_embedding_type='learned_absolute', use_flash_attention=False, ): super(MegatronTransformerEncoderModule, self).__init__(config=config) self.pre_process = pre_process self.post_process = post_process self.hidden_size = hidden_size self.num_layers = num_layers self.init_method = init_method self.model_attn_mask_type = encoder_attn_mask_type self.hidden_dropout = hidden_dropout self.output_layer_init_method = output_layer_init_method self.parent_model_type = parent_model_type self.normalization = normalization self.transformer_block_type = transformer_block_type self.use_flash_attention = use_flash_attention if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads # Transformer. self.model = ParallelTransformer( config=config, layer_type=LayerType.encoder, init_method=self.init_method, output_layer_init_method=self.output_layer_init_method, num_layers=self.num_layers, hidden_size=self.hidden_size, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, ffn_hidden_size=ffn_hidden_size, self_attn_mask_type=self.model_attn_mask_type, pre_process=self.pre_process, post_process=self.post_process, precision=precision, fp32_residual_connection=fp32_residual_connection, activations_checkpoint_method=activations_checkpoint_method, activations_checkpoint_num_layers=activations_checkpoint_num_layers, activations_checkpoint_granularity=activations_checkpoint_granularity, layernorm_epsilon=layernorm_epsilon, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, megatron_amp_O2=megatron_amp_O2, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, normalization=normalization, transformer_block_type=transformer_block_type, headscale=headscale, model_type=parent_model_type, megatron_legacy=megatron_legacy, normalize_attention_scores=normalize_attention_scores, num_moe_experts=num_moe_experts, moe_frequency=moe_frequency, moe_dropout=moe_dropout, position_embedding_type=position_embedding_type, use_flash_attention=use_flash_attention, ) self._model_key = 'model' def set_input_tensor(self, input_tensor): """ See megatron.model.transformer.set_input_tensor()""" self.model.set_input_tensor(input_tensor) def forward( self, enc_input, enc_attn_mask, layer_past=None, get_key_value=False, enc_self_attention_relative_position_bias=None, ): # convert to Megatron mask if self.use_flash_attention: enc_attn_mask_3d = enc_attn_mask < 0.5 else: enc_attn_mask_3d = attn_mask_postprocess( build_attention_mask_3d( source_mask=enc_attn_mask, target_mask=enc_attn_mask, attn_mask_type=self.model_attn_mask_type, ) ) # transformer encoder enc_output = self.model( enc_input, enc_attn_mask_3d, layer_past=layer_past, get_key_value=get_key_value, self_attention_relative_position_bias=enc_self_attention_relative_position_bias, cross_attention_relative_position_bias=None, ) return enc_output def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load.""" state_dict_ = {} state_dict_[self._model_key] = self.model.state_dict_for_save_checkpoint(destination, prefix, keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" # Encoder. if self._model_key in state_dict: state_dict_ = state_dict[self._model_key] # for backward compatibility. elif 'transformer' in state_dict: state_dict_ = state_dict['transformer'] else: # for backward compatibility. state_dict_ = {} for key in state_dict.keys(): if 'transformer.' in key: state_dict_[key.split('transformer.')[1]] = state_dict[key] # for backward compatibility. state_dict_self_attention = {} for key in state_dict_.keys(): if '.attention.' in key: state_dict_self_attention[key.replace(".attention.", ".self_attention.")] = state_dict_[key] else: state_dict_self_attention[key] = state_dict_[key] state_dict_ = state_dict_self_attention self.model.load_state_dict(state_dict_, strict=strict)
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_transformer_encoder.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.modules.common.megatron.megatron_utils import ( get_megatron_checkpoint, get_megatron_lm_models_list, )
NeMo-main
nemo/collections/nlp/modules/common/megatron/__init__.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch try: from apex._autocast_utils import _cast_if_autocast_enabled HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False ###### BIAS GELU FUSION/ NO AUTOGRAD ################ # 1/sqrt(2*pi)-> 0.3989423 # 1/sqrt(2) -> 0.70710678 # sqrt(2/pi) -> 0.79788456 # this function is tanh approximation of gelu # actual gelu is: # x * 0.5 * (1.0 + torch.erf(x * 0.70710678)) @torch.jit.script def bias_gelu(bias, y): x = bias + y return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) # gradient of tanh approximation of gelu # gradient of actual gelu is: # 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) @torch.jit.script def bias_gelu_back(g, bias, y): x = bias + y tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) return ff * g class GeLUFunction(torch.autograd.Function): @staticmethod # bias is an optional argument def forward(ctx, input, bias): ctx.save_for_backward(input, bias) return bias_gelu(bias, input) @staticmethod def backward(ctx, grad_output): input, bias = ctx.saved_tensors tmp = bias_gelu_back(grad_output, bias, input) return tmp, tmp @staticmethod def symbolic(g: torch.Graph, input: torch.Value, bias: torch.Value): # define constants and variables x = g.op("Add", input, bias) const_1 = g.op("Constant", value_t=torch.tensor(0.5, dtype=torch.float16)) const_2 = g.op("Constant", value_t=torch.tensor(1.0, dtype=torch.float16)) const_3 = g.op("Constant", value_t=torch.tensor(0.79788456, dtype=torch.float16)) const_4 = g.op("Constant", value_t=torch.tensor(0.044715, dtype=torch.float16)) # calculates (1 + 0.044715 * x * x) p_1 = g.op("Add", const_2, g.op("Mul", x, g.op("Mul", const_4, x))) # calculates torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) p_2 = g.op("Tanh", g.op("Mul", const_3, g.op("Mul", x, p_1))) # calculates x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) return g.op("Mul", const_1, g.op("Mul", x, g.op("Add", const_2, p_2))) def fused_bias_gelu(input, bias): args = _cast_if_autocast_enabled(input, bias) with torch.cuda.amp.autocast(enabled=False): return GeLUFunction.apply(*args)
NeMo-main
nemo/collections/nlp/modules/common/megatron/fused_bias_gelu.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from typing import Dict, List, Optional from nemo.core.classes import NeuralModule from nemo.core.neural_types import ChannelType, MaskType, NeuralType __all__ = ['MegatronDecoderModule'] class MegatronDecoderModule(NeuralModule, ABC): """ Base class for encoder neural module to be used in NLP models. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "dec_input": NeuralType(('B', 'T', 'D'), ChannelType()), "dec_attn_mask": NeuralType(('B', 'T'), MaskType()), "enc_output": NeuralType(('B', 'T', 'D'), ChannelType()), "enc_attn_mask": NeuralType(('B', 'T'), MaskType()), } @property def input_names(self) -> List[str]: return ['dec_input', 'dec_attn_mask', 'enc_output', 'enc_attn_mask'] @property def output_names(self) -> List[str]: return ['decoder_output'] @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"dec_output": NeuralType(('B', 'T', 'D'), ChannelType())}
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_decoder_module.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer based language model.""" from ast import Mod import torch from nemo.collections.nlp.modules.common.megatron.hiddens import MegatronHiddensModule from nemo.collections.nlp.modules.common.megatron.megatron_perceiver_encoders import MegatronPerceiverEncoderModule from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults try: from apex.transformer.enums import AttnMaskType HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False __all__ = ["MegatronTransformerEncoderDecoderModule"] class MegatronTransformerEncoderDecoderModule(MegatronModule): """Transformer encoder-decoder model. """ def __init__( self, config: ModelParallelConfig, encoder, decoder, # AttnMaskType enum mask type (e.g., padding, casual) encoder_attn_mask_type: AttnMaskType = None, decoder_attn_mask_type: AttnMaskType = None, hidden_steps: int = None, hiddens_module: MegatronHiddensModule = None, # allows for hidden state transformations before the decoder ): super(MegatronTransformerEncoderDecoderModule, self).__init__(config=config) self.encoder = encoder self.decoder = decoder self.hidden_steps = hidden_steps if isinstance(encoder, MegatronPerceiverEncoderModule) and hidden_steps is None: raise ValueError( f"hidden_steps cannot be None for perceiver encoders. It is needed to compute the encoder-decoder cross attention mask." ) self.hiddens_module = hiddens_module if self.hiddens_module is not None and not isinstance(self.hiddens_module, MegatronHiddensModule): raise TypeError( f"hiddens_module must be of type MegatronHiddensModule, but got {type(self.hiddens_module)} instead." ) # try to infer mask_type if not given if encoder_attn_mask_type is None: if encoder is None: encoder_attn_mask_type = None # Perceiver does not have a `.model` attribute, assume it always uses padding mask. elif isinstance(encoder, MegatronPerceiverEncoderModule): encoder_attn_mask_type = AttnMaskType.padding elif hasattr(encoder.model, 'self_attn_mask_type'): encoder_attn_mask_type = encoder.model.self_attn_mask_type else: raise AttributeError( "Could not find an attribute for encoder self_attn_mask_type, make sure it is set when instatiating the encoder or pass it to the constructor of this class." ) if decoder_attn_mask_type is None: if decoder is None: decoder_attn_mask_type = None elif hasattr(decoder.model, 'self_attn_mask_type'): decoder_attn_mask_type = decoder.model.self_attn_mask_type else: raise AttributeError( "Could not find an attribute for decoder self_attn_mask_type, make sure it is set when instatiating the decoder or pass it to the constructor of this class." ) self.encoder_attn_mask_type = encoder_attn_mask_type self.decoder_attn_mask_type = decoder_attn_mask_type self._encoder_key = "encoder" self._decoder_key = "decoder" self._hiddens_module = "hiddens_module" def get_hiddens_mask(self, enc_attn_mask): """ Returns the attention mask for the output of the encoder. Required for fixed-size bottleneck models. """ if self.encoder is not None and isinstance(self.encoder, MegatronPerceiverEncoderModule): # Attention mask is expected to be of shape [B x S] hiddens_mask = torch.ones(enc_attn_mask.size(0), self.hidden_steps).to(enc_attn_mask.device) else: hiddens_mask = enc_attn_mask return hiddens_mask def encode( self, enc_input, enc_attn_mask, enc_layer_past=None, enc_get_key_value=False, enc_self_attention_relative_position_bias=None, batch_data=None, ): """Encodes embedder input using encoder""" if self.encoder is None: raise ValueError(f"Cannot call .encode(...) when self.encoder is None.") enc_output = self.encoder( enc_input=enc_input, enc_attn_mask=enc_attn_mask, layer_past=enc_layer_past, get_key_value=enc_get_key_value, enc_self_attention_relative_position_bias=enc_self_attention_relative_position_bias, ) # apply hidden transformations if needed if self.hiddens_module is not None: enc_output = self.hiddens_module.apply_hidden_transforms( {"hiddens": enc_output, "hiddens_mask": self.get_hiddens_mask(enc_attn_mask),}, batch_data=batch_data, ) return enc_output def decode( self, dec_input, dec_attn_mask, enc_output, enc_attn_mask, dec_layer_past=None, dec_get_key_value=False, dec_self_attention_relative_position_bias=None, dec_cross_attention_relative_position_bias=None, ): if self.decoder is None: raise ValueError(f"Cannot call .decode(...) when self.decoder is None.") """Decodes embedder input using decoder and encoder input""" dec_output = self.decoder( dec_input=dec_input, dec_attn_mask=dec_attn_mask, layer_past=dec_layer_past, get_key_value=dec_get_key_value, enc_output=enc_output, enc_attn_mask=enc_attn_mask, dec_self_attention_relative_position_bias=dec_self_attention_relative_position_bias, dec_cross_attention_relative_position_bias=dec_cross_attention_relative_position_bias, ) return dec_output def forward( self, enc_input, enc_attn_mask, dec_input, dec_attn_mask, enc_layer_past=None, enc_get_key_value=False, enc_output=None, enc_output_attn_mask=None, dec_layer_past=None, dec_get_key_value=False, output_enc_hidden_only=False, enc_self_attention_relative_position_bias=None, dec_self_attention_relative_position_bias=None, dec_cross_attention_relative_position_bias=None, batch_data=None, ): # encoder if enc_output is None: if self.encoder is not None: enc_output = self.encode( enc_input=enc_input, enc_attn_mask=enc_attn_mask, enc_layer_past=enc_layer_past, enc_get_key_value=enc_get_key_value, enc_self_attention_relative_position_bias=enc_self_attention_relative_position_bias, batch_data=batch_data, ) else: assert self.encoder_hidden_state is not None enc_output = self.encoder_hidden_state else: enc_attn_mask = enc_output_attn_mask.to(enc_attn_mask) if self.decoder is None or output_enc_hidden_only: return enc_output # decoder dec_output = self.decode( dec_input=dec_input, dec_attn_mask=dec_attn_mask, enc_output=enc_output["enc_output"] # enc_output is a dict if we used hidden transformations if self.hiddens_module is not None else enc_output, # Adjust encoder attention mask if encoder is a perceiver. enc_attn_mask=self.get_hiddens_mask(enc_attn_mask), dec_layer_past=dec_layer_past, dec_get_key_value=dec_get_key_value, dec_self_attention_relative_position_bias=dec_self_attention_relative_position_bias, dec_cross_attention_relative_position_bias=dec_cross_attention_relative_position_bias, ) # if self.hiddens_module is not None enc_output is a dict, else it is a torch.tensor return dec_output, enc_output def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load.""" state_dict_ = {} state_dict_[self._encoder_key] = self.encoder.state_dict_for_save_checkpoint(destination, prefix, keep_vars) state_dict_[self._decoder_key] = self.decoder.state_dict_for_save_checkpoint(destination, prefix, keep_vars) if self.hiddens_module is not None: state_dict_[self._hiddens_module] = self.hiddens_module.state_dict(destination, prefix, keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" self.encoder.load_state_dict(state_dict[self._encoder_key], strict=strict) self.decoder.load_state_dict(state_dict[self._decoder_key], strict=strict) if self.hiddens_module is not None: self.hiddens_module.load_state_dict(state_dict[self._hiddens_module], strict=strict)
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_encoder_decoder.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F from nemo.collections.nlp.modules.common.megatron.adapters.parallel_adapters import ( AdapterName, MLPInfusedAdapterConfig, ) from nemo.collections.nlp.modules.common.megatron.fused_bias_geglu import fused_bias_geglu from nemo.collections.nlp.modules.common.megatron.fused_bias_gelu import fused_bias_gelu from nemo.collections.nlp.modules.common.megatron.fused_layer_norm import get_layer_norm from nemo.collections.nlp.modules.common.megatron.layer_norm_1p import LayerNorm1P from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults, erf_gelu from nemo.collections.nlp.modules.common.megatron.utils import openai_gelu as openai_gelu_func from nemo.collections.nlp.modules.common.megatron.utils import squared_relu from nemo.core import adapter_mixins try: from apex.normalization import MixedFusedRMSNorm from apex.transformer import parallel_state, tensor_parallel HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes ModelType = AttnMaskType = AttnType = LayerType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig, parallel_state, tensor_parallel from megatron.core.parallel_state import get_tensor_model_parallel_world_size HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False class ParallelMLP(MegatronModule, adapter_mixins.AdapterModuleMixin): """MLP. MLP will take the input with h hidden state, project it to 4*h hidden dimension, perform nonlinear transformation, and project the state back into h hidden dimension. """ def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, hidden_size, ffn_hidden_size, dtype=torch.float32, bias_activation_fusion=True, openai_gelu=False, onnx_safe=False, activation='gelu', bias=True, transformer_block_type='pre_ln', normalization='layernorm', layernorm_epsilon=1e-5, persist_layer_norm=False, dropout=0.0, ): super(ParallelMLP, self).__init__(config=config) self.activation = activation self.bias = bias self.transformer_block_type = transformer_block_type self.normalization = normalization self.layernorm_epsilon = layernorm_epsilon self.persist_layer_norm = persist_layer_norm self.activation = activation self.dropout = dropout self.dtype = dtype self.set_accepted_adapter_types([MLPInfusedAdapterConfig._target_]) supported_activations = [ 'gelu', 'geglu', 'reglu', 'swiglu', 'squared-relu', 'fast-geglu', 'fast-swiglu', 'fast-reglu', ] if activation not in supported_activations: raise ValueError( f"Activation {activation} not supported. Supported activations are {supported_activations}" ) self.fast_glu_activation = activation in ['fast-geglu', 'fast-swiglu', 'fast-reglu'] # Project to 4h. self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear( hidden_size, ffn_hidden_size * 2 if self.fast_glu_activation else ffn_hidden_size, # NOTE: When using geglu, divide ffn dim by 2/3 to keep overall params the same. config=config, gather_output=False, init_method=init_method, skip_bias_add=True, bias=bias, ) if activation in ['geglu', 'reglu', 'swiglu']: # Separate linear layer for *GLU activations. # Source: https://github.com/huggingface/transformers/blob/bee361c6f1f7704f8c688895f2f86f6e5ff84727/src/transformers/models/t5/modeling_t5.py#L292 self.dense_h_to_4h_2 = tensor_parallel.ColumnParallelLinear( hidden_size, ffn_hidden_size, # NOTE: When using *glu, divide ffn dim by 2/3 to keep overall params the same. config=config, gather_output=False, init_method=init_method, skip_bias_add=True, bias=bias, ) self.glu_activation_family = activation in [ 'geglu', 'reglu', 'swiglu', 'fast-geglu', 'fast-reglu', 'fast-swiglu', ] bias_activation_fusion_unavailable = activation in ['reglu', 'swiglu'] if bias_activation_fusion_unavailable and bias_activation_fusion: raise ValueError( f"Cannot use bias_activation_fusion with {activation} activation. Please turn bias gelu fusion off." ) if self.glu_activation_family and onnx_safe and self.bias_activation_fusion: raise ValueError( f"Cannot use onnx_safe with specificed activation function and bias_activation_fusion : {activation} Please turn onnx safe off." ) if bias_activation_fusion and not bias: raise ValueError( f"Cannot use bias_activation_fusion without bias terms. Please set bias=True or bias_activation_fusion=False." ) self.bias_activation_fusion = bias_activation_fusion # Give openai_gelu precedence over other activations if set, for HF compatibility. Normally this is off and shouldn't affect regular model training. if openai_gelu: self.activation_func = openai_gelu_func elif activation in ["gelu", "geglu", "fast-geglu"]: self.activation_func = F.gelu elif onnx_safe: self.activation_func = erf_gelu elif activation in ["reglu", "fast-reglu"]: self.activation_func = F.relu elif activation in ["swiglu", "fast-swiglu"]: # SiLU or sigmoid linear unit is the same as swish with beta = 1 (which is what https://arxiv.org/pdf/2002.05202.pdf uses.) self.activation_func = F.silu elif activation == 'squared-relu': self.activation_func = squared_relu # Project back to h. self.dense_4h_to_h = tensor_parallel.RowParallelLinear( ffn_hidden_size, hidden_size, config=config, input_is_parallel=True, init_method=output_layer_init_method, skip_bias_add=True, bias=bias, ) # Normformer normalization if transformer_block_type == 'normformer': if normalization == 'layernorm': self.normalization = get_layer_norm( ffn_hidden_size // get_tensor_model_parallel_world_size(), layernorm_epsilon, persist_layer_norm ) elif normalization == 'layernorm1p': self.normalization = LayerNorm1P( ffn_hidden_size // get_tensor_model_parallel_world_size(), layernorm_epsilon, sequence_parallel_enabled=config.sequence_parallel, ) else: self.normalization = MixedFusedRMSNorm( ffn_hidden_size // get_tensor_model_parallel_world_size(), layernorm_epsilon ) def forward(self, hidden_states): # [s, b, 4hp] intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states) if self.fast_glu_activation: intermediate_parallel, intermediate_parallel_2 = torch.chunk(intermediate_parallel, 2, dim=-1) if bias_parallel is not None: bias_parallel, bias_parallel_2 = torch.chunk(bias_parallel, 2, dim=-1) elif self.glu_activation_family and not self.fast_glu_activation: intermediate_parallel_2, bias_parallel_2 = self.dense_h_to_4h_2(hidden_states) if self.bias_activation_fusion: if self.activation == 'gelu': intermediate_parallel = fused_bias_gelu(intermediate_parallel, bias_parallel) elif self.activation in ['geglu', 'fast-geglu']: intermediate_parallel = fused_bias_geglu( intermediate_parallel, bias_parallel, intermediate_parallel_2, bias_parallel_2 ) elif self.glu_activation_family and not self.bias_activation_fusion: if bias_parallel is not None: intermediate_parallel = self.activation_func(intermediate_parallel + bias_parallel) * ( intermediate_parallel_2 + bias_parallel_2 ) else: intermediate_parallel = self.activation_func(intermediate_parallel) * intermediate_parallel_2 else: if bias_parallel is not None: intermediate_parallel = self.activation_func(intermediate_parallel + bias_parallel) else: intermediate_parallel = self.activation_func(intermediate_parallel) if self.dropout > 0: intermediate_parallel = F.dropout(intermediate_parallel, p=self.dropout, training=self.training) infused_adapter = self.get_adapter_module(AdapterName.MLP_INFUSED) if infused_adapter: intermediate_parallel = infused_adapter(intermediate_parallel) # Normformer normalization if self.transformer_block_type == 'normformer': intermediate_parallel = self.normalization(intermediate_parallel) # [s, b, h] output, output_bias = self.dense_4h_to_h(intermediate_parallel) return output, output_bias class SwitchMLP(MegatronModule): """Top-1 MoE Curently supports Sinkhorn based expert routing.""" def __init__( self, config: ModelParallelConfig, num_experts, init_method, output_layer_init_method, hidden_size, ffn_hidden_size, dtype=torch.float32, bias_activation_fusion=True, openai_gelu=False, onnx_safe=False, activation='gelu', bias=True, transformer_block_type='pre_ln', normalization='layernorm', layernorm_epsilon=1e-5, persist_layer_norm=False, sequence_parallel=False, dropout=0.0, ): super(SwitchMLP, self).__init__(config=config) self.num_experts = num_experts self.route_algo = SwitchMLP.sinkhorn self.router = tensor_parallel.RowParallelLinear( hidden_size, num_experts, config=config, input_is_parallel=False, init_method=init_method, skip_bias_add=False, bias=bias, ) mlp_args = { 'config': config, 'init_method': init_method, 'output_layer_init_method': output_layer_init_method, 'hidden_size': hidden_size, 'ffn_hidden_size': ffn_hidden_size, 'dtype': dtype, 'bias_activation_fusion': bias_activation_fusion, 'openai_gelu': openai_gelu, 'onnx_safe': onnx_safe, 'activation': activation, 'bias': bias, 'transformer_block_type': transformer_block_type, 'normalization': normalization, 'layernorm_epsilon': layernorm_epsilon, 'persist_layer_norm': persist_layer_norm, 'dropout': dropout, } self.experts = torch.nn.ModuleList([ParallelMLP(**mlp_args) for _ in range(num_experts)]) def forward(self, hidden_states): hidden_shape = hidden_states.shape route, _ = self.router(hidden_states) route = route.view(-1, self.num_experts) if self.training: with torch.no_grad(): norm_route = self.route_algo( route.detach().to(dtype=torch.float32) ) # explicit fp32 conversion for stability _, max_ind = torch.max(norm_route, dim=1) route = torch.sigmoid(route) max_prob = route[torch.arange(route.size(0)), max_ind] else: route = torch.sigmoid(route) max_prob, max_ind = torch.max(route, dim=1) max_prob = torch.unsqueeze(max_prob, 1) hidden_states = hidden_states.view(-1, hidden_shape[-1]) local_indices = (max_ind == 0).nonzero() hidden = hidden_states[local_indices, :] output, output_bias = self.experts[0](hidden) output_bias = output_bias.expand_as(output) output_total = torch.empty_like(hidden_states, dtype=output.dtype) output_bias_total = torch.empty_like(hidden_states, dtype=output_bias.dtype) output_total[local_indices, :] = output output_bias_total[local_indices, :] = output_bias for expert_num, expert in enumerate(self.experts): if expert_num == 0: continue local_indices = (max_ind == expert_num).nonzero() hidden = hidden_states[local_indices, :] output, output_bias = expert(hidden) output_bias = output_bias.expand_as(output) output_total[local_indices, :] = output output_bias_total[local_indices, :] = output_bias output_total = output_total * max_prob output_bias_total = output_bias_total * max_prob output_total = output_total.view(hidden_shape) output_bias_total = output_bias_total.view(hidden_shape) return output_total, output_bias_total @classmethod def sinkhorn(cls, cost, tol=0.0001): "Megatron-LMs sinkhorn implementation" cost = torch.exp(cost) d0 = torch.ones(cost.size(0), device=cost.device, dtype=cost.dtype) d1 = torch.ones(cost.size(1), device=cost.device, dtype=cost.dtype) eps = 0.00000001 error = 1e9 d1_old = d1 while error > tol: d0 = (1 / d0.size(0)) * 1 / (torch.sum(d1 * cost, 1) + eps) d1 = (1 / d1.size(0)) * 1 / (torch.sum(d0.unsqueeze(1) * cost, 0) + eps) error = torch.mean(torch.abs(d1_old - d1)) d1_old = d1 return d1 * cost * d0.unsqueeze(1)
NeMo-main
nemo/collections/nlp/modules/common/megatron/mlp.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import numpy as np import torch from nemo.utils import AppState, logging try: from apex.transformer.log_util import set_logging_level from apex.transformer.microbatches import ConstantNumMicroBatches from apex.transformer.pipeline_parallel.utils import setup_microbatch_calculator HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import tensor_parallel from megatron.core.parallel_state import ( get_pipeline_model_parallel_rank, set_pipeline_model_parallel_rank, set_pipeline_model_parallel_split_rank, set_pipeline_model_parallel_world_size, set_tensor_model_parallel_rank, set_tensor_model_parallel_world_size, set_virtual_pipeline_model_parallel_rank, ) except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False try: from apex.transformer.parallel_state import set_virtual_pipeline_model_parallel_world_size HAVE_INTERLEAVED = True except: HAVE_INTERLEAVED = False def initialize_model_parallel_for_nemo( world_size, global_rank, local_rank, tensor_model_parallel_size=1, pipeline_model_parallel_size=1, virtual_pipeline_model_parallel_size=None, pipeline_model_parallel_split_rank=None, micro_batch_size=None, global_batch_size=None, rampup_batch_size=None, use_fp8=False, init_mpi_proc_group=False, seed=1234, apex_transformer_log_level=30, ): if virtual_pipeline_model_parallel_size is not None and not HAVE_INTERLEAVED: raise ValueError("set_virtual_pipeline_model_parallel_world_size is needed in megatron-core for interleaved.") # updating NeMo globals app_state = AppState() app_state.global_rank = global_rank app_state.world_size = world_size app_state.local_rank = local_rank app_state.tensor_model_parallel_size = tensor_model_parallel_size app_state.pipeline_model_parallel_size = pipeline_model_parallel_size app_state.virtual_pipeline_model_parallel_size = virtual_pipeline_model_parallel_size app_state.use_fp8 = use_fp8 app_state.init_mpi_proc_group = init_mpi_proc_group ( app_state.tensor_model_parallel_rank, app_state.pipeline_model_parallel_rank, app_state.model_parallel_size, app_state.data_parallel_size, app_state.pipeline_model_parallel_split_rank, app_state.virtual_pipeline_model_parallel_rank, ) = fake_initialize_model_parallel( world_size=world_size, rank=global_rank, tensor_model_parallel_size_=tensor_model_parallel_size, pipeline_model_parallel_size_=pipeline_model_parallel_size, virtual_pipeline_model_parallel_size_=virtual_pipeline_model_parallel_size, pipeline_model_parallel_split_rank_=pipeline_model_parallel_split_rank, ) # update apex.transformer globals set_tensor_model_parallel_world_size(app_state.tensor_model_parallel_size) set_tensor_model_parallel_rank(app_state.tensor_model_parallel_rank) set_pipeline_model_parallel_rank(app_state.pipeline_model_parallel_rank) if HAVE_INTERLEAVED: set_virtual_pipeline_model_parallel_world_size(app_state.virtual_pipeline_model_parallel_size) set_virtual_pipeline_model_parallel_rank(app_state.virtual_pipeline_model_parallel_rank) set_pipeline_model_parallel_world_size(app_state.pipeline_model_parallel_size) set_pipeline_model_parallel_split_rank(app_state.pipeline_model_parallel_split_rank) _set_random_seed(seed) if global_batch_size and micro_batch_size is not None: # TODO: add rampup_batch_size here when we have it implemented from apex.transformer.pipeline_parallel.utils import _GLOBAL_NUM_MICROBATCHES_CALCULATOR if _GLOBAL_NUM_MICROBATCHES_CALCULATOR is None: setup_microbatch_calculator( rank=global_rank, global_batch_size=global_batch_size, micro_batch_size=micro_batch_size, data_parallel_size=app_state.data_parallel_size, rampup_batch_size=rampup_batch_size, ) else: if isinstance(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, ConstantNumMicroBatches): assert _GLOBAL_NUM_MICROBATCHES_CALCULATOR.current_global_batch_size == global_batch_size assert _GLOBAL_NUM_MICROBATCHES_CALCULATOR.micro_batch_size == micro_batch_size assert _GLOBAL_NUM_MICROBATCHES_CALCULATOR.num_micro_batches == global_batch_size // ( micro_batch_size * app_state.data_parallel_size ) else: raise Exception("Microbatch calculator already initialized.") app_state._is_megatron_initialized = True set_logging_level(apex_transformer_log_level) def _set_random_seed(seed_): """Set random seed for reproducability.""" if seed_ is not None and seed_ > 0: # Ensure that different pipeline MP stages get different seeds. seed = seed_ + (100 * get_pipeline_model_parallel_rank()) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.device_count() > 0: tensor_parallel.model_parallel_cuda_manual_seed(seed) else: raise ValueError('Seed ({}) should be a positive integer.'.format(seed_)) def set_jit_fusion_options(): """Set PyTorch JIT layer fusion options.""" # set flags if we are using the 21.10 container if torch.__version__ == "1.10.0a0+0aef44c": # nvfuser torch._C._jit_set_profiling_executor(True) torch._C._jit_set_profiling_mode(True) torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_nvfuser_enabled(True) torch._C._debug_set_autodiff_subgraph_inlining(False) def fake_initialize_model_parallel( world_size, rank, tensor_model_parallel_size_, pipeline_model_parallel_size_, pipeline_model_parallel_split_rank_=None, virtual_pipeline_model_parallel_size_=None, ): """ Fake initialize model data parallel groups so that we can instantiate model parallel models before DDP is initialized. This is needed because PTL execution flow is init model, init trainer -> call trainer.fit(model). DDP is initialized during .fit. This function is taken from megatron.core.parallel_state and modified so that the distributed groups are not created. We only need the tensor parallel and pipeline parallel ranks to instantiate the model. Arguments: tensor_model_parallel_size: number of GPUs used to parallelize model tensor. pipeline_model_parallel_size: number of GPUs used to parallelize model pipeline. Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize the model pipeline. The present function will create 8 tensor model-parallel groups, 4 pipeline model-parallel groups and 8 data-parallel groups as: 8 data_parallel groups: [g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15] 8 tensor model-parallel groups: [g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15] 4 pipeline model-parallel groups: [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15] Note that for efficiency, the caller should make sure adjacent ranks are on the same DGX box. For example if we are using 2 DGX-1 boxes with a total of 16 GPUs, rank 0 to 7 belong to the first box and ranks 8 to 15 belong to the second box. """ # Get world size and rank. Ensure some consistencies. tensor_model_parallel_size = min(tensor_model_parallel_size_, world_size) pipeline_model_parallel_size = min(pipeline_model_parallel_size_, world_size) model_parallel_size = tensor_model_parallel_size * pipeline_model_parallel_size assert ( world_size % tensor_model_parallel_size * pipeline_model_parallel_size == 0 ), f'world_size: {world_size} must be divisible by tensor_model_parallel_size: {tensor_model_parallel_size} times pipeline_model_parallel_size {pipeline_model_parallel_size}' data_parallel_size = world_size // (tensor_model_parallel_size * pipeline_model_parallel_size) num_tensor_model_parallel_groups = world_size // tensor_model_parallel_size num_pipeline_model_parallel_groups = world_size // pipeline_model_parallel_size virtual_pipeline_model_parallel_rank = None if virtual_pipeline_model_parallel_size_ is not None: virtual_pipeline_model_parallel_rank = 0 # Build the data-parallel groups. all_data_parallel_group_ranks = [] for i in range(pipeline_model_parallel_size): start_rank = i * num_pipeline_model_parallel_groups end_rank = (i + 1) * num_pipeline_model_parallel_groups for j in range(tensor_model_parallel_size): ranks = range(start_rank + j, end_rank, tensor_model_parallel_size) all_data_parallel_group_ranks.append(list(ranks)) if rank in ranks: data_parallel_group = list(ranks) logging.info(f'Rank {rank} has data parallel group: {data_parallel_group}') data_parallel_rank = data_parallel_group.index(rank) logging.info(f'All data parallel group ranks: {all_data_parallel_group_ranks}') logging.info(f'Ranks {rank} has data parallel rank: {data_parallel_rank}') # Build the model-parallel groups. all_model_parallel_group_ranks = [] for i in range(data_parallel_size): ranks = [data_parallel_group_ranks[i] for data_parallel_group_ranks in all_data_parallel_group_ranks] all_model_parallel_group_ranks.append(ranks) if rank in ranks: logging.info(f'Rank {rank} has model parallel group: {list(ranks)}') logging.info(f'All model parallel group ranks: {all_model_parallel_group_ranks}') # Build the tensor model-parallel groups. all_tensor_model_parallel_group_ranks = [] tensor_model_parallel_group = None for i in range(num_tensor_model_parallel_groups): ranks = range(i * tensor_model_parallel_size, (i + 1) * tensor_model_parallel_size) all_tensor_model_parallel_group_ranks.append(list(ranks)) if rank in ranks: tensor_model_parallel_group = list(ranks) logging.info(f'Rank {rank} has tensor model parallel group: {tensor_model_parallel_group}') tensor_model_parallel_rank = tensor_model_parallel_group.index(rank) logging.info(f'All tensor model parallel group ranks: {all_tensor_model_parallel_group_ranks}') logging.info(f'Rank {rank} has tensor model parallel rank: {tensor_model_parallel_rank}') # Build the pipeline model-parallel groups and embedding groups # (first and last rank in each pipeline model-parallel group). all_pipeline_model_parallel_group_ranks = [] all_embedding_group_ranks = [] pipeline_model_parallel_group = None embedding_group = None embedding_rank = None for i in range(num_pipeline_model_parallel_groups): ranks = range(i, world_size, num_pipeline_model_parallel_groups) all_pipeline_model_parallel_group_ranks.append(list(ranks)) if rank in ranks: pipeline_model_parallel_group = list(ranks) logging.info(f'Rank {rank} has pipeline model parallel group: {pipeline_model_parallel_group}') # Setup embedding group (to exchange gradients between # first and last stages). if len(ranks) > 1: embedding_ranks = [ranks[0], ranks[-1]] all_embedding_group_ranks.append(embedding_ranks) else: embedding_ranks = ranks all_embedding_group_ranks.append(list(embedding_ranks)) if rank in embedding_ranks: embedding_group = list(embedding_ranks) logging.info(f'Rank {rank} has embedding group: {embedding_group}') pipeline_model_parallel_rank = pipeline_model_parallel_group.index(rank) if embedding_group is not None: embedding_rank = embedding_group.index(rank) logging.info(f'All pipeline model parallel group ranks: {all_pipeline_model_parallel_group_ranks}') logging.info(f'Rank {rank} has pipeline model parallel rank {pipeline_model_parallel_rank}') logging.info(f'All embedding group ranks: {all_pipeline_model_parallel_group_ranks}') logging.info(f'Rank {rank} has embedding rank: {embedding_rank}') return ( tensor_model_parallel_rank, pipeline_model_parallel_rank, model_parallel_size, data_parallel_size, pipeline_model_parallel_split_rank_, virtual_pipeline_model_parallel_rank, )
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_init.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for models.""" import itertools import math from typing import Dict, Iterator, List, Tuple, Union import torch try: from apex.normalization import MixedFusedRMSNorm from apex.normalization.fused_layer_norm import FusedLayerNorm # NOQA from apex.transformer.enums import AttnMaskType from apex.transformer.layers.layer_norm import FastLayerNorm from apex.transformer.pipeline_parallel.schedules.common import listify_model HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import parallel_state, tensor_parallel from megatron.core.tensor_parallel.layers import linear_with_grad_accumulation_and_async_allreduce HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False class ApexGuardDefaults(object): """ This class can be used to replace missing classes when apex is missing. """ def __init__(self): super().__init__() def __getattr__(self, item): return None def parallel_lm_logits( input_: torch.Tensor, word_embeddings_weight: torch.Tensor, parallel_output: bool, bias: torch.Tensor = None, async_tensor_model_parallel_allreduce: bool = False, sequence_parallel: bool = False, gradient_accumulation_fusion: bool = False, ): """Language Model logits using word embedding weights. Args: input_ (torch.Tensor): [b, s, h] word_embeddings_weight (torch.Tensor): [(padded) vocab size, h] parallel_output (bool): False will gather logits from tensor model parallel region bias (torch.Tensor, optional): bias tensor. Defaults to None. async_tensor_model_parallel_allreduce (bool, optional): Defaults to False. sequence_parallel (bool, optional): If True will use sequence parallelism. Defaults to False. gradient_accumulation_fusioa (bool, optional): If True fuse gradient accumulation to WGRAD GEMM Returns: torch.Tensor: [b, s, (padded) vocab size] """ tensor_model_parallel = parallel_state.get_tensor_model_parallel_world_size() > 1 # async grad allreduce can only be used when not using sequence parallelism async_grad_allreduce = async_tensor_model_parallel_allreduce and tensor_model_parallel and not sequence_parallel # copy input_ to model parallel region if needed if async_tensor_model_parallel_allreduce or sequence_parallel: input_parallel = input_ else: input_parallel = tensor_parallel.copy_to_tensor_model_parallel_region(input_) # Matrix multiply. logits_parallel = linear_with_grad_accumulation_and_async_allreduce( input=input_parallel, weight=word_embeddings_weight, bias=bias, gradient_accumulation_fusion=gradient_accumulation_fusion, async_grad_allreduce=async_grad_allreduce, sequence_parallel=sequence_parallel, ) # Gather if needed. if parallel_output: return logits_parallel else: return tensor_parallel.gather_from_tensor_model_parallel_region(logits_parallel) def init_method_normal(sigma): """Init method based on N(0, sigma).""" def init_(tensor): return torch.nn.init.normal_(tensor, mean=0.0, std=sigma) return init_ def init_method_const(val): def init_(tensor): return torch.nn.init.constant_(tensor, val) return init_ def scaled_init_method_normal(sigma, num_layers): """Init method based on N(0, sigma/sqrt(2*num_layers).""" std = sigma / math.sqrt(2.0 * num_layers) def init_(tensor): return torch.nn.init.normal_(tensor, mean=0.0, std=std) return init_ def attention_mask_func(attention_scores, attention_mask): attention_scores.masked_fill_(attention_mask, -10000.0) return attention_scores def get_linear_layer(rows, columns, init_method): """Simple linear layer with weight initialization.""" layer = torch.nn.Linear(rows, columns) init_method(layer.weight) with torch.no_grad(): layer.bias.zero_() return layer @torch.jit.script def gelu_impl(x): """OpenAI's gelu implementation.""" return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x * (1.0 + 0.044715 * x * x))) def openai_gelu(x): return gelu_impl(x) def squared_relu(x): return torch.pow(torch.nn.functional.relu(x), 2) # This is actually Python equivalent of torch.nn.functional.gelu(), also with type hints for ONNX exporter @torch.jit.script def erf_gelu(x): return x * 0.5 * (torch.erf(x / 1.41421).to(dtype=x.dtype) + torch.ones_like(x).to(dtype=x.dtype)) def average_losses_across_data_parallel_group(losses): """Reduce a tensor of losses across all GPUs.""" averaged_losses = torch.cat([loss.clone().detach().view(1) for loss in losses]) torch.distributed.all_reduce(averaged_losses, group=parallel_state.get_data_parallel_group()) averaged_losses = averaged_losses / torch.distributed.get_world_size( group=parallel_state.get_data_parallel_group() ) return averaged_losses def get_ltor_masks_and_position_ids( data, eod_token, reset_position_ids, reset_attention_mask, eod_mask_loss, compute_attention_mask=True ): """Build masks and position id for left to right model.""" # Extract batch size and sequence length. micro_batch_size, seq_length = data.size() # Attention mask (lower triangular). if reset_attention_mask: att_mask_batch = micro_batch_size else: att_mask_batch = 1 attention_mask = None if compute_attention_mask: attention_mask = torch.tril(torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)).view( att_mask_batch, 1, seq_length, seq_length ) # Loss mask. loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device) if eod_mask_loss: loss_mask[data == eod_token] = 0.0 # Position ids. position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device) position_ids = position_ids.unsqueeze(0).repeat(micro_batch_size, 1) # We need to clone as the ids will be modifed based on batch index. if reset_position_ids: position_ids = position_ids.clone() if reset_position_ids or reset_attention_mask: # Loop through the batches: for b in range(micro_batch_size): # Find indecies where EOD token is. eod_index = position_ids[b, data[b] == eod_token] # Detach indecies from positions if going to modify positions. if reset_position_ids: eod_index = eod_index.clone() # Loop through EOD indicies: prev_index = 0 for j in range(eod_index.size()[0]): i = eod_index[j] # Mask attention loss. if reset_attention_mask: attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0 # Reset positions. if reset_position_ids: position_ids[b, (i + 1) :] -= i + 1 - prev_index prev_index = i + 1 if compute_attention_mask: # Convert attention mask to binary: attention_mask = attention_mask < 0.5 return attention_mask, loss_mask, position_ids def attn_mask_postprocess(attn_mask): # [b, 1, s, s] # Attn_masks for enc-dec attn and dec attn is None when trying to get just the encoder hidden states. if attn_mask is None: return None extended_attention_mask = attn_mask.unsqueeze(1) return extended_attention_mask def enc_dec_extended_attention_mask(attention_mask_list): return [attn_mask_postprocess(attn_mask) for attn_mask in attention_mask_list] def build_position_ids(token_ids): # Create position ids seq_length = token_ids.size(1) position_ids = torch.arange(seq_length, dtype=torch.long, device=token_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(token_ids).clone() return position_ids def make_attention_mask_3d(source_mask, target_mask): """ Returns a 3-dimensional (3-D) attention mask :param source_block: 2-D array :param target_block: 2-D array """ mask = target_mask[:, None, :] * source_mask[:, :, None] return mask def make_inference_attention_mask_3d(source_block, target_block, pad_id): """ Returns a 3-dimensional (3-D) attention mask :param source_block: 2-D array :param target_block: 2-D array """ # mask = (target_block[:, None, :] != pad_id) * (source_block[:, :, None] != pad_id) return make_attention_mask_3d(source_block != pad_id, target_block != pad_id) def make_inference_history_mask_3d(block): batch, length = block.shape arange = torch.arange(length, device=block.device) history_mask = (arange[None,] <= arange[:, None])[ None, ] history_mask = history_mask.expand(batch, length, length) return history_mask def build_attention_mask_3d_padding(source_mask, target_mask): """ Returns a 3D joint attention mask for Megatron given two 2D masks :param source_mask - True for non-masked, else masked [batch, src length] :param target_mask - True for non-masked, else masked [batch, tgt length] """ mask = make_attention_mask_3d(source_mask, target_mask) # invert mask for Megatron return mask < 0.5 def build_attention_mask_3d_causal(source_mask, target_mask): """ Returns a 3D joint attention mask for Megatron given two 2D masks :param source_mask - True for non-masked, else masked [batch, src length] :param target_mask - True for non-masked, else masked [batch, tgt length] """ causal_mask = make_inference_history_mask_3d(target_mask) mask = make_attention_mask_3d(source_mask, target_mask) mask = mask * causal_mask # invert mask for Megatron return mask < 0.5 def build_attention_mask_3d(source_mask, target_mask, attn_mask_type): """ Returns a 3D attention mask for Megatron given two 2D masks :param source_mask - < 0.5 for non-masked, else masked [batch, src length] :param target_mask - < 0.5 for non-masked, else masked [batch, tgt length] :param attn_mask_type - AttnMaskType enum """ if attn_mask_type == AttnMaskType.padding: mask = build_attention_mask_3d_padding(source_mask, target_mask) elif attn_mask_type == AttnMaskType.causal: mask = build_attention_mask_3d_causal(source_mask, target_mask) else: raise ValueError(f"Unsupported attention mask attn_mask_type = {attn_mask_type}") return mask def get_params_for_weight_decay_optimization( model: Union[torch.nn.Module, List[torch.nn.Module]], ) -> Dict[str, torch.nn.Parameter]: """Divide params into with-weight-decay and without-weight-decay groups. Layernorms and biases will have no weight decay but the rest will. """ modules = listify_model(model) weight_decay_params = {'params': []} no_weight_decay_params = {'params': [], 'weight_decay': 0.0} for module in modules: for module_ in module.modules(): if isinstance(module_, (FusedLayerNorm, FastLayerNorm, MixedFusedRMSNorm)): no_weight_decay_params['params'].extend( [p for p in list(module_._parameters.values()) if p is not None] ) else: weight_decay_params['params'].extend( [p for n, p in list(module_._parameters.items()) if p is not None and n != 'bias'] ) no_weight_decay_params['params'].extend( [p for n, p in list(module_._parameters.items()) if p is not None and n == 'bias'] ) return weight_decay_params, no_weight_decay_params def get_all_params_for_weight_decay_optimization( model: Union[torch.nn.Module, List[torch.nn.Module]], ) -> Tuple[Dict[str, List[torch.nn.Parameter]]]: """Use all params for weight decay.""" modules = listify_model(model) weight_decay_params = [ p for module in modules for module_ in module.modules() for p in module_._parameters.values() if p is not None ] return ({'params': weight_decay_params},) def get_iterator_k_split(batch: List[torch.Tensor], num_microbatches: int) -> Iterator: if isinstance(batch, dict): items = list(batch.items()) assert items[0][1].shape[0] % num_microbatches == 0, "Issue with batch size configuration!" split_batch = [torch.tensor_split(item[1], num_microbatches, dim=0) for item in items] microbatches = [[(items[i][0], split_batch[i][j]) for i in range(len(items))] for j in range(num_microbatches)] microbatches = [dict(elem) for elem in microbatches] else: assert batch[0].shape[0] % num_microbatches == 0, "Issue with batch size configuration!" split_batch = [ torch.tensor_split(item, num_microbatches, dim=0) if torch.is_tensor(item) else item for item in batch ] microbatches = [ [elem[i] if elem is not None else elem for elem in split_batch] for i in range(num_microbatches) ] return itertools.chain(microbatches) def _cast_if_autocast_enabled(tensor): if torch.is_autocast_enabled(): if isinstance(tensor, torch.Tensor): if tensor.device.type == 'cuda': dtype = torch.get_autocast_gpu_dtype() elif tensor.device.type == 'cpu': dtype = torch.get_autocast_cpu_dtype() else: raise NotImplementedError() return tensor.to(dtype=dtype) return tensor
NeMo-main
nemo/collections/nlp/modules/common/megatron/utils.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer.""" from contextlib import nullcontext from typing import Any, Callable, Optional import torch import torch.nn as nn from einops import rearrange from nemo.collections.common.parts.adapter_modules import LinearAdapterConfig from nemo.collections.nlp.modules.common.megatron.adapters.parallel_adapters import ( AdapterName, ParallelLinearAdapterConfig, ParallelLinearAdapterWeightTyingConfig, ) from nemo.collections.nlp.modules.common.megatron.attention import ParallelAttention, ParallelChunkedCrossAttention from nemo.collections.nlp.modules.common.megatron.fused_bias_dropout_add import ( bias_dropout_add, bias_dropout_add_fused_inference, bias_dropout_add_fused_train, dropout_add, ) from nemo.collections.nlp.modules.common.megatron.fused_layer_norm import get_layer_norm from nemo.collections.nlp.modules.common.megatron.layer_norm_1p import LayerNorm1P, LPLayerNorm from nemo.collections.nlp.modules.common.megatron.layer_type import LayerType from nemo.collections.nlp.modules.common.megatron.mlp import ParallelMLP, SwitchMLP from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults from nemo.collections.nlp.parts import utils_funcs from nemo.core import adapter_mixins from nemo.utils import logging try: from apex.normalization import MixedFusedRMSNorm from apex.transformer.enums import AttnMaskType, AttnType, ModelType HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes ModelType = AttnMaskType = AttnType = LayerType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig, parallel_state, tensor_parallel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False try: from transformer_engine.common import recipe from transformer_engine.pytorch import TransformerLayer, fp8_autocast from transformer_engine.pytorch.distributed import checkpoint as te_checkpoint HAVE_TE = True except: HAVE_TE = False # fake missing class class TransformerLayer(ApexGuardDefaults): def __init__(self): super().__init__() logging.warning( "Transformer Engine was not found. transformer_engine.pytorch.transformer.TransformerLayer will not work. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) """ We use the following notation throughout this file: h: hidden size n: number of attention heads p: number of model parallel partitions np: n/p hp: h/p hn: h/n b: batch size s: sequence length l: number of layers Transformer takes input of size [s, b, h] and returns a tensor of the same size. We use the following arguments: hyperparameters: transformer hyperparameters """ def get_bias_dropout_add(training): def _bias_dropout_add(x, bias, residual, prob): return bias_dropout_add(x, bias, residual, prob, training) return _bias_dropout_add def get_dropout_add(training): def _dropout_add(x, bias, residual, prob): assert bias is None return dropout_add(x, bias, residual, prob, training) return _dropout_add def remove_bias_from_layernorm(layer): for module in layer.modules(): if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter): module.register_parameter('bias', None) class ParallelTransformerLayer_(MegatronModule, adapter_mixins.AdapterModuleMixin): """A single transformer layer. Transformer layer takes input with size [s, b, h] and returns an output of the same size. """ def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, layer_number, hidden_size, ffn_hidden_size, num_attention_heads, layer_type=LayerType.encoder, self_attn_mask_type=AttnMaskType.padding, fp32_residual_connection=False, precision=16, apply_query_key_layer_scaling=False, kv_channels=None, layernorm_epsilon=1e-5, hidden_dropout=0.1, persist_layer_norm=False, megatron_amp_O2=False, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, openai_gelu=False, onnx_safe=False, attention_dropout=0.1, ffn_dropout=0.0, activation='gelu', megatron_legacy=False, bias=True, chunk_size=64, normalization='layernorm', transformer_block_type='pre_ln', position_embedding_type='learned_absolute', multi_query_attention=False, headscale=False, activations_checkpoint_granularity=None, normalize_attention_scores=True, num_moe_experts=1, moe_frequency=1, moe_dropout=0.0, use_flash_attention=False, ): super(ParallelTransformerLayer_, self).__init__(config=config) if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads self.layer_number = layer_number self.layer_type = layer_type self.bias = bias self.transformer_block_type = transformer_block_type self.position_embedding_type = position_embedding_type self.param_dtype = utils_funcs.torch_dtype_from_precision(precision, megatron_amp_O2) self.set_accepted_adapter_types( [ LinearAdapterConfig._target_, ParallelLinearAdapterConfig._target_, ParallelLinearAdapterWeightTyingConfig._target_, ] ) if not bias and bias_dropout_add_fusion: raise ValueError( 'bias_dropout_add_fusion=True requires bias=True, found bias=False. Either set both to True or both to False.' ) # the low_precision_layernorm does not require a bias term, whereas layernorm1p from apex # does require a bias, so it cannot be used for bias-less low precision LN such as in MPT-7B if normalization not in ['layernorm', 'layernorm1p', 'rmsnorm', 'low_precision_layernorm']: raise ValueError(f'normalization must be "layernorm", "layernorm1p" or "rmsnorm", found {normalization}') if transformer_block_type not in ['pre_ln', 'post_ln', 'normformer']: raise ValueError( f'transformer_block_type must be either "pre_ln" or "post_ln" or "normformer", found {transformer_block_type}' ) self.fp32_residual_connection = fp32_residual_connection # if true move residual connections to fp32 self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.bias_dropout_add_fusion = bias_dropout_add_fusion # if true, enable bias dropout fusion # Self attention. # retrieval_decoder_after_self_attn skips the self attention if self.layer_type != LayerType.retrieval_decoder_after_self_attn: # Layernorm on the input data. if normalization == 'layernorm': self.input_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, config.sequence_parallel ) elif normalization == 'layernorm1p': self.input_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=config.sequence_parallel ) elif normalization == 'low_precision_layernorm': self.input_layernorm = LPLayerNorm(hidden_size, layernorm_epsilon) else: self.input_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) # for architectures such as MPT, there is no bias term even on the layernorms # this code allows us to remove the bias terms from the layernorm module # so that we can support MPT. However, certain apex-based LNs don't support # removing bias, so we also have to check for that if not bias and normalization not in ['layernorm', 'layernorm1p']: remove_bias_from_layernorm(self.input_layernorm) self.self_attention = ParallelAttention( config=config, init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number, num_attention_heads=num_attention_heads, hidden_size=hidden_size, attention_type=AttnType.self_attn, attn_mask_type=self_attn_mask_type, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, megatron_amp_O2=megatron_amp_O2, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, multi_query_attention=multi_query_attention, layer_type=layer_type, megatron_legacy=megatron_legacy, bias=bias, headscale=headscale, position_embedding_type=position_embedding_type, normalize_attention_scores=normalize_attention_scores, use_flash_attention=use_flash_attention, ) if transformer_block_type == 'normformer': if normalization == 'layernorm': self.post_attention_normformer_norm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm ) else: self.post_attention_normformer_norm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) if self.layer_type != LayerType.decoder_pre_mlp or self.transformer_block_type != 'post_ln': # the post_attention_layernorm is used for layermorm after mlp # don't need it for decoder_pre_mlp and post_ln if normalization == 'layernorm': self.post_attention_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, config.sequence_parallel ) elif normalization == 'layernorm1p': self.post_attention_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=config.sequence_parallel ) elif normalization == 'low_precision_layernorm': self.post_attention_layernorm = LPLayerNorm(hidden_size, layernorm_epsilon) else: self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) if not bias and normalization not in ['layernorm', 'layernorm1p']: remove_bias_from_layernorm(self.post_attention_layernorm) if self.layer_type == LayerType.decoder_pre_mlp: # skip MLP and cross attention return # the post_attention_layernorm is used for layermorm after mlp # need it for post_ln if self.layer_type == LayerType.retrieval_decoder_after_self_attn and self.transformer_block_type == 'post_ln': # Layernorm on the attention output if normalization == 'layernorm': self.post_attention_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, config.sequence_parallel ) elif normalization == 'layernorm1p': self.post_attention_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=config.sequence_parallel ) elif normalization == 'low_precision_layernorm': self.post_attention_layernorm = LPLayerNorm(hidden_size, layernorm_epsilon) else: self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) if not bias and normalization not in ['layernorm', 'layernorm1p']: remove_bias_from_layernorm(self.post_attention_layernorm) if self.layer_type == LayerType.decoder or self.layer_type == LayerType.retrieval_encoder: self.inter_attention = ParallelAttention( config=config, init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number, num_attention_heads=num_attention_heads, hidden_size=hidden_size, attention_type=AttnType.cross_attn, attn_mask_type=AttnMaskType.padding, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, multi_query_attention=multi_query_attention, megatron_amp_O2=megatron_amp_O2, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, megatron_legacy=megatron_legacy, bias=bias, headscale=headscale, normalize_attention_scores=normalize_attention_scores, ) # Normformer normalization if transformer_block_type == 'normformer': if normalization == 'layernorm': self.post_inter_attention_normformer_norm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, config.sequence_parallel ) elif normalization == 'layernorm1p': self.post_inter_attention_normformer_norm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=config.sequence_parallel ) else: self.post_inter_attention_normformer_norm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) # Layernorm on the attention output. if normalization == 'layernorm': self.post_inter_attention_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, config.sequence_parallel ) elif normalization == 'layernorm1p': self.post_inter_attention_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=config.sequence_parallel ) else: self.post_inter_attention_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) elif ( self.layer_type == LayerType.retrieval_decoder or self.layer_type == LayerType.retrieval_decoder_after_self_attn ): self.inter_attention = ParallelChunkedCrossAttention( config=config, init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number, num_attention_heads=num_attention_heads, hidden_size=hidden_size, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, megatron_amp_O2=megatron_amp_O2, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, megatron_legacy=megatron_legacy, chunk_size=chunk_size, bias=bias, headscale=headscale, ) # Normformer normalization if transformer_block_type == 'normformer': if normalization == 'layernorm': self.post_inter_attention_normformer_norm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, config.sequence_parallel ) elif normalization == 'layernorm1p': self.post_inter_attention_normformer_norm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=config.sequence_parallel ) else: self.post_inter_attention_normformer_norm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) # Layernorm on the attention output. if normalization == 'layernorm': self.post_inter_attention_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, config.sequence_parallel ) elif normalization == 'layernorm1p': self.post_inter_attention_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=config.sequence_parallel ) else: self.post_inter_attention_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) # MLP if num_moe_experts > 1 and self.layer_number % moe_frequency == 0: self.mlp = SwitchMLP( config=config, num_experts=num_moe_experts, init_method=init_method, output_layer_init_method=output_layer_init_method, hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, dtype=self.param_dtype, bias_activation_fusion=bias_activation_fusion, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, transformer_block_type=transformer_block_type, normalization=normalization, layernorm_epsilon=layernorm_epsilon, persist_layer_norm=persist_layer_norm, dropout=moe_dropout, ) else: self.mlp = ParallelMLP( config=config, init_method=init_method, output_layer_init_method=output_layer_init_method, hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, dtype=self.param_dtype, bias_activation_fusion=bias_activation_fusion, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, bias=bias, transformer_block_type=transformer_block_type, normalization=normalization, layernorm_epsilon=layernorm_epsilon, persist_layer_norm=persist_layer_norm, dropout=ffn_dropout, ) def _get_bias_droput_add_func(self, transformer_block_type='pre_ln', position_after='attention'): """ Returns a function that potentially fuses the dropout and bias addition. This function is particularly helpful for the normformer architecture that does not the fused kernel after attention layers, but can after the MLP. """ # Normformer activations at this point have no bias vector since they've gone through another normalization layer. if transformer_block_type == 'normformer' and position_after == 'attention': bias_dropout_add_func = get_dropout_add(self.training) # Bias dropout add fused kernel elif self.bias and self.bias_dropout_add_fusion: if self.training: bias_dropout_add_func = bias_dropout_add_fused_train else: bias_dropout_add_func = bias_dropout_add_fused_inference # Bias dropout add non-fused kernel elif self.bias and not self.bias_dropout_add_fusion: bias_dropout_add_func = get_bias_dropout_add(self.training) # Dropout add non-fused kernel for a model without bias terms. else: bias_dropout_add_func = get_dropout_add(self.training) return bias_dropout_add_func def forward( self, hidden_states, attention_mask, encoder_output=None, enc_dec_attn_mask=None, layer_past=None, get_key_value=False, set_inference_key_value_memory=False, inference_max_sequence_len=None, rotary_pos_emb=None, # list of positional embedding tensors, first one self attention, second one and third one are for cross attention (q, k) self_attention_relative_position_bias=None, cross_attention_relative_position_bias=None, checkpoint_core_attention=False, ): # Self attention. if rotary_pos_emb is not None: # self attention pos_emb is (q, q) self_attention_pos_emb = (rotary_pos_emb[0], rotary_pos_emb[0]) cross_attention_pos_emb = (rotary_pos_emb[1], rotary_pos_emb[2]) else: self_attention_pos_emb = None cross_attention_pos_emb = None if self.layer_type != LayerType.retrieval_decoder_after_self_attn: # hidden_states: [b, s, h] # Pre-LN: x -> LN -> MHA -> Residual -> LN -> MLP -> Residual # Post-LN: x -> MHA -> Residual -> LN -> MLP -> Residual -> LN # Normformer: x -> LN -> MHA -> LN -> Residual -> MLP (w/LN) -> Residual residual = hidden_states # Layer norm at the beginning of the transformer layer. if self.transformer_block_type in ['pre_ln', 'normformer']: hidden_states = self.input_layernorm(hidden_states) attention_output, attention_bias = self.self_attention( hidden_states, attention_mask, layer_past=layer_past, get_key_value=get_key_value, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, rotary_pos_emb=self_attention_pos_emb, relative_position_bias=self_attention_relative_position_bias, checkpoint_core_attention=checkpoint_core_attention, ) if get_key_value: attention_output, presents = attention_output # If normformer, apply norm on the output of the self attention. if self.transformer_block_type == 'normformer': # Normformer normalization attention_output = ( attention_output + attention_bias if attention_bias is not None else attention_output ) attention_output = self.post_attention_normformer_norm(attention_output) attention_bias = None # jit scripting for a nn.module (with dropout) is not # trigerring the fusion kernel. For now, we use two # different nn.functional routines to account for varying # dropout semantics during training and inference phases. bias_dropout_add_func = self._get_bias_droput_add_func( transformer_block_type=self.transformer_block_type, position_after='attention' ) if attention_bias is not None: attention_bias = attention_bias.expand_as(residual) if self.is_adapter_available(): adapter_1 = self.get_adapter_module(AdapterName.PRE_ATTN_ADAPTER) if adapter_1: attention_output = ( adapter_1(attention_output) + attention_output ) # simple adapter call with residual connection layernorm_input = bias_dropout_add_func(attention_output, attention_bias, residual, self.hidden_dropout) # print(f"Layer: {self.layer_number} Attention checksum {layernorm_input.sum()}") # Post-LN normalization after residual if self.transformer_block_type == 'post_ln': normalization_output = self.input_layernorm(layernorm_input) layernorm_input = normalization_output elif self.transformer_block_type in ['pre_ln', 'normformer']: # Layer norm post the self attention. normalization_output = self.post_attention_layernorm(layernorm_input) else: layernorm_input, normalization_output = hidden_states if self.layer_type == LayerType.decoder_pre_mlp: return layernorm_input, normalization_output if ( self.layer_type == LayerType.decoder or self.layer_type == LayerType.retrieval_decoder or self.layer_type == LayerType.retrieval_encoder or self.layer_type == LayerType.retrieval_decoder_after_self_attn ): if ( self.layer_type == LayerType.retrieval_decoder or self.layer_type == LayerType.retrieval_decoder_after_self_attn ): attention_output, attention_bias = self.inter_attention( normalization_output, enc_dec_attn_mask, encoder_output=encoder_output, rotary_pos_emb=cross_attention_pos_emb, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, checkpoint_core_attention=checkpoint_core_attention, ) else: attention_output, attention_bias = self.inter_attention( normalization_output, enc_dec_attn_mask, encoder_output=encoder_output, rotary_pos_emb=cross_attention_pos_emb, relative_position_bias=cross_attention_relative_position_bias, checkpoint_core_attention=checkpoint_core_attention, ) # If normformer, apply norm on the output of the self attention. if self.transformer_block_type == 'normformer': # Normformer normalization attention_output = ( attention_output + attention_bias if attention_bias is not None else attention_output ) attention_output = self.post_inter_attention_normformer_norm(attention_output) attention_bias = None residual = layernorm_input bias_dropout_add_func = self._get_bias_droput_add_func( transformer_block_type=self.transformer_block_type, position_after='attention' ) layernorm_input = bias_dropout_add_func(attention_output, attention_bias, residual, self.hidden_dropout) # print(f"Layer: {self.layer_number} Cross-Attention checksum {layernorm_input.sum()}") normalization_output = self.post_inter_attention_layernorm(layernorm_input) # Post-LN normalization after residual if self.transformer_block_type == 'post_ln': layernorm_input = normalization_output # MLP. mlp_output, mlp_bias = self.mlp(normalization_output) if self.is_adapter_available(): # TODO: (@adithyre) was able to move adapter_2 back to the end of the transformer after ptl 1.7 update. adapter_2 = self.get_adapter_module(AdapterName.POST_ATTN_ADAPTER) if adapter_2: mlp_output = adapter_2(mlp_output) + mlp_output # simple adapter call with residual connection residual = layernorm_input bias_dropout_add_func = self._get_bias_droput_add_func( transformer_block_type=self.transformer_block_type, position_after='mlp' ) output = bias_dropout_add_func(mlp_output, mlp_bias, residual, self.hidden_dropout) # print(f"Layer: {self.layer_number} MLP + Dropout + Residual checksum {output.sum()}") if self.transformer_block_type == 'post_ln': output = self.post_attention_layernorm(output) if get_key_value: output = [output, presents] return output class ParallelTransformerLayer(ParallelTransformerLayer_): def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, layer_number, hidden_size, ffn_hidden_size, num_attention_heads, layer_type=LayerType.encoder, self_attn_mask_type=AttnMaskType.padding, fp32_residual_connection=False, precision=16, apply_query_key_layer_scaling=False, kv_channels=None, layernorm_epsilon=1e-5, hidden_dropout=0.1, bias_dropout_add_fusion=True, persist_layer_norm=False, megatron_amp_O2=False, bias_activation_fusion=True, openai_gelu=False, onnx_safe=False, masked_softmax_fusion=True, attention_dropout=0.1, ffn_dropout=0.0, activation='gelu', megatron_legacy=False, bias=True, chunk_size=64, normalization='layernorm', transformer_block_type='pre_ln', position_embedding_type='learned_absolute', multi_query_attention=False, headscale=False, activations_checkpoint_granularity=None, normalize_attention_scores=True, num_moe_experts=1, moe_frequency=1, moe_dropout=0.0, use_flash_attention=False, ): super(ParallelTransformerLayer, self).__init__( config=config, init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number, hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, num_attention_heads=num_attention_heads, layer_type=layer_type, self_attn_mask_type=self_attn_mask_type, fp32_residual_connection=fp32_residual_connection, precision=precision, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, layernorm_epsilon=layernorm_epsilon, hidden_dropout=hidden_dropout, bias_dropout_add_fusion=bias_dropout_add_fusion, persist_layer_norm=persist_layer_norm, megatron_amp_O2=megatron_amp_O2, bias_activation_fusion=bias_activation_fusion, openai_gelu=openai_gelu, onnx_safe=onnx_safe, masked_softmax_fusion=masked_softmax_fusion, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, activation=activation, megatron_legacy=megatron_legacy, bias=bias, chunk_size=chunk_size, normalization=normalization, transformer_block_type=transformer_block_type, position_embedding_type=position_embedding_type, headscale=headscale, multi_query_attention=multi_query_attention, activations_checkpoint_granularity=activations_checkpoint_granularity, normalize_attention_scores=normalize_attention_scores, num_moe_experts=num_moe_experts, moe_frequency=moe_frequency, moe_dropout=moe_dropout, use_flash_attention=use_flash_attention, ) # Dtype for forward pass - ignore amp O2 self.dtype = utils_funcs.torch_dtype_from_precision(precision, megatron_amp_O2=None) def forward( self, hidden_states, attention_mask, encoder_output=None, enc_dec_attn_mask=None, rotary_pos_emb=None, layer_past=None, get_key_value=False, set_inference_key_value_memory=False, inference_max_sequence_len=None, self_attention_relative_position_bias=None, cross_attention_relative_position_bias=None, checkpoint_core_attention=False, ): if self.dtype == torch.float32: return super().forward( hidden_states, attention_mask, encoder_output, enc_dec_attn_mask, layer_past, get_key_value, set_inference_key_value_memory, inference_max_sequence_len, rotary_pos_emb, self_attention_relative_position_bias, cross_attention_relative_position_bias, checkpoint_core_attention, ) with torch.autocast(device_type="cuda", dtype=self.dtype): return super().forward( hidden_states, attention_mask, encoder_output, enc_dec_attn_mask, layer_past, get_key_value, set_inference_key_value_memory, inference_max_sequence_len, rotary_pos_emb, self_attention_relative_position_bias, cross_attention_relative_position_bias, checkpoint_core_attention, ) class AutocastTransformerLayer(TransformerLayer): def __init__( self, hidden_size: int, ffn_hidden_size: int, layernorm_epsilon: float, num_attention_heads: int, init_method: Callable, output_layer_init_method: Callable, hidden_dropout: float, attention_dropout: float, layer_number: Optional[int] = None, kv_channels: Optional[int] = None, self_attn_mask_type: str = "causal", tp_group: Optional[Any] = None, tp_size: int = 1, params_dtype: torch.dtype = torch.float32, get_rng_state_tracker: Optional[Callable] = None, fuse_wgrad_accumulation: bool = False, apply_query_key_layer_scaling: bool = False, attention_softmax_in_fp32: bool = False, seq_length: Optional[int] = None, micro_batch_size: Optional[int] = None, sequence_parallel: bool = False, apply_residual_connection_post_layernorm: bool = False, output_layernorm: bool = False, layer_type: str = "encoder", drop_path_rate: float = 0, use_emha: bool = False, ub_tp_comm_overlap: bool = False, autocast_dtype: Any = 16, zero_centered_gamma: bool = False, ) -> None: super().__init__( hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, layernorm_epsilon=layernorm_epsilon, num_attention_heads=num_attention_heads, init_method=init_method, output_layer_init_method=output_layer_init_method, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, layer_number=layer_number, kv_channels=kv_channels, self_attn_mask_type=self_attn_mask_type, tp_group=tp_group, tp_size=tp_size, params_dtype=params_dtype, get_rng_state_tracker=get_rng_state_tracker, fuse_wgrad_accumulation=fuse_wgrad_accumulation, apply_query_key_layer_scaling=apply_query_key_layer_scaling, attention_softmax_in_fp32=attention_softmax_in_fp32, seq_length=seq_length, micro_batch_size=micro_batch_size, sequence_parallel=sequence_parallel, apply_residual_connection_post_layernorm=apply_residual_connection_post_layernorm, output_layernorm=output_layernorm, layer_type=layer_type, drop_path_rate=drop_path_rate, set_parallel_mode=tp_size > 1, fuse_qkv_params=True, zero_centered_gamma=zero_centered_gamma, ub_tp_comm_overlap=ub_tp_comm_overlap, ) # use_emha=use_emha, # Dtype for forward pass - ignore amp O2 self.dtype = utils_funcs.torch_dtype_from_precision(autocast_dtype, megatron_amp_O2=None) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, encoder_output: Optional[torch.Tensor] = None, enc_dec_attn_mask: Optional[torch.Tensor] = None, inference_params: Optional[Any] = None, is_first_microbatch: Optional[bool] = None, checkpoint_core_attention: Optional[bool] = False, ) -> torch.Tensor: if self.dtype == torch.float32: return super().forward( hidden_states, attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, inference_params=inference_params, is_first_microbatch=is_first_microbatch, checkpoint_core_attention=checkpoint_core_attention, ) with torch.autocast(device_type="cuda", dtype=self.dtype): return super().forward( hidden_states, attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, inference_params=inference_params, is_first_microbatch=is_first_microbatch, checkpoint_core_attention=checkpoint_core_attention, ) class ParallelTransformer(MegatronModule): """Transformer class.""" def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, num_layers, hidden_size, ffn_hidden_size, num_attention_heads, apply_query_key_layer_scaling=False, kv_channels=None, layer_type=LayerType.encoder, # it can be a list of types or single type self_attn_mask_type=AttnMaskType.padding, pre_process=True, post_process=True, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=None, layernorm_epsilon=1e-5, hidden_dropout=0.1, attention_dropout=0.1, ffn_dropout=0.0, megatron_amp_O2=False, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, persist_layer_norm=False, openai_gelu=False, onnx_safe=False, activation='gelu', model_type=ModelType.encoder_or_decoder, megatron_legacy=False, bias=True, chunk_size=64, normalization='layernorm', transformer_block_type='pre_ln', position_embedding_type='learned_absolute', headscale=False, layer_number_offset=0, # this is use only for attention norm_factor scaling activations_checkpoint_granularity=None, activations_checkpoint_layers_per_pipeline=None, transformer_engine=False, fp8=False, fp8_e4m3=False, fp8_hybrid=False, fp8_margin=0, fp8_interval=1, fp8_amax_history_len=1, fp8_amax_compute_algo='most_recent', reduce_amax=True, use_emha=False, ub_tp_comm_overlap=False, normalize_attention_scores=True, multi_query_attention=False, num_moe_experts=1, moe_frequency=1, moe_dropout=0.0, use_flash_attention=False, ): super(ParallelTransformer, self).__init__(config=config) if kv_channels is None: assert ( hidden_size % num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = hidden_size // num_attention_heads self.fp32_residual_connection = fp32_residual_connection self.pre_process = pre_process self.post_process = post_process self.input_tensor = None self.self_attn_mask_type = self_attn_mask_type self.model_type = model_type self.normalization = normalization self.transformer_block_type = transformer_block_type self.layer_type = layer_type self.position_embedding_type = position_embedding_type self.multi_query_attention = multi_query_attention self.inference_current_sequence_len = 0 self.inference_params = None self.activations_checkpoint_method = activations_checkpoint_method self.activations_checkpoint_num_layers = activations_checkpoint_num_layers self.activations_checkpoint_granularity = activations_checkpoint_granularity self.activations_checkpoint_layers_per_pipeline = activations_checkpoint_layers_per_pipeline if self.activations_checkpoint_granularity: if self.activations_checkpoint_granularity == 'selective': if self.activations_checkpoint_method == 'uniform': logging.info( ( f'Using uniform activation checkpointing with granularity selective forces all layers to use checkpointing.' ) ) elif self.activations_checkpoint_method == 'block': logging.info( ( f'Using block activation checkpointing with granularity selective forces all layers to use checkpointing.' ) ) else: raise ValueError( f'activations_checkpoint_method should be "uniform" or "block" when using granularity selective.' ) self.activations_checkpoint_num_layers = num_layers # forcing all layers elif self.activations_checkpoint_granularity == 'full': if self.activations_checkpoint_method in ['uniform', 'block']: if not self.activations_checkpoint_num_layers: logging.info( ( f'Using uniform or block activation checkpointing requires activations_checkpoint_num_layers to be set.' f'Got: {self.activations_checkpoint_num_layers}. Setting to 1 by default.' ) ) self.activations_checkpoint_num_layers = 1 # keeping the old default else: raise ValueError( f'activations_checkpoint_method should be "uniform" or "block" when using granularity full.' ) else: raise ValueError(f'activations_checkpoint_granularity should be "selective" or "full".') self.sequence_parallel = config.sequence_parallel self.transformer_engine = transformer_engine self.fp8 = fp8 self.fp8_e4m3 = fp8_e4m3 self.fp8_hybrid = fp8_hybrid self.fp8_margin = fp8_margin self.fp8_interval = fp8_interval self.fp8_amax_history_len = fp8_amax_history_len self.fp8_amax_compute_algo = fp8_amax_compute_algo self.reduce_amax = reduce_amax self.fp8_recipe = None if self.fp8: if self.fp8_e4m3: fp8_format = recipe.Format.E4M3 elif self.fp8_hybrid: fp8_format = recipe.Format.HYBRID self.fp8_recipe = recipe.DelayedScaling( margin=self.fp8_margin, interval=self.fp8_interval, fp8_format=fp8_format, amax_history_len=self.fp8_amax_history_len, amax_compute_algo=self.fp8_amax_compute_algo, reduce_amax=reduce_amax, ) self.is_first_microbatch = True self.microbatch_count = 0 # transformer engine forward needs to know if it is working on the first microbatch self.checkpoint_core_attention = ( activations_checkpoint_granularity == 'selective' ) # transformer engine forward allows for more granular selective checkpointing if self.model_type == ModelType.encoder_or_decoder: assert ( num_layers % parallel_state.get_pipeline_model_parallel_world_size() == 0 ), 'num_layers must be divisible by pipeline_model_parallel_size' assert moe_frequency <= num_layers, 'MoE frequency must be <= number of transformer layers' # TODO: Add similar assert for encoder-decoder. self.num_layers = self.get_num_layers(num_layers) if ( self.activations_checkpoint_num_layers is not None and self.activations_checkpoint_num_layers > self.num_layers ): self.activations_checkpoint_num_layers = self.num_layers # Transformer layers. def build_layer(layer_number): if isinstance(layer_type, list): lt = layer_type[layer_number - 1] else: lt = layer_type if self.transformer_engine: return AutocastTransformerLayer( hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, layernorm_epsilon=layernorm_epsilon, num_attention_heads=num_attention_heads, init_method=init_method, output_layer_init_method=output_layer_init_method, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, layer_number=layer_number + layer_number_offset, kv_channels=kv_channels, self_attn_mask_type=self_attn_mask_type.name, tp_size=parallel_state.get_tensor_model_parallel_world_size(), params_dtype=torch.float32, # dtype params are initialized in get_rng_state_tracker=tensor_parallel.random.get_cuda_rng_tracker, fuse_wgrad_accumulation=config.gradient_accumulation_fusion, apply_query_key_layer_scaling=apply_query_key_layer_scaling, seq_length=None, # used for jit warmup micro_batch_size=None, # used for jit warmup sequence_parallel=config.sequence_parallel, apply_residual_connection_post_layernorm=False, autocast_dtype=precision, use_emha=use_emha, ub_tp_comm_overlap=ub_tp_comm_overlap, zero_centered_gamma=normalization == 'layernorm1p', ) else: return ParallelTransformerLayer( config=config, init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number + layer_number_offset, hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, num_attention_heads=num_attention_heads, apply_query_key_layer_scaling=apply_query_key_layer_scaling, kv_channels=kv_channels, layer_type=lt, self_attn_mask_type=self_attn_mask_type, precision=precision, fp32_residual_connection=fp32_residual_connection, layernorm_epsilon=layernorm_epsilon, hidden_dropout=hidden_dropout, attention_dropout=attention_dropout, ffn_dropout=ffn_dropout, megatron_amp_O2=megatron_amp_O2, bias_activation_fusion=bias_activation_fusion, bias_dropout_add_fusion=bias_dropout_add_fusion, masked_softmax_fusion=masked_softmax_fusion, persist_layer_norm=persist_layer_norm, position_embedding_type=position_embedding_type, openai_gelu=openai_gelu, onnx_safe=onnx_safe, activation=activation, megatron_legacy=megatron_legacy, bias=bias, chunk_size=chunk_size, normalization=normalization, transformer_block_type=transformer_block_type, headscale=headscale, activations_checkpoint_granularity=activations_checkpoint_granularity, normalize_attention_scores=normalize_attention_scores, num_moe_experts=num_moe_experts, moe_frequency=moe_frequency, moe_dropout=moe_dropout, use_flash_attention=use_flash_attention, ) if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None: assert num_layers % parallel_state.get_virtual_pipeline_model_parallel_world_size() == 0, ( 'num_layers_per_stage must be divisible by ' 'virtual_pipeline_model_parallel_size' ) assert self.model_type.value != 2, f'virtual pipeline parallel currently only supported for GPT' # Number of layers in each model chunk is the number of layers in the stage, # divided by the number of model chunks in a stage. self.num_layers = self.num_layers // parallel_state.get_virtual_pipeline_model_parallel_world_size() # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of # layers to stages like (each list is a model chunk): # Stage 0: [0] [2] [4] [6] # Stage 1: [1] [3] [5] [7] # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of # layers to stages like (each list is a model chunk): # Stage 0: [0, 1] [4, 5] # Stage 1: [2, 3] [6, 7] offset = parallel_state.get_virtual_pipeline_model_parallel_rank() * ( num_layers // parallel_state.get_virtual_pipeline_model_parallel_world_size() ) + (parallel_state.get_pipeline_model_parallel_rank() * self.num_layers) else: # Each stage gets a contiguous set of layers. if ( self.model_type == ModelType.encoder_and_decoder and parallel_state.get_pipeline_model_parallel_world_size() > 1 ): pipeline_rank = parallel_state.get_pipeline_model_parallel_rank() if layer_type == LayerType.encoder: offset = pipeline_rank * self.num_layers else: num_ranks_in_enc = parallel_state.get_pipeline_model_parallel_split_rank() offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers else: offset = parallel_state.get_pipeline_model_parallel_rank() * self.num_layers self.layers = torch.nn.ModuleList([build_layer(i + 1 + offset) for i in range(self.num_layers)]) if self.post_process and self.transformer_block_type != 'post_ln': # Final layer norm before output. if normalization == 'layernorm': self.final_layernorm = get_layer_norm( hidden_size, layernorm_epsilon, persist_layer_norm, sequence_parallel=config.sequence_parallel ) elif normalization == 'layernorm1p': self.final_layernorm = LayerNorm1P( hidden_size, layernorm_epsilon, sequence_parallel_enabled=config.sequence_parallel ) elif normalization == 'low_precision_layernorm': self.final_layernorm = LPLayerNorm(hidden_size, layernorm_epsilon) else: self.final_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) # for architectures such as MPT, there is no bias term even on the layernorms # this code allows us to remove the bias terms from the layernorm module # so that we can support MPT. However, certain apex-based LNs don't support # removing bias, so we also have to check for that if not bias and normalization not in ['layernorm', 'layernorm1p']: remove_bias_from_layernorm(self.final_layernorm) def _get_layer(self, layer_number): return self.layers[layer_number] def get_num_layers(self, num_layers): """Compute the number of transformer layers resident on the current rank.""" if parallel_state.get_pipeline_model_parallel_world_size() > 1: if self.model_type == ModelType.encoder_and_decoder: assert parallel_state.get_pipeline_model_parallel_split_rank() is not None num_ranks_in_encoder = parallel_state.get_pipeline_model_parallel_split_rank() num_ranks_in_decoder = parallel_state.get_pipeline_model_parallel_world_size() - num_ranks_in_encoder if self.layer_type == LayerType.encoder: assert ( num_layers % num_ranks_in_encoder == 0 ), 'num_layers must be divisible by number of ranks given to encoder' elif self.layer_type == LayerType.decoder: assert ( num_layers % num_ranks_in_decoder == 0 ), 'num_layers must be divisible by number of ranks given to decoder' else: raise ValueError(f"Unknown layer type {self.layer_type}") if parallel_state.is_pipeline_stage_before_split(): num_layers = num_layers // num_ranks_in_encoder else: num_layers = num_layers // num_ranks_in_decoder elif self.model_type == ModelType.encoder_or_decoder: assert ( num_layers % parallel_state.get_pipeline_model_parallel_world_size() == 0 ), 'num_layers must be divisible by pipeline_model_parallel_size' num_layers = num_layers // parallel_state.get_pipeline_model_parallel_world_size() return num_layers def _checkpointed_forward( self, hidden_states, attention_mask, encoder_output, enc_dec_attn_mask, rotary_pos_emb, self_attention_relative_position_bias, cross_attention_relative_position_bias, checkpoint_activations_all_layers, ): """Forward method with activation checkpointing.""" def custom(start, end): if self.transformer_engine: def custom_forward(*inputs): hidden_states = inputs[0] attention_mask = inputs[1] encoder_output = inputs[2] enc_dec_attn_mask = inputs[3] for index in range(start, end): layer = self._get_layer(index) hidden_states = layer( hidden_states, attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, inference_params=None, is_first_microbatch=self.is_first_microbatch, checkpoint_core_attention=False, ) return hidden_states else: def custom_forward(*inputs): if len(inputs) == 9: hidden_states = inputs[0] attention_mask = inputs[1] encoder_output = inputs[2] enc_dec_attn_mask = inputs[3] rotary_pos_emb = (inputs[4], inputs[5], inputs[6]) self_attention_relative_position_bias = inputs[7] cross_attention_relative_position_bias = inputs[8] elif len(inputs) == 10: hidden_states = (inputs[0], inputs[1]) attention_mask = inputs[2] encoder_output = inputs[3] enc_dec_attn_mask = inputs[4] rotary_pos_emb = (inputs[5], inputs[6], inputs[7]) self_attention_relative_position_bias = inputs[8] cross_attention_relative_position_bias = inputs[9] else: hidden_states = inputs[0] attention_mask = inputs[1] encoder_output = inputs[2] enc_dec_attn_mask = inputs[3] rotary_pos_emb = inputs[4] self_attention_relative_position_bias = inputs[5] cross_attention_relative_position_bias = inputs[6] for index in range(start, end): layer = self._get_layer(index) hidden_states = layer( hidden_states=hidden_states, attention_mask=attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, rotary_pos_emb=rotary_pos_emb, self_attention_relative_position_bias=self_attention_relative_position_bias, cross_attention_relative_position_bias=cross_attention_relative_position_bias, ) if isinstance(hidden_states, tuple): pass else: hidden_states = hidden_states.contiguous() return hidden_states return custom_forward if self.activations_checkpoint_method == 'uniform': # Uniformly divide the total number of Transformer layers and checkpoint # the input activation of each divided chunk. # A method to further reduce memory usage reducing checkpoints. l = 0 while l < self.num_layers: if isinstance(hidden_states, tuple): hidden_tuple = (hidden_states[0], hidden_states[1]) else: hidden_tuple = (hidden_states,) middle_tuple = ( attention_mask, encoder_output, enc_dec_attn_mask, ) if rotary_pos_emb is None: rot_tuple = (rotary_pos_emb,) else: rot_tuple = (rotary_pos_emb[0], rotary_pos_emb[1], rotary_pos_emb[2]) final_tuple = (self_attention_relative_position_bias, cross_attention_relative_position_bias) arg_tuple = hidden_tuple + middle_tuple + rot_tuple + final_tuple if self.transformer_engine: hidden_states = te_checkpoint( custom(l, l + self.activations_checkpoint_num_layers), False, tensor_parallel.random.get_cuda_rng_tracker, parallel_state.get_tensor_model_parallel_group(), *arg_tuple, ) else: hidden_states = tensor_parallel.checkpoint( custom(l, l + self.activations_checkpoint_num_layers), False, *arg_tuple ) l += self.activations_checkpoint_num_layers elif self.activations_checkpoint_method == 'block': # When pipeline-parallel size > 1 and 'num_micro_batches_with_partial_activation_checkpoints' = int, # pipeline scheduling can force to checkpoint all layers or partial layers in a micro-batch. if checkpoint_activations_all_layers: activations_checkpoint_num_layers = self.num_layers else: activations_checkpoint_num_layers = self.activations_checkpoint_num_layers if ( parallel_state.get_pipeline_model_parallel_world_size() > 0 and self.activations_checkpoint_layers_per_pipeline is not None ): # Decrease the number of layers to checkpoint at later pipeline stages activations_checkpoint_num_layers -= int( parallel_state.get_pipeline_model_parallel_rank() * self.activations_checkpoint_layers_per_pipeline ) # Checkpoint the input activation of only a set number of individual # Transformer layers and skip the rest. # A method fully use the device memory removing redundant re-computation. for l in range(self.num_layers): if isinstance(hidden_states, tuple): hidden_tuple = (hidden_states[0], hidden_states[1]) else: hidden_tuple = (hidden_states,) middle_tuple = ( attention_mask, encoder_output, enc_dec_attn_mask, ) if rotary_pos_emb is None: rot_tuple = (rotary_pos_emb,) else: rot_tuple = (rotary_pos_emb[0], rotary_pos_emb[1], rotary_pos_emb[2]) final_tuple = (self_attention_relative_position_bias, cross_attention_relative_position_bias) arg_tuple = hidden_tuple + middle_tuple + rot_tuple + final_tuple if l < activations_checkpoint_num_layers: if self.transformer_engine: hidden_states = te_checkpoint( custom(l, l + 1), False, tensor_parallel.random.get_cuda_rng_tracker, parallel_state.get_tensor_model_parallel_group(), *arg_tuple, ) else: hidden_states = tensor_parallel.checkpoint(custom(l, l + 1), False, *arg_tuple) else: hidden_states = custom(l, l + 1)(*arg_tuple) else: raise ValueError("Invalid activation checkpoint method.") return hidden_states def set_input_tensor(self, input_tensor): """Set input tensor to be used instead of forward()'s input. When doing pipeline parallelism the input from the previous stage comes from communication, not from the input, so the model's forward_step_func won't have it. This function is thus used by internal code to bypass the input provided by the forward_step_func""" self.input_tensor = input_tensor def forward( self, hidden_states, attention_mask, layer_past=None, get_key_value=False, encoder_output=None, enc_dec_attn_mask=None, set_inference_key_value_memory=False, inference_max_sequence_len=None, rotary_pos_emb=None, # list of positional embedding tensors, first one self attention, second one and third one are for cross attention (q, k) retrieved_emb=None, # tensor of retrieved embedding of shape [b, k, r, n, d] self_attention_relative_position_bias=None, cross_attention_relative_position_bias=None, checkpoint_activations_all_layers=None, ): # Checks. if inference_max_sequence_len: assert self.activations_checkpoint_method is None, 'inference does not work with activation checkpointing' if layer_past is not None: assert get_key_value, 'for not None values in layer_past, ' 'expected get_key_value to be set' if get_key_value: assert self.activations_checkpoint_method is None, ( 'get_key_value does not work with ' 'activation checkpointing' ) if not self.pre_process: # See set_input_tensor() hidden_states = self.input_tensor # TODO: @Yi Dong, what should this be? if retrieved_emb is not None: assert len(retrieved_emb.shape) == 5 # this is retrieval decoder, need special transpose encoder_output = rearrange(retrieved_emb, 'b k r n d -> k r n b d').contiguous() """ is_first_microbatch is an optimization parameter for transformer engine. It indicates if the current step in the forward pass is the first in a gradient accumulation cycle. If set, FP8 weights are cached and some minor optimizations are applied to fuse_wgrad_accumulation """ from apex.transformer.pipeline_parallel.utils import _GLOBAL_NUM_MICROBATCHES_CALCULATOR num_micro_batches = getattr(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, 'num_micro_batches', 1) if self.sequence_parallel: rng_context = tensor_parallel.random.get_cuda_rng_tracker().fork() else: rng_context = nullcontext() with rng_context: # fp8_autocast will not do anything if TE or FP8 isn't used fp8_group = None if self.fp8 and parallel_state.model_parallel_is_initialized(): fp8_group = parallel_state.get_amax_reduction_group() if HAVE_TE: # if TE is installed but fp8 is not available then this will do nothing fp8_context = fp8_autocast(enabled=self.fp8, fp8_recipe=self.fp8_recipe, fp8_group=fp8_group) else: fp8_context = nullcontext() with fp8_context: if self.activations_checkpoint_granularity == 'full' and self.activations_checkpoint_num_layers > 0: hidden_states = self._checkpointed_forward( hidden_states, attention_mask, encoder_output, enc_dec_attn_mask, rotary_pos_emb, self_attention_relative_position_bias, cross_attention_relative_position_bias, checkpoint_activations_all_layers, ) else: if get_key_value: presents = [] if self.transformer_engine: # Pass key value information to TE through inference_params to pre-allocate memory if set_inference_key_value_memory: self.inference_params = type('', (), {})() self.inference_params.max_sequence_len = inference_max_sequence_len self.inference_params.max_batch_size = hidden_states.size(1) self.inference_params.batch_size_offset = 0 self.inference_params.key_value_memory_dict = {} self.inference_params.sequence_len_offset = 0 self.inference_current_sequence_len = 0 if self.inference_params != None: self.inference_params.sequence_len_offset = self.inference_current_sequence_len for index in range(self.num_layers): layer = self._get_layer(index) past = None if layer_past is not None: past = layer_past[index] if self.activations_checkpoint_granularity == 'selective': # When pipeline-parallel size > 1 and 'num_micro_batches_with_partial_activation_checkpoints' = int, # pipeline scheduling can force to checkpoint all layers or partial layers in a micro-batch. if ( checkpoint_activations_all_layers == True or self.activations_checkpoint_method == 'uniform' ): checkpoint_core_attention = True elif self.activations_checkpoint_method == 'block': activations_checkpoint_num_layers = self.activations_checkpoint_num_layers # Decrease the number of layers to checkpoint at later pipeline stages if self.activations_checkpoint_layers_per_pipeline is not None: activations_checkpoint_num_layers -= int( parallel_state.get_pipeline_model_parallel_rank() * self.activations_checkpoint_layers_per_pipeline ) checkpoint_core_attention = index < activations_checkpoint_num_layers else: checkpoint_core_attention = False if self.transformer_engine: hidden_states = layer( hidden_states, attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, inference_params=self.inference_params, is_first_microbatch=self.is_first_microbatch, checkpoint_core_attention=checkpoint_core_attention, ) else: hidden_states = layer( hidden_states, attention_mask, encoder_output=encoder_output, enc_dec_attn_mask=enc_dec_attn_mask, layer_past=past, get_key_value=get_key_value, set_inference_key_value_memory=set_inference_key_value_memory, inference_max_sequence_len=inference_max_sequence_len, rotary_pos_emb=rotary_pos_emb, self_attention_relative_position_bias=self_attention_relative_position_bias, cross_attention_relative_position_bias=cross_attention_relative_position_bias, checkpoint_core_attention=checkpoint_core_attention, ) # Update current sequence length outside of the loops if self.transformer_engine: self.inference_current_sequence_len += hidden_states.size(0) # Skip counter update for eval and activation checkpointing if torch.is_grad_enabled() and self.training: self.microbatch_count += 1 if self.microbatch_count % num_micro_batches == 0: self.microbatch_count = 0 self.is_first_microbatch = True else: self.is_first_microbatch = False output = hidden_states # Final layer norm. if self.post_process: # only apply the final_layernorm for pre-ln if self.transformer_block_type != 'post_ln': output = self.final_layernorm(hidden_states) if get_key_value: output = [output, presents] return output
NeMo-main
nemo/collections/nlp/modules/common/megatron/transformer.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer based language model.""" import torch from nemo.collections.nlp.modules.common.megatron.fused_layer_norm import get_layer_norm from nemo.collections.nlp.modules.common.megatron.layer_type import LayerType from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.transformer import ParallelTransformer from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, attn_mask_postprocess, build_attention_mask_3d, ) try: from apex.normalization import MixedFusedRMSNorm from apex.transformer.enums import AttnMaskType, ModelType HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() ModelType = ApexGuardDefaults() try: from megatron.core import ModelParallelConfig HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False __all__ = ["MegatronPerceiverEncoderModule"] class MegatronPerceiverEncoderModule(MegatronModule): """Transformer encoder model. """ def __init__( self, config: ModelParallelConfig, init_method, output_layer_init_method, hidden_size, ffn_hidden_size, num_layers, num_attention_heads, apply_query_key_layer_scaling=True, kv_channels=None, pre_process=True, post_process=True, megatron_amp_O2=False, encoder_attn_mask_type=AttnMaskType.padding, hidden_dropout=0.1, attention_dropout=0.1, ffn_dropout=0.0, precision=16, fp32_residual_connection=False, activations_checkpoint_method=None, activations_checkpoint_num_layers=1, activations_checkpoint_granularity=None, layernorm_epsilon=1e-5, bias_activation_fusion=True, bias_dropout_add_fusion=True, masked_softmax_fusion=True, persist_layer_norm=False, openai_gelu=False, onnx_safe=False, activation='gelu', bias=True, normalization='layernorm', transformer_block_type='pre_ln', headscale=False, parent_model_type=ModelType.encoder_or_decoder, hidden_steps=32, num_self_attention_per_cross_attention=1, normalize_attention_scores=True, megatron_legacy=False, ): super(MegatronPerceiverEncoderModule, self).__init__(config=config) self.config = config self.pre_process = pre_process self.post_process = post_process self.hidden_size = hidden_size self.num_layers = num_layers self.init_method = init_method self.model_attn_mask_type = encoder_attn_mask_type self.hidden_dropout = hidden_dropout self.output_layer_init_method = output_layer_init_method self.parent_model_type = parent_model_type self.normalization = normalization self.transformer_block_type = transformer_block_type self.hidden_steps = hidden_steps self.num_self_attention_per_cross_attention = num_self_attention_per_cross_attention self.num_attention_heads = num_attention_heads self.apply_query_key_layer_scaling = apply_query_key_layer_scaling self.kv_channels = kv_channels self.ffn_hidden_size = ffn_hidden_size self.precision = precision self.fp32_residual_connection = fp32_residual_connection self.activations_checkpoint_method = activations_checkpoint_method self.activations_checkpoint_num_layers = activations_checkpoint_num_layers self.activations_checkpoint_granularity = activations_checkpoint_granularity self.layernorm_epsilon = layernorm_epsilon self.bias_activation_fusion = bias_activation_fusion self.bias_dropout_add_fusion = bias_dropout_add_fusion self.masked_softmax_fusion = masked_softmax_fusion self.persist_layer_norm = persist_layer_norm self.openai_gelu = openai_gelu self.onnx_safe = onnx_safe self.activation = activation self.bias = bias self.headscale = headscale self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.normalization = normalization self.parent_model_type = parent_model_type self.transformer_block_type = transformer_block_type self.ffn_dropout = ffn_dropout self.normalize_attention_scores = normalize_attention_scores self.megatron_legacy = megatron_legacy self.megatron_amp_O2 = megatron_amp_O2 assert self.num_self_attention_per_cross_attention >= 1 assert self.hidden_steps >= 1 self.init_hidden = torch.nn.Parameter(torch.nn.init.xavier_normal_(torch.empty(hidden_steps, hidden_size))) self.cross_attn_layers = torch.nn.ModuleList([self._build_cross_attn_layer() for _ in range(self.num_layers)]) self.self_attn_layers = torch.nn.ModuleList( [ self._build_self_attn_layer() for _ in range(self.num_layers * self.num_self_attention_per_cross_attention) ] ) if normalization == 'layernorm': self.final_layernorm = get_layer_norm(hidden_size, layernorm_epsilon, persist_layer_norm) else: self.final_layernorm = MixedFusedRMSNorm(hidden_size, layernorm_epsilon) def _build_cross_attn_layer(self): return ParallelTransformer( config=self.config, layer_type=LayerType.decoder, init_method=self.init_method, output_layer_init_method=self.output_layer_init_method, num_layers=1, hidden_size=self.hidden_size, num_attention_heads=self.num_attention_heads, apply_query_key_layer_scaling=self.apply_query_key_layer_scaling, kv_channels=self.kv_channels, ffn_hidden_size=self.ffn_hidden_size, self_attn_mask_type=self.model_attn_mask_type, pre_process=self.pre_process, post_process=False, # This is to avoid the final layernorm and transpose. precision=self.precision, fp32_residual_connection=self.fp32_residual_connection, activations_checkpoint_method=self.activations_checkpoint_method, activations_checkpoint_num_layers=self.activations_checkpoint_num_layers, activations_checkpoint_granularity=self.activations_checkpoint_granularity, layernorm_epsilon=self.layernorm_epsilon, hidden_dropout=self.hidden_dropout, attention_dropout=self.attention_dropout, ffn_dropout=self.ffn_dropout, megatron_amp_O2=self.megatron_amp_O2, bias_activation_fusion=self.bias_activation_fusion, bias_dropout_add_fusion=self.bias_dropout_add_fusion, masked_softmax_fusion=self.masked_softmax_fusion, persist_layer_norm=self.persist_layer_norm, openai_gelu=self.openai_gelu, onnx_safe=self.onnx_safe, activation=self.activation, bias=self.bias, normalization=self.normalization, model_type=self.parent_model_type, transformer_block_type=self.transformer_block_type, headscale=self.headscale, normalize_attention_scores=self.normalize_attention_scores, megatron_legacy=self.megatron_legacy, ) def _build_self_attn_layer(self): return ParallelTransformer( config=self.config, layer_type=LayerType.encoder, init_method=self.init_method, output_layer_init_method=self.output_layer_init_method, num_layers=1, hidden_size=self.hidden_size, num_attention_heads=self.num_attention_heads, apply_query_key_layer_scaling=self.apply_query_key_layer_scaling, kv_channels=self.kv_channels, ffn_hidden_size=self.ffn_hidden_size, self_attn_mask_type=self.model_attn_mask_type, pre_process=self.pre_process, post_process=False, # This is to avoid the final layernorm and transpose. precision=self.precision, fp32_residual_connection=self.fp32_residual_connection, activations_checkpoint_method=self.activations_checkpoint_method, activations_checkpoint_num_layers=self.activations_checkpoint_num_layers, activations_checkpoint_granularity=self.activations_checkpoint_granularity, layernorm_epsilon=self.layernorm_epsilon, hidden_dropout=self.hidden_dropout, attention_dropout=self.attention_dropout, ffn_dropout=self.ffn_dropout, megatron_amp_O2=self.megatron_amp_O2, bias_activation_fusion=self.bias_activation_fusion, bias_dropout_add_fusion=self.bias_dropout_add_fusion, masked_softmax_fusion=self.masked_softmax_fusion, persist_layer_norm=self.persist_layer_norm, openai_gelu=self.openai_gelu, onnx_safe=self.onnx_safe, activation=self.activation, bias=self.bias, normalization=self.normalization, model_type=self.parent_model_type, transformer_block_type=self.transformer_block_type, headscale=self.headscale, normalize_attention_scores=self.normalize_attention_scores, megatron_legacy=self.megatron_legacy, ) def set_input_tensor(self, input_tensor): """ See megatron.model.transformer.set_input_tensor()""" # TODO: Fix this when adding support for Pipeline Parallel. pass def forward( self, enc_input, enc_attn_mask, layer_past=None, get_key_value=False, enc_self_attention_relative_position_bias=None, ): if enc_self_attention_relative_position_bias is not None: raise ValueError( f"enc_self_attention_relative_position_bias is not supported for Megatron Perceiver Encoders." ) # convert to Megatron mask latent_attention_mask = torch.ones(enc_input.size(1), self.hidden_steps).to(enc_input.device) # First convert from 2D (B x T) to 3D (B x T x T) # Next convert to 4D (B x 1 x T x T) - unsqueeze(1) is for the head dim. latent_attention_mask_4d = attn_mask_postprocess( build_attention_mask_3d( source_mask=latent_attention_mask, target_mask=latent_attention_mask, attn_mask_type=AttnMaskType.padding, ) ) enc_dec_attn_mask_4d = attn_mask_postprocess( build_attention_mask_3d( source_mask=latent_attention_mask, target_mask=enc_attn_mask, attn_mask_type=AttnMaskType.padding, ) ) # 1. Expand latent hidden states to B x S_perceiver x H # 2. Transpose to S_perceiver x B x H hidden_states = self.init_hidden.unsqueeze(0).expand(enc_input.size(1), -1, -1).transpose(1, 0) for i in range(self.num_layers): residual = hidden_states hidden_states = self.cross_attn_layers[i]( hidden_states=hidden_states, attention_mask=latent_attention_mask_4d, enc_dec_attn_mask=enc_dec_attn_mask_4d, encoder_output=enc_input, ) for j in range(self.num_self_attention_per_cross_attention): hidden_states = self.self_attn_layers[i * self.num_self_attention_per_cross_attention + j]( hidden_states=hidden_states, attention_mask=latent_attention_mask_4d, ) hidden_states += residual return self.final_layernorm(hidden_states) # Need to transpose at the end becase pre-process is False
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_perceiver_encoders.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, Dict, List, Optional import torch from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults from nemo.utils import logging try: from megatron.core import parallel_state from megatron.core.enums import ModelType HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelType = ApexGuardDefaults() HAVE_MEGATRON_CORE = False try: from apex.transformer.tensor_parallel.layers import set_defaults_if_not_set_tensor_model_parallel_attributes HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False # Apex's `build model' refactored to call Megatron-Core classes def build_model( model_provider_func: Callable[[Any, Dict[str, Any]], torch.nn.Module], wrap_with_ddp: bool = True, virtual_pipeline_model_parallel_size: Optional[int] = None, model_type: ModelType = ModelType.encoder_or_decoder, on_cpu: bool = False, *args: Any, **kwargs: Any, ) -> List[torch.nn.Module]: """Build the model satisfying pipeline model parallel requirements. This function sets `pre_process` and `post_process` to `**kwargs` and pass `*args` and `**kwargs` to `model_provider_func`. Args: model_provider_func: A function which takes `*args` and `**kwargs` and returns a `nn.Module`. wrap_with_ddp: If :obj:`True`, wrap the instantiated model with `torch.nn.parallel.distributed.DistributedDataParallel`, a.k.a. `DDP`. virtual_pipeline_model_parallel_size: Specify when using interleaving scheduling pipeline model parallel. model_type: *args: arguments for model provider func **kwargs: Keyword arguments for model provider func Returns: a list of `nn.Module`(s). If `virtual_pipeline_model_parallel_size` is not None, the list has multiple models, otherwise one. """ if model_type is None: model_type = ModelType.encoder_or_decoder if ( parallel_state.get_pipeline_model_parallel_world_size() > 1 and virtual_pipeline_model_parallel_size is not None ): model = [] parallel_state.set_virtual_pipeline_model_parallel_world_size(virtual_pipeline_model_parallel_size) for i in range(virtual_pipeline_model_parallel_size): parallel_state.set_virtual_pipeline_model_parallel_rank(i) model.append( model_provider_func( *args, **kwargs, pre_process=parallel_state.is_pipeline_first_stage(), post_process=parallel_state.is_pipeline_last_stage(), ) ) else: if model_type == ModelType.encoder_or_decoder: model = model_provider_func( *args, **kwargs, pre_process=parallel_state.is_pipeline_first_stage(), post_process=parallel_state.is_pipeline_last_stage(), ) elif model_type == ModelType.encoder_and_decoder: pre_process = parallel_state.is_pipeline_first_stage() post_process = parallel_state.is_pipeline_last_stage() # `add_encoder` & `add_decoder` logic. add_encoder, add_decoder = True, True if parallel_state.get_pipeline_model_parallel_world_size() > 1: split_rank = parallel_state.get_pipeline_model_parallel_split_rank() if split_rank is None: raise RuntimeError("Split rank needs to be specified for model with both encoder and decoder.") rank = parallel_state.get_pipeline_model_parallel_rank() world_size = parallel_state.get_pipeline_model_parallel_world_size() pre_process = rank == 0 or rank == split_rank post_process = rank == (split_rank - 1) or rank == (world_size - 1) add_encoder = parallel_state.is_pipeline_stage_before_split() add_decoder = parallel_state.is_pipeline_stage_after_split() model = model_provider_func( *args, **kwargs, pre_process=pre_process, post_process=post_process, add_encoder=add_encoder, add_decoder=add_decoder, ) else: raise ValueError(f"Unrecognized ModelType '{model_type}'") if not isinstance(model, list): model = [model] for model_module in model: model_module.model_type = model_type # Set tensor model parallel attributes if not set. # Only parameters that are already tensor model parallel have these # attributes set for them. We should make sure the default attributes # are set for all params so the optimizer can use them. for model_module in model: for param in model_module.parameters(): set_defaults_if_not_set_tensor_model_parallel_attributes(param) # Print number of parameters. if parallel_state.model_parallel_is_initialized() and parallel_state.get_data_parallel_rank() == 0: msg = " > number of parameters on (tensor, pipeline) model parallel rank ({}, {}): {}".format( parallel_state.get_tensor_model_parallel_rank(), parallel_state.get_pipeline_model_parallel_rank(), _calc_number_of_params(model), ) logging.info(msg) # GPU allocation. if not on_cpu: for model_module in model: model_module.cuda(torch.cuda.current_device()) if wrap_with_ddp: i = torch.cuda.current_device() model = [ torch.nn.parallel.distributed.DistributedDataParallel( model_module, device_ids=[i], output_device=i, process_group=parallel_state.get_data_parallel_group(), ) for model_module in model ] return model def _calc_number_of_params(model: List[torch.nn.Module]) -> int: assert isinstance(model, list) return sum([sum([p.nelement() for p in model_module.parameters()]) for model_module in model])
NeMo-main
nemo/collections/nlp/modules/common/megatron/build_model.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Megatron Module""" import torch from torch.autograd import Variable from torch.nn.parameter import Parameter from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults from nemo.utils import logging try: from megatron.core import ModelParallelConfig, parallel_state, tensor_parallel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False _FLOAT_TYPES = (torch.FloatTensor, torch.cuda.FloatTensor) _HALF_TYPES = (torch.HalfTensor, torch.cuda.HalfTensor) _BF16_TYPES = (torch.BFloat16Tensor, torch.cuda.BFloat16Tensor) def param_is_not_shared(param): return not hasattr(param, 'shared') or not param.shared class MegatronModule(torch.nn.Module): """Megatron specific extensions of torch Module with support for pipelining.""" def __init__(self, config: ModelParallelConfig = None, share_token_embeddings=True): if not HAVE_MEGATRON_CORE: raise ImportError( "megatron-core was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) super(MegatronModule, self).__init__() self.config = config self.share_token_embeddings = share_token_embeddings def word_embeddings_weight(self): if self.pre_process: if hasattr(self, 'language_model'): return self.language_model.embedding.word_embeddings.weight elif hasattr(self, 'encoder_embedding'): return self.encoder_embedding.word_embeddings.weight elif hasattr(self, 'decoder_embedding'): return self.decoder_embedding.word_embeddings.weight else: raise ValueError( f"Pre_process is True, but no embedding is found on this rank. Looked for language_model.embedding, encoder_embedding, and decoder_embedding" ) else: # This is the pipeline parallel last stage. if not self.share_token_embeddings: raise Exception( 'word_embeddings_weight() called for last ' 'stage, but share_token_embeddings is false' ) return self.word_embeddings.weight def position_embeddings_weight(self): if self.pre_process: if hasattr(self, 'language_model'): return self.language_model.embedding.position_embeddings.weight elif hasattr(self, 'encoder_embedding'): return self.encoder_embedding.position_embeddings.weight elif hasattr(self, 'decoder_embedding'): return self.decoder_embedding.position_embeddings.weight else: raise ValueError( f"Pre_process is True, but no embedding is found on this rank. Looked for language_model.embedding, encoder_embedding, and decoder_embedding" ) else: # We only need position embeddings on the encoder and decoder first stages where pre_process=True raise ValueError(f"Pre_process is False, there is no position embedding on this rank.") def encoder_relative_position_embeddings_weight(self): if hasattr(self, 'encoder_relative_position_embedding'): return self.encoder_relative_position_embedding.relative_position_embedding.weight else: raise ValueError( f"No encoder_relative_position_embedding found on this rank. Looking for encoder_relative_position_embedding.relative_position_embedding.weight" ) def decoder_relative_position_embeddings_weight(self): if hasattr(self, 'decoder_relative_position_embedding'): return self.decoder_relative_position_embedding.relative_position_embedding.weight else: raise ValueError( f"No decoder_relative_position_embedding found on this rank. Looking for decoder_relative_position_embedding.relative_position_embedding.weight" ) def decoder_cross_attention_relative_position_embeddings_weight(self): if hasattr(self, 'decoder_cross_attention_relative_position_embedding'): return self.decoder_cross_attention_relative_position_embedding.relative_position_embedding.weight else: raise ValueError( f"No decoder_cross_attention_relative_position_embedding found on this rank. Looking for decoder_cross_attention_relative_position_embedding.relative_position_embedding.weight" ) def initialize_word_embeddings(self, init_method, vocab_size, hidden_size, param_dtype=torch.float32): if not self.share_token_embeddings: raise Exception('initialize_word_embeddings() was called but ' 'share_token_embeddings is false') # This function just initializes the word embeddings in the final stage # when we are using pipeline parallelism. If we aren't using pipeline # parallelism there is nothing to do. if parallel_state.get_pipeline_model_parallel_world_size() == 1: return # Parameters are shared between the word embeddings layer, and the # heads at the end of the model. In a pipelined setup with more than # one stage, the initial embedding layer and the head are on different # workers, so we do the following: # 1. Create a second copy of word_embeddings on the last stage, with # initial parameters of 0.0. # 2. Do an all-reduce between the first and last stage to ensure that # the two copies of word_embeddings start off with the same # parameter values. # 3. In the training loop, before an all-reduce between the grads of # the two word_embeddings layers to ensure that every applied weight # update is the same on both stages. if parallel_state.is_pipeline_last_stage() and not self.pre_process: # This is relevant for T5 when the decoder is only on a single rank. It is the last stage of the pipeline and also has embeddings on this rank already. assert not parallel_state.is_pipeline_first_stage() self._word_embeddings_for_head_key = 'word_embeddings_for_head' # set word_embeddings weights to 0 here, then copy first # stage's weights using all_reduce below. self.word_embeddings = tensor_parallel.VocabParallelEmbedding( vocab_size, hidden_size, init_method=init_method, config=self.config, ) self.word_embeddings.weight.data.fill_(0) self.word_embeddings.weight.shared = True # Zero out initial weights for decoder embedding. # NOTE: We don't currently support T5 with the interleaved schedule. # This is the case where PP > 1 and we're on the decoder first stage. if not parallel_state.is_pipeline_first_stage(ignore_virtual=True) and self.pre_process: if hasattr(self, 'language_model'): # Zero params for GPT self.language_model.embedding.zero_parameters() else: # Zero decoder embeddings for T5 assert hasattr(self, 'decoder_embedding') self.decoder_embedding.zero_parameters() def sync_initial_word_embeddings(self): if torch.distributed.is_initialized(): if parallel_state.is_rank_in_embedding_group() and self.share_token_embeddings: torch.distributed.all_reduce( self.word_embeddings_weight().data, group=parallel_state.get_embedding_group() ) else: logging.warning( "WARNING! Distributed processes aren't initialized, so " "word embeddings in the last layer are not synchronized. " "If you are just manipulating a model this is fine, but " "this needs to be handled manually. If you are training " "something is definitely wrong." ) def sync_initial_position_embeddings(self): # Ensure that the encoder first stage and decoder first have the same # initial position embedding parameter values. # NOTE: We don't currently support T5 with the interleaved schedule. if ( parallel_state.is_rank_in_position_embedding_group() and parallel_state.get_pipeline_model_parallel_split_rank() is not None ): # TODO: Support tokentype embedding. # self.language_model.embedding.cuda() position_embeddings = self.position_embeddings_weight() torch.distributed.all_reduce(position_embeddings.data, group=parallel_state.get_position_embedding_group()) def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """Use this function to override the state dict for saving checkpoints.""" return self.state_dict(destination, prefix, keep_vars) def sync_initial_encoder_relative_position_embeddings(self): # Ensure that all encoder RPE stages have the same weights. if parallel_state.is_rank_in_encoder_relative_position_embedding_group(): position_embeddings = self.encoder_relative_position_embeddings_weight() torch.distributed.all_reduce( position_embeddings.data, group=parallel_state.get_encoder_relative_position_embedding_group() ) def sync_initial_decoder_relative_position_embeddings(self): if parallel_state.is_rank_in_decoder_relative_position_embedding_group(): position_embeddings = self.decoder_relative_position_embeddings_weight() torch.distributed.all_reduce( position_embeddings.data, group=parallel_state.get_decoder_relative_position_embedding_group() ) def sync_initial_decoder_cross_attention_relative_position_embeddings(self): if parallel_state.is_rank_in_decoder_relative_position_embedding_group(): position_embeddings = self.decoder_cross_attention_relative_position_embeddings_weight() torch.distributed.all_reduce( position_embeddings.data, group=parallel_state.get_decoder_relative_position_embedding_group() ) def conversion_helper(val, conversion): """Apply conversion to val. Recursively apply conversion if `val` #is a nested tuple/list structure.""" if not isinstance(val, (tuple, list)): return conversion(val) rtn = [conversion_helper(v, conversion) for v in val] if isinstance(val, tuple): rtn = tuple(rtn) return rtn def fp32_to_float16(val, float16_converter): """Convert fp32 `val` to fp16/bf16""" def half_conversion(val): val_typecheck = val if isinstance(val_typecheck, (Parameter, Variable)): val_typecheck = val.data if isinstance(val_typecheck, _FLOAT_TYPES): val = float16_converter(val) return val return conversion_helper(val, half_conversion) def float16_to_fp32(val): """Convert fp16/bf16 `val` to fp32""" def float_conversion(val): val_typecheck = val if isinstance(val_typecheck, (Parameter, Variable)): val_typecheck = val.data if isinstance(val_typecheck, (_BF16_TYPES, _HALF_TYPES)): val = val.float() return val return conversion_helper(val, float_conversion) class Float16Module(MegatronModule): def __init__(self, config: ModelParallelConfig, module, precision, share_token_embeddings=True): if not HAVE_MEGATRON_CORE: raise ImportError( "Megatron-core was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) super().__init__(config=config, share_token_embeddings=share_token_embeddings) self.precision = precision if precision in ['bf16', 'bf16-mixed']: self.add_module('module', module.bfloat16()) def float16_converter(val): return val.bfloat16() elif precision in [16, '16', '16-mixed']: self.add_module('module', module.half()) def float16_converter(val): return val.half() else: raise Exception( f'precision {precision} is not supported. Float16Module (megatron_amp_O2) supports ' 'only fp16 and bf16.' ) self.float16_converter = float16_converter def set_input_tensor(self, input_tensor): return self.module.set_input_tensor(input_tensor) def forward(self, *inputs, **kwargs): # Note: Legacy checkpoints didn't have pre-process. if getattr(self.module, 'pre_process', True): inputs = fp32_to_float16(inputs, self.float16_converter) outputs = self.module(*inputs, **kwargs) if parallel_state.is_pipeline_last_stage() and self.training: outputs = float16_to_fp32(outputs) return outputs def state_dict(self, destination=None, prefix='', keep_vars=False): return self.module.state_dict(destination, prefix, keep_vars) def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): return self.module.state_dict_for_save_checkpoint(destination, prefix, keep_vars) def word_embeddings_weight(self): if self.module.pre_process: if hasattr(self.module, 'language_model'): return self.module.language_model.embedding.word_embeddings.weight elif hasattr(self.module, 'encoder_embedding'): return self.module.encoder_embedding.word_embeddings.weight elif hasattr(self.module, 'decoder_embedding'): return self.module.decoder_embedding.word_embeddings.weight else: raise ValueError( f"Pre_process is True, but no embedding is found on this rank. Looked for language_model.embedding, encoder_embedding, and decoder_embedding" ) else: # This is the pipeline parallel last stage. if not self.share_token_embeddings: raise Exception( 'word_embeddings_weight() called for last ' 'stage, but share_token_embeddings is false' ) return self.module.word_embeddings.weight def position_embeddings_weight(self): if self.module.pre_process: if hasattr(self.module, 'language_model'): return self.module.language_model.embedding.position_embeddings.weight elif hasattr(self.module, 'encoder_embedding'): return self.module.encoder_embedding.position_embeddings.weight elif hasattr(self.module, 'decoder_embedding'): return self.module.decoder_embedding.position_embeddings.weight else: raise ValueError( f"Pre_process is True, but no embedding is found on this rank. Looked for language_model.position_embeddings, encoder_embedding.position_embedding_weight, and decoder_embedding.position_embedding_weight" ) else: # We only need position embeddings on the encoder and decoder first stages where pre_process=True raise ValueError(f"Pre_process is False, there is no position embedding on this rank.") def encoder_relative_position_embeddings_weight(self): if hasattr(self.module, 'encoder_relative_position_embedding'): return self.module.encoder_relative_position_embedding.relative_position_embedding.weight else: raise ValueError( f"No encoder_relative_position_embedding found on this rank. Looking for encoder_relative_position_embedding.relative_position_embedding.weight" ) def decoder_relative_position_embeddings_weight(self): if hasattr(self.module, 'decoder_relative_position_embedding'): return self.module.decoder_relative_position_embedding.relative_position_embedding.weight else: raise ValueError( f"No decoder_relative_position_embedding found on this rank. Looking for decoder_relative_position_embedding.relative_position_embedding.weight" ) def decoder_cross_attention_relative_position_embeddings_weight(self): if hasattr(self.module, 'decoder_cross_attention_relative_position_embedding'): return self.module.decoder_cross_attention_relative_position_embedding.relative_position_embedding.weight else: raise ValueError( f"No decoder_cross_attention_relative_position_embedding found on this rank. Looking for decoder_cross_attention_relative_position_embedding.relative_position_embedding.weight" )
NeMo-main
nemo/collections/nlp/modules/common/megatron/module.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer.""" import enum class LayerType(enum.Enum): encoder = 1 decoder = 2 retrieval_encoder = ( 3 # retrieval model encoder, it uses cross attention to be conditioned on the pre decoder output ) retrieval_decoder = ( 4 # retrieval model decoder, it uses chunked cross attention to be conditioned on the retrieved information ) decoder_pre_mlp = 5 # decoder that skips the computation after the self-attention retrieval_decoder_after_self_attn = 6 # retrieval decoder that skips the self-attention
NeMo-main
nemo/collections/nlp/modules/common/megatron/layer_type.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from typing import Dict, List, Optional from nemo.core.classes import NeuralModule from nemo.core.neural_types import ChannelType, MaskType, NeuralType __all__ = ['MegatronTokensHeadModule'] class MegatronTokensHeadModule(NeuralModule, ABC): """ Base class for encoder neural module to be used in NLP models. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "dec_output": NeuralType(('B', 'T', 'D'), ChannelType()), "embeddings_weights": NeuralType(('T', 'D'), MaskType()), } @property def input_names(self) -> List[str]: return ['dec_output', 'embeddings_weights'] @property def output_names(self) -> List[str]: return ['logits'] @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"logits": NeuralType(('B', 'T', 'D'), ChannelType())}
NeMo-main
nemo/collections/nlp/modules/common/megatron/megatron_tokens_head_module.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from nemo.collections.nlp.modules.common.megatron.fused_bias_gelu import bias_gelu, bias_gelu_back try: from apex._autocast_utils import _cast_if_autocast_enabled HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False @torch.jit.script def bias_geglu(bias, y, bias_2, y_2): x_2 = bias_2 + y_2 return bias_gelu(bias, y) * x_2 @torch.jit.script def bias_geglu_back(g, bias, y, bias_2, y_2): x_2 = bias_2 + y_2 return bias_gelu_back(g, bias, y) * x_2, bias_gelu(bias, y) * g class GeGLUFunction(torch.autograd.Function): @staticmethod # bias and bias_2 are optional arguments def forward(ctx, input, bias, input_2, bias_2): ctx.save_for_backward(input, bias, input_2, bias_2) return bias_geglu(bias, input, bias_2, input_2) @staticmethod def backward(ctx, grad_output): input, bias, input_2, bias_2 = ctx.saved_tensors tmp, tmp2 = bias_geglu_back(grad_output, bias, input, bias_2, input_2) return tmp, tmp, tmp2, tmp2 def fused_bias_geglu(input, bias, input_2, bias_2): args = _cast_if_autocast_enabled(input, bias, input_2, bias_2) with torch.cuda.amp.autocast(enabled=False): return GeGLUFunction.apply(*args)
NeMo-main
nemo/collections/nlp/modules/common/megatron/fused_bias_geglu.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from omegaconf import DictConfig from nemo.collections.nlp.modules.common.megatron.hiddens import get_hiddens_module from nemo.collections.nlp.modules.common.megatron.language_model import Embedding from nemo.collections.nlp.modules.common.megatron.layer_type import LayerType from nemo.collections.nlp.modules.common.megatron.megatron_decoders import get_decoder_model from nemo.collections.nlp.modules.common.megatron.megatron_encoder_decoder import ( MegatronTransformerEncoderDecoderModule, ) from nemo.collections.nlp.modules.common.megatron.megatron_encoders import get_encoder_model from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.position_embedding import ( ALiBiRelativePositionEmbedding, KERPLERelativePositionEmbedding, T5RelativePositionEmbedding, ) from nemo.collections.nlp.modules.common.megatron.utils import ( ApexGuardDefaults, build_position_ids, init_method_normal, parallel_lm_logits, scaled_init_method_normal, ) from nemo.collections.nlp.modules.common.megatron.vocab_parallel_cross_entropy import vocab_parallel_cross_entropy from nemo.collections.nlp.parts import utils_funcs try: from apex.transformer.enums import AttnMaskType, ModelType HAVE_APEX = True except (ImportError, ModuleNotFoundError): # fake missing classes with None attributes AttnMaskType = ApexGuardDefaults() ModelType = ApexGuardDefaults() HAVE_APEX = False try: from megatron.core import ModelParallelConfig, parallel_state, tensor_parallel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False __all__ = ["MegatronTokenLevelHead", "MegatronTokenLevelEncoderDecoderModule"] class MegatronTokenLevelHead(MegatronModule): """Masked LM head for token-based encoder-decoder models (e.g., T5) Arguments: mpu_vocab_size: model parallel size of vocabulary. parallel_output: wether output logits being distributed or not. """ def __init__(self, mpu_vocab_size, parallel_output, bias=True): super(MegatronTokenLevelHead, self).__init__() if bias: self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size)) self.bias.model_parallel = True self.bias.partition_dim = 0 self.bias.stride = 1 else: self.bias = None self.parallel_output = parallel_output def forward(self, hidden_states, word_embeddings_weight): async_tensor_model_parallel_allreduce = parallel_state.get_tensor_model_parallel_world_size() > 1 output = parallel_lm_logits( hidden_states, word_embeddings_weight, self.parallel_output, bias=self.bias, async_tensor_model_parallel_allreduce=async_tensor_model_parallel_allreduce, ) return output # TODO: add soft prompts as an Embedding sub-class class MegatronTokenLevelEncoderDecoderModule(MegatronModule): """Token-based (input/output is tokens) encoder-decoder model (e.g. T5 Language model.)""" def __init__( self, config: ModelParallelConfig, encoder_cfg: DictConfig, decoder_cfg: DictConfig, vocab_size: int, # TODO: This should eventually go inside encoder_cfg and decoder_cfg when separate enc/dec tokenizers are supported. max_position_embeddings, num_tokentypes=0, parallel_output=True, pre_process=True, post_process=True, fp16_cross_entropy=False, megatron_amp_O2=False, precision=16, embedding_init_method_std=0.02, embedding_dropout=0.1, label_smoothing=0.0, add_encoder=True, add_decoder=True, share_token_embeddings=True, share_decoder_tokens_head_embeddings=True, tokens_head_bias=True, hiddens_cfg: DictConfig = None, # allows for hidden state transformations before the decoder ): super(MegatronTokenLevelEncoderDecoderModule, self).__init__(config=config) self.encoder_cfg = encoder_cfg self.decoder_cfg = decoder_cfg self.parallel_output = parallel_output self.pre_process = pre_process self.post_process = post_process self.fp16_cross_entropy = fp16_cross_entropy self.precision = precision self.add_encoder = add_encoder self.add_decoder = add_decoder self.label_smoothing = label_smoothing self.share_token_embeddings = share_token_embeddings self.share_decoder_tokens_head_embeddings = share_decoder_tokens_head_embeddings self.tokens_head_bias = tokens_head_bias self.hiddens_cfg = hiddens_cfg encoder_kv_channels, decoder_kv_channels = self._validate_config() self.dtype = utils_funcs.torch_dtype_from_precision(precision, megatron_amp_O2) encoder, decoder = None, None if add_encoder: if pre_process: self.encoder_embedding = Embedding( config=self.config, hidden_size=encoder_cfg.hidden_size, vocab_size=vocab_size, max_sequence_length=max_position_embeddings, init_method=init_method_normal(embedding_init_method_std), num_tokentypes=num_tokentypes, dtype=self.dtype, embedding_dropout_prob=embedding_dropout, position_embedding_type=encoder_cfg.get('position_embedding_type', 'learned_absolute'), ) self._encoder_embedding_key = "encoder_embedding" if self.encoder_cfg.get('position_embedding_type', 'learned_absolute') == 'relative': self.encoder_relative_position_embedding = T5RelativePositionEmbedding( init_method=init_method_normal(embedding_init_method_std), num_attention_heads=encoder_cfg.num_attention_heads, relative_position_num_buckets=encoder_cfg.relative_attention_num_buckets, relative_position_max_distance=encoder_cfg.relative_attention_max_distance, bidirectional=True, layer_type=LayerType.encoder, ) self._encoder_relative_position_embedding_key = "encoder_relative_position_embedding" # Pipeline model parallel rank 0 will have the actual RPE weights. We zero it out on all other ranks and then sync them on setup. if parallel_state.get_pipeline_model_parallel_rank() != 0: self.encoder_relative_position_embeddings_weight().data.fill_(0) self.encoder_relative_position_embeddings_weight().shared = True elif self.encoder_cfg.get('position_embedding_type', 'learned_absolute') == 'alibi': self.encoder_relative_position_embedding = ALiBiRelativePositionEmbedding( bidirectional=True, num_attention_heads=encoder_cfg.num_attention_heads, layer_type=LayerType.encoder, num_attention_heads_alibi=None, max_seq_len=max_position_embeddings, ) self._encoder_relative_position_embedding_key = "encoder_alibi_position_embedding" elif self.encoder_cfg.get('position_embedding_type', 'learned_absolute') == 'kerple': self.encoder_relative_position_embedding = KERPLERelativePositionEmbedding( bidirectional=True, num_attention_heads=encoder_cfg.num_attention_heads, layer_type=LayerType.encoder, num_attention_heads_kerple=None, max_seq_len=max_position_embeddings, ) self._encoder_relative_position_embedding_key = "encoder_kerple_position_embedding" else: self.encoder_relative_position_embedding = None if encoder_cfg.get('use_flash_attention', False) and encoder_cfg.get( 'position_embedding_type', 'learned_absolute' ) in ['relative', 'kerple']: raise ValueError('flash-attention not supported with relative or kerple at this point') encoder = get_encoder_model( config=config, arch=encoder_cfg.arch, hidden_size=encoder_cfg.hidden_size, ffn_hidden_size=encoder_cfg.ffn_hidden_size, num_layers=encoder_cfg.num_layers, num_attention_heads=encoder_cfg.num_attention_heads, apply_query_key_layer_scaling=encoder_cfg.get('apply_query_key_layer_scaling', True), kv_channels=encoder_kv_channels, init_method=init_method_normal(encoder_cfg.get('init_method_std', 0.02)), scaled_init_method=scaled_init_method_normal( encoder_cfg.get('init_method_std', 0.02), encoder_cfg.num_layers ), encoder_attn_mask_type=AttnMaskType.padding, pre_process=pre_process, post_process=post_process, init_method_std=encoder_cfg.get('init_method_std', 0.02), megatron_amp_O2=megatron_amp_O2, hidden_dropout=encoder_cfg.get('hidden_dropout', 0.1), attention_dropout=encoder_cfg.get('attention_dropout', 0.1), ffn_dropout=encoder_cfg.get('ffn_dropout', 0.0), precision=precision, fp32_residual_connection=encoder_cfg.get('fp32_residual_connection', False), activations_checkpoint_method=encoder_cfg.get('activations_checkpoint_method', None), activations_checkpoint_num_layers=encoder_cfg.get('activations_checkpoint_num_layers', 1), activations_checkpoint_granularity=encoder_cfg.get('activations_checkpoint_granularity', None), layernorm_epsilon=encoder_cfg.get('layernorm_epsilon', 1e-5), bias_activation_fusion=encoder_cfg.get('bias_activation_fusion', True), bias_dropout_add_fusion=encoder_cfg.get('bias_dropout_add_fusion', True), masked_softmax_fusion=encoder_cfg.get('masked_softmax_fusion', True), persist_layer_norm=encoder_cfg.get('persist_layer_norm', True), openai_gelu=encoder_cfg.get('openai_gelu', False), onnx_safe=encoder_cfg.get('onnx_safe', False), hidden_steps=encoder_cfg.get('hidden_steps', -1), activation=encoder_cfg.get('activation', 'gelu'), bias=encoder_cfg.get('bias', True), normalization=encoder_cfg.get('normalization', 'layernorm'), transformer_block_type=encoder_cfg.get('transformer_block_type', 'pre_ln'), headscale=encoder_cfg.get('headscale', False), parent_model_type=ModelType.encoder_and_decoder, num_self_attention_per_cross_attention=encoder_cfg.get('num_self_attention_per_cross_attention', 1), megatron_legacy=encoder_cfg.get('megatron_legacy', False), normalize_attention_scores=encoder_cfg.get('normalize_attention_scores', True), num_moe_experts=encoder_cfg.get('num_moe_experts', 1), moe_frequency=encoder_cfg.get('moe_frequency', 1), moe_dropout=encoder_cfg.get('moe_dropout', 0.0), position_embedding_type=encoder_cfg.get('position_embedding_type', 'learned_absolute'), use_flash_attention=encoder_cfg.get('use_flash_attention', False), ) if add_decoder: # If this is the decoder first stage if pre_process: # If the encoder also lies on this rank (PP = 1), then just assign embeddings directly. if hasattr(self, 'encoder_embedding') and share_token_embeddings: self.decoder_embedding = self.encoder_embedding else: # This is the case where PP > 1 and first decoder first stage, or when not sharing embeddings with encoder self.decoder_embedding = Embedding( config=self.config, hidden_size=decoder_cfg.hidden_size, vocab_size=vocab_size, max_sequence_length=max_position_embeddings, init_method=init_method_normal(embedding_init_method_std), num_tokentypes=num_tokentypes, dtype=self.dtype, embedding_dropout_prob=embedding_dropout, position_embedding_type=decoder_cfg.get('position_embedding_type', 'learned_absolute'), ) # We initialize decoder embeddings, but set them to zero since we they're tied with the encoder embeddings. # A later initialize_embedding call will synchronize the embeddings. if share_token_embeddings: self.decoder_embedding.zero_parameters() self._decoder_embedding_key = "decoder_embedding" if self.decoder_cfg.get('position_embedding_type', 'learned_absolute') == 'relative': self.decoder_relative_position_embedding = T5RelativePositionEmbedding( init_method=init_method_normal(embedding_init_method_std), num_attention_heads=decoder_cfg.num_attention_heads, relative_position_num_buckets=decoder_cfg.relative_attention_num_buckets, relative_position_max_distance=decoder_cfg.relative_attention_max_distance, bidirectional=False, layer_type=LayerType.decoder, ) self._decoder_relative_position_embedding_key = "decoder_relative_position_embedding" # Pipeline model parallel rank == split_rank will have the actual RPE weights. We zero it out on all other ranks and then sync them on setup. if ( parallel_state.get_pipeline_model_parallel_rank() != parallel_state.get_pipeline_model_parallel_split_rank() ): self.decoder_relative_position_embeddings_weight().data.fill_(0) self.decoder_relative_position_embeddings_weight().shared = True if not self.decoder_cfg.relative_position_bias_self_attention_only: self.decoder_cross_attention_relative_position_embedding = T5RelativePositionEmbedding( init_method=init_method_normal(embedding_init_method_std), num_attention_heads=decoder_cfg.num_attention_heads, relative_position_num_buckets=decoder_cfg.relative_attention_num_buckets, relative_position_max_distance=decoder_cfg.relative_attention_max_distance, bidirectional=True, layer_type=LayerType.decoder, ) self._decoder_cross_attention_relative_position_embedding_key = ( "decoder_cross_attention_relative_position_embedding" ) if ( parallel_state.get_pipeline_model_parallel_rank() != parallel_state.get_pipeline_model_parallel_split_rank() ): self.decoder_cross_attention_relative_position_embeddings_weight().data.fill_(0) self.decoder_cross_attention_relative_position_embeddings_weight().shared = True elif self.decoder_cfg.get('position_embedding_type', 'learned_absolute') == 'alibi': self.decoder_relative_position_embedding = ALiBiRelativePositionEmbedding( bidirectional=False, num_attention_heads=decoder_cfg.num_attention_heads, layer_type=LayerType.decoder, num_attention_heads_alibi=None, max_seq_len=max_position_embeddings, ) self._decoder_relative_position_embedding_key = "decoder_alibi_position_embedding" elif self.decoder_cfg.get('position_embedding_type', 'learned_absolute') == 'kerple': self.decoder_relative_position_embedding = KERPLERelativePositionEmbedding( bidirectional=False, num_attention_heads=decoder_cfg.num_attention_heads, layer_type=LayerType.decoder, num_attention_heads_kerple=None, max_seq_len=max_position_embeddings, ) self._decoder_relative_position_embedding_key = "decoder_kerple_position_embedding" else: self.decoder_relative_position_embedding = None if decoder_cfg.get('use_flash_attention', False) and decoder_cfg.get( 'position_embedding_type', 'learned_absolute' ) in ['relative', 'kerple']: raise ValueError('flash-attention not supported with relative or kerple at this point') decoder = get_decoder_model( config=config, arch=decoder_cfg.arch, hidden_size=decoder_cfg.hidden_size, ffn_hidden_size=decoder_cfg.ffn_hidden_size, num_layers=decoder_cfg.num_layers, num_attention_heads=decoder_cfg.num_attention_heads, apply_query_key_layer_scaling=decoder_cfg.get('apply_query_key_layer_scaling', True), kv_channels=decoder_kv_channels, init_method=init_method_normal(decoder_cfg.get('init_method_std', 0.02)), scaled_init_method=scaled_init_method_normal( decoder_cfg.get('init_method_std', 0.02), decoder_cfg.num_layers ), decoder_attn_mask_type=AttnMaskType.causal, pre_process=pre_process, post_process=post_process, init_method_std=decoder_cfg.get('init_method_std', 0.02), megatron_amp_O2=megatron_amp_O2, hidden_dropout=decoder_cfg.get('hidden_dropout', 0.1), attention_dropout=decoder_cfg.get('attention_dropout', 0.1), ffn_dropout=decoder_cfg.get('ffn_dropout', 0.0), precision=precision, fp32_residual_connection=decoder_cfg.get('fp32_residual_connection', False), activations_checkpoint_method=decoder_cfg.get('activations_checkpoint_method', None), activations_checkpoint_num_layers=decoder_cfg.get('activations_checkpoint_num_layers', 1), activations_checkpoint_granularity=decoder_cfg.get('activations_checkpoint_granularity', None), layernorm_epsilon=decoder_cfg.get('layernorm_epsilon', 1e-5), bias_activation_fusion=decoder_cfg.get('bias_activation_fusion', True), bias_dropout_add_fusion=decoder_cfg.get('bias_dropout_add_fusion', True), masked_softmax_fusion=decoder_cfg.get('masked_softmax_fusion', True), persist_layer_norm=decoder_cfg.get('persist_layer_norm', True), openai_gelu=decoder_cfg.get('openai_gelu', False), onnx_safe=decoder_cfg.get('onnx_safe', False), hidden_steps=decoder_cfg.get('hidden_steps', -1), activation=decoder_cfg.get('activation', 'gelu'), bias=decoder_cfg.get('bias', True), normalization=decoder_cfg.get('normalization', 'layernorm'), transformer_block_type=decoder_cfg.get('transformer_block_type', 'pre_ln'), headscale=decoder_cfg.get('headscale', False), parent_model_type=ModelType.encoder_and_decoder, megatron_legacy=decoder_cfg.get('megatron_legacy', False), normalize_attention_scores=decoder_cfg.get('normalize_attention_scores', True), num_moe_experts=decoder_cfg.get('num_moe_experts', 1), moe_frequency=decoder_cfg.get('moe_frequency', 1), moe_dropout=decoder_cfg.get('moe_dropout', 0.0), position_embedding_type=decoder_cfg.get('position_embedding_type', 'learned_absolute'), use_flash_attention=decoder_cfg.get('use_flash_attention', False), ) hiddens_module = get_hiddens_module(hiddens_cfg, model_parallel_cfg=config) self.enc_dec_model = MegatronTransformerEncoderDecoderModule( config=config, encoder=encoder, decoder=decoder, hidden_steps=encoder_cfg.get('hidden_steps', -1), hiddens_module=hiddens_module, ) self._enc_dec_model_key = "enc_dec_model" if self.share_token_embeddings: # This is only relevant for PP > 1. self.initialize_word_embeddings( init_method=init_method_normal(embedding_init_method_std), vocab_size=vocab_size, hidden_size=encoder_cfg.hidden_size, ) if add_decoder and post_process: if share_decoder_tokens_head_embeddings: self.tokens_head = MegatronTokenLevelHead( self.word_embeddings_weight().size(0), parallel_output, bias=tokens_head_bias ) else: self.tokens_head = tensor_parallel.ColumnParallelLinear( input_size=decoder_cfg.hidden_size, output_size=vocab_size, config=config, bias=tokens_head_bias, gather_output=not self.parallel_output, init_method=init_method_normal(decoder_cfg.init_method_std), ) self._tokens_head_key = 'tokens_head' def _validate_kv_channels(self, cfg): kv_channels = cfg.kv_channels if cfg.kv_channels is None: assert ( cfg.hidden_size % cfg.num_attention_heads == 0 ), 'hidden_size must be divisible by num_attention_heads if kv_channels is None' kv_channels = cfg.hidden_size // cfg.num_attention_heads return kv_channels def _validate_enc_dec_hidden_size(self, encoder_cfg, decoder_cfg): if encoder_cfg.hidden_size != decoder_cfg.hidden_size: raise ValueError( f"Encoder and decoder hidden_size must be equal, but got encoder: {encoder_cfg.hidden_size} and decoder: {decoder_cfg.hidden_size}" ) def _validate_perceiver_config(self, cfg): if ( cfg.get("position_embedding_type", "learned_absolute") == "relative" and cfg.get("arch", "transformer") == "perceiver" ): raise ValueError(f"Perceivers with relative position embeddings are not supported") def _validate_config(self): encoder_kv_channels = self._validate_kv_channels(self.encoder_cfg) decoder_kv_channels = self._validate_kv_channels(self.decoder_cfg) self._validate_enc_dec_hidden_size(self.encoder_cfg, self.decoder_cfg) self._validate_perceiver_config(self.encoder_cfg) self._validate_perceiver_config(self.decoder_cfg) if parallel_state.get_pipeline_model_parallel_world_size() > 1: assert ( self.share_token_embeddings ), "Token embeddings must be shared when using pipeline model parallel size > 1" assert ( self.share_decoder_tokens_head_embeddings ), "Decoder token embeddings and the outputlayer must be shared when using pipeline model parallel size > 1" assert ( self.hiddens_cfg is None ), "Hiddens module must not be enabled when using pipeline model parallel size > 1" return encoder_kv_channels, decoder_kv_channels def set_input_tensor(self, input_tensor): """ See megatron.model.transformer.set_input_tensor()""" # This is usually handled in schedules.py but some inference code still # gives us non-lists or None if not isinstance(input_tensor, list): input_tensor = [input_tensor] if self.add_encoder and self.add_decoder: assert ( len(input_tensor) == 1 ), 'input_tensor should only be length 1 for stage with both encoder and decoder' self.enc_dec_model.encoder.set_input_tensor(input_tensor[0]) elif self.add_encoder: assert len(input_tensor) == 1, 'input_tensor should only be length 1 for stage with only encoder' self.enc_dec_model.encoder.set_input_tensor(input_tensor[0]) elif self.add_decoder: if len(input_tensor) == 2: self.enc_dec_model.decoder.set_input_tensor(input_tensor[0]) self.enc_dec_model.encoder_hidden_state = input_tensor[1] elif len(input_tensor) == 1: self.enc_dec_model.decoder.set_input_tensor(None) self.enc_dec_model.encoder_hidden_state = input_tensor[0] else: raise Exception('input_tensor must have either length 1 or 2') else: raise Exception('Stage must have at least either encoder or decoder') def forward( self, enc_input_ids=None, enc_attn_mask=None, dec_input_ids=None, dec_attn_mask=None, token_type_ids=None, labels=None, batch_data=None, # additional data to be passed to hiddens module enc_output=None, # Result of running the entire encoder enc_output_attn_mask=None, enc_input=None, # Result of running encoder embedding only output_enc_hidden_only=False, ): """ Return value is per token / per dimension (i.e., non collapsed loss value) """ ( encoder_self_attention_relative_position_bias, decoder_self_attention_relative_position_bias, decoder_cross_attention_relative_position_bias, ) = (None, None, None) if enc_input is not None and enc_output is not None: raise ValueError( """Both enc_input and enc_output are not None. You should only be passing one of them. enc_input is the result of the encoder embedding layer enc_output is the result of running the entire transformer encoder.""" ) # In order of precedence, we use enc_output, enc_input, and then enc_input_ids to determine the encoder sequence length. if enc_output is not None: # If enc_output is provided in `batch_for_pipeline`, we need to transpose it from [B x S x H] -> [S x B x H]. enc_output = enc_output.transpose(0, 1) enc_seq_length = enc_output.size(0) elif enc_input is not None: # If enc_input is provided, we need to transpose it from [B x S x H] -> [S x B x H]. enc_input = enc_input.transpose(0, 1) enc_seq_length = enc_input.size(0) # Only need to run encoder embedding and position ids if enc_input or enc_output is not provided. elif enc_input_ids is not None: enc_seq_length = enc_input_ids.size(1) if self.pre_process and self.add_encoder: # We don't need position ids for RPE, because the embedding layer does not have position embeddings. if self.encoder_relative_position_embedding is None: enc_position_ids = build_position_ids(enc_input_ids) else: enc_position_ids = None enc_input = self.encoder_embedding(enc_input_ids, enc_position_ids, token_type_ids=token_type_ids) else: enc_input = None else: # This should only happen with PP > 1 for enc-dec prompt learning models enc_seq_length = enc_attn_mask.size(1) if self.add_encoder and self.encoder_relative_position_embedding is not None: encoder_self_attention_relative_position_bias = self.encoder_relative_position_embedding( query_seq_length=enc_seq_length, key_seq_length=enc_seq_length, ) if output_enc_hidden_only: # When pipeline parallel > 1 we need to make sure encoder exist (will be missing in decoder) if enc_output is None and self.enc_dec_model.encoder is not None: enc_output = self.enc_dec_model.encode( enc_input=enc_input, enc_attn_mask=enc_attn_mask, enc_layer_past=None, enc_get_key_value=False, enc_self_attention_relative_position_bias=encoder_self_attention_relative_position_bias, batch_data=batch_data, ) else: enc_output = self.enc_dec_model.encoder_hidden_state return enc_output else: if enc_output_attn_mask is None: enc_output_attn_mask = enc_attn_mask if self.pre_process and self.add_decoder: # We don't need position ids for RPE, because the embedding layer does not have position embeddings. if self.decoder_relative_position_embedding is None: dec_position_ids = build_position_ids(dec_input_ids) else: dec_position_ids = None dec_input = self.decoder_embedding(dec_input_ids, dec_position_ids, token_type_ids=token_type_ids) else: # Note: This is when the decoder itself is split across PP ranks. dec_input = None if self.add_decoder and self.decoder_relative_position_embedding is not None: decoder_self_attention_relative_position_bias = self.decoder_relative_position_embedding( query_seq_length=dec_input_ids.size(1), key_seq_length=dec_input_ids.size(1) ) if not self.decoder_cfg.relative_position_bias_self_attention_only: decoder_cross_attention_relative_position_bias = self.decoder_cross_attention_relative_position_embedding( query_seq_length=dec_input_ids.size(1), key_seq_length=enc_seq_length, ) else: decoder_cross_attention_relative_position_bias = None output = self.enc_dec_model( enc_input=enc_input, enc_attn_mask=enc_attn_mask, dec_input=dec_input, dec_attn_mask=dec_attn_mask, enc_layer_past=None, enc_get_key_value=False, enc_output=enc_output, enc_output_attn_mask=enc_output_attn_mask, dec_layer_past=None, dec_get_key_value=False, enc_self_attention_relative_position_bias=encoder_self_attention_relative_position_bias, dec_self_attention_relative_position_bias=decoder_self_attention_relative_position_bias, dec_cross_attention_relative_position_bias=decoder_cross_attention_relative_position_bias, batch_data=batch_data, ) if self.post_process and self.add_decoder: dec_output, enc_output = output # [s, b, h], enc_output might be a dict if hiddens_module is used # project decoder output to vocabulary-size dimensions if self.share_decoder_tokens_head_embeddings: token_logits = self.tokens_head(dec_output, self.word_embeddings_weight()) else: token_logits = self.tokens_head(dec_output)[0] if labels is not None: # compute loss here # [b, s] -> [s, b] labels = labels.transpose(0, 1).contiguous() # Set label smoothing to 0 if in eval mode. label_smoothing = self.label_smoothing if self.training else 0.0 # tensor_parallel.vocab_parallel_cross_entropy performs log_softmax and return log p(x_i|z) per token i if self.fp16_cross_entropy: assert token_logits.dtype == torch.half tokens_loss = vocab_parallel_cross_entropy(token_logits, labels, label_smoothing) else: tokens_loss = vocab_parallel_cross_entropy(token_logits.float(), labels, label_smoothing) # [s, b] -> [b, s] tokens_loss = tokens_loss.transpose(0, 1).contiguous() # check if hiddens is used if self.hiddens_cfg is not None: loss_dict = self.enc_dec_model.hiddens_module.apply_loss_transforms( outputs=enc_output, batch_data=batch_data, ) loss_dict["tokens_loss"] = tokens_loss # We need to store default output in a known key, so that we can mimic default behaviour loss_dict["output"] = tokens_loss return loss_dict else: return tokens_loss else: # else return token logits (and hiddens if needed) # [s, b, h] -> [b, s, h] token_logits = token_logits.transpose(0, 1).contiguous() if self.hiddens_cfg is not None: # return all hiddens and token logits hiddens_dict = enc_output hiddens_dict["token_logits"] = token_logits # We need to store default output in a known key, so that we can mimic default behaviour hiddens_dict["output"] = token_logits return hiddens_dict else: return token_logits elif self.add_decoder and not self.add_encoder: decoder_output, _ = output return decoder_output else: encoder_output = output return encoder_output def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load when model is combined with other heads, add an extra key.""" state_dict_ = {} state_dict_[self._encoder_embedding_key] = self.encoder_embedding.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) state_dict_[self._decoder_embedding_key] = self.decoder_embedding.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) state_dict_[self._enc_dec_model_key] = self.enc_dec_model.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) state_dict_[self._tokens_head_key] = self.tokens_head.state_dict_for_save_checkpoint( destination, prefix, keep_vars ) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" self.encoder_embedding.encoder_embeddingload_state_dict(state_dict[self._encoder_embedding_key], strict=strict) self.decoder_embedding.load_state_dict(state_dict[self._decoder_embedding_key], strict=strict) self.enc_dec_model.load_state_dict(state_dict[self._enc_dec_model_key], strict=strict) self.tokens_head.load_state_dict(state_dict[self._tokens_head_key], strict=strict)
NeMo-main
nemo/collections/nlp/modules/common/megatron/token_level_encoder_decoder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import logging import pickle import threading import time from typing import List, Union import faiss import numpy as np import torch from flask import Flask, jsonify, request from flask_restful import Api, Resource from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.language_modeling.megatron.indexed_retrieval_dataset import MMapRetrievalIndexedDataset from nemo.collections.nlp.modules.common.megatron.retrieval_services.util import lock, request_data class FaissRetrievalResource(Resource): """ Static Faiss Retrieval Flask resource. The PUT method is to get KNN tokens. """ def __init__( self, index, tokenizer, ds, query_bert_ip, query_bert_port, ): # server self.index = index self.tokenizer = tokenizer self.ds = ds self.query_bert_ip = query_bert_ip self.query_bert_port = query_bert_port self.chunk_size = ds.chunk_size pad_id = self.tokenizer.pad_id self.no_retrieval = np.ones((1, 1, 2 * self.chunk_size), dtype=ds._index.dtype) * pad_id def put(self): data = request.get_json() sentences = data['sentences'] num_neighbors = data['neighbors'] with lock: # Need to get lock to keep multiple threads from hitting code neighbors = self.get_knn(sentences, num_neighbors) return jsonify(neighbors.tolist()) # check keys def get_knn(self, query: Union[List[str], str, torch.Tensor], neighbors: int): if neighbors == 0: # use padding return np.repeat(self.no_retrieval, len(query), 0).astype(np.int64) single_sentence = False if isinstance(query, str): single_sentence = True query = [query] elif isinstance(query, torch.Tensor): sentence_list = [] for q in query: text = self.tokenizer.ids_to_text(q) sentence_list.append(text) query = sentence_list emb = request_data(query, self.query_bert_ip, self.query_bert_port) emb_data = base64.b64decode(emb.encode()) emb = pickle.loads(emb_data) if self.index.ntotal == 0: # A workaround to fix searching an empty Faiss index knn = [[-1] * neighbors for i in range(len(emb))] else: _, knn = self.index.search(emb, neighbors) results = [] for sentence_neighbors in knn: chunks = [] for neighbor_chunk_id in sentence_neighbors: chunk_id = self.ds.get_chunk(neighbor_chunk_id) chunks.append(chunk_id) chunks = np.stack(chunks, axis=0).astype(np.int64) results.append(chunks) if single_sentence: # unpack the single sentence input return results[0] return np.stack(results, axis=0).astype(np.int64) class RetrievalServer(object): """ Flask Retrieval server, which helps to get the KNN tokens given the query chunk """ def __init__( self, faiss_index: str, faiss_devices: str, nprobe: int, retrieval_index: str, tokenizer: TokenizerSpec, query_bert_ip: str, query_bert_port: int = None, ): self.app = Flask(__name__, static_url_path='') # server has_gpu = torch.cuda.is_available() and hasattr(faiss, "index_gpu_to_cpu") if faiss_devices is None or not torch.cuda.is_available(): device_list = None else: device_list = ['cuda:' + str(device) for device in faiss_devices.split(',')] self.index = faiss.read_index(faiss_index) if has_gpu and device_list is not None: beg = time.time() co = faiss.GpuMultipleClonerOptions() co.useFloat16 = True co.usePrecomputed = False co.shard = True self.index = faiss.index_cpu_to_all_gpus(self.index, co, ngpu=len(device_list)) end = time.time() logging.info(f'convert Faiss db to GPU takes {end - beg} s') self.index.nprobe = nprobe self.tokenizer = tokenizer self.ds = MMapRetrievalIndexedDataset(retrieval_index) api = Api(self.app) api.add_resource( FaissRetrievalResource, '/knn', resource_class_args=[self.index, self.tokenizer, self.ds, query_bert_ip, query_bert_port], ) def run(self, url, port=None): threading.Thread(target=lambda: self.app.run(host=url, threaded=True, port=port)).start()
NeMo-main
nemo/collections/nlp/modules/common/megatron/retrieval_services/static_retrieval_server.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import threading import requests headers = {"Content-Type": "application/json"} lock = threading.Lock() __all__ = ["request_data", "lock"] def request_data(data, ip='localhost', port=None): resp = requests.put(f'http://{ip}:{port}/knn', data=json.dumps(data), headers=headers) return resp.json() def text_generation(data, ip='localhost', port=None): resp = requests.put(f'http://{ip}:{port}/generate', data=json.dumps(data), headers=headers) return resp.json() def convert_retrieved_to_md(retrieved): output_str = '<table><tr><th>Query</th><th>Retrieved Doc</th></tr>' for item in retrieved: output_str += f'<tr><td rowspan="{len(item["neighbors"])}">{item["query"]}</td>' for i, neighbor in enumerate(item['neighbors']): if i == 0: output_str += f"<td>{neighbor}</td></tr>" else: output_str += f"<tr><td>{neighbor}</td></tr>" output_str += '</table>' return output_str
NeMo-main
nemo/collections/nlp/modules/common/megatron/retrieval_services/util.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
nemo/collections/nlp/modules/common/megatron/retrieval_services/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import logging import pickle import threading import time from collections import namedtuple from typing import List import faiss import numpy as np import torch from flask import Flask, jsonify, request from flask_restful import Api from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.modules.common.megatron.retrieval_services.static_retrieval_server import ( FaissRetrievalResource, ) from nemo.collections.nlp.modules.common.megatron.retrieval_services.util import lock, request_data # define this type to mimic the indexed dataset DType = namedtuple('DType', ['dtype']) class ChunkStore: """ ChunkStore maps chunk id to tokens. It is used as an in memory storage for dynamic retrieval DB. """ def __init__(self, chunk_size, pad_id): self.store = {} self._count = 0 self.no_retrieval = np.ones(2 * chunk_size, dtype=np.int64) * pad_id self.chunk_size = chunk_size self.store[-1] = self.no_retrieval field = DType(dtype=np.int64) self._index = field def add(self, chunk): self.store[self._count] = chunk self._count += 1 def get_chunk(self, neighbor_id): return self.store[neighbor_id] def reset(self): self._count = 0 self.store = {} self.store[-1] = self.no_retrieval class DynamicRetrievalResource(FaissRetrievalResource): """ Dynamic Faiss Retrieval Flask resource. The PUT method is to get KNN tokens, add new chunks, reset index. """ def __init__( self, index, tokenizer, chunk_size, stride, store, ctx_bert_ip, ctx_bert_port, query_bert_ip, query_bert_port, output_filename, ): super().__init__(index, tokenizer, store, query_bert_ip, query_bert_port) self.chunk_size = chunk_size self.stride = stride self.pad_id = self.tokenizer.pad_id self.ctx_bert_ip = ctx_bert_ip self.ctx_bert_port = ctx_bert_port self.output_filename = output_filename def put(self): data = request.get_json() if 'neighbors' in data: sentences = data['sentences'] # do knn query num_neighbors = data['neighbors'] with lock: # Need to get lock to keep multiple threads from hitting code neighbors = self.get_knn(sentences, num_neighbors) return jsonify(neighbors.tolist()) elif 'reset' in data: with lock: # Need to get lock to keep multiple threads from hitting code self.reset() return "success" elif 'index_name' in data: with lock: # serialize the index index = self.index if hasattr(faiss, 'index_gpu_to_cpu'): index = faiss.index_gpu_to_cpu(index) faiss.write_index(index, data['index_name'] + '_' + self.output_filename + '.index') # save the data with open(self.output_filename + '.pkl', 'bw') as f: pickle.dump(self.ds, f) return "success" else: sentences = data['sentences'] add_eos = data['add_eos'] # update the index with lock: # Need to get lock to keep multiple threads from hitting code self.add_docs_to_index(sentences, add_eos) return "success" def reset(self): self.index.reset() self.ds.reset() def add_docs_to_index(self, docs: List[str], add_eos: bool = True): """ Add documents to the Faiss index Args: docs: List[str], list of documents that is going to be added to the index add_eos: bool, whether add the eos in the end """ for doc in docs: token_ids = self.tokenizer.text_to_ids(doc) # append eos in the end if add_eos: token_ids.append(self.tokenizer.eos_id) np_array = np.array(token_ids, dtype=np.int32) padded_size = self.chunk_size - (len(np_array) % self.chunk_size) # for retrieval database, added one more chunk in the end as padding padded_size += self.chunk_size np_array = np.pad(np_array, (0, padded_size), 'constant', constant_values=self.pad_id) chunk_texts = [] for i in range(0, len(np_array), self.stride): if i + 2 * self.chunk_size <= len(np_array): chunk = np_array[i : i + 2 * self.chunk_size] self.ds.add(chunk) chunk_texts.append(self.tokenizer.ids_to_text(chunk)) emb = request_data(chunk_texts, self.ctx_bert_ip, self.ctx_bert_port) emb_data = base64.b64decode(emb.encode()) emb = pickle.loads(emb_data) self.index.add(emb) # add vectors to the index class DynamicRetrievalServer(object): """ Flask Dynamic Retrieval server, which helps to build dynamic retrieval index. """ def __init__( self, faiss_devices: str, tokenizer: TokenizerSpec, chunk_size: int = 64, stride: int = 32, faiss_index: str = None, store_file: str = None, ctx_bert_ip: str = None, ctx_bert_port: int = 0, query_bert_ip: str = None, query_bert_port: int = 0, output_filename: str = 'dynamic_db', ): self.app = Flask(__name__, static_url_path='') has_gpu = torch.cuda.is_available() and hasattr(faiss, "index_gpu_to_cpu") embedding_dim = request_data({}, ctx_bert_ip, ctx_bert_port)['dim'] if faiss_index is not None: self.index = faiss.read_index(faiss_index) else: self.index = faiss.IndexFlatL2(embedding_dim) # build the index self.pad_id = tokenizer.pad_id self.chunk_size = chunk_size self.stride = stride if store_file is not None: with open(store_file, 'rb') as f: self.store = pickle.load(f) else: self.store = ChunkStore(chunk_size, self.pad_id) if faiss_devices is None or not torch.cuda.is_available(): device_list = None else: device_list = ['cuda:' + str(device) for device in faiss_devices.split(',')] if has_gpu and device_list is not None: beg = time.time() co = faiss.GpuMultipleClonerOptions() co.useFloat16 = True co.usePrecomputed = False co.shard = True self.index = faiss.index_cpu_to_all_gpus(self.index, co, ngpu=len(device_list)) end = time.time() logging.info(f'convert Faiss db to GPU takes {end - beg} s') self.tokenizer = tokenizer api = Api(self.app) api.add_resource( DynamicRetrievalResource, '/knn', resource_class_args=[ self.index, self.tokenizer, self.chunk_size, self.stride, self.store, ctx_bert_ip, ctx_bert_port, query_bert_ip, query_bert_port, output_filename, ], ) def run(self, url, port=None): threading.Thread(target=lambda: self.app.run(host=url, threaded=True, port=port)).start()
NeMo-main
nemo/collections/nlp/modules/common/megatron/retrieval_services/dynamic_retrieval_server.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import pickle import threading import time from typing import List, Union import torch from flask import Flask, jsonify, request from flask_restful import Api, Resource from sentence_transformers import SentenceTransformer from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec BERT_RETRIEVER_PORT_NUM = 17190 class SentenceBertResource(Resource): """ SentenceBERT Flask resource. The PUT method is to get token/str embedding. """ def __init__( self, bert_model, tokenizer, pool, sentence_bert_batch, ): # server self.bert_model = bert_model self.tokenizer = tokenizer self.pool = pool self.sentence_bert_batch = sentence_bert_batch self.embedding_dim = self.bert_model.get_sentence_embedding_dimension() def put(self): data = request.get_json() if isinstance(data, dict): return jsonify({'dim': self.embedding_dim}) sentences = data emb = self.get_emb(sentences) str_emb = base64.b64encode(pickle.dumps(emb)) return str_emb.decode('ascii') def get_emb(self, query: Union[List[str], str, torch.Tensor]): if isinstance(query, str): query = [query] elif isinstance(query, torch.Tensor): sentence_list = [] for q in query: text = self.tokenizer.ids_to_text(q) sentence_list.append(text) query = sentence_list emb = self.bert_model.encode_multi_process( sentences=query, pool=self.pool, batch_size=self.sentence_bert_batch ) return emb class SentenceBertServer(object): """ Flask SentenceBERT server, which helps to calculate str/token embeddings """ def __init__( self, name: str, devices: str, tokenizer: TokenizerSpec, sentence_bert: str = 'all-mpnet-base-v2', sentence_bert_batch: int = 4, ): self.app = Flask(__name__, static_url_path='') if devices is None or not torch.cuda.is_available(): device_list = None else: device_list = ['cuda:' + str(device) for device in devices.split(',')] self.bert_model = SentenceTransformer(sentence_bert) self.name = name self.tokenizer = tokenizer self.pool = self.bert_model.start_multi_process_pool(device_list) self.sentence_bert_batch = sentence_bert_batch api = Api(self.app) api.add_resource( SentenceBertResource, '/knn', resource_class_args=[self.bert_model, self.tokenizer, self.pool, self.sentence_bert_batch,], ) def run(self, url, port=None): if port is None: port = BERT_RETRIEVER_PORT_NUM threading.Thread(target=lambda: self.app.run(host=url, threaded=True, port=port)).start() def start_sentence_bert_server( name: str, devices: str, tokenizer: TokenizerSpec, sentence_bert: str = 'all-mpnet-base-v2', sentence_bert_batch: int = 4, port: int = None, ): """ Start the sentence bert server method. It only starts the server at rank 0 worker. Doesn't support multiple nodes yet. """ # register the bert model port number server = SentenceBertServer(name, devices, tokenizer, sentence_bert, sentence_bert_batch,) server.run("0.0.0.0", port=port) # sleep to make sure the sentence bert server is full started. time.sleep(2)
NeMo-main
nemo/collections/nlp/modules/common/megatron/retrieval_services/bert_service.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import threading from typing import List, Union import faiss import numpy as np import torch from flask import Flask, jsonify, request from flask_restful import Api, Resource from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.modules.common.megatron.retrieval_services.retrieval_service import ( DynamicFaissRetrievalService, FaissRetrievalService, ) from nemo.collections.nlp.modules.common.megatron.retrieval_services.util import lock weights = None class ComboRetrievalResource(Resource): """ Combo Faiss Retrieval Flask resource. The PUT method is to get KNN tokens, add new chunks, reset index. """ def __init__(self, retrieval_services, weight_container): self.retrieval_services = retrieval_services self.updatable = any([service.updatable for service in retrieval_services]) self.weight_container = weight_container weights = np.array(weight_container[0]) # normalize the weights weights = weights / weights.sum() self.weight_container[0] = weights def put(self): data = request.get_json() if 'neighbors' in data: sentences = data['sentences'] # do knn query num_neighbors = data['neighbors'] with lock: # Need to get lock to keep multiple threads from hitting code neighbors = self.get_knn(sentences, num_neighbors) return jsonify(neighbors.tolist()) elif 'reset' in data: with lock: # Need to get lock to keep multiple threads from hitting code self.reset() return "success" elif 'update_weight' in data: with lock: self.update_weights(data['update_weight']) return "success" elif 'index_name' in data: with lock: # serialize the index index = self.index if hasattr(faiss, 'index_gpu_to_cpu'): index = faiss.index_gpu_to_cpu(index) faiss.write_index(index, data['index_name'] + '_' + self.output_filename + '.index') # save the data with open(self.output_filename + '.pkl', 'bw') as f: pickle.dump(self.ds, f) else: sentences = data['sentences'] add_eos = data['add_eos'] # update the index with lock: # Need to get lock to keep multiple threads from hitting code self.add_docs_to_index(sentences, add_eos) return "success" def reset(self): output = 'success' if not self.updatable: return 'no dynamic service, no action is performed' for i, service in enumerate(self.retrieval_services): if service.updatable: service.reset() return output def update_weights(self, weights): weights = np.array(weights) # normalize the weights weights = weights / weights.sum() self.weight_container[0] = weights def get_knn(self, query: Union[List[str], str, torch.Tensor], neighbors): weights = self.weight_container[0] if neighbors == 0: return self.retrieval_services[0].get_knn(query, 0) total_neighbors = 0 results = [] for i, service in enumerate(self.retrieval_services): k = int(neighbors * weights[i]) if i == len(self.retrieval_services) - 1: k = neighbors - total_neighbors total_neighbors += k if k == 0: # empty, skip it continue result = service.get_knn(query, k) results.append(result) return np.concatenate(results, axis=1) def add_docs_to_index(self, query: List[str], add_eos: bool = True): """ Add documents to the Faiss index Args: docs: List[str], list of documents that is going to be added to the index add_eos: bool, whether add the eos in the end """ output = 'success' if not self.updatable: if not self.updatable: return 'no dynamic service, no action is performed' for i, service in enumerate(self.retrieval_services): if service.updatable: service.add_docs_to_index(query, add_eos) return output def write_index(self, index_name: str): """ write the dynamic index into a file Args: index_name: str, index name """ output = 'success' if not self.updatable: if not self.updatable: return 'no dynamic service, no action is performed' for i, service in enumerate(self.retrieval_services): if service.updatable: service.write_index(index_name) return output class ComboRetrievalServer(object): """ Flask Combo Retrieval server, which helps to aggregate different retrieval services """ def __init__( self, tokenizer: TokenizerSpec, services_cfg: list, ): self.app = Flask(__name__, static_url_path='') services = [] weights = [] for service_cfg in services_cfg: weights.append(service_cfg.weight) if service_cfg.type == 'FaissRetrievalService': service = FaissRetrievalService( tokenizer=tokenizer, service_ip=service_cfg.service_ip, service_port=service_cfg.service_port ) elif service_cfg.type == 'DynamicFaissRetrievalService': service = DynamicFaissRetrievalService( tokenizer=tokenizer, service_ip=service_cfg.service_ip, service_port=service_cfg.service_port ) else: raise ValueError(f'Unsupported retrieval service {service_cfg.type}') services.append(service) self.weight_container = [weights] self.tokenizer = tokenizer api = Api(self.app) api.add_resource( ComboRetrievalResource, '/knn', resource_class_args=[services, self.weight_container,], ) def run(self, url, port=None): threading.Thread(target=lambda: self.app.run(host=url, threaded=True, port=port)).start()
NeMo-main
nemo/collections/nlp/modules/common/megatron/retrieval_services/combo_retrieval_server.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import logging import threading from typing import List, Union import numpy as np import torch from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.modules.common.megatron.retrieval_services.util import request_data log = logging.getLogger('retrieval') log.setLevel(logging.ERROR) lock = threading.Lock() PORT_NUM = 17179 PORT_NUM_DYN = 17180 class RetrievalService: """ Abstract class for Retrieval Service. """ @abc.abstractmethod def get_knn(self, query: Union[List[str], str, torch.Tensor], neighbors: int): """Get K-nearest neighbor chunks based on the input query Args: query (Union[List[str], str, torch.Tensor]): query str, list of str or token ids in torch.Tensor type neighbors (int): number of neighbors to query """ pass @abc.abstractmethod def add_docs_to_index(self, docs: List[str], add_eos: bool = True): """ Add documents to the Faiss index Args: docs: List[str], list of documents that is going to be added to the index add_eos: bool, whether add the eos in the end """ raise NotImplementedError() class FaissRetrievalService(RetrievalService): """ Static retrieval service client class. It implements the retrieval services interface, has a simple client to do KNN queries. """ def __init__( self, tokenizer: TokenizerSpec, service_ip: str = None, service_port: int = None, updatable: bool = False, ): self.updatable = updatable self.tokenizer = tokenizer self.service_ip = service_ip self.service_port = service_port def get_knn(self, query: Union[List[str], str, torch.Tensor], neighbors): """Get K-nearest neighbor chunks based on the input query Args: query (Union[List[str], str, torch.Tensor]): query str, list of str or token ids in torch.Tensor type neighbors (int): number of neighbors to query """ if isinstance(query, torch.Tensor): sentence_list = [] for q in query: text = self.tokenizer.ids_to_text(q) sentence_list.append(text) query = sentence_list data = {'sentences': query} data['neighbors'] = neighbors result = request_data(data, self.service_ip, self.service_port) result = np.array(result) return result class DynamicFaissRetrievalService(FaissRetrievalService): """ Dynamic retrieval service client class. It implements the retrieval services interface, has a simple client to add, reset and query the dynamic retrieval index. """ def __init__( self, tokenizer: TokenizerSpec, service_ip: str = None, service_port: int = None, ): super().__init__(tokenizer=tokenizer, service_ip=service_ip, service_port=service_port, updatable=True) def add_docs_to_index(self, query: List[str], add_eos: bool = True): """ Add documents to the Faiss index Args: docs: List[str], list of documents that is going to be added to the index add_eos: bool, whether add the eos in the end """ if isinstance(query, torch.Tensor): sentence_list = [] for q in query: text = self.tokenizer.ids_to_text(q) sentence_list.append(text) query = sentence_list data = {'sentences': query, 'add_eos': add_eos} return request_data(data, self.service_ip, self.service_port) def write_index(self, index_name: str): """ Write the dynamic index and document storage into file Args: index_name: str, the index name used for the file name """ data = {'index_name': index_name} return request_data(data, self.service_ip, self.service_port) def reset(self): """ Write the dynamic index and document storage into file Args: index_name: str, the index name used for the file name """ data = {'reset': None} return request_data(data, self.service_ip, self.service_port) class ComboRetrievalService(DynamicFaissRetrievalService): """ Combo retrieval service client class. It implements the retrieval services interface, has a simple client to add, reset, query, update weights """ def __init__( self, tokenizer: TokenizerSpec, service_ip: str = None, service_port: int = None, ): super().__init__(tokenizer=tokenizer, service_ip=service_ip, service_port=service_port) def update_weights(self, weights: List[float]): """ update the weights between the children services Args: weights (List[float]): weights for children services """ data = {"update_weight": weights} return request_data(data, self.service_ip, self.service_port)
NeMo-main
nemo/collections/nlp/modules/common/megatron/retrieval_services/retrieval_service.py
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) Microsoft Corporation. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE # Most of the code here has been copied from: # https://github.com/microsoft/mup
NeMo-main
nemo/collections/nlp/modules/common/megatron/mup/__init__.py
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) Microsoft Corporation. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE from copy import copy class InfDim: '''A dimension with a base dimension, used for calculating μP scaling. An `InfDim` object is made up of 2 numbers: a dimension and a base dimension. If the base dimension is None, then this object represents a "finite", or "non-width" dimension. Otherwise, it represents an "infinite", or "width" dimension. ''' def __init__(self, base_dim, dim): self.base_dim = base_dim self.dim = dim def isinf(self): return self.base_dim is not None def width_mult(self): '''Width multiplier used for calculating μP scaling. If finite, return 1. If infinite, return dim / base_dim. ''' if self.isinf(): return self.dim / self.base_dim return 1 def __repr__(self): return f'InfDim({self.base_dim}, {self.dim})' def __str__(self): if self.isinf(): return repr(self) return f'FinDim({self.dim})' def __eq__(self, other: object) -> bool: if not isinstance(other, InfDim): return False return self.base_dim == other.base_dim and self.dim == other.dim class InfShape(tuple): '''A tuple of `InfDim`s. This is intended to be attached to each parameter tensor `p` as `p.infshape`. ''' def __init__(self, *args, **kwargs): tuple.__init__(*args, **kwargs) for dim in self: if not isinstance(dim, InfDim): raise ValueError('Elements of InfShape needs to be of class InfDim') # set main to be the last dimension that is infinite # for inf x inf this is fanin # for inf x fin or fin x inf it's the unique inf dim # user can set this manually if necessary self.main_idx = self.main = None for i, dim in list(enumerate(self))[::-1]: if dim.isinf(): self.main_idx = i self.main = dim break def fanin_fanout(self): assert len(self) >= 2, 'fanin, fanout undefined for 1-dimensional weights' return self[1], self[0] def fanin_fanout_mult_ratio(self): fanin, fanout = self.fanin_fanout() return fanin.width_mult() / fanout.width_mult() def ninf(self): return sum(1 for dim in self if dim.isinf()) def width_mult(self): if self.main is not None: return self.main.width_mult() return 1 def base_shape(self): return [d.base_dim for d in self] def shape(self): return [d.dim for d in self] def __repr__(self): r = tuple.__repr__(self)[1:-1] return f'InfShape([{r}])' def serialize(self): d = {'base_shape': [], 'shape': []} for infdim in self: d['shape'].append(infdim.dim) d['base_shape'].append(infdim.base_dim) return d def __eq__(self, other: object) -> bool: if not isinstance(other, InfShape): return False return all(d == dd for d, dd in zip(self, other)) @classmethod def deserialize(cls, d): infshape = [] for base_dim, dim in zip(d['base_shape'], d['shape']): infshape.append(InfDim(base_dim, dim)) return InfShape(infshape) @classmethod def from_base_shape(cls, bsh): return InfShape([InfDim(bd, None) for bd in bsh]) def zip_infshape(base_dims, dims, fin_if_same=True): infshape = [] for bd, d in zip(base_dims, dims): if isinstance(bd, InfDim): # retain bd's base_dim but overwrite dim infdim = copy(bd) infdim.dim = d infshape.append(infdim) elif isinstance(bd, int): if bd == d and fin_if_same: infshape.append(InfDim(None, d)) else: infshape.append(InfDim(bd, d)) else: raise ValueError(f'unhandled base_dim type: {type(bd)}') return InfShape(infshape) if __name__ == '__main__': infshape = InfShape([InfDim(None, 100), InfDim(128, 1024), InfDim(128, 128)]) print(infshape) print(f'{infshape.ninf()} dims are inf') print(f'width_mult {infshape.width_mult()}') print(zip_infshape([64, 128, 1024], [32, 128, 2048]))
NeMo-main
nemo/collections/nlp/modules/common/megatron/mup/infshape.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) Microsoft Corporation. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE # Most of the code here has been copied from: # https://github.com/microsoft/mup import torch from nemo.collections.nlp.modules.common.megatron.module import MegatronModule from nemo.collections.nlp.modules.common.megatron.utils import parallel_lm_logits from nemo.utils import logging try: from megatron.core import parallel_state HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False class MuReadout(MegatronModule): """Drop-in replacement for all output linear layers. An "output" linear layer is one that maps from a width dimension (e.g., `d_model` in a Transformer) to a non-width dimension (e.g., vocab size). This layer implements the version of μP with a 1/width multiplier and a constant variance initialization for both weights and biases. Arguments: mpu_vocab_size: model parallel size of vocabulary. parallel_output: wether output logits being distributed or not. """ def __init__(self, mpu_vocab_size, parallel_output): super(MuReadout, self).__init__() self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size)) self.bias.model_parallel = True self.bias.partition_dim = 0 self.bias.stride = 1 self.parallel_output = parallel_output self.warn_once = False def forward(self, hidden_states, word_embeddings_weight): if hasattr(word_embeddings_weight, 'infshape'): width_mult = word_embeddings_weight.infshape.width_mult() else: width_mult = 1.0 if not self.warn_once: logging.warning("need to set_shape before use mu-Transfer readout layer") self.warn_once = True async_tensor_model_parallel_allreduce = parallel_state.get_tensor_model_parallel_world_size() > 1 output = parallel_lm_logits( hidden_states / width_mult, word_embeddings_weight, self.parallel_output, bias=self.bias, async_tensor_model_parallel_allreduce=async_tensor_model_parallel_allreduce, ) return output def rescale_linear_bias(linear): '''Rescale bias in nn.Linear layers to convert SP initialization to μP initialization. Warning: This method is NOT idempotent and should be called only once unless you know what you are doing. ''' if hasattr(linear, '_has_rescaled_params') and linear._has_rescaled_params: raise RuntimeError( "`rescale_linear_bias` has been called once before already. Unless you know what you are doing, usually you should not be calling `rescale_linear_bias` more than once.\n" "If you called `set_base_shapes` on a model loaded from a checkpoint, or just want to re-set the base shapes of an existing model, make sure to set the flag `rescale_params=False`.\n" "To bypass this error and *still rescale biases*, set `linear._has_rescaled_params=False` before this call." ) if linear.bias is None: return fanin_mult = linear.weight.infshape[1].width_mult() linear.bias.data *= fanin_mult ** 0.5 linear._has_rescaled_params = True
NeMo-main
nemo/collections/nlp/modules/common/megatron/mup/layer.py
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) Microsoft Corporation. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE # Most of the code here has been copied from: # https://github.com/microsoft/mup from copy import deepcopy import yaml from torch import nn from torch.nn import Linear from torch.nn.modules.conv import _ConvNd from nemo.collections.nlp.modules.common.megatron.mup.infshape import InfShape, zip_infshape from nemo.collections.nlp.modules.common.megatron.mup.layer import MuReadout, rescale_linear_bias __BSH_COMMENT__ = '''\ # This is a base shape file encoded in yaml # - `null` indicates a dimension is "finite", i.e. a non-"width" dimension # - a number indicates the base dimension of an "infinite" dimension, i.e. some notion of "width" ''' def get_shapes(model): return {name: param.shape for name, param in model.named_parameters()} def get_infshapes(model): return {name: param.infshape for name, param in model.named_parameters()} def save_base_shapes(model_or_shapes, file): if isinstance(model_or_shapes, nn.Module): sh = get_infshapes(model_or_shapes) elif isinstance(model_or_shapes, dict): sh = deepcopy(model_or_shapes) else: raise ValueError() sh = {k: s.base_shape() for k, s in sh.items()} s = yaml.dump(sh, None, indent=4) s = __BSH_COMMENT__ + s with open(file, 'w') as f: f.write(s) def load_base_shapes(filename): '''Get a dict of `InfShape` from a filename.''' with open(filename, 'r') as f: d = yaml.safe_load(f) return {k: InfShape.from_base_shape(v) for k, v in d.items()} def _dataparallel_hack(base_shapes, shapes): '''Fix module name discrepancy caused by (Distributed)DataParallel module. The parameters of a (Distributed)DataParallel module all have names that start with 'module'. This causes a mismatch from non-DataParallel modules. This function tries to match `base_shapes` to `shapes`: if the latter starts with 'module', then make the former too; likewise if not. ''' if all(k.startswith('module.') for k in shapes) and all(not k.startswith('module.') for k in base_shapes): return {'module.' + k: v for k, v in base_shapes.items()}, shapes if all(not k.startswith('module.') for k in shapes) and all(k.startswith('module.') for k in base_shapes): return {k.strip('module.'): v for k, v in base_shapes.items()}, shapes return base_shapes, shapes def _extract_shapes(x): ''' Input: x: can be any of the following: - `nn.Module` - dict of shapes - dict of `InfShape` - str of path to a base shapes (.bsh) file Output: If `x` is dict of `InfShape`, then output itself. If `x` is path, then output a dict of `InfShapes` loaded from `x`. Else, output the shapes (not `InfShape`) associated to `x` ''' if isinstance(x, nn.Module): x_shapes = get_shapes(x) elif isinstance(x, dict): x_shapes = deepcopy(x) elif isinstance(x, str): # x is file name x_shapes = load_base_shapes(x) else: raise ValueError(f'unhandled x type: {type(x)}') return x_shapes def _zip_infshape_dict(base_shapes, shapes): '''make a dict of `InfShape` from two dicts of shapes. Inputs: base_shapes: dict of base shapes or InfShape objects shapes: dict of shapes Output: dict of `InfShape` using `zip_infshape` ''' base_shapes, shapes = _dataparallel_hack(base_shapes, shapes) basenames = set(base_shapes.keys()) names = set(shapes.keys()) assert basenames == names, ( f'`base_shapes` has extra names {basenames - names}. ' f'`shapes` has extra names {names - basenames}.' ) infshapes = {} for name, bsh in base_shapes.items(): infshapes[name] = zip_infshape(bsh, shapes[name]) return infshapes def zip_infshapes(base, target): '''make a dict of `InfShape` from models or dicts. Inputs: base: a base `nn.Module` or a dict of shapes target: a target `nn.Module` or a dict of shapes Output: dict of `InfShape` using `zip_infshape` ''' base_shapes = _extract_shapes(base) target_shapes = _extract_shapes(target) return _zip_infshape_dict(base_shapes, target_shapes) def clear_dims(infshape_dict): ''' Input: infshape_dict: dict of `InfShape` Output: the same dict but where all `InfDim` in all `InfShape` have their `dim` attribute set to None ''' d = deepcopy(infshape_dict) for _, v in d.items(): for infdim in v: infdim.dim = None return d def make_base_shapes(base_shapes, delta_shapes, savefile=None): '''Make a base shape object from a base model/shapes and a delta model/shapes. Inputs: base: a base `nn.Module` or a dict of shapes delta: a "delta" model or a dict of shapes, for the sole purpose of determining which dimensions are "width" and will be scaled up and down in the target model. savefile: if a string, then the resulting base shape object is serialized to this location via yaml encoding. Outputs: base infshapes ''' bsh = clear_dims(zip_infshapes(base_shapes, delta_shapes)) if savefile is not None: save_base_shapes(bsh, savefile) return bsh def apply_infshapes(model, infshapes): for name, p in model.named_parameters(): p.infshape = infshapes[name] def set_base_shapes(model, base, rescale_params=True, delta=None, savefile=None, do_assert=True): '''Sets the `p.infshape` attribute for each parameter `p` of `model`. Inputs: model: nn.Module instance base: The base model. Can be nn.Module, a dict of shapes, a str, or None. If None, then defaults to `model` If str, then treated as filename for yaml encoding of a dict of base shapes. rescale_params: assuming the model is initialized using the default pytorch init (or He initialization etc that scale the same way with fanin): If True (default), rescales parameters to have the correct (μP) variances. do_assert: Output: same object as `model`, after setting the `infshape` attribute of each parameter. ''' if base is None: base = model base_shapes = _extract_shapes(base) if delta is not None: delta_shapes = _extract_shapes(delta) base_shapes = _zip_infshape_dict(base_shapes, delta_shapes) shapes = get_shapes(model) infshapes = _zip_infshape_dict(base_shapes, shapes) if savefile is not None: save_base_shapes(infshapes, savefile) apply_infshapes(model, infshapes) if do_assert: assert_hidden_size_inf(model) if rescale_params: for name, module in model.named_modules(): if isinstance(module, MuReadout): module._rescale_parameters() elif isinstance(module, (Linear, _ConvNd)): rescale_linear_bias(module) return model def assert_hidden_size_inf(model): ''' This tests for any `nn.Linear` whose output dimension is finite but input dimension is infinite and is not of type `MuReadout`. Such `nn.Linear` modules should not exist in a correctly parametrized models. ''' for name, module in model.named_modules(): if isinstance(module, Linear) and not isinstance(module, MuReadout): if not module.weight.infshape[0].isinf() and module.weight.infshape[1].isinf(): assert False, ( f'{name} has infinite fan-in and finite fan-out dimensions but is not type `MuReadout`. ' 'To resolve this, either change the module to `MuReadout` or change the fan-out to an infinite dimension.' )
NeMo-main
nemo/collections/nlp/modules/common/megatron/mup/shape.py
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) Microsoft Corporation. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE # Most of the code here has been copied from: # https://github.com/microsoft/mup ''' Initializer functions mirroring those of `torch.nn.init`. They serve as drop-in replacements after the user has called `set_base_shapes` on their model. All of the initializers here are designed to 1) behave exactly the same as the torch versions when the model shapes are equal to their base shapes, and 2) to scale with width correctly (according to μP), when the model shapes differ from the base shapes. In general, this means deviating from the torch version behaviors. ''' import math import warnings import torch from torch.nn.init import ( _calculate_correct_fan, _calculate_fan_in_and_fan_out, _no_grad_fill_, _no_grad_normal_, _no_grad_uniform_, calculate_gain, ) def constant_std_init_(tensor, sampler_): assert hasattr(tensor, 'infshape'), 'Please call set_base_shapes(...)' if tensor.infshape.ninf() <= 1: sampler_(tensor) elif tensor.infshape.ninf() == 2: sampler_(tensor, scale=tensor.infshape.width_mult() ** -0.5) else: raise NotImplementedError() return tensor def uniform_(tensor, a=0, b=1): '''Drop-in replacement of `torch.nn.init.uniform_`. Note: - if using this function, ensure `a` and `b` do not depend on fan-in, fan-out, or other notions of width, e.g. if a = 0, b = 1. - `tensor` should have `infshape` attribute set by `set_base_shapes`. ''' assert hasattr(tensor, 'infshape'), 'Please call set_base_shapes(...)' if a != -b: assert tensor.infshape.ninf() == 1, 'Sampler for (inf, inf) tensors should have mean 0' def sampler_(tensor, scale=1): _no_grad_uniform_(tensor, a * scale, b * scale) return constant_std_init_(tensor, sampler_) def normal_(tensor, mean=0, std=1): '''Drop-in replacement of `torch.nn.init.normal_`. Note: - if using this function, ensure `mean` and `std` do not depend on fan-in, fan-out, or other notions of width, e.g. if mean = 0, std = 1. - `tensor` should have `infshape` attribute set by `set_base_shapes`. ''' if mean != 0: assert tensor.infshape.ninf() == 1, 'Sampler for (inf, inf) tensors should have mean 0' def sampler_(tensor, scale=1): _no_grad_normal_(tensor, mean=mean * scale, std=std * scale) return constant_std_init_(tensor, sampler_) def ones_(tensor): '''Same as `torch.nn.init.ones_`. Note: - `tensor` should have `infshape` attribute set by `set_base_shapes`. ''' assert tensor.infshape.ninf() == 1, 'Sampler for (inf, inf) tensors should have mean 0' def sampler_(tensor, scale=1): _no_grad_fill_(tensor, scale) return constant_std_init_(tensor, sampler_) def eye_(tensor): '''Same as `torch.nn.init.eye_`. Note: - `tensor` should have `infshape` attribute set by `set_base_shapes`. ''' assert tensor.infshape.ninf() == 1, 'Sampler for (inf, inf) tensors should have mean 0' return torch.nn.init.eye_(tensor) def _inf_fan_adjust_xavier(scale, tensor): fan_out, fan_in = tensor.infshape[:2] # following are needed to accomodate SP models where all infshapes are finite so base_dims are Nones fan_out_base_dim = fan_out.base_dim or fan_out.dim fan_in_base_dim = fan_in.base_dim or fan_in.dim scale *= math.sqrt((fan_out.dim + fan_in.dim) / (fan_out_base_dim + fan_in_base_dim)) if tensor.infshape.ninf() <= 1: # should have fixed scale pass elif tensor.infshape.ninf() == 2: # should scale like fanin assert fan_out.isinf() and fan_in.isinf() scale /= math.sqrt(fan_in.width_mult()) else: raise NotImplementedError('can only handle 2 inf dimensions currently') return scale def xavier_uniform_(tensor, gain=1.0): '''Drop-in replacement of `torch.nn.init.xavier_uniform_`. Note: - if using this function, ensure `gain` does not depend on fan-in, fan-out, or other notions of width, e.g. if gain = 1. - `tensor` should have `infshape` attribute set by `set_base_shapes`. ''' fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) std = _inf_fan_adjust_xavier(std, tensor) a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation return _no_grad_uniform_(tensor, -a, a) def xavier_normal_(tensor, gain=1.0): '''Drop-in replacement of `torch.nn.init.xavier_normal_`. Note: - if using this function, ensure `gain` does not depend on fan-in, fan-out, or other notions of width, e.g. if gain = 1. - `tensor` should have `infshape` attribute set by `set_base_shapes`. ''' fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) std = _inf_fan_adjust_xavier(std, tensor) return _no_grad_normal_(tensor, 0.0, std) def _inf_fan_adjust_kaiming(scale, tensor, mode): fan_out, fan_in = tensor.infshape[:2] if tensor.infshape.ninf() == 0: return scale elif tensor.infshape.ninf() == 1: # should have fixed scale if mode == 'fan_in' and fan_in.isinf(): scale *= fan_in.width_mult() ** 0.5 elif mode == 'fan_out' and fan_out.isinf(): scale *= fan_out.width_mult() ** 0.5 elif tensor.infshape.ninf() == 2: # should scale like fanin assert fan_out.isinf() and fan_in.isinf() if mode == 'fan_out': scale *= math.sqrt(fan_out.width_mult() / fan_in.width_mult()) else: raise NotImplementedError('can only handle <=2 inf dimensions currently') return scale def kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu'): '''Drop-in replacement of `torch.nn.init.kaiming_normal_`. Note: - if using this function, ensure `a` does not depend on fan-in, fan-out, or other notions of width, e.g. if a = 0. - `tensor` should have `infshape` attribute set by `set_base_shapes`. ''' if 0 in tensor.shape: warnings.warn("Initializing zero-element tensors is a no-op") return tensor fan = _calculate_correct_fan(tensor, mode) gain = calculate_gain(nonlinearity, a) std = _inf_fan_adjust_kaiming(gain / math.sqrt(fan), tensor, mode) with torch.no_grad(): return tensor.normal_(0, std) def kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu'): '''Drop-in replacement of `torch.nn.init.kaiming_uniform_`. Note: - if using this function, ensure `a` does not depend on fan-in, fan-out, or other notions of width, e.g. if a = 0. - `tensor` should have `infshape` attribute set by `set_base_shapes`. ''' if 0 in tensor.shape: warnings.warn("Initializing zero-element tensors is a no-op") return tensor fan = _calculate_correct_fan(tensor, mode) gain = calculate_gain(nonlinearity, a) std = _inf_fan_adjust_kaiming(gain / math.sqrt(fan), tensor, mode) bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation with torch.no_grad(): return tensor.uniform_(-bound, bound) try: from torch.nn.init import _no_grad_trunc_normal_ def trunc_normal_(tensor, mean=0, std=1, a=-2, b=2): '''Drop-in replacement of `torch.nn.init.trunc_normal_`. Note: - if using this function, ensure `mean`, `std`, `a`, `b` do not depend on fan-in, fan-out, or other notions of width, e.g. if mean = 0, std = 1, a = -2, b = 2. - `tensor` should have `infshape` attribute set by `set_base_shapes`. ''' if mean != 0 or a != -b: assert tensor.infshape.ninf() == 1, 'Sampler for (inf, inf) tensors should have mean 0' def sampler_(tensor, scale=1): _no_grad_trunc_normal_(tensor, mean=mean * scale, std=std * scale, a=a * scale, b=b * scale) return constant_std_init_(tensor, sampler_) except (ImportError, ModuleNotFoundError): warnings.warn( 'Failed to import _no_grad_trunc_normal_ from torch.nn.init; ' 'you might be running an older version of torch. trunc_normal_ will not work.' ) def trunc_normal_(tensor, mean=0, std=1, a=-2, b=2): warnings.warn('Please upgrade your Pytorch version before using truncated normal.')
NeMo-main
nemo/collections/nlp/modules/common/megatron/mup/init.py
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) Microsoft Corporation. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE # Most of the code here has been copied from: # https://github.com/microsoft/mup ''' Optimizers with μP scaling. Here we provide 3 ready-to-go optimizers MuAdam, MuAdamW, and MuSGD. However, the user can easily convert their own optimizer to a μP optimizer: if your `optimizer` is "Adam-like", such as RMSProp and Adagrad, that involves normalizing the gradient entrywise, then the following creates the desired μP optimizer: def MuOptimizer(params, **kwargs): return MuAdam(params, impl=optimizer, **kwargs) On the other hand, if your `optimizer` is "SGD-like", such as ASGD, then the following creates the desired μP optimizer: def MuOptimizer(params, **kwargs): return MuSGD(params, impl=optimizer, **kwargs) See Appendix B in our paper for discussions of other optimizers. ''' from collections import defaultdict from torch.optim import SGD, Adam, AdamW def process_param_groups(params, **kwargs): param_groups = list(params) if not isinstance(param_groups[0], dict): param_groups = [{'params': param_groups}] for param_group in param_groups: if 'lr' not in param_group: param_group['lr'] = kwargs['lr'] if 'weight_decay' not in param_group: param_group['weight_decay'] = kwargs.get('weight_decay', 0.0) return param_groups def MuAdam(params, impl=Adam, decoupled_wd=True, **kwargs): '''Adam with μP scaling. Note for this to work properly, your model needs to have its base shapes set already using `mup.set_base_shapes`. Inputs: impl: the specific Adam-like optimizer implementation from torch.optim or elsewhere decoupled_wd: if True, skips the mup scaling for weight decay, which should be used for optimizer implementations that decouple weight decay from learning rate. See https://github.com/microsoft/mup/issues/1 for a use case. Outputs: An instance of `impl` with refined parameter groups, each of which has the correctly scaled learning rate according to mup. ''' new_param_groups = [] for param_group in process_param_groups(params, **kwargs): # For every existing param group, we split into several new groups def new_group(): new_g = {k: v for k, v in param_group.items() if k != 'params'} new_g['params'] = [] return new_g # The matrix-like weights might need multiple groups since weights # might have different width multipliers matrix_like_p = defaultdict(new_group) # key is width_mult vector_like_p = new_group() for p in param_group['params']: assert hasattr(p, 'infshape'), ( f'A parameter with shape {p.shape} does not have `infshape` attribute. ' 'Did you forget to call `mup.set_base_shapes` on the model?' ) if p.infshape.ninf() == 2: matrix_like_p[p.infshape.width_mult()]['params'].append(p) elif p.infshape.ninf() > 2: raise NotImplementedError('more than 2 inf dimensions') else: vector_like_p['params'].append(p) for width_mult, group in matrix_like_p.items(): # Scale learning rate and weight decay accordingly group['lr'] /= width_mult if not decoupled_wd: group['weight_decay'] *= width_mult new_param_groups.extend(list(matrix_like_p.values()) + [vector_like_p]) return impl(new_param_groups, **kwargs) def MuAdamW(params, **kwargs): '''AdamW with μP scaling. Note for this to work properly, your model needs to have its base shapes set already using `mup.set_base_shapes`. ''' return MuAdam(params, impl=AdamW, **kwargs) def MuSGD(params, impl=SGD, decoupled_wd=False, **kwargs): '''SGD with μP scaling. Note for this to work properly, your model needs to have its base shapes set already using `mup.set_base_shapes`. Inputs: impl: the specific SGD-like optimizer implementation from torch.optim or elsewhere decoupled_wd: if True, skips the mup scaling for weight decay, which should be used for optimizer implementations that decouple weight decay from learning rate. See https://github.com/microsoft/mup/issues/1 for a use case. Outputs: An instance of `impl` with refined parameter groups, each of which has the correctly scaled learning rate according to mup. ''' new_param_groups = [] for param_group in process_param_groups(params, **kwargs): # For every existing param group, we split into several new groups def new_group(): new_g = {k: v for k, v in param_group.items() if k != 'params'} new_g['params'] = [] return new_g # The matrix-like weights might need multiple groups since weights # might have different width multipliers vector_like_p = defaultdict(new_group) # key is width mult matrix_like_p = defaultdict(new_group) # key is fan_in/out ratio fixed_p = new_group() for p in param_group['params']: assert hasattr(p, 'infshape'), ( f'A parameter with shape {p.shape} does not have `infshape` attribute. ' 'Did you forget to call `mup.set_base_shapes` on the model?' ) if p.infshape.ninf() == 1: vector_like_p[p.infshape.width_mult()]['params'].append(p) elif p.infshape.ninf() == 2: matrix_like_p[p.infshape.fanin_fanout_mult_ratio()]['params'].append(p) elif p.infshape.ninf() > 2: raise NotImplementedError('more than 2 inf dimensions') else: fixed_p['params'].append(p) for width_mult, group in vector_like_p.items(): # Scale learning rate and weight decay accordingly group['lr'] *= width_mult if not decoupled_wd: group['weight_decay'] /= width_mult for shape_ratio, group in matrix_like_p.items(): group['lr'] /= shape_ratio if not decoupled_wd: group['weight_decay'] *= shape_ratio new_param_groups.extend(list(matrix_like_p.values()) + list(vector_like_p.values()) + [fixed_p]) return impl(new_param_groups, **kwargs)
NeMo-main
nemo/collections/nlp/modules/common/megatron/mup/optim.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
nemo/collections/nlp/modules/common/megatron/adapters/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from megatron.core.models.gpt.gpt_embedding import GPTEmbedding from megatron.core.transformer.attention import SelfAttention from megatron.core.transformer.transformer_layer import TransformerLayer from megatron.core.utils import make_viewless_tensor from nemo.collections.nlp.modules.common.megatron.adapters.parallel_adapters import ( AdapterName, LoraKQVAdapterConfig, ParallelLinearAdapterConfig, PromptEncoderAdapterConfig, ) from nemo.core import adapter_mixins def swap_mcore_mixin(module, mcore_mixin): """ Casts module to mcore_mixin and register corresponding adapters. """ module.__class__ = mcore_mixin module.mcore_register_adapters() class MCoreAdapterModuleMixin(adapter_mixins.AdapterModuleMixin): def mcore_register_adapters(self): """ Performs any necessary setup after swapping class. Must use self.set_accepted_adapter_types([<NeMo adapter config>_target_]) to register adapter. """ raise NotImplementedError("Mcore mixins should implement setup_adapters on a subclass of MyBase") class MCoreSelfAttentionMixin(SelfAttention, MCoreAdapterModuleMixin): def mcore_register_adapters(self): """ Setup NeMo LoRA adapter to this MCore layer. """ self.set_accepted_adapter_types([LoraKQVAdapterConfig._target_]) # only self attn (packed qkv) for now self.linear_qkv.return_layernorm_output = True # need layernorm output for lora mlp def get_query_key_value_tensors(self, hidden_states, key_value_states=None): """ Derives `query`, `key` and `value` tensors from `hidden_states`. """ # Attention heads [sq, b, h] --> [sq, b, ng * (np/ng + 2) * hn)] (mixed_qkv, layernorm_output), _ = self.linear_qkv(hidden_states) # LoRA logic if self.is_adapter_available(): lora_kqv_adapter = self.get_adapter_module(AdapterName.LORA_KQV_ADAPTER) if lora_kqv_adapter: lora_mixed_qkv = lora_kqv_adapter(layernorm_output) mixed_qkv = mixed_qkv + lora_mixed_qkv # [sq, b, hp] --> [sq, b, ng, (np/ng + 2) * hn] new_tensor_shape = mixed_qkv.size()[:-1] + ( self.num_query_groups_per_partition, ( (self.num_attention_heads_per_partition // self.num_query_groups_per_partition + 2) * self.hidden_size_per_attention_head ), ) mixed_qkv = mixed_qkv.view(*new_tensor_shape) # [sq, b, ng, (np/ng + 2) * hn] --> [sq, b, ng, np/ng * hn], [sq, b, ng, hn], [sq, b, ng, hn] (query, key, value) = torch.split( mixed_qkv, [ ( self.num_attention_heads_per_partition // self.num_query_groups_per_partition * self.hidden_size_per_attention_head ), self.hidden_size_per_attention_head, self.hidden_size_per_attention_head, ], dim=3, ) # [sq, b, ng, np/ng * hn] -> [sq, b, np, hn] query = query.reshape(query.size(0), query.size(1), -1, self.hidden_size_per_attention_head) return query, key, value class MCoreGPTEmbeddingMixin(GPTEmbedding, MCoreAdapterModuleMixin): def mcore_register_adapters(self): """ Setup NeMo ptuning adapter to this MCore layer. """ self.set_accepted_adapter_types([PromptEncoderAdapterConfig._target_]) def forward(self, input_ids, position_ids): encoder_input = super().forward(input_ids, position_ids) if self.is_adapter_available(): _sq, _bs, _hs = encoder_input.size() ptuning_adapter = self.get_adapter_module(AdapterName.PTUNING_ADAPTER) v = ptuning_adapter.virtual_tokens if ptuning_adapter and _sq >= v: # The sequence should be longer the v to insert virtual embeddings. virtual_embeddings = ptuning_adapter(_bs) encoder_input = encoder_input[ v:, :, : ] # the first v tokens are pads so that they can be swapped out with virtual embeddings. encoder_input = torch.concat([virtual_embeddings, encoder_input], dim=0) return encoder_input class MCoreTransformerLayerMixin(TransformerLayer, MCoreAdapterModuleMixin): def mcore_register_adapters(self): self.set_accepted_adapter_types([ParallelLinearAdapterConfig._target_]) def forward( self, hidden_states, attention_mask, encoder_output=None, enc_dec_attn_mask=None, inference_params=None, rotary_pos_emb=None, ): # hidden_states: [s, b, h] # Layer norm at the beginning of the transformer layer. layernorm_output = self.input_layernorm(hidden_states) # Self attention. attention_output_with_bias = self.self_attention( layernorm_output, attention_mask, inference_params=inference_params, rotary_pos_emb=rotary_pos_emb, ) # adapter logic if self.is_adapter_available(): adapter_1 = self.get_adapter_module(AdapterName.PRE_ATTN_ADAPTER) if adapter_1: attention_output, bias = attention_output_with_bias attention_output = ( adapter_1(attention_output) + attention_output ) # simple adapter call with residual connection attention_output_with_bias = (attention_output, bias) # Residual connection. if self.config.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = hidden_states # bias_dropout_add fusion returning fp32 instead of bf16 with self.bias_dropout_add_exec_handler(): layernorm_input = self.bias_dropout_add_func( attention_output_with_bias, residual, self.config.hidden_dropout ) # Layer norm post the self attention. layernorm_output = self.post_self_attn_layernorm(layernorm_input) # MLP. mlp_output_with_bias = self.mlp(layernorm_output) # adapter logic if self.is_adapter_available(): adapter_2 = self.get_adapter_module(AdapterName.POST_ATTN_ADAPTER) if adapter_2: mlp_output, bias = mlp_output_with_bias mlp_output = adapter_2(mlp_output) + mlp_output # simple adapter call with residual connection mlp_output_with_bias = (mlp_output, bias) # Second residual connection. if self.config.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = layernorm_input with self.bias_dropout_add_exec_handler(): output = self.bias_dropout_add_func(mlp_output_with_bias, residual, self.config.hidden_dropout) # Jit compiled function creates 'view' tensor. This tensor # potentially gets saved in the MPU checkpoint function context, # which rejects view tensors. While making a viewless tensor here # won't result in memory savings (like the data loader, or # p2p_communication), it serves to document the origin of this # 'view' tensor. output = make_viewless_tensor(inp=output, requires_grad=output.requires_grad, keep_graph=True) return output
NeMo-main
nemo/collections/nlp/modules/common/megatron/adapters/mcore_mixins.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum import logging from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn import torch.nn.init as init from nemo.collections.common.parts.adapter_modules import AdapterModuleUtil from nemo.collections.common.parts.utils import activation_registry from nemo.collections.nlp.modules.common.megatron.fused_bias_gelu import fused_bias_gelu from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults, init_method_const, init_method_normal from nemo.core.classes.mixins import adapter_mixin_strategies try: from apex.normalization.fused_layer_norm import MixedFusedLayerNorm HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False try: from megatron.core import ModelParallelConfig from megatron.core.tensor_parallel import ColumnParallelLinear, RowParallelLinear HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): ModelParallelConfig = ApexGuardDefaults HAVE_MEGATRON_CORE = False class AdapterName(str, enum.Enum): """ Names for adapters used in NLP Adapters and IA3. Note: changing this will break backward compatibility. """ MLP_INFUSED = "mlp_infused_adapter" KEY_INFUSED = "key_infused_adapter" VALUE_INFUSED = "value_infused_adapter" PRE_ATTN_ADAPTER = 'adapter_1' POST_ATTN_ADAPTER = 'adapter_2' PTUNING_ADAPTER = "ptuning_adapter" LORA_KQV_ADAPTER = "lora_kqv_adapter" LORA_KV_ADAPTER = "lora_kv_adapter" LORA_Q_ADAPTER = "lora_q_adapter" class InfusedAdapter(nn.Module, AdapterModuleUtil): def __init__( self, in_features: int, model_parallel_config: Optional[ModelParallelConfig] = None, **kwargs ) -> None: super().__init__() if model_parallel_config is None: model_parallel_config = ModelParallelConfig() self.scalers = nn.Parameter(torch.ones(in_features)) # cast all parameters when using amp O2 training if model_parallel_config.bf16: self.bfloat16() elif model_parallel_config.fp16: self.half() # Setup adapter strategy self.setup_adapter_strategy(adapter_mixin_strategies.ReturnResultAdapterStrategy()) def forward(self, x): x = x * self.scalers[None, None, :] return x class MLPInfusedAdapter(InfusedAdapter): """ MLPInfusedAdapter is basically a clone of InfusedAdapter. We do this to make the adapter_mixin agnostic to adapter names and only check adapter class types. """ pass @dataclass class InfusedAdapterConfig: in_features: int _target_: str = "{0}.{1}".format(InfusedAdapter.__module__, InfusedAdapter.__name__) @dataclass class MLPInfusedAdapterConfig(InfusedAdapterConfig): _target_: str = "{0}.{1}".format(MLPInfusedAdapter.__module__, MLPInfusedAdapter.__name__) class ParallelLinearAdapter(nn.Module, AdapterModuleUtil): def __init__( self, in_features: int, out_features: int, dim: int, activation: str = 'swish', norm_position: Optional[str] = 'post', norm_type: Optional[str] = 'mixedfusedlayernorm', column_init_method: str = 'xavier', # TODO: (@adithyare) should rename this to input_init_method to be more precise. row_init_method: str = 'zero', # TODO: (@adithyare) should rename this to output_init_method to be more precise. gather_output: bool = True, dropout: float = 0.0, model_parallel_config: Optional[ModelParallelConfig] = None, **kwargs, ): super().__init__() if not HAVE_APEX: logging.info("Apex is required to use ParallelLinearAdapters.") raise RuntimeError("ParallelLinearAdapter can not run without Apex.") if not HAVE_MEGATRON_CORE: logging.info("Megatron-core is required to use ParallelLinearAdapters.") raise RuntimeError("ParallelLinearAdapter can not run without Megatron-core.") self.activation = activation_registry[activation]() self.norm_position = norm_position # megatron_gpt_peft_models will provide this arg, but deprecated ones do not. # in case this arg is not provided, use the dummy default config. if model_parallel_config is None: model_parallel_config = ModelParallelConfig() self.linear_in = ColumnParallelLinear( in_features, dim, config=model_parallel_config, bias=False, gather_output=True, init_method=self._get_init_fn(column_init_method), ) if gather_output: self.linear_out = RowParallelLinear( dim, out_features, config=model_parallel_config, bias=False, init_method=self._get_init_fn(row_init_method), ) else: # (@adithyare) we use this option to mirror the behavior a column parallel layer with two low-rank column parallel layers # if the original column parallel layer uses gather_output=False, then we will use the self.liner_out layer defined below. self.linear_out = ColumnParallelLinear( dim, out_features, config=model_parallel_config, bias=False, gather_output=False, init_method=self._get_init_fn(row_init_method), ) if self.norm_position in ["pre", "post"]: ln_features = in_features if self.norm_position == "pre" else out_features if norm_type == 'mixedfusedlayernorm': self.layer_norm = MixedFusedLayerNorm(ln_features, 1e-5, sequence_parallel_enbaled=False) elif norm_type == 'layernorm': self.layer_norm = nn.LayerNorm(ln_features) else: raise NotImplementedError("norm_type should be either mixedfusedlayernorm or layernorm") else: self.layer_norm = None if dropout > 0.0: self.dropout = nn.Dropout(dropout) else: self.dropout = None # cast all parameters when using amp O2 training if model_parallel_config.bf16: self.bfloat16() elif model_parallel_config.fp16: self.half() # Setup adapter strategy self.setup_adapter_strategy(adapter_mixin_strategies.ReturnResultAdapterStrategy()) def _get_init_fn(self, init_method: str): if init_method == 'xavier': init_fn = init.xavier_normal_ elif init_method == 'normal': init_fn = init_method_normal(0.2) elif init_method == "zero": init_fn = init_method_const(0.0) else: raise NotImplementedError("out_init_method should be zero, normal or xavier") return init_fn def adapter_unfreeze(self,): """ Can be customized to allow for selective training of only some params in the PEFT. """ super().adapter_unfreeze() def forward(self, x): if self.norm_position == 'pre': x = self.layer_norm(x) x, _ = self.linear_in(x) # (@adithyare) ColumnLinear returns output and bias, we are ignoring the bias term. x = self.activation(x) x, _ = self.linear_out(x) if self.norm_position == 'post': x = self.layer_norm(x) # Add dropout if available if self.dropout is not None: x = self.dropout(x) return x @dataclass class ParallelLinearAdapterConfig: in_features: int out_features: int dim: int activation: str = 'swish' norm_position: Optional[str] = 'post' norm_type: Optional[str] = 'mixedfusedlayernorm' column_init_method: str = 'xavier' row_init_method: str = 'zero' gather_output: bool = True dropout: float = 0.0 _target_: str = "{0}.{1}".format(ParallelLinearAdapter.__module__, ParallelLinearAdapter.__name__) class LoraKQVAdapter(ParallelLinearAdapter): """ Lora Adapters are the same arch as regular adapters but with potentially different input and output feature sizes and they do not use an bottleneck activation function """ pass class LoraKVAdapter(ParallelLinearAdapter): """ Lora Adapters are the same arch as regular adapters but with potentially different input and output feature sizes and they do not use an bottleneck activation function """ pass class LoraQAdapter(ParallelLinearAdapter): """ Lora Adapters are the same arch as regular adapters but with potentially different input and output feature sizes and they do not use an bottleneck activation function """ pass @dataclass class LoraKQVAdapterConfig(ParallelLinearAdapterConfig): _target_: str = "{0}.{1}".format(LoraKQVAdapter.__module__, LoraKQVAdapter.__name__) @dataclass class LoraQAdapterConfig(ParallelLinearAdapterConfig): _target_: str = "{0}.{1}".format(LoraQAdapter.__module__, LoraQAdapter.__name__) @dataclass class LoraKVAdapterConfig(ParallelLinearAdapterConfig): _target_: str = "{0}.{1}".format(LoraKVAdapter.__module__, LoraKVAdapter.__name__) class PromptEncoderAdapter(nn.Module, AdapterModuleUtil): """ The Tensor Parallel MLP prompt encoder network that is used to generate the virtual token embeddings for p-tuning. It only have two layers. TODO: (@adithyare) Need to add all the functionality from the PromptEncoder class """ def __init__( self, virtual_tokens: int, bottleneck_dim: int, embedding_dim: int, init_std: float, output_dim: int, model_parallel_config: Optional[ModelParallelConfig] = None, **kwargs, ): """ Initializes the Tensor Model parallel MLP PromptEncoderMLP module. Args: virtual_tokens: the number of vitural tokens hidden_size: hidden dimension output_size: the output dimension init_std: the MLP init std value """ super().__init__() self.bottleneck_dim = bottleneck_dim self.embedding_dim = embedding_dim self.output_dim = output_dim self.virtual_tokens = virtual_tokens self.activation = "gelu" if model_parallel_config is None: model_parallel_config = ModelParallelConfig() sequence_parallel = False gradient_accumulation_fusion = False # (@adithyare) the persistent=False will not pollute the indices into the state_dict of this module. self.register_buffer("indices", torch.LongTensor(list(range(self.virtual_tokens))), persistent=False) self.embedding = torch.nn.Embedding(self.virtual_tokens, self.embedding_dim) self.register_buffer("inference_table", torch.Tensor(self.virtual_tokens, self.output_dim), persistent=True) self.is_inference_ready = False self.first = ColumnParallelLinear( self.embedding_dim, self.bottleneck_dim, config=model_parallel_config, gather_output=False, init_method=init_method_normal(init_std), skip_bias_add=True, bias=True, ) self.second = RowParallelLinear( self.bottleneck_dim, self.output_dim, config=model_parallel_config, input_is_parallel=True, init_method=init_method_normal(init_std), skip_bias_add=True, bias=True, ) # cast all parameters when using amp O2 training if model_parallel_config.bf16: self.bfloat16() elif model_parallel_config.fp16: self.half() # Setup adapter strategy self.setup_adapter_strategy(adapter_mixin_strategies.ReturnResultAdapterStrategy()) def set_inference_table(self, prompt_representation: torch.Tensor): """ This method caches the output representation from the Encoder and saves it inside `self.inference_table`. """ prompt_representation = prompt_representation.detach().clone() self.inference_table.data = prompt_representation self.is_inference_ready = True return True def clear_inference_table(self,): self.inference_table.fill_(0.0) self.is_inference_ready = False def get_inference_table(self,): return self.inference_table.data def inner_forward(self,): input_embeds = self.embedding(self.indices).unsqueeze(0) intermediate_parallel, bias_parallel = self.first(input_embeds) intermediate_parallel = fused_bias_gelu(intermediate_parallel, bias_parallel) output_embeds, bias_parallel = self.second(intermediate_parallel) output_embeds = output_embeds + bias_parallel output_embeds = output_embeds.transpose(0, 1) return output_embeds def forward(self, batch_size: int, use_cached_reps: bool = False) -> torch.Tensor: """ Forward pass through the encoder with caching of prompt representations """ if use_cached_reps: output_embeds = self.get_inference_table().unsqueeze(1) else: if self.training: if self.is_inference_ready: self.clear_inference_table() output_embeds = self.inner_forward() else: output_embeds = self.inner_forward() if not self.is_inference_ready: output_embeds = self.inner_forward() self.set_inference_table(output_embeds.squeeze(1)) output_embeds = self.get_inference_table().unsqueeze(1) output_embeds = output_embeds.expand(self.virtual_tokens, batch_size, self.output_dim) return output_embeds @dataclass class PromptEncoderAdapterConfig: virtual_tokens: int bottleneck_dim: int embedding_dim: int init_std: float output_dim: int _target_: str = "{0}.{1}".format(PromptEncoderAdapter.__module__, PromptEncoderAdapter.__name__) class ParallelLinearAdapterWeightTying(ParallelLinearAdapter): """ Extends parallel linear adapter for weight tying by providing a position embedding and convenience methods for tying weights """ def __init__( self, in_features: int, out_features: int, dim: int, activation: str = 'swish', norm_position: Optional[str] = 'post', norm_type: Optional[str] = 'mixedfusedlayernorm', column_init_method: str = 'xavier', # TODO: (@adithyare) should rename this to input_init_method to be more precise. row_init_method: str = 'zero', # TODO: (@adithyare) should rename this to output_init_method to be more precise. gather_output: bool = True, dropout: float = 0.0, num_position_embeddings: int = 1, dim_position_embeddings: int = 1024, position_embedding_strategy: Optional[str] = "add", model_parallel_config: Optional[ModelParallelConfig] = None, **kwargs, ): self.position_embeddings = None self.mlp = None self.position_embedding_strategy = position_embedding_strategy assert self.position_embedding_strategy in ["add", "concat", "mlpconcat", "biasadd", None] if self.position_embedding_strategy == "concat": in_features += dim_position_embeddings elif self.position_embedding_strategy == "mlpconcat": in_features += dim_position_embeddings elif self.position_embedding_strategy == "biasadd": assert ( out_features == dim_position_embeddings ), "adapter output feature size should match position emb size to bias add" elif self.position_embedding_strategy == "add": assert ( in_features == dim_position_embeddings ), "adapter input feature size should match position emb size to add" super().__init__( in_features, out_features, dim, activation, norm_position, norm_type, column_init_method, row_init_method, gather_output, dropout, model_parallel_config, **kwargs, ) if self.position_embedding_strategy: self.position_embeddings = torch.nn.Embedding(num_position_embeddings, dim_position_embeddings) self.position_embeddings.weight.data.fill_(0.0) if self.position_embedding_strategy == "mlpconcat": self.mlp = torch.nn.Sequential( torch.nn.Linear(dim_position_embeddings, dim_position_embeddings, bias=False), torch.nn.GELU(), torch.nn.Linear(dim_position_embeddings, dim_position_embeddings, bias=False), ) self.register_buffer("position_id", torch.LongTensor([1]), persistent=False) def set_position(self, position_id): self.position_id *= position_id def tie_weights(self, position_id, adapter): self.set_position(position_id) if self.linear_in: self.linear_in.weight = adapter.linear_in.weight if self.linear_out: self.linear_out.weight = adapter.linear_out.weight if self.layer_norm: self.layer_norm.weight = adapter.layer_norm.weight self.layer_norm.bias = adapter.layer_norm.bias if self.mlp: self.mlp[0].weight = adapter.mlp[0].weight self.mlp[2].weight = adapter.mlp[2].weight if self.position_embeddings: self.position_embeddings.weight = adapter.position_embeddings.weight return True def forward(self, x): if self.position_embedding_strategy: pos = self.position_embeddings(self.position_id).unsqueeze(0) if self.position_embedding_strategy == "add": pos = pos.expand_as(x) x = x + pos elif self.position_embedding_strategy == "concat": pos = pos.expand(x.shape[0], x.shape[1], pos.shape[2]) x = torch.cat((x, pos), dim=2) elif self.position_embedding_strategy == "mlpconcat": pos = pos.expand(x.shape[0], x.shape[1], pos.shape[2]) pos = self.mlp(pos) x = torch.cat((x, pos), dim=2) if self.norm_position == 'pre': x = self.layer_norm(x) x, _ = self.linear_in(x) # (@adithyare) ColumnLinear returns output and bias, we are ignoring the bias term. x = self.activation(x) x, _ = self.linear_out(x) if self.norm_position == 'post': x = self.layer_norm(x) if self.position_embedding_strategy == "biasadd": pos = pos.expand_as(x) x = x + pos # Add dropout if available if self.dropout is not None: x = self.dropout(x) return x @dataclass class ParallelLinearAdapterWeightTyingConfig: in_features: int out_features: int dim: int activation: str = 'swish' norm_position: Optional[str] = 'post' norm_type: Optional[str] = 'mixedfusedlayernorm' column_init_method: str = 'xavier' row_init_method: str = 'zero' gather_output: bool = True dropout: float = 0.0 num_position_embeddings: int = 1 dim_position_embeddings: int = 1024 position_embedding_strategy: Optional[str] = "concat" _target_: str = "{0}.{1}".format( ParallelLinearAdapterWeightTying.__module__, ParallelLinearAdapterWeightTying.__name__ ) class LoraKQVAdapterWeightTying(ParallelLinearAdapterWeightTying): """ TODO """ pass @dataclass class LoraKQVAdapterWeightTyingConfig(ParallelLinearAdapterWeightTyingConfig): _target_: str = "{0}.{1}".format(LoraKQVAdapterWeightTying.__module__, LoraKQVAdapterWeightTying.__name__)
NeMo-main
nemo/collections/nlp/modules/common/megatron/adapters/parallel_adapters.py
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from einops import rearrange from torch import einsum, nn __all__ = ['RotaryEmbedding', 'apply_rotary_pos_emb'] class RotaryEmbedding(nn.Module): """ Implements Rotary Position Embedding from https://arxiv.org/abs/2104.09864. """ def __init__(self, dim: int, seq_len_interpolation_factor: int = None): """ Args: dim (int): rotary embedding dimension seq_len_interpolation_factor (int): if not None, discrete positions will be interpolated by this factor via the trick in https://arxiv.org/abs/2306.15595. """ super().__init__() self.seq_len_interpolation_factor = seq_len_interpolation_factor inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, max_seq_len, offset=0): seq = torch.arange(max_seq_len, device=self.inv_freq.device) + offset if self.seq_len_interpolation_factor is not None: seq = seq.type_as(self.inv_freq) seq *= 1 / self.seq_len_interpolation_factor freqs = einsum('i , j -> i j', seq.type_as(self.inv_freq), self.inv_freq) # first part even vector components, second part odd vector components, # 2 * dim in dimension size emb = torch.cat((freqs, freqs), dim=-1) # emb [seq_length, .., dim] return rearrange(emb, 'n d -> n 1 1 d') def _rotate_half(x): """ change sign so the last dimension [A, B, C, D] -> [-C, -D, A, B] """ x = rearrange(x, '... (j d) -> ... j d', j=2) x1, x2 = x.unbind(dim=-2) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(t, freqs): """ input tensor t is of shape [seq_length, ..., dim] rotary positional embeding tensor freqs is of shape [seq_length, ..., dim] check https://kexue.fm/archives/8265 for detailed formulas """ rot_dim = freqs.shape[-1] # ideally t_pass is empty so rotary pos embedding is applied to all tensor t t, t_pass = t[..., :rot_dim], t[..., rot_dim:] # first part is cosine component # second part is sine component, need to change signs with _rotate_half method t = (t * freqs.cos()) + (_rotate_half(t) * freqs.sin()) return torch.cat((t, t_pass), dim=-1)
NeMo-main
nemo/collections/nlp/modules/common/megatron/position_embedding/rotary_position_embedding.py
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch __all__ = ['ALiBiRelativePositionEmbedding'] def get_slopes(n): def get_slopes_power_of_2(n): start = 2 ** (-(2 ** -(math.log2(n) - 3))) ratio = start return [start * ratio ** i for i in range(n)] if math.log2(n).is_integer(): slopes = get_slopes_power_of_2(n) else: closest_power_of_2 = 2 ** math.floor(math.log2(n)) slopes = ( get_slopes_power_of_2(closest_power_of_2) + get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2] ) return slopes def build_slopes(num_attention_heads, num_attention_heads_alibi): """ Builds a slopes tensor. """ slopes = ( torch.Tensor(get_slopes(num_attention_heads_alibi) + [0] * (num_attention_heads - num_attention_heads_alibi)) .unsqueeze(-1) .unsqueeze(-1) ) if torch.cuda.is_available(): slopes = slopes.to(torch.cuda.current_device()) return slopes def build_relative_position(max_seq_len, full=True): """ full=True: shape (max_seq_len, max_seq_len) full=False: shape (max_seq_len) """ relative_position = torch.arange(1 - max_seq_len, 1)[None, :].mul(-1) # (1, max_seq_len) if full: memory_position = torch.arange(1 - max_seq_len, 1)[:, None].mul(-1) relative_position = torch.abs(memory_position - relative_position) # (max_seq_len, max_seq_len) if torch.cuda.is_available(): relative_position = relative_position.to(torch.cuda.current_device()) return relative_position class ALiBiRelativePositionEmbedding(torch.nn.Module): """ ALiBi (Attention with Linear Biases) relative position embedding for auto-regressive decoder and joint encoder (symmetric for forward and backward distance). Based on https://arxiv.org/bas/2108.12409 """ def __init__( self, bidirectional, num_attention_heads, layer_type, num_attention_heads_alibi=None, max_seq_len=512, ): """ Args: bidirectional: Whether to use bidirectional relative position embedding num_attention_heads: Number of attention heads layer_type: Layer type. Can be one of [LayerType.encoder or LayerType.decoder]. Willdetermine the bias construction num_attention_heads_alibi: Number of attention heads for which alibi bias will be used max_seq_len: Maximum sequence length for precomputed relative positions. Larger sizes will result in more memory usage by computing alibi mask on-the-fly. """ super().__init__() if (num_attention_heads_alibi is None) or (num_attention_heads_alibi <= 0): num_attention_heads_alibi = num_attention_heads if num_attention_heads_alibi > num_attention_heads: raise ValueError( f"num_attention_heads_alibi ({num_attention_heads_alibi}) cannot be larger than num_attention_heads ({num_attention_heads})" ) self.bidirectional = bidirectional self.num_attention_heads = num_attention_heads # LayerType.encoder or LayerType.decoder. Is only needed to determine the group for the all_reduce self.layer_type = layer_type # define the size of pre-computed relative position slopes. # define the number of attention heads for which alibi mask will be pre-computed (the rest are disabled). self.num_attention_heads_alibi = num_attention_heads_alibi # Larger sizes will result in more memory usage by computing alibi mask on-the-fly. self.max_seq_len = max_seq_len # cache the slopes self.slopes = build_slopes(num_attention_heads, num_attention_heads_alibi) # cache the relative position bias. shape (num_attention_heads, max_seq_len, max_seq_len) # if we use causal attention (not bidrectional), we can use singleton relative position self.relative_position = ( build_relative_position(max_seq_len, full=bidirectional).unsqueeze(0).expand(num_attention_heads, -1, -1) ) def forward(self, query_seq_length, key_seq_length): # used cached relative position if possible max_seq_len = max(query_seq_length, key_seq_length) if max_seq_len > self.max_seq_len: relative_position = ( build_relative_position(max_seq_len, full=self.bidirectional) .unsqueeze(0) .expand(self.num_attention_heads, -1, -1) ) else: relative_position = self.relative_position # shape (num_attention_heads, query_seq_length, key_seq_length) relative_position = relative_position[:, -query_seq_length:, -key_seq_length:] # if not bidirectional, mask out the future positions # shape (1, num_heads, query_length, key_length) return -relative_position.unsqueeze(0) * self.slopes
NeMo-main
nemo/collections/nlp/modules/common/megatron/position_embedding/alibi_relative_position_embedding.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from einops import rearrange from nemo.utils.decorators import experimental def fixed_pos_embedding(x): seq_len, dim = x.shape inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim)) sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x) return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) def rotate_every_two(x): x1 = x[:, :, ::2] x2 = x[:, :, 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\ def duplicate_interleave(m): """ A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy. """ dim0 = m.shape[0] m = m.view(-1, 1) # flatten the matrix m = m.repeat(1, 2) # repeat all elements into the 2nd dimension m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy return m def apply_rotary_pos_emb(x, sin, cos, scale=1): sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos)) # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2) return (x * cos) + (rotate_every_two(x) * sin) @experimental class XPOSPositionEmbedding(nn.Module): def __init__(self, head_dim, scale_base=2048): super().__init__() self.head_dim = head_dim self.scale_base = scale_base self.register_buffer("scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim)) def forward(self, x, offset=0, downscale=False): length, b = x.shape[0], x.shape[1] x = rearrange(x, 's b np hn -> (b np) s hn') min_pos = -(length + offset) // 2 max_pos = length + offset + min_pos scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None] sin, cos = fixed_pos_embedding(scale) if scale.shape[0] > length: scale = scale[-length:] sin = sin[-length:] cos = cos[-length:] if downscale: scale = 1 / scale x = apply_rotary_pos_emb(x, sin, cos, scale) x = rearrange(x, '(b np) s hn -> s b np hn', b=b) return x
NeMo-main
nemo/collections/nlp/modules/common/megatron/position_embedding/xpos_position_embedding.py
# coding=utf-8 # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.modules.common.megatron.position_embedding.alibi_relative_position_embedding import ( ALiBiRelativePositionEmbedding, ) from nemo.collections.nlp.modules.common.megatron.position_embedding.kerple_relative_position_embedding import ( KERPLERelativePositionEmbedding, ) from nemo.collections.nlp.modules.common.megatron.position_embedding.rotary_position_embedding import RotaryEmbedding from nemo.collections.nlp.modules.common.megatron.position_embedding.sandwich_relative_position_embedding import ( SandwichRelativePositionEmbedding, ) from nemo.collections.nlp.modules.common.megatron.position_embedding.t5_relative_position_embedding import ( T5RelativePositionEmbedding, ) from nemo.collections.nlp.modules.common.megatron.position_embedding.xpos_position_embedding import ( XPOSPositionEmbedding, )
NeMo-main
nemo/collections/nlp/modules/common/megatron/position_embedding/__init__.py
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch from nemo.collections.nlp.modules.common.megatron.position_embedding.alibi_relative_position_embedding import ( build_relative_position, build_slopes, ) __all__ = ['KERPLERelativePositionEmbedding'] class KERPLERelativePositionEmbedding(torch.nn.Module): """ kerple (Attention with Linear Biases) relative position embedding for auto-regressive decoder and joint encoder (symmetric for forward and backward distance). Based on https://arxiv.org/bas/2108.12409 """ def __init__( self, bidirectional, num_attention_heads, layer_type, num_attention_heads_kerple=None, max_seq_len=512, ): """ Args: bidirectional: Whether to use bidirectional relative position embedding num_attention_heads: Number of attention heads layer_type: Layer type. Can be one of [LayerType.encoder or LayerType.decoder]. Willdetermine the bias construction num_attention_heads_kerple: Number of attention heads for which kerple bias will be used max_seq_len: Maximum sequence length for precomputed relative positions. Larger sizes will result in more memory usage by computing kerple mask on-the-fly. """ super().__init__() if (num_attention_heads_kerple is None) or (num_attention_heads_kerple <= 0): num_attention_heads_kerple = num_attention_heads if num_attention_heads_kerple > num_attention_heads: raise ValueError( f"num_attention_heads_kerple ({num_attention_heads_kerple}) cannot be larger than num_attention_heads ({num_attention_heads})" ) self.bidirectional = bidirectional self.num_attention_heads = num_attention_heads # LayerType.encoder or LayerType.decoder. Is only needed to determine the group for the all_reduce self.layer_type = layer_type # define the size of pre-computed relative position slopes. # define the number of attention heads for which kerple mask will be pre-computed (the rest are disabled). self.num_attention_heads_kerple = num_attention_heads_kerple # Larger sizes will result in more memory usage by computing kerple mask on-the-fly. self.max_seq_len = max_seq_len # initialize the slopes self.kerple_b = torch.nn.Parameter(build_slopes(num_attention_heads, num_attention_heads_kerple)) self.kerple_a = torch.nn.Parameter(torch.ones_like(self.kerple_b)) self.kerple_p = torch.nn.Parameter(torch.ones_like(self.kerple_b)) # cache the relative position bias. shape (num_attention_heads, max_seq_len, max_seq_len) # if we use causal attention (not bidrectional), we can use singleton relative position self.relative_position = ( build_relative_position(max_seq_len, full=True).unsqueeze(0).expand(num_attention_heads, -1, -1) ) def forward(self, query_seq_length, key_seq_length): # used cached relative position if possible max_seq_len = max(query_seq_length, key_seq_length) if max_seq_len > self.max_seq_len: relative_position = ( build_relative_position(max_seq_len, full=True).unsqueeze(0).expand(self.num_attention_heads, -1, -1) ) else: relative_position = self.relative_position # shape (num_attention_heads, query_seq_length, key_seq_length) relative_position = relative_position[:, -query_seq_length:, -key_seq_length:] # if not bidirectional, mask out the future positions if not self.bidirectional: relative_position = torch.tril(relative_position) # shape (1, num_heads, query_length, key_length) return -self.kerple_b * torch.log(1 + self.kerple_a * relative_position.unsqueeze(0).pow(self.kerple_p))
NeMo-main
nemo/collections/nlp/modules/common/megatron/position_embedding/kerple_relative_position_embedding.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch class T5RelativePositionEmbedding(torch.nn.Module): """Relative Position Embedding implementation from the T5 paper : https://arxiv.org/abs/1910.10683""" def __init__( self, init_method, bidirectional, num_attention_heads, layer_type, relative_position_num_buckets=32, relative_position_max_distance=128, ): super(T5RelativePositionEmbedding, self).__init__() self.relative_position_num_buckets = relative_position_num_buckets self.relative_position_max_distance = relative_position_max_distance self.self_attention_relative_position_bucket = None self.inter_attention_relative_position_bucket = None self.self_attention_relative_position_bias = None self.inter_attention_relative_position_bias = None self.bidirectional = bidirectional # LayerType.encoder or LayerType.decoder. Is only needed to determine the group for the all_reduce self.layer_type = layer_type # Relative position Embedding # Relative Position embedding (all attention layers). self.relative_position_embedding = torch.nn.Embedding(self.relative_position_num_buckets, num_attention_heads) self._relative_position_embedding_key = 'relative_position_embedding' init_method(self.relative_position_embedding.weight) def _relative_position_bucket(self, relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from HuggingFace T5 Model: https://github.com/huggingface/transformers/blob/b5e2b183af5e40e33a4dc7659e697d137259d56e /src/transformers/models/t5/modeling_t5.py#L354 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_postion_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_postion_if_large = torch.min( relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_postion_if_large) return relative_buckets def _compute_relative_position_bucket(self, query_length, key_length): """ Adapted from HuggingFace T5 Model https://github.com/huggingface/transformers/blob/b5e2b183af5e40e33a4dc7659e697d137259d56e/ src/transformers/models/t5/modeling_t5.py#L401 """ """Compute binned relative position bias""" device = self.relative_position_embedding.weight.device context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket_tensor = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=self.bidirectional, num_buckets=self.relative_position_num_buckets, max_distance=self.relative_position_max_distance, ) return relative_position_bucket_tensor def _compute_relative_position_bias(self, relative_position_bucket): # shape (query_length, key_length, num_heads) values = self.relative_position_embedding(relative_position_bucket) # shape (1, num_heads, query_length, key_length) values = values.permute([2, 0, 1]).unsqueeze(0) return values def forward(self, query_seq_length, key_seq_length): self_attention_relative_position_bucket = self._compute_relative_position_bucket( query_seq_length, key_seq_length ) return self._compute_relative_position_bias(self_attention_relative_position_bucket)
NeMo-main
nemo/collections/nlp/modules/common/megatron/position_embedding/t5_relative_position_embedding.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from nemo.collections.nlp.modules.common.megatron.position_embedding.alibi_relative_position_embedding import ( build_relative_position, ) from nemo.utils.decorators import experimental __all__ = ['SandwichRelativePositionEmbedding'] @experimental class SandwichRelativePositionEmbedding(torch.nn.Module): """ Dissecting Transformer Length Extrapolation via the Lens of Receptive Field Analysis Based on https://arxiv.org/abs/2212.10356 """ def __init__( self, bidirectional, num_attention_heads, layer_type, hidden_size, max_seq_len=512, ): """ Args: num_attention_heads: Number of attention heads hidden_size: Hidden size per attention head """ super().__init__() self.bidirectional = bidirectional self.layer_type = layer_type self.num_attention_heads = num_attention_heads self.hidden_size = hidden_size self.max_seq_len = max_seq_len self.relative_position = build_relative_position(max_seq_len, full=True) def forward(self, query_seq_length, key_seq_length): # used cached relative position if possible max_seq_len = max(query_seq_length, key_seq_length) if max_seq_len > self.max_seq_len: relative_position = build_relative_position(max_seq_len, full=True) else: relative_position = self.relative_position # shape (query_seq_length, key_seq_length) relative_position = relative_position[-query_seq_length:, -key_seq_length:] # if not bidirectional, mask out the future positions if not self.bidirectional: relative_position = torch.tril(relative_position) inv_freq = 1.0 / ( 10000 ** (2 * torch.arange(1, self.hidden_size / 2 + 1, device=relative_position.device) / self.hidden_size) ) _bias = torch.sum((relative_position[:, :, None].repeat(1, 1, len(inv_freq)) * inv_freq).cos(), axis=2) bias = _bias.repeat(self.num_attention_heads, 1, 1) _bias_scales = torch.arange(1, self.num_attention_heads + 1, 1, device=relative_position.device) bias_scales = _bias_scales[:, None, None] scaled_bias = (bias - self.hidden_size / 2) / (bias_scales * 8 / self.num_attention_heads).unsqueeze(0) return scaled_bias
NeMo-main
nemo/collections/nlp/modules/common/megatron/position_embedding/sandwich_relative_position_embedding.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults, init_method_normal try: from megatron.core import ModelParallelConfig, tensor_parallel HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): # fake missing classes with None attributes ModelParallelConfig = ApexGuardDefaults() tensor_parallel = ApexGuardDefaults() HAVE_MEGATRON_CORE = False __all__ = ["MegatronBaseHiddenTransform", "MegatronGaussianHiddenTransform"] class MegatronBaseHiddenTransform(torch.nn.Module): """Base class to apply hidden state transformations""" def __init__(self, name: str = "", model_parallel_cfg: ModelParallelConfig = None): super().__init__() self.name = name self.model_parallel_cfg = model_parallel_cfg def __str__(self): return super().__str__() + f"(name={self.name})" @property def input_names(self): """ Provide here all required inputs """ return [] @property def output_names(self): """ Provide here all generated outputs """ return [] def _validate_inputs(self, inputs): """Validate inputs""" # validate inputs if not set(self.input_names).issubset(set(inputs.keys())): raise ValueError(f"Inputs should contain {self.input_names}, but got {inputs.keys()}") def _transform(self, inputs, batch_data=None): """ Implement your own transformations. We expect here shapes to be [S x B x H] for Sequence, Batch, Hidden sizes (due to tensor parallel support). """ # by default we pass inputs. outputs = inputs.copy() return outputs def transform(self, inputs, batch_data=None): """Apply a transformations on the inputs (hiddens is always assumed)""" # validate inputs self._validate_inputs(inputs) outputs = self._transform(inputs, batch_data=batch_data) return outputs class MegatronGaussianHiddenTransform(MegatronBaseHiddenTransform): """ Constructes a diagonal Gaussian distribution from the hidden states and samples from it using reparametrization. """ def __init__( self, hidden_size, ffn_hidden_size=None, min_logvar=-6, init_method_std=0.02, name="cond_gaussian", model_parallel_cfg: ModelParallelConfig = None, ): super().__init__(name=name, model_parallel_cfg=model_parallel_cfg) # limit smaller allowed variance (for numerical stability) self.min_logvar = min_logvar self.hidden_size = hidden_size if ffn_hidden_size is None: ffn_hidden_size = hidden_size * 2 self.ffn_hidden_size = ffn_hidden_size # project hiddens to mean and log variance (support tensor parallelism) self.hiddens_to_mean_logvar = tensor_parallel.ColumnParallelLinear( hidden_size, ffn_hidden_size, # NOTE: When using *glu, divide ffn dim by 2/3 to keep overall params the same. gather_output=True, init_method=init_method_normal(init_method_std), skip_bias_add=False, bias=True, config=self.model_parallel_cfg, ) @property def input_names(self): """ Provide here all required inputs """ return ["hiddens", "hiddens_mask"] @property def output_names(self): """ Provide here all generated outputs """ return ["z_mean", "z_logvar", "z", "z_log_prob"] def _transform(self, inputs, batch_data=None): """ We expect here shapes to be [S x B x H] for Sequence, Batch, Hidden sizes (due to tensor parallel support). inputs: hiddens: accepts a tensor of shape [S x B x H] outputs: z: a sample from Gaussian a tensor of shape [S x B x H] z_mean: mean of Gaussian a tensor of shape [S x B x H] z_logvar: log variance of Gaussian a tensor of shape [S x B x H] z_log_prob: log probability of z over posterior log q(z|x) a tensor of shape [S x B x H] """ hiddens = inputs["hiddens"] # compute distribution's parameters (or use cached ones) if "z_mean" in inputs and "z_logvar" in inputs: z_mean = inputs["z_mean"] z_logvar = inputs["z_logvar"] else: # ColumnLinear returns output and bias, we ignore bias here (already added to hiddens) z_mean, z_logvar = self.hiddens_to_mean_logvar(hiddens)[0].chunk(2, dim=-1) # clamp logvar z_logvar = z_logvar.clamp(min=self.min_logvar) # sample z with reparametrization (or use cached one) if "z" in inputs: z = inputs["z"] z_log_prob = inputs.get("z_log_prob", None) else: e = torch.randn_like(hiddens) z = (z_logvar * 0.5).exp() * e + z_mean z_log_prob = None if z_log_prob is None: # compute log probability of z under a diagonal Gaussian distribution z_log_prob = -0.5 * (math.log(2 * math.pi) + z_logvar + (z - z_mean).pow(2) / z_logvar.exp()) # sum over the last dimension (hidden_size) z_log_prob = z_log_prob.sum(dim=-1) return { "z": z, # [S x B x H] "z_mean": z_mean, # [S x B x H] "z_logvar": z_logvar, # [S x B x H] "z_log_prob": z_log_prob, # [S x B] }
NeMo-main
nemo/collections/nlp/modules/common/megatron/hiddens/megatron_hidden_transform.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.modules.common.megatron.hiddens.megatron_hidden_loss import * from nemo.collections.nlp.modules.common.megatron.hiddens.megatron_hidden_transform import * from nemo.collections.nlp.modules.common.megatron.hiddens.megatron_hiddens import *
NeMo-main
nemo/collections/nlp/modules/common/megatron/hiddens/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch __all__ = ["MegatronBaseHiddenLoss", "MegatronAMIMHiddenLoss", "MegatronVAEHiddenLoss"] class MegatronBaseHiddenLoss(torch.nn.Module): """ Base class to calculate hidden state loss. Returned dict includes a loss value and additional outputs. """ def __init__(self, loss_weight=1.0, name=""): super().__init__() self.name = name self.loss_weight = float(loss_weight) def __str__(self): return super().__str__() + f"(name={self.name})" def _validate_inputs(self, inputs): """Validate inputs""" # validate inputs if not set(self.input_names).issubset(set(inputs.keys())): raise ValueError(f"Inputs should contain {self.input_names}, but got {inputs.keys()}") @property def input_names(self): """Returns and caches input names""" # we always expect hiddens_mask to be used to mask out loss of padded elements return self._input_names() + ["hiddens_mask"] def _input_names(self): """Add here all required inputs""" return [] def _loss(self, inputs, batch_data=None): """ We expect input shapes to be [S x B x H] for Sequence, Batch, Hidden sizes (due to tensor parallel support). We return a dictionary with dimensions [B x S x H], [B x S], [B], or []. Implement your own loss calculations. Must return "loss" key. loss shape - [B x S] for Batch, Sequence sizes batch_data - a dictionary of additional data that can be used to calculate loss Returns: dict: a dictionary with loss and additional outputs (must include "loss" key) example: {"loss": 0.0} """ raise NotImplementedError("Please implement loss calculations in child class") def loss(self, inputs, batch_data=None): """A wrapper around custom _loss that adds a weighted loss and name to the output dict""" self._validate_inputs(inputs) loss_dict = self._loss(inputs, batch_data=batch_data) if "loss" not in loss_dict: raise KeyError("Loss dict must contain 'loss' key") # average loss over active steps only. loss [B x S] loss = loss_dict["loss"] # hiddens_mask has shape of [B x S] hiddens_mask = inputs["hiddens_mask"].to(loss) loss = loss * hiddens_mask # sequence level loss [B x S] -> batch level loss [B] loss = loss.sum(dim=1) / hiddens_mask.sum(dim=1).clamp(min=1.0) # compute batch level weighted loss (scalar) weighted_loss = loss.sum() * self.loss_weight # store updated losses loss_dict["loss"] = loss loss_dict["weighted_loss"] = weighted_loss loss_dict["weight_loss"] = torch.tensor(self.loss_weight).to(weighted_loss) return loss_dict class MegatronAMIMHiddenLoss(MegatronBaseHiddenLoss): """ Based on <https://arxiv.org/abs/2003.02645> Implements A-MIM loss with a unit Normal anchor. A-MIM - asymmetric MIM (without sampling) """ def __init__(self, loss_weight=1.0, hidden_aggregation_method="sum", name="mim"): super().__init__( name=name, loss_weight=loss_weight, ) # allows to determine how to aggregate hidden loss over hidden dimension self.hidden_aggregation_method = hidden_aggregation_method def _input_names(self): """Add here all required inputs""" return ["z", "z_log_prob"] def _loss(self, inputs, batch_data=None): """ We expect input shapes to be [S x B x H] for Sequence, Batch, Hidden sizes (due to tensor parallel support). We return a dictionary with dimensions [B x S x H], [B x S], [B], or []. Implement your own loss calculations. Must return "loss" key. loss shape - [B x S] for Batch, Sequence sizes batch_data - a dictionary of additional data that can be used to calculate loss """ z = inputs["z"] # get posterior log_prob_q_z_given_x = inputs["z_log_prob"] # compute log prob of anchor a unit Normal distribution log_prob_P_z = -0.5 * (math.log(2 * math.pi) + z.pow(2)) # aggregate over hidden dimension, default is sum log_prob_P_z = getattr(log_prob_P_z, self.hidden_aggregation_method)(dim=-1) # A-MIM loss = log_p_x_given_z - 0.5 * (log_prob_P_z + log_prob_q_z_given_x) # here we return only the hidden loss part loss = -0.5 * (log_prob_P_z + log_prob_q_z_given_x) # return losses shaped [B x S] return { "loss": loss.transpose(0, 1), "log_prob_P_z": log_prob_P_z.transpose(0, 1), "log_prob_q_z_given_x": log_prob_q_z_given_x.transpose(0, 1), } class MegatronVAEHiddenLoss(MegatronBaseHiddenLoss): """ Based on <https://arxiv.org/abs/1312.6114> Implements VAE loss with a unit Normal anchor. """ def __init__(self, loss_weight=1.0, min_kl_value=None, name="vae"): super().__init__( name=name, loss_weight=loss_weight, ) # minimum value for KL divergence if min_kl_value is None: self.min_kl_value = min_kl_value else: self.min_kl_value = float(min_kl_value) def _input_names(self): """Add here all required inputs""" return ["z", "z_log_prob"] def _loss(self, inputs, batch_data=None): """ We expect input shapes to be [S x B x H] for Sequence, Batch, Hidden sizes (due to tensor parallel support). We return a dictionary with dimensions [B x S x H], [B x S], [B], or []. Implement your own loss calculations. Must return "loss" key. loss shape - [B x S] for Batch, Sequence sizes batch_data - a dictionary of additional data that can be used to calculate loss """ z = inputs["z"] # get posterior log_prob_q_z_given_x = inputs["z_log_prob"] # compute log prob of anchor a unit Normal distribution log_prob_p_z = -0.5 * (math.log(2 * math.pi) + z.pow(2)).sum(dim=-1) # VAE loss = log_p_x_given_z - KL(q(z|x) || p(z)) kl_div = log_prob_q_z_given_x - log_prob_p_z # here we return only the hidden loss part loss = -kl_div # return losses shaped [B x S] return { "loss": loss.transpose(0, 1), "kl_div": kl_div.transpose(0, 1), "log_prob_p_z": log_prob_p_z.transpose(0, 1), "log_prob_q_z_given_x": log_prob_q_z_given_x.transpose(0, 1), }
NeMo-main
nemo/collections/nlp/modules/common/megatron/hiddens/megatron_hidden_loss.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ In order to register external hidden transforms and losses please use the following methods: * register_hidden_loss(cls_name: str, class_path: str) * register_hidden_transform(cls_name: str, class_path: str) See example config in: examples/nlp/language_modeling/conf/megatron_hiddens_base_config.yaml """ import functools import itertools from typing import List import torch from omegaconf.dictconfig import DictConfig from omegaconf.omegaconf import OmegaConf from nemo.collections.nlp.modules.common.megatron.hiddens.megatron_hidden_loss import MegatronBaseHiddenLoss from nemo.collections.nlp.modules.common.megatron.hiddens.megatron_hidden_transform import MegatronBaseHiddenTransform from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults from nemo.utils import logging from nemo.utils.model_utils import import_class_by_path try: from megatron.core import ModelParallelConfig HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): # fake missing classes with None attributes ModelParallelConfig = ApexGuardDefaults() HAVE_MEGATRON_CORE = False __all__ = [ "MegatronHiddensModule", "get_registered_hiddens", "register_hidden_loss", "register_hidden_transform", "get_hiddens_module", ] # a registry of all hidden transforms (maps name to class path) _LOSS_CLASS_REGISTRY = { "a_mim": "nemo.collections.nlp.modules.common.megatron.hiddens.megatron_hidden_loss.MegatronAMIMHiddenLoss", "vae": "nemo.collections.nlp.modules.common.megatron.hiddens.megatron_hidden_loss.MegatronVAEHiddenLoss", } # a registry of all hidden losses (maps name to class path) _TRANSFORM_CLASS_REGISTRY = { "cond_gaussian": "nemo.collections.nlp.modules.common.megatron.hiddens.megatron_hidden_transform.MegatronGaussianHiddenTransform", } def get_registered_hiddens(): """ Return: A dictionary with all registered hidden transforms and losses. Example: { "loss": ["a_mim", "vae"], "transform": ["cond_gaussian"], } """ return { "loss": list(_LOSS_CLASS_REGISTRY.keys()), "transform": list(_TRANSFORM_CLASS_REGISTRY.keys()), } def register_hidden_loss(cls_name: str, class_path: str): """ Register a hidden loss. Args: cls_name: name of the class class_path: path to the class (e.g., "nemo.collections.nlp.modules.common.megatron.hiddens.megatron_hidden_transform.MegatronGaussianHiddenTransform") """ if cls_name in _LOSS_CLASS_REGISTRY: raise ValueError(f"Cannot register duplicate hidden loss ({cls_name})") _LOSS_CLASS_REGISTRY[cls_name] = class_path logging.info(f"Registered hidden loss {cls_name} at {class_path}") def register_hidden_transform(cls_name: str, class_path: str): """ Register a hidden transform. Args: cls_name: name of the class class_path: path to the class (e.g., "nemo.collections.nlp.modules.common.megatron.hiddens.megatron_hidden_transform.MegatronGaussianHiddenTransform") """ if cls_name in _TRANSFORM_CLASS_REGISTRY: raise ValueError(f"Cannot register duplicate hidden transform ({cls_name})") _TRANSFORM_CLASS_REGISTRY[cls_name] = class_path logging.info(f"Registered hidden transform {cls_name} at {class_path}") def get_hiddens_module(cfg=None, model_parallel_cfg: ModelParallelConfig = None): """Build a MegatronHiddensModule from a configuration cfg""" # Build a hiddens module if config is provided. if cfg is None: return None logging.info(f"NOTE: Adding hiddens transforms and losses") # build all hidden transforms. We support a list or a dictionary of transforms (list enforces order) transform_cfg = cfg.get("transform", []) if isinstance(transform_cfg, (DictConfig, dict)): transform_cfg = [transform_cfg] hidden_transforms = [] # here we expect transform_cfg to be a list of dictionaries for cur_list_cfg in transform_cfg: for name, cur_cfg in cur_list_cfg.items(): cls_kwargs = OmegaConf.to_container(cur_cfg) cls_kwargs["model_parallel_cfg"] = model_parallel_cfg if not "cls_name" in cls_kwargs: raise KeyError(f"Missing 'cls_name' in hidden transform {name}") cls_name = cls_kwargs.pop("cls_name") # add name based on dictionary if not given in conf if "name" not in cls_kwargs: cls_kwargs["name"] = name if cls_name not in _TRANSFORM_CLASS_REGISTRY: raise KeyError(f"Unknown hidden transform {cls_name}, available: {_TRANSFORM_CLASS_REGISTRY.keys()}") try: cur_transform = import_class_by_path(_TRANSFORM_CLASS_REGISTRY[cls_name])(**cls_kwargs) except Exception as e: logging.error(f"Failed to build hidden transform {name} with cfg={cur_cfg}") raise e hidden_transforms.append(cur_transform) logging.info(f"Added transform {name} with cfg={cur_cfg}") # build all hidden losses loss_cfg = cfg.get("loss", []) if isinstance(loss_cfg, (DictConfig, dict)): loss_cfg = [loss_cfg] hidden_loss_transforms = [] # here we expect loss_cfg to be a list of dictionaries for cur_list_cfg in loss_cfg: for name, cur_cfg in cur_list_cfg.items(): cls_kwargs = OmegaConf.to_container(cur_cfg) if not "cls_name" in cls_kwargs: raise KeyError(f"Missing 'cls_name' in hidden loss {name}") cls_name = cls_kwargs.pop("cls_name") # add name based on dictionary if not given in conf if "name" not in cls_kwargs: cls_kwargs["name"] = name if cls_name not in _LOSS_CLASS_REGISTRY: raise KeyError(f"Unknown hidden loss {cls_name}, available: {_LOSS_CLASS_REGISTRY.keys()}") try: cur_loss = import_class_by_path(_LOSS_CLASS_REGISTRY[cls_name])(**cls_kwargs) except Exception as e: logging.error(f"Failed to build hidden loss {name} with cfg={cur_cfg}") raise e hidden_loss_transforms.append(cur_loss) logging.info(f"Added loss {name} with cfg={cur_cfg}") enc_output_name = cfg.get("enc_output_name", "hiddens") return MegatronHiddensModule( hidden_transforms=hidden_transforms, hidden_loss_transforms=hidden_loss_transforms, enc_output_name=enc_output_name, ) class MegatronHiddensModule(torch.nn.Module): """ This class jointly handles the hidden transforms and hidden loss transforms. It helps in validating, and applying the transforms. """ def __init__( self, hidden_transforms: List[MegatronBaseHiddenLoss] = [], hidden_loss_transforms: List[MegatronBaseHiddenTransform] = [], enc_output_name: str = "hiddens", # name (key) of the encoder output tokens_loss_weight: float = 1.0, # weight of the tokens loss loss_prefix: str = "hiddens_", # if not None or "", add this prefix to all loss names ): super().__init__() self.hidden_transforms = hidden_transforms self.hidden_loss_transforms = hidden_loss_transforms self.enc_output_name = enc_output_name self.tokens_loss_weight = tokens_loss_weight self.loss_prefix = loss_prefix # register all hidden / loss transforms as submodules to support learned parameters if not all([isinstance(ht, MegatronBaseHiddenLoss) for ht in self.hidden_loss_transforms]): raise TypeError( f"hidden_loss_transforms should be a list of MegatronBaseHiddenLoss, but got {hidden_loss_transforms}" ) self.hidden_loss_transforms = torch.nn.ModuleList(self.hidden_loss_transforms) if not all([isinstance(ht, MegatronBaseHiddenTransform) for ht in self.hidden_transforms]): raise TypeError( f"hidden_transforms should be a list of MegatronBaseHiddenTransform, but got {hidden_transforms}" ) self.hidden_transforms = torch.nn.ModuleList(self.hidden_transforms) # validate the inputs and outputs of all hidden transforms (make sure there are no duplicate output names) duplicate_names = {} # initialize with available outputs from hidden transforms with hiddens and mask as default hidden_outputs = set(["hiddens", "hiddens_mask", "enc_output"]) for ht in self.hidden_transforms: # validate that all required inputs are available by order of hidden transforms cur_input_names = set(ht.input_names) if not cur_input_names.issubset(hidden_outputs): raise ValueError( f"Hidden transform {ht.name} requires inputs {cur_input_names - hidden_outputs} that are not available" ) # collect all duplicate output names cur_hidden_outputs = set(ht.output_names) if not cur_hidden_outputs.isdisjoint(hidden_outputs): duplicate_names[ht.name] = list(cur_hidden_outputs.intersection(hidden_outputs)) hidden_outputs.update(cur_hidden_outputs) # fail here reporting all duplicate output names if duplicate_names: raise ValueError( f"Hidden transforms have duplicate outputs {{name: [duplicate outputs]}} = {duplicate_names}" ) # validate that all loss transforms are supported by output of hidden transforms ("hiddens" is given by default) loss_inputs = set(itertools.chain(*[lt.input_names for lt in self.hidden_loss_transforms])) if not loss_inputs.issubset(hidden_outputs): loss_inputs_dict = {lt.name: lt.input_names for lt in self.hidden_loss_transforms} raise ValueError( f"Loss transforms inputs = {loss_inputs - hidden_outputs} are not supported by hidden transforms with hidden_outputs = {hidden_outputs}, expected inputs per loss = {loss_inputs_dict}" ) @functools.cached_property def hidden_outputs(self): """Get the hidden outputs from all the hidden transforms""" all_output_names = [ht.output_names for ht in self.hidden_transforms] + [["hiddens", "hiddens_mask"]] output_names = set().union(*all_output_names) return list(output_names) @functools.cached_property def loss_inputs(self): """Get the loss inputs from all the loss transforms""" loss_inputs = set().union(*[lt.input_names for lt in self.hidden_loss_transforms]) return list(loss_inputs) def apply_hidden_transforms(self, inputs, batch_data=None): """ Apply hidden transforms Args: inputs: a dictionary of inputs, with "hiddens" as the default key for hidden states batch_data: a dictionary of batch data (e.g. "input_features"), optional Returns: outputs: a dictionary of outputs, collecting """ outputs = inputs.copy() for hidden_transform in self.hidden_transforms: # make sure to collect all outputs from hidden transforms outputs.update(hidden_transform.transform(outputs, batch_data=batch_data)) # update final encoder output outputs["enc_output"] = outputs[self.enc_output_name] return outputs def apply_loss_transforms(self, outputs, batch_data=None): """ Apply loss transforms Args: outputs: a dictionary of outputs (after hidden transforms) batch_data: a dictionary of batch data (e.g. "target_ids"), optional Returns: loss_dict: a dictionary of all losses, { loss: joint loss (float), <name>_*: loss values from loss transforms, could be loss, or loss elements } """ loss_dict = {} joint_loss = 0.0 for i, loss_transform in enumerate(self.hidden_loss_transforms): cur_loss_dict = loss_transform.loss(outputs, batch_data=batch_data) joint_loss = joint_loss + cur_loss_dict["weighted_loss"] cur_loss_dict.pop("weighted_loss") # add name to loss values if loss_transform.name: cur_loss_dict = {f"{loss_transform.name}_{k}": v for k, v in cur_loss_dict.items()} # check if cur_loss keys are unique - we do not allow to override keys dup_keys = set(cur_loss_dict.keys()).intersection(set(loss_dict.keys())) if len(dup_keys): raise ValueError( f"Loss transform ({i}) {loss_transform} is trying to override the following loss keys {list(dup_keys)}" ) # update loss dict loss_dict.update(cur_loss_dict) # joint weighted loss (float) loss_dict["loss"] = joint_loss # add prefix to all loss keys (default to 'hiddens_') if self.loss_prefix: loss_dict = {f"{self.loss_prefix}{k}": v for k, v in loss_dict.items()} # add tokens loss weight (to be used by caller, or be ignored) loss_dict["tokens_loss_weight"] = torch.tensor(self.tokens_loss_weight).to(joint_loss) return loss_dict
NeMo-main
nemo/collections/nlp/modules/common/megatron/hiddens/megatron_hiddens.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
nemo/collections/nlp/modules/dialogue_state_tracking/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional from torch import nn as nn from nemo.collections.nlp.modules.common.classifier import Classifier from nemo.core.classes import typecheck from nemo.core.neural_types import ChannelType, LogitsType, NeuralType __all__ = ['SGDEncoder'] ACT2FN = {"tanh": nn.functional.tanh, "relu": nn.functional.relu} class SGDEncoder(Classifier): """ Neural module which encodes BERT hidden states """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """ Returns definitions of module output ports. """ return { "logits": NeuralType(('B', 'T'), LogitsType()), 'hidden_states': NeuralType(('B', 'T', 'C'), ChannelType()), } def __init__( self, hidden_size: int, activation: str = 'tanh', dropout: float = 0.0, use_transformer_init: bool = True, ) -> None: """ Args: hidden_size: hidden size of the BERT model activation: activation function applied dropout: dropout ratio use_transformer_init: use transformer initialization """ super().__init__(hidden_size=hidden_size, dropout=dropout) self.fc = nn.Linear(hidden_size, hidden_size) if activation not in ACT2FN: raise ValueError(f'{activation} is not in supported ' + '{ACTIVATIONS_F.keys()}') self.activation = ACT2FN[activation] self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.post_init(use_transformer_init=use_transformer_init) @typecheck() def forward(self, hidden_states): """ Args: hidden_states: bert output hidden states """ first_token_hidden_states = hidden_states[:, 0] logits = self.fc(first_token_hidden_states) logits = self.activation(logits) logits = self.dropout1(logits) return logits, self.dropout2(hidden_states)
NeMo-main
nemo/collections/nlp/modules/dialogue_state_tracking/sgd_encoder.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional import torch from torch import nn as nn from nemo.core.classes import NeuralModule, typecheck from nemo.core.neural_types import LogitsType, NeuralType __all__ = ['SGDDecoder'] class LogitsQA(nn.Module): def __init__(self, num_classes: int, embedding_dim: int): """Get logits for elements by conditioning on input embedding. Args: num_classes: An int containing the number of classes for which logits are to be generated. embedding_dim: hidden size of the BERT Returns: A tensor of shape (batch_size, num_classes) containing the logits. """ super().__init__() self.num_classes = num_classes self.utterance_proj = nn.Linear(embedding_dim, embedding_dim) self.activation = nn.functional.gelu self.layer1 = nn.Linear(embedding_dim, num_classes) def forward(self, encoded_utterance): """ Args: encoded_utterance: [CLS] token hidden state from BERT encoding of the utterance """ # Project the utterance embeddings. utterance_embedding = self.utterance_proj(encoded_utterance) utterance_embedding = self.activation(utterance_embedding) logits = self.layer1(utterance_embedding) return logits class SGDDecoder(NeuralModule): """ SGDDecoder """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """ Returns definitions of module output ports. """ return { "logit_intent_status": NeuralType(('B', 'T'), LogitsType()), #'B' "logit_req_slot_status": NeuralType(('B', 'T'), LogitsType()), #'B' "logit_cat_slot_status": NeuralType(('B', 'T'), LogitsType()), "logit_cat_slot_value_status": NeuralType(('B', 'T'), LogitsType()), #'B' "logit_noncat_slot_status": NeuralType(('B', 'T'), LogitsType()), "logit_spans": NeuralType(('B', 'T', 'D'), LogitsType()), } def __init__(self, embedding_dim: int) -> None: """Get logits for elements by conditioning on utterance embedding. Args: embedding_dim: hidden size of the BERT """ super().__init__() projection_module = LogitsQA self.intent_layer = projection_module(1, embedding_dim) self.requested_slots_layer = projection_module(1, embedding_dim) self.cat_slot_value_layer = projection_module(1, embedding_dim) # Slot status values: none, dontcare, active. self.slot_status_layer = projection_module(3, embedding_dim) # dim 2 for non_categorical slot - to represent start and end position self.noncat_layer1 = nn.Linear(embedding_dim, embedding_dim) self.noncat_activation = nn.functional.gelu self.noncat_layer2 = nn.Linear(embedding_dim, 2) @typecheck() def forward(self, encoded_utterance, token_embeddings, utterance_mask): """ Args: encoded_utterance: [CLS] token hidden state from BERT encoding of the utterance token_embeddings: token embeddings from BERT encoding of the utterance utterance_mask: utterance mask wiht 0 for padding """ _, _ = encoded_utterance.size() logit_intent_status = self._get_intents(encoded_utterance) logit_req_slot_status = self._get_requested_slots(encoded_utterance) logit_cat_slot_status, logit_cat_slot_value_status = self._get_categorical_slot_goals(encoded_utterance) (logit_noncat_slot_status, logit_spans) = self._get_noncategorical_slot_goals( encoded_utterance=encoded_utterance, utterance_mask=utterance_mask, token_embeddings=token_embeddings ) return ( logit_intent_status, logit_req_slot_status, logit_cat_slot_status, logit_cat_slot_value_status, logit_noncat_slot_status, logit_spans, ) def _get_intents(self, encoded_utterance): """Obtain logits for intents. Args: encoded_utterance: representation of utterance """ logits = self.intent_layer(encoded_utterance=encoded_utterance,) return logits def _get_requested_slots(self, encoded_utterance): """Obtain logits for requested slots. Args: encoded_utterance: representation of utterance """ logits = self.requested_slots_layer(encoded_utterance=encoded_utterance) return logits def _get_categorical_slot_goals(self, encoded_utterance): """ Obtain logits for status and values for categorical slots Slot status values: none, dontcare, active Args: encoded_utterance: representation of utterance """ # Predict the status of all categorical slots. status_logits = self.slot_status_layer(encoded_utterance=encoded_utterance) value_status_logits = self.cat_slot_value_layer(encoded_utterance=encoded_utterance) return status_logits, value_status_logits def _get_noncategorical_slot_goals(self, encoded_utterance, utterance_mask, token_embeddings): """ Obtain logits for status and slot spans for non-categorical slots. Slot status values: none, dontcare, active Args: encoded_utterance: [CLS] token hidden state from BERT encoding of the utterance utterance_mask: utterance mask wiht 0 for padding token_embeddings: token embeddings from BERT encoding of the utterance """ status_logits = self.slot_status_layer(encoded_utterance=encoded_utterance) # Project the combined embeddings to obtain logits, Shape: (batch_size, max_num_slots, max_num_tokens, 2) span_logits = self.noncat_layer1(token_embeddings) span_logits = self.noncat_activation(span_logits) span_logits = self.noncat_layer2(span_logits) # Mask out invalid logits for padded tokens. utterance_mask = utterance_mask.to(bool) # Shape: (batch_size, max_num_tokens). repeated_utterance_mask = utterance_mask.unsqueeze(-1) negative_logits = (torch.finfo(span_logits.dtype).max * -0.7) * torch.ones( span_logits.size(), device=span_logits.get_device(), dtype=span_logits.dtype ) span_logits = torch.where(repeated_utterance_mask, span_logits, negative_logits) return status_logits, span_logits def _get_negative_logits(self, logits): """Returns tensor with negative logits that will be used to mask out unused values for a particular service Args: logits: logits whose shape and type will be used to create negative tensor """ negative_logits = (torch.finfo(logits.dtype).max * -0.7) * torch.ones( logits.size(), dtype=logits.dtype, device=logits.get_device() ) return negative_logits
NeMo-main
nemo/collections/nlp/modules/dialogue_state_tracking/sgd_decoder.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.data_utils import * from nemo.collections.nlp.data.entity_linking.entity_linking_dataset import EntityLinkingDataset from nemo.collections.nlp.data.information_retrieval.information_retrieval_dataset import ( BertInformationRetrievalDataset, ) from nemo.collections.nlp.data.language_modeling.l2r_lm_dataset import ( L2RLanguageModelingDataset, TarredL2RLanguageModelingDataset, ) from nemo.collections.nlp.data.language_modeling.lm_bert_dataset import ( BertPretrainingDataset, BertPretrainingPreprocessedDataloader, ) from nemo.collections.nlp.data.language_modeling.sentence_dataset import SentenceDataset, TarredSentenceDataset from nemo.collections.nlp.data.machine_translation.machine_translation_dataset import ( TarredTranslationDataset, TranslationDataset, ) from nemo.collections.nlp.data.question_answering_squad.qa_dataset import SquadDataset from nemo.collections.nlp.data.text2sparql.text2sparql_dataset import Text2SparqlDataset from nemo.collections.nlp.data.text_normalization.decoder_dataset import TextNormalizationDecoderDataset from nemo.collections.nlp.data.text_normalization.tagger_dataset import TextNormalizationTaggerDataset from nemo.collections.nlp.data.text_normalization.test_dataset import TextNormalizationTestDataset from nemo.collections.nlp.data.token_classification.token_classification_dataset import ( BertTokenClassificationDataset, BertTokenClassificationInferDataset, ) from nemo.collections.nlp.data.zero_shot_intent_recognition.zero_shot_intent_dataset import ( ZeroShotIntentDataset, ZeroShotIntentInferenceDataset, )
NeMo-main
nemo/collections/nlp/data/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.zero_shot_intent_recognition.zero_shot_intent_dataset import ( ZeroShotIntentInferenceDataset, calc_class_weights_from_dataloader, )
NeMo-main
nemo/collections/nlp/data/zero_shot_intent_recognition/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle from typing import Dict, List, Optional import torch from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.data_utils.data_preprocessing import ( DataProcessor, fill_class_weights, get_freq_weights, get_label_stats, ) from nemo.collections.nlp.data.glue_benchmark.data_processors import InputExample from nemo.collections.nlp.data.glue_benchmark.glue_benchmark_dataset import GLUEDataset from nemo.collections.nlp.parts.utils_funcs import tensor2list from nemo.core.neural_types import CategoricalValuesType, ChannelType, MaskType, NeuralType from nemo.utils import logging __all__ = ['ZeroShotIntentProcessor', 'ZeroShotIntentDataset', 'ZeroShotIntentInferenceDataset'] class ZeroShotIntentProcessor(DataProcessor): """ Processor for entailment data sets used to train NLI models for zero shot intent classification. """ def __init__(self, sent1_col: int, sent2_col: int, label_col: int, num_classes: int): """ Args: sent1_col: the index of the column containing the premise (or sentence 1) sent2_col: the index of the column containing the hypothesis (or sentence 2) label_col: the index of the column containing the label num_classes: number of classes in the data (should be either 2 or 3, corresponding to labels ['entailment', 'not_entailment'] or ["contradiction", "entailment", "neutral"]) """ self.sent1_col = sent1_col self.sent2_col = sent2_col self.label_col = label_col self.num_classes = num_classes def get_train_examples(self, file_path: str): """Gets a collection of `InputExample`s for the train set.""" return self._create_examples(self._read_tsv(file_path), "train") def get_dev_examples(self, file_path: str): """Gets a collection of `InputExample`s for the dev set.""" return self._create_examples(self._read_tsv(file_path), "dev") def get_labels(self): """Gets the list of labels for this data set.""" if self.num_classes == 2: return ['not_entailment', 'entailment'] elif self.num_classes == 3: return ["contradiction", "entailment", "neutral"] else: raise ValueError("num_classes must be either 2 or 3!") def _create_examples(self, lines: List[str], set_type: str): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[self.sent1_col] text_b = line[self.sent2_col] label = line[self.label_col] if label == "-": continue examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class ZeroShotIntentDataset(GLUEDataset): """ Dataset for training a NLI model for zero shot intent recognition. Similar to GLUE/MNLI dataset, but allows the user to specify which columns in the data files contain the premise, hypothesis, and gold label. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'labels': NeuralType(tuple('B'), CategoricalValuesType()), } def __init__( self, file_path: str, tokenizer: TokenizerSpec, max_seq_length: str, sent1_col: int, sent2_col: int, label_col: int, num_classes: int, use_cache: bool = True, ): """ Args: file_path: path to file tokenizer: such as AutoTokenizer max_seq_length: max sequence length including [CLS] and [SEP] sent1_col: the index of the column containing the premise (or sentence 1) sent2_col: the index of the column containing the hypothesis (or sentence 2) label_col: the index of the column containing the label num_classes: number of classes in the data (should be either 2 or 3, corresponding to labels ['entailment', 'not_entailment'] or ["contradiction", "entailment", "neutral"]) use_cache: whether to use data cache """ self.task_name = "mnli" # for compatibility with parent class data_dir, file_name = os.path.split(file_path) logging.info(f'Processing {file_name}') self.tokenizer = tokenizer evaluate = False if 'train' in file_name else True processor = ZeroShotIntentProcessor(sent1_col, sent2_col, label_col, num_classes) self.label_list = processor.get_labels() if not evaluate: self.examples = processor.get_train_examples(file_path) # check the labels found in the training set all_train_labels = [example.label for example in self.examples] unique_labels = set(all_train_labels) if len(unique_labels) != num_classes: raise ValueError( "Number of classes specified in config doesn't match the number found in the training data!" ) elif len(unique_labels) == 2: if not unique_labels == set(self.label_list): raise ValueError( f"Found unexpected labels! For a two-class model, labels are expected to be {self.label_list}" ) elif len(unique_labels) == 3: if not unique_labels == set(self.label_list): raise ValueError( f"Found unexpected labels! For a three-class model, labels are expected to be {self.label_list}" ) # save the label map for reference label_file = os.path.join(data_dir, "label_ids.csv") with open(label_file, "w") as out: out.write('\n'.join(self.label_list)) logging.info(f'Labels: {self.label_list}') logging.info(f'Label mapping saved to : {label_file}') else: self.examples = processor.get_dev_examples(file_path) processor_name = type(processor).__name__ vocab_size = getattr(tokenizer, "vocab_size", 0) cached_features_file = os.path.join( data_dir, "cached_{}_{}_{}_{}_{}".format( processor_name, file_name, tokenizer.name, str(max_seq_length), str(vocab_size) ), ) if use_cache and os.path.exists(cached_features_file): logging.info(f"loading from {cached_features_file}") with open(cached_features_file, "rb") as reader: self.features = pickle.load(reader) else: token_params = { 'bos_token': None, 'eos_token': tokenizer.eos_token, 'pad_token': tokenizer.pad_token, 'cls_token': tokenizer.cls_token, 'sep_token_extra': tokenizer.eos_token if 'roberta' in tokenizer.name.lower() else None, } self.features = self.convert_examples_to_features( self.examples, self.label_list, max_seq_length, tokenizer, output_mode="classification", **token_params ) master_device = not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0 if master_device: logging.info(f'Saving train features into {cached_features_file}') with open(cached_features_file, "wb") as writer: pickle.dump(self.features, writer) class ZeroShotIntentInferenceDataset(GLUEDataset): """ Similar to ZeroShotIntentDataset, but gets utterances and candidate labels from lists rather than sentence pairs and labels from a file. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'labels': NeuralType(tuple('B'), CategoricalValuesType()), } def __init__( self, queries: List[str], candidate_labels: List[str], tokenizer: TokenizerSpec, max_seq_length: int, hypothesis_template: str, ): """ Args: queries: list of utterances to classify candidate_labels: list of candidate labels tokenizer: such as AutoTokenizer max_seq_length: max sequence length including [CLS] and [SEP] hypothesis_template: template used to turn each candidate label into a NLI-style hypothesis """ logging.info(f'Processing queries for inference') self.tokenizer = tokenizer token_params = { 'bos_token': None, 'eos_token': tokenizer.eos_token, 'pad_token': tokenizer.pad_token, 'cls_token': tokenizer.cls_token, 'sep_token_extra': tokenizer.eos_token if 'roberta' in tokenizer.name.lower() else None, } self.examples = [] for i, query in enumerate(queries): for j, candidate_label in enumerate(candidate_labels): guid = "query-%s-label-%s" % (i, j) text_a = query text_b = hypothesis_template.format(candidate_label) label = 3 # dummy label for inference; training labels are 0, 1, 2 or 0, 1 self.examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) self.features = self.convert_examples_to_features( self.examples, [0, 1, 2, 3], max_seq_length, tokenizer, output_mode="classification", **token_params ) def calc_class_weights_from_dataloader( dataloader: 'torch.utils.data.DataLoader', num_classes: int, data_dir: str ) -> List[float]: """ Calculate the weights of each class to be used for weighted loss. This is similar to the function calc_class_weights in text_classification_dataset, but it gets the labels from a dataloader rather than from a file. Args: dataloader: the dataloader for the training set num_classes: number of classes in the dataset """ labels = [] for batch in dataloader: labels.extend(tensor2list(batch[-1])) logging.info(f'Calculating label frequency stats...') total_sents, sent_label_freq, max_id = get_label_stats( labels, os.path.join(data_dir, 'sentence_stats.tsv'), verbose=False ) if max_id >= num_classes: raise ValueError(f'Found an invalid label! Labels should be from [0, num_classes-1].') class_weights_dict = get_freq_weights(sent_label_freq) logging.info(f'Total Sentence Pairs: {total_sents}') logging.info(f'Class Frequencies: {sent_label_freq}') logging.info(f'Class Weights: {class_weights_dict}') class_weights = fill_class_weights(weights=class_weights_dict, max_id=num_classes - 1) return class_weights
NeMo-main
nemo/collections/nlp/data/zero_shot_intent_recognition/zero_shot_intent_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.entity_linking.entity_linking_dataset import EntityLinkingDataset
NeMo-main
nemo/collections/nlp/data/entity_linking/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import array import pickle as pkl from typing import Optional import torch from nemo.collections.nlp.data.data_utils.data_preprocessing import find_newlines, load_data_indices from nemo.core.classes import Dataset from nemo.utils import logging __all__ = ['EntityLinkingDataset'] class EntityLinkingDataset(Dataset): """ Parent class for entity linking encoder training and index datasets Args: tokenizer (obj): huggingface tokenizer, data_file (str): path to tab separated column file where data pairs apear in the format concept_ID\tconcept_synonym1\tconcept_synonym2\n newline_idx_file (str): path to pickle file containing location of data_file newline characters max_seq_length (int): maximum length of a concept in tokens is_index_data (bool): Whether dataset will be used for building a nearest neighbors index """ def __init__( self, tokenizer: object, data_file: str, newline_idx_file: Optional[str] = None, max_seq_length: Optional[int] = 512, is_index_data: bool = False, ): self.tokenizer = tokenizer # Try and load pair indices file if already exists newline_indices, newline_idx_file, _ = load_data_indices(newline_idx_file, data_file, "newline_indices") # If pair indices file doesn't exists, generate and store them if newline_indices is None: logging.info("Getting datafile newline indices") with open(data_file, "rb") as f: contents = f.read() newline_indices = find_newlines(contents) newline_indices = array.array("I", newline_indices) # Store data file indicies to avoid generating them again with open(newline_idx_file, "wb") as f: pkl.dump(newline_indices, f) self.newline_indices = newline_indices self.data_file = data_file self.num_lines = len(newline_indices) self.max_seq_length = max_seq_length self.is_index_data = is_index_data logging.info(f"Loaded dataset with {self.num_lines} examples") def __len__(self): return self.num_lines def __getitem__(self, idx): concept_offset = self.newline_indices[idx] with open(self.data_file, "r", encoding='utf-8-sig') as f: # Find data pair within datafile using byte offset f.seek(concept_offset) concept = f.readline()[:-1] concept = concept.strip().split("\t") if self.is_index_data: concept_id, concept = concept return (int(concept_id), concept) else: concept_id, concept1, concept2 = concept return (int(concept_id), concept1, concept2) def _collate_fn(self, batch): """collate batch of input_ids, segment_ids, input_mask, and label Args: batch: A list of tuples of format (concept_ID, concept_synonym1, concept_synonym2). """ if self.is_index_data: concept_ids, concepts = zip(*batch) concept_ids = list(concept_ids) concepts = list(concepts) else: concept_ids, concepts1, concepts2 = zip(*batch) concept_ids = list(concept_ids) concept_ids.extend(concept_ids) # Need to double label list to match each concept concepts = list(concepts1) concepts.extend(concepts2) batch = self.tokenizer( concepts, add_special_tokens=True, padding=True, truncation=True, max_length=self.max_seq_length, return_token_type_ids=True, return_attention_mask=True, return_length=True, ) return ( torch.LongTensor(batch["input_ids"]), torch.LongTensor(batch["token_type_ids"]), torch.LongTensor(batch["attention_mask"]), torch.LongTensor(concept_ids), )
NeMo-main
nemo/collections/nlp/data/entity_linking/entity_linking_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.question_answering.data_processor.qa_processing import QAProcessor from nemo.collections.nlp.data.question_answering.dataset import BERTQADataset, GPTQADataset, QADataset, S2SQADataset from nemo.collections.nlp.data.question_answering.input_example import ( BERTQAInputExample, GPTQAInputExample, QAExample, S2SQAInputExample, )
NeMo-main
nemo/collections/nlp/data/question_answering/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from tqdm import trange from nemo.collections.nlp.data.question_answering.data_processor.qa_processing import INFERENCE_MODE, TRAINING_MODE from nemo.collections.nlp.data.question_answering.dataset.qa_dataset import QADataset from nemo.collections.nlp.data.question_answering.input_example.qa_bert_input_example import BERTQAInputExample from nemo.utils import logging class BERTQADataset(QADataset): """ Creates a Dataset for BERT architecture based Exractive QA """ def __init__( self, data_file: str, processor: object, tokenizer: object, keep_doc_spans: str = False, doc_stride: int = 128, max_query_length: int = 64, max_seq_length: int = 512, version_2_with_negative: bool = False, num_samples: int = -1, mode: str = TRAINING_MODE, use_cache: bool = False, ): super().__init__( data_file=data_file, processor=processor, tokenizer=tokenizer, mode=mode, num_samples=num_samples ) self.keep_doc_spans = keep_doc_spans self.doc_stride = doc_stride self.max_query_length = max_query_length self.max_seq_length = max_seq_length self.version_2_with_negative = version_2_with_negative self.num_samples = num_samples self.mode = mode self.use_cache = use_cache # structures for hashing to reduce memory use self.input_mask_id = 0 self.input_mask_id_to_input_mask = {} self.input_mask_to_input_mask_id = {} self.segment_mask_id = 0 self.segment_mask_id_to_segment_mask = {} self.segment_mask_to_segment_mask_id = {} self._set_cached_features_filename() if use_cache and os.path.exists(self.cached_features_file): if self.mode == TRAINING_MODE: del self.examples del self.processor ( self.features, self.input_mask_id_to_input_mask, self.input_mask_to_input_mask_id, self.segment_mask_id_to_segment_mask, self.segment_mask_to_segment_mask_id, ) = QADataset.load_features_from_cache(self.cached_features_file) else: self._convert_examples_to_features() if use_cache: items_to_pickle = [ self.features, self.input_mask_id_to_input_mask, self.input_mask_to_input_mask_id, self.segment_mask_id_to_segment_mask, self.segment_mask_to_segment_mask_id, ] QADataset.dump_features_to_cache(self.cached_features_file, items_to_pickle) logging.info("Converting dict features into object features") for i in trange(len(self.features)): self.features[i] = BERTQAInputExample(**self.features[i]) def _set_cached_features_filename(self): """ Creates cache filename using dataset config parameters """ vocab_size = getattr(self.tokenizer, "vocab_size", 0) self.cached_features_file = ( self.data_file + '_cache' + '_{}_{}_{}_{}_{}_{}_{}'.format( self.mode, self.tokenizer.name, str(vocab_size), str(self.max_seq_length), str(self.doc_stride), str(self.max_query_length), str(self.num_samples), ) ) def _convert_examples_to_features(self): """ Converts loaded examples to features """ logging.info(f"Preprocessing data into features.") has_groundtruth = self.mode != INFERENCE_MODE unique_id = 1000000000 text_to_tokens_dict = {} self.features = [] for example_index in trange(len(self.examples)): if example_index % 1000 == 0: QADataset.check_if_sufficient_memory() example = self.examples[example_index] if example.question_text not in text_to_tokens_dict: text_to_tokens_dict[example.question_text] = self.tokenizer.text_to_tokens(example.question_text)[ : self.max_query_length ] query_tokens = text_to_tokens_dict[example.question_text] # context: index of token -> index of word tok_to_orig_index = [] # context: index of word -> index of first token in token list orig_to_tok_index = [] # context without white spaces after tokenization all_doc_tokens = [] # doc tokens is word separated context ( doc_tokens, char_to_word_offset, start_position, end_position, context_text, ) = QADataset.get_doc_tokens_and_offset_from_context_id( example.context_id, example.start_position_character, example.is_impossible, example.answer_text, self.processor.doc_id_to_context_text, ) example.start_position = start_position example.end_position = end_position if self.mode != TRAINING_MODE: example.doc_tokens = doc_tokens # the text to tokens step is the slowest step for (i, token) in enumerate(doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) if token not in text_to_tokens_dict: text_to_tokens_dict[token] = self.tokenizer.text_to_tokens(token) sub_tokens = text_to_tokens_dict[token] for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) # idx of query token start and end in context tok_start_position = None tok_end_position = None if has_groundtruth and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if has_groundtruth and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = QADataset.improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, self.tokenizer, example.answer_text ) # The -3 accounts for tokenizer.cls_token, tokenizer.sep_token and tokenizer.sep_token # doc_spans contains all possible contexts options of given length max_tokens_for_doc = self.max_seq_length - len(query_tokens) - 3 doc_spans = QADataset.get_docspans(all_doc_tokens, max_tokens_for_doc, self.doc_stride) doc_spans = QADataset.keep_relevant_docspans( doc_spans, tok_start_position, tok_end_position, self.keep_doc_spans ) # make compatible for hashing doc_spans = tuple(doc_spans) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [self.tokenizer.cls_token] + query_tokens + [self.tokenizer.sep_token] segment_ids = [0 for i in range(len(tokens))] token_is_max_context = {} # maps context tokens idx in final input -> word idx in context token_to_orig_map = {} for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = QADataset.check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append(self.tokenizer.sep_token) segment_ids.append(1) input_ids = self.tokenizer.tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. # Only real tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < self.max_seq_length: input_ids.append(self.tokenizer.pad_id) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == self.max_seq_length assert len(input_mask) == self.max_seq_length assert len(segment_ids) == self.max_seq_length # calculate start and end position in final array # of tokens in answer if no answer, # 0 for both pointing to tokenizer.cls_token start_position = 0 end_position = 0 if has_groundtruth and not example.is_impossible: doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if has_groundtruth and example.is_impossible: # if our document chunk does not contain # an annotation we throw it out, since there is nothing # to predict. start_position = 0 end_position = 0 if example_index < 1: logging.info("*** Example ***") logging.info("unique_id: %s" % (unique_id)) logging.info("example_index: %s" % (example_index)) logging.info("doc_span_index: %s" % (doc_span_index)) logging.info("tokens: %s" % " ".join(tokens)) logging.info( "token_to_orig_map: %s" % " ".join(["%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]) ) logging.info( "token_is_max_context: %s" % " ".join(["%d:%s" % (x, y) for (x, y) in token_is_max_context.items()]) ) logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) if has_groundtruth and example.is_impossible: logging.info("impossible example") if has_groundtruth and not example.is_impossible: answer_text = " ".join(tokens[start_position : (end_position + 1)]) logging.info("start_position: %d" % (start_position)) logging.info("end_position: %d" % (end_position)) logging.info("answer: %s" % (answer_text)) # memoization to save CPU memory for large datasets input_mask = tuple(input_mask) if input_mask in self.input_mask_to_input_mask_id: feature_input_mask_id = self.input_mask_to_input_mask_id[input_mask] else: self.input_mask_id_to_input_mask[self.input_mask_id] = input_mask self.input_mask_to_input_mask_id[input_mask] = self.input_mask_id feature_input_mask_id = self.input_mask_id self.input_mask_id += 1 segment_mask = tuple(segment_ids) if segment_mask in self.segment_mask_to_segment_mask_id: feature_segment_mask_id = self.segment_mask_to_segment_mask_id[segment_mask] else: self.segment_mask_id_to_segment_mask[self.segment_mask_id] = segment_mask self.segment_mask_to_segment_mask_id[segment_mask] = self.segment_mask_id feature_segment_mask_id = self.segment_mask_id self.segment_mask_id += 1 if self.mode == TRAINING_MODE: input_feature = { "unique_id": unique_id, "input_ids": input_ids, "input_mask": feature_input_mask_id, "segment_ids": feature_segment_mask_id, "start_position": start_position, "end_position": end_position, } else: input_feature = { "unique_id": unique_id, "input_ids": input_ids, "input_mask": feature_input_mask_id, "segment_ids": feature_segment_mask_id, "start_position": start_position, "end_position": end_position, "example_index": example_index, "doc_span_index": doc_span_index, "tokens": tokens, "token_to_orig_map": token_to_orig_map, "token_is_max_context": token_is_max_context, "is_impossible": example.is_impossible, } self.features.append(input_feature) unique_id += 1 # delete self.examples during training mode to save memory if self.mode == TRAINING_MODE: self.examples = [] del self.processor def __getitem__(self, idx: int): feature = self.features[idx] if self.mode == INFERENCE_MODE: return ( np.array(feature.input_ids), np.array(self.segment_mask_id_to_segment_mask[feature.segment_ids]), np.array(self.input_mask_id_to_input_mask[feature.input_mask]), np.array(feature.unique_id), ) else: return ( np.array(feature.input_ids), np.array(self.segment_mask_id_to_segment_mask[feature.segment_ids]), np.array(self.input_mask_id_to_input_mask[feature.input_mask]), np.array(feature.unique_id), np.array(feature.start_position), np.array(feature.end_position), )
NeMo-main
nemo/collections/nlp/data/question_answering/dataset/qa_bert_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.question_answering.dataset.qa_bert_dataset import BERTQADataset from nemo.collections.nlp.data.question_answering.dataset.qa_dataset import QADataset from nemo.collections.nlp.data.question_answering.dataset.qa_gpt_dataset import GPTQADataset from nemo.collections.nlp.data.question_answering.dataset.qa_s2s_dataset import S2SQADataset
NeMo-main
nemo/collections/nlp/data/question_answering/dataset/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import torch from tqdm import trange from nemo.collections.nlp.data.question_answering.data_processor.qa_processing import INFERENCE_MODE, TRAINING_MODE from nemo.collections.nlp.data.question_answering.dataset.qa_dataset import QADataset from nemo.collections.nlp.data.question_answering.input_example.qa_s2s_input_example import S2SQAInputExample from nemo.utils import logging class S2SQADataset(QADataset): """ Creates a Dataset for T5/BART architecture based Generative QA """ def __init__( self, data_file: str, processor: object, tokenizer: object, keep_doc_spans: str = False, doc_stride: int = 128, max_query_length: int = 64, max_seq_length: int = 512, max_answer_length: int = 64, check_if_answer_in_context: bool = False, num_samples: int = -1, mode: str = TRAINING_MODE, use_cache: bool = False, ): super().__init__( data_file=data_file, processor=processor, tokenizer=tokenizer, mode=mode, num_samples=num_samples ) self.keep_doc_spans = keep_doc_spans self.doc_stride = doc_stride self.max_query_length = max_query_length self.max_seq_length = max_seq_length self.max_answer_length = max_answer_length self.check_if_answer_in_context = check_if_answer_in_context self.num_samples = num_samples self.mode = mode self.use_cache = use_cache self._set_cached_features_filename() if use_cache and os.path.exists(self.cached_features_file): # delete self.examples during training mode to save memory if self.mode == TRAINING_MODE: del self.examples del self.processor self.features = QADataset.load_features_from_cache(self.cached_features_file) else: self._convert_examples_to_features() if use_cache: QADataset.dump_features_to_cache(self.cached_features_file, self.features) logging.info("Converting dict features into object features") for i in trange(len(self.features)): self.features[i] = S2SQAInputExample(**self.features[i]) def _set_cached_features_filename(self): """ Creates cache filename using dataset config parameters """ vocab_size = getattr(self.tokenizer, "vocab_size", 0) self.cached_features_file = ( self.data_file + '_cache' + '_{}_{}_{}_{}_{}_{}_{}'.format( self.mode, self.tokenizer.name, str(vocab_size), str(self.max_query_length), str(self.max_seq_length), str(self.max_answer_length), str(self.num_samples), ) ) def _convert_examples_to_features(self): """ Iterates through each QA example, formats into input and output template, and encodes the input and output template Input template: `context: <context text> question: <question text>` Output template: `<answer text>` """ logging.info(f"Preprocessing data into features.") unique_id = 1000000000 self.features = [] context_prefix = "context: " context_prefix_tokens = self.tokenizer.tokenizer.tokenize(context_prefix) for example_index in trange(len(self.examples)): if example_index % 1000 == 0: S2SQADataset.check_if_sufficient_memory() example = self.examples[example_index] query_tokens, formatted_query = self._prep_query(example) context_tokens, context_spans = self._prep_context(example, query_tokens, context_prefix_tokens) unique_id = self._encode_all_context_spans( unique_id, context_spans, context_tokens, formatted_query, example, example_index, ) # delete self.examples during training mode to save memory if self.mode == TRAINING_MODE: self.examples = [] del self.processor def _prep_query(self, example): """ Formats a question into input format: ` question: <question text>` The space at the start allows concatention with the context for input """ formatted_query = f" question: {example.question_text}" query_tokens = self.tokenizer.tokenizer.tokenize(formatted_query)[: self.max_query_length] return query_tokens, formatted_query def _prep_context(self, example, query_tokens, context_prefix_tokens): """ Calculates the maximum possible length for a given context given a question as inputs are of fixed length Divides the context into multiple spans based on the calculated max length """ context_tokens = self.tokenizer.tokenizer.tokenize(example.context_text) max_context_length = ( self.max_seq_length - len(query_tokens) - len(context_prefix_tokens) - 1 # -1 accounts for </s> token in T5/BART ) context_spans = S2SQADataset.get_docspans(context_tokens, max_context_length, self.doc_stride) context_spans = tuple(context_spans) return context_tokens, context_spans def _encode_all_context_spans( self, unique_id, context_spans, context_tokens, formatted_query, example, example_index, ): """ Fromats all spans extracted from a single context as: `context: <context span text> question: <question text> answer: <answer text>` and encodes If the answer text (example.answer_text) is not present in a given context span, the answer is converted to a blank answer """ for context_span_idx, context_span in enumerate(context_spans): # format query and context span text context_span_tokens = context_tokens[context_span.start : context_span.start + context_span.length] context_span_text = self.tokenizer.tokenizer.convert_tokens_to_string(context_span_tokens) source = f"context: {context_span_text}{formatted_query}" # encode input encoded_input_dict = self.tokenizer.tokenizer( source, truncation=True, max_length=self.max_seq_length, padding="max_length", return_tensors="pt", ) input_ids = torch.squeeze(encoded_input_dict["input_ids"]) input_attn_mask = torch.squeeze(encoded_input_dict["attention_mask"]) # encode output based on mode and is question answerable given context labels = self._encode_answer(example, context_span_text) # create dictionary features feature = { "unique_id": unique_id, "input_ids": input_ids, "input_attn_mask": input_attn_mask, "labels": labels, "example_index": example_index, "context_span_index": context_span_idx, "is_impossible": example.is_impossible, } self.features.append(feature) unique_id += 1 return unique_id def _encode_answer(self, example, context_span_text): """ Answer is set and encoded as: - blank if in inference mode, else - blank if question is unanswerable given context, else - blank if answer text is not present in context span and the check flag is set to true, else - formatted answer """ is_answer_in_context_check = ( self.check_if_answer_in_context # checks if the flag for this check is set and example.answer_text # checks if answer text is valid, i.e. question is not unanswerable and example.answer_text not in context_span_text # checks if answer text is a substring of context ) if ( self.mode == INFERENCE_MODE or example.is_impossible # question not answerable given context or is_answer_in_context_check ): target = "" else: target = example.answer_text encoded_output_dict = self.tokenizer.tokenizer( target, truncation=True, max_length=self.max_answer_length, padding="max_length", return_tensors="pt", ) labels = torch.squeeze(encoded_output_dict["input_ids"]) labels[labels == self.tokenizer.tokenizer.pad_token_id] = -100 return labels def __getitem__(self, idx: int): feature = self.features[idx] if self.mode == INFERENCE_MODE: return ( np.array(feature.input_ids), np.array(feature.input_attn_mask), np.array(feature.unique_id), ) else: return ( np.array(feature.input_ids), np.array(feature.input_attn_mask), np.array(feature.unique_id), np.array(feature.labels), )
NeMo-main
nemo/collections/nlp/data/question_answering/dataset/qa_s2s_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import numpy as np import torch from tqdm import trange from nemo.collections.nlp.data.question_answering.data_processor.qa_processing import INFERENCE_MODE, TRAINING_MODE from nemo.collections.nlp.data.question_answering.dataset.qa_dataset import QADataset from nemo.collections.nlp.data.question_answering.input_example.qa_gpt_input_example import GPTQAInputExample from nemo.utils import logging class GPTQADataset(QADataset): """ Creates a Dataset for GPT architecture based Generative QA """ def __init__( self, data_file: str, processor: object, tokenizer: object, keep_doc_spans: str = False, doc_stride: int = 128, max_query_length: int = 64, max_seq_length: int = 512, max_answer_length: int = 64, check_if_answer_in_context: bool = False, num_samples: int = -1, mode: str = TRAINING_MODE, use_cache: bool = False, ): super().__init__( data_file=data_file, processor=processor, tokenizer=tokenizer, mode=mode, num_samples=num_samples ) self.keep_doc_spans = keep_doc_spans self.doc_stride = doc_stride self.max_query_length = max_query_length self.max_seq_length = max_seq_length self.max_answer_length = max_answer_length self.check_if_answer_in_context = check_if_answer_in_context self.num_samples = num_samples self.mode = mode self.use_cache = use_cache self._set_cached_features_filename() if use_cache and os.path.exists(self.cached_features_file): # delete self.examples during training mode to save memory if self.mode == TRAINING_MODE: del self.examples del self.processor self.features = QADataset.load_features_from_cache(self.cached_features_file) else: self._convert_examples_to_features() if use_cache: QADataset.dump_features_to_cache(self.cached_features_file, self.features) logging.info("Converting dict features into object features") for i in trange(len(self.features)): self.features[i] = GPTQAInputExample(**self.features[i]) def _set_cached_features_filename(self): """ Creates cache filename using dataset config parameters """ vocab_size = getattr(self.tokenizer, "vocab_size", 0) self.cached_features_file = ( self.data_file + '_cache' + '_{}_{}_{}_{}_{}_{}_{}'.format( self.mode, self.tokenizer.name, str(vocab_size), str(self.max_query_length), str(self.max_seq_length), str(self.max_answer_length), str(self.num_samples), ) ) def _convert_examples_to_features(self): """ Iterates through each QA example, formats into template and encodes Template: `context: <context text> question: <question text> answer:<answer text>` """ logging.info(f"Preprocessing data into features.") unique_id = 1000000000 self.features = [] context_prefix = "context: " query_prefix = " question: " answer_prefix = " answer:" context_prefix_tokens = self.tokenizer.tokenizer.tokenize(context_prefix) answer_prefix_tokens = self.tokenizer.tokenizer.tokenize(answer_prefix) for example_index in trange(len(self.examples)): if example_index % 1000 == 0: GPTQADataset.check_if_sufficient_memory() example = self.examples[example_index] formatted_query, query_tokens_length = self._prep_query(query_prefix, example) formatted_answer, answer_tokens_length = self._prep_answer(example) context_tokens, context_spans = self._prep_context( example, query_tokens_length, answer_tokens_length, context_prefix_tokens, answer_prefix_tokens, ) unique_id = self._encode_all_context_spans( unique_id, context_spans, context_tokens, context_prefix, formatted_query, answer_prefix, formatted_answer, example, example_index, ) # delete self.examples during training mode to save memory if self.mode == TRAINING_MODE: self.examples = [] del self.processor def _prep_query(self, query_prefix, example): """ Formats a question into input format: ` question: <question text>` The space at the start allows concatention with the context and answer for input Returns formatted query, query tokens, and length of query tokens """ formatted_query = f"{query_prefix}{example.question_text}" return self._get_truncated_sentence_and_len(formatted_query, self.max_query_length) def _prep_answer(self, example): """ Formats an answer into suitable model input: - In inference mode, answer is returned as an empty string, else - Sets EOS token as answer if question is impossible to answer, else - Appends answer with EOS token as the final answer Returns formatted answer string, answer tokens, and length of answer tokens """ if self.mode == INFERENCE_MODE: target = "" elif example.is_impossible: # example is impossible to answer given context target = self.tokenizer.tokenizer.eos_token else: target = f"{example.answer_text}{self.tokenizer.tokenizer.eos_token}" return self._get_truncated_sentence_and_len(target, self.max_answer_length) def _prep_context( self, example, query_tokens_length, answer_tokens_length, context_prefix_tokens, answer_prefix_tokens, ): """ Calculates the maximum possible length for a given context given a question as inputs are fixed length Divides the context into multiple spans based on the calculated max length """ context_tokens = self.tokenizer.tokenizer.tokenize(example.context_text) max_context_length = ( self.max_seq_length - query_tokens_length - answer_tokens_length - len(context_prefix_tokens) - len(answer_prefix_tokens) - 1 # -1 accounts for EOS token ) context_spans = GPTQADataset.get_docspans(context_tokens, max_context_length, self.doc_stride) context_spans = tuple(context_spans) return context_tokens, context_spans def _encode_all_context_spans( self, unique_id, context_spans, context_tokens, context_prefix, formatted_query, answer_prefix, formatted_answer, example, example_index, ): """ Formats all spans extracted from a single context as: `context: <context span text> question: <question text> answer:<answer text>` <answer text> is set as: - blank if in inference mode, else - EOS token if answer text is not present in context span and the check flag is set to true, else - formatted answer """ for context_span_idx, context_span in enumerate(context_spans): context_span_tokens = context_tokens[context_span.start : context_span.start + context_span.length] context_span_text = self.tokenizer.tokenizer.convert_tokens_to_string(context_span_tokens) input_without_answer = f"{context_prefix}{context_span_text}{formatted_query}{answer_prefix}" _, training_mask_end = self._get_truncated_sentence_and_len(input_without_answer, self.max_seq_length) is_answer_in_context_check = ( self.check_if_answer_in_context # checks if the flag for this check is set and example.answer_text # checks if answer text is valid, i.e. question is not unanswerable and example.answer_text not in context_span_text # checks if answer text is a substring of context ) if self.mode == INFERENCE_MODE: input_to_encode = input_without_answer elif is_answer_in_context_check: input_to_encode = f"{input_without_answer}{self.tokenizer.tokenizer.eos_token}" else: input_to_encode = f"{input_without_answer}{formatted_answer}" encoded_input_dict = self.tokenizer.tokenizer( input_to_encode, truncation=True, max_length=self.max_seq_length, padding="max_length", return_tensors="pt", ) input_ids = torch.squeeze(encoded_input_dict["input_ids"]) input_attn_mask = torch.squeeze(encoded_input_dict["attention_mask"]) labels = GPTQADataset.update_labels_for_no_pad_loss(input_ids, training_mask_end, input_attn_mask) # create dictionary features feature = { "unique_id": unique_id, "input_ids": input_ids, "input_attn_mask": input_attn_mask, "training_mask_end": training_mask_end, "labels": labels, "example_index": example_index, "context_span_index": context_span_idx, "is_impossible": example.is_impossible, } self.features.append(feature) unique_id += 1 return unique_id def _get_truncated_sentence_and_len(self, sentence, max_length): if not sentence: return "", 0 tokens = self.tokenizer.tokenizer.tokenize(sentence)[:max_length] trunc_sentence = self.tokenizer.tokenizer.convert_tokens_to_string(tokens) seq_length = len(tokens) return trunc_sentence, seq_length @classmethod def update_labels_for_no_pad_loss(cls, input_ids, training_mask_end, input_attn_mask): """ Loss mask for GPT is constructed to ignore loss for padding tokens GPT eos token is same as pas token and needs to be excluded from loss mask This is done using the attention mask inversion as described in: https://github.com/huggingface/transformers/issues/7135#issuecomment-1172962080 """ labels = copy.copy(torch.squeeze(input_ids)) inv_bool_attn_mask = torch.eq(torch.squeeze(input_attn_mask), 0) labels.data = torch.tensor( [ -100 if ((i < training_mask_end) or (inv_bool_attn_mask[i])) else labels.data[i] for i in range(len(labels.data)) ] ) return labels def __getitem__(self, idx: int): feature = self.features[idx] if self.mode == INFERENCE_MODE: return ( np.array(feature.input_ids), np.array(feature.input_attn_mask), np.array(feature.unique_id), np.array(feature.training_mask_end), ) else: return ( np.array(feature.input_ids), np.array(feature.input_attn_mask), np.array(feature.unique_id), np.array(feature.training_mask_end), np.array(feature.labels), )
NeMo-main
nemo/collections/nlp/data/question_answering/dataset/qa_gpt_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import pickle from functools import lru_cache from typing import List import psutil import torch from nemo.collections.nlp.data.data_utils import is_whitespace from nemo.collections.nlp.data.question_answering.data_processor.qa_processing import ( EVALUATION_MODE, INFERENCE_MODE, TRAINING_MODE, ) from nemo.core.classes import Dataset from nemo.utils import logging class QADataset(Dataset): ''' Abstract base class for QA Datasets with common utility methods ''' def __init__( self, data_file: str, processor: object, tokenizer: object, mode: str, num_samples: int, **kwargs, ): self.mode = mode self.data_file = data_file self.processor = processor self.tokenizer = tokenizer self.features = None if self.mode not in [TRAINING_MODE, EVALUATION_MODE, INFERENCE_MODE]: raise ValueError( f"mode should be either {TRAINING_MODE}, {EVALUATION_MODE}, {INFERENCE_MODE} but got {self.mode}" ) # get examples from processor and keep according to limit self.examples = self.processor.get_examples() if num_samples == 0: raise ValueError( f"num_samples has to be positive or -1 (to use the entire dataset), however got {num_samples}." ) elif num_samples > 0: self.examples = self.examples[:num_samples] def __len__(self): return len(self.features) def __getitem__(self, idx: int): raise NotImplementedError @staticmethod def load_features_from_cache(cached_filename): logging.info(f"loading from {cached_filename}") with open(cached_filename, "rb") as reader: features = pickle.load(reader) return features @staticmethod def dump_features_to_cache(cached_filename, features): master_device = not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0 if master_device: logging.info(f"Saving train features into cached file {cached_filename}") with open(cached_filename, "wb") as writer: pickle.dump(features, writer) @staticmethod def check_if_sufficient_memory(): """ Check if there is sufficient memory to prevent system from being unresponsive Otherwise system can become unresponsive as memory is slowly filled up, possibly leading to system unable to kill process Interrupts run if CPU memory use is more than 75%, to leave some capacity for model loading """ percent_memory = psutil.virtual_memory().percent if percent_memory > 75: raise ValueError('Please use a device with more CPU ram or a smaller dataset') @staticmethod @lru_cache(maxsize=10000) def get_best_span_index(doc_spans, position): """ For a particular position, identify which doc_span gives the most context around token Helper function for check_is_max_context; see check_is_max_context for more details """ best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return best_span_index @staticmethod def check_is_max_context(doc_spans, cur_span_index, position): """ Check if this is the 'max context' doc span for the token. Because of the sliding window approach taken to scoring documents, a single token can appear in multiple documents. Example: Doc: the man went to the store and bought a gallon of milk Span A: the man went to the Span B: to the store and bought Span C: and bought a gallon of ... Now the word 'bought' will have two scores from spans B and C. We only want to consider the score with "maximum context", which we define as the *minimum* of its left and right context (the *sum* of left and right context will always be the same, of course). In the example the maximum context for 'bought' would be span C since it has 1 left context and 3 right context, while span B has 4 left context and 0 right context. Code adapted from the code by the Google AI and HuggingFace. """ best_span_index = QADataset.get_best_span_index(doc_spans, position) return cur_span_index == best_span_index @staticmethod def get_docspans(all_doc_tokens, max_tokens_for_doc, doc_stride): """ Get docspans which are sliding window spans from a document Args: all_doc_tokens: list of all tokens in document max_tokens_for_doc: maximum number of tokens in each doc span doc_stride: stride size which sliding window moves with Returns: doc_spans: all possible doc_spans from document """ _DocSpan = collections.namedtuple("DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) return doc_spans @staticmethod def get_average_dist_to_tok_start_and_end(doc_span, tok_start_position, tok_end_position): """ Find distance between doc_span and answer_span to determine if doc_span is likely to be useful for the answer Helper function to filter out doc_spans that may not be helpful Args: doc_span tok_start_position: start position of answer in document tok_end_position: end position of answer in document Returns: average distance of doc_span to answer """ center_answer = (tok_start_position + tok_end_position) // 2 dist_to_start = abs(doc_span.start - center_answer) dist_to_end = abs(doc_span.start + doc_span.length - 1 - center_answer) return (dist_to_start + dist_to_end) // 2 @staticmethod def keep_relevant_docspans(doc_spans, tok_start_position, tok_end_position, mode): """ Filters out doc_spans, which might not be relevant to answering question, which can be helpful when document is extremely long leading to many doc_spans with no answers Args: doc_spans: all possible doc_spans tok_start_position: start position of answer in document tok_end_position: end position of answer in document mode: all: do not filter only_positive: only keep doc_spans containing the answer limited_negative: only keep 10 doc_spans that are nearest to answer Returns: doc_spans: doc_spans after filtering """ if mode == 'all': return doc_spans elif mode == 'only_positive': if tok_start_position in [-1, None] or tok_end_position in [-1, None]: return [] else: return [ doc_span for doc_span in doc_spans if tok_start_position >= doc_span.start and tok_end_position <= doc_span.start + doc_span.length - 1 ] elif mode == 'limited_negative': n_candidates = 10 if tok_start_position in [-1, None] or tok_end_position in [-1, None]: pass else: doc_spans.sort( key=lambda doc_span: QADataset.get_average_dist_to_tok_start_and_end( doc_span, tok_start_position, tok_end_position ) ) return doc_spans[:n_candidates] else: raise ValueError('mode can only be in {all, only_positive and limited_negative') @staticmethod def split_into_words(context_text): """ Split on whitespace so that different tokens may be attributed to their original position. ex: context_text = "hi yo" char_to_word_offset = [0, 0, 0, 1, 1] doc_tokens = ["hi", "yo"] """ doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in context_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) return doc_tokens, char_to_word_offset @staticmethod def get_doc_tokens_and_offset_from_context_id( context_id, start_position_character, is_impossible, answer_text, context_id_to_context_text ): start_position, end_position = 0, 0 context_text = context_id_to_context_text[context_id] doc_tokens, char_to_word_offset = QADataset.split_into_words(context_text) # Start end end positions only has a value during evaluation. if start_position_character is not None and not is_impossible: # start_position is index of word, end_position inclusive start_position = char_to_word_offset[start_position_character] end_position = char_to_word_offset[ min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1) ] return doc_tokens, char_to_word_offset, start_position, end_position, context_text @staticmethod def improve_answer_span( doc_tokens: List[str], input_start: int, input_end: int, tokenizer: object, orig_answer_text: str, ): """ Returns tokenized answer spans that better match the annotated answer """ tok_answer_text = " ".join(tokenizer.text_to_tokens(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start : (new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end)
NeMo-main
nemo/collections/nlp/data/question_answering/dataset/qa_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Dict, List, Optional @dataclass class BERTQAInputExample(object): """ A single set of features of a QA example for BERT-like model """ unique_id: int input_ids: List[int] input_mask: List[int] segment_ids: List[int] example_index: int = None doc_span_index: int = None tokens: List[str] = None token_to_orig_map: Dict[int, int] = None token_is_max_context: Dict[int, bool] = None start_position: Optional[int] = None end_position: Optional[int] = None is_impossible: Optional[int] = None
NeMo-main
nemo/collections/nlp/data/question_answering/input_example/qa_bert_input_example.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import List @dataclass class QAExample(object): """ A single training/test example for a QA dataset, as loaded from disk """ qas_id: str # The example's unique identifier question_text: str context_text: str context_id: int answer_text: str start_position_character: int # The character position of the start of the answer, 0 indexed title: str answers: List[ str ] = None # None by default, this is used during evaluation. Holds answers as well as their start positions is_impossible: bool = False # False by default, set to True if the example has no possible answer
NeMo-main
nemo/collections/nlp/data/question_answering/input_example/qa_input_example.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.question_answering.input_example.qa_bert_input_example import BERTQAInputExample from nemo.collections.nlp.data.question_answering.input_example.qa_gpt_input_example import GPTQAInputExample from nemo.collections.nlp.data.question_answering.input_example.qa_input_example import QAExample from nemo.collections.nlp.data.question_answering.input_example.qa_s2s_input_example import S2SQAInputExample
NeMo-main
nemo/collections/nlp/data/question_answering/input_example/__init__.py